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Abstract

Enhancing Materials Microstructure Analysis with Physics-Informed Computer Vision

by

Devendra Kumar Jangid

Collecting 3D microstructural information of materials poses significant challenges,

being a process that is time-consuming and expensive. While advancements in serial

sectioning instrumentation have expedited the acquisition of 3D microstructure data, the

process of obtaining crystallographic information through electron backscatter diffraction

(EBSD) imaging continues to be a bottleneck, limiting the overall rate of data collection.

In this research, we explore physics-informed computer vision methods to generate high-

resolution 3D microstructure data. These methods are a primary step in solving the cost

and time challenges. EBSD is a scanning electron microscope (SEM) imaging modality

that maps crystal lattice orientation by analyzing diffraction patterns. EBSD maps are

used to determine the microstructural properties such as texture, orientation gradients,

phase distributions, and point-to-point orientation correlations, all of which are critical

for understanding material performance. EBSD maps contain information about crystal

3d orientation in Euler space that follows crystallography symmetry properties. However,

it is difficult to compute rotational distance and symmetry of 3d crystal orientation in

Euler space. To solve these unique computational challenges associated with rotational

distance and symmetry, we developed a physics-inspired 3D deep learning framework that

uses rotational symmetry and quaternion orientation space as priors to generate high-

resolution microstructure. The proposed quaternion residual block self-attention neural

network (QRBSA) with physics-guided crystal symmetry loss is used to super-resolve

high-resolution 3D microstructure from sparsely sectioned EBSD maps. We demonstrate,
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both qualitatively and quantitatively, that integrating the physics of microstructure into

the deep learning architecture and loss function significantly reduces superresolution

synthesis error compared to standard deep learning networks and loss functions.

Additionally, we propose a 3D Generative Adversarial Network (GAN) framework

known as M(Material)-GAN, which can be used to learn the morphologies of 3D grains

and synthesize realistic grains in microstructures. The moment invariances are used to

quantitatively evaluate the generated grains and real grains. The creation of synthetic

3D grains represents a foundational step towards generating comprehensive synthetic 3D

microstructures through deep learning techniques. The data and methods developed are

available to the broader research community through the UCSB BisQue platform.

x



Contents

Curriculum Vitae vii

Abstract ix

List of Figures xiii

List of Tables xx

1 Material Microstructure in Process-Structure-Property 1
1.1 3D Microstructure Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 High-Resolution 3D Microstructure Data Generation . . . . . . . . . . . 3
1.3 Single Grain Generation for Synthetic 3D Microstructure Generation . . 5
1.4 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Microstructure Datasets 10
2.1 Microstructure Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Microstructure Dataset Representation . . . . . . . . . . . . . . . . . . . 14
2.3 Titanium Microstructure . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4 Accessing Microstructure Dataset on BisQue . . . . . . . . . . . . . . . . 22
2.5 Dream 3D Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 Adaptable Physics-based Super-resolution for Electron Backscatter Diffrac-
tion Maps 27
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.4 EBSD SR BisQue Module . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.5 Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 56

xi



4 Q-RBSA: High-Resolution 3D EBSD Map Generation Using An Effi-
cient Quaternion Transformer Network 59
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.4 Q-RBSA BisQue Module . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.5 Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.6 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5 3D Grain Shape Generation in Polycrystals Using Generative Adver-
sarial Networks 95
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.2 Previous Studies in 3D Object Generation . . . . . . . . . . . . . . . . . 100
5.3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
5.5 M-GAN BisQue Module . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
5.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
5.8 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6 Conclusions and Future Work 130
6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

Bibliography 136

xii



List of Figures

2.1 TriBeam Microscope: 3D microstructure datasets are obtained dur-
ing a serial sectioning experiment. The TriBeam is so named due to the
presence of three beams: the electron, focused ion, and laser. The electron
beam is used to gather diffraction patterns, whereas the laser beam is used
to ablate the materials, layer-by-layer. The ion beam can be used clean
the laser ablated surface in damage sensitive materials, if necessary. . . . 12

2.2 Microstructure Data Collection Process: Material researchers
collect Kikuchi diffraction patterns for each (x, y, z) coordinate of materials
with the given step sizes (sx, sy, sz) in (x, y, z) axis. The Kikuchi diffraction
patterns are then indexed to determine the crystal orientation at each
point. This information about crystal orientation is useful for predicting
material properties. The inverse Pole Figure (IPF) technique is used to
visualize the 3D crystal orientation. . . . . . . . . . . . . . . . . . . . . 13

2.3 Inverse Pole Figure (IPF) map of Ti-6Al-4V-equiaxed Microstruc-
ture Dataset: The color represents the orientation of crystal. Each
grain of the same color has a nearly identical crystallographic orientation.
Rolling direction (RD), transverse direction (TD) and normal direction
(ND) reference arrows are also shown. IPF coloring is referenced to the TD. 19

2.4 Rendering of 3D EBSD dataset Investigated: shown in IPF col-
oring of the titanium alloys, (a) Ti-6Al-4V and (b) Ti-7Al mechanically
loaded in tension to 1% strain and (c) 3%, used for network training,
testing and validation. Dataset details are available elsewhere [1, 2]. . . . 21

2.5 Ti-6Al-4V Microstructure Dataset on BisQue: Ti-6Al-4V 3D
microstructure datasets can be accessed on our open source web-based ar-
chitecture ”BisQue”. The microstructure datasets are saved as hdf/dream3d
format and can visualized using ”IPFColor” field. The crystal orientations
at each voxel is saved in ”EulerAngles” and ”Quaternions” fields. ”Fea-
tureIds” field shows the location of grains, and each grain has a distinct
feature id. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.6 File Structure of Ti-6Al-4V Microstructure Dataset on BisQue
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

xiii



3.1 Training Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2 Validation Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3 Test Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.4 Pre-processing of Ti-6Al-4V Datasets. Figure 3.1 has size of 300×

124 × 408 × 4. Figure 3.2 and Figure 3.3 are divided into 3 mutually
orthogonal parallelpiped blocks, which are then sliced into images. . . . . 35

3.5 Rendering of 3D EBSD dataset Investigated: shown in IPF col-
oring of the titanium alloys, (a) Ti-6Al-4V and (b) Ti-7Al mechanically
loaded in tension to 1% strain and (c) 3%, used for network training,
testing and validation. Dataset details are available elsewhere [1, 2]. . . . 35

3.6 Network Architecture: Training Pipeline: A low-resolution EBSD
map in quaternion orientation space is given to an image super-resolution
network architecture that generates a high-resolution EBSD map in quater-
nion orientation space. A crystallographic symmetry physics-based loss
with L1 or approximate rotational distance is used during training. In-
ference Pipeline: The image super-resolution network generates a high-
resolution EBSD map in quaternion orientation space, which is reduced to
a fundamental zone space, and converted to Euler orientation space to vi-
sualize in IPF color map. Symmetry Loss: Takes all possible hexagonal
symmetries for the titanium alloy, and computes the minimum distance
between all possible generated output and ground truths. The distance
can be L1 or approximate rotational distance. . . . . . . . . . . . . . . . 36

3.7 Orientation Loss Distributions: Probability distribution of loss dis-
tances between pairs of randomly sampled 3D rotation vectors. L1 distance
is shown in blue, L1 distance accounting for crystal symmetry is shown in
green, and approximate rotational distance accounting for crystal symme-
try is shown in red. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.8 Approximation of the Rotational Distance Equation: The deriva-
tive is not defined at deuclid = 2, so a linear approximation is computed to
ensure smooth loss behavior. . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.9 Network Output Comparison With Different Patch Sizes: Larger
patch sizes lead to improvement across all architectures. . . . . . . . . . 43

3.10 Network Output Comparison With Different Batch Sizes:
Larger batch size leads to lower quality results. . . . . . . . . . . . . . . 43

3.11 Comparison of HR ground truth to traditional upscaling:
Bilinear, bicubic, and nearest neighbor upscaling produce inferior results.
Bilinear and bicubic results are nonphysical, and nearest neighbor results
are visually identical to LR input. . . . . . . . . . . . . . . . . . . . . . . 44

3.12 Visual Comparison of 4x EBSD-SR on a test EBSD map: L1 has
non physical structure at grain boundaries, and L1 with symmetry and
approximate rotational with symmetry reduce the non-physical structures
at grain boundaries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

xiv



3.13 Visual Comparison of 4x EBSD-SR on a test EBSD map: L1 has
non physical structure at grain boundaries, and L1 with symmetry and
approximate rotational with symmetry reduce the non-physical structures
at grain boundaries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.14 Visual Comparison of 4x EBSD-SR on a test EBSD map: L1 has
non physical structure at grain boundaries, and L1 with symmetry and
approximate rotational with symmetry reduce the non-physical structures
at grain boundaries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.15 Comparison of Upsampling layers for Ti-6Al-4V Dataset: Com-
parison of output of network trained on Ti-6Al-4V with different upsam-
pling layers in upsampling and reconstruction part of network architecture 52

3.16 Comparison of Upsampling layers for Ti-7Al 1 % Dataset:
Comparison of output of network trained on Ti-7Al 1 % with different
upsampling layers in upsampling and reconstruction part of network ar-
chitecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.17 Comparison of Upsampling layers for Ti-7Al 3 % Dataset:
Comparison of output of network trained on Ti-7Al 3 % with different
upsampling layers in upsampling and reconstruction part of network ar-
chitecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.18 BisQue Module for EBSD SR: The input for the BisQue model is
a low-resolution Electron Backscatter Diffraction (EBSD) map in numpy
format. This module efficiently processes the input to generate a high-
resolution EBSD map, also in numpy format. Additionally, it facilitates
the visualization of the EBSD map through an Inverse Pole Figure (IPF)
map, offering a clear and detailed representation. . . . . . . . . . . . . . 56

4.1 Q-RBSA EBSD Resolution Enhancement Framework: In the
experimental pipeline shown in (a), material researchers collect EBSD
orientation information for each (x,y) coordinate in a given sectioning
plane, and then remove material using laser ablation or robotic polish-
ing to reach the next plane in the z direction to build a 3D volume. In
our framework (b), researchers collect EBSD information from a reduced
set of points (blue planes), omitting some planes that would normally be
gathered (gray planes). The missing information (green planes) are then
generated in 2D as a series of (x,z) or (y,z) planes by our quaternion-based,
physics-informed deep learning framework, shown in (c). Here, the net-
work takes advantage of orthogonal independence to efficiently generate
3D volumes using less data, as large amounts of EBSD are costly and the
choice of serial sectioning direction has minimal impact on the resultant
final volume. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

xv



4.2 Rendering of 3D EBSD dataset Investigated: shown in IPF col-
oring of the titanium alloys, (a) Ti-6Al-4V and (b) Ti-7Al mechanically
loaded in tension to 1% strain and (c) 3%, used for network training,
testing and validation. Dataset details are available elsewhere [1, 2]. . . . 66

4.3 Quaternion Residual Block Self-attention (QRBSA) Network:
A sparsely sectioned 2D EBSD map is given to the QRBSA network (a) to
generate a high-resolution 2D EBSD map. QRBSA consists of three parts:
a Shallow feature extractor, a Deep feature extractor, and Upsampling and
Reconstruction. The deep feature extractor uses a residual architecture (b)
where residual self-attention blocks (c) are modified with quaternion con-
volution layers and transformer blocks (d) to efficiently handle orientation
data. Quaternion convolution is used to learn local-level relationships,
while quaternion transformer blocks learn the global statistics of feature
maps. Pixelshuffle layer, modified for 1-dimensional upsampling, is used
in the upsampling and reconstruction block to upsample feature maps. . 70

