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The diversity of fishes on coral reefs is influenced by the evolution of feeding

innovations. For instance, the evolution of an intramandibular jaw joint has

aided shifts to corallivory in Chaetodon butterflyfishes following their

Miocene colonization of coral reefs. Today, over half of all Chaetodon species

consume coral, easily the largest concentration of corallivores in any reef fish

family. In contrast with Chaetodon, other chaetodontids, including the long-

jawed bannerfishes, remain less intimately associated with coral and mainly

consume other invertebrate prey. Here, we test (i) if intramandibular joint

(IMJ) evolution in Chaetodon has accelerated feeding morphological diversi-

fication, and (ii) if cranial and post-cranial traits were affected similarly. We

measured 19 cranial functional morphological traits, gut length and body

elongation for 33 Indo-Pacific species. Comparisons of Brownian motion

rate parameters revealed that cranial diversification was about four times

slower in Chaetodon butterflyfishes with the IMJ than in other chaetodontids.

However, the rate of gut length evolution was significantly faster in

Chaetodon, with no group-differences for body elongation. The contrasting

patterns of cranial and post-cranial morphological evolution stress the impor-

tance of comprehensive datasets in ecomorphology. The IMJ appears to

enhance coral feeding ability in Chaetodon and represents a design break-

through that facilitates this trophic strategy. Meanwhile, variation in gut

anatomy probably reflects diversity in how coral tissues are procured and

assimilated. Bannerfishes, by contrast, retain a relatively unspecialized gut

for processing invertebrate prey, but have evolved some of the most extreme

cranial mechanical innovations among bony fishes for procuring elusive prey.
1. Introduction
The roughly 6000 species of fishes inhabiting coral reefs exhibit tremendous

trophic diversity, enabled in part by impressive functional innovations within

the feeding apparatus [1,2]. These functional innovations, for instance, include

protrusible jaws that provide the mechanical basis for an impressive ability in

many fishes to obtain food using a suction feeding mode [3–5]. Moreover, a

separate pharyngeal jaw apparatus, set deep within the oral cavity, allows

many coral reef fishes to process and transport captured prey [6–8]. Functional

innovations can have major evolutionary consequences; they may confer break-

throughs in performance and make new adaptive zones accessible [9–11], and

subsequent diversification may be facilitated if the innovation provides access

to a previously inaccessible set of resources upon which the lineage can then

diversify [8,12–14]. Such subsequent expansion and diversification within a
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new adaptive zone may involve functional diversification of

the innovation itself [15,16], or secondary diversification of

related traits associated with resource specialization [17].

Coral reefs are emblematic high-diversity ecosystems

whose bony fish inhabitants compete for resources, or par-

tition them in order to coexist [18–22]. Many reef fish

groups have evolved away from suction feeding in the

water column to feed on reef-building invertebrates using

what broadly can be classified as a biting feeding mode

[12,23,24]. By modifying the biting feeding mode into scrap-

ing, grazing, nipping or excavating feeding strategies, these

reef fishes are able to partition resources including coral.

Here, we examine the evolutionary impact of an extra jaw

joint within Chaetodontidae, a group of 129 reef fish species

[25] with diverse trophic ecologies that are recognized for

their deep-bodied shape, striking colour patterns and close

trophic associations with coral. The family consists of two

reciprocally monophyletic subfamilies: the butterflyfishes,

dominated by the genus Chaetodon and their sisters, the

bannerfishes. Chaetodon taxa transitioned in the Miocene

from being largely temperate or deep reef-dwelling organ-

isms into lineages with intimate associations with coral

reefs [26]. By contrast, bannerfishes remained loosely reef-

associated, do not feed on coral to any major extent and

instead consume a wide range of free-living invertebrates.

