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Abstract of the Dissertation

Computing Maximally Supersymmetric Scattering

Amplitudes

by

James Michael Stankowicz Jr.

Doctor of Philosophy in Physics

University of California, Los Angeles, 2016

Professor Zvi Bern, Chair

This dissertation reviews work in computing N = 4 super-Yang–Mills (sYM) and N = 8

maximally supersymmetric gravity (mSUGRA) scattering amplitudes in D = 4 spacetime

dimensions in novel ways.

After a brief introduction and overview in Ch. 1, the various techniques used to construct

amplitudes in the remainder of the dissertation are discussed in Ch. 2. This includes several

new concepts such as d log and pure integrand bases, as well as how to construct the ampli-

tude using exactly one kinematic point where it vanishes. Also included in this chapter is an

outline of the Mathematica package on shell diagrams and numerics.m (osdn) that was

developed for the computations herein. The rest of the dissertation is devoted to explicit

examples.

In Ch. 3, the starting point is tree-level sYM amplitudes that have integral representations

with residues that obey amplitude relations. These residues are shown to have corresponding

residue numerators that allow a double copy prescription that results in mSUGRA residues.

In Ch. 4, the two-loop four-point sYM amplitude is constructed in several ways, show-

casing many of the techniques of Ch. 2; this includes an example of how to use osdn. The

two-loop five-point amplitude is also presented in a pure integrand representation with com-

ments on how it was constructed from one homogeneous cut of the amplitude. On-going
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work on the two-loop n-point amplitude is presented at the end of Ch. 4.

In Ch. 5, the three-loop four-point amplitude is presented in the d log representation and

in the pure integrand representation.

In Ch. 6, there are several examples of four- through seven-loop planar diagrams that

illustrate how considerations of the singularity structure of the amplitude underpin dual-

conformal invariance. Taken with the previous examples, this is additional evidence that the

structure known to exist in the planar sector extends to the full theory. At the end of this

chapter is a proof that all mSUGRA amplitudes have a pole at infinity for (L ≥ 4)-loops.

Finally in Ch. 7, the current status of ultraviolet divergences in the five-loop four-point

mSUGRA amplitude is addressed. This includes a discussion of ongoing work aimed at

resolving the mSUGRA finiteness question.

The following Mathematica scripts are submitted with this dissertation:

• on shell diagrams and numerics.m with dependencies:

– all trees *.m

– external kinematics * point.m

– rational external * point.m

where “*” is a wild-card string of any set of characters of any length – either an integer

or a number spelled out.
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CHAPTER 1

Introduction

1.1 Background

In particle physics, a typical quantity of interest is the scattering cross section, σ. In

classical physics, scattering a marble off a much larger beach ball has σ ≈ πR2
beach ball – the

cross-sectional area of the beach ball.

This notion generalizes to particle physics, where the cross section is an effective area

corresponding roughly to the sizes of the interacting particles. In quantum field theory

(QFT), a cross section depends on the square of the absolute value of an amplitude,

σ ∼ |A|2 , (1.1)

where A is the quantum mechanical probability amplitude of the incoming particles evolving

into the outgoing particles. The quantity A is called the scattering amplitude.

One way to compute such scattering amplitudes is via a generating functional in a given

QFT:

A ∼
∫

Dϕf [ϕ] exp

(
−
∫

dDxL(ϕ, ∂ϕ)
)
, (1.2)

where ϕ ≡ ϕ(x) are the quantum fields representing the particles, the functional f [ϕ] rep-

resents an interaction of the fields, and L is the Lagrangian of the theory defined in D

spacetime dimensions with coordinates x. Throughout this dissertation, D = 4. Planck’s

constant ~ is implicitly in the argument of the exponent in Eq. (1.2) such that the argument

is dimension free, but ~ = 1 by appropriate choice of units.

1



A4 ∼
(

1
2 3

4
+ · · ·

)
+


1

2 3

45

+ · · ·

+


1

2 3

45 6

+ · · ·

+ · · · ,

1
2 3

4
∼ Ns(k1, k2, k4)

(k1 + k2)2
,

1

2 3

45

∼
∫ d4`5Nbox(k1, k2, k4, `5)

(`5)2(`5 − k1)2(`5 − k1 − k2)2(`5 + k4)2
,

1

2 3

45 6

∼
∫ d4`5d

4`6Ndouble-box(k1, k2, k4, `5, `6)

(`5)2(`5 − k1)2(`5 − k1 − k2)2(`5 − `6)2(`6 − k1 − k2)2(`6 + k4)2
.

Figure 1.1: A schematic example of expanding the four-particle scattering amplitude in
Feynman diagrams. The “∼” indicate that various factors and other details are omitted.
The Ns, Nbox, Ndouble-box are dictated by the Lagrangian. The parentheses indicate grouping
by loop-order. The “· · · ” within parentheses indicate a sum over all connected graphs at the
same loop order.

Feynman rules are a standard method to perturbatively expand such generating func-

tionals. One way of organizing the Feynman rules results in an expansion in loop-order ; an

example for four-point scattering in a theory with trivalent interactions appears in Fig. 1.1.

For a given Lagrangian, the rules associate graphs to integrals in momentum space. Mo-

mentum is the four-vector Fourier-conjugate to the position four-vector xµ = (ct, x⃗), with

dimensions such that the speed of light c = 1. The loop momenta coordinates are always

denoted by ℓl in this dissertation. In this organizational scheme, the problem of computing

scattering amplitudes reduces to computing the Feynman integrals of graphs or diagrams

exemplified on the bottom of Fig. 1.1.

While Feynman rules in principle indicate how to write any generating functional to any

order in perturbation theory, it is intractable to go beyond low loop-levels. In some sense,

this dissertation is about bypassing Feynman rules to efficiently obtain simpler expressions

for the scattering amplitude. This approach has had much recent success.

A good sandbox for testing techniques that bypass Feynman rules is the four-dimensional,

maximally-supersymmetric (N = 4) Yang-Mills theory (sYM) with gauge group SU(N).
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There is a brief overview of this theory in the next section. Active research, including the

topics in this dissertation, is in uncovering the mathematical structure of sYM amplitudes.

Some of the aims of these research programs are:

1. Uncovering structure via new techniques. This often unveils yet more structure making

it possible to advance to higher loop order: a classic bootstrap approach.

2. Exploring the divergence structure of maximally supersymmetric (N = 8) gravity

(mSUGRA), as there is a very direct connection between sYM and mSUGRA ampli-

tudes.

3. Developing techniques that apply directly or offer insight into other, more realistic

theories.

Points 1 and 2 are the main focus of this dissertation.

1.2 N = 4 super-Yang–Mills

This subsection details some of the properties of sYM theory that are useful in subsequent

chapters. For a complete, modern review see Ref. [4].

It is convenient to formulate sYM theory in an on-shell superspace formalism [5]. This

formalism allows any amplitude to be computed by taking derivatives with respect to a

superfield multiplet. Superspace and supersymmetric Ward identities relate various ampli-

tudes to all-gluon amplitudes such that sYM may be split into sectors based on the all-gluon

scattering amplitudes.

Since gluons are massless spin-one particles, the gluon velocity is either parallel or anti-

parallel to the spin. This dot product of spin and velocity is the helicity, h, of the gluon and

is normalized to h = ±1.

One general property about scattering amplitudes is that they display crossing symmetry:

the amplitude is related by analytic continuation under exchanging any number of incoming

3



1

i i+ 1

n

Ai→n−i

︸︷︷︸
Incoming

︸︷︷︸
Outgoing

−→

1

i i+ 1

n

An

︸ ︷︷ ︸
All Outgoing

Figure 1.2: Scattering amplitudes exhibit crossing symmetry. The left figure illustrates i
incoming particles scattering into n − i outgoing particles with amplitude Ai→n−i. This
maps into an amplitude of n outgoing particles, An, illustrated on the right.

particles for the same number of outgoing particles with opposite helicity. This is demon-

strated in Fig. 1.2. Practically, this means all amplitudes may be computed by choosing all

particles as outgoing.1.

The on-shell superspace formalism also implies that the L-loop amplitude can be ex-

panded in terms of P
(L)
4k , a Grassmann-valued polynomial of degree 4k. The details of the

on-shell superspace are such that K = k + 2, where K is the number of negative helicity

gluons. The integer k is most often used in the literature to count how far from maximally

helicity violating an amplitude is. This name comes from considering the K = 0 scattering

cross section. By crossing symmetry, this is a 1−2− → 3+4+5+6+ · · ·n+ gluon scattering

process, where the integer labels the gluon and the sign its helicity. This expression mani-

festly violates helicity conservation, since there is helicity -2 incoming and n − 2 outgoing,

for a “violation” of n. The K = 0 and K = 1 amplitudes can be shown to vanish, and so

the K = 2 amplitude is maximally helicity violating. Switching to k = K − 2 indexes the

maximally helicity violating, or MHV, amplitude by k = 0. Then k = 1 is the next-to-MHV

amplitude (NMHV), k = 2 is the next-to-next-to-MHV amplitude (N2MHV), and so on for

NkMHV amplitudes.

1Another common convention in the literature is to choose all incoming particles.
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For an n-particle amplitude, the Nn−kMHV amplitude is the complex conjugate of the

NkMHV amplitude. These are denoted with an overbar. For example:

MHV = Nn−2MHV . (1.3)

Much of the work presented here is for n = 4 or n = 5 external particles. For n = 4, the

only non-vanishing amplitude is the MHV amplitude, and for n = 5, the NMHV amplitude

is the conjugate of the MHV amplitude, and this again is the only non-vanishing amplitude.

Since the gluons are massless and all equations are in D = 4 dimensions, the amplitude

can be written as a function of spinor helicity variables. These variables result from mapping

Lorentz four-vectors into 2× 2 matrices via the Pauli matrices:

paḃ = pµ(σ
µ)aḃ , pȧb = pµ(σ̄

µ)ȧb , (1.4)

σµ

aḃ
= (σ0, σi)aḃ , (σ̄µ)ȧb = (σ0,−σi)ȧb , (1.5)

σ0 =

1 0

0 1

 , σ1 =

0 1

1 0

 , σ2 =

0 −i

i 0

 , σ3 =

1 0

0 −1

 . (1.6)

For massive momentum this results in −pµpµ = det(paḃ) = m2. For massless gluons, the

determinant vanishes and so the momenta can be written as the outer product of vectors:

paḃ ≡ λaλ̃ḃ ≡ |p⟩ [p| , pȧb ≡ λ̃ȧλb ≡ |p] ⟨p| . (1.7)

These λ’s and λ̃’s are the spinor helicity variables; they are indiscriminately exchanged for

the “bra-ket” notation in this dissertation and in the literature. When the spinor is labeled

by its external particle index i, the bra-ket notation is:

(λi)a ↔ |i⟩ , (λ̃i)ȧ ↔ [i| , (1.8)

(λi)
a ↔ ⟨i| , (λ̃i)

ȧ ↔ |i] . (1.9)
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Indices are raised and lowered by the anti-symmetric tensor

εab = εȧḃ =

 0 1

−1 0

 = −εab = −εȧḃ. (1.10)

In the bra-ket notation, contractions allow a compact notation:

ϵab(λi)a(λj)b ≡ ⟨ij⟩ = −⟨ji⟩ ≡ ϵba(λi)b(λj)a , (1.11)

ϵȧḃ(λ̃i)ȧ(λ̃j)ḃ ≡ [ij] = − [ji] ≡ ϵḃȧ(λ̃i)ḃ(λ̃j)ȧ . (1.12)

There are additional contractions and notation that are natural extensions of this. See for

example Appendix A of Ref. [4]. Complex conjugation is exchanging λ ↔ λ̃.

Amalgamating all these facts, the n-point sYM amplitude is a function of the momenta

or spinor helicity variables of the external massless gluons, ki, i = 1, 2, . . . , n, and the helicity

of the gluons, hi = ±1, i = 1, 2, . . . , n. The L-loop amplitude is the contribution to this

amplitude at loop order L. For MHV amplitudes, it does not matter which of the gluons are

negative helicity, so the amplitude may be written in terms of its contributions at different

loop levels as

An,k =
∞∑

L=1

A(L)
n,k (1.13)

when k+2 of the gluons are negative helicity. It is conventional to also callA(L)
n,k an amplitude.

If it matters which of the gluons are negative, then the convention is to abbreviate the

external momentum kj as just the integer j with the helicity as a superscript:

An ≡ A(1h1 , 2h2 , . . . , nhn) (1.14)

=
∞∑

L=1

A(L)(1h1 , 2h2 , . . . , nhn). (1.15)

One of the reasons for so much interest in these sYM amplitudes is that the amplitudes

exhibit symmetries beyond those present in the Lagrangian of the theory. In particular
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Status of N = 4 Amplitudes

Planar Full

Integrand Many results This dissertation

Integrated Some results Few results

Table 1.1: Current status of scattering amplitudes in SYM. This dissertation address inte-
grands of the full theory.

the planar sYM amplitudes obey an infinite dimensional Yangian symmetry that was only

recently discovered [6], despite the fact that Yang and Mills [7] could in principle have

identified it. The “planar” sYM theory corresponds to a large-N limit of the full theory and

the amplitude integrands of the theory are simpler to study than the full theory as a result

of the infinite dimensional symmetry. Some of the “many results” for the planar integrand

indicated in Tab. 1.1 are listed at the beginning of the next section. Included in this is a

discussion of the amplituhedron which was a large motivating factor for much of the work

in this dissertation. It is an open question, partially addressed in this dissertation, which of

the novel properties appearing in the planar theory have generalizations in the full theory.

This is indicated in Tab. 1.1.

Actually obtaining integrated results is a related area of research, but is not done by

directly integrating the integrands. In the planar integrated sector (the bottom left cell of

Tab. 1.1), there are techniques for computing, for example, the six-point NMHV amplitude

through four-loops [8–10] that rely heavily on various features of the planar integrand. These

results and techniques hint at a connection [11] between the generalized polylogarithms [12–

15] that result from integration and the d log forms presented in this dissertation, although

the question of how to map between the two remains an open one [16]. In particular,

understanding how to integrate the nonplanar integrands presented here would open the

door to computing more nonplanar amplitudes, where there are currently only two-loop

four-point [17] and partial three-loop four-point [18] results.

Aside from uncovering unexpected structure of sYM amplitudes, another reason to study

7



these amplitudes is that they are very closely related to the scattering amplitudes of mSU-

GRA. The relation was made very precise by Bern-Carrasco-Johannson (BCJ) in Ref. [19]

as outlined in Sec. 2.5. It is an open question if the terms in the mSUGRA expansion of the

amplitude are finite in D = 4 dimensions. The current calculational limit is five-loops for

the four-point amplitude, and explicit calculation has continued to hint that mSUGRA and

sYM amplitudes have similar divergences meaning that mSUGRA is better behaved than

traditional techniques predict.

1.3 Motivation

As briefly mentioned above, there are two main aims in this dissertation for computing

sYM scattering amplitudes in novel ways: uncovering unexpected structure and addressing

the mSUGRA finiteness question. This section addresses the motivation for suspecting

hidden structure in nonplanar sYM - a theme that unites the calculations in Chs. 4-6. For

a discussion of mSUGRA finiteness, see Ch. 7.

In planar sYM theory much hidden structure has been recently uncovered: Yangian sym-

metry [6], dual conformal symmetry [20–22], integrability [23, 24], a duality between Wil-

son loops and planar amplitudes [25–30], chromodynamic flux-tube integrability for finite-

coupling expansions of the amplitude [31–33], hexagon bootstrap [8–10], and symbols and

cluster polylogarithmics [12–15]. More recently, scattering amplitudes were reformulated us-

ing on-shell diagrams and the positive Grassmannian [34–40], with related work in Refs. [41–

44]. This reformulation fits nicely into the geometric concept of the amplituhedron [45] (see

also Refs. [46–52]), and makes connections to active areas of research in algebraic geometry

and combinatorics (see e.g. Ref. [53–58]).

The calculations in this dissertation of the two-loop four- and five-point amplitudes

(Ch. 4) and the three-loop four-point amplitude (Ch. 5) explicitly probe how some properties

of the planar sector carry to the nonplanar sector. A basic difficulty in the nonplanar sector is

that there are no global variables with which to describe a nonplanar integrand. This labeling
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ambiguity obscures structures that might be hiding in the amplitude. In addition many of

the features of the previous paragraph have no obvious generalization. There is no Yangian

symmetry with its associated integrability constraints in the full theory. The connection

between nonplanar amplitudes and Wilson loops is also murky. There is also no known way

to construct nonplanar amplitudes using on-shell diagrams, the positive Grassmannian and

the amplituhedron, though there has been some recent progress [59, 60].

Despite these apparent obstructions, there are reasons to suspect that many features of

the planar theory can be extended to the full nonplanar theory. In particular, the conjectured

duality between color and kinematics [19, 61] suggests that nonplanar integrands are directly

related to planar ones, and hence properties of the nonplanar theory should be related to

properties of the planar sector. However, it is not a priori obvious which features can be

carried over.

The dual formulation of planar sYM scattering amplitudes using on-shell diagrams and

the positive Grassmannian makes manifest that the integrand has only logarithmic singular-

ities, and can be written as a d log form. Furthermore, the integrand has no poles at infinity

as a consequence of dual conformal symmetry. Recently Ref. [62] conjectured the same sin-

gularity properties hold to all loop orders for all MHV amplitudes in the nonplanar sector as

well. This is confirmed explicitly in Sec. 5.1 for the full three-loop four-point sYM integrand

by finding a basis of diagram integrands where each term manifests these properties. In

Ref. [2], we also conjectured:

Logarithmic singularities and absence of poles at infinity imply dual conformal invariance

of local integrand forms to all loop orders in the planar sector.

Evidence for this is provided from studies of the four-, five-, and six-loop amplitudes in

Ch. 6. Taken all together, the results of Chs. 4-6 serve as concrete evidence that the analytic

structure of amplitudes carry properties of the planar sector into the nonplanar sector.

In Ref. [3], we showed that in the planar case dual conformal invariance is equivalent to

integrands with (i) no poles at infinity, and (ii) special values of leading singularities. In the
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MHV sector, property (ii) and superconformal invariance imply that leading singularities

are necessarily ±1 times the usual Parke-Taylor factor [63, 64]. Moreover, the existence of

a dual formulation using on-shell diagrams and the positive Grassmannian implies that (iii)

integrands have only logarithmic singularities. While (i) and (iii) can be directly conjectured

also for nonplanar amplitudes, property (ii) must be modified. As proven in Ref. [65] for

both planar and nonplanar cases, the leading singularities are linear combinations of Parke-

Taylor factors with different orderings and with coefficients ±1. This set of conditions was

first conjectured in Ref. [2], and in Ref. [3] we gave a more detailed argument as to why the

content of dual conformal symmetry is exhausted by this set of conditions. In this dissertation

there is direct nontrivial evidence showing these properties hold for the two-loop five-point

amplitude (Sec. 4.2) and the three-loop four-point (Sec. 5.1) amplitude.

The main purpose of the pure integrand constructions in this dissertation is to present

evidence for the amplituhedron concept [45] beyond the planar limit. The amplituhedron

is defined in momentum twistor variables which intrinsically require cyclic ordering of am-

plitudes, making direct nonplanar tests in these variables impossible. However, we can test

specific implications even for nonplanar amplitudes. In Ref. [49], those authors argued that

the existence of the “dual” amplituhedron implies certain positivity conditions of amplitude

integrands. Indeed, these conditions were proven analytically for some simple cases and nu-

merically in a large number of examples. Interestingly, these conditions appear to hold even

in integrated results [49]. The dual amplituhedron can be interpreted as a geometric region

of which the amplitude is literally a volume, in contrast to the original definition where the

amplitude is a form with logarithmic singularities on the boundaries of the amplituhedron

space. This implies a very interesting property when the integrand is combined into a single

rational function: its numerator represents a codimension one surface which lies outside the

dual amplituhedron space. The surface is simply described as a polynomial in momentum

twistor variables and therefore can be fully determined by the zeros of the polynomial, which

correspond to points violating positivity conditions defining the amplituhedron. A nontrivial

statement implied by the amplituhedron geometry is that all these zeros can be interpreted
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as cuts where the amplitude vanishes.

This leads to a concrete feature that can be tested even in a diagrammatic representation

of a nonplanar amplitude:

The integrand should be determined entirely from homogeneous conditions,

up to an overall normalization.

Concretely, “homogeneous conditions” means the conditions of no poles at infinity, only log-

arithmic singularities, and also unitarity cuts that vanish. That is, in the unitarity method,

the only required cut equations are the ones where one side of the equation is zero, as op-

posed to a nontrivial kinematical function. These zeros occur either because the amplitude

vanishes on a particular branch of the cut solutions or because the cut is spurious2. This

conjecture has exciting implications because this feature is closely related to the underlying

geometry in the planar sector, suggesting that the nonplanar contributions to amplitudes

admit a similar structure.

In this dissertation, this conjecture is verified for the nonplanar two-loop four-point sYM

amplitude both analytically (Sec. 4.1.2) and numerically by the Mathematica package osdn

(Sec. 4.1.4). The conjecture also passes the nontrivial checks of the nonplanar three-loop

four-point (Sec. 5.2) and two-loop five-point (Sec. 4.2) amplitudes. A key assumption is that

the desired properties can all be made manifest diagram-by-diagram [2]. While it is unknown

if this assumption holds for all amplitudes at all loop orders, the results at relatively low

loop order presented here confirm that this is a good hypothesis. The three-loop four-point

integrand was first obtained in Ref. [66], while the two-loop five-point integrand was first

calculated in Ref. [67] in a format that makes the duality between color and kinematics

manifest. The constructions here are different representations that make manifest that the

amplitudes have only logarithmic singularities and no poles at infinity. These representations

are then compatible with the notion that there exists a nonplanar analog of dual conformal

2A spurious cut is one that exposes a non-physical singularity, i.e. a singularity that is not present in the
full amplitude.
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symmetry and a geometric formulation of nonplanar amplitudes. The amplitudes are orga-

nized in terms of basis integrands that have only ±1 leading singularities (Sec. 2.3.3). The

coefficient of these integrals in the amplitudes are then simply sums of Parke-Taylor factors,

as proved in Ref. [65]. This dissertation also shows by example that homogeneous conditions

are sufficient to determine both amplitudes up to an overall factor, as expected if a nonplanar

analog of the amplituhedron were to exist.

1.4 Outline

The remainder of this dissertation is organized as follows. In Ch. 2 are the various

techniques used to compute and uncover properties of sYM amplitudes. In the chapters

following that, the techniques are applied to compute various amplitudes. The chapters are

arranged by loop-order. Most amplitudes are four-point amplitudes, except to the two-loop

five-point amplitude and the two-loop n-point amplitude.

1.5 Definitions

The following abbreviations and conventions are used throughout this dissertation:

• All particles are outgoing.

• Quantum field theory is abbreviated QFT

• N = 4 super Yang-Mills is abbreviated sYM

• N = 8 supergravity is abbreviated mSUGRA

• The word amplitude always means the integrand of a scattering amplitude. The loop

order and the theory (sYM or mSUGRA) will be clear from context.

• The symbol A is reserved for sYM amplitudes and M for mSUGRA amplitudes.

• All equations are in D = 4 dimensions.
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• The words diagram, graph, and integrand are all used interchangeably and always refer

to a Feynman integral.

• For n-point massless external gluons si,j ≡ (ki + kj)
2 = 2ki · kj.

• For four massless external gluons, s ≡ 2k1 · k2, t ≡ 2k2 · k3, u ≡ 2k1 · k3.

• The spacetime metric used to lower and raise Lorentz indices is ηµν = diag(−1, 1, 1, 1).

This sign choice as well as choices associated to signs and notation in the spinor helicity

formalism may differ from some of the references.
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CHAPTER 2

Technology

The sections of this chapter discuss the various techniques used to construct amplitudes

in the remainder of this dissertation.

Some of the sections outline new contributions to the field while other sections are sum-

maries of previously-known techniques that we used when constructing amplitudes in new

ways. The content of Sec. 2.1, though not itself new, describes the connection between

residues and cuts; this connection forms the backbone of many of the subsequent calcu-

lations. New concepts form the content of Sec. 2.2, Sec. 2.3, and Sec. 2.4. The content

of Sec. 2.5 summarizes previously-existing technology for converting sYM amplitudes to

mSUGRA amplitudes. The final section, Sec. 2.6, summarizes the various Mathematica

functions I wrote or updated. These functions form the backbone of the computations in

the later chapters.

2.1 Residues and Cuts

The main property of the integrand we considered in Refs. [2, 3] was its pole structure

after taking sequential residues. In this section the connection between residues and unitartiy

cuts [68] is detailed. The analysis performed here in an example case is the main tool used

in subsequent calculations.

The simplest way to illustrate how a sequence of residues corresponds to unitarity cuts
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k1

K2 k3

K4`

Figure 2.1: The one-loop “two mass easy” box integrand. The corresponding expression is
Eq. (2.1).

is by example. In particular, consider the two-mass box integrand

dI =
d4ℓ

ℓ2 (ℓ− k1)
2 (ℓ− k1 −K2)

2 (ℓ+K4)
2 , (2.1)

where K2 and K4 are massive and k1 and k3 are massless. The corresponding diagram is in

Fig. 2.1. To find poles of this expression, a first useful step is to change coordinates from

the components of four-momentum ℓµ since they are quadratic in Eq. (2.1). Spinor helicity

variables are linear coordinates in this integrand. Choosing to decompose ℓ as

ℓ = z11 |1⟩ [1|+ z13 |1⟩ [3|+ z31 |3⟩ [1|+ z33 |3⟩ [3| , (2.2)

the integrand is multi-linear in the new zij coordinates:

dI =

∣∣∣∣ ∂ℓ∂zij

∣∣∣∣ d4zij
(z13z31s13 + z11z33s13)︸ ︷︷ ︸

ℓ2

× (q21q
2
2q

2
3)

, (2.3)

where

q21q
2
2q

2
3 = (ℓ− k1)

2 (ℓ− k1 −K2)
2 (ℓ+K4)

2 . (2.4)

The Jacobian is a constant
∣∣∣ ∂ℓ
∂zij

∣∣∣ = s213 and can be ignored without changing the following

discussion.