4.4 Quaternion Self Attention: Self-Attention in (a) is computed using
quaternion convolution across feature dimension instead of spatial dimen-
sion to reduce computational complexity to linear. A transposed attention
map (A) is calculated from reshaped query (Qr) and reshaped key (Kr). A
quaternion self-attention is computed from the transposed attention map
(A) and reshaped value (Vr). Quaternion Feed Forward Network:
Shown in (b), performs controlled feature transformation to allow useful
information to propagate further using gated quaternion convolution. . . 73

4.5 Visual comparison of network output for example 2D EBSD
maps with a scale factor of 4: The predicted EBSD maps (Network
Output) from the QRBSA network are similar to the ground truth EBSD
maps in for both the Ti-6Al-4V dataset (a) and both Ti-7Al datasets (b)
and (c). The black rows correspond to the missing data in the sparsely
sectioned input EBSD maps. In this case, one row of EBSD data is used
for every three rows of missing EBSD data. . . . . . . . . . . . . . . . . . 77

4.6 Neural network output vs. ground truth with difference
map: The deep learning framework is able to estimate the missing xy
planes due to sparse z-sampling (gray) with data that looks similar to the
ground truth for Ti-6Al-4V in (a) and Ti-7Al in (b) and (c). The mis-
orientation angle map column shows the minimum possible misorientation
between ground truth and estimated EBSD maps with 3 ◦ thresholded
maximum to better show low magnitude errors. This map indicates that
learning grain shapes for Ti-6Al-4V is more difficult than for Ti-7Al, likely
due to smaller grain size and more grain boundary regions. . . . . . . . . 79

xvi



4.7 Histogram of Misorientation Angle for Ti-6Al-4V, Ti-7Al
1%, and Ti-7Al 3%: In (a), histograms of misorientation differences
between predicted and ground truth are shown, where all values greater
than 3◦ are clamped to 3◦. For all materials, most network error in pre-
dicted misorientation is lower than 0.5◦ in magnitude. In (b), the same
error histograms are displayed, but now misorientation values less than
3◦ are clamped to 3◦. Because larger magnitude errors occur far less fre-
quently than smaller errors, (c) contains a zoomed inset of misorientation
angles greater than 3◦ to better show their distribution. . . . . . . . . . . 80

4.8 Comparison of Network output with Nearest Neighbour: Near-
est neighbor interpolation method gives blocky grains and visually identi-
cal results to sparsely sectioned EBSD data. . . . . . . . . . . . . . . . . 83

4.9 Noise in Estimated XY Plane: The deep learning framework is able
to estimate the missing xy planes in z dimension but there are some minor
noises in some of the xy planes. . . . . . . . . . . . . . . . . . . . . . . . 84

4.10 Quaternion CNN and Real CNN: Both QCNN and RCNN have
same number of layers except basic convolution operation layer. In QCNN,
total number of trainable parameters are reduced significantly which give
us room to add more complexity such self-attention layer to learn global
features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.11 BisQue UI Interface A user interface of generating high-resolution 3D
Microstructure from given sparsely sectioned 3D Microsstructure . . . . . 86

4.12 Sparsely Sectioned Microstructure: Visualization of a sparsely
sectioned microstructure on BisQue . . . . . . . . . . . . . . . . . . . . . 87

4.13 High Resolution Microstructure: Visualization of generated high
resolution microstructure . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.14 Differences between Real-Valued Convolution and Quater-
nion Convolution: Real-valued convolution operations compute cor-
relations, which are scalar quantities, between independent kernels and
quaternion input feature maps. In contrast, quaternion convolution op-
erations compute the Hamilton product, which is a vector quantity, be-
tween quaternion kernels and quaternion input feature maps. Further-
more, quaternion convolution requires only one-fourth of the kernel filters
needed in real-valued convolution for the same number of output channels,
resulting in a substantial reduction in total kernel filters. . . . . . . . . . 92

4.15 Pooling and Concatenation of Quaternion Feature Maps: Fol-
lowing the first quaternion convolution layer with K2 filters, as illustrated
in Figure 4.14, the resulting feature maps are pooled into scalar and vector
components (ith, jth, kth) of Quaternion Feature Maps, with each compo-
nent having a K2 channel dimension. These pooled features are then con-
catenated along the channel dimension, resulting in a total of 4K2 channel
dimensions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

xvii



4.16 Explanation of Second layer in quaternion convolution neu-
ral network: In the second layer of the quaternion neural network, the
Hamilton product is computed between the output of the pooling and con-
catenation operation, as shown in Figure 4.15, and K3 quaternion kernel
filters. This results in K3 quaternion output feature maps, each with a
dimension of (4, H, W). . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.1 Grain Distributions Across Materials and Processes: 3D datasets
collected from Ti-6Al-4V (top left), strontium titanate (top right), and
additively manufactured (AM) Inconel 718 superalloy (bottom) samples
with detailed examples of specific grains contained within. Data shown
was gathered with 3D electron backscatter diffraction (EBSD). Average
grain size is much larger relative to voxel size resolution in the strontium
titanate dataset compared the Ti-6Al-4V dataset, resulting in fewer total
grains, but better defined grain facets. The Inconel 718 sample and the
grain contained within the melt pool on the top surface of the sample are
elongated due to the fast cooling rates present in AM processes. . . . . . 100

5.2 Generative Adversarial Network (GAN) Architecture Overview.
A layout of the architecture of a traditional GAN, as described by [3]. . . 107

5.3 Generator Architecture of M-GAN. A mapping network com-
prised of eight Fully Connected layers (FC) with Leaky ReLU activation
function after each FC layer takes as input a 512 dimensional latent vector
z. The output is then mapped to an intermediate latent space W , con-
verted into styles using a learned affine transformation (A), and passed
through an AdaIN operation for each of the five blocks in the synthesis
network. Block 1 passes constant input through AdaIN and ReLU acti-
vation functions, while Blocks 2-5 are deconvolution blocks progressively
grown from 8 × 8 × 8 → 64 × 64 × 64. . . . . . . . . . . . . . . . . . . . 108

5.4 Experimental Training Set: Ti-6Al-4V dataset, whose grains were
used to train M-GAN on grain shape recognition. Sample is shown to scale
in inverse pole figure (IPF) color. The IPF color indicates the orientation
for each individual voxel, and these orientations are used in the segmen-
tation process to identify individual grains, which are subsequently used
for training. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.5 Shapenet Output. The M-GAN network generates detailed shape in-
formation for a diverse range of 3D objects. As the network learns from
shape feature distributions, these objects are similar but not identical; such
as the different styles of chairs shown in the bottom row. The variation
within a class of generated objects that satisfies functional requirements is
applied to the generation of grains across different material and processing
classes as shown in Figure 5.1. . . . . . . . . . . . . . . . . . . . . . . . . 116

xviii



5.6 Visual comparison of grains. Sampling of grains from real and
generated sets are shown to verify visual similarity. Voxel size is 1.5 µm ×
1.5 µm × 1.5 µm. For generated grains, only largest connected component
is shown. Stochastic nature of grains means no directly matching shapes
are expected. Shape distributions are compared in Figure 5.7. . . . . . . 118

5.7 Quantitative evaluation of M-GAN grain generation: Moment
invariants (Ω1,Ω2,Ω3) are used to evaluate the similarity of real and gener-
ated shape distributions, as grains shapes are stochastic and correctness is
a matter of shape probability rather than object recognition. Histograms
are shown for both real (top) and generated (bottom) grain shapes. Ver-
tical lines indicate the mean. . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.8 BisQue module for MGAN. This module generates a 3D single grain
from a random noise vector. . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.9 Generated results for Rifle . . . . . . . . . . . . . . . . . . . . . . . . . . 126
5.10 Single Grains. Nearest Neighbor Results . . . . . . . . . . . . . . . . 127
5.11 ShapeNet Dataset. Nearest Neighbor Results . . . . . . . . . . . . . 128
5.12 ShapeNet Dataset. Nearest Neighbor Results . . . . . . . . . . . . . 129

6.1 Synthetic 3D Microstructure Generation Process: In our frame-
work, we want to generate 3D synthetic microstructure from given pro-
cessing parameters which satisfies certain physical properties. In the first
step, synthetic grains with crystal orientation information are generated
using generative models from given parameters. In the second step, grains
are encoded into latent space. In step 3, we learn optimal arrangement
of grains using large language models in latent space. In step 4, latent
spaces are decoded into grains and packed into a 3D volume to form 3D
microstructure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

xix



List of Tables

2.1 Description of File Structure of Ti-6Al-4V Microstructure
Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1 PSNR/SSIM Comparison for 4× Super-Resolution Scaling:
Physics-based loss consistently outperforms Bilinear, Bicubic, Nearest Neigh-
bor, and pure L1 loss with no physics, regardless of architecture. Rows
represent different loss functions and columns represent different network
architectures. Higher number is desired for both PSNR/SSIM. . . . . . . 47

3.2 PSNR/SSIM Comparison for 4× Algorithmic Scaling: PSNR/SSIM
values for bilinear, bicubic, and nearest neighbour are consistently lower
than network-based methods. . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3 Percentage of Single Pixel Features: Rows represent different loss
functions and columns represent different network architectures. Lower
values indicate better performance, with ground truth containing approxi-
mately 0.2% single pixel features. Physics based loss reduces noise, leading
to lower single-pixel feature counts. . . . . . . . . . . . . . . . . . . . . . 47

3.4 Percent Feature Difference Over Input: Rows represent different loss
functions and columns represent different network architectures. Lower
values indicate better performance. Physics-based loss reduces noise and
spurious features, which keeps the overall feature count closer to the
amount expected based on input. . . . . . . . . . . . . . . . . . . . . . . 50

3.5 PSNR/SSIM Comparison for 4× Super-Resolution Scaling across
different materials: Ti-6Al-4V, Ti-7Al 1%, and Ti-7Al 3% for HAN
Network: Physics-based loss consistently outperforms Bilinear, Bicubic,
Nearest Neighbor, and pure L1 loss with no physics, and Columns rep-
resent different Titanium datasets. Higher number is desired for both
PSNR/SSIM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

xx



4.1 PSNR: Comparison of PSNR of misorientation angle and com-
plexity for different networks for scale factors 2 and 4:
Columns represent number of trainable parameters and PSNR for differ-
ent titanium datasets. A larger number is desired for both PSNR. . . . . 81

4.2 PSNR/SSIM of IPF Maps: Comparison of PSNR/SSIM of IPF
Maps and complexity for different networks for scale fac-
tors 2 and 4: Columns represent number of trainable parameters and
PSNR/SSIM for different titanium datasets. A larger number is desired
for both PSNR/SSIM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.3 PSNR/SSIM of IPF Maps: Comparison of PSNR/SSIM of IPF
Maps with and without quaternion transformer for scale
factor 4: Columns represent PSNR/SSIM for different titanium datasets.
A larger number is desired for both PSNR/SSIM. . . . . . . . . . . . . . 85

5.1 Comparison of object-based performance for the ModelNet10 and Model-
Net40 datasets using the feature extraction approach described by [4]. . . 117

xxi



Chapter 1

Material Microstructure in

Process-Structure-Property

The quest for new materials is fundamental to scientific advancement and technological

innovation. However, the traditional process of materials discovery and development is

increasingly challenged by prohibitive time, labor, and capital demands. A particular

bottleneck lies in the painstaking pace of experimentation, especially for crystalline ma-

terials. This thesis seeks to enhance this landscape through a transformative approach

that leverages cutting-edge technologies and methodologies. Central to our transforma-

tive approach is the generating high-resolution microstructure data using physics based

super-resolution methods to improve the microstructure data collection and generation of

3D synthetic grains with the objective of microstructures generation using deep-learning

based generative models a strategy that holds immense promise for expediting the explo-

ration of the intricate process-structure-property (PSP) relationships. By harnessing the

power of high-fidelity 3D experimental microstructure datasets, we aim to forge an al-

ternative pathway that not only streamlines but also enhances the process of discovering

materials with specific and desired physical attributes.
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1.1 3D Microstructure Data

Towards this, we suggest employing the creation of high-resolution microstructure

datasets and 3D synthetic grain generation, fundamental components for producing 3D

microstructures, as a key strategy to accelerate the study of process-structure-property

(PSP) relationships. Central to our proposed effort is the integration of advanced tech-

nologies such as the TriBeam electron microscopy, an extensive repository of 3D material

structure datasets with cutting-edge physics-based deep neural networks. The proposed

methodology leverages state-of-the-art computational tools and deep learning algorithms

to create highly accurate and detailed high-resolution microstructure datasets. These

representations, borne from the integration of empirical data and advanced modeling

techniques, offer a more efficient and cost-effective means of predicting material behavior

and properties.