Members of the Chaetodontidae feed on a wide range of

prey, including soft and hard corals, errant and sedentary

polychaetes, small benthic crustaceans, algae and various

zooplankton [26–29]. Within the radiation of Chaetodon,
specifically in members of several subgenera forming the

clade Chaetodon (Chaetodon), an intramandibular joint

(IMJ) has evolved at least once in the evolutionary history,

as a point of flexion between the dentary and articular

bones of the mandible [30]. Similar IMJs have evolved in

several other lineages of benthic feeding coral reef fishes,

including surgeonfishes (acanthurids), angelfishes (poma-

canthids), rabbitfishes (siganids), blennies (blennids) and

parrotfishes (scarines) [30–32]. The performance benefits

and macroevolutionary impacts of IMJs for benthic feeding

are incompletely understood. However, the frequency of

their evolution in lineages that obtain their prey from bottom

surfaces strongly suggests that this innovation improves

feeding efficiency when removing attached benthic prey,

including algae, sponges or detritus that are nipped, scraped

or bitten from the substratum. In some groups, the joint

allows biting with the jaws extended [32], whereas in other

groups, the joint allows a greater expansion of the mouth

[6,18,31]. The latter may serve to increase the area of substrate

that can be scraped in a given feeding bout and thus, the

amount of material that can be procured per bite. IMJs may

also allow fine-scale adjustments of the orientation of the

teeth to match uneven feeding surfaces [30].

By adding an additional point of flexion to the jaw mechan-

ism, the IMJ confers a trait that is characteristic of a functional

innovation [14,17,33]; it increases the mechanical complexity of

the jaw system, and thus potentially its functional versatility.

A previous study found support for the hypothesis that the

introduction of an IMJ in parrotfishes led to increased rates of

morphological diversification in the jaws [34]. Here, we test

this hypothesis with chaetodontids, asking whether those

lineages that possess the IMJ show elevated rates of evolution

in trophic morphology. While morphological diversity of the

jaws of parrotfishes that possess an IMJ was not found to be
associated with diversification in diet [34], members of

Chaetodon show nearly the full range of diets found across the

family, although many species make extensive use of coral;

60 of 86 studied species of Chaetodon are either facultative or

obligate coral feeders [35], while coral feeding has only been

reported in six members of the family outside this genus

[28,35]. This is particularly noteworthy because only 128 species

of bony fishes worldwide are known to feed on coral [28],

meaning that about half of them belong to this single butterfly-

fish genus. The high frequency of coral feeding within the clade

that possesses an IMJ suggests the possibility that the joint

provides particular functional advantages for coral feeding.

To explore the impact of the IMJ on diversification of

chaetodontids and its potential role in the evolution of the

extensive coral feeding found in Chaetodon, we compare

rates of morphological diversification between Chaetodon
and all other chaetodontids. Our comparisons focus on a

dataset of functional morphological traits of the jaws and

skull, overall body shape as well as the length of the guts,

which is known to influence the evolution of niches,

including corallivory [36,37].
2. Material and methods
(a) Phylogeny
We used the nucleotide dataset of Bellwood et al. [26] because

our sampling of taxa was designed to match this tree. The dataset

was reanalysed using the same models and time calibration

points, but we estimated both the tree topology and branch dur-

ations concurrently to generate a Bayesian posterior distribution

of time-calibrated trees that exhibited topological variation.

Analyses were conducted in BEAST v. 1.6.1 [38]. We ran four

independent chains for 10 000 000 generations, sampling every

1000th. Output was examined in TRACER v. 1.6.1. [39], to ensure

that the Markov chain Monte Carlo chains had converged, ident-

ify burn-in and verify that samples were not auto-correlated.

After removing burn-in and concatenating the four runs, we

randomly sampled 1000 trees from the Bayesian posterior distri-

bution of trees; pruned these trees to match the morphological

dataset and used them in all subsequent analyses to account

for phylogenetic (topological and branch length) uncertainty.

(b) Morphological data
We characterized the morphological diversity of the feeding

apparatus in 33 members of the Chaetodontidae. The taxa used

were carefully selected a priori so as not to not skew our analyses

by sampling closely related species that may only be separated

by nuanced colour-pattern variations (a taxonomic phenomenon

that appears particularly common within genus Chaetodon). We

measured 19 feeding apparatus traits (electronic supplementary

material, table S1), computed as species averages from three

freshly sacrificed (unfixed) individuals per species (electronic

supplementary material, table S2). The traits measured included

jaw bone lengths and jaw closing muscle masses [3], third-order

lever lengths for the lower jaw, which govern mouth opening

mechanics [5], and link lengths for the hyoid four-bar linkage

model which govern suction generation mechanics [40]. The

length of the gently untangled fresh gut was measured from

the oesophagus to the vent [36,37]. Body length, width and

depth measurements were acquired and body fineness was cal-

culated [22]. All linear measurements were log-transformed to

ensure that the magnitude of character change was unrelated

to the absolute trait value (larger changes are less likely when

trait values are small). Muscle masses were cube-root
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transformed prior to log transformation to bring non-ratio traits