Performing a unitarity cut on a propagator means “solve for a component of the loop

momentum such that the inverse propagator becomes zero, remove the propagator from the

integrand, and multiply by a Jacobian.” This is equivalent to taking one residue around the
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point

z13z31 + z11z33 = 0 (2.5)

in a C4 complex space.

There are four different ways to take such a residue. To illustrate some of the subtleties,

consider two such, by rewriting the ℓ2 factor in the denominator of Eq. (2.3) in two ways:

ℓ2 = s13 ×


z31 (z13 − (−z11z33/z31)) (I)

z13 (z31 − (−z11z33/z13)) (II)

, (2.6)

where the factor of s13 can again be ignored hereafter. The first expression, Eq. (2.6)(I),

produces a Jacobian of 1/z31:

dI13 ≡ Res
ℓ2=0
z13

dI =
d3zij

z31 × (q21q
2
2q

2
3)|z∗13

, z∗13 = −z11z33/z31 . (2.7)

The second expression, Eq. (2.6)(II), produces a Jacobian of 1/z13

dI31 ≡ Res
ℓ2=0
z31

dI =
d3zij

z13 × (q21q
2
2q

2
3)|z∗31

, z∗31 = −z11z33/z13 . (2.8)

Both of these expressions correspond to the unitarity cut ℓ2 = 0, with the Jacobians z31 and

z13 respectively. Both expressions also leave three degrees of freedom of ℓ unfixed.

A leading singularity is the residue that results from localizing all degrees of freedom by

iterations of residues.

In the preceding example, a maximal cut corresponds to using each remaining propagator

to localize exactly one remaining degree of freedom. The resulting z∗ij substituted into the

expansion for the loop momentum, Eq. (2.2), yields an ℓ∗ that satisfies

0 = (ℓ∗)2 = (ℓ∗ − k1)
2 = (ℓ∗ − k1 −K2)

2 = (ℓ∗ +K4)
2 . (2.9)
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For this two-mass box example, it turns out not to matter in which order the residues are

computed, as the max-cut leading singularity always takes the same value:

LS
max-cut

(dI) =
1

(k1 +K2)
2 (k1 +K4)

2 −K2
2K

2
4

(2.10)

=
1

⟨1|K2 |3] ⟨3|K2 |1]
.

A composite cut corresponds to localizing a component of the loop momentum via any

residue that does not come directly from a propagator.

An example of a composite cut is taking a second residue of dI13 in Eq. (2.7) at the pole

z31 = 0, or a second residue of dI31 in Eq. (2.8) at the pole z13 = 0. Proceeding to localize the

remaining degrees of freedom in either integrand results in a composite leading singularity.

The physics literature on the structure that results from residue theorems and dependence

on the ordering of residues is in its infancy.

When constructing the d log integrands defined in Sec. 2.3.2, the goal is to guarantee

that none of the rational functions in variables analogous to the z’s of this example ever

have double poles or poles at infinity. Similarly, the pure integrand basis of Sec. 2.3.3 is

constructed so that any leading singularity is either ±1 or 0.

As an example, for the max-cut unit leading singularity, Eq. (2.10), a new integrand with

leading singularity could be defined by

dI±1 ≡ ±⟨1|K2 |3] ⟨3|K2 |1] dI (2.11)

so that the overall factor in the leading singularity of Eq. (2.10) cancels. In some of the cases

we encountered for the two-loop five-point amplitude in Sec. 4.2, instead of normalizing the

integrand, we redefined integrands so that leading singularities vanished. There have been

no careful studies of how the choice between ±1 or 0 affects the integrand basis, and that

may prove to be a fruitful endeavor in the future.

As illustrated by the two-mass box leading singularity example, it is not necessary to
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Q2

Q1
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Q4
`

1

n

→ 1

J`
× Q2

Q1

Q3

Q4

1

n

Figure 2.2: The left diagram is a generic L-loop contribution to the sYM amplitude. The
external dots represent n generic external particles. The gray band represents any generic
external or loop trivalent graph structure. The red (thick) highlighting indicates propagators
replaced by on-shell conditions. After this replacement, the highlighted propagators leave
behind the simplified diagram on the right multiplied by an inverse Jacobian, Eq. (2.14).
The four momenta Q1, Q2, Q3 and Q4 can be either external legs or propagators of the
higher-loop diagram.

compute every residue of the integrand when seeking double poles. In particular, cutting

a box subdiagram from a higher loop diagram, as on the left in Fig. 2.2, can only increase

the order of remaining poles in the integrand. Consider computing the four residues that

correspond to cutting the four highlighted propagators in Fig. 2.2,

ℓ2 = (ℓ−K1)
2 = (ℓ−K1 −K2)

2 = (ℓ+K4)
2 = 0 , (2.12)

where again Ki indicates a massive external particle. Instead of changing variables and

formally computing co-dimension residues as in the preceding discussion, this residue can

be computed as the Jacobian obtained by replacing the box propagator with on-shell delta

functions. This Jacobian is then

Jℓ = |∂Pi/∂ℓ
µ| , (2.13)

where the Pi’s are the four inverse propagators placed on shell in Eq. (2.12). See, for example,

Ref. [69] for more details. This Jacobian also matches the rational factors appearing in front

of the box integrals of appendix I of Ref. [70].

For the generic four-mass case Jℓ, contains square roots making it difficult to work with.

In special cases it simplifies. For example for K1 = k1 massless, the three-mass normalization
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is

Jℓ = (k1 +K2)
2(K4 + k1)

2 −K2
2K

2
4 . (2.14)

If in addition K3 = k3 is massless, the so called “two-mass-easy” case, the Jacobian Jℓ

factorizes into a product of two factors as in Eq. (2.10); this factorized expression is useful

in many calculations. Both K1 = k1 and K2 = k2 massless results in the “two-mass-hard”

normalization

Jℓ = (k1 + k2)
2(K3 + k2)

2 . (2.15)

These formulas are useful at higher loops, where the Ki depend on other loop momenta.

These Jacobians go into the denominator of an integrand after a box-cut is applied to

the integrand. Box-cuts therefore can only raise the order of the remaining poles in the

integrand. The basic search for double poles is to cut embedded box subdiagrams from

diagrams of interest and update the integrand by dividing by the resulting Jacobian (2.13).

The numerator must cancel any resulting double pole in the integrand.

A compact notation that simplifies discussion of such cuts in subsequent sections is:

cut = {. . . , (ℓ−Ki)
2 , . . . , B(ℓ) , . . . , B(ℓ′, (ℓ′ −Q)) , . . .} . (2.16)

Here:

• Cuts are applied in the order listed.

• A propagator listed by itself, as (ℓ−Ki)
2 is, means: “Cut just this propagator.”

• B(ℓ) means: “Cut the four propagators that depend on ℓ.” This exactly corresponds

to cutting the box propagators as in Eq. (2.12) and Fig. 2.2.

• B(ℓ′, (ℓ′−Q)) means: “Cut the three standard propagators depending on ℓ′, as well as

a fourth 1/(ℓ′ −Q)2 resulting from a previously obtained Jacobian.” The momentum

Q depends on other momenta besides ℓ′. The four cut propagators form a box.
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2.2 Constructing Amplitudes

The previous section outlined the main analytic tool that will be used in subsequent

sections. This section turns towards the main aim: constructing amplitudes at a fixed loop

order. Two different procedures for doing so are described in the following two subsections.

2.2.1 Numerator Ansatz

One expression for the amplitude is an expansion of the numerator in terms of only

trivalent graphs:

A(L)
n,k =

∑
Sn

∑
(x)

∫
d4Lℓ

N (x)c(x)

p(x)
. (2.17)

where:

• The sum in Sn is over all permutations of n external legs.

• The sum in (x) is over all trivalent graphs at loop order L.

• The kinematic numerators are a function of all external and loop momenta: N (x) =

N (x)({k} , {l}).

• The color factors c(x) can be read off from the trivalent graph, as sums over the structure

constants of SU(N).

• The denominators, p(x) =
∏Nint

i=1 (qi)
2, are the standard products of Feynman propaga-

tors, where Nint is the number of internal edges of the trivalent graph, and qi are the

linear combinations of loop and external momenta imposed on each edge by momentum

conservation.

Writing the amplitude in this way reduces the problem of finding the amplitude to the

problem of finding the correct numerators. One way of finding these numerators is to write

down ansätze for the numerators, and then constrain the ansätze such that they obey the

desired properties. This is the starting point for the d log construction outlined in Sec. 2.3.2.
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2.2.2 Integrand Basis

Another expression for the amplitude is an expansion of the numerator in an integrand

basis:

A(L)
n,k =

∑
(x)

a(x)I(x), I(x) ≡
∫

dI(x). (2.18)

where:

• The sum in (x) is over a basis of integrands that must be determined.

• The integrands dI(x) = dI(x)({k} , {l}) depend on the external and loop momenta.

• The a(x) may depend on color factors and on external momenta.

The advantage of this approach to constructing the amplitude is that it is possible to

tailor integrands in the basis to match certain physically-mandated poles of the amplitude.

For MHV amplitudes, it is also possible to constrain the form of the a(x) [65]. This is the

starting point for the pure integrand basis – which is also a d log basis – in Sec. 2.3.3

2.3 d log Forms

Following definitions and simple examples of d log forms in Sec. 2.3.1, Sec. 2.3.2 outlines

how to construct d log forms by ansatz (see Sec. 2.2.1) and Sec. 2.3.3 outlines how to construct

d log forms starting with an integrand basis (see Sec. 2.2.2).

2.3.1 Simple Examples

It is natural to define an integrand form Ω(x1, . . . , xm) of the integral F by stripping off

the integration symbol

F =

∫
Ω(x1, . . . , xm) , (2.19)
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and to study its singularity structure. A form has only logarithmic singularities if near any

pole xi → a it behaves as

Ω(x1, . . . , xm) →
dxi

xi − a
∧ Ω̂(x1, . . . , x̂i, . . . , xm) , (2.20)

where Ω̂(x1, . . . , x̂i, . . . xm) is an (m − 1)-form1 in all variables except x̂i. An equivalent

terminology is that there are only simple poles. Under the change of variables xi → gi(xj),

such forms may be written

Ω = d log g1 ∧ d log g2 ∧ · · · ∧ d log gm , (2.21)

where

d log x ≡ dx

x
. (2.22)

The form Ω is a d log form.

A simple example of such a form is Ω(x) = dx/x ≡ d log x, while Ω(x) = dx or Ω(x) =

dx/x2 are examples of forms which do not have this property. A trivial two-form with

logarithmic singularities is Ω(x, y) = dx∧ dy/(xy) = d log x∧ d log y. A less trivial example

of a d log form is

Ω(x, y) =
dx ∧ dy

xy(x+ y + 1)
= d log

x

x+ y + 1
∧ d log

y

x+ y + 1
. (2.23)

In this case, the property of only logarithmic singularities is not obvious from the first

expression, but a change of variables resulting in the second expression makes the fact that

Ω is a d log form manifest. This may be contrasted with the form

Ω(x, y) =
dx ∧ dy

xy(x+ y)
, (2.24)

1The signs from the wedge products will not play a role since unitarity cuts fix overall normalization in
the amplitude.
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which is not logarithmic because near the pole x = 0 it behaves as dy/y2; this form cannot

be written as a d log form. In general, the nontrivial changes of variables required can make

it difficult to find explicit d log forms even where they exist.

For further clarification, consider the behavior of a form near x = 0. If the integrand

scales as dx/xm for integer m, there are two different regimes where integrands can fail to

have logarithmic singularities. The first is when m ≥ 2, which results in double or higher

poles at x = 0. The second is when m ≤ 0, which results in a pole at infinity. Avoiding

unwanted singularities, either at finite or infinite values of x, leads to tight constraints on

the integrand of each diagram. Since the denominators associated to a given diagram are

the standard Feynman propagators, the only available freedom in the amplitude is to adjust

the kinematic numerators. As an example, consider the form

Ω(x, y) =
dx ∧ dy N(x, y)

xy(x+ y)
. (2.25)

As noted above, for a constant numerator N(x, y) = 1 the form develops a double pole at

x = 0. Similarly, for N(x, y) = x2 + y2 the form behaves like dy for x = 0 and again it is

not logarithmic. There is only one class of numerators that make the form logarithmic near

x = 0 and y = 0 : N(x, y) = a1x+ a2y for arbitrary a1 and a2.

A discussion of loop integrands is similar: constant numerators2 are dangerous for they

may allow double or higher poles located at finite values of loop momenta, while a numerator

with too many powers of loop momentum can develop higher poles at infinity. It turns out

that the first case is generally the problem in sYM, whereas the second case usually arises

in mSUGRA, where the power counting of numerators is higher than in sYM. For sYM

integrands, the numerators can be carefully tuned so that only logarithmic singularities are

present. The desired numerators live exactly on the boundary between too many and too

few powers of loop momenta.

2Here and after “constant numerators” means “numerators independent of loop momentum”.

23



2.3.2 d log by Ansatz

In Ref. [62], the sYM two-loop four-point amplitude was rewritten in a form with no

logarithmic singularities and no poles at infinity. This section outlines how to do the same

at higher loop orders. The general procedure has four steps:

1. Define a set of parent diagrams whose propagators are the standard Feynman ones. The

parent diagrams are defined to have only cubic vertices and loop momentum flowing

through all propagators.

2. Construct d log numerators. These are a basis set of numerators constructed so that

each diagram has only logarithmic singularities and no poles at infinity. These numer-

ators also respect diagram symmetries, including color signs. Each d log numerator,

together with the diagram propagators, forms a basis diagram.

3. Use simple unitarity cuts to determine the linear combination of basis diagrams that

gives the amplitude.

4. Use the method of maximal cuts [71] to confirm that the amplitude so constructed is

correct and complete.

There is no a priori guarantee that this will succeed. In principle, requiring d log numerators

could be incompatible with expanding the amplitude in terms of independent diagrams with

Feynman propagators. Indeed, at sufficiently high loop order there is no reason to expect

that it is possible to find a covariant diagrammatic representation manifesting the desired

properties; in such circumstances unphysical singularities have to cancel between diagrams.

The proof that such a representation of the amplitude exists is by construction, followed by

confirming that all cuts of the amplitude are correct.

Following the normalization conventions of Ref. [72], the amplitude is

A(L)
4,k = g2+2L iLK

(2π)DL

∑
S4

∑
(x)

1

S(x)
c(x)
∫

dI(x)(ℓ5, . . . , ℓ4+L) , (2.26)
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where dI(x) is the integrand form defined in Eq. (2.31). The number of spacetime dimen-

sions D is made explicit to distinguish it from n = 4. In Eq. (2.26) the sum labeled by

x runs over the set of distinct, non-isomorphic diagrams with only cubic vertices, and the

sum over S4 is over all 4! permutations of external legs. The symmetry factor S(x) then

removes overcounting that arises from automorphisms of the diagrams. The color factor c(x)

of diagram (x) is given by dressing every three-vertex with a group-theory SU(N) structure

constant, f̃abc = i
√
2fabc. In the sum over permutations in Eq. (2.26), any given dI(x′) is a

momentum relabeling of dI(x) in Eq. (2.31). The expression Eq. (2.26) is straightforwardly

a rearrangement of Eq. (2.17) by splitting the N (x) there into various factors.

The prefactor K is proportional to the color-ordered tree amplitude,

K = stAtree
4 (1, 2, 3, 4) . (2.27)

Furthermore, K has a crossing symmetry so it can also be expressed in terms of the tree

amplitude with different color orderings,

K = suAtree
4 (1, 2, 4, 3) = tuAtree

4 (1, 3, 2, 4) . (2.28)

The explicit values of the tree amplitudes are

Atree
4 (1, 2, 3, 4) = i

δ8(Q)

⟨12⟩⟨23⟩⟨34⟩⟨41⟩
, (2.29)

where δ8(Q) is a supermomentum conserving delta function, the explicit expression of which

is unimportant here.

In each parent diagram, the L independent loop momenta are labelled as ℓ5, . . . , ℓ4+L.

By conserving momentum at each vertex, all other propagators have sums of the loop and

external momenta flowing in them. The L-loop integrand, I(x), is defined to be

I(x) ≡ N (x)∏
α(x) p2α(x)

. (2.30)
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where (x) labels the diagram, N (x) is the kinematic numerator, and
∏

α(x) p2α(x) the Feynman

propagators of the diagram. From this follows the definition of the integrand form

dI(x) ≡
4+L∏
l=5

d4ℓl I(x) . (2.31)

This integrand form is a 4L form in the L independent loop momenta ℓ5, . . . , ℓ4+L, where

each ℓl is a four-vector.

The numerator can be expanded in terms of the d log numerators N
(x)
i :

N (x) =
∑
i

a
(x)
i N

(x)
i . (2.32)

The coefficients a
(x)
i can be obtained by matching an expansion of the amplitude in d log

numerators to unitarity cuts or other physical constraints, such as leading singularities.

The numerators N
(x)
i are constrained as follows:

Overall dimension. The numerators N
(x)
i are local polynomials of momentum invariants

(i.e. ka ·kb, ka ·ℓb, or ℓa ·ℓb) with dimensionality N
(x)
i ∼ (p2)K , where K = P −2L−2, P

is the number of propagators in the integrand and p represents a momentum dimension.

Numerators with K < 0 are forbidden.

Asymptotic scaling. For each loop momentum ℓl, require integrands behave asymptoti-

cally as boxes, pentagons, etc..., up to maximum power counting in all possible auto-

morphism labellings. Mathematically this is:

lim
ℓl→∞

I(x) =
ℓn

(ℓ2l )
4

n ≥ 0. (2.33)

No double/higher poles. The integrand I(x) must be free of poles of order two or more

in all kinematic regions - see Eq. (2.20).

No poles at infinity. The integrand I(x) must be free of poles of any order at infinity in
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all kinematic regions:

(Res · · ·Res
ℓ→∞

· · ·Res )I(x) = 0 , (2.34)

where the iterated residue procedure is clarified in Sec. 2.1.

The overall dimensionality and asymptotic scaling gives power counting constraints on the

subdiagrams. In practice, these two constraints dictate the initial form of an ansatz for the

numerator, while the last two conditions of no higher degree poles and no poles at infinity

constrain that ansatz to select d log numerators. The constraint on overall dimensionality is

the requirement that the overall mass dimension of the integrand is−4L−4.3 The asymptotic

scaling constraint includes a generalization of the absence of bubble and triangle integrals

at one-loop order in sYM and mSUGRA [73, 74]. This constraint is a necessary, but not a

sufficient, condition for having only logarithmic singularities and no poles at infinity.

This construction is implemented in detail for the two-loop four-point amplitude in

Sec. 4.1.1. Explicit d log forms for the three-loop four-point amplitude are listed in Sec. 5.1

2.3.3 Pure Integrand Basis

In Ref. [3] we conjectured that it is possible to write all sYM MHV amplitudes as

A(L)
n,MHV =

∑
Sn

∑
k,σ,j

aσ,k,j ck PTσ

∫
dIj . (2.35)

In this expression, the sum over Sn is a sum over all permutations of the external labels. The

aσ,k,j are numerical rational coefficients; these absorb the symmetry factors with respect to

Eq. (2.26). The PTσ are generalizations of the tree amplitude of Eq. (2.29) and are defined

by

PTσ ≡ PT(σ1σ2σ3 . . . σn) =
δ8(Q)

⟨σ1σ2⟩⟨σ2σ3⟩ . . . ⟨σnσ1⟩
. (2.36)

3This matches the dimensionality of sYM amplitude integrands in D = 4. The −4 term in the mass
dimension originates from factoring out a dimensionful quantity from the final amplitude in Eq. (2.26).
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The dIj are pure integrands. By definition, dI is a pure integrand if:

• dI has all unit leading singularities: LS(dI) = −1, 0, or 1.

• dI has no poles at infinity.

See Sec. 2.1 for additional details on leading singularities.

The ck in Eq. (2.35) are color factors. For pure integrands that are trivalent graphs, the

unique color factors can be read off directly from the corresponding diagrams. Contact term

contributions may have multiple contributing color factors.

The aσ,k,j coefficients in Eq. (2.35) are such that, up to sums of Parke-Taylor factors,

the leading singularities of the amplitude are normalized to be (±1, 0), reflecting a known

property of the amplitude [65]. This way of writing the amplitude is a straightforward

rearrangement of Eq. (2.18).

The motivation for writing the amplitude as in Eq. (2.35) followed from several observed

properties for nonplanar amplitudes:

(i) The integrand has only logarithmic singularities.

(ii) The integrand has no poles at infinity.

(iii) The leading singularities of the integrand all take on special values.

As discussed in detail in Ref. [3], the presence of only logarithmic singularities (i) is a

preliminary indication of a “volume” interpretation of nonplanar amplitudes. Demonstrating

properties (ii) and (iii) provides nontrivial evidence for the existence of an analog of dual

conformal symmetry for full sYM amplitudes. Since there are no nonplanar momentum

twistor variables4, it is not possible to formulate an analogous symmetry directly, yet the

basic constraints of properties (ii) and (iii) on nonplanar amplitudes would be identical to

the constraints of dual conformal symmetry on planar amplitudes.

4Momentum twistor variables are not used in this dissertation, but they are a straightforward change of
variables from spinor helicity variables.
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The two-loop four-point, two-loop five-point, and three-loop four-point amplitudes are

written in this pure integrand representation in Secs. 4.1, 4.2 and 5.2, respectively.

2.4 Homogeneous Constraints

This section outlines how to determine the amplitude using only conditions on where the

amplitude must vanish. In Sec. 2.4.1 is the motivation for using this technique. Practical

aspects to this technique are addressed in Sec. 2.4.2, where on-shell diagrams are defined

and put into this context.

2.4.1 Motivation

In Ref. [3], we conjectured:

The amplitude should be determined entirely from homogeneous conditions,

up to an overall normalization.

The motivation for this conjecture is the amplituhedron [45], which is a self-consistent

geometric definition of the planar amplitude. In the planar case it is possible to write the

amplitude over a common denominator:

A =
N∏

(local poles)
, (2.37)

where N is a polynomial in momentum twistor loop variables. This means N must be

completely fixed by its zeros (roots). There is evidence [49] that the zeros of N either

correspond to forbidden cuts generated by the denominator or cancel higher poles in the

denominator to ensure that all singularities are logarithmic. The content of the conjecture

at the beginning of this section is that, in the full nonplanar theory, the MHV amplitude

can be fixed by requiring the nonplanar analog of N to vanish on forbidden cuts. There are

two types of forbidden cut solutions for MHV amplitudes:
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(a) (b)

Figure 2.3: Sample planar (a) and nonplanar (b) on-shell diagrams. The black and white
dots respectively represent MHV and MHV three-point amplitudes. Black lines are on-shell
particles.

Unphysical cut solutions on which amplitudes of any helicity vanish. In the on-shell

diagram representation (Sec. 2.4.2) this means no on-shell diagram exists.

Non-MHV cut solutions on which only MHV amplitudes vanish while other helicity am-

plitudes can be non-zero. In the on-shell diagram representation (Sec. 2.4.2), this

means the corresponding on-shell diagram has k ̸= 2. See Sec. 2.4.2.

These physical constraints on the amplitude serve as zero conditions for fixing the nonpla-

nar amplitude, in lieu of the geometric constraints used to define the planar amplitude in

the amplituhedron story. Successfully constructing the full amplitude from homogeneous

conditions implies that there might be an amplituhedron-like construction of the full theory

where these homogeneous conditions come from a geometric interpretation. We discuss this

in much more detail in Ref. [3].

2.4.2 On-shell Diagrams

On-shell diagrams are graphs with decorated black or white vertices, as exemplified by

Fig. 2.3. Black vertices represent MHV three-point amplitudes, white vertices MHV three-

point amplitudes, and all lines, both internal and external, represent on-shell particles. There

are two indices associated with any on-shell diagram: the number of external legs n and the
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helicity index k. The k-index is defined from the graph

k =
∑
V

kV − P , (2.38)

where the sum is over all vertices V , kV is the k-count of the tree-level amplitude in a

given vertex, and P is the number of on-shell internal propagators. Black and white vertices

have kB = 2 and kW = 1, respectively. As examples, the on-shell diagram Fig. 2.3(a) has

k = 3×2+4×1−8 = 2 and the on-shell diagram Fig. 2.3(b) has k = 5×2+3×1−10 = 3.

This k corresponds to the total number of external negative helicity gluons.

There are rules that assign kinematic functions to on-shell diagrams. In the planar limit

of sYM, there is a prescription for recursively combining such functions to compute the

amplitude. On-shell diagrams also appear in mathematics literature in computing cells of

the positive Grassmannian. These points are covered in Ref. [40].

The diagrams have another interpretation that is relevant for determining the unphysical

cuts of the amplitude. In this interpretation, the diagrams encode solutions to cut equations.

To convert a cut solution into an on-shell diagram:

• Draw the integrand topology being cut

• Conserve momentum at every vertex

• Decorate a trivalent vertex white when λi ∝ λj ∝ λk

• Decorate a trivalent vertex black when λ̃i ∝ λ̃j ∝ λ̃k

This means two on-shell diagrams that represent different solutions to the same cut equations

have the same edges and nodes, but the nodes are decorated differently.

An MHV amplitude must vanish on cuts where the corresponding on-shell diagrams have

a number of black and white vertices and edges such that k ̸= 2. As examples, the two-

loop five-point amplitude does not have to vanish on the residue encoded om Fig. 2.3(a),

since there k = 2. In contrast, the three-loop four-point amplitude is non-vanishing only on

31



residues for which k = 2, and so the amplitude must vanish on the residue corresponding

to Fig. 2.3(b) since there k = 3. There are examples in the following chapters at two-loop

four-point (Fig. 4.2), two-loop five-point (Fig. 4.4), and three-loop four-point (Fig. 5.1).