High resolution microstructure data is particularly attractive for tasks such as mod-

eling mechanical or electrical properties, predicting variability in these properties, and

characterizing rare and detrimental patterns of structure. However, existing statistically-

based microstructure generators [5, 6] face severe challenges related to generation speed

and their ability to faithfully capture and statistically represent material structure. The

recent development of rapid, high resolution 3D characterization techniques, combined

with deep learning [7–11], provides a new pathway for synthetic microstructure generation

through generative models, which have the potential to learn and produce the unique mi-

crostructures resulting from complex processing paths, at a reduced cost. The proposed

effort leverages the unique UCSB TriBeam library of 3D material structures to explore

this alternative deep learning design path with a cross-cutting team with expertise in

computer vision, deep learning, software infrastructure, 3D multimodal characterization

and materials design.
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Remarkable strides have been made in deep generative models [12, 13], particularly

in computer vision, where they have shown promise in understanding and interpreting

complex visual data. Critical to this progress is the availability of extensive, high-quality

datasets, for training these models. However, a notable challenge arises when it comes to

the collection of 3D microstructural information - acquiring this type of data is not only

more resource-intensive but also significantly more time-consuming compared to other

forms of 3D data acquisition. An advantageous aspect of microstructure data lies in its

intrinsic nature, where its formation and appearance are deeply rooted in fundamental

physical relationships at multiple spatial scales. These relationships can be effectively

harnessed and integrated into advanced generative models. Such integration not only

bolsters the realism and accuracy of the generated outputs but also presents a strategic

approach to addressing the challenges associated with data collection.

Our motivation for the methods presented in this dissertation comes from two material

science problems: High-Resolution microstructure data collection using Tri-beam and 3D

grain generation for creating synthetic 3D microstructure generation. Due to the physics

and multimodalities of microstructure of dataset, these problems differ from the common

computer vision problems that deal with natural images, and offer new opportunities for

research at the intersection of material science and machine learning.

1.2 High-Resolution 3D Microstructure Data Gen-

eration

Gathering 3D material microstructural information is time-consuming, expensive, and

energy-intensive. Acquisition of 3D data has been accelerated by developments in serial

sectioning instrument capabilities; however, for crystallographic information, the electron
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backscatter diffraction (EBSD) imaging modality remains rate limiting. We propose a

physics-based efficient deep learning framework to reduce the time and cost of collecting

3D EBSD maps.

In the first segment of this work, we have successfully developed the first known

super-resolution deep learning framework that operates on quaternion-based 3D crystal

orientation data. This framework establishes a broadly-applicable pipeline for the super-

resolution of microstructure data. It is particularly distinguished by its ability to generate

network outputs that adhere to established scientific conventions in material research.

Central to our framework is a physics-based rotational distance loss, leveraging crystal

symmetry. We demonstrate that this physics-based loss outperforms traditional loss

metrics such as L1 and conventional up-sampling algorithms, both qualitatively and

quantitatively, across a variety of network architectures.

The second part of the work introduces a novel approach: the Quaternion Residual

Block Self-Attention Network (QRBSA) paired with a physics-based loss function. This

design is aimed at generating high-resolution 3D EBSD maps from sparsely sectioned

EBSD maps. In QRBSA, quaternion-valued convolutions are adeptly employed to learn

local relationships within the orientation space. Concurrently, self-attention mechanisms

in the quaternion domain adeptly capture long-range correlations. We apply this frame-

work to 3D data sourced from commercially significant titanium alloys. The results show-

case, both qualitatively and quantitatively, our method’s efficacy in predicting missing

samples (EBSD information between sparsely sectioned mapping points) in comparison

to high-resolution ground truth 3D EBSD maps.

Both components of this work will be useful in reducing the time and cost associated

with microstructure data collection, particularly in settings utilizing Tri-beam setups.

This advancement not only streamlines the process but also opens up new possibilities

for efficient and accurate microstructural analysis.
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1.3 Single Grain Generation for Synthetic 3D Mi-

crostructure Generation

Another approach of improving the cost and time is to generate synthetic 3D mi-

crostructure using generative models. The success of deep generative models depends on

the availability of extensive, high-quality datasets for training these models. However, a

notable challenge arises when it comes to the collection of 3D microstructural informa-

tion - acquiring this type of data is not only more resource-intensive but also significantly

more time-consuming compared to other forms of 3D data acquisition. An advantageous

aspect of microstructure data lies in its intrinsic nature, where its formation and appear-

ance are deeply rooted in fundamental physical relationships at multiple spatial scales.

These relationships can be effectively harnessed and integrated into advanced generative

models. Such integration not only bolsters the realism and accuracy of the generated

outputs but also presents a strategic approach to addressing the challenges associated

with data collection.

3D microstructural data consists of voxels, each encoding crystal orientation data,

which are grouped into regions of similar orientations called grains. Beyond this, each

pixel carries local crystal structure and chemical composition information, ultimately re-

quiring multimodal information of disparate types for each pixel of a material. Generat-

ing individual grains with localized crystal orientations is less complex than synthesizing

complete 3D microstructures through generative models.

This work explores the problem of generating 3D synthetic grains using the generative

adversarial network (GAN). In this work, we propose a M-GAN network that is capable

of recognizing and synthesizing individual grains whose morphology conforms to a given

3D polycrystalline material microstructure. This Generative Adversarial Network (GAN)

architecture yields complex 3D objects from probabilistic latent space vectors with no
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additional information from 2D images. We show that this method performs comparably

or better than state-of-the-art on benchmark annotated 3D datasets, while also being

able to distinguish and generate objects that are not easily annotated, such as grain

morphologies. The value of our algorithm is demonstrated with analysis on experimental

real-world data, namely generating 3D grain structures found in a commercially relevant

wrought titanium alloy, which were validated through statistical shape comparison. This

framework lays the foundation for the recognition and synthesis of polycrystalline mate-

rial microstructures, which are used in additive manufacturing, aerospace, and structural

design applications.

1.4 Summary of Contributions

This thesis makes significant contributions to the field of physics-based machine learn-

ing, with a specific focus on Electron Backscatter Diffraction (EBSD) super-resolution

data. Our work on EBSD super-resolution includes developing an end-to-end deep learn-

ing training and inference framework specifically tailored for microstructure datasets.

This framework, designed to address the 2D super-resolution problem, represents an

innovative and effective approach to handling complex microstructural data. A key in-

novation in this research is the introduction of a physics-guided loss function for 2D

super-resolution of microstructure datasets. This approach integrates domain-specific

knowledge into the deep learning process, thereby enhancing the accuracy and relevance

of the super-resolution outcomes.

Extending the above, we designed a physics-based neural network using a quaternion

transformer network. This development is particularly noteworthy for its ability to gen-

erate 3D high-resolution microstructure datasets, demonstrating an advanced application

of deep learning techniques in three-dimensional microstructural analysis.
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Further, we present perhaps the first generative adversarial network (GAN) focused on

learning grain morphology. This development is crucial for understanding and replicating

the complex patterns found in granular materials. This innovative methodology opens

new avenues in the generating 3D synthetic microstructures.

To support the research communities in computer vision/AI and material science, the

method described above work has been developed into modules for BisQue [14](https:

//bisque2.ece.ucsb.edu/client_service/), a leading platform for bioimaging and

material science. This integration aims to simplify access to complex materials data,

removing obstacles related to data formats for computer vision/AI researchers. Simul-

taneously, it provides material scientists with advanced AI modules to enhance their

experimental capabilities. This effort is intended to foster collaboration and innovation

across disciplines by making cutting-edge tools more accessible to researchers.

1.5 Thesis Outline

In chapter 2, an overview of microstructure datasets is discussed. We introduce

different microstructure modalities, the dataset we use in the dissertation and tools for

visualization.

In chapter 3, we present a EBSD 2D super-resolution technique using a physics based

deep learning framework. This chapter discusses quaternion-based orientation recognition

loss functions that consider rotational effects and crystallographic symmetry, and an

inference pipeline to convert network output into established visualization formats for

EBSD maps. We apply this approach to EBSD data of a commercially relevant titanium

alloy, and demonstrate both quantitatively and qualitatively that the generated results

using physics-based loss are significantly better than those achieved using commonly

used L1 loss approaches or traditional upsampling algorithms such as bilinear, bicubic,
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and nearest neighbor. The ability to generate physically accurate, high-resolution EBSD

maps with super-resolution enables high throughput characterization and broadens the

capture capabilities for three-dimensional experimental EBSD datasets.

In chapter 4, we provide extension of 2D EBSD super-resolution to 3D EBSD super-

resolution using quaternion transformer network. We propose a physics-based efficient

deep learning framework to reduce the time and cost of collecting 3D EBSD maps. Our

framework uses a quaternion residual block self-attention network (QRBSA) to gener-

ate high-resolution 3D EBSD maps from sparsely sectioned EBSD maps. In QRBSA,

quaternion-valued convolution effectively learns local relations in orientation space, while

self-attention in the quaternion domain captures long-range correlations. We apply our

framework to 3D data collected from commercially relevant titanium alloys, showing both

qualitatively and quantitatively that our method can predict missing samples (EBSD in-

formation between sparsely sectioned mapping points) as compared to high-resolution

ground truth 3D EBSD maps.

In chapter 5, we present a Generative Adversarial Network (GAN) capable of pro-

ducing realistic microstructure morphology features and demonstrates its capabilities on

a dataset of crystalline titanium grain shapes. Alongside this, we present an approach

to train deep learning networks to understand material specific descriptor features, such

as grain shapes, based on existing conceptual relationships with established learning

spaces, such as functional object shapes. A style-based GAN with Wasserstein loss,

called M-GAN, was first trained to recognize distributions of morphology features from

function objects in the ShapeNet dataset, and was then applied to grain morphologies

from a 3D crystallographic dataset of Ti-6Al-4V. Evaluation of feature recognition on

objects showed comparable or better performance than state-of-the-art voxel-based net-

work approaches. When applied to experimental data, M-GAN generated realistic grain

morphologies comparable to those seen in Ti-6Al-4V. A quantitative comparison of mo-
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ment invariant distributions showed that the generated grains were similar in shape and

structure to the ground truth, but scale invariance learned from object recognition led

to difficulty in distinguishing between the physical features of small grains and spatial

resolution artifacts. The physical implications of M-GAN’s learning capabilities are dis-

cussed, as well as the extensibility of this approach to other material characteristics

related to grain morphology.