to the same dimensional scale. Finally, we calculated size-cor-

rected values for all traits across all chaetodontids and ran a

phylogenetic principal components analysis to create orthogonal

characters [41]. All dataset manipulations and statistics were per-

formed in the R software environment for statistical computing

(R Development Core Team 2011) using the ape [42] and phytools
[43] packages.
(c) Comparing morphological diversity
Morphological disparity has commonly been measured as the

variance or average pairwise distance between species [44].

The Brownian motion (BM) rate parameter, calculated using a

time-calibrated phylogeny, can provide an estimate of the ability

of a lineage to generate diversity that takes into account both

time and phylogenetic structure [45,46]. Under a BM model, var-

iance is proportional to time, so a faster BM rate of evolution

generates greater diversity over the same interval.

We estimated rates of morphological evolution using the

maximum-likelihood estimate of the BM rate parameter (s2)

[46] as implemented in the R package OUwie [47]. To test the

hypothesis that rates of morphological evolution were higher in

Chaetodon than in bannerfishes, we compared the fit of two

models to each trait, the first model fits a single rate of evolution

across all Chaetodontidae, while the second allows different rates

of evolution within bannerfishes and Chaetodon. We assessed the

fit of the one and two-rate BM models using the modified Akaike

information criterion (AICc), which accounts for small sample

sizes [48]. AICc is a function of the likelihood of the data,

given the model, the number of parameters in the model and

the size of the sample; thus, the lower the AICc value, the

better the fit. To integrate over phylogenetic uncertainty, we

repeated these analyses across 1000 trees sampled from the
Bayesian posterior distribution from the BEAST analysis and cal-

culated the difference in the average AICc scores (DAICc) to

select the best fitting model for each PC axis. An DAICc value

of 2 or more was accepted as support for one model over the

other [48]. Owing to the small number of species in the dataset,

we confirmed that any rate differences between Chaetodon and

other chaetodontids could be distinguished using parametric

bootstrapping. The 95% confidence interval around the rate esti-

mates were calculated from 1000 bootstrap replicates run under

the best-fitting two-rate model parameters.
3. Results
(a) Principal components analysis
Axes 1 through to 3 from the principal component analysis

together summarize 61.5% of the total variance in the dataset.

PC1 is the primary axis of morphological variation (after cor-

recting for body size by using residuals from a phylogenetic

regression against standard length [41]) and explains 31.8%

of the total dataset variance. Traits that are strongly positively

correlated with PC1 include upper jaw (premaxillary) protru-

sion, lower jaw (dentary) protrusion, closed mouth protrusion,

the length of the ascending and dentigerous processes of the

upper jaw and length of the palatine. Axis 1 describes

the full spectrum of jaw lengths, with large positive values

describing fishes with elongated jaws (in decreasing order of

jaw length, the bannerfish clades Forcipiger, Chelmon, Chelmo-
nops, Heniochus and the butterflyfish clade Chaetodon
radophorus) and large negative values describing truncated

snouts (the butterflyfish clade Chaetodon chaetodon; figures 1

and 2). PC2 accounts for 18.7% variance and is most highly
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correlated with three distances between mouth wall bones.

These bones form a triangle between the anterior and

posterior articulations of the suspensorial mouth wall with

the neurocranium and the ancestral mandibular jaw joint

formed by the quadrate and articular bones. This axis con-

trasts fishes with robust and rigid jaw suspension with

those that have reduced and motile jaw suspension. High

positive values along PC2 distinguish suction-feeding taxa

from biting taxa, which load with high negative values

along PC2. PC3 explains 11% of variance and is most strongly

correlated with variables describing the lateral dimension

of the jaws, contrasting fishes with wide versus narrow

mouths. Only principal component axes 1 through to 3

have non-trivial and thus interpretable eigenvalues, as deter-

mined according to the null expectation for the eigenvalues

under a broken stick model [49].