In practice, it is straightforward to solve all cut equations numerically then construct all

corresponding on-shell diagrams with osdn (see Sec. 2.6). This separates the k = 2 from the

k ̸= 2 cut solutions, and from there the amplitude can be constrained to vanish on the k ̸= 2

solutions. This process is done in detail for the two-loop four-point amplitude in Sec. 4.1.3,

and is also discussed briefly for the two-loop five-point and three-loop four-point amplitudes

in Sec. 4.2 and Sec. 5.2 respectively. There is an example of numerically generating the

on-shell diagrams via osdn in Sec. 4.1.4.

2.5 Color-Kinematics Duality

In Ref. [61], Bern, Carrasco, and Johannson (BCJ) conjectured a duality between color

and kinematics.

The conjecture is: if a sYM amplitude can be written in a trivalent graph expansion as

in Eq. (2.17), with the additional constraint that the numerators obey the same relations as

the color factors

c(s) + c(t) + c(u) = 0 ⇒ N (s) +N (t) +N (u) = 0 , (2.39)

then the mSUGRA amplitude can be written as

M(L)
n,k =

∑
Sn

∑
(x)

∫
d4Lℓ

N (x)Ñ (x)

p(x)
, (2.40)

where the Ñ can be any representation of the sYM amplitude. In Eq. (2.39), the super-

script notation indicates three different graphs related by applying a Jacobi relation to any

propagator within the graph. This is illustrated in Fig. 2.4. The numerators that satisfy

Eq. (2.39) are called BCJ numerators.
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Q1 Q4

Q2 Q31
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+

Q1 Q4
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Q1 Q4

1

n

= 0

Figure 2.4: A schematic representation of a Jacobi relation between three different graphs.
The external dots represent n generic external particles. The gray band represents any
generic external or loop trivalent graph structure. The red propagator is the propagator on
which the Jacobi identity is applied. The four momenta Q1, Q2, Q3 and Q4 can be either
external legs or propagators of the higher-loop diagram. The first diagram is termed the
s-channel, the second the t-channel, and the third the u channel in analogy to the four-point
tree-level amplitude.

The color-kinematics duality conjecture has held through four-loops for the four-point

amplitude in sYM and mSUGRA [72]. The current state of affairs for the five-loop four-point

amplitude is covered in Ch. 7. In addition, the color-kinematics duality is used to obtain

tree-level mSUGRA amplitudes in Sec. 3.3, and it is used to analyze poles at infinity of

three-loop four-point mSUGRA amplitudes in Sec. 6.2.

Aside from the relationship between sYM and mSUGRA amplitudes, the BCJ numerators

also reduce the complexity of sYM tree-level amplitudes. The tree-level amplitudes can be

written in terms of color-stripped partial amplitudes. The relations implied by the BCJ

numerators reduce the number of independent partial amplitudes from (n− 2)! to (n− 3)!.

See further discussion in Ch. 3.

2.6 osdn : On-shell Diagrams and Numerics

This section contains a description of the Mathematica package I compiled and wrote:

on shell diagrams and numerics.m (osdn). The package is a collection of functions I used

to generate ansätze, construct cuts of amplitudes, confirm properties of various integrands,

and in essence generate or verify everything that appeared in our publications. Some of the
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functions in osdn are based to varying degrees on other functions written by Zvi Bern, John

Joseph Carrasco, Scott Davies, Tristan Dennen, Josh Nohle, Henrik Johansson, and Radu

Roiban - in those cases who originally wrote what was not documented.

For lack of any better organizational principle, what follows is the name of functions

and what they do. The Mathematica notebooks containing these functions is uploaded with

this dissertation. As an example of how these functions are used, see Sec. 4.1.4; that sec-

tion contains sample code for fixing the two-loop four-point amplitude by one homogeneous

constraint.

2.6.1 Graph Functions

Subdiagrams

tadpoleQ : True if graph contains a tadpole subdiagram.

bubbleQ : True if graph contains a bubble subdiagram.

triangleQ : True if graph contains a triangle subdiagram.

dangTreeQ : True if graph contains a dangling tree.

multiPropQ : True if graph has two or more identical propagators.

lFreePropsQ : True if graph has internal edges independent of loop momentum.

minimalCycles : Returns minimal cycles of a graph.

findSubGons : Find subgraphs with n sides.

On-shell Diagrams

generateSolWBList : Determines coloring of vertices of an on-shell diagram.

osdGraph : Generates on-shell diagram from graph and black and white vertices.
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checkSpSolColor : Check colorings of on-shell diagram from analytic solution.

osdSolutionTable : Generate table of on-shell diagram, black/white vertices, and numeri-

cal solution to cut equations.

Collapse Propagators

blowUpVert : Expand multi-point vertex and relabel appropriately.

blowUpGraph : Generate all graphs from blowing up collapsed vertices.

collapsePropagators : Collapse propagators in a diagram.

numberOfGraphs : Returns number of graphs in the blow-up.

Isomorphisms

isomorphismQ : True if there is an isomorphism between two graphs.

isomorphismRule : Generate rules for relabelling one graph to another.

automorphismRules : Generate rules for relabelling graph to automorphism.

autoMomRules : Generate rules for mapping one numerator to another.

isoData : Returns useful information about relabelling graphs.

2.6.2 Momentum and Spinor Functions

getkMax : Returns the number of external particles .

momConsGraph : Momentum conservation from graph.

clean : Momentum algebra cleaning functions.

dComp : Minkowski inner product in vector components.
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compClean : Clean and convert to components of four-vector.

toNumerical : Convert invariants to numerical values.

toComponents : Convert invariants to components of four-vectors.

spClean : Algebraically simplify spinor products.

spW : Check spinor weight of an expression.

momW : Check momentum dimension of an expression.

2.6.3 Numerical Cuts

genLValues : Generate random (real) independent loop momenta.

genExtNumerics : Generate random external kinematics.

loadKinematics : Load external kinematics.

loadRatKin : Load rational external kinematics.

toNumRat : Convert expression to rational external kinematics.

indepL : Determine which loop momenta are independent.

solveForL : Determine which loop momentum components to solve for in cuts.

allPropLabels : List of which labels are propagators.

allProps : A list of all propagators of a graph.

solveCutSols : Setup and numerically solve the equations produced by cutSols.

cutSols : Generate cut equations.

coeffEqns : Gathers coefficients of parameters into equations.

analyticCutSols : Solve cut conditions in terms of Mandelstam invariants.
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2.6.4 Color Functions

colorDiag : Generates f’s from graph.

colorSimplifyF : Convert the color factors to a trace basis.

colorSign : Find the sign of a diagram with respect to its parent.

colorToDiag : Convert product of f’s to graph notation.

getCTRList : Generate list of ctr’s appearing in expression.

getNList : Generate list of powers of N appearing in expression.

getAlld : Generate list of Mandelstam invariants appearing in expression.

buildJacobis : Determine relations among color factor elements.

colorElim : Eliminate linearly dependent color basis elements.

jacobiIdentity : Determine signs of Jacobi relation from one four-vertex graph.

kinematicJacobi : Determine kinematic color numerator relation.

2.6.5 Analytic Spinors

asOp : Analytic spinor outer product.

solFromOSD : Consruct an anlytic solution form an on-shell diagram.

genSpBasis : Generate replacement rules to change to basis of spinor invariants.

spBasis : Map an expression to a basis of spinors.

2.6.6 Ansatz

relColorSign : Return the relative color sign of two isomorphic trivalent graphs.
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imposeSymOfGraph : Return expr - sign*(autmorphism of expr).

symmetrizeOnGraph : Symmetrize expression from the automorphisms of graph.

2.6.7 Cut Construction

determineParent : Find graph in list of parent graphs.

constructCut : Construct cut contributions corresponding to cut graph.

constructLPCut : Like constructCut but allows non-trivalent vertices.

relabelNum : Match a diagram to a parent and return relabelled numerator.

indepCuts : Determine set of independent cuts modulo automorphisms.

maxFromLP : Returns trivalent graphs that result from input graph blow-up.

2.6.8 Spinor Algebra

spAlg : Implements spinor helicity algebra.

spA : Apply spinor solutions to expressions.

spConventions : Prints spinor conventions.

spRep : Go to an independent spinor basis.

lSolProps : Load properties of lSol[ ] syntax.

opExp : Expand a loop momentum in terms of four spinor outer products.

2.6.9 Miscellaneous

niceP : Nicely print expression.
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CHAPTER 3

Tree Level Amplitudes

This chapter focuses on tree-level sYM and mSUGRA amplitudes. Sec. 3.1 contains the

tree-level twistor-string expressions for the sYM and mSUGRA amplitudes. In Sec. 3.2 is

a linear algebra treatment of the color-kinematic duality. Residue numerators are defined

in Sec. 3.3. A complete example of how to construct residue numerators for n = 6 external

particles is outlined in Sec. 3.4.

3.1 RSVW String and the Connected Prescription

The Roiban, Spradlin, Volovich, and Witten (RSVW) [75–79] twistor string formula

expresses the tree level sYM amplitude as an integral over a moduli space of curves in CP3|4

supertwistor space. This effectively reduces the amplitude calculation to solving an algebraic

system of equations.

The RSVW formula that gives all tree level partial amplitudes is

A(0)
n,k =

∫
d2nσ

volGL (2)

1

(12) (23) · · · (n1)

k∏
α=1

δ2
(
Cαaλ̃a

)
δ0|4 (Cαaη̃a)

×
∫

d2ρα

n∏
b=1

δ2 (ρβCβb − λb) , (3.1)

where the Cαa are k × n matrices parametrized by σ, as discussed in the Grassmannian

formulations of Refs. [34, 37, 40], for particles in the R-charge sector given by k. The minors

(12), (23), etc. are minors of Cαa, and are thus functions of the σ. The delta functions

enforce the conditions that the spinor helicity variables λ, λ̃, and Grassmann coordinate η̃
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are appropriately orthogonal, and thus that overall supermomentum is conserved. This is

also referred to as the “connected prescription” of the amplitude.

The method of determining tree-level amplitudes as integrals in CP3|4 was extended to

mSUGRA [80–86]. Like the RSVW formula, the integrals for mSUGRA can be interpreted

as contour integrals, and hence as sums of residues. The Cachazo-Geyer formula for gravi-

tational amplitudes, as proposed in Ref. [83], is

M(0)
n,k =

∫
d2nσ

volGL (2)

Hn

Jn

k∏
α=1

δ2
(
Cαaλ̃a

)
δ0|8 (Cαaη̃a)

∫
d2ρα

n∏
b=1

δ2 (ρβCβb − λb) , (3.2)

which is identical to the sYM formula Eq. (3.1) except for four additional supersymmetries

and the replacement in the integrand of the inverse minor factor with Hn/Jn. The exact

definition of Hn/Jn is not important for what follows, but it is also a function of the minors

of Cαa.

For the remainder of this chapter, let An ≡ A(0)
n,k and Mn ≡ M(0)

n,k. After some set-up

of notation in the following section, the numerators of the residues of Mn are shown to be

color-kinematic dual to the numerators of the residues of An in Sec. 3.3.

3.2 Linear Algebra Notation

A convenient way of structuring discussions of kinematic numerators is the linear algebra

approach pioneered in Ref. [87] and extended in Ref. [88]. This formalism makes generalized

gauge invariance manifest, and also reinterprets the BCJ amplitude identities1 as algebraic

consistency conditions.

The sYM amplitude can be written in a so-called Del Duca-Dixon-Maltoni (DDM) de-

1The BCJ amplitude identities are the relations that partial amplitudes obey as a result of writing the
amplitude in a BCJ representation.
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composition [89]. In this form, the full n-particle amplitude at tree level is

An = gn−2
∑

τ∈Sn−2

cτAn (1, τ2, . . . , τn−1, n) , (3.3)

where the coupling constant is g, the notation τ ∈ Sn−2 indicates that the sum runs over

permutations τ of the particle labels 2, . . . , n − 1, the An are color-ordered partial ampli-

tudes, and the cτ are color factors2 of cubic diagrams. Cubic diagrams are diagrams with

only trivalent vertices, which conserve color and momentum at each vertex. Any diagrams

containing higher-point contact terms are absorbed into cubic diagrams with the same color

factor, with missing propagators P introduced by multiplying by 1 = P
P
. While there is no

known Lagrangian from which this decomposition can be directly generated by Feynman

rules, these trivalent diagrams are a useful way of reorganizing the usual sum over Feynman

diagrams.

The partial amplitude A obey several identities; see Ref. [4], for example. Two important

relations for later discussion are the Kleiss-Kuijf (KK) relations [90] and the Kawai-Lewellen-

Tye (KLT) relations [91]. The KK relations are between partial amplitudes of different

gluon orderings. Without going into unnecessary detail, combining the KK relations with

all partial amplitude relations allows the amplitude to be expressed in a basis of (n − 2)!

partial amplitudes. The KLT relations express tree-level mSUGRA amplitudes in terms of

products of tree-level sYM amplitudes. This is made more explicit in Sec. 3.3.

Another decomposition of the tree level amplitude is

An = gn−2

(2n−5)!!∑
i=1

cini

Di

, (3.4)

where the sum is now over the unique set of (2n− 5)!! cubic diagrams, with color factors ci,

products of propagators Di, and so-called kinematic numerators ni. These last objects are

2These are a product of group-theory structure constants; see Ref. [89] for details.
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functions only of the external momenta and helicities, and are not uniquely defined. This is

because a generalized gauge transformation ni 7→ ni +∆i, for functions ∆i that obey

(2n−5)!!∑
i=1

ci∆i

Di

= 0, (3.5)

will leave the BCJ decomposition Eq. (3.4) invariant.

The notion of such a generalized gauge transformation has a natural interpretation in

the linear algebra formalism. To see this interpretation, relate the DDM and BCJ decom-

positions. It was shown in Ref. [89] that the (n− 2)! color factors cτ form a basis of the

space of color factors of cubic diagrams. This is possible because the Jacobi relations of the

structure constants induce linear relations among the color factors. In other words, any of

the (2n− 5)!! color factors ci that appear in the decomposition Eq. (3.4) can be written as

ci =
∑

τ∈Sn−2

Wiτcτ (3.6)

where Wiτ is a (2n− 5)!!×(n− 2)! matrix that encodes the Jacobi relations among the color

factors. In this notation, sums over permutations are contractions of τ and ω, and sums over

cubic diagrams are contractions of Latin indices i, j.

The color-kinematic duality is that there exists a set of color-dual numerators ni that

obey the exact same Jacobi relations as the color factors ci. In other words, for the same

matrix Wiτ defined above in Eq. (3.6):

ni =
∑

τ∈Sn−2

Wiτnτ (3.7)

for some set of (n− 2)! numerators nτ . Substituting Eq. (3.6) and Eq. (3.7) into the BCJ
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decomposition:

An = gn−2

(2n−5)!!∑
i=1

∑
τ,ω∈Sn−2

cτnω

Di

WiτWiω

= gn−2
∑

τ,ω∈Sn−2

cτnωFτω, (3.8)

where Fτω is an (n− 2)! × (n− 2)! symmetric matrix with products of inverse propagators

as entries:

Fτω ≡
(2n−5)!!∑

i=1

WiτWiω

Di

. (3.9)

The matrix Fτω is a convenient way of simultaneously encoding both the color and numerator

Jacobi relations in the basis of partial amplitudes.

Equating Eq. (3.8) to the DDM decomposition and matching coefficients of the cτ yields

An (1, τ2, . . . , τn−1, n) =
∑

ω∈Sn−2

Fτωnω. (3.10)

In matrix notation, this is a system of linear equations

FN = A (3.11)

in the (n− 2)!-dimensional space of partial amplitudes spanned by KK basis amplitudes and

indexed by τ ∈ Sn−2, and where N is a column vector of numerators. Inverting this formula

would result in an expression for the numerators in terms of the partial amplitudes, but

inversion is impossible because F is singular. This is no surprise: the invariance of the full

amplitude under generalized gauge transformations Eq. (3.5) ensures that the numerators

are not unique, so F cannot be invertible.

Since F is not invertible, it has a nontrivial kernel. In an attempt to invert F despite this

obstacle, Ref. [88] suggested using the machinery of generalized inverses or pseudoinverses.

A generalized inverse is a matrix F+ satisfying FF+F = F , and it can be shown that such an
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F+ always exists, but is not unique. Generalized inverses are useful because of the following

theorem [92]: a solution to FN = A exists if and only if the consistency condition

FF+A = A (3.12)

holds for some generalized inverse F+. The general solution is then given by

N = F+A+
(
I − F+F

)
v (3.13)

for an arbitrary vector v that parametrizes the kernel of F .

Notice that I−F+F is a projection operator onto the kernel of F , since, by the definition

of F+,

F
(
I − F+F

)
= F − FF+F = 0 . (3.14)

The consistency condition Eq. (3.12) has been conjectured to be equivalent to the BCJ

amplitude identities [88], and this we proved in Ref. [1]. Note that since the existence of

color-dual numerators is proven at tree level [93, 94], the consistency condition is satisfied

thanks to the “if and only if” logic.

Rather than reproducing the proof what follows is an outline of the proof in Sec. 3.2.1

and then a graphical illustration of the main idea of the proof for n = 4 external particles

in Sec. 3.2.2.

3.2.1 Outline of Proof

The goal is to show that FF+A = A is the same as the BCJ amplitude identities.

The BCJ identities can be written as SA = 0, where S is a matrix that forms the linear

combination of amplitudes appearing in the BCJ identities3. The proof proceeds via a

3A particular choice of S is the momentum kernel, detailed in Ref. [94], for example.
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dimension counting argument that allows writing

Q
(
FF+ − I

)
= S (3.15)

for some Q ∈ GL ((n− 3)!) embedded in an (n− 2)!× (n− 2)! matrix with all other entries

zero, and I the (n− 2)! × (n− 2)! identity matrix. The result, Eq. (3.15), is exactly the

target expression FF+A = A ⇐⇒ SA = 0 up to linear transformations in Q that amount

to choosing a different basis of partial amplitudes.

3.2.2 Four-Point Illustration

The proof may be illustrated graphically, as in Fig. 3.1, for n = 4.

If the BCJ amplitudes form the true minimal basis of color-ordered amplitudes, then the

larger space spanned by amplitudes independent under KK relations must be constrained to

the smaller space spanned by the BCJ amplitudes.

In this simplest example, there are (4− 2)! = 2 amplitudes in the KK basis, and

(4− 3)! = 1 amplitude in the BCJ basis. If the KK basis were minimal, then the vector

A = (A (1, 2, 3, 4) , A (1, 3, 2, 4)) (3.16)

in the plane4 C2 would fully determine all partial amplitudes. The four-point BCJ basis

linearly relates the two elements of the vector A by

A (1, 3, 2, 4) =
u

s
A (1, 2, 3, 4) or A (1, 2, 3, 4) =

s

u
A (1, 3, 2, 4) (3.17)

where either equation is valid, and amounts to choosing either A (1, 2, 3, 4) or A (1, 3, 2, 4)

as the BCJ basis amplitude. This is equivalent to projecting to one axis or the other in

Fig. 3.1. Since the vectors A describe physically valid partial amplitudes, they cannot lie at

4The words “plane” for C2 and “line” for C are used to highlight the geometry.
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Rescaling by Q

Figure 3.1: Reduction of the KK amplitude basis to the BCJ amplitude basis for n = 4. In
the figure, A (1, 2, 3, 4) ≡ A23 and A (1, 3, 2, 4) ≡ A32. Because the BCJ basis is the minimal
basis, any Kleiss-Kuijf amplitude vector actually lies on the “BCJ line”. Both A23 and A32

are complex numbers, indicated by the C labels on the axes. The “rescaling by Q” arrows
indicate the GL (1) freedom that rescales the point A along the BCJ line.

an arbitrary point in the plane, but must instead lie on the BCJ line.

For the four-point case, both operators FF+ and S + I are rank one, and act on the

KK vector of amplitudes. This means both operators necessarily map to a point along the

BCJ line. The linear transformation Q ∈ GL ((4− 3)!) in this case is just a constant that

translates a point along the BCJ line, but such movement does not alter the relation between

the amplitudes.

The next-highest-point case, n = 5, has (5− 2)! = 6 amplitudes in the KK basis and

(5− 3)! = 2 amplitudes in the BCJ basis; geometrically the n = 5 case corresponds to a C6

hyperplane for the KK basis with all points actually lying on the C2 plane spanned by the

BCJ basis amplitudes.

This same line of geometric reasoning supports the rank-counting argument of Ref. [1]

for all n.

46



3.3 Residue Numerators

The goal now is to use the linear algebra formalism to examine how residues of the con-

nected prescription sYM amplitude (3.1) double copy into the analogous mSUGRA residues

of Eq. (3.2).

Since the delta functions in both formulas Eqs. (3.1) and (3.2) are the same, the residues

occur at the same points, and the contours of integration are the same. This allows the sYM

residues to be written in one-to-one correspondence with the mSUGRA residues:

An =
∑
r

Rr, Mn =
∑
r

RG
r , (3.18)

where the index r labels the same pole in either integrand.

In Ref. [1], we showed that the residues of the sYM amplitude obey the generalized

inverse consistency condition:

FF+Rr = 0. (3.19)

This guarantees the existence of residue numerators defined through the generalized inverse

theorem:

Nr ≡ F+Rr +
(
I − F+F

)
v. (3.20)

By definition, these residue numerators act as kinematic numerators for the residues of the

amplitude:

Rr = FNr (3.21)

The mSUGRA amplitude Mn can be written in terms of sYM partial amplitudes using

KLT relations. In the linear algebra notation established earlier, this is

Mn =
(κ
2

)n−2

ATF+Ã, (3.22)

where A and Ã are the sYM partial amplitudes.
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Now the main question: in the equations that yield a mSUGRA amplitude in terms of

sYM amplitudes, is it possible to replace all amplitudes by residues of the amplitude, and

retain the same set of equations? More precisely:

RG
r

?
=
(κ
2

)n−2

RT
r F

+R̃r. (3.23)

Substituting Eq. (3.18) for Mn and An as sums of residues into the KLT relations

Eq. (3.22) and separating cross terms yields

∑
r

RG
r =

∑
r,r̃

RT
r F

+R̃r̃

=
∑
r

RT
r F

+R̃r +
∑
r ̸=r̃

RT
r F

+R̃r̃, (3.24)

The KLT orthogonality conjecture

∑
r ̸=r̃

RT
r F

+R̃r̃ = 0. (3.25)

is proven in Ref. [95]. We further argue in Ref. [1] that this orthogonality means not only

∑
r

RG
r =

(κ
2

)n−2∑
r

RT
r F

+R̃r. (3.26)

but also that the two sides match in the summand:

RG
r =

(κ
2

)n−2

RT
r F

+R̃r. (3.27)
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Recasting this in terms of residue numerators:

RG
r =

(κ
2

)n−2

RT
r F

+R̃r

=
(κ
2

)n−2

RT
r F

+FF+R̃r

=
(κ
2

)n−2 ((
F+
)T

Rr

)T
FF+R̃r

=
(κ
2

)n−2

NT
r FÑr . (3.28)

The second line uses the fact that the residues obey the consistency condition R̃r = FF+R̃r.

The last line uses the fact that for F symmetric, (F+)
T
is also a generalized inverse5. The

final line is the double-copy formula with ordinary kinematic numerators replaced by residue

numerators, and the gravitational amplitude replaced by the corresponding gravitational

residue. This positively answers the question of Eq. (3.23).

This argument also holds in reverse. Assuming a double-copy formula for residue numer-

ators:

RG
r =

∑
i

nr,iñr,i

Di

(3.29)

and reversing the logic in the equations leading to Eq. (3.28) results in the KLT relations

for sYM residues. This course of argument uses “residue numerator orthogonality”

∑
r̃ ̸=r

NT
r FÑr̃ = 0, (3.30)

to prove KLT orthogonality. As a simple consistency check, this was checked numerically at

six points as outlined in the next section.

5Since (F+)
T
may be different than F+, the resulting numerators may differ from those generated by F+

by a generalized gauge transformation, but this is irrelevant here.
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3.4 Six-Point Calculation

This section outlines one way of defining residue numerators for n = 6 scattering particles.

The six-point NMHV amplitude is the first case where residue numerators appear. An

amplitude of any helicity may be written as an integral in (k − 2)× (n− k − 2) integration

variables ci [79]:

An =

∫
d(k−2)(n−k−2)ci an (ci) , (3.31)

where k is the number of negative-helicity gluons in the scattering process. The function

an (ci) in Eq. (3.31) is unimportant for the current explanation. These complex integrals

produce residues and corresponding residue numerators. Since k ≤ 2 results in no integration

according to Eq. (3.31), the simplest case is k = 3. To select only one integration parameter:

(k − 2) (n− k − 2) = 1 ⇒ n = 6. (3.32)

Thus n = 6, k = 3 amplitudes – colloquially six-point NMHV amplitudes – offer the first,

simplest opportunity for the appearance of residue numerators.

The expression Eq. (3.31) for n = 6, k = 3 becomes

A6 (L, h) =

∫
dc a (L, h, c) , (3.33)

for a momentum label configuration L ∈ P ({1, 2, . . . , n}) and helicity configuration h =

{h1, h2, . . . , hn}; the L and h were suppressed in Eq. (3.31). For general n and k, an (ci)

contains delta functions in ci. In the case n = 6, k = 3, the argument of the delta function

is quartic in the complex variable c, and so the integral may be re-expressed as a contour

integral enclosing exactly the four roots of the argument of the delta function. More explicitly

if

a6 (L, h, c) = H6 (L, h, c) δ (S6 (c)) , (3.34)
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Im {c}
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c̃2
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Figure 3.2: The integral for the tree-level, n = 6, k = 3 SYM amplitude may be calculated
as a standard contour integral of a complex variable c ∈ C. The four poles c1, c2, c3, and c4
correspond to the four roots of S (c), and the three remaining poles c̃1, c̃2, and c̃3 correspond
to the poles of the function H6 (L, h, c) in Eq. (3.34). This figure is meant only as a guide;
the locations of the poles change for different external momenta.

then

S6 (c) = κ (c− c1) (c− c2) (c− c3) (c− c4) (3.35)

for an overall constant κ. Converting the amplitude into a complex integral and ignoring

factors of 2πi which cancel in the final result:

An (L, h) =

∮
S6(c)

dc
H6 (L, h, c)

S6 (c)

=
4∑

i=1

Res
c=ci

(
H6 (L, h, c)

S6 (c)

)

≡
4∑

r=1

Rr. (3.36)

A sample contour of integration for n = 6 appears in Fig. 3.2.