In the concluding chapter 6, we summarize the key contributions and discuss po-

tential avenues for future work that can build upon the foundations established in this

research. Generating individual grains with localized crystal orientations is a first step

in synthesizing complete 3D microstructures through generative models. However, we

require an advanced algorithm capable of constructing a continuous 3D synthetic mi-

crostructure from these grains, while adhering to the governing physical principles of

grain boundary interactions, which combined with material processing steps, contribute

to the grain morphology. In future work, we discuss how large language models can be

used to construct 3D microstructure from single grains.

9



Chapter 2

Microstructure Datasets

In this chapter, we delve into the intricacies of microstructure datasets, exploring their

various applications and the methodologies employed in their collection. We also address

the challenges inherent in gathering such datasets, shedding light on the complexities

and nuances involved in this process. This chapter is divided into the four subsections.

1. Introduction to Microstructure Datasets: This subsection contains a brief overview

of microstructure datasets, elucidating their significance and widespread applica-

tions. A detailed examination of the techniques and strategies employed in the

collection of microstructure datasets are discussed. We also discuss an in-depth

analysis of the challenges faced during the collection of microstructure datasets.

2. Microstructure Dataset Representation: A detailed explanation of microstructure

dataset representation in orientation space, and its properties such as symmetry

space, fundamental zone and visualization of microstrcuture are discussed in this

subsection.

3. Titanium Microstructure Dataset: We discuss the details of Titanium microstruc-

ture dataset such as Ti-6Al-4V and Ti-7Al dataset, which are strained plastically
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to 1% and 3%. These datasets are commonly used in aerospace applications.

4. Accessing 3D Microstructure Dataset on BisQue: We have provided Ti-6Al-4V

dataset that are openly accessible at BisQue [14, 15], a open source web based

cloud infrastructure.

5. Conclusions of this chapter.

The contents of this chapter are from our published paper [15].

2.1 Microstructure Dataset

Most materials used for engineering applications are composed of an arrangement of

elemental constituents into crystalline phases, which control the properties of that ma-

terial. The arrangement of these crystals (also known as grains) is referred to as the

microstructure, and is described using metrics that capture the size, arrangement, con-

nectivity, and crystallographic orientation of the grains. Efficiently obtaining sufficient

microstructure information to predict material properties is crucial to the development

of new material composition and processing paths, especially for use inextreme environ-

ments. For both material and component design, 3D microstructure data plays a critical

role in property prediction by informing the connectivity of grains and crystalline phases

and characteristics of their interfaces for a broad range of applications, from biomedical

to aerospace [16].

Collection Methods: Electron Back Scatter Diffraction (EBSD) [17] is a widely

used scanning electron microscopy (SEM) technique that images a material surface and

collects microstructure data that contains crystal orientation information. Microstructure

data describes the arrangement of crystalline structures in a material, where “crystalline”

refers to a collection of atoms exhibiting long-range order. For crystalline materials, the
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Figure 2.1: TriBeam Microscope: 3D microstructure datasets are obtained during
a serial sectioning experiment. The TriBeam is so named due to the presence of
three beams: the electron, focused ion, and laser. The electron beam is used to
gather diffraction patterns, whereas the laser beam is used to ablate the materials,
layer-by-layer. The ion beam can be used clean the laser ablated surface in damage
sensitive materials, if necessary.

arrangement of atoms significantly influences several material properties including yield

strength, ductility, and fatigue resistance. Light optical microscopy and the resulting

RGB images have inadequate resolution to image atoms or to evaluate atomic arrange-

ment. Therefore, we rely on X-ray or electron diffraction for understanding the arrange-

ment. During EBSD, a material is imaged one pixel at a time using a SEM, and electrons

are diffracted from the atoms in the crystal according to Bragg’s law. These diffracted

electrons are collected on a detector producing a pattern called Kikuchi bands, which

are indexed into crystal orientations to extract information about crystallographic ar-
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Figure 2.2: Microstructure Data Collection Process: Material researchers
collect Kikuchi diffraction patterns for each (x, y, z) coordinate of materials with the
given step sizes (sx, sy, sz) in (x, y, z) axis. The Kikuchi diffraction patterns are then
indexed to determine the crystal orientation at each point. This information about
crystal orientation is useful for predicting material properties. The inverse Pole Figure
(IPF) technique is used to visualize the 3D crystal orientation.

rangement. There are several techniques for determining the crystal’s orientation from a

Kikuchi pattern, including mathematical approximations of band locations using Hough

or Radon transforms [18,19], dictionary-based spherical cross-correlation approaches that

leverage simulations of the electron-materials interactions [20,21], and network-based ap-

proaches [22]. The resultant data during EBSD is a diffraction pattern at each pixel in

an image, which is indexed (mapped) into a crystal orientation represented as a vector

(e.g. quaternion, Euler angle).

Challenges: One of the limitations of both light optical microscopy and EBSD

is that they can only gather 2D images of materials that are fundamentally 3D. For

both material and component design, 3D microstructure data plays a critical role in

property prediction by informing the connectivity of grains and crystalline phases and

characteristics of their interfaces for a broad range of applications, from biomedical to

aerospace [16]. As a result, 3D microscopy techniques, like the TriBeam depicted in

Figure 2.1, have been developed for this purpose. The TriBeam microscope is used to

remove material in a layer-by-layer fashion from the sample using a femtosecond pulse
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laser, capturing images at the surface of each slice using an electron beam and a suite of

detectors [23]. These slices are then aligned, indexed, and assembled into a 3D volume

following the pipeline process shown in Figure 2.2. The TriBeam method has made 3D

microstructure collection more accessible [23,24], but even with enhancements in detector

speeds and laser material removal rates, gathering this information remains expensive,

energy-intensive, and time-consuming.

2.2 Microstructure Dataset Representation

The crystal orientations embedded in this microstructural information differ from

the information in conventional light optical images, and are critical for developing and

designing materials for a range of applications. The microstructure contains 3D crystal

orientation information at each voxel, and 3D orientation can be represented in multiple

ways, as discussed below.

2.2.1 Orientation Representation

The orientation of a 3D point can be represented in many ways, including Euler

angles, rotation matrices, quaternions, axis-angle pairs, and Rodrigues vectors. Each

orientation representation has distinct advantages and disadvantages in terms of ease of

use for different calculations and data visualization, and there are packages available to

readily convert between them [25,26]. Within these possible representations, quaternions

are frequently used to avoid ambiguity in 3D rotations (gimbal lock) in tasks like soft-

ware graphics, computer vision, and robotics. It has been demonstrated that quaternion

representation is mathematically robust for crystal orientation representation and allows

for easy application of symmetry operators between different crystal systems.

Rotation Matrices: Rotation matrices rotate a vector in 3 dimensions as a multi-
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plication by a 3 × 3 matrix. With 3 degrees of freedom in a rotation, and 9 elements in

the matrix, additional constraints need to be enforced on the matrix to make it a valid

rotation. The rows must all be unit magnitude, mutually orthogonal, and the whole

matrix must have a determinant of 1. Rotation matrices were not selected for this work

as enforcement of these constraints would become difficult in a deep learning network.

However, it should be noted that the composition of matrix rotations can be represented

as a simple matrix multiplication.

Euler angles: Any arbitrary 3D rotation can be decomposed into three successive

rotations around the coordinate axes. These angles can be defined as either extrinsic

(rotations done using a fixed reference axis) or intrinsic (rotations done about and axis

that is attached to the rotating body). Since there are three independent axes, denoted

xyz, there are several possibilities for the decomposition across both extrinsic and in-

trinsic approaches, but here we will consider intrinsic only. By definition, intrinsic Euler

angles must have matching first and third rotation axes, which, when applied across all

possible xyz combinations, results in a total of six conventions for intrinsic angle repre-

sentation. Here, we will be using Bunge convention, which has axis triple zxz with the

corresponding rotation angles (ϕ1,Φ, ϕ2) (applied from left to right).

For Euler angles, there exists a fundamental ambiguity when expressing rotations

that occur along coincident planes based on convention definition. For example, in Bunge

convention, there is ambiguity associated with distinguishing between a z00 and a 00z

rotation, regardless of crystal system. This ambiguity is commonly referred to as gimbal

lock, and is seen in a wide variety of applications beyond crystal representation. The

presence of gimbal lock makes Euler angles a less desirable choice as a network learning

space, and is the reason we have chosen quaternion representation.

Quaternions: A quaternion q is a four component number of the form q = q0 + iq1 +

jq2 + kq3, where imaginary units (i, j, k) satisfy the following relationship:
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i2 = j2 = k2 = ijk = −1 (2.1)

Unit quaternions can always be written in the form

q = cos
ω

2
+ sin

ω

2
(c1i + c2j + c3k) (2.2)

where ci are the directions cosines of the rotation axis unit vector n̂. Unit quaternions

are located on the sphere S3 inside the 4D quaternion space. The 3D surface area of this

sphere is equal to 2π2. The unit quaternion q and −q represent the same rotation, so all

rotations can be represented by selecting the entire northern (q0 ≥ 0) hemisphere, which

has surface area of π2

Quaternion representation is preferable due to its simplicity in computing orienta-

tion differences (misorienation) and the ease of enforcing constraints for a valid unit

quaternion rotation. Furthermore, the only redundancy in quaternion representation

is that q = −q, which is computationally trivial to address. The efficiency and lack

of ambiguity in quaternion representations also make them well-suited to orientation ex-

pression in neural networks, both for loss functions [27] and network layer design [28]. We

chose quaternions over other rotation representations for several reasons. The first is the

ease in computing misorientation, which is the rotation operation which will transform

one orientation into another. This misorientation can be computed using a quaternion

multiplication. The second is the simplicity in enforcing the constraints to make a 4

dimensional vector a valid quaternion rotation. Here, it is only required that the vector

be of unit magnitude.

Homochoric and Cubochoric Coordinates: Homochoric coordinates are a re-
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duction of the quaternion representation space designed for a clearer visualization of

material texture that avoids redundancies. In homochoric space, the northern hemi-

sphere of quaternion space is projected onto a sphere in R3, which removes quaternion

redundancy. Cubochoric space further expands on this by transforming the homochoric

sphere into an equal-volume cube, creating an orthogonal, equal-unit-area space for rep-

resentation of material texture. Both of these approaches are discussed in more detail

in [25, 29].

Axis-Angle Pairs: Axis angle pairs are a rotation description where the the orien-

tation of an object with respect to a reference frame is represented by a rotation of a

set magnitude θ and a unit vector axis k about which the rotation is made. For a given

axis angle pair, (θ,k), the value a rotated vector v′ can be determined from the reference

vector v using Rodrigues rotation formula.

v′ = v cos θ + (k× v) sin θ + k (k • v) (1 − cos θ) (2.3)

This approach can also be used with basis vectors to determine rotation matrices for

various coordinate spaces.

Rodriguies Vectors: Rodrigues parameterization is a mathematically intuitive vec-

tor representation for orientations and rotational operations that take a form similar to

axis-angle pairs. A given Rodrigues vector r takes the form:

r = k tan

(
θ

2

)
(2.4)

Where θ is the rotation angle, and k is the axis of rotation, similar to axis angle pairs.