(b) Phylogeny
We used TRACER v. 1.6.1 to examine the log and trees from

BEAST and confirm that each independent run had converged,

all effective sample size values were greater than 200 and that

the first 10% should be discarded as burn-in. After removal of

burn-in, the results from the four independent chains were

combined using LogCombiner (www.beast.bio.ed.ac.uk/Log-

Combiner). There were no discernible differences between

the maximum clade credibility tree generated in this study

(figure 2; electronic supplementary material, figure S1) and
that of Bellwood et al. [26]; the topologies are congruent and

all node age estimates fall within the 95% of the sampled

values (95% highest posterior density) for both analyses.

(c) Comparing morphological diversity
The results of the model-fitting are summarized as medians

and 95% confidence intervals for the one- and two-rate

models across the 1000 phylogenies in table 1. PC1 is best

fitted with a two-rate model that allows morphological diver-

sity in bannerfishes and Chaetodon to evolve at different rates

(median DAICc 4.43). Contrary to our predictions, we found

that the rate of jaw length evolution, as represented by PC1,

was over four times higher in bannerfishes (median 15.71)

than in Chaetodon (median 3.55). Gut length is also best

fitted by a two-rate model (median DAICc 5.85) with rates of

evolution nearly eight times faster in Chaetodon (median 1.34)

compared to bannerfishes (median 0.17). The results from the

parametric bootstrapping confirmed that the empirical esti-

mates of the rate in the two clades could be distinguished

(electronic supplementary material, figure S2). The 95% confi-

dence interval (CI) were non-overlapping for gut length and

although the 95% CI for PC1 do overlap for jaw morphology,

the distribution and median estimates clearly differ. However,

there is no evidence that the IMJ influences the rate of evolution

of body elongation, PC2 and PC3 as they are all best fit by a

single rate of morphological evolution across the Chaetodonti-

dae. Phylogenetic uncertainty impacts the rate estimate

http://www.beast.bio.ed.ac.uk/LogCombiner
http://www.beast.bio.ed.ac.uk/LogCombiner


table 1 Summary of model fit comparisons and model parameters estimates from all models, averaged across 1000 phylogenies sampled from the Bayesian
posterior distribution generated by BEAST. Data are medians with 95% confidence intervals. Best-fitting models are italicized.

LH single
rate

AICc single
rate

single
rate

LH two
rate

AICc two
rate

IMJ clade
rate

other
rate

principal component 1 median 2121.02 246.45 7.31 2116.30 242.02 3.55 15.71

lower 2122.83 243.18 5.44 2118.01 238.43 2.56 11.35

upper 2119.39 250.07 9.57 2114.50 245.44 4.77 21.05

principal component 2 median 2113.20 230.79 4.56 2112.51 234.46 3.70 6.44

lower 2116.92 224.62 3.27 2115.74 228.74 2.61 3.90

upper 2110.11 238.24 6.41 2109.66 240.90 5.14 10.71

principal component 3 median 2106.89 218.17 3.10 2106.35 222.12 3.37 2.24

lower 2108.72 215.50 2.35 2108.20 219.37 3.37 1.57

upper 2105.55 221.85 4.08 2104.97 225.83 4.50 3.06

gut length median 288.90 182.20 1.05 283.46 176.35 1.34 0.17

lower 291.70 177.49 0.77 285.71 172.62 0.98 0.11

upper 286.55 187.79 1.39 281.59 180.85 1.80 0.24

body shape median 12.42 220.44 0.00 12.97 216.51 0.00 0.00

lower 10.80 223.31 0.00 11.56 219.09 0.00 0.00

upper 13.86 217.20 0.00 14.26 213.70 0.00 0.00
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slightly but never enough to alter the conclusion (table 1

provides 95% CI).
4. Discussion
High-diversity ecosystems like coral reefs are generally

thought to provide opportunities for diversified niche exploita-

tion, in turn accelerating the diversification of feeding

morphologies among its occupants. Butterfly and bannerfishes

provide a suitable model for probing how morphological and

ecological diversity are linked. We discovered differences in

the diversification rates of cranial and post-cranial traits with

bannerfishes displaying fourfold faster evolution of cranial

traits, reflecting frequent jaw elongation, whereas Chaetodon
butterflyfishes displayed nearly an eightfold faster evolu-

tion of gut length. The IMJ in Chaetodon appears to facilitate

biting feeding modes but does not accelerate craniofacial evol-

ution. The high frequency of coral feeding among Chaetodon
species suggests that the extra jaw joint enhances the ability

of butterflyfish to make use of this food, while dietary diversity

in the genus appears to be reflected by rates of evolution of

gut length.