The residue numerators are now defined by expressing color-dual numerators in terms

of amplitudes, replacing each amplitude with a residue of that amplitude, and indexing the
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resulting residue numerator accordingly. Schematically:

n = f (A) =⇒ nr = f (Rr) , A =
∑
r

Rr. (3.37)

In the n = 3, k = 6 case, it is straightforward to obtain n = f(A) by comparing two

different expressions for the gravity amplitudes. The first is the KLT expression:

M (1, 2, 3, 4, 5, 6) = −i
(κ
2

)6−2 ∑
τ∈S3

s1τ2sτ45Ã (1, τ2, τ3, τ4, 5, 6)×

(sτ35A (τ2, 1, 5, τ3, τ4, 6)+

+ (sτ3τ4 + sτ35)A (τ2, 1, 5, τ4, τ3, 6)) , (3.38)

where S3 is the set of all permutations of {2, 3, 4}. The second is the numerator decomposi-

tion of the gravity amplitude [96]:

M (1, 2, 3, 4, 5, 6) = iκ6−2
∑
τ∈S4

n(1, τ2, τ3, τ4, τ5, 6)Ã (1, τ2, τ3, τ4, τ5, 6) , (3.39)

where S4 is the set of all permutations of {2, 3, 4, 5}. Equating the two expressions for

M (1, 2, 3, 4, 5, 6) between Eq. (3.38) and Eq. (3.39) yields expressions for the (n− 2)! nu-

merators n (1, τ2, τ3, τ4, τ5, 6):

n (1, τ2, τ3, τ4, 5, 6) = −2−4s1τ2sτ45 (sτ35A (τ2, 1, 5, τ3, τ4, 6)

+ (sτ3τ4 + sτ35)A (τ2, 1, 5, τ4, τ3, 6)) , (3.40)

n (1, τ2, τ3, τ4, τ5, 6) = 0 (for τ5 ̸= 5) . (3.41)

The residue numerators are then constructed by replacing

A (τ1, τ2, τ3, τ4, τ5, τ6) → Rr (τ1, τ2, τ3, τ4, τ5, τ6) , (3.42)
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where A6 =
∑

r Rr holds. Explicitly:

nr (1, τ2, τ3, τ4, 5, 6) = −2−4s1τ2sτ45 (sτ35Rr (τ2, 1, 5, τ3, τ4, 6)

+ (sτ3τ4 + sτ35)Rr (τ2, 1, 5, τ4, τ3, 6)) . (3.43)

This approach appears tautological because the residues define the residue numera-

tors. In the end, however, the residue numerators are nothing more than complex numbers

nr (1, τ2, τ3, τ4, τ5, 6) ∈ C that serve as the numerators for the residues of amplitudes. Since

this exercise is only a consistency check, the manner of determining those complex numbers

is not important.
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CHAPTER 4

Two-loop Super-Yang–Mills Amplitudes

In this chapter, three different two-loop amplitudes are discussed. In Sec. 4.1, is the two-

loop four-point amplitude. The two-loop five-point amplitude is in Sec. 4.2. Preliminary

work on the two-loop n-point amplitude is in Sec. 4.3

4.1 Two-loop Four-point Super-Yang–Mills Amplitude

The two-loop four-point amplitude is a convenient amplitude for testing and demonstrat-

ing new ideas because there are only two diagrams contributing to it, and the numerators

of those diagrams are at most a few terms. For that reason, this section contains several

constructions of the amplitude, illustrating the various techniques discussed in Ch. 2.

First the d log representation of the amplitude is constructed in Sec. 4.1.1, in line with the

discussion in Sec. 2.3.2. Then in Sec. 4.1.2, the d log representation is rewritten in the pure

integrand basis, as discussed Sec. 2.3.3. In Sec. 4.1.3, the pure integrand representation of the

amplitude is constructed from the pure integrand basis by matching only one homogeneous

cut of the amplitude, demonstrating the technique outlined in Sec. 2.4. Finally, in Sec. 4.1.4,

there is an example of how the functions in osdn listed in Sec. 2.6 are used to constrain the

two-loop four-point amplitude by the condition that it vanishes on a specific cut.

These sections contain considerable detail so as to highlight how the various techniques

work. Details will be more sparse when more complicated amplitudes are constructed in

later chapters.
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Figure 4.1: The integrals appearing in the two-loop four-point amplitude of SYM theory.

4.1.1 d log Representation

This section demonstrates how to construct the d log numerator, starting from an ansatz,

as outlined in Sec. 2.3.2. The asymptotic scaling constraint implies that only the planar and

nonplanar double box diagrams in Fig. 4.1 appear, since the constraints of Sec. 2.3.2 forbid

triangle or bubble subdiagrams. The goal is to construct the numerators N (P) and N (NP) for

the planar (Fig. 4.1(P)) and nonplanar (Fig. 4.1(NP)) diagrams respectively.

For the planar diagram, Fig. 4.1(P), only four propagators contain either loop momentum

ℓ5 or ℓ6. By the asymptotic scaling constraint, the numerator must be independent of both

loop momenta: N (P) ∼ O((ℓ5)
0, (ℓ6)

0). Since overall dimensionality restricts N (P) to be

quadratic in momentum, there are two independent numerator basis elements:

N
(P)
1 = s , N

(P)
2 = t . (4.1)

The resulting numerator is then a linear combination of these two basis elements:

N (P) = a
(P)
1 s+ a

(P)
2 t , (4.2)

where the a
(P)
j are constants, labeled as discussed after Eq. (2.32). There are no hidden

double poles or poles at infinity from which nontrivial constraints could arise.

The nonplanar two-loop integrand I(NP) (Fig. 4.1(NP)) is the first instance where non-

trivial constraints result from requiring logarithmic singularities and the absence of poles at

infinity. The choice of labels in Fig. 4.1(NP) results in five propagators with momentum ℓ5

but only four with momentum ℓ6, so N (NP) is at most quadratic in ℓ5 and independent of
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ℓ6: N
(NP ) ∼ O((ℓ5)

2, (ℓ6)
0). Overall dimensionality again restricts N (NP) to be quadratic in

momentum. This dictates the form of the numerator to be

N (NP) = c1ℓ
2
5 + c2(ℓ5 ·Q) + c3s+ c4t , (4.3)

where Q is some vector and the ci are coefficients independent of loop momenta.

Now search the integrand

I(NP) =
c1ℓ

2
5 + c2(ℓ5 ·Q) + c3s+ c4t

ℓ25(ℓ5 + k1)2(ℓ5 − k3 − k4)2ℓ26(ℓ5 + ℓ6)2(ℓ5 + ℓ6 − k4)2(ℓ6 + k3)2
(4.4)

for double poles as well as poles at infinity, and impose conditions on the ci and Q such that

any such poles vanish. For the nonplanar double box, cutting the four propagators carrying

momentum ℓ6,

ℓ26 = (ℓ5 + ℓ6)
2 = (ℓ5 + ℓ6 − k4)

2 = (ℓ6 + k3)
2 = 0 , (4.5)

will eventually yield double poles. To see this, first find the Jacobian for this cut:

J6 = (ℓ5 − k3)
2(ℓ5 − k4)

2 − (ℓ5 − k3 − k4)
2ℓ25 = (ℓ5 · q)(ℓ5 · q) , (4.6)

where q = λ3λ̃4, q = λ4λ̃3.

After imposing the quadruple cut conditions in Eq. (4.5), the remaining integrand, in-

cluding the Jacobian (4.6), is

Res
ℓ6-cut

[
I(NP)

]
≡ Ĩ(NP) =

c1ℓ
2
5 + c2(ℓ5 ·Q) + c3s+ c4t

ℓ25(ℓ5 + k1)2(ℓ5 − k3 − k4)2(ℓ5 · q)(ℓ5 · q)
, (4.7)

where the integrand evaluated on the cut is denoted by a new symbol Ĩ(NP ) for brevity.

To make the potentially problematic singularities visible, parametrize the four-dimen-

sional part of the remaining loop momentum as

ℓ5 = αλ3λ̃3 + βλ4λ̃4 + γλ3λ̃4 + δλ4λ̃3 . (4.8)
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This gives

Ĩ(NP) =
(
c1(αβ − γδ)s+ c2 [α(Q · k3) + β(Q · k4) + γ⟨3|Q|4] + δ⟨4|Q|3]]

+ c3s+ c4t
)

×
[
s2(αβ − γδ)(αβ − γδ − α− β + 1)

×
(
(αβ − γδ)s+ αu+ βt− γ⟨13⟩[14]− δ⟨14⟩[13]

)
γδ
]−1

, (4.9)

with the convention 2ki · kj = ⟨ij⟩[ij] and ⟨i|km|j] ≡ ⟨im⟩[mj]. To expose double- or higher-

order poles, take residues in a certain order. For example, taking consecutive residues at

γ = 0 and δ = 0 followed by β = 0 gives

Res
γ=δ=0
β=0

[
Ĩ(NP)

]
=

c2α(Q · k3) + c3s+ c4t

s2uα2(1− α)
. (4.10)

Similarly taking consecutive residues first at γ = δ = 0 followed by β = 1:

Res
γ=δ=0
β=1

[
Ĩ(NP)

]
= −c1αs+ c2 [α(Q · k3) + (Q · k4)] + c3s+ c4t

s2tα(1− α)2
. (4.11)

In both cases there are double poles in α. To eliminate the double poles, choose the ci in

the numerator such that the integrand reduces to at most a single pole in α. Canceling the

double pole at α = 0 in Eq. (4.10) requires c3 = c4 = 0. Similarly, the second residue in

Eq. (4.11) enforces c1s+c2(Q ·(k3+k4)) = 0 to cancel the double pole at α = 1. The solution

that ensures N (NP) is a d log numerator is

N (NP) =
c1
s
[ℓ25(Q · (k3 + k4))− (k3 + k4)

2(ℓ5 ·Q)] . (4.12)

The integrand is now free of the uncovered double poles, but not of poles at infinity. If any

of the parameters α, β, γ or δ grow large, the loop momentum ℓ5 Eq. (4.8) also becomes

large. Indeed, such a pole can be accessed by first taking the residue at δ = 0, followed by
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taking the residues at α = 0 and β = 0:

Res
δ=0

α=β=0

[
Ĩ(NP)

]
=

⟨3|Q|4]
γs2⟨13⟩[14]

. (4.13)

The resulting form dγ/γ has a pole for γ → ∞. Similarly, taking a residue at γ = 0,

followed by residues at α = 0 and β = 0 results in a single pole for δ → ∞. To prevent such

poles at infinity from appearing requires ⟨3|Q|4] = ⟨4|Q|3] = 0, which in turn requires that

Q = σ1k3+σ2k4 with the σi arbitrary constants. This is enough to determine the numerator,

up to two arbitrary coefficients.

To illustrate a second approach, consider the same cut sequence Eq. (4.5) which is {B(ℓ6) }

in the notation defined at the end of Sec. 2.1. The resulting Jacobian is again Eq. (4.6). The

two terms (ℓ5 − k3 − k4)
2ℓ25 in the Jacobian already appear as propagators in the integrand.

So to avoid double poles, the d log numerator must scale as N (NP) ∼ (ℓ5 − k3 − k4)
2ℓ25 in

the kinematic regions where (ℓ5 − k4)
2(ℓ5 − k3)

2 = 0. This constraint is sufficient to fix the

ansatz for N (NP), Eq. (4.3) .

In both approaches, the constraints of having only logarithmic singularities and no poles

at infinity results in a numerator for the nonplanar double box of the form,

N (NP) = a
(NP)
1 (ℓ5 − k3)

2 + a
(NP)
2 (ℓ5 − k4)

2 , (4.14)

where a
(NP)
1 and a

(NP)
2 are rational coefficients.

Imposing that the numerator respects the symmetries of the diagram, k3 ↔ k4, forces

a
(NP)
2 = a

(NP)
1 , and results in a unique numerator up to an overall constant

N
(NP)
1 = (ℓ5 − k3)

2 + (ℓ5 − k4)
2 . (4.15)

In Ref. [2], we list explicit integrand forms that are manifestly d log.

The final step is to fix coefficients such that the new d log representation matches the
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amplitude. A simple method for doing so is to use previously constructed representations of

the amplitude as reference data, rather than sew together lower-loop amplitudes directly.

A previously constructed representation [97] of the two-loop four-point amplitude is

Eqs. (2.26) and (2.32) with numerators

N
(P)
old = s , N

(NP)
old = s . (4.16)

Demanding that the numerators are linear combinations of the basis elements constructed

in Eqs. (4.2) and (4.14) results in:

N (P) = a
(P)
1 s+ a

(P)
2 t , N (NP) = a(NP)((ℓ5 − k3)

2 + (ℓ5 − k4)
2) , (4.17)

where, for comparison to N
(NP)
old , it is useful to rewrite the nonplanar numerator as

N (NP) = a(NP)(−s+ (ℓ5 − k3 − k4)
2 + ℓ25) . (4.18)

The coefficients can be determined by comparing the new and old expressions on the maximal

cuts. Replacing all propagators with on-shell conditions, p2α(x)
= 0, defined in Eq. (2.30).

The planar double-box numerator is unchanged on the maximal cut, since it is independent

of all loop momenta. Comparing the two expressions in Eqs. (4.16) and (4.17) gives

a
(P)
1 = 1 , a

(P)
2 = 0 . (4.19)

For the nonplanar numerator, note that under the maximal cut conditions ℓ25 = (ℓ5 − k3 −

k4)
2 = 0. Comparing the two forms of the nonplanar numerator in Eqs. (4.16) and (4.18)

after imposing these conditions means

a
(NP)
1 = −1 , (4.20)
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so that the final numerators are

N (P) = s , N (NP) = −((ℓ5 − k3)
2 + (ℓ5 − k4)

2) . (4.21)

Although this fixes all coefficients in the basis, it does not prove that the d log construction

gives the correct sYM amplitude. At two loops this was already proven in Ref. [62], where

the difference between amplitudes in the old and the new representation was shown to vanish

via the color Jacobi identity. More generally the method of maximal cuts offers a systematic

and complete means of ensuring that the constructed amplitudes are correct.

4.1.2 Pure Integrand Representation

Elements of the pure integrands basis are closely related to the d log integrands of the

previous section.

Renaming the d log numerators

Ñ (P) = s , Ñ (NP) = (ℓ5 − k3)
2 + (ℓ5 − k4)

2 , (4.22)

the integrand with numerator Ñ (P) is already a pure integrand. The integrand dI(NP) with

numerator Ñ (NP) has logarithmic singularities and no poles at infinity, but it is not a pure

integrand. The leading singularities are not all ±1 but also contain ratios of the form, ±u/t.

The aim now is to decompose the Ñ numerators so that the resulting integrands dIj

are pure, and then to express the amplitude in terms of the resulting pure integrand basis.

In practice, this is done by retaining in Eq. (2.26) the permutation invariant function K =

stPT(1234) = suPT(1243) – defined in Eq. (2.27) – and by requiring each basis integrand

to have correct mass dimension — six in this case — and unit leading singularities ±1. This

results in three basis elements:

N (P) = s2t , N
(NP)
1 = su(ℓ5 − k3)

2 , N
(NP)
2 = st(ℓ5 − k4)

2 . (4.23)
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The two nonplanar basis integrals are related by the symmetry of the diagram, but to

maintain unit leading singularities the terms are treated as distinct. The corresponding pure

integrand forms dI(P), dI(NP)
1 , dI(NP)

2 are obtained by including the integration measure and

the appropriate propagators that can be read off from Fig. 4.1

Using these basis integrals, the full two-loop four-point amplitude can be written as a

linear combination dressed with the appropriate color and Parke-Taylor factors,

A(2)
4 =

1

4

∑
S4

[
c
(P)
1234 a

(P)PT(1234)

∫
dI(P) (4.24)

+c
(NP)
1234

(
a
(NP)
1 PT(1243)

∫
dI(NP)

1 + a
(NP)
2 PT(1234)

∫
dI(NP)

2

)]
,

where the sum in S4 is over all 24 permutations of the external legs. The overall 1/4 divides

out the symmetry factor for each diagram to remove the over-count from the permutation

sum. The planar and nonplanar double-box color factors are

c
(P)
1234 = f̃a1a7a9 f̃a2a5a7 f̃a5a6a8 f̃a9a8a10 f̃a3a11a6 f̃a4a10a11 ,

c
(NP)
1234 = f̃a1a7a8 f̃a2a5a7 f̃a5a11a6 f̃a8a9a10 f̃a3a6a9 f̃a4a10a11 , (4.25)

where the f̃abc = i
√
2fabc are appropriately normalized color structure constants of SU(N).

Matching the amplitude on unitarity cuts determines the coefficients to be

a(P) = 1 , a
(NP)
1 = −1 , a

(NP)
2 = −1 , (4.26)

so that the amplitude in Eq. (4.24) is equivalent to the one presented in Eq. (4.21). The

trivial difference is that the two pieces dI(NP)
1 and dI(NP)

2 are combined into one numerator

in Eq. (4.21).
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1

2

3 = 0

4

5 + 2 6

Figure 4.2: The two-loop four-point MHV amplitude vanishes on this cut. The four-point
trees in the diagram have k = 2, so the overall helicity counting is k = 1.
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1
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+ N
(P)
4123c
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4123

4

1 2

3

+ N
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1
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4

+ N
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4123

4
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+ N
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3214 c

(NP)
3214
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2 1
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+ N
(NP)
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3412

3
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2

+ N
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4213 c

(NP)
4213

4

2 1

3

Figure 4.3: The two-loop four-point amplitude evaluated on the cut of Fig. 4.2. In each
diagram the two shaded propagators are uncut, and every other propagator is cut. Eq. (4.33)
gives the value of the cut.

4.1.3 Matching Zeros

This section implements the algorithm outlined in Sec. 2.4 of constructing the amplitude

by requiring the amplitude to vanish on a cut with nonphysical k-count. In particular,

the only required condition to determine the unknown coefficients a(P), a
(NP)
1 , a

(NP)
2 from

Eq. (4.24) is the that the amplitude vanish on the cut represented in Fig. 4.2. The following

argument holds with minor alterations if both white vertices in Fig. 4.2 are replaced by black

vertices.

In the full amplitude,there are contributions from the planar and nonplanar double boxes
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in Fig. 4.1 and their permutations of external legs. All permutations of diagrams that

contribute to the cut in Fig. 4.2 are shown in Fig. 4.3, along with their numerators and color

factors. There are only seven diagrams rather than nine because two of the nine diagrams

have triangle subdiagrams, and so have vanishing numerators in sYM.

For the cut in Fig. 4.2, five propagators are on-shell so that the cut solution depends on

α, γ, and δ, three unfixed parameters of the loop momenta. Explicitly, the cut solution is

ℓ∗5 + k2 = λ1

[
αλ̃1 +

1

δ⟨13⟩[23]
(
δt− α(s+ δu+ γ⟨13⟩[12])

)
λ̃2

]
,

ℓ∗6 = λ3

[
δλ̃3 + γλ̃2

]
. (4.27)

This solution maps to Fig. 4.2 under the rules outlined in Sec. 2.4.2 to convert a cut solution

to an on-shell diagram. On this k = 1 cut, the MHV amplitude vanishes for any values of

α, γ, δ. By cutting the Jacobian

J = γ
(
δt− α(s+ δu+ γ⟨13⟩[12])

)
, (4.28)

the amplitude remains zero, and this condition simplifies. Specifically the amplitude remains

zero after localizing ℓ5 + k2 to be collinear with k1 and localizing ℓ6 to be collinear with k3

This is equivalent to taking further residues of the already-cut integrand at γ = 0, α =

δt/(s+ δu). On this cut, the solution for the loop momenta simplifies,

ℓ∗5 + k2 =
δt

s+ δu
λ1λ̃1 , ℓ∗6 = δλ3λ̃3 , (4.29)

with the overall Jacobian J ′ = s+ uδ. Even in this simplified setting with one parameter δ

left, the single zero cut condition Fig. 4.2 is sufficient to fix the integrand up to an overall

constant.

The pure integrand numerators, using the labels in Fig. 4.1, are listed in Eq. (4.23).
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Including labels for the external legs to help track relabelings, these are

N
(P,1)
1234 = s2t, N

(NP,1)
1234 = su (ℓ5 − k3)

2 , N
(NP,2)
1234 = st (ℓ5 − k4)

2 . (4.30)

As noted near Eq. (5.38) there are only two Parke-Taylor factors independent under relations

for four-particle scattering, namely PT1 = PT (1234) and PT2 = PT (1243). Therefore the

numerator ansatz for the planar diagram is

N
(P)
1234 =

(
a
(P)
1,1 PT1 + a

(P)
1,2 PT2

)
N

(P,1)
1234 . (4.31)

For the nonplanar diagram, there are two pure integrands, each of which gets decorated with

the two independent Parke-Taylor factors, so that the ansatz takes the form

N
(NP)
1234 =

[ (
a
(NP)
1,1 PT1 + a

(NP)
1,2 PT2

)
N

(NP,1)
1234

+
(
a
(NP)
2,1 PT1 + a

(NP)
2,2 PT2

)
N

(NP,2)
1234

]
, (4.32)

and both numerators are then decorated with corresponding color factors c
(P)
1234, c

(NP)
1234 and

propagators. The a
(x)
i,j coefficients are determined by demanding the integrand vanishes on

the cut solution in Eq. (4.29).

Explicitly, the zero condition from the cut corresponding to Fig. 4.3 is:

0 =

(
c
(P)
1234N

(P)
1234

ℓ25 (ℓ6 − k3 − k4)
2 +

c
(P)
4123N

(P)
4123

(ℓ5 − k3)
2 (ℓ6 + k2)

2 +
c
(NP)
1234N

(NP)
1234

ℓ25 (ℓ5 − ℓ6 − k4)
2

+
c
(NP)
4123N

(NP)
4123

(ℓ5 − k3)
2 (ℓ5 − ℓ6 + k2)

2 +
c
(NP)
3214N

(NP)
3214

(ℓ6 + k2)
2 (ℓ5 − ℓ6 − k4)

2

+
c
(NP)
3412N

(NP)
3412

(ℓ6 − k3 − k4)
2 (ℓ5 − ℓ6 + k2)

2 +
c
(NP)
4213N

(NP)
4213

(ℓ5 − ℓ6 + k2)
2 (ℓ5 − ℓ6 − k4)

2

)∣∣∣∣∣
ℓ∗5 ,ℓ∗6

. (4.33)

The sum runs over the seven contributing diagrams, following the order displayed in Fig. 4.3.

The denominators are the two propagators that are left uncut in each diagram when per-
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forming this cut. One of the terms in the cut equation, for example, is

c
(NP)
3214N

(NP)
3214

(ℓ6 + k2)
2 (ℓ5 − ℓ6 − k4)

2

=
c
(NP)
3214

(ℓ6 + k2)
2 (ℓ5 − ℓ6 − k4)

2 (4.34)

×
[(

a
(NP)
1,1 PT (3214) + a

(NP)
1,2 PT (4213)

)
tu (ℓ6 + k1 + k2)

2

+
(
a
(NP)
2,1 PT (3214) + a

(NP)
2,2 PT (4213)

)
st (ℓ6 + k2 + k4)

2
]
.

This has been relabeled from the master labels of Eq. (4.30) to the labels of the third

nonplanar diagram in Fig. 4.3, including the two uncut propagators. Specifically ℓ5 7→

−ℓ6 − k2 and ℓ6 7→ −ℓ5 − k1 is the relabeling for this diagram. A key simplifying feature is

that crossing symmetry requires that the a
(x)
i,j coefficients do not change under this relabeling;

the result is that the same four coefficients contribute to all five of the nonplanar double boxes

that appear in the cut. The Parke-Taylor factors that appear in Eq. (4.35) do not necessarily

need to be in the chosen basis, although here PT(3214) = PT1 and PT(4213) = PT2.

The single zero condition Eq. (4.33) determines five of the six a
(x)
ij parameters. This

is, consistent with the conjecture in Sec. 2.4, the maximum amount of information that

can be extracted from all zero conditions. To do so in this example, reduce to the two-

member Parke-Taylor basis mentioned before, and also use Jacobi identities to reduce the

seven contributing color factors to a basis of four. Since the remaining Parke-Taylor and

color factors are independent, setting the coefficients of PT · c to zero yields eight potentially
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independent equations for the six coefficients. It turns out only five are independent:

0 = a
(P)
1,2 (4.35)

0 = a
(P)
1,1 + 3a

(NP)
1,1 + a

(NP)
2,1 (4.36)

0 = a
(P)
1,1 + a

(NP)
1,1 + a

(NP)
2,1 (4.37)

0 = a
(P)
1,2 − a

(NP)
1,1 + a

(NP)
1,2 − a

(NP)
2,1 + a

(NP)
2,2 (4.38)

0 = a
(P)
1,2 + a

(NP)
1,1 + a

(NP)
1,2 − a

(NP)
2,1 + 3a

(NP)
2,2 . (4.39)

The solution for this system is

a
(P)
1,2 = a

(NP)
1,1 = a

(NP)
2,2 = 0 , a

(NP)
1,2 = a

(NP)
2,1 = −a

(P)
1,1 , (4.40)

and any of one the three a
(NP)
1,2 , a

(NP)
2,1 , or a

(P)
1,1 is the overall undetermined parameter. This

matches the result in Eq. (4.26), if a
(P)
1,1 = 1. This last condition is exactly the overall scale

that the zero conditions cannot determine.

4.1.4 Example Using osdn

The purpose of this section is to illustrate how the code osdn outlined in Sec. 2.6 can

be used to constrain the two-loop four-point amplitude on exactly one vanishing cut. The

computation largely mirrors the previous section with some slight variation for illustrative

purposes.