Many different orientation relationships can be intuitively expressed in Rodrigues space,

but because vector magnitude is scaled based on a nonlinear rotational relationship, many
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traditional vector operations are not conserved in their classical forms, so care must be

taken to perform vector addition and multiplication correctly. Additional derivations and

relationships of Rodrigues space are discussed in [30].

Grains: Grains are the region in microstructure that have similar crystal orientation.

Polycrystalline materials like Ti-6Al-4V consist of a large number of subdomains called

grains, which are visible as regions of relatively uniform crystallographic orientation (uni-

form color) in Figure 2.3.

2.2.2 Symmetry Space

Optically-gathered images commonly used in computer vision tasks encode color and

intensity information as scalars at each pixel. On the other hand, crystallographic data

encodes orientations as vector-based rotations relative to a chosen reference frame. The

range of possible unique crystal rotations is constrained by the symmetry of the crys-

tal, such as body centered cubic (BCC), face centered cubic (FCC), or hexagonal close

packed (HCP). Symmetry has a disruptive impact on learning with standard loss func-

tions (L-norms) because symmetry planes create duplicates and discontinuities in rotation

distance measurement. Multiple-defined rotations are avoided through the fundamental

zone convention, which is defined as the polyhedron in Rodrigues space that encompasses

all angles whose distance is closer to the 0 rotation than to any symmetric equivalent of

the 0 rotation [30]. The Ti-6Al-4V, Ti-7Al 1%, and Ti-7Al 3% microstructure datasets

released here is an HCP material (space group 194, point group 6/mmm), so it has a

total of 24 symmetry operators, of which only 12 do not involve a change of handedness.
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Figure 2.3: Inverse Pole Figure (IPF) map of Ti-6Al-4V-equiaxed Mi-
crostructure Dataset: The color represents the orientation of crystal. Each grain
of the same color has a nearly identical crystallographic orientation. Rolling direction
(RD), transverse direction (TD) and normal direction (ND) reference arrows are also
shown. IPF coloring is referenced to the TD.

2.2.3 Fundamental Zone Reduction

Given the symmetric nature of crystals, there are often many rotations which can

represent a single crystal structure. The group of rotations depend upon the type of

crystal structure of the material. Given the many equivalent rotations, fundamental

zone reduction chooses the rotation which has the smallest rotation angle.

This idea of a minimum possible rotation can be formalized mathematically. In

Rodrigues space, it is intuitive to describe a minimum unique region that fully encloses

all possible orientations for vectors following the constraints of a given symmetry group.

This space is known as the fundamental zone, and it can intuitively be thought of as
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the minimum range of rotation space needed to describe all possible orientations of a

crystal when accounting for symmetry. The formal definition of the fundamental zone,

as described by [30] is:
N⋂
i=2

{
r; tan

(
θi
4

)
± r • li ≥ 0

}
(2.5)

where li and θi are the unit vector and rotation angle for the ith element of the symmetry

group. r represents a rotation by an angle ω about an axis given by vector n. N is order

of the group, and the identity is assumed to correspond to i = 1. Fortunately, the

relationship between quaternion and Rodrigues space allows for this calculation to be

done rather straightforwardly directly on quaternions. In quaternion space, the formal

definition described by [30] can be found by expanding all quaternions based on the

rotations in the symmetry group and then reducing to only the quaternions with the

largest positive scalar value within the expanded group.

2.2.4 Visualization of Crystal Orientations

When orientation data is produced, real or synthetic, a means of visualization is

required, which is challenging, since many orientation representations (quaternion, ro-

tation matrix, Rodrigues vector) do not directly translate into common image formats.

The most direct option is to convert orientation output into a 3-channel form and map it

directly to a color scheme (RGB, HSV, YUV), but the presence of symmetry means small

orientation changes often result in large changes in color scale in this type of mapping,

which can create the appearance of noise even when data is correct. For this reason, the

Inverse Pole Figure (IPF) color scheme was designed, which stereographically projects

the fundamental zone into 2D and maps a uniform RGB gradient onto it. An IPF legend

for HCP is shown in the bottom right of Figure 2.3, and details of projection and color

pattern choice are discussed in [17, 20, 31]. Note that even though this output is intu-
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itive to visualize, it is a projection that is fundamentally ambiguous and not information

preserving, so no learning or inference should be done on IPF images, as they cannot be

converted back into orientations.

2.3 Titanium Microstructure

Figure 2.4: Rendering of 3D EBSD dataset Investigated: shown in IPF col-
oring of the titanium alloys, (a) Ti-6Al-4V and (b) Ti-7Al mechanically loaded in
tension to 1% strain and (c) 3%, used for network training, testing and validation.
Dataset details are available elsewhere [1, 2].

The microstructure datasets of titanium alloys such as Ti-6Al-4V and Ti-7Al are

illustrated in Figure 2.4. These alloys are commonly used in aerospace applications.

The ground truth data is experimental 3D microstructure (EBSD) data gathered

from the titanium alloys, Ti-6Al-4V and Ti-7Al (one Ti-7Al sample deformed in tension

to 1% and one to 3%), using a commercially-available rapid-serial-sectioning electron

microscope known as the Tribeam [32, 33]. The Ti-6Al-4V dataset, shown in Figure

2.4(a), is of pixel size 346 × 142 × 471 × 4 (z × y × x × ch), where the last dimension

is the quaternion component. Analogously, the Ti-7Al shown in 2.4(b) and 2.4(c) are of

size 232× 674× 770× 4 (z× y× x× ch) and 224× 770× 770× 4 (z× y× x× ch) pixels
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respectively, with all edges cropped to produce a perfect parallelpiped volume. Each

voxel in the Ti-6Al-4V set has resolution of 1.5 × 1.5 × 1.5µm, and in both Ti-7Al sets,

each voxel has a resolution of 1.3 × 1.3 × 1.3µm.

These titanium alloys are composed primarily of the hexagonal close packed grains.

The EBSD ground truth data was indexed using a combination of EMsoft dictionary

indexing (Ti-7Al 1% and 3%) [20] or spherical indexing (Ti-6AL-4V) [21] for improved

indexing accuracy beyond conventional Hough transform indexing. Experimental data

was cleaned using a minimum size filter of 27 voxels in volume and a minimum feature

neighbor filter of 2 neighbors per grain (applied using DREAM.3D [6]) to eliminate grains

that were insufficiently or inaccurately resolved by the 3D characterization technique.

In total, the Ti-6Al-4V dataset contains about 57,000 grains, visible in the IPF maps

as regions of different color. The Ti-7Al material has larger grain size, with 500-1000

grains in each dataset.

2.4 Accessing Microstructure Dataset on BisQue

In this section, the details of Ti-6Al-4V equiaxed microstructure dataset, available on

BisQue [14, 15], are discussed. The physical dimension of the Ti-6Al-4V microstructure

sample is 190 × 241 × 106 micrometers. In voxel-based representation, this 3D volume

expands to 318 × 377 × 121 voxels, where each voxel contains information about the

crystal orientation. All the relevant information for designing machine learning mod-

els relevant to this dataset is stored in DataContainers/ImageDataContainer/CellData,

as shown in the Figure 2.5. Each grain in the dataset is composed of a collection of

neighboring voxels that have similar crystal orientations. In the dataset itself, each grain

is labeled with a unique positive integer value, termed a feature ID, that is randomly

assigned, starting at 1 (the integer value 0 is typically reserved for any void regions cap-
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Figure 2.5: Ti-6Al-4V Microstructure Dataset on BisQue: Ti-6Al-4V 3D
microstructure datasets can be accessed on our open source web-based architecture
”BisQue”. The microstructure datasets are saved as hdf/dream3d format and can
visualized using ”IPFColor” field. The crystal orientations at each voxel is saved
in ”EulerAngles” and ”Quaternions” fields. ”FeatureIds” field shows the location of
grains, and each grain has a distinct feature id.

tured in the dataset). There are a total of 8893 single grains in the 318 × 377 × 121

volume in voxel space, and of those, 6645 grains are completely captured such that they

do not come into contact with the edge of the collection volume. Separating fully cap-

tured grains from edge grains is not usually necessary for voxel-based vision tasks, but

is important for morphological studies where flat surfaces created by sample edges can

lead to bias. The exact number of datapoints in the dataset will vary depending on the

features of interest being studied. Any voxel level information will be stored in an array

of 318 × 377 × 121 × [array depth]. Quaternion information, for example, is collected at

the voxel level, so the array of quaternions in this dataset is of size 318 × 377 × 121 × 4.

However, there is also information that can be collected at the grain level (also referred

to as feature level), such as the average orientation in each grain, or the volume of each

grain. Values like these would be stored as a list, with the value for a given grain stored

at the list index that matches its integer feature ID.
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The EBSD dataset presented in this work was processed using Dream3D [6], so the

structure of the set follows the HDF5 architecture and nomenclature conventions used

for Dream3D files. Files with the .dream3d extension are directly compatible with appli-

cations and packages used for HDF files (e.g. the HDF View software package or h5py

in Python), so these can readily be used to extract individual variables from the file for

independent manipulation. The file structure can also be visualized directly within the

web-based BisQue infrastructure for convenience. A visualization of the file directory

from BisQue can be see in Figure 2.6, and a breakdown of variable definitions is available

in Table 2.1.

Figure 2.6: File Structure of Ti-6Al-4V Microstructure Dataset on BisQue .
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CellData

AverageEulers The average Euler angle for each voxel’s corresponding grain (See AvgEulers).

Confidence Index The confidence value for the Hough Transform indexing used to determine orientation.

Euler Angles Crystal orientation at each voxel using Bunge Euler angle representation.

FeatureIDs Integer identifier values for each grain. Void is feature 0. Others assigned randomly.

Fit Comparative quality metric between the indexed orientation and Hough transform (in degrees).

IPFColor RGB color mapping of crystal orientation using IPF projection

IPFColorAvg IPF projection mapping where each grain is colored by average orientation.

Image Quality Image quality metric. Larger values indicate better quality.

Mask Mask indicating regions of void. Void = 0, Solid = 1 (note: dataset contains no void).

Misorientation Color RGB color representation for relative misorientation, developed by [34].

Phases Voxel level numerical phase map. 1 = HCP α phase. 2 = BCC β phase.

Quaternions Crystal orientation at each voxel using quaternion representation.

SEM Signal Dataframe for storing equivalent SEM signal. Dataset is purely EBSD, so this is empty.

X Position The x-position of each voxel in the volume

Y Position The y-position of each voxel in the volume.

CellEnsembleData

CrystalStructures Dream3D internal value. Numerical labels for void, α, and β crystal structures.

LatticeConstants Lattice constants for associated labels in CrystalStructures

MaterialName String name labels for phases in CrystalStructures and LatticeConstants.

CellFeatureData

Active Internal label indicating which features are captured within the current dataset.

AvgEulers Average Euler angle orientation of each grain feature.

AvgQuats Average quaternion orientation of each grain feature.

Centroids Centroid of each grain in physical space (see SIMPL Geometry).

EquivalentDiameters Diameter in µm of each grain if it were approximated as a sphere of equivalent volume.

NumCells Number of voxels in each grain feature.

NumNeighbors Number of adjacent feature neighbors for each grain.

Volumes The volume of each grain in µm3

SIMPL Geometry

Dimensions Size of the dataset in voxels.

Origin Location of the physical space origin in in µm.