(a) Decoupled diversification dynamics in cranial versus
post-cranial traits

Linking morphology with ecology is complicated by pheno-

types being mosaics of traits organized into functional suites

and the rate of diversification of different traits not necessarily

being directly correlated [50–53]. Feeding ecomorphology

may, for instance, be constrained by the locomotor apparatus,

with body shape affecting manoeuvrability and stability

during foraging, and consequently impacting which microha-

bitats and food sources can be accessed [54–57]. Across the

Chaetodontidae, we found no significant differences in body

fineness, suggesting that these laterally compressed, deep-
bodied fishes are generally well adapted to interact with the

wave-swept, current-dominated and obstacle-rich reef environ-

ments they occupy. Similarly, dental morphology and

patterning more directly determine what food resources can

be procured. The bristle-shaped iron-tipped teeth in chaeto-

dontid jaws [58] have been proposed to be an ancestral

biting adaptation [59,60]. Indeed, this appears to be a

generalized trait for chaetodontoid (bristle-toothed) fishes

(Chaetodontidae, Pomacanthidae and Micrognathidae) that

form a major part of the coral reef ichthyofauna [30].

We also found no support for the idea that diversification

of cranial morphology was accelerated by the evolution of the

IMJ. Previous observations noted that the origin of Chaetodon
marked a shift in adaptive zone involving the onset of

intimate associations with stony corals [26]. In our phylomor-

phospace, Chaetodon taxa clustered tightly along PC1,

indicating that the success of this clade may be best thought

of as lineage diversification with a conserved yet versatile jaw

mechanism. A similar pattern has been reported for fresh-

water sunfishes where piscivory similarly has constrained

jaw morphological evolution [61], as well as in phyllostomid

bats, where the evolution of the ability to eat hard fruit in

Stenodermatinae slows subsequent skull evolution, but diet-

ary diversity remains high [62]. Bannerfishes, which mainly

suction-feed or selectively pick errant or concealed free-

living invertebrates, have evolved some of the most extreme

cranial mechanical specialization found in Chaetodontidae

[4,63]. Rates of cranial trait diversification in this clade were

fourfold higher than in Chaetodon along PC1, which describes

variation in mandibular jaw length and jaw protrusion ability.

Gut morphology influences the assimilation of nutrients,

and it is here that we find considerably elevated rates of diver-

sification in Chaetodon. Gut length has diversified at an

eightfold higher rate than in bannerfishes, which have a rela-

tively conserved, short gut, underscoring the dominance of a

carnivorous niche [64]. We hypothesize that gut length
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diversification in Chaetodon reflects diversity in the demands of

nutrient assimilation from diverse coral-based foods including

zooid body walls, tentacles, mucus and endosymbiont algae.

Moreover, it may reflect how coral-derived resources impose

different mechanical and chemical challenges on digestion.

For instance, an extremely long gut, including the 22.1 times

standard length seen in Chaetodon ornatissimus, is a trait that

may facilitate very different specialized niches. Long guts are

common in herbivores, and may also support hard coral feed-

ing as well as the ability to assimilate a polysaccharide-rich diet

of coral mucus. Interestingly, the trophic status of C. ornatissi-
mus varies and depending on geographical location, this

species has been reported to use all three of these resources

[64–66]. Additionally, the morphology and physiology of the

gut may also be important for dealing with noxious anti-pred-

atory metabolites from coral [67]. To understand corallivory in

butterflyfishes, future studies may benefit from combining

high-speed, high-resolution video on the reef to determine

exactly what is ingested, guts analyses from specimens immedi-

ately after feeding for contents analyses, and stable isotope and

fatty acid profiles for an indication of assimilation patterns [66].

(b) Intramandibular joints as design breakthroughs
Our finding that frequent corallivory in Chaetodon is not

associated with accelerated evolution of cranial morphology

suggests that enhanced diversification of feeding mechanics

did not follow the introduction of this innovation. Thus,

while it appears that this innovation resulted in a break-

through that permits efficient corallivory, exceptional

diversity in feeding mechanics does not seem to underlie

subsequent trophic diversity in Chaetodon.