All built-in Mathematica functions start with a capital letter (Expand, Simplify, etc...),

while all osdn functions and variables start with a lower case letter (diag, constructCut,

etc...).

The two-loop four-point graphs are input as a list of trivalent vertices. The loop mo-

mentum flows from the positive to the negative vertex. The external momenta are single

integers. Using these conventions, the graphs are:
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Input:

diag[1] =

{

{-1}, {-2}, {-3}, {-4},

{2, 5, -10}, {6, 11, -5}, {3, 7, -6},

{4, 8, -7}, {9, -11, -8}, {1, 10, -9}

};

diag[2] =

{

{-1}, {-2}, {-3}, {-4},

{2, 5, -11}, {6, -9, -5},

{3, 7, -6}, {10, 8, -7},

{4, 9, -8}, {1, 11, -10}

};

allDiags = diag /@ {1, 2};

displayGraph /@ allDiags

Output:



k(1)

l(10)

k(2)
l(5)

k(3)

l(7)

k(4)
l(8)

l(6)

l(11)

l(9)

,

k(1)

l(11)

k(2)

l(5)

k(3)

l(7)

k(4)

l(9)

l(6)
l(8)

l(10)



In the subsequent examples, there will be sample outputs of numerical values. These
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values are generated from pseudo-random external kinematic values. The most complete

implementation of external kinematics in osdn assigns random rational numbers to some

components of the external momenta, then imposes massless conditions and momentum

conservation to determine the remaining components. As an example:

Input:

loadKinematics[4, 1];

kValues // N // TableForm

Output:

{

k[1, 0] -> 3.41656 + 2.33902 I,

k[1, 1] -> 1.64 + 0.07 I,

k[1, 2] -> -2.02 - 1.37 I,

k[1, 3] -> 2.41 + 2.12 I,

k[2, 0] -> 3.81267 + 2.921 I,

k[2, 1] -> -2.8 + 2.59 I,

k[2, 2] -> -3.68 + 4.73 I,

k[2, 3] -> 6.58 + 5.44 I,

k[3, 0] -> 11.0317 - 1.37034 I,

k[3, 1] -> 3.14 + 3.33 I,

k[3, 2] -> 5.55 + 5.34 I,

k[3, 3] -> 11.8517 - 4.65843 I

}

where the three-digit precision numbers are rational, and the six-digit precision numbers

are truncated from 200-digit-precision for legibility in the output. The loadKinematics

function takes the number of external particles as its first argument, and the pseudo-random

number seed as its second; it stores the components of momentum in kValues which can
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then convert an expression that is a function of the components of momenta into a numerical

expression. For this numerical implementation, momentum conservation is done analytically

so only the components up to k3 are necessary in kValues.

Turning now to computing a cut of the amplitude, the first step is to define the desired

cut:

Input:

cg = collapsePropagators[allDiags[[1]], {5, 8}];

displayGraph[cg]

Output:

k(1)

l(10)

k(2)

l(6)

l(11)

k(3)

l(7)

k(4)

l(9)

This takes the original planar double box, and collapses propagators 5 and 8 of that graph;

the topology is exactly Fig. 4.2.

In the syntax of osdn, such graphs encode cuts. Graphs that go into cut functions have

the interpretation that all visible propagators are on-shell. In this example, cg represents

a next-to-next-to-max cut, since all but two propagators are on-shell. With this graphical

definition of the cut, it is quick and painless to numerically solve cut equations corresponding

to the above graph, thereby generating all on-shell diagrams:
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Input:

loadKinematics[4, 1]

osdtab = osdSolutionTable[cg, cutSols[cg, 1]];

(* Output 1 *)

osdtab[[1]] /. {(l[a__] -> n_) :> l[a] -> N[n]} // TableForm

(* Output 2 *)

osdtab[[2]] /. {(l[a__] -> n_) :> l[a] -> N[n]} // TableForm

Output 1:

k(1)

l(10)

k(2)

l(6)

l(11)

k(3)

l(7)

k(4)

l(9)

k(1)

l(10)

k(2)

l(6)

l(11)

k(3)

l(7)

k(4)

l(9)

3
7
-6

1
10
-9

3
7
-6

1
10
-9

l[6, 0] → 9.28552 - 8.2417 ⅈ
l[6, 1] → 19.8743 - 1.73231 ⅈ
l[6, 2] → 4.8 - 18.21 ⅈ
l[6, 3] → -4.82 - 9.4 ⅈ
l[9, 0] → 18.1219 - 24.1842 ⅈ
l[9, 1] → 30.1508 - 107.162 ⅈ
l[9, 2] → -99.6763 - 29.9837 ⅈ
l[9, 3] → -36.21 + 5.41 ⅈ

l[6, 0] → 2.03694 - 17.4565 ⅈ
l[6, 1] → -8.58447 - 0.762101 ⅈ
l[6, 2] → 4.8 - 18.21 ⅈ
l[6, 3] → -4.82 - 9.4 ⅈ
l[9, 0] → 1.04088 - 2.1587 ⅈ
l[9, 1] → 17.9562 + 41.6482 ⅈ
l[9, 2] → -24.9227 + 22.2365 ⅈ
l[9, 3] → -36.21 + 5.41 ⅈ

Output 2:

k(1)

l(10)

k(2)

l(6)

l(11)

k(3)

l(7)

k(4)

l(9)

k(1)

l(10)

k(2)

l(6)

l(11)

k(3)

l(7)

k(4)

l(9)

3
7
-6
1
10
-9

1
10
-9
3
7
-6

l[6, 0] → 2.03694 - 17.4565 ⅈ
l[6, 1] → -8.58447 - 0.762101 ⅈ
l[6, 2] → 4.8 - 18.21 ⅈ
l[6, 3] → -4.82 - 9.4 ⅈ
l[9, 0] → -27.6281 + 1.38585 ⅈ
l[9, 1] → -1.59865 - 21.357 ⅈ
l[9, 2] → -9.71865 - 12.704 ⅈ
l[9, 3] → -36.21 + 5.41 ⅈ

l[6, 0] → 5.42262 - 34.3212 ⅈ
l[6, 1] → 1.19213 - 24.4841 ⅈ
l[6, 2] → -2.80943 + 3.11726 ⅈ
l[6, 3] → 6.12 - 24.21 ⅈ
l[9, 0] → -20.2529 + 20.5593 ⅈ
l[9, 1] → -7.76915 + 35.7108 ⅈ
l[9, 2] → -5.45 - 10.45 ⅈ
l[9, 3] → -36.21 + 5.41 ⅈ
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In the preceding Input, the function cutSols numerically solves the cut equations im-

plied by cg. The function osdSolutionTable takes the cut graph and numerical solutions,

and constructs a list of the form

{...,{{g1,wbList1,sol1},{g2,wbList2,sol2}},...}.

In this list, g1 and g2 are complementary1 colored graphs, the wbList’s are the list of white

and black vertices in corresponding graphs, and the sol’s are the numerical values of the

loop momenta. In the on-shell diagrams, the green-colored vertices indicate valency v > 3.

If some components of the loop momenta are unconstrained by the cut equations, then

those components are set to random rational values to improve the speed of the numerical

solver. Some components of the momenta are unconstrained here because there are only five

constraints for the eight components of momentum. Thus the components ℓ36, ℓ
2
9, and ℓ39 are

random rational numbers – a fact apparent in the preceding Outputs. The other values

for the components of the of loop momenta are calculated by solving the cut equations and

using the previous-displayed external kinematics from loadKinematics[4,1].

Confirming that the numerical cut solutions generate the on-shell diagram matching

Fig. 4.2 is a good first step before attempting to solve cut equations analytically.

The solution in Eq. (4.29) is input as

1Complementary here means the black and white vertices are exchanged.
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Input:

ClearAll[lSol];

lSol[5, u[a1_], u[a2_]] :=

opExp[5, a1,

a2, {{1, 1}, {2, 2}, {1, 2}, {2, 1}}, {(

s[k[1], k[2]] - s[k[1], k[2]] \[Delta][])/(

s[k[1], k[2]] + s[k[1], k[3]] \[Delta][]) - 1, -1, 0, 0}];

lSol[6, u[a1_], u[a2_]] :=

opExp[6, a1,

a2, {{3, 3}, {4, 4}, {3, 4}, {4, 3}}, {\[Delta][], 0, 0, 0}];

lSolProps;

allASols := Join[aSols[5], aSols[6]];

{lSol[5, u, u], lSol[6, u, u]} //. allASols // spAlg // niceP

Output:

- 1 〉[ 1  -  2 〉[ 2  +
1〉[1 s1,2
s1,2+δ s1,3

-
δ 1〉[1 s1,2
s1,2+δ s1,3

δ  3 〉[ 3 

where the two momenta are “nicely printed”. The symbol \[Delta][] is Mathematica

syntax for the free parameter δ, and the empty square brackets are required so certain

functions correctly recognize the parameter. The opExp is an outer-product expansion of

the loop momenta in terms of external kinematics with specified coefficients.

A first check that this solution is correct is to confirm that the literature value for the

amplitude, Eq. (4.16) indeed vanishes at this kinematic point.

The canonical numerators with the K factor of Eq. (2.27) restored are
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Input:

factor = s[k[1], k[2]] s[k[2], k[3]] (ptb[1] //. ptbe //. ptu);

nOld[1] = factor*s[k[1], k[2]];

nOld[2] = factor*s[k[1], k[2]];

nOld[i_] := 0 /; i > 2;

{nOld[1], nOld[2]} //. ptu // niceP

Output:

s1,2
2 s2,3

〈1 2〉 〈2 3〉 〈3 4〉 〈4 1〉
s1,2
2 s2,3

〈1 2〉 〈2 3〉 〈3 4〉 〈4 1〉

where ptb[1] is PT(1234) and where the ptbe and ptu commands handle logistics of the

Parke-Taylor factors.

The cut of the amplitude can be constructed either analytically or numerically; since

there is an analytic analysis in the previous section, here it is done numerically. To actually

compute the cut from cg:

Input:

loadKinematics[4, 1]

cut = (constructCut[cg, allDiags, nOld] /. momConsGraph[diag[1]]);

cut = cut // spc // spAs // colorElim;

tn[cut //. ptu] // Together

Output:

0

The first line loads pseudo-random external kinematics at four-points (the first argument)

and with random seed one (the second argument).
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The constructCut function in line two does most of the work in all calculations. The

function determines all graphs that contribute on the cut represented by cg. It first blows up

all graphs with vertices of valency v > 3 into trivalent graphs, then keeps only those graphs

isomorphic to graphs in the set of allDiags, and then relabels the numerators nOld into the

labels of the cut. The result is that cut is exactly Eq. (4.33) where the N (x)’s are the old

values of the numerators. The replacement at the end of line three momConsGraph[diag[1]]

ensures the loop momenta appearing in the expression are ℓ5 and ℓ6, so that this expression

can be evaluated with the spinor expressions defined by lSol[5,u,u] and lSol[6,u,u].

In the third line, spc applies algebraic identities to cut, spAs substitutes in the loop

momenta defined by the lSol[ ]’s, and colorElim reduces cut to an independent color

basis.

In the last line, tn converts the analytic expression to a numerical expression using the

pseudo-random external kinematics already loaded. Since cut is a rational function of δ, to

see it vanish requires going to a common denominator using Together.

To compute the cut with the new numerator, the process is nearly identical. The main

difference is in defining the ansatz:
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Input:

ClearAll[nAnsatz];

nAnsatz[1, 1] = s[k[1], k[2]]^2 s[k[2], k[3]];

nAnsatz[1] =

a[1, 1] pt[u[k /@ {1, 2, 3, 4}]] nAnsatz[1, 1] +

a[1, 2] pt[u[k /@ {1, 2, 4, 3}]] nAnsatz[1, 1];

nAnsatz[2, 1] = s[k[1], k[2]] s[k[1], k[3]] sq[l[5] - k[3]];

nAnsatz[2, 2] = s[k[1], k[2]] s[k[2], k[3]] sq[l[5] - k[4]];

nAnsatz[2] =

a[2, 1, 1] pt[u[k /@ {1, 2, 3, 4}]] nAnsatz[2, 1] +

a[2, 1, 2] pt[u[k /@ {1, 2, 4, 3}]] nAnsatz[2, 1] +

a[2, 2, 1] pt[u[k /@ {1, 2, 3, 4}]] nAnsatz[2, 2] +

a[2, 2, 2] pt[u[k /@ {1, 2, 4, 3}]] nAnsatz[2, 2];

(* Output 1 *)

nAnsatz[1] //. ptu // niceP

(* Output 2 *)

(List@@nAnsatz[2]) //. ptu // niceP

Output 1:

a1,1 s1,2
2 s2,3

〈1 2〉 〈2 3〉 〈3 4〉 〈4 1〉
+

a1,2 s1,2
2 s2,3

〈1 2〉 〈2 4〉 〈3 1〉 〈4 3〉

Output 2:

(-k3+ℓ5)
2 s1,2 s1,3 a2,1,1

〈1 2〉 〈2 3〉 〈3 4〉 〈4 1〉
(-k3+ℓ5)

2 s1,2 s1,3 a2,1,2
〈1 2〉 〈2 4〉 〈3 1〉 〈4 3〉

(-k4+ℓ5)
2 s1,2 s2,3 a2,2,1

〈1 2〉 〈2 3〉 〈3 4〉 〈4 1〉
(-k4+ℓ5)

2 s1,2 s2,3 a2,2,2
〈1 2〉 〈2 4〉 〈3 1〉 〈4 3〉
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where the lines are summed in Output 22.

Now constructCut can construct the pure integrand amplitude ansatz on the cut in

terms of all external momenta:

Input:

cut = (

constructCut[cg, allDiags, nAnsatz] /.

momConsGraph[diag[1]]

);

jac = s + u \[Delta][];

cut = cut / jac;

cut = cut // spc // spAs // colorElim;

(List@@cut)//niceP

Output:

-
c[3] a1,1 PT1,2,3,4+a1,2 PT1,2,4,3

(-1+δ) δ

-
s (2 c[1]-c[2]+c[3]) a1,2 PT1,4,2,3+a1,1 PT1,4,3,2

δ (s+(t+u) δ)

(c[1]-c[2]) a2,1,1+a2,2,1 PT3,4,1,2+a2,1,2+a2,2,2 PT3,4,2,1

(-1+δ) δ

-
u (-1+δ) c[1] a2,1,1+a2,2,1 PT2,3,1,4+a2,1,2+a2,2,2 PT2,3,4,1

δ (s+t-u (-2+δ) δ)

c[1] a2,1,1+a2,2,1 PT1,4,2,3+a2,1,2+a2,2,2 PT1,4,3,2

(-1+δ) δ

-
u (-1+δ) (c[1]-c[2]) a2,1,1+a2,2,1 PT1,2,3,4+a2,1,2+a2,2,2 PT1,2,4,3

δ (s+t-u (-2+δ) δ)

-
u (-1+δ) c[2] a2,1,1-a2,2,1 PT2,4,1,3+a2,1,2-a2,2,2 PT2,4,3,1

δ (s+t-u (-2+δ) δ)

The constructCut function was discussed above. Again the sum is split onto multiple lines

to make the expression fit on the page. The Jacobian jac is put in by hand, but all it does is

cancel a factor to make the expression smaller. The c[ ]’s are the independent color factors.

2The sum in nAnsatz[2] is split into multiple lines for printing purposes.
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This expression has to vanish. Here osdn could analytically set the coefficients of all

basis elements to zero, which is how Sec. 4.1.3 was originally generated. Alternatively, the

expression can be evaluated multiple times for different random external kinematic points.

Proceeding in this way:

Input:

equations =

ParallelTable[

loadKinematics[4, ri];

Expand[Numerator[Together[tn[cut //. ptu]]]]

,

{ri, 1, 12}

];

equations[[1]] // N

Output:

(-0.000222088 - 0.000461302 I) a[1, 1] c[1]

+(0.000245818 + 0.000114917 I) a[1, 2] c[1]

+<<48>>

+(-0.000672096 + 0.000716818 I) a[2, 2, 2] c[2] \[Delta][]^3

+(-0.000335076 + 8.28822*10^-6 I) a[1, 2] c[3] \[Delta][]^3

The variable equations is a list of length 12 – one entry per random seed ri. The Output

shows one of the entries of equations, and is truncated to show only four of the 52 total

terms, indicated by the “+<<48>>”. The working precision is 200 digits and so the N function

rounds theOutput to a legible number of digits. The cut is now a function of the parameters

of the ansatz, the color factors, and the single uncut parameter δ. Relations between the

parameters are determined by setting the coefficients of the c[ ]’s and powers of δ to zero:
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Input:

(* Rename delta for syntax reasons *)

equations = equations /. {\[Delta][] -> \[Delta][0]};

solution = (coeffEqns[equations, {c, \[Delta]}] == 0);

solution = solution // Solve // Chop // Rationalize // Flatten;

solution // TableForm

Output:

{

a[1, 2] -> 0,

a[2, 1, 1] -> 0,

a[2, 1, 2] -> -a[1, 1],

a[2, 2, 1] -> -a[1, 1],

a[2, 2, 2] -> 0

}

The coeffEqns command reads the coefficients of the c[ ]’s and δ’s. Solving the system

requires the Chop and Rationalize operations to convert the 200-digit precision numbers

to integers. This of course matches the solution Eq. (4.40).

It is worth reiterating: the osdn package does much more than illustrated here. I used

these functions to generate or check everything appearing in our publications and in this

dissertation. This section was meant to be a small illustration of what the functions of osdn

can do.
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4.2 Two-loop Five-point Super-Yang–Mills Amplitude

In this section, the two-loop five-point amplitude is written in the pure integrand basis.

For an overview of the pure integrand basis, see Sec. 2.3.3. This section will be sparse on

details, but the method is similar to the much more detailed Sec. 4.1.2.

The integrand for the two-loop five-point amplitude was first obtained in Ref. [67] in

a format that makes the duality between color and kinematics manifest. With respect to

that representation, the pure integrand representation has the additional feature that it is

manifestly free of spurious poles in external kinematics.

Construction of the pure integrand basis starts from a general sYM power counting of loop

momenta as in Sec. 2.3.2. For the pure integrand basis, the overall mass dimension of dIj is

zero, since there is no K (Eq. (2.27)) factored out. The basis elements are split according to

diagram topologies; trivalent diagrams are termed parent diagrams; diagrams with valency

(v > 3) vertices are called contact terms. The numerators of each pure integrand are given

in Tab. 4.1.

In Tab. 4.1 there is a relabeling notation N
∣∣
i↔j

: “redraw the graph associated with

numerator N with the indicated exchanges of external momenta i, j and also relabel loop

momenta accordingly.” As a simple example,

N
(a)
2 = N

(a)
1

∣∣∣
1↔2
4↔5

(4.41)

requires the relabelings:

k1 ↔ k2 , k4 ↔ k5 , ℓ6 ↔ ℓ6 − k1 − k2 , ℓ7 ↔ ℓ7 − k4 − k5 . (4.42)

For this amplitude, there is an additional pure integrand listed in Tab. 4.2. This integrand

is not a basis element because it is linearly dependent on two other basis elements: N
(h)
1 −

N
(h)
2 + N

(j)
1 (ℓ6 − k1)

2 = 0. It is a choice to take N
(h)
1 and N

(h)
2 as the linearly independent

pure integrands, and N
(j)
1 may be interesting in future studies.
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It is useful here to use spinor helicity variables associated with external momenta. Specif-

ically, several of the expressions in Tab. 4.1 have the structure (ℓ+ αλiλ̃j)
2, where α is such

that both mass dimension and little group weights are consistent. For example, the penta-box

numerator

N
(b)
1 ∼

(
ℓ6 +

Q45 · λ̃3 λ̃1

[13]

)2

= (ℓ6 − ℓ∗6)
2 , (4.43)

is a “chiral” numerator that manifestly vanishes on the MHV solution ℓ6 = ℓ∗6 [98]. The

notation is Qij = ki + kj.

The amplitude is assembled from the basis numerators as

A(2)
5 =

∑
S5

∑
x

1

Sx

∫
d4ℓ6d

4ℓ7
N (x)∏
αx

p2αx

, (4.44)

where the sum over x runs over all diagrams in the basis listed in Tab. 4.1, the sum over

S5 is a sum over all 120 permutations of the external legs, and Sx is the symmetry factor

of diagram x. The product over αx indicates the product of Feynman propagators p2αx
of

diagram x, as read from the graphs in Tab. 4.1.

The following set of independent five-point Parke-Taylor factors are chosen as the Parke-

Taylor basis

PT1 = PT(12345) , PT2 = PT(12354) , PT3 = PT(12453) ,

PT4 = PT(12534) , PT5 = PT(13425) , PT6 = PT(15423) .
(4.45)

The basis elements N
(x)

in Tab. 4.3 do not contribute to the MHV amplitude so those data

are omitted from the a
(x)
νσ .

There is additional information about how to use Tab. 4.3 and 4.1 in the discussion of the

three-loop four-point pure integrand representation in Sec. 5.2. Though the specifics there

are different, the mechanics are the same.

Finally, paralleling the discussion of the two-loop four-point amplitude in Sec. 4.1.3, the

two-loop five-point pure integrand amplitude can be correctly constrained up to an overall
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1

2

3

4

5 = 0

6− 1 7

Figure 4.4: The two-loop five-point MHV amplitude vanishes on this cut. The five-point
tree at the bottom of the diagram has k = 2 or k = 3, so the overall helicity counting is
k = 3 or k = 4.

coefficient by matching one cut where the amplitude must vanish. I did this for Ref. [3] using

the software discussed in Sec. 2.6 and using the cut in Fig. 4.4.
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Diagram Numerators

(a)
6 71

2

3

4

5

N
(a)
1 = ⟨13⟩⟨24⟩

[
[24][13]

(
ℓ7 +

[45]
[24]

λ5λ̃2

)2 (
ℓ6 − Q12·λ̃3 λ̃1

[13]

)2
−[14][23]

(
ℓ7 +

[45]
[14]

λ5λ̃1

)2(
ℓ6 − Q12·λ̃3 λ̃2

[23]

)2]
,

N
(a)
2 = N

(a)
1

∣∣
1↔2
4↔5

, N
(a)
3 = N

(a)
1

∣∣
2↔4
1↔5

, N
(a)
4 = N

(a)
1

∣∣
1↔4
2↔5

,

N
(a)
5 = N

(a)

1 , N
(a)
6 = N

(a)

2 , N
(a)
7 = N

(a)

3 , N
(a)
8 = N

(a)

4 ,

(b)
6 7

1

2

3
4

5

N
(b)
1 = ⟨15⟩[45]⟨43⟩s45[13]

(
ℓ6 +

Q45·λ̃3 λ̃1

[13]

)2
,

N
(b)
2 = N

(b)

1 ,

(c)
6 7

1

2

3
4

5

N
(c)
1 = [13]

(
ℓ6 +

Q45·λ̃3 λ̃1

[13]

)2
⟨15⟩[54]⟨43⟩(ℓ6 + k4)

2 ,

N
(c)
2 = N

(c)
1

∣∣
4↔5

, N
(c)
3 = N

(c)

1 , N
(c)
4 = N

(c)

2 ,

(d)
6

7

1

2
3

4

5

N
(d)
1 = s34(s34 + s35)

(
ℓ7 − k5 +

⟨35⟩
⟨34⟩λ4λ̃5

)2
,

N
(d)
2 = N

(d)
1

∣∣
4↔5

, N
(d)
3 = N

(d)

1 , N
(d)
4 = N

(d)

2 ,

(e)
6 71

2

3
4

5
N

(e)
1 = s15s

2
45 ,

(f)
6 71

2

3 4

5
N

(f)
1 = s14s45(ℓ6 + k5)

2 , N
(f)
2 = N

(f)
1

∣∣
4↔5

,

(g)
6 71

2

3

4

5
N

(g)
1 = s12s45s24 ,

(h)
6 71

2 3
4

5

N
(h)
1 = ⟨15⟩[35]⟨23⟩[12]

(
ℓ6 − ⟨12⟩

⟨32⟩λ3λ̃1

)2
, N

(h)
2 = N

(h)
1

∣∣
3↔5

,

N
(h)
3 = s12⟨13⟩[15]⟨5|ℓ6|3] , N

(h)
4 = s12[13]⟨15⟩⟨3|ℓ6|5],

N
(h)
5 = N

(h)

1 , N
(h)
6 = N

(h)

2 ,

(i)
6 − 1

7
1

2

3
4

5
N

(i)
1 = ⟨2|4|3]⟨3|5|2]− ⟨3|4|2]⟨2|5|3] .