Spacing Physical x, y, and z size of each voxel in µm

Table 2.1: Description of File Structure of Ti-6Al-4V Microstructure Dataset
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2.5 Dream 3D Pipeline

The following pipeline has been used to construct these datasets. The details about

the pipeline steps are available at https://bit.ly/Ti6Al4Vmicrostructure

Read H5EBSD File → Threshold objects → Convert Orientation Representation →

Align Sections → Segment Features → Find Feature Size → Minimum Size → Find Fea-

ture Neighbors → Minimum Number of Neighbors → Find Feature Average Orientations

→ Fill bad data → Generate IPF Colors → Generate Misorientation Colors → Create

Element Array from Feature Array → Generate IPF Colors → Find Feature Centroids

→ Crop Geometry (Image) → Write DREAM.3D Data File

2.6 Conclusion

In this chapter, we provide an overview of microstructure datasets, examining their

acquisition and diverse applications. Additionally, we discuss the inherent challenges

associated with collecting such datasets. We have made the Ti-6Al-4V equiaxed mi-

crostructure dataset available on the BisQue platform, offering a valuable resource to

researchers and practitioners in the field.
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Chapter 3

Adaptable Physics-based

Super-resolution for Electron

Backscatter Diffraction Maps

In this chapter, we delve into enhancing the resolution of 2D microstructure datasets

through the application of physics-informed machine learning. Building upon the pre-

vious chapter, where we explored the challenges of acquiring high-resolution experi-

mental 3D microstructures—namely the significant investment of time and financial re-

sources—this section shifts focus to a pivotal question: Is it possible to employ a physics-

guided machine learning approach to refine the resolution of microstructure datasets?

In computer vision, single image super-resolution (SISR) has been extensively ex-

plored using convolutional neural networks (CNNs) on optical images, but images outside

this domain, such as those from scientific experiments, are not well investigated. Exper-

imental data is often gathered using non-optical methods, which alters the metrics for

image quality. One such example is electron backscatter diffraction (EBSD), a materials

characterization technique that maps crystal arrangement in solid materials, which pro-
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vides insight into processing, structure, and property relationships. We present a broadly

adaptable approach for applying state-of-art SISR networks to generate super-resolved

EBSD orientation maps. This approach includes quaternion-based orientation recogni-

tion loss functions that consider rotational effects and crystallographic symmetry, and

an inference pipeline to convert network output into established visualization formats for

EBSD maps. The ability to generate physically accurate, high-resolution EBSD maps

with super-resolution enables high throughput characterization and broadens the capture

capabilities for three-dimensional experimental EBSD datasets.

To address this, we have developed a novel framework incorporating a physics-based

loss function. This approach has been rigorously tested across various network archi-

tectures to facilitate the transformation of low-resolution datasets into high-resolution

Electron Backscatter Diffraction (EBSD) datasets. The following segments of this chap-

ter are dedicated to presenting the methodology, experimental setup, and the results of

these endeavors, providing insights into the efficacy and potential of physics-informed

machine learning in enhancing microstructural data resolution. The contents of this

chapter are discussed in our published paper [27].

3.1 Introduction

The term image super-resolution is used to describe methods designed to infer high-

resolution (HR) image output from low-resolution (LR) input. Since their development,

super-resolution methods have been used in applications such as surveillance and security,

biometric information identification, remote sensing, astronomy, and medical imaging

[35]. Generally, these algorithms can be categorized into three groups based on the

information available during training: a) supervised, which have paired LR-HR images

during training, b) semi-supervised, where no LR-HR image pairing is available, and
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c) unsupervised, where no ground truth HR is available. Recently, because of their

superior performance to traditional methods, various supervised deep CNN architectures

using recursive residual blocks [36,37], residual connections, and attention-based modules

[38–41] have seen significant use in super-resolution applications.

The approaches for different super-resolution methods vary, but they all share the

common goal of producing high-resolution image output that is a clear representation

of the low-resolution input in the context of both image content and visual fidelity.

Generally, evaluation metrics are centered around the idea that the output image is

the product of intensity-based visible-light photography, where the goal is to represent

what is seen with the human eye. But for scientific image applications, this idea is

often incorrect, since many experimental methods construct images or image maps using

electromagnetic information gathered from outside the visible light range (e.g. X-rays,

infrared information), or even not from light at all (e.g. electrons, neutrons), which means

the ideas of sharpness and visual clarity have very different meanings. One such example,

electron backscatter diffraction (EBSD), used for characterization of crystalline materials,

relies on electron diffraction to build maps of material crystallographic information.

3.1.1 EBSD Imaging

EBSD is a scanning electron microscopy technique that maps crystal lattice orienta-

tion by analyzing Kikuchi diffraction patterns that are formed when a focused electron

beam is scattered by the atomic crystal structure of a material according to Bragg’s law.

A grid of Kikuchi patterns is collected by scanning the electron beam across the sam-

ple surface. These patterns are then indexed to form a grid of orientations, which are

commonly represented as images in RGB color space using inverse pole figure (IPF) pro-

jections. EBSD datasets are used to determine microstructural properties of materials
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such as texture, orientation gradients, phase distributions, and point-to-point orientation

correlations, all of which are critical for understanding material performance [42]. Fur-

thermore, the fact that EBSD datasets are maps rather than just images changes both

the notion of image quality and the motivation for super-resolution methods.

EBSD has two types of resolution: the accuracy with which the EBSD pattern col-

lected at each pixel can be indexed into a crystallographic orientation, and the spacing

between pixels in a given mapping. During EBSD mapping, the electron beam must

dwell at each point long enough to form a high quality Kikuchi pattern, which is then in-

dexed into a given crystallographic orientation [43–45]. The indexing problem has many

salient issues associated with it, among them the differentiation of matrix and precipi-

tate phases, the identification of local strain effects, and the decoupling of overlapping

diffraction patterns at grain boundaries. While accurate indexing is critical to EBSD,

it is an independent challenge unrelated to super-resolution, as each indexing problem

is treated as having no correlation with its neighbors. The lack of assumed spatial cor-

relation separates indexing from other pixel-based problems and makes it ill-suited for

SISR. Therefore, the issues associated with indexing accuracy described above are not

addressed here. Instead, we consider the improvement of spatial resolution, which, in

experiment, equates to collecting a higher density of data points during mapping. This

requirement can lead to long mapping times or force the choice to use a coarser resolu-

tion mapping grid for expediency. The necessity to reduce EBSD collection time becomes

even more critical when performing many scans during serial sectioning 3D EBSD mea-

surements [33], where material is removed layer-by-layer with 2D maps collected at each

slice, and then stacked into a 3D dataset. In almost all serial sectioning experiments, the

minimum slicing thickness/resolution is much lower than the achievable in-plane imag-

ing resolution, creating anisotropic voxels. Furthermore, poor electrically conductive

materials become electrostatically charged by the beam or degrade from beam exposure
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(e.g. bio materials, polymers), requiring extremely short exposure times and resulting in

Kikuchi patterns with weak contrast.

As the demand for greater volume and more detailed resolution material informa-

tion grows, so too does the demand and expense of EBSD mapping. Spatial resolution

in EBSD is of particular interest in the characterization of deformed materials and ad-

ditive manufacturing [46], where subgrain misorientation gradients are used to quantify

local plastic deformation effects and geometrically necessary dislocation densities [47–49].

In efforts to improve EBSD resolution and quality, simulations and experimental stud-

ies [50–54] have shown that lowering the electron beam accelerating voltage can signif-

icantly improve the spatial resolution of EBSD maps, but map quality and achievable

resolution vary with differing materials and imaging conditions. To improve indexing

accuracy, multiple algorithmic approaches have been developed for better Kikuchi pat-

tern mapping [20,21], which improves both the precision and accuracy of the orientations

shown at each pixel. Machine learning approaches have also been used to accelerate sev-

eral tasks in the EBSD map construction process, including Kikuchi pattern indexing [22],

classification [55], and crystal identification [56]. Recently, a residual based neural net-

work with traditional L1 loss (ResNet) was used to produce super-resolved EBSD maps

from inverse pole figure (IPF) color and Euler angles as an image input [57]. The desire

to accelerate and improve the EBSD mapping process has motivated a wide array of

machine learning approaches, but many challenges still exist. One of the most prominent

of these is that orientation space is discontinuous and repeating, and the fundamental

shape of orientation space changes with the symmetries of the crystal being observed.

This makes brute-force network learning with traditional methods highly dependent on

the available data for training, and, depending on the orientation, small variations in

accuracy can produce dramatically incorrect results.

Given these challenges, we present an adaptable framework for neural-network-based
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super-resolution of EBSD maps, where all network learning is built around the physics of

crystal orientation symmetry. We define a physics-based loss that accounts for crystallo-

graphic symmetries, which is used alongside either a traditional L1 loss metric or a loss

based directly on rotational arc lengths, which correspond to conventional misorientation

measurements in crystallography. All super-resolution is done on crystal orientation data

expressed as quaternions, meaning each pixel in a given map contains four channels. Us-

ing quaternion space allows for complete representation of orientation space, enabling a

training approach that is translatable across all 230 crystallographic space groups. As a

proof of concept, four state-of-the-art residual and channel-attention networks are used to

generate high-resolution EBSD maps from low-resolution input using this physics-based

approach. We demonstrate that regardless of network choice, physics-based approaches

outperform traditional approaches both qualitatively and quantitatively. This approach

has direct application to experimental EBSD measurements of electron beam-sensitive or

poor-conducting materials where charge buildup and extended beam exposure are limit-

ing factors, and for 3D EBSD data collection where high out-of-plane imaging resolution

is costly. We expect EBSD-SR to accelerate EBSD mapping for defect detection and fast

screening of microstructure configurations that limit material properties.

3.2 Method

In this section, we begin by exploring the representation of datasets in orientation

space, along with the preprocessing applied to both ground truth and low-resolution

Electron Backscatter Diffraction (EBSD) maps. Subsequently, we delve into the specifics

of the network architecture, including details on loss functions, the inference pipeline,

implementation details of the network and hyper-parameters, and the methodology for

evaluating outputs.
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3.2.1 Orientation Representation

The focus of this investigation centers on orientation vector maps that describe crys-

talline domains which are fundamentally anisotropic and periodic in nature. Orientations

for each pixel within the network learning environment are expressed in terms of quater-

nions of the form q = q0 + îq1 + ĵq2 + k̂q3. For orientation representation, quaternions

are beneficial due to their lack of ambiguity with respect to orientation representation

and crystal symmetry. To avoid redundancy in quaternion space (between q and −q),

all orientations are expressed with their scalar q0 as positive. For visualization according

to established conventions, quaternions are reduced to the Rodrigues space fundamental

zone based on space group symmetry, converted into Euler angles, and projected using

inverse pole figure (IPF) projection using the open-source Dream3D software [6].

3.2.2 Data Preprocessing

High-Resolution (HR) Ground Truth: The ground truth data is experimen-

tal 3D EBSD data gathered from two titanium alloys, Ti-6Al-4V and Ti-7Al, using a

commercially-available rapid-serial-sectioning electron microscope known as the Tribeam

[32,33]. The Ti-6Al-4V dataset, shown in Figure 3.5(a), is of pixel size 346×142×471×4,

where the last dimension is the quaternion component. Analogously, the Ti-7Al shown

in Figure 3.5(b) and 3.5(c) are of size 770× 674× 132× 4 and 770× 770× 224× 4 pixels

respectively, with all edges cropped to produce a perfect parallelpiped volume. Each

voxel in the Ti-6Al-4V set has resolution of 1.5 × 1.5 × 1.5µm, and in both Ti-7Al sets,

each voxel has a resolution of 1.3 × 1.3 × 1.3µm.