Our results for the IMJ in Chaetodon are consistent with

findings in the closely related marine angelfishes (Poma-

canthidae) where an IMJ has also evolved. Although

angelfish skull morphological disparity remains unquanti-

fied, it is known that disparity in feeding kinematics is

exceptionally low, compared with previously studied bony

fish groups [12]. Rather than evolving their feeding apparatus

in diverse ways to invade new adaptive zones, the IMJ has

permitted angelfishes to negotiate ‘ecological thresholds’,

formed by the structural resilience and/or sturdy attachment

of their modular invertebrate prey, which include sponges,

tunicates and crustose coralline algae. Instead of cranial mor-

phology, it is body size and gut morphology that has

diversified in angelfishes, which manage to avoid niche

competition by foraging in mixed groups [19,20]. This impor-

tance of gut morphological disparity and limited jaw

disparity closely parallels our findings for Chaetodon. It is

interesting that both groups have bristle-like teeth, which

may permit trophic breakthroughs [2], whereas subsequent

diversification appears to be constrained.

A contrasting result has been found for the IMJ in parrot-

fishes. Within parrotfishes, a lineage including the genera

Scarus, Chlorurus and Hipposcarus has evolved an IMJ [6].

This clade exhibits elevated rates of evolution of jaw func-

tional morphology, although this is not known to be

associated with increased ecological diversity [34]. The pres-

ence of the IMJ in parrotfishes is also associated with elevated

rates of lineage diversification [68]. While the macroevolu-

tionary consequences of an IMJ appear to be quite diverse,

the joint can be argued to be an important design break-

through, given that it appears to aid its bearers in

negotiating challenging ecological thresholds [12].
(c) Intramandibular joint-assisted corallivory; an
evolutionary dead-end?

Corallivory is extremely rare among coral reef fishes, only

occurring in 128 of the roughly 6000 extant reef species and

about half of all corallivores belong to Chaetodon [69,70]. In

the light of our findings, it is tempting to wonder whether

the use of coral as a food resource places strong constraints

on the functional morphology of fish jaws. Is the feeding

morphology and ecology in Chaetodon butterflyfishes an evol-

utionary dead-end? While it appears that the small, biting

jaw design and bristled dentition of chaetodontids was pre-

adapted for coral feeding [58–60], potential major challenges

associated with eating coral may include overcoming their

toxic secondary compounds and stinging nematocysts, and

extracting nutrients from what may be a very nutritionally

poor diet, particularly in the case of coral mucus [67]. It

appears that gut anatomy, and possibly gut physiology, is

more important in shaping the diversity in the use of coral

among Chaetodon species. Specializations to teeth and lips

may also be important in shaping the abilities of corallivores

to harvest digestible elements from the abrasive calcium car-

bonate matrix of stony corals. Such specializations include

bristle-like teeth tipped with iron-invested caps in butterfly-

fishes [58,59], fused oral beaks for tough gouging bites in

parrotfishes [6,34], and fleshy self-lubricating lips for mucus

extraction in tube-lipped wrasses [71]. Regardless of the

mechanism, Chaetodon species have somehow managed to

overcome these challenges, allowing the group to enjoy a

period of high net-diversification since the Miocene [72].

The ongoing loss of corals on reefs is already resulting in

marked changes to butterflyfish communities, and coralli-

vores appear to be particularly vulnerable [73,74]. The

unusual jaws of butterflyfishes underpin an intimate

relationship between these fish and corals. However, this

opportunity appears to have resulted in a dependency

leading butterflyfishes to face a challenging future in the

face of rapidly declining coral resources.
5. Conclusion
Our results show that an important feeding innovation in

butterflyfish jaws (IMJ) may have provided an ecological

breakthrough with respect to coral feeding, but did not

stimulate subsequent functional morphological diversifica-

tion of the feeding mechanism. By contrast, gut length has

diversified greatly in Chaetodon, varying from five to 12

times body length. This contrast in evolutionary dynamics

of different parts of the feeding system underscores the

importance of evaluating comprehensive character-sets in

ecomorphology. Chaetodon butterflyfishes offer an intriguing

example where high rates of coral feeding and speciation

are not founded upon high rates of morphological evolution.

Instead, acquisition of an IMJ appears to have rendered the

generalized jaw mechanism sufficiently versatile to allow

for considerable variation in prey type without extensive

changes in shape.
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