Table 4.1: The parent diagram numerators that give pure integrands for the two-loop five-
point amplitude. Each basis diagram is consistent with requiring logarithmic singularities
and no poles at infinity. Hatched dots indicate contact terms. The overline notation means
[·] ↔ ⟨·⟩.
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Diagram Numerators

(j)
6

7

1

2

3
4

5
N

(j)
1 = s12s35 = (N

(h)
2 −N

(h)
1 )/(ℓ6 − k1)

2 ,

Table 4.2: A diagram and numerator that gives a pure integrand. However, as indicated in
the table and explained in the text, it is not a an independent basis element. Hatched dots
indicate contact terms.
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Color Dressed Numerators PT Matrices

N (a) = c
(a)
12345

∑
1≤ν≤4
1≤σ≤6

N
(a)
ν a

(a)
νσPTσ , a

(a)
νσ =

1

4


−1 0 1 0 0 2
1 0 −1 0 0 2
−3 0 −1 0 0 2
−1 0 −3 0 0 2

 ,

N (b) = c
(b)
12345

∑
1≤σ≤6

N
(b)
1 a

(b)
1σ PTσ , a

(b)
1ν =

(
−1 0 0 0 0 0

)
,

N (c) = c
(c)
12345

∑
1≤ν≤2
1≤σ≤6

N
(c)
ν a

(c)
νσPTσ , a

(c)
νσ =

(
−1 0 0 0 0 0
0 −1 0 0 0 0

)
,

N (d) = N (e) = N (f) = 0 ,

N (g) = c
(a)
12345

∑
1≤σ≤6

N
(g)
1 a

(g)
1σ,(12345)PTσ a

(g)
1σ,(12345) =

1

4

(
1 0 3 0 0 −2

)
,

+ c
(b)
31245

∑
1≤σ≤6

N
(g)
1 a

(g)
1σ,(31245)PTσ , a

(g)
1σ,(31245) =

(
0 0 −1 0 0 0

)
,

N (h) = c
(a)
12345

∑
1≤ν≤4
1≤σ≤6

N
(h)
ν a

(h)
νσ,(12345)PTσ a

(h)
νσ,(12345) =

1

4


4 0 4 0 0 −4
2 0 3 0 1 −2
−2 0 −3 0 −1 2
4 0 4 0 0 −4

 ,

+ c
(a)
12543

∑
1≤ν≤4
1≤σ≤6

N
(h)
ν a

(h)
νσ,(12543)PTσ , a

(h)
νσ,(12543) = a

(h)
νσ,(12345) ,

N (i) = c
(a)
12345

∑
1≤σ≤6

N
(i)
1 a

(i)
1σ,(12345)PTσ a

(i)
1σ,(12345) = 2

(
0 0 −1 0 0 1

)
,

+ c
(a)
13245

∑
1≤σ≤6

N
(i)
1 a

(i)
1σ,(13245)PTσ a

(i)
1σ,(13245) = 2

(
0 0 0 0 0 1

)
,

+ c
(a)
12543

∑
1≤σ≤6

N
(i)
1 a

(i)
1σ,(12543)PTσ a

(i)
1σ,(12543) = 2

(
1 0 1 0 1 −1

)
,

+ c
(a)
15243

∑
1≤σ≤6

N
(i)
1 a

(i)
1σ,(15243)PTσ , a

(i)
1σ,(15243) = 2

(
0 0 0 0 −1 0

)
.

Table 4.3: The two-loop five-point numerators that contribute to the amplitude. The N
(x)
ν

are listed in Tab. 4.1. The five-point PTσ are listed in Eq. (4.45). Numerators including
color information are denoted by N (x).
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4.3 Two-loop n-point Super-Yang–Mills Amplitude

This section summarizes preliminary work on constructing the two-loop n-point ampli-

tude.

The method parallels Ref. [99], in which the two-loop n-point planar amplitude was

constructed. The main goal is to determine all possible cuts that the amplitude must satisfy

and to selectively construct a set of basis integrals that is guaranteed to have unit leading

singularities and no poles at infinity. This is a close relative of the pure integrand basis of

Sec. 2.3.3.

A tentative outline of the process is:

• Determine all cuts of the amplitude, sorting from the most composite cuts to the least.

• Determine an independent set of the cuts.

• Build a basis of integrals that has unit leading singularities on all independent cuts.

• Check examples for specific n(=6,7 point).

• Check collinear limits.

The first point in the outline can be done exhaustively. The “most composite cuts” are

graphs that have six edges in Fig. 4.5. A cut of the two-loop amplitude must localize eight

degrees of freedom, and so the six on-shell conditions represented by such graphs do not

localize all degrees of freedom. It is possible to localize the additional degrees of freedom by

“double-cutting” two of the propagators. More precisely, a double cut is a specific residue

of the integrand that falls under the class of composite cuts; see Sec. 2.1.

Starting from a list of all connected graphs with v ≤ 9 vertices, it is straightforward to

systematically select all diagrams that meet the requirements for being cuts of the amplitude:

an on-shell diagram is valid if it is possible to generate it by taking a co-dimension eight

residue of any two-loop graph. This generates some heuristic rules, such as all on-shell
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diagrams must have at most eight propagators, and it must be possible to cut any loop

momentum four times, double cuts included.

In practice this is done by generating a complete set of “skeleton” graphs as appearing

in Fig. 4.5. These can then be dressed with massless or massive external particles, and

the propagators can be dressed according to how many times they are cut. For example,

the six-cut-propagator nonplanar diagram in the upper-left corner of Fig. 4.5 must have

two propagators double-cut to localize all eight degrees of freedom in the loop momentum.

Additionally, there are several ways to distribute massive and massless external legs around

the skeleton graph. In Fig. 4.6, the double-cut propagators are denoted by dashed lines

rather than solid. Massless corners are denoted by one external leg, and massive corners by

two. As a first step in generating the list of all cuts, I have done this for all the relevant

diagrams in Fig. 4.5.

For the second point in the outline: the on-shell diagrams are not independent. The

diagrams represent both cuts of the amplitude and on-shell functions. The on-shell functions

obey residue theorems that result in a web of identities connecting the diagrams. It may

be possible to generate all such residue and thereby determine a basis, or it may be more

tractable to just check by hand for residues that are closely connected.

Constructing the basis of unit leading singularities is mechanically identical to construct-

ing the two-loop five-point pure integrands of Tab. 4.1.

As for checking specific examples, doing so is straightforward in the planar limit, where

BCFW [100, 101] recursion relations exist. It is less clear how to proceed in the full theory.

Potential tests are the two-loop six- and seven-point amplitudes. These amplitudes do not

exist in the literature, and even generating all the diagrams that contribute to the amplitude

– Figs. 4.7 and 4.8 – was a non-trivial first step in this direction. One way we will confirm

the final result is by checking specific homogeneous cuts (Sec. 2.4)

Another potential test is computing various collinear limits of the integrands in the spirit

of Ref. [102]. This is on-going work.
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Figure 4.5: The set of “skeleton” graphs for two-loop n-point on-shell diagrams and inte-
grals. Dressing the vertices and edges of these skeleton graphs yields the on-shell diagrams
associated with cuts of the amplitude; see Fig. 4.6 for an example.
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Figure 4.6: All possible ways of dressing the upper-left skeleton diagram in Fig. 4.5. One
external leg indicates a massless corner; two indicate a massive corner. A dashed edge
indicates a double-cut propagator.
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Figure 4.7: The set of trivalent two-loop six-point graphs. The graphs are intentionally not
labeled.
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Figure 4.8: The set of trivalent two-loop seven-point graphs. The graphs are intentionally
not labeled.
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CHAPTER 5

Three-Loop Four-Point Super-Yang–Mills Amplitude

The three-loop four-point sYM amplitude is constructed in two different ways in this

chapter. In Sec. 5.1, the amplitude is presented in a d log representation, in line with the

discussion of Sec. 2.3; this is analogous to the two-loop four-point amplitude in Sec. 4.1.1.

In Sec. 5.2, the amplitude is written in the pure integrand basis explained in Sec. 2.3.3; the

discussion is similar to that surrounding the two-loop five-point pure integrand representation

in Sec. 4.2. For both constructions, the details in this chapter are largely excised in favor of

the discussion surrounding the simpler two-loop four-point amplitude in Sec. 4.1.

5.1 d log Form

This section follows the recipe of Sec. 2.3 to find a basis of three-loop diagram integrands

that have only logarithmic singularities and no poles at infinity. The three-loop four-point

parent diagrams are shown in Tab. 5.1. These were classified in Ref. [66, 103], where an un-

integrated representation of the three-loop four-point full sYM amplitude was first obtained.

As in Sec. 2.3, the parent diagrams are restricted to those where no bubble or triangle di-

agrams appear as subdiagrams. Diagrams with contact terms can be incorporated into a

parent diagram by including in the numerator inverse propagators that cancel propagators.

Applying the power-counting rules in Sec. 2.3, the maximum powers of allowed loop
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momenta for each parent diagram are

N (a) = O(1) ,

N (b) = O(ℓ26) ,

N (c) = O(ℓ25 , (ℓ5 · ℓ7), ℓ27) ,

N (d) = O(ℓ46) ,

N (e) = O(ℓ25) ,

N (f) = O(ℓ45) ,

N (g) = O(ℓ25ℓ
2
6) ,

N (h) = O(ℓ25ℓ
2
6, ℓ

2
5ℓ

2
7, ℓ25(ℓ6 · ℓ7)) ,

N (i) = O(ℓ25ℓ
2
6) , (5.1)

where the choice of independent loop momenta in Tab. 5.1 gives the most stringent power

counts. Diagram (h) requires combining restrictions from a variety of labelings to arrive at

this stringent power count. Ignoring the overall prefactor of K, the overall dimension of each

numerator is O(p4), including external momenta.

5.1.1 Diagram Numerators

The next step is to write down the most general diagram numerators that are consistent

with the power count in Eq. (5.1), respect diagram symmetry, are built only from Lorentz

dot products of the loop and external momenta, have only logarithmic singularities and

have no poles at infinity. Although the construction is straightforward, the complete list of

conditions is lengthy. Included here are only a few examples of how to construct the d log

numerators, followed by a table of numerators, Tab. 5.1, that satisfy the d log constraints.
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Diagram (a)

Diagram (a) in Tab. 5.1 is a simple first example. The required numerators are simple

to write down by following the same logic as in the two-loop example in Sec. 4.1.1. Since

the numerator of diagram (a) is independent of all loop momenta as noted in Eq. (5.1), only

numerators that depend on the Mandelstam invariants s and t are allowed. There are three

numerators that are consistent with the overall dimension,

N
(a)
1 = s2 , N

(a)
2 = st , N

(a)
3 = t2 . (5.2)

Following similar logic as in the two-loop four-point example, it is straightforward to check

that there are no double poles or poles at infinity.

Diagram (b)

The numerator for diagram (b) is also easy to obtain, this time by following the logic

of the two-loop nonplanar diagram. From Eq. (5.1), the numerator may only depend on

loop-momentum ℓ6. The two-loop subdiagram on the right side of diagram (b) in Tab. 5.1

containing ℓ6 is just the two-loop nonplanar double box already analyzed in Sec. 4.1.1.

Repeating the earlier nonplanar box procedure for this subdiagram produces the most general

possible numerator for diagram (b),

N
(b)
1 = s

(
(ℓ6 − k3)

2 + (ℓ6 − k4)
2
)
. (5.3)

This is just the two-loop nonplanar numerator with an extra factor of s. A factor of t instead

of s is disallowed because it violates the k3 ↔ k4 symmetry of diagram (b).

Diagram (e)

As a somewhat more complicated example, consider diagram (e) in Tab. 5.1. Because

this diagram is planar, it could be constructed by enforcing dual conformal invariance. This
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is a first example where the d log requirements supplant dual conformal invariance – see

Sec. 6.1 for further discussion.

From Eq. (5.1), the numerator depends on the loop momentum ℓ5 at most quadratically.

Therefore a valid ansatz for it is

N (e) = (c1s+ c2t)
(
ℓ25 + d1(ℓ5 ·Q) + d2s+ d3t

)
, (5.4)

where Q is a vector independent of all loop momenta and the ci and di are numerical

constants. The overall factor (c1s + c2t) is included so that the numerator has the correct

overall dimensions, but this factor does not play a role in canceling unwanted singularities

of the integrand.

Canceling any hidden double poles and poles at infinity in the integrand imposes con-

straints on this numerator ansatz Eq. (5.4). The starting integrand is

I(e) =
N (e)

ℓ26(ℓ6 + ℓ5)2(ℓ6 + ℓ7)2(ℓ6 + k4)2(ℓ7 − ℓ5)2(ℓ7 − k1 − k2)2(ℓ7 + k4)2

× 1

ℓ25(ℓ5 − k1)2(ℓ5 − k1 − k2)2
. (5.5)

Since the numerator ansatz (5.4) is a function of ℓ5, it is convenient to localize to on-shell

values for ℓ6 and ℓ7. This leaves the numerator ansatz unaltered, making it straightforward

to determine all coefficients in N (e). To locate a double pole, consider the cut sequence

cut = {B(ℓ6), B(ℓ7, ℓ7)} , (5.6)

using the notation of Sec. 2.1, so that B(ℓ7, ℓ7) indicates that cutting the 1/ℓ27 propagator

produced by the B(ℓ6) cut. This produces an overall Jacobian

J6,7 = s
[
(ℓ5 + k4)

2
]2

. (5.7)
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After this sequence of cuts, the integrand of Eq. (5.5) becomes:

Res
ℓ6–cut
ℓ7–cut

[
I(e)
]
=

N (e)

ℓ25(ℓ5 − k1)2(ℓ5 − k1 − k2)2 [(ℓ5 + k4)2]
2 s

, (5.8)

exposing a double pole at (ℓ5 + k4)
2 = 0.

To impose the d log constraints on the integrand, cancel the double pole in the denom-

inator with an appropriate numerator. Choosing the ansatz in Eq. (5.4) to have Q = k4,

d1 = 2, d2 = 0, d3 = 0 gives a final form of the allowed numerator,

N (e) = (c1s+ c2t)(ℓ5 + k4)
2 , (5.9)

so that there are two basis numerators,

N
(e)
1 = s(ℓ5 + k4)

2 , N
(e)
2 = t(ℓ5 + k4)

2 . (5.10)

For Ref. [2], we checked that this numerator passes all other double-pole constraints coming

from different regions of momentum space; we also checked that it has no poles at infinity.

It is interesting that, up to a factor depending only on external momenta, these are precisely

the numerators consistent with dual conformal symmetry. As discussed in Sec. 6.1, this is

no accident.

Diagram (d)

Next consider diagram (d) in Tab. 5.1. From the power counting arguments summarized

in Eq. (5.1), the numerator for this diagram is a quartic function of momentum ℓ6, and it

depends on neither ℓ5 nor ℓ7.

When constructing numerators algorithmically it is standard to start with a general

ansatz, but to more easily illustrate the role of contact terms, consider instead starting from

the natural guess that diagram (d) is closely related to a product of two two-loop nonplanar
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double boxes. Thus an educated initial guess is that the desired numerator is the product

of numerators corresponding to the two-loop nonplanar subdiagrams:

Ñ (d) =
[
(ℓ6 + k1)

2 + (ℓ6 + k2)
2
] [

(ℓ6 − k3)
2 + (ℓ6 − k4)

2
]
. (5.11)

This numerator is labeled Ñ (d) because it is not quite the numerator N (d) that satisfies the

d log constraints. Note that this numerator satisfies the symmetries of the diagram.

This ansatz satisfies nearly all constraints on double poles and poles at infinity. There is

though a double pole not removed by the numerator in the kinematic region:

cut = {ℓ25, (ℓ5 + k2)
2, ℓ27, (ℓ7 − k3)

2, B(ℓ6)} . (5.12)

To unveil the double pole, first solve the ℓ5 and ℓ7 dependent cut conditions in terms of two

parameters α and β:

ℓ5 = αk2 , ℓ7 = −βk3 . (5.13)

The final B(ℓ6) represents a box-cut of four of the six remaining propagators that depend

on α and β:

(ℓ6 − αk2)
2 = (ℓ6 − αk2 + k1)

2 = (ℓ6 + βk3)
2 = (ℓ6 + βk3 − k4)

2 = 0 . (5.14)

Before cutting the B(ℓ6) propagators, the integrand is

Res
ℓ5–cut
ℓ7–cut

Ĩ(d) =
Ñ (d)

ℓ26(ℓ6 + k1 + k2)2(ℓ6 − αk2)2(ℓ6 − αk2 + k1)2
(5.15)

× 1

(ℓ6 + βk3)2(ℓ6 + βk3 − k4)2
. (5.16)

Localizing further to the B(ℓ6) cuts produces a Jacobian

J6 = su(α− β)2 , (5.17)
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while a solution to the box-cut conditions of Eq. (5.14)

ℓ∗6 = αλ4λ̃2
⟨12⟩
⟨14⟩

− βλ1λ̃3
⟨34⟩
⟨14⟩

, (5.18)

turns the remaining uncut propagators of Eq. (5.16) into:

ℓ26 = sαβ , (ℓ6 + k1 + k2)
2 = s(1 + α)(1 + β) . (5.19)

The result of completely localizing all momenta in this way is:

Res
cuts

Ĩ(d) = − s2(α(1 + β) + β(1 + α))2

s3uαβ(1 + α)(1 + β)(α− β)2
. (5.20)

This manifestly has a double pole located at α− β = 0. To cancel this double pole requires

adding an extra term to the numerator. A natural choice is a term that collapses both

propagators connecting the two two-loop nonplanar subdiagrams: ℓ26(ℓ6 + k1 + k2)
2. On the

support of the cut solutions Eq. (5.18), this becomes s2αβ(α + 1)(β + 1). The double pole

at α− β = 0 in Eq. (5.20) can be canceled by choosing the linear combination

N
(d)
1 =

[
(ℓ6 + k1)

2 + (ℓ6 + k2)
2
] [

(ℓ6 − k3)
2 + (ℓ6 − k4)

2
]
− 4ℓ26(ℓ6 + k1 + k2)

2 . (5.21)

Indeed, with this numerator the diagram lacks even a single pole at α− β = 0.

It is interesting to note that relaxing the condition that the numerator respects the

diagram symmetry k1 ↔ k2 and k3 ↔ k4, there are four independent numerators with no

double pole. For example,

Ñ (d) = (ℓ6 + k1)
2(ℓ6 − k3)

2 − ℓ26(ℓ6 + k1 + k2)
2 , (5.22)

is a d log numerator. Requiring N (d) to respect diagram symmetry requires summing the

first four terms in Eq. (5.21), each with its own “correction” term −ℓ26(ℓ6 + k1 + k2)
2. This

accounts for the factor of four on the last term in Eq. (5.21).
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For Ref. [2], we carried out detailed checks of all potentially dangerous regions of the

integrand of diagram (d) showing that the numerator of Eq. (5.21) results in a diagram with

only logarithmic singularities and no poles at infinity. In fact, the numerator (5.21) is the

only one respecting the symmetries of diagram (d) with these properties. This follows by

starting with a general ansatz subject to the power counting constraint in Eq. (5.1) and

showing that no other solution exists other than the one in Eq. (5.21).

All Diagrams

For Ref. [2], we went through the diagrams in Tab. 5.1 in great detail, finding the numer-

ators that respect diagram symmetry including color signs, and that have only logarithmic

singularities and no poles at infinity. This results in a set of basis d log numerators asso-

ciated with each diagram. For the diagrams where numerator factors do not cancel any

propagators, the set of numerators is collected in Tab. 5.1.

In addition, there are also diagrams where numerators do cancel propagators. For the

purpose of constructing amplitudes, it is convenient to absorb these contact contributions into

the parent diagrams of Tab. 5.1 to make color assignments manifest. This makes it tractable

to treat all contributions on an equal footing, such that color factors can be read directly from

the associated parent diagram by dressing each three vertex with an f̃abc. This distributes

the contact term diagrams in Tab. 5.3 among the parent diagrams, listed in Tab. 5.2. When

distributing the contact terms to the parent diagrams, change the momentum labels to

those of each parent diagram and then multiply and divide by the missing propagator(s).

The reason the numerators in Tab. 5.2 appear more complicated than those in Tab. 5.3 is

that a single term from Tab. 5.3 can appear with multiple momentum relabelings in order

to enforce the symmetries of the parent diagrams on the numerators.

As an example of the correspondence between the numerators in Tab. 5.2 and Tab. 5.3,

consider diagram (j) and the associated numerators, N
(j)
1 and N

(j)
2 , in Tab. 5.3. To convert

this into a contribution to diagram (i) in Tab. 5.2, multiply and divide by the missing
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propagator 1/(ℓ5 + ℓ6 + k4)
2. Then take the appropriate linear combination so that the

diagram (i) anti-symmetry, including the color sign, under {k1 ↔ k3, ℓ5 ↔ ℓ6, ℓ7 ↔ −ℓ7} is

satisfied. This gives,

N
(i)
2 =

1

3
(ℓ5 + ℓ6 + k4)

2 [t− s] . (5.23)

In fact, there are three alternative propagators that can be inserted instead of 1/(ℓ5+ℓ6+k4)
2

which are all equivalent to the three relabelings of external lines for diagram (i). This requires

a combinatorial factor of 1
3
, which is absorbed into the definition of the numerator because

of the differing symmetries between diagram (i) in Tab. 5.2 and diagram (j) in Tab. 5.3.

As a second example, consider diagram (k) in Tab. 5.3, corresponding to the basis el-

ement N
(k)
1 . Restoring the two missing propagators by multiplying and dividing by the

appropriate inverse propagators, the contribution from diagram (k) in Tab. 5.3, corresponds

to numerators N
(c)
2 , N

(f)
2 , N

(g)
5 , N

(g)
6 , N

(h)
2 and N

(i)
3 in Tab. 5.2.

In summary, the diagrams along with the numerators in Tab. 5.1 and 5.2 are a complete

set for expanding the three-loop four-point sYM amplitude with the desired power counting.

The integrands have only logarithmic singularities and no poles at infinity. They are also

constructed to satisfy diagram symmetries, including color signs.

5.1.2 Determining the Coefficients

Now the three-loop four-point sYM amplitude can be written in a way that each term

is free of double poles and poles at infinity. This is done by expressing the numerators in

Eq. (2.26) directly in terms of the d log basis via Eq. (2.32). Because each basis numerator

reflects diagram symmetry, only one numerator need be specified for each diagram topology

since permutations of external legs then correspond to relabelings.

The coefficients in front of all basis elements are straightforward to determine using

simple unitarity cuts, together with previously determined representations of the three-loop

amplitude. The sYM numerators from Ref. [66] in the choice of momentum labels of Tab. 5.1
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Diagram Numerators

(a)
1

2 3

4

5 6 7

N
(a)
1 = s2 , N

(a)
2 = st , N

(a)
3 = t2 ,

(b)
1

2 3

4

5 6 7

N
(b)
1 = s [(ℓ6 − k3)

2 + (ℓ6 − k4)
2] ,

(c)
1

2 3

4

5 6 7

N
(c)
1 = s [(ℓ5 − ℓ7)

2 + (ℓ5 + ℓ7 + k1 + k2)
2] ,

(d)
1

2 3

4

5 6 7

N
(d)
1 = [(ℓ6 + k1)

2 + (ℓ6 + k2)
2]

2 − 4ℓ26(ℓ6 + k1 + k2)
2 ,

(e)
1

2 3

45 6

7
−

5

N
(e)
1 = s(ℓ5 + k4)

2 , N
(e)
2 = t(ℓ5 + k4)

2 ,

(f)
1

2 3

45

6

7

N
(f)
1 = (ℓ5 + k4)

2 [(ℓ5 + k3)
2 + (ℓ5 + k4)

2] ,

(g)
1

2 3

45 6

7
−

5

N
(g)
1 = s(ℓ5 + ℓ6 + k3)

2 ,

N
(g)
2 = t(ℓ5 + ℓ6 + k3)

2 ,

N
(g)
3 = (ℓ5 + k3)

2(ℓ6 + k1 + k2)
2 ,

N
(g)
4 = (ℓ5 + k4)

2(ℓ6 + k1 + k2)
2 ,

(h)
1

2 3

4

5

6

7

N
(h)
1 =

[
(ℓ6 + ℓ7)

2(ℓ5 + k2 + k3)
2 − ℓ25(ℓ6 + ℓ7 − k1 − k2)

2

−(ℓ5 + ℓ6)
2(ℓ7 + k2 + k3)

2 − (ℓ5 + ℓ6 + k2 + k3)
2ℓ27

−(ℓ6 + k1 + k4)
2(ℓ5 − ℓ7)

2 − (ℓ5 − ℓ7 + k2 + k3)
2ℓ26

]
−
[
[(ℓ5 − k1)

2 + (ℓ5 − k4)
2][(ℓ6 + ℓ7 − k1)

2 + (ℓ6 + ℓ7 − k2)
2]

−4× ℓ25(ℓ6 + ℓ7 − k1 − k2)
2

−(ℓ7 + k4)
2(ℓ5 + ℓ6 − k1)

2 − (ℓ7 + k3)
2(ℓ5 + ℓ6 − k2)

2

−(ℓ6 + k4)
2(ℓ5 − ℓ7 + k1)

2 − (ℓ6 + k3)
2(ℓ5 − ℓ7 + k2)

2
]
,

(i)
1

2 3

45

6

7

N
(i)
1 = (ℓ6 + k4)

2 [(ℓ5 − k1 − k2)
2 + (ℓ5 − k1 − k3)

2]

− (ℓ5 + k4)
2 [(ℓ6 + k1 + k4)

2 + (ℓ6 + k2 + k4)
2]

− ℓ25(ℓ6 − k2)
2 + ℓ26(ℓ5 − k2)

2 .

Table 5.1: The parent numerator basis elements. The basis elements respect the symmetries
of the diagrams.
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Diagram Numerator

(c)
1

2 3

4

5 6 7

N
(c)
2 = (ℓ5)

2 (ℓ7)
2 + (ℓ5 + k1 + k2)

2 (ℓ7)
2 + (ℓ5)

2 (ℓ7 + k1 + k2)
2

+ (ℓ5 + k1 + k2)
2(ℓ7 + k1 + k2)

2 ,

(f)
1

2 3

45

6

7

N
(f)
2 = ℓ25(ℓ5 − k1 − k2)

2 ,

(g)
1

2 3

45 6

7
−

5

N
(g)
5 = (ℓ5 − k1 − k2)

2(ℓ6 − k4)
2 ,

N
(g)
6 = ℓ25(ℓ6 − k4)

2 ,

(h)
1

2 3

4

5

6

7

N
(h)
2 = ℓ26(ℓ5 − ℓ7)

2 + ℓ27(ℓ5 + ℓ6)
2 + (ℓ6 + k4)

2(ℓ5 − ℓ7 + k2)
2

+ (ℓ5 + ℓ6 − k1)
2(ℓ7 + k3)

2 ,

(i)
1

2 3

45

6

7

N
(i)
2 = 1

3
(ℓ5 + ℓ6 + k4)

2 [t− s] ,

N
(i)
3 = (ℓ6)

2 (ℓ5 − k1)
2 − (ℓ5)

2 (ℓ6 − k3)
2 .

Table 5.2: The parent diagram numerator basis elements where a numerator factor cancels
a propagator. Each term in brackets does not cancel a propagator, while the remaining
factors each cancel a propagator. Each basis numerator maintains the symmetries of the
associated diagram, including color signs. The associated color factor can be read off from
each diagram.