These titanium alloys are composed primarily of the hexagonal close packed grains.

In total, the Ti-6Al-4V dataset contains about 57,000 grains, visible in the IPF maps

as regions of different color. The Ti-7Al material has larger grain size, with 500-1000
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grains in each dataset. The datasets were proportionally divided into training, validation,

and test subsets in ratios of 65%, 15%, and 20% respectively. The sample volume was

sectioned such that each subset contains an equivalent fraction of orthogonal images from

each face of the sample to avoid any bias due to material anisotropy. During training,

each volume was broken into two-dimensional patches of size 64 × 64 pixels.

Low-Resolution (LR) Input: In the context of EBSD maps, we do not employ

blurring filters as is commonly practiced with images. This is due to the nature of

collecting diffraction patterns at each point using an electron beam, which does not

interact with adjacent pixels. Consequently, instead of applying a blurring filter before

downsampling, we simply remove rows and columns with a downscale factor to reflect

how EBSD resolution would be reduced in actual experiments. This is done to imitate the

beam raster steps that would occur in an EBSD experiment with lower resolution, where

a lower resolution would not influence the electron beam-material interaction volume at

each pixel, but rather lead to greater raster distance between consecutive pixels of the

same size.

To find the maximum downsampling factor, we have computed the maximum fre-

quency component of our datasets. To perfectly reconstruct the signal, the Nyquist

sampling rate should be at least two times the highest frequency component of datasets.

However, the highest frequency component for the given datasets is larger than the

Nyquist sampling rate, therefore, we can not perfectly reconstruct the original signal

after the downsampling operation.

3.2.3 Neural Network Architecture

Unlike traditional SR architectures that focus on 1 or 3-channel image data, the

deep-learning framework developed in this study, shown in Figure 3.6, directly operates
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Figure 3.1: Training Set Figure 3.2: Validation Set Figure 3.3: Test Set

Figure 3.4: Pre-processing of Ti-6Al-4V Datasets. Figure 3.1 has size of
300× 124× 408× 4. Figure 3.2 and Figure 3.3 are divided into 3 mutually orthogonal
parallelpiped blocks, which are then sliced into images.

(a) (b)

(c)
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Figure 3.5: Rendering of 3D EBSD dataset Investigated: shown in IPF col-
oring of the titanium alloys, (a) Ti-6Al-4V and (b) Ti-7Al mechanically loaded in
tension to 1% strain and (c) 3%, used for network training, testing and validation.
Dataset details are available elsewhere [1, 2].

on vector-based orientation data, which is expressed as 4-channel quaternions. Quater-

nions are mathematically robust for crystal orientation representation and allow easy

application of symmetry operators between different crystal systems.

The process for this framework follows similar methodologies to experimental EBSD

mapping, where a priori crystal symmetry information is used to inform the training

and inference processes. For the physics-informed framework, a loss function satisfying
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Figure 3.6: Network Architecture: Training Pipeline: A low-resolution EBSD
map in quaternion orientation space is given to an image super-resolution network ar-
chitecture that generates a high-resolution EBSD map in quaternion orientation space.
A crystallographic symmetry physics-based loss with L1 or approximate rotational
distance is used during training. Inference Pipeline: The image super-resolution
network generates a high-resolution EBSD map in quaternion orientation space, which
is reduced to a fundamental zone space, and converted to Euler orientation space to
visualize in IPF color map. Symmetry Loss: Takes all possible hexagonal symme-
tries for the titanium alloy, and computes the minimum distance between all possible
generated output and ground truths. The distance can be L1 or approximate rota-
tional distance.

space group symmetry requirements is defined, and networks are trained with that loss

function on datasets of materials from the corresponding space group. Once trained, the

network can infer on EBSD maps for materials that fall under the same space group

symmetry. The full framework consists of a shallow feature extractor, a deep feature

extractor, an upscaling and reconstruction module, and the loss function which dictates
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symmetry reinforcement.

Shallow Feature Extractor: This module uses a single convolution layer to reduce

spatial size of original EBSD Map and extract shallow features from a given low resolution

4-channel EBSD map (ILR).

F0 = HSF (ILR) (3.1)

Here, HSF (.) is a single convolution layer of kernel size 3× 3, which has 4 input channels

and 128 output channels. The generated shallow features (F0) are fed to the deep feature

extractor module (HDF ).

Deep Feature Extractor: To extract essential deep features from EBSD maps, we

implemented deep feature extractors from four well-known single image super-resolution

network architectures. These four architectures employ a variety of recent approaches to

the SISR problem: deep residual (EDSR) [38], channel attention (RCAN) [39], second

order attention (SAN) [40], and holistic attention (HAN) [41] methods. Testing across all

four networks enables both a robust analysis of loss functions and a broader understanding

of the performance of different architectures in the EBSD-SR problem. It also emphasizes

that any deep feature extractor in existence today or developed in the future can be

readily applied to this physics-based learning framework.

FDF = HDF (F0) (3.2)

Where, HDF (.) is a deep feature extractor module, and FDF is a 128 channels feature

map which goes to upscale and reconstruction module.

Upscale and Reconstruction Module: The extracted deep feature (FDF ) uses
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upscale modules that employ the pixel shuffle operation [58]. The upscaled feature is then

mapped into a super-resolved EBSD map using convolution layers that are proportional

to the resolution scaling factor.

F↑ = H↑(FDF ) (3.3)

ISR = HR(F↑) (3.4)

H↑ is the upscale module, and HR is convolution operation of kernel size 3 × 3 for

reconstruction. ISR is the 4 channels generated high-resolution EBSD Map in quaternion

space.

3.2.4 Loss Functions

All networks mentioned in Section 3.2.3 were trained using three different loss func-

tions based on a combination of both established practices for the super-resolution prob-

lem and the underlying physics associated with EBSD orientation maps. The losses used

are traditional L1 loss and two different physics-guided losses, termed L1 with symmetry,

and approximate rotational distance with symmetry. A histogram comparison of all loss

distances for a sample of random orientation vector pairs is shown in Figure 3.7.

L1 Loss: L1 loss is a standard norm loss that has been widely used in image restora-

tion tasks and has been shown to have advantages over L2 loss [59] in terms of sharpness

and visual clarity. There is no underlying physical motivation for using L1 loss beyond its

observed advantages in traditional image restoration tasks, which have established the

precedent for its use in the SISR problem. The L1 loss between generated and ground
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truth EBSD maps is described using the following equation.

L1 =
1

N

N∑
i=1

||H(I iLR) − I iHR||1 (3.5)

Where IHR is the ground truth EBSD map, H(ILR) is the generated EBSD map, and N

is the batch size.
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Figure 3.7: Orientation Loss Distributions: Probability distribution of loss dis-
tances between pairs of randomly sampled 3D rotation vectors. L1 distance is shown
in blue, L1 distance accounting for crystal symmetry is shown in green, and approxi-
mate rotational distance accounting for crystal symmetry is shown in red.

Space Group Symmetry: The orientations in an EBSD map for a given material

can only be understood properly in the context of the space group of that material. These

same symmetry operators persist in the EBSD diffraction patterns, and create boundaries

in orientation space during pattern indexing, dividing the complete sphere of possible

quaternion orientations into repeating subsections. For this reason, the crystallographic

relationships associated with pixel rotation values in the EBSD maps were accounted for

using what we have termed symmetry loss, as shown in Figure 3.6. Symmetries were

accounted for according the space group conventions used to describe crystal symmetry
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(b)(a)

Figure 3.8: Approximation of the Rotational Distance Equation: The
derivative is not defined at deuclid = 2, so a linear approximation is computed to
ensure smooth loss behavior.

systems. This space group information is provided a priori during training and inference,

but this requirement is not considered overly rigorous, as EBSD measurements typically

use a priori space group information to simplify the indexing problem. The titanium

datasets investigated in this work are part of space group 194, which has a total of 24

symmetries, but only 12 that do not involve a change of handedness. For symmetry-based

loss, every pixel value generated by the network is considered as a collection of rotations

across all of these symmetries, and the loss distance is calculated as the minimum distance

between the ground truth and any value within this collection. For this study, space group

symmetry is enforced at the image level. For multi-phase materials, enforcement could

also be done at the pixel level through implementation of a phase map.

L1 Loss with Symmetry: This loss uses L1 distance to calculate loss magnitude,

but incorporates physics to account for space group symmetry in the EBSD map.

Rotational Distance Approximation Loss with Symmetry: Rotational dis-

tance loss computes the misorientation angle between the predicted and ground truth

EBSD map in the same manner that they would be measured in crystallographic anal-

ysis, with approximations to avoid discontinuities. The rotational distance between two
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quaternions can be computed as the following:

θ = 2 cos−1 (Re(q1q
∗
2))

= 2 cos−1 (< q⃗1, q⃗2 >)

= 2 cos−1

(
1 − 1

2
∥q⃗1 − q⃗2∥22

)
= 4 sin−1

(
1

2
∥q⃗1 − q⃗2∥2

)
θ = 4 sin−1

(
deuclid

2

)
(3.6)

where, deuclid = ∥q1 − q2∥2.

The first order derivative of deuclid is bounded, therefore, deuclid is Lipschitz. However,

the gradient of θ goes to ∞ as deuclid → 2. To address this issue in training a neural

network, a linear approximation was computed at deuclid = 1.9, and utilized for points

> 1.9. This can be seen in Figure 3.8 as a clamp on the max value the derivative of the

function can take on. This loss is the most physically accurate of the three considered,

and the distribution of loss values for random rotation vectors for rotational distance loss

(shown in red in Figure 3.7) matches with the probability distribution of misorientations

for hexagonal polycrystals [60].

3.2.5 Inference Pipeline

In order to maximize applicability of EBSD super-resolution to materials research,

network output must be interpretable based on established crystallography conventions.

To facilitate this, we designed an inference pipeline where network output can be con-

verted to the visualization space used and accepted within the field, as shown in Figure

3.6. During training, we use a physics-based symmetry loss within existing image super-

resolution network architectures, but modified to have the appropriate number of input
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and output channels. The input to the network is a LR EBSD map, and the generated

output is a HR EBSD map, both in the quaternion domain. The physics-based loss,

which gives the network information about crystal symmetry, is computed in quaternion

orientation space. During inference, the network outputs a HR EBSD map in quaternion

space, which is then reduced to the fundamental zone in Rodrigues vector space before

being converted into Euler space and projected using inverse pole figure (IPF) color to

visualize orientations. IPF color maps are generated with the commercially-available

open-source Dream3D software [6].

3.2.6 Network Implementation Details

We use a learning rate of 0.0002, Adam optimizer with β1 = 0.9, β2=0.99, ReLU

activation, batch size of 4 and downscaling factor of 4. The patch size of HR images is

64. The framework is implemented in PyTorch and trained on NVIDIA Tesla V100 GPU.

For a batch size of 4 and patch size of 64 across the 3 datasets in this work, the training

time for each network for 2000 epochs was approximately 60 hours. Once training is

complete, inference time for a given input is on the order of less than one second for an

imaging area that would normally take about 10 minutes to gather manually.

In our experimentation with the EBSD super-resolution network, we meticulously

tested various batch sizes and patch sizes to optimize network performance. The results,

as depicted in the Figures 3.9 and 3.10, clearly indicate that enlarging the patch size

enhances the network’s output quality. However, we established a maximum patch size

of 64, as we observed negligible improvements beyond this threshold. Conversely, we

noted that increasing the batch size adversely affected the network’s output quality.