Diagram Numerator

(j)
1

2

3

45

6

7

N
(j)
1 = s , N

(j)
2 = t ,

(k)
1

2

3

4

5

6

7
−
5 N

(k)
1 = 1 .

Table 5.3: The numerator basis elements correspond to the contact term diagrams. Hatched
dots indicate contact terms. Written this way, the numerators are simple, but the color
factors cannot be read off from the diagrams.
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are

N
(a)
old = N

(b)
old = N

(c)
old = N

(d)
old = s2 ,

N
(e)
old = N

(f)
old = N

(g)
old = s(ℓ5 + k4)

2 ,

N
(h)
old = −st+ 2s(k2 + k3) · ℓ5 + 2t(ℓ6 + ℓ7) · (k1 + k2) ,

N
(i)
old = s(k4 + ℓ5)

2 − t(k4 + ℓ6)
2 − 1

3
(s− t)(k4 + ℓ5 + ℓ6)

2 . (5.24)

To fix coefficients in the d log basis, start with maximal cuts in which all propagators of

each diagram are placed on shell. The complete set of maximal cut solutions are unique to

each diagram, so coefficients can be matched by considering only a single diagram at a time.

Starting with diagram (a) in Tab. 5.1: the d log numerator is a linear combination of three

basis elements

N (a) = a
(a)
1 N

(a)
1 + a

(a)
2 N

(a)
2 + a

(a)
3 N

(a)
3 , (5.25)

corresponding to N
(a)
j in Tab. 5.1. The a

(a)
j are rational numbers to be determined. The

maximal cuts have no effect because both the new and old numerators are independent of

loop momentum. Functionally matching the two numerators, the coefficients in front of the

numerator basis elements are a
(a)
1 = 1, a

(a)
2 = 0 and a

(a)
3 = 0.

Now consider diagram (b) in Tab. 5.1. Here the basis element is of a different form

compared to the old version of the numerator in Eq. (5.24). The new form of the numerator

is

N (b) = a
(b)
1 N

(b)
1 = a

(b)
1 s

[
(ℓ6 − k3)

2 + (ℓ6 − k4)
2
]
. (5.26)

In order to make the comparison to the old version, impose the maximal cut conditions

involving only ℓ6:

ℓ26 = 0 , (ℓ6 − k2 − k3)
2 = 0 . (5.27)

Applying these conditions:

[
(ℓ6 − k3)

2 + (ℓ6 − k4)
2
]
→ −s . (5.28)
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Comparing to N
(b)
old in Eq. (5.24) yields the coefficient a

(b)
1 = −1.

As a more complicated example, consider diagram (i). In this case the numerators depend

only on ℓ5 and ℓ6. The relevant cut conditions read off from Tab. 5.1(i) are

ℓ25 = ℓ26 = (ℓ5 − k1)
2 = (ℓ6 − k3)

2 = (ℓ5 + ℓ6 − k3 − k1)
2 = (ℓ5 + ℓ6 + k4)

2 = 0 . (5.29)

With these cut conditions, the old numerator in Eq. (5.24) becomes

N
(i)
old

∣∣
cut

= 2s (k4 · ℓ5)− 2t (k4 · ℓ6) . (5.30)

The full numerator for diagram (i) is a linear combination of the three basis elements for

diagram (i) in Tab. 5.1 and 5.2,

N (i) = a
(i)
1 N

(i)
1 + a

(i)
2 N

(i)
2 + a

(i)
3 N

(i)
3 . (5.31)

The maximal cut conditions immediately set to zero the last two of these numerators because

they contain inverse propagators. Applying the cut conditions Eq. (5.29) to the non-vanishing

term results in

N (i)
∣∣
cut

=a
(i)
1 [−2(ℓ6 · k4)t+ 2(ℓ5 · k4)s] . (5.32)

Comparing Eq. (5.30) to Eq. (5.32) fixes a
(i)
1 = 1. The two other coefficients for diagram (i),

a
(i)
2 and a

(i)
3 cannot be fixed from the maximal cuts since they multiply inverse propagators

and so vanish.

In order to determine all coefficients and prove that the answer is complete and correct

requires evaluating next-to-maximal and next-to-next-to-maximal cuts. Cuts up to only this

level are sufficient for fixing all parameters because of the especially good power counting of

sYM. For Ref. [2], I automated these checks with the software outlined in Sec. 2.6. Using
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these cuts results in numerators in terms of the basis elements:

N (a) = N
(a)
1 ,

N (b) = −N
(b)
1 ,

N (c) = −N
(c)
1 + 2d1N

(c)
2 ,

N (d) = N
(d)
1 ,

N (e) = N
(e)
1 , (5.33)

N (f) = −N
(f)
1 + 2d2N

(f)
2 ,

N (g) = −N
(g)
1 +N

(g)
3 +N

(g)
4 + (d1 + d3 − 1)N

(g)
5 + (d1 − d2)N

(g)
6 ,

N (h) = N
(h)
1 + 2d3N

(h)
2 ,

N (i) = N
(i)
1 +N

(i)
2 + (d3 − d2)N

(i)
3 ,

where the three di are free parameters not fixed by any physical constraint.

The ambiguity represented by the three free parameters, di in Eq. (5.33), derives from

color factors being not independent but rather related via the color Jacobi identity. This

allows contact terms to move between different diagrams without altering the amplitude. Dif-

ferent choices of d1, d2, d3 correspond to three degrees of freedom from color Jacobi identities.

This freedom allows moving contact contributions of diagram (k), where two propagators are

collapsed, between different parent diagrams. The contact term in diagram (j) of Tab. 5.3

does not generate a fourth degree of freedom because the three resulting parent diagrams

are all the same topology, corresponding to relabelings of the external legs of diagram (i);

the potential freedom in this case cancels within the single diagram. We explicitly checked

that the di parameters in Eq. (5.33) drop out of the full amplitude after using appropriate

color Jacobi identities. One choice of free parameters is to take them to all vanish

d1 = 0 , d2 = 0 , d3 = 0 . (5.34)

In this case every remaining non-vanishing numerical coefficient in front of a basis elements
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is ±11. Of course this is not some “best” choice of the di, given that the amplitude is

unchanged for any other choice of di.

5.2 Pure Integrand Basis

The d log representation of the amplitude is closely related to the pure integrand rep-

resentation of the amplitude. Much as with the two-loop four-point amplitude in Sec. 4.1,

the only difference between the d log and pure integrand representation of the three-loop

four-point amplitude are that some of the basis elements in Tab. 5.1 and 5.2 must be split

and re-scaled.

In particular, the elements of Tab. 5.1 and 5.2 are split and re-scaled so that any leading

singularity2 is either ±1 or 0. This is exactly the same reason Eq. (4.22) is rewritten as

Eq. (4.23) in the two-loop four-point example in Sec. 4.1.2. The resulting basis numerators

yielding pure integrands are summarized in Tab. 5.4.

The notation “N
∣∣
i↔j

” in Tab. 5.4 means: “redraw the graph associated with numerator

N with the indicated exchanges of external momenta i, j and also relabel loop momenta

accordingly.” A simple example is N
(i)
2 = N

(i)
1

∣∣∣
1↔3

, where

N
(i)
1 = tu(ℓ6 + k4)

2(ℓ5 − k1 − k2)
2 . (5.35)

Under this relabeling, the Mandelstam variables s and t transform into one another s =

(k1 + k2)
2 ↔ (k3 + k2)

2 = t and u stays invariant. In addition to changing the external

labels, the loop momenta must be relabeled as well. In the chosen example, this corresponds

1Recall that N
(i)
2 absorbed the 1/3 combinatorial factor mismatch between diagram (i) and diagram (j).

2See Sec. 2.1 for the definition of leading singularities.

105



to interchanging ℓ5 ↔ ℓ6, so that

N
(i)
2 = N

(i)
1

∣∣
1↔3

= su(ℓ5 + k4)
2(ℓ6 − k3 − k2)

2 . (5.36)

The amplitude is assembled from the basis numerators as

A(3)
4 =

∑
S4

∑
(x)

1

S(x)

∫
d4ℓ5d

4ℓ6d
4ℓ7

N (x)∏
α(x) p2α(x)

, (5.37)

analogously to Eq. (4.24). Now the sum over x runs over all diagrams in the basis listed

in Tab. 5.4, the sum over S4 is a sum over all 24 permutations of the external legs, and Sx

is the symmetry factor of diagram x determined by counting the number of automorphisms

of diagram x. The product over αx indicates the product of Feynman propagators p2αx
of

diagram x, as read from the graphs in Tab. 5.4. The Parke-Taylor factors, color factors, and

coefficients are absorbed in N (x), which are listed in Tab. 5.5.

For four external particles, there are only two independent Parke-Taylor factors:

PT1 = PT(1234) , PT2 = PT(1243) . (5.38)

The third possible factor, PT(1423), is related to the other two by a U(1) decoupling identity

or dual Ward identity [104]

PT(1423) = −PT(1234)− PT(1243) , (5.39)

and is therefore linearly dependent on PT1 and PT2.

When checking cuts of the amplitude, certain cuts may combine contributions from dif-

ferent terms in the permutation sum of Eq. (5.37), resulting in a cut expression that involves

diagrams that are relabelings of those in Tab. 5.4. In that case, the procedure is to rela-

bel the numerators, propagators, Parke-Taylor factors, and color factors given in the tables

into the cut labels. The resulting Parke-Taylor factors may not be in the original basis of
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Parke-Taylor factors; however just as in Eq. (5.39), every Parke-Taylor factor in the relabeled

expression can be expanded in the original Parke-Taylor basis of Eq. (5.38).

The diagrams with 10 propagators contain only three-point vertices and therefore have

unique color factors included in N (x). For the two diagrams with less than 10 propagators,

the ansatz for N includes all independent color factors from all 10-propagator diagrams that

are related to the lower-propagator diagrams by collapsing internal legs. For example, three

10-propagator diagrams are related to diagram (j) in this way, with color factors c
(i)
1234, c

(i)
1243

and c
(i)
3241, where

c
(i)
1234 = f̃a1a8a5 f̃a6a2a9 f̃a3a11a10 f̃a12a4a13 f̃a9a10a8 f̃a11a12a14 f̃a13a5a7 f̃a14a7a6 , (5.40)

is the standard color factor in terms of appropriately normalized structure constants, and

the others c’s are relabelings of 1234 of this color factor. The Jacobi relation between the

three color factors allows eliminating, for example, c
(i)
1243. This is exactly how diagram (j) is

written. In diagram (k), there are nine contributing parent diagrams. Typically there are

four independent color factors in the solution to the set of six Jacobi relations, but in this

case two of the color factors that contribute happen to be identical up to a sign, and thus

there are only three independent color factors.

In Eq. (5.33), the final representation of the amplitude contained arbitrary free parame-

ters associated with the color Jacobi identity that allowed contact terms to be moved between

parent diagrams without altering the amplitude. This freedom is absent in Tab. 5.5 because

contact terms are assigned to their own diagrams, and each contact term is expanded in a

basis of color factors.

One advantage of the Parke-Taylor expansion of the amplitude is that the amplitude can

be compactly expressed in the set of matrices listed on the right of Tab. 5.5. For example,

N (i) can be read off from the table as

N (i) = c
(i)
1234(−1)

(
N

(i)
1 (PT1 + PT2) +N

(i)
2 PT2 −N

(i)
3 PT1 +N

(i)
4 PT1

)
. (5.41)
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1

2

3

4 = 0
5

6
7− 3

Figure 5.1: The three-loop four-point MHV amplitude vanishes on this cut. The five-point
tree at the bottom of the diagram has k = 2 or k = 3, so the overall helicity counting is
k = 3 or k = 4.

This expression supplies the Parke-Taylor and color dependence for Eq. (5.37), in agreement

with the general form of Eq. (2.35).

Finally, paralleling the discussion of the two-loop four-point amplitude in Sec. 4.1.3, the

three-loop four-point pure integrand amplitude can be correctly constrained up to an overall

coefficient by matching one cut where the amplitude must vanish. I did this for Ref. [3] using

the software discussed in Sec. 2.6 and using the cut in Fig. 5.1.
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Diagram Numerators

(a)
1

2 3

4

5 6 7

N
(a)
1 = s3t ,

(b)
1

2 3

4

5 6 7

N
(b)
1 = s2u(ℓ6 − k3)

2 , N
(b)
2 = N

(b)
1

∣∣
3↔4

,

(c)
1

2 3

4

5 6 7

N
(c)
1 = s2u(ℓ5 − ℓ7)

2 , N
(c)
2 = N

(c)
1

∣∣
1↔2

,

(d)
1

2 3

4

5 6 7
N

(d)
1 = su

[
(ℓ6 − k1)

2(ℓ6 + k3)
2 − ℓ26(ℓ6 − k1 − k2)

2
]
,

N
(d)
2 = N

(d)
1

∣∣
3↔4

, N
(d)
3 = N

(d)
1

∣∣
1↔2

, N
(d)
4 = N

(d)
1

∣∣
1↔2
3↔4

,

(e)
1

2 3

45 6

7
−

5

N
(e)
1 = s2t(ℓ5 + k4)

2 ,

(f)
1

2 3

45

6

7

N
(f)
1 = st(ℓ5 + k4)

2(ℓ5 + k3)
2 , N

(f)
2 = su(ℓ5 + k4)

2(ℓ5 + k4)
2 ,

(g)
1

2 3

45 6

7
−

5 N
(g)
1 = s2t(ℓ5 + ℓ6 + k3)

2 ,

N
(g)
2 = st(ℓ5 + k3)

2(ℓ6 + k1 + k2)
2 , N

(g)
3 = N

(g)
2

∣∣
3↔4

,

(h)
1

2 3

4

5

6

7

N
(h)
1 = st

[
(ℓ6 + ℓ7)

2(ℓ5 + k2 + k3)
2 − ℓ25(ℓ6 + ℓ7 − k1 − k2)

2

−(ℓ5 + ℓ6)
2(ℓ7 + k2 + k3)

2 − (ℓ5 + ℓ6 + k2 + k3)
2ℓ27

−(ℓ6 + k1 + k4)
2(ℓ5 − ℓ7)

2 − (ℓ5 − ℓ7 + k2 + k3)
2ℓ26

]
,

N
(h)
2 = tu

[
[(ℓ5 − k1)

2 + (ℓ5 − k4)
2][(ℓ6 + ℓ7 − k1)

2 + (ℓ6 + ℓ7 − k2)
2]

−4 ℓ25(ℓ6 + ℓ7 − k1 − k2)
2

−(ℓ7 + k4)
2(ℓ5 + ℓ6 − k1)

2 − (ℓ7 + k3)
2(ℓ5 + ℓ6 − k2)

2

−(ℓ6 + k4)
2(ℓ5 − ℓ7 + k1)

2 − (ℓ6 + k3)
2(ℓ5 − ℓ7 + k2)

2
]
,

N
(h)
3 = N

(h)
1

∣∣
2↔4

, N
(h)
4 = N

(h)
2

∣∣
2↔4

,

(i)
1

2 3

45

6

7

N
(i)
1 = tu(ℓ6 + k4)

2(ℓ5 − k1 − k2)
2 , N

(i)
2 = N

(i)
1

∣∣
1↔3

N
(i)
3 = st

[
(ℓ6 + k4)

2(ℓ5 − k1 − k3)
2 − ℓ25(ℓ6 − k2)

2
]
, N

(i)
4 = N

(i)
3

∣∣
1↔3

(j)
1

2

3

45

6

7

N
(j)

= stu .

(k)
1

2

3

4

5

6

7
−
5 N

(k)
= su ,

Table 5.4: The basis of numerators for pure integrands for the three-loop four-point ampli-
tude. Hatched dots indicate contact terms. The notation N

∣∣
i↔j

is defined in the text.
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Color Dressed Numerators PT Matrices

N (a) = c
(a)
1234

∑
1≤σ≤2

N
(a)
1 a

(a)
1σPTσ , a

(a)
1σ =

(
1 0

)
,

N (b) = c
(b)
1234

∑
1≤ν≤2
1≤σ≤2

N
(b)
ν a

(b)
νσPTσ , a

(b)
νσ = (−1)

(
0 1
1 0

)
,

N (c) = c
(c)
1234

∑
1≤ν≤2
1≤σ≤2

N
(c)
ν a

(c)
νσPTσ , a

(c)
νσ = (−1)

(
0 1
1 0

)
,

N (d) = c
(d)
1234

∑
1≤ν≤4
1≤σ≤2

N
(d)
ν a

(d)
νσPTσ , a

(d)
νσ =

(
0 1 1 0
1 0 0 1

)T

,

N (e) = c
(e)
1234

∑
1≤σ≤2

N
(e)
1 a

(e)
1σPTσ , a

(e)
1σ =

(
1 0

)
,

N (f) = c
(f)
1234

∑
1≤ν≤2
1≤σ≤2

N
(f)
ν a

(f)
νσPTσ , a

(f)
νσ = (−1)

(
1 0
0 1

)
,

N (g) = c
(g)
1234

∑
1≤ν≤3
1≤σ≤2

N
(g)
ν a

(g)
νσPTσ , a

(g)
νσ =

(
−1 1 0
0 0 1

)T

,

N (h) = c
(h)
1234

∑
1≤ν≤4
1≤σ≤2

N
(h)
ν a

(h)
νσPTσ , a

(h)
νσ =

1

2

(
1 1 1 0
0 1 0 −1

)T

,

N (i) = c
(i)
1234

∑
1≤ν≤4
1≤σ≤2

N
(i)
ν a

(i)
νσPTσ , a

(i)
νσ = (−1)

(
1 0 −1 1
1 1 0 0

)T

,

N (j) = c
(i)
1234

∑
1≤σ≤2

N
(j)
1 a

(j)
1σ,(1234)PTσ a

(j)
1σ,(1234) =

(
1 1

)
,

+ c
(i)
3241

∑
1≤σ≤2

N
(j)
1 a

(j)
1σ,(3241)PTσ , a

(j)
1σ,(3241) =

(
−1 0

)
,

N (k) = c
(g)
1234

∑
1≤σ≤2

N
(k)
1 a

(k)
1σ,(1234)PTσ a

(k)
1σ,(1234) =

(
−2 0

)
,

+ c
(g)
4312

∑
1≤σ≤2

N
(k)
1 a

(k)
1σ,(4312)PTσ a

(k)
1σ,(4312) = 0 ,

+ c
(f)
2431

∑
1≤σ≤2

N
(k)
1 a

(k)
1σ,(2431)PTσ . a

(k)
1σ,(2431) = 0 .

Table 5.5: The three-loop four-point numerators that contribute to the amplitude. The N
(x)
ν

are listed in Tab. 5.4. The four-point Parke-Taylor factors PTσ are listed in Eq. (5.38). The
numerators including color factors are denoted as N (x). The symbol ‘T ’ denotes a transpose.
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CHAPTER 6

Higher-loop Four-point Planar Amplitudes

This chapter contains two topics. Discussed in Sec. 6.1 are the implications of requiring

the planar L-loop amplitude for 4 ≤ L ≤ 7 to be written in terms of diagrams with no

double poles and no poles at infinity. In Sec. 6.2 is a discussion of the mSUGRA amplitude.

6.1 Higher-loop Planar Super-Yang–Mills Amplitudes

Requiring that every diagram of the amplitude be free of double poles and poles at infinity

constrains the diagrams that contribute to the planar amplitude. In Ref. [2] we conjectured:

Logarithmic singularities and absence of poles at infinity

imply dual conformal invariance of local integrand forms

to all loop orders in the planar sector.

This suggests using the singularity structure of the integrand as a guide to finding a gener-

alization of dual conformal invariance in full sYM.

In Sec. 6.1.1 is a brief introduction to dual conformal invariance. In Sec. 6.1.2 is an

algorithm for detecting bad poles in the amplitude. In Sec. 6.1.3 the algorithm is applied to

four- through seven-loop planar diagrams, explaining why many dual conformal integrands

do not contribute to the amplitude.
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6.1.1 Dual Conformal Invariance

Dual conformal symmetry [20–22] has been extensively studied for planar sYM ampli-

tudes. Dual or region variables are the natural variables to make dual conformal symmetry

manifest. Dual variables correspond to vertices placed in the face of each planar momentum-

space graph. These are indicated in the following sections with a red (shaded) dot and labeled

with a red (shaded) number. This is illustrated in Fig. 6.2 for example.

The relation between external momenta ki and external dual variables xi is

ki = xi+1 − xi , i = 1, 2, 3, 4 , x5 ≡ x1 . (6.1)

In term of dual variables, the Mandelstam invariants are

s = (k1 + k2)
2 ≡ x2

13 , t = (k2 + k3)
2 ≡ x2

24 . (6.2)

The internal faces are parametrized by additional xj, with j = 5, 6, . . . , 4 +L corresponding

to loop momenta. In terms of the dual coordinates, loop momenta are defined from the

diagrams as:

ℓ = xright − xleft , (6.3)

where xright is the dual coordinate to the right of ℓ when traveling in the direction of ℓ, and

xleft is the dual coordinate to the left of ℓ when traveling in the direction of ℓ.

The key symmetry property of dual conformal invariance is inversion, xµ
i → xµ

i /x
2
i so

that

x2
ij →

x2
ij

x2
ix

2
j

, d4xi →
d4xi

x2
i

. (6.4)

A four-point planar integrand form is dual conformally invariant (DCI) if dI → dI under

this transformation.
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Z3

Z2

AB1 AB2

ABl

AB1

AB2 AB3

ABl

AB1 AB2

ABl

Z2
Z4

Z3

(a) (b) (c)

Figure 6.1: Cut configurations in momentum twistor geometry. The type I conditions cor-
respond to (b), type II to (a) and type III to (c).

6.1.2 Algorithm for Vanishing Integrands

At a given loop order, it is straightforward to write down all dual conformal invariant

integrands by generating all planar graphs, then writing down all possible numerators that

balance the dual conformal weight of the propagators. The set of integrands so generated is

an overcomplete basis for writing the amplitude; said another way: many of these integrands

have zero coefficient in the planar amplitude.

In Ref. [25], Drummond, Korchemsky, and Sokatchev (DKS) showed that certain inte-

grands have infrared divergences and so can not be DCI. The DKS constraint is then a way

to set the coefficient of some DCI integrands to zero in the amplitude.

In Ref. [2], we showed that the DKS constraint could be rephrased in dual momentum

twistor variables, and then generalized. In momentum twistor space, the l loop variables

{xi1 , . . . , xil} correspond to l lines (AB)1, . . . , (AB)l. Taking a specific point, say x3, in dual

coordinates corresponds to the line Z2Z3 in momentum twistor space. The DKS constraint

then corresponds to a configuration in momentum twistor space for which all l lines intersect

the line Z2Z3 at the same point, as in Fig. 6.1(a).

This geometric reasoning then generalizes to two similar cases: all lines (AB)i intersect

at a generic point as in Fig. 6.1(b), or all lines intersect at a given external point as in

Fig. 6.1(c). Algebraic rearrangement1 of the integrand yields inequalities on the integrands

1See Ref. [2] for exact details.
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that must be satisfied for the integrand to have no double poles and no poles at infinity.

In particular, consider cutting some subset of propagators in a given diagram. Then the

inequalities are in terms of

• N the number of numerator factors that vanish on the cut

• P the number of propagators that are cut

• The subset of l loop dual coordinates {x}L ≡ {xi1 , . . . , xil} that appear in the set of

cut propagators.

Corresponding to each of the diagrams in Fig. 6.1, there are three conditions:

• Type I (Fig. 6.1(b)):

P < N + 2l − 2 , (6.5)

in the limit that loop dual coordinates are light-like separated from each other: x2
ij = 0

for all xi, xj ∈ {x}L.

• Type II (Fig. 6.1(a)):

P < N + 2l , (6.6)

in the limit that loop dual coordinates are light-like separated from each other and

from one external point: x2
ij = x2

ki = 0 for all xi, xj ∈ {x}L, k = 1, 2, 3, 4

• Type III (Fig. 6.1(c)):

P < N + 2l + 1 , (6.7)

in the limit that loop dual coordinates are light-like separated from each other and

from two external points: x2
ij = x2

ki = x2
k′i = 0, for all xi, xj ∈ {x}L, k, k′ = 1, 2, 3, 4.2

If cutting any subset of propagators of a diagram fails to satisfy all of these conditions, then

the diagram has non-logarithmic poles. Several example at various loop orders follow.

2The equations x2
ki = x2

k′i = 0 have two solutions so we have to choose the same solution for all xi.
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6.1.3 Applying the Algorithm

Starting from the set of all dual conformal numerators allowed by power counting at

various loop levels, the goal is to eliminate numerators that do not pass the inequalities of

Sec. 6.1.2.

Four-loop Planar Super-Yang–Mills Amplitudes

As a first example, consider diagram Fig. 6.2(4d). This diagram contains two pentagon

subdiagrams parametrized by ℓ5 and ℓ7 and so has a numerator scaling as N (4f) ∼ O(ℓ25, ℓ
2
7).

There are four3 independent numerators allowed by dual conformal invariance

N
(4d)
1 = s2(ℓ5 − ℓ7)

2 = (x2
13)

2x2
57 , (6.8)

N
(4d)
2 = sℓ27(ℓ5 + k1 + k2)

2 = x2
13x

2
37x

2
15 −→ N (4d2) = x2

13 . (6.9)

N
(4d)
3 = x2

13x
2
27x

2
45 , (6.10)

N
(4d)
4 = x2

13x
2
25x

2
47 −→ N (4d′) = x2

13 . (6.11)

In Eq. (6.9), the notation N
(4d)
2 −→ N (4d2) indicates that the numerator N

(4d)
2 cancels two

propagators to produce exactly Fig. 6.3(4d2), with numerator N (4d2). Similarly in Eq. (6.11),

N
(4d)
4 reduces to diagram (4d′) in Fig. 6.3 upon canceling propagators.

To apply the algorithm, first select some subset of the propagators. In this case, cutting

all propagators

x2
ij , i, j ∈ {2, 3, 5, 6, 7, 8} , (6.12)

splits the set of all numerators in Eqs. (6.8)-(6.11) into two sets. The numerator N
(4d)
1 =

(x2
13)

2x2
57 has N = 1, while there are l = 4 loops, and there are a total of P = 8 propagators

3There is a fifth numerator sℓ27(ℓ5+k1+k2)
2 that is a relabeling of N

(4d)
2 under automorphisms of diagram

(4d). Here and below such relabelings are omitted.
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Figure 6.2: Parent diagrams contributing to the four-loop planar amplitude. The red
(shaded) dots indicate the face or dual labels of the planar graph.

from the specified subset Eq. (6.12). In this case

P = 8 < 9 = 1 + 2 · 4 = N + 2l , (6.13)

and so the numerator is allowed by this double pole constraint. In fact, both numerators

N
(4d)
1 and N

(4d)
2 from Eqs. (6.8) and (6.9) have the same values of P , l, and N , and so each

passes this double pole test and has only single poles. In contrast, the numerators N
(4d)
3 and

N
(4d)
4 from Eqs. (6.10) and (6.11) have N = 0 and fail the inequality, so they have double

poles and do not contribute to the amplitude.
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Figure 6.3: Diagram (4d2) contributes to the planar amplitude at four-loops. Diagram (4d′)
does not. Red (shaded) dots represent dual coordinates. Hatched dots represent contact
terms.

Five-loop Planar Super-Yang–Mills Amplitudes

As a first five-loop example, consider the trivalent graph Fig. 6.4.

The dual conformal numerators that do not collapse any propagators in Fig. 6.4 are

N
(5a)
1 = x2

24x
2
35x

2
17x

2
68 , N

(5a)
2 = −x2

13x
2
24x

2
57x

2
68 ,

N
(5a)
3 = x2

18x
2
27x

2
36x

2
45 , (6.14)

where any dual conformal numerators that are relabelings of these numerators under au-

tomorphisms of the diagram are omitted. These three numerators correspond to diagrams

21, 22 and 35, respectively, of Ref. [71]. However, notice that in the notation used here an

overall factor of st = x2
13x

2
24 has been stripped off. For the three kinematic conditions of the

rules, this diagram has three different values of P :

PI = 8 , PII = 10 , and PIII = 12 , (6.15)

where the subscript corresponds to the inequality of the previous section. The type I kine-

matics is most constraining in this example, and for l = 5 requires N > 0. Converting this

back to a statement about the numerator, implies that all d log numerators for this diagram

must have at least one factor of the form xl1l2 , for xl1 and xl2 in the set of loop face variables.
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Only N
(5a)
1 and N

(5a)
2 have this correct loop dependence. So both N

(5a)
1 and N

(5a)
2 can appear

in the amplitude, while N
(5a)
3 yields an integrand with non-logarithmic poles, and so has

coefficient zero in the amplitude.

In addition to the numerators in Eq. (6.14), there are other dual conformal numerators

that cancel propagators of the parent diagram, resulting in contact-term diagrams depicted

in Figs. 6.5 and 6.6. Considering only the contact terms that can be obtained from the

diagram in Fig. 6.4, the numerators that pass the three inequalities are

N (5b) = −x2
24x

2
17x

2
36 , N (5c) = x2

13x
2
24 ,

N (5d) = −x2
13x

2
27 , N (5e) = x2

24 , (6.16)

where the four numerators respectively correspond to diagrams 31, 32, 33, and 34 in Ref. [71].

Besides N
(5a)
3 , there are four more numerators that display DCI at the integrand level, but

are invalid by applying the type II rules:

N (5f) = x2
18x

2
36 , N (5g) = 1 ,

N (5h) = x2
17x

2
36x

2
48 , N (5i) = x2

35 . (6.17)

These correspond to diagrams 36, 37, 38 and 39, respectively, of Ref. [71]. The numerators

listed in Eq. (6.16) are numerators for the lower-propagator topologies in Fig. 6.5, and the

numerators listed in Eq. (6.17) are numerators for the lower-propagator topologies in Fig. 6.6.

Again the other dual conformal numerators that are relabelings of these numerators under

automorphism of the diagram are omitted.

This analysis does not prove N
(5a)
1,2 through N (5e) can be written as d log forms; it only

shows that the corresponding integrands do not contain the types of non-logarithmic sin-

gularities detected by the three inequalities. It is still possible for those integrands to have

non-logarithmic poles buried in certain kinematic regimes deeper in the cut structure. In-

deed, under more careful scrutiny, such additional constraints appear from the requirements
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Figure 6.4: A sample five-loop planar diagram. Red (shaded) dots and labels represent dual
coordinates.

of no double poles. In particular only the following combinations of integrands corresponding

to Figs. 6.4 and 6.5 are free of double poles:

I(A) = I(5a)
1 + I(5b) + I(5e) , I(B) = I(5a)

2 + I(5c) , I(D) = I(5d) . (6.18)

The notation is, for example, that the integrand I(5a)
1 has the propagators of diagram (5a)

and the numerator N
(5a)
1 in Eq. (6.14). Similarly, the corresponding numerators for the

integrands of diagrams (5b)–(5e) are given in Eq. (6.16). The integrand for diagram (5a)

with numerator N
(5a)
3 is not present, because no contact terms can remove all double poles

of I(5a)
3 . In this case, all cancellations of double poles are between the parent and descen-

dant diagrams. However, at higher loops the situation can very well be more complicated:

unwanted singularities could cancel between different parent diagrams as well.
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Figure 6.5: Descendants of the five-loop planar diagram of Fig. 6.4 with numerator coeffi-
cients determined to be non-zero by testing for non-logarithmic singularities.
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Figure 6.6: Descendants of the five-loop planar diagram of Fig. 6.4 with numerator coeffi-
cients determined to be zero by testing positive for non-logarithmic singularities.
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Six- and Seven-loop Planar Super-Yang–Mills Amplitudes

Finally, consider two six-loop examples that both fall outside the type II inequality from

Sec. 6.1.2. This means both numerators escape detection by the original DKS rule, and so

far could not be easily identified as DCI integrands that do not contribute to the amplitude.

The two examples are the six-loop “bow-tie” in Fig. 6.7(6a) and another six-loop diagram

with two contact terms in Fig. 6.7(6b). The dual conformal numerators of these diagrams

are [105]4

N (6a) = x3
13x24 , N (6b) = x2

24x
2
27x

2
45 . (6.19)

There are other dual conformal numerators for (6b), but they belong to lower-propagator

diagrams, and so are omitted here.

This integrand (6a) does not satisfy inequality III from Sec. 6.1.2. Choosing the seven

propagators

x2
25 = x2

26 = x2
36 = x2

37 = x2
56 = x2

57 = x2
67 = 0 , (6.20)

selects l = 3, N = 0, P = 7 and the corresponding inequality P < N+2l+1 is violated. This

means the non-logarithmic rules immediately offer a reason why this diagram contributes to

the amplitude with coefficient zero. This agrees with Ref. [105].

The six-loop example (6b) in Fig. 6.7 is more subtle, since it is not ruled out by the

three inequalities. However, it does have a double pole. From Ref. [105], this diagram with

numerator N (6b) does not enter the expansion of the amplitude but has coefficient zero.

Presumably, the double pole cannot cancel against other diagrams.

For Ref. [2], we also conducted a variety of checks at seven loops using the integrand given

in Ref. [105]. There are 2329 planar integrands at seven loops, and all 456 contributions that

failed the tests did not appear in the amplitude, as expected. We also checked dozens of

4These diagrams and numerators can be found in the associated files of Ref. [105] in the list of six loop
integrands that do not contribute to the amplitude. Here a factor of st = x2

13x
2
24 is stripped off.
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Figure 6.7: Two six-loop diagrams that have coefficient zero in the amplitude because they
have non-logarithmic singularities. Diagram (6a) has non-logarithmic poles detected by the
inequalities. Diagram (6b) requires explicit checks to locate double poles.

examples that have vanishing coefficients and were able to identify problematic singularities

in all cases. More generally there were examples of double poles canceling non-trivially

between different diagrams, just as at five-loops.

The key implication from this section is that it should be possible to carry the conse-

quences of dual conformal symmetry to the nonplanar sector by considering the singularity

structure of the integrand.

6.2 Maximal Supergravity Poles

Continuing with the chapter theme, in this section is an analysis of the singularity struc-

ture of mSUGRA amplitudes. In Sec. 6.2.1, is a conjecture that mSUGRA amplitudes

have only logarithmic poles at finite loop momentum, with supporting evidence from the

three-loop four-point mSUGRA amplitude. In Sec. 6.2.2, a certain easy-to-analyze planar

(L ≥ 4)-loop diagram highlights the analytic structure of the mSUGRA amplitude for infinite

values of loop momentum.

6.2.1 Logarithmic Singularities

In Ref. [2], we conjectured:
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For finite loop momentum, the four-point momentum-space

mSUGRA integrand forms have only logarithmic singularities.

This follows in a straightforward way from the color-kinematics duality, Sec. 2.5, when one

of the copies is in d log form.

As an explicit example, consider the three-loop four-point sYM amplitude, double-copied

into the three-loop four-point mSUGRA amplitude. Using the BCJ numerators from Ref. [61]

in conjunction with the d log representation of the sYM amplitude in Eq. (5.33) yields the

mSUGRA amplitude in a format that makes the singularity structure manifest for finite loop

momentum. Since the BCJ numerators are known for this sYM amplitude, so too are the

mSUGRA numerators:

N
(x)
mSUGRA = N (x) N

(x)
BCJ , (6.21)

where (x) labels the diagram, N (x) is one of the numerators in Eq. (5.33), and N
(x)
BCJ is one

of the BCJ numerators from Ref. [61]. For example, consider the mSUGRA numerator of

integrand (f) in Tab. 5.1. Multiplying the sYM d log numerator N (f) in Eq. (5.33) by the

corresponding BCJ numerator yields the mSUGRA numerator:

N
(f)
mSUGRA = −

[
(ℓ5 + k4)

2((ℓ5 + k3)
2 + (ℓ5 + k4)

2)
]

×
[
(s(−τ35 + τ45 + t)− t(τ25 + τ45) + u(τ25 − τ35)− s2)/3

]
, (6.22)

where τij = 2ki · ℓj. Just like in the sYM case, overall factors of K, as defined in Eq. (2.27),

are factored out.

This representation of the mSUGRA amplitude has new nontrivial properties compared

to other representations. Since the mSUGRA and sYM diagrams have identical propagators,

and each mSUGRA numerator has a factor of N (x), all double poles located at finite values

of loop momentum in the mSUGRA amplitude are canceled.

In general the factor N
(x)
BCJ in Eq. (6.21) carries additional powers of loop momenta. These

extra powers of loop momenta in the numerator compared to the sYM case generically lead
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Figure 6.8: At L ≥ 4 loops, diagram (a) contains a pole at infinity that cannot cancel
against other diagrams. Cutting all propagators in diagram (a) yields the corresponding on-
shell diagram (b). Diagram (b) encodes a residue of the amplitude on one of the solutions
of the L-loop maximal cut. In both diagrams, the dashed lines indicate possible additional
rungs.

to poles at infinity. However, because the three-loop four-point BCJ numerators are at most

linear in loop momentum, only single poles can develop at infinity. At higher loops, the BCJ

numerators contribute ever larger powers of loop momenta. These additional loop momenta

generate non-logarithmic singularities as the orders of the poles at infinity grow. This is the

content of Sec. 6.2.2

6.2.2 Poles at Infinity

In this section, the mSUGRA integrand is shown to have a pole at infinity by considering

the planar, (L ≥ 4)-loop diagram in Fig. 6.8(a) and the cut, Fig. 6.8(b), of the amplitude

on which only diagram (a) contributes.

While the four-point mSUGRA amplitude at five or higher loops is unknown, there is

partial information about the structure of the amplitude to all loop orders. In particular,

the value of the maximal cut of the diagram in Fig. 6.8(a) that is displayed in Fig. 6.8(b) is

known. Through either direct computation of superspace sums [106, 107] or using the rung

rule [97], the value for the numerator is

N =
[
(ℓ5 + ℓ6 + k2 + k3)

2
]δ(L−3)

, (6.23)
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up to terms that vanish on the cut. Here δ = 1 for sYM theory and δ = 2 for mSUGRA. As

usual factors of K have been removed.

To approach Fig. 6.8(b) so that only a single diagram is selected requires some care5. On

this solution, the two loop momenta labeled in Fig. 6.8 have solutions

ℓ5 = αλ1λ̃2 , ℓ6 = βλ3λ̃4 , (6.24)

matching the discussion in Sec. 2.4.2 for mapping between cut solutions and on-shell dia-

grams. The Jacobian for this cut is

J = s2αβ[(ℓ5 + ℓ6 + k2 + k3)
2]L−2F (σ1, . . . σL−3) , (6.25)

where the function F depends on the remaining L − 3 parameters, σi, of the cut solution,

and not on α or β. On the cut, the parametrization Eq. (6.24) implies that

(ℓ5 + ℓ6 + k2 + k3)
2
∣∣
cut

= (α⟨13⟩+ ⟨23⟩)(β[24] + [23]) . (6.26)

Then the residue in the sYM case is

Res
cut

dIsYM ∼ dα

α(α− α0)
∧ dβ

β(β − β0)
∧ dσ1 . . . dσL−3

F (σ1, . . . , σL−3)
, (6.27)

with α0 = −⟨23⟩/⟨13⟩, β0 = −[23]/[24]. So the sYM integrand has only logarithmic sin-

gularities and no pole at infinity in α or β. On the other hand, in the mSUGRA case the

residue is

Res
cut

dImSUGRA ∼ dα

α(α− α0)4−L
∧ dβ

β(β − β0)4−L
∧ dσ1 . . . dσL−3

F (σ1, . . . , σL−3)
. (6.28)

The mSUGRA residues have the same structure as the sYM residues for L = 3, but not

5To avoid mixing in any additional diagrams, first take a next-to-maximal cut, then make a final cut to
hone in on the single solution in Eq. (6.24).
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for L > 3. In the latter case, the sYM expression in Eq. (6.27) stays logarithmic with no

poles at α, β → ∞, while the mSUGRA residue Eq. (6.28) loses the poles at α0 and β0 for

L = 4 and develops a logarithmic pole at infinity. However, for L ≥ 5 the poles at infinity

become non-logarithmic, and the degree grows linearly with L. Since the cut was carefully

chosen so that no other diagrams can mix with Fig. 6.8(a), the poles at infinity identified in

Eq. (6.28) for L ≥ 4 cannot cancel against other diagrams, and so the mSUGRA amplitudes

indeed have poles at infinity. This can also be verified by the direct evaluation of the on-

shell diagram in Fig. 6.8(b). Thus, in contrast to sYM, mSUGRA amplitudes have poles at

infinity with a degree that grows linearly with the loop order.

As a final comment, the role that these poles at infinity play in the ultraviolet behavior

of mSUGRA amplitudes is still an open question. While it is true that a lack of poles at

infinity implies an amplitude is ultraviolet finite, the converse argument that poles at infinity

imply divergences is not necessarily true. We discuss several reasons to believe the converse

fails in Ref. [2].
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CHAPTER 7

Five-loop Four-point Amplitudes

In Sec. 7.1 is a brief discussion of the motivation for computing the five-loop four-point

mSUGRA amplitude. Current on-going work on this topic is covered in Sec. 7.2.

7.1 Motivation

At present, it is unknown if the five-loop contribution to the four-point mSUGRA am-

plitude, A(5)
4 , is finite or divergent in D = 4. If this mSUGRA amplitude is indeed finite,

understanding the mechanism responsible for reeling in its apparent power-counting diver-

gences would have a large impact on general understanding of quantum gravity. A finite

amplitude would also raise interesting questions about the necessity of quantum gravity

ultraviolet completions such as string theory.

To date, the most efficient way to compute mSUGRA ultraviolet divergences is through

the color-kinematics duality, reviewed in Sec. 2.5. Numerators for the four-point sYM am-

plitude that satisfy Jacobi relations have been found through four-loops [72]. Using the

color-kinematics duality through four-loops, it happens to be that the dimensions in which

the mSUGRA amplitude converges exactly matches [108] the dimensions in which the sYM

amplitude converges

D < 8 , L = 1 , (7.1)

D < 4 +
6

L
, L > 1 (7.2)

for spacetime dimension D [109]. Note that the contributions to the sYM amplitude are
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finite to all loop orders in D = 4, reflected in Eq. (7.2). If the pattern holds and the

mSUGRA critical dimension continues to match the sYM critical dimension for L ≥ 5, then

mSUGRA would be finite in D = 4 dimensions like sYM. Such a result would be surprising

as it runs counter to the results predicted by standard arguments based on symmetries of

the Lagrangian and superspace methods.

So far, direct attempts to construct the five-loop four-point BCJ representation of the

sYM amplitude have hit technical obstructions. Unfortunately the way in which direct

construction fails is not enlightening. Just like in constructing the d log numerators by

ansatz (Sec. 2.3.2), the BCJ numerators are written as ansätze, then subjected to constraints

– Jacobi relations in this case. The resulting set of constraint equations for the parameters

cannot be solved.

As a troubleshooting step, Ref. [110] computed a minimally constrained1 representation

of the sYM amplitude and its divergences. The work outlined in Sec. 7.2 here is a path from

the troubleshooting representation of Ref. [110] towards a BCJ representation.

7.2 Color-Kinematics Duality on Cuts

Heuristically, the aim is to construct a five-loop four-point sYM amplitude that, while

not completely BCJ, retains the properties of the BCJ representation that allows the sYM

amplitude to double-copy into the mSUGRA amplitude. The method of BCJ-on-the-cuts

[111] does exactly this.

The main idea of BCJ-on-the-cuts is to impose that the kinematic numerators obey color

Jacobi identities on all unitarity cuts, rather than functionally for all values of loop momenta.

The traditional approach was to impose

Ns +Nt +Nu = 0 ∀ {ℓ} (7.3)

1The only constraint was that the amplitude had all correct unitarity cuts.
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whenever

cs + ct + cu = 0 , (7.4)

while the new BCJ-on-the-cuts approach is to require

(Ns +Nt +Nu)|{ℓ∗} = 0 (7.5)

where {ℓ∗} denotes any cut in a spanning set of unitarity cuts, the numerators Ni are

numerators of integrands and are implicitly functions of the loop and external momenta:

Ni = Ni(k1, k2, k3, ℓ5, ℓ6, ℓ7, ℓ8, ℓ9) , (7.6)

and the s, t, and u subscripts denote the three diagrams contributing to a color Jacobi

relation as in Fig. 2.4. Preserving the Jacobi identities on cuts ensures that the double copy

procedure will yield a mSUGRA amplitude that satisfies all unitarity cuts; satisfying all

unitarity cuts in turn means the resulting mSUGRA amplitude is correct.

While all the technology for tackling the problem in this way already exists, the main

issue is the size of the system of equations that results.

For a sense of scale, there are 910 diagrams that contribute to the five-loop sYM ampli-

tude; see a selection in Fig. 7.1. It is not known for five-loops what power counting each

diagram must have for the BCJ representation, but at four loops it was sufficient to include

no powers of loop momentum for a box subdiagram, one power for a pentagon, two for a

hexagon, and so on. This counting defines a minimal BCJ power counting. For the 910

five-loop diagrams with all numerator ansätze so designed, this results in O(106) parame-

ters. While the ansätze are designed so that the constraint equations are linear between

these parameters, the number of parameters and constraint equations quickly approaches

technological limits for matrix inversion.

As a first step towards applying BCJ-on-the-cuts, it is sensible to seek any representation
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Figure 7.1: A sample subset of the diagrams contributing to the five-loop four-point ampli-
tude. The graphs are intentionally not labeled.
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of the sYM amplitude with minimal BCJ power counting. Mathematically, this first step is

to constrain a numerator ansatz for a new representation of the amplitude, A(5)
4,new, so that

0 =
(
A(5)

4,new −A(5)
4,old

)∣∣∣
cut

∀ cuts , (7.7)

where A(5)
4,old is the representation from Ref. [110].

The authors of Ref. [110] made unpublished progress in this direction a few years ago.

The goal now is to continue and complete that work. There are several questions to address:

• What is the correct set of five-loop diagrams?

• How should diagrams with vanishing color factor be treated?

• Is it possible to work analytically rather than numerically?

Each of these points are addressed below.

Among the set of 910 five-loop graphs, there is a subset of 178 graphs that contain the two-

loop three-point subdiagram of Fig. 7.2(a); an example diagram is shown in Fig. 7.2(b). Such

graphs would not appear in a traditional BCJ representation, since such graphs can always

be rewritten as a linear combination of graphs with triangle diagrams which are assumed

to vanish. Since the new approach considers BCJ for specific values of loop momenta, it is

possible that these new graphs could be non-zero in the new representation.

As for the second point, the two-loop three-point subdiagram of Fig. 7.2(a) has an ad-

ditional property: the associated color factor vanishes. This happens because the product

of color factors is both symmetric and anti-symmetric in at least one of the sum indices. In

the sYM amplitude, written schematically as

A =
∑∫

dℓ
cNBCJ

props
, (7.8)

a vanishing color factor implies a diagram does not contribute. On the other hand, such

graphs might appear when double copying to obtain the gravity amplitude, since then the
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(a) (b)

Figure 7.2: Figure (a) is a two-loop three-point graph that, under a Jacobi relation, can be
written as a linear combination of two graphs with triangle subdiagrams. Figure (a) also has
vanishing color factor. Figure (b) is an example of how (a) might be embedded in a five-loop
graph; graph (a) is highlighted red in graph (b).

amplitude takes the form

M =
∑∫

dℓ
ÑanyNBCJ

props
, (7.9)

where the vanishing color factor is replaced by a not-necessarily-vanishing numerator: c →

Ñany. This already happens in the four-loop BCJ construction [72]. In fact, even at five-loops

there are six diagrams that contribute to the five-loop sYM amplitude of Ref. [111] that have

color factors that vanish from subdiagrams other than Fig. 7.2(a).

The standard procedure for constraining amplitude numerators is to require that under

relabeling of external legs the numerator changes sign in the same way as the color factor.

One way to relax constraints that might be causing issues with imposing BCJ-on-the-cuts,

or even standard BCJ, it to skip any constraints that result from graphs that have vanishing

color factors. This is ongoing work.

Finally, it is simplest to work with Eq. (7.7) by reducing the expression to an independent

set of Lorentz invariants, then converting the invariants to random integers2. Converting to

numerics in this way simplifies the large expressions that may arise from cuts, yet there is

2Integers allow for infinite precision in Mathematica.
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non-zero risk of a numerical equation solver returning a particular rather than a general

solution. The obvious way around this is to not use numerics but to instead keep analytic

expressions. This has technical challenges, especially when trying to construct and analyze

(next-to-)k-max cuts where for k > 2 tens or hundreds of diagrams might contribute.

There have been recent technological leaps forward3 that have allowed for a dramatic

increase in ansatz size. This is particularly important for the minimal power representation

because every diagram must have its own ansatz, unlike traditional BCJ where a very tiny

subset of diagrams dictates the remainder. With a better understanding of such an ansatz,

future steps will be to impose BCJ-on-the-cuts conditions, Eq. (7.5), while increasing the

size of the numerator ansätze so that the resulting system is consistent.

3Andreas von Manteuffel and Robert Schabinger in private correspondences.
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CHAPTER 8

Conclusion

A successful and oft-repeated message in modern high energy theory research is that

“There are better ways than Feynman diagrams to calculate scattering amplitudes.” This

dissertation toed that party line. In particular, this dissertation reviewed several novel,

non-Feynman-diagram-based techniques for constructing sYM and mSUGRA amplitudes.

At both tree and loop level the analytic structure of the amplitude served as the guide for

constructing the amplitude. Tools for constructing sYM and mSUGRA amplitudes based

on the analytic properties of the amplitudes were detailed in Ch. 2.

At tree-level in Ch. 3, the fact that residues of the sYM amplitude obeyed BCJ amplitude

relations implied the existence of residue numerators that double copied sYM residues into

mSUGRA residues.

In explicit examples at loop level the pole structure of the sYM amplitude was shown to

have only logarithmic singularities and no poles at infinity; that is to say the sYM ampli-

tude admits a d log representation. This was the content of Sec. 4.1.1 (two-loop four-point),

Sec. 5.1 (three-loop four-point), and Ch. 6 (more-than-three-loop four-point planar). This

laid the foundation for a pure integrand representation of the amplitude, in which the am-

plitude is expanded in a basis of integrands that have only unit leading singularities and no

poles at infinity. Such representations were made explicit in Sec. 4.1.2 (two-loop four-point),

Sec. 4.2 (two-loop five-point), and Sec. 5.2 (three-loop four-point). Such a representation

may generalize to n arbitrary particles, per the discussion in Sec. 4.3.

Based on the compelling story of the planar theory, the full sYM amplitude was con-

structed by considering only one specific value in loop momentum space where the amplitude
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has to vanish. The process for such a construction was detailed in Sec. 4.1.3. This success

hints that the structure of the planar theory is likely an echo of currently hidden structure

in the full theory.

With the duality between color and kinematics in hand (Sec. 2.5), it becomes trivial to

check what new sYM representations imply about mSUGRA. Carefully choosing a specific

cut of a planar (L ≥ 4)-loop diagram proved that the mSUGRA amplitude has poles at

infinity; this was shown in Sec. 6.2. It is an open question if the five-loop four-point mSUGRA

amplitude is finite in D = 4 spacetime dimensions. Current work on this topic was the

content of Ch. 7. In particular, that chapter addressed current work towards finding the

sYM five-loop four-point amplitude that satisfies BCJ on the cuts.

Finally, the set of Mathematica functions collectively referred to in this dissertation as

osdn were used to generate and check all the work appearing in this dissertation and the

associated publications. Some functions were briefly listed in Sec. 2.6. In Sec. 4.1.4 was an

example on how to use osdn to generate the two-loop four-point pure integrand basis from

one homogeneous constraint.
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