Through these experiments, we determined that a batch size of 4 is optimal for achieving

the best results within this deep learning framework.
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Patch Size = 16 Patch Size = 32 Patch Size = 64

Patch Size Comparison

Figure 3.9: Network Output Comparison With Different Patch Sizes:
Larger patch sizes lead to improvement across all architectures.

Batch Size Comparison

Batch Size = 4 Batch Size = 8 Batch Size = 16 Batch Size = 32

Figure 3.10: Network Output Comparison With Different Batch Sizes:
Larger batch size leads to lower quality results.

3.2.7 Output Evaluation

For performance evaluation using watershed segmentation, we use a misorientation

tolerance of 10 degrees. This is considered a conservative tolerance for feature identifica-

tion, making it well suited for identification of image artifacts. Watershed segmentation

was performed using Dream3D [6]. Network output is evaluated using a combination

of image quality and domain relevant metrics. Initially, each set of generated images is

evaluated using peak signal-to-noise ratio (PSNR) and structure similarity index mea-

sure (SSIM). Images are then segmented into individual grain regions using watershed

segmentation based on a relative misorientation tolerance. This approach, coupled with

domain knowledge, is commonly used to identify and segment grains in EBSD maps.
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3.3 Results

(a) (b) (c) (d)

HR Bilinear Bicubic Nearest Neighbor

Figure 3.11: Comparison of HR ground truth to traditional upscaling:
Bilinear, bicubic, and nearest neighbor upscaling produce inferior results. Bilinear
and bicubic results are nonphysical, and nearest neighbor results are visually identical
to LR input.
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Figure 3.12: Visual Comparison of 4x EBSD-SR on a test EBSD map: L1 has
non physical structure at grain boundaries, and L1 with symmetry and approximate
rotational with symmetry reduce the non-physical structures at grain boundaries.
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3.3.1 Qualitative Output Comparison

To evaluate framework performance, an experimentally gathered dataset of Ti-6Al-

4V [1], discussed in Section 3.2.2, was chosen as a candidate dataset for super-resolution

testing. This set was of particular interest because of its large number of grains, small

grain size, varying local texture, and wide range of represented orientations, all of which

make it challenging for the super-resolution problem, as it is desirable to preserve both the

gradual orientation gradients within grains as well as the sharp orientation discontinuities

at grain boundaries. For training and testing, all LR input was downscaled by a factor of

4 using direct removal of pixel rows and columns to reflect how EBSD resolution would be

reduced in actual experiment. When comparing qualitative image results, the reduction

from HR to LR by removal of rows and columns from the dataset causes a reduction

in visual quality of EBSD maps while offering no possible information inference from

subpixel values. This makes shape inference from LR input particularly difficult, as any

features removed during downsampling are lost completely. Although it is challenging,

our goal is direct application to experimental data, and this form of data loss is exactly

what occurs when low-resolution EBSD maps are gathered experimentally. The difficulty

associated with this dataset and downsampling is apparent in the traditional bilinear,

bicubic, and nearest neighbor upsampling algorithms, shown in Figure 3.11. Bilinear

and bicubic approaches produce nonphysical artifacts that do not exists in experimental

EBSD maps. These non physical artifacts are the product of interpolations made through

quaternion orientation space with no regard for symmetry relationships. Nearest neighbor

approximations produce higher resolution visual replicas of the low resolution input.

A full comparison of image quality on the test set for all networks and losses is

shown in Figures 3.12, 3.13 and 3.14 All investigated networks produced significantly

better results than traditional algorithms, but there were variations in quality across
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the different network types and the loss function used. For all networks, grain shapes

differed from HR, as many of the fine grain features are lost. This is expected, as the

downsampling method removes much of this information, and networks cannot infer on

data that does not exist. However, even with different shapes, L1 and L1 with symmetry

produce grains with smooth contours and a range of facet angles, which is a good reflection

of what would be expected in real materials. However, across all networks, both of these

losses produce nonphysical image artifacts at the edges of grains. Including physics-

based symmetry into L1 reduces the the quantity of these compared to traditional L1,

but the most dramatic reduction in artifacts occurs for approximate rotational distance

with symmetry. Although rotational distance tended to produce slightly more cube-like

grain shapes, the overall reduction in visual artifacts makes network output much more

physically accurate.

Specifically, we observe that the L1 loss tends to introduce noise at the grain bound-

aries, a phenomenon that persists regardless of the network architecture employed. While

the integration of symmetry with the L1 loss mitigates this boundary noise to some ex-

tent, it is the rotational distance combined with symmetry that most effectively eliminates

this noise across all four network architectures. Consequently, we conclude that the ro-

tational distance with symmetry is the most effective loss function, outperforming the

others in enhancing the network’s performance.

3.3.2 Quantitative Output Comparison

Quantitative evaluations of peak signal-to-noise ratio (PSNR) and structural similar-

ity index measure (SSIM) across different architectures and losses are shown in Table 3.1.

Comparing between networks, HAN consistently performed best in all cases of physics-

based loss. Across all network architectures, the incorporation of physics into the loss
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EDSR RCAN SAN HAN
L1 (No
Physics)

14.85/
0.472

14.89/
0.474

14.83/
0.465

14.65/
0.450

L1 with
Symmetry

15.05/
0.483

15.07/
0.484

15.04/
0.484

15.13/
0.497

Rot. Dist. Approx
with Symmetry

15.02/
0.486

15.24/
0.509

15.23/
0.510

15.30/
0.513

Table 3.1: PSNR/SSIM Comparison for 4× Super-Resolution Scaling:
Physics-based loss consistently outperforms Bilinear, Bicubic, Nearest Neighbor, and
pure L1 loss with no physics, regardless of architecture. Rows represent different loss
functions and columns represent different network architectures. Higher number is
desired for both PSNR/SSIM.

Bicubic Bilinear Nearest Neighbour
Ti-6Al-4V: (PSNR/
SSIM)

11.22/
0.211

11.30/
0.237

13.25/
0.373

Ti-7Al 1% (PSNR/
SSIM)

18.47/
0.7135

18.66/
0.751

22.63/
0.823

Ti-7Al 3% (PSNR/
SSIM)

19.49/
0.7372

19.65/
0.773

24.11/
0.8328

Table 3.2: PSNR/SSIM Comparison for 4× Algorithmic Scaling:
PSNR/SSIM values for bilinear, bicubic, and nearest neighbour are consistently lower
than network-based methods.

EDSR RCAN SAN HAN
L1 (No Physics) 5.7 5.5 6.0 7.4
L1 with Symmetry 4.6 4.9 4.4 2.7
Rot. Dist. Approx
with Symmetry

1.8 0.9 1.3 1.4

Table 3.3: Percentage of Single Pixel Features: Rows represent different loss
functions and columns represent different network architectures. Lower values indicate
better performance, with ground truth containing approximately 0.2% single pixel
features. Physics based loss reduces noise, leading to lower single-pixel feature counts.
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Figure 3.13: Visual Comparison of 4x EBSD-SR on a test EBSD map: L1 has
non physical structure at grain boundaries, and L1 with symmetry and approximate
rotational with symmetry reduce the non-physical structures at grain boundaries.

function led to improvement in both PSNR and SSIM. Overall, the most physically ac-

curate loss metric, approximate rotational distance, performed best. Bilinear, bicubic,
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Figure 3.14: Visual Comparison of 4x EBSD-SR on a test EBSD map: L1 has
non physical structure at grain boundaries, and L1 with symmetry and approximate
rotational with symmetry reduce the non-physical structures at grain boundaries.

and nearest neighbor scores are shown in Table 3.2, but their scores were dramatically

lower, and their nonphysicality made further consideration irrelevant.
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EDSR RCAN SAN HAN
L1 (No Physics) 522.2 475.7 530.0 628.2
L1 with Symmetry 433.3 444.4 415.5 284.1
Rot. Dist. Approx
with Symmetry

244.3 152.7 166.4 159.3

Table 3.4: Percent Feature Difference Over Input: Rows represent different
loss functions and columns represent different network architectures. Lower values
indicate better performance. Physics-based loss reduces noise and spurious features,
which keeps the overall feature count closer to the amount expected based on input.

Table 3.3 shows the percentage of pixels in the test set identified as single pixel features

in a watershed segmentation with a misorientation tolerance of 10◦. With high-resolution

ground truth having around 0.2% single pixel features, this metric can be considered

as a close approximation to the percentage of single-pixel artifacts, which appear as

salt-and-pepper noise at grain boundaries. Across all architectures, the incorporation of

physics-based loss leads to a clear reduction in single-pixel artifacts. Overall, RCAN with

rotational distance loss with symmetry had the fewest single pixel features, but RCAN

showed comparatively worse values for L1 loss with symmetry. These variations in noise

are small when compared to the differences between physics-based and non-physics-based

loss.

Table 3.4 shows the percentage difference in number of features relative to LR input,

when a watershed segmentation with a misorientation tolerance of 10◦ is applied. A

larger percentage value indicates higher feature counts than the LR input, which corre-

lates to occurrence of noise and spurious features, and arise from regions of noise at grain

boundaries or overemphasized misorientation gradients within grains. All network out-

puts produced greater feature quantities than the input, but L1 loss without symmetry

caused the greatest number of spurious features, having over 450% more features than the

initial input. Once symmetry is introduced, performance improves across all networks,

with HAN producing the fewest excess features for L1 loss with symmetry, and RCAN
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producing the fewest excess features for approximate rotational distance with symmetry.

3.3.3 Effects of Upsampling Layers

Our network architecture is composed of three key components: the Shallow Feature

Extractor, the Deep Feature Extractor, and the Upsampling and Reconstruction parts.

Notably, in the Upsampling and Reconstruction part, we have implemented a pixelshuffle

layer. While it is common practice to employ various other types of upsampling layers,

such as bilinear, bicubic, nearest neighbor, and deconvolution, our experiments reveal

distinct advantages in using the pixelshuffle layer, particularly for EBSD datasets.

As demonstrated in the accompanying Figures 3.15, 3.16 and 3.17, the pixelshuffle

layer emerges as the superior option, markedly outperforming the bicubic and bilinear

layers, which tend to generate non-physical results. The nearest neighbor upsampling

layer, on the other hand, results in blocky artifacts, whereas the deconvolution layer is

prone to producing checkerboard patterns. These findings underscore the effectiveness

of the pixelshuffle layer in enhancing the quality of the output while maintaining the

physical integrity of the EBSD datasets.

3.3.4 Experiments on Additional Material Datasets

To verify the robustness of the EBSD-SR approach across different materials datasets,

the holistic attention network (HAN), which showed consistently strong performance,

was trained on two additional experimental datasets of Ti-7Al [2], which were plastically

deformed to 1% and 3% strain respectively, and are discussed in Section 3.2.2. These two

datasets contain much larger grains than the Ti-6Al-4V set, and also exhibit texture due

to plastic deformation. The HAN was trained on all three datasets together rather than

on each set individually. Results are shown in Table 3.5, and comparison to traditional
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Bicubic
Upsampling Layer

Bilinear
Upsampling Layer

Nearest Neighbour
Upsampling Layer

Pixel Shuffle
Upsampling Layer

HR

LR

Ti-6Al-4V

De-Convolution

Figure 3.15: Comparison of Upsampling layers for Ti-6Al-4V Dataset:
Comparison of output of network trained on Ti-6Al-4V with different upsampling
layers in upsampling and reconstruction part of network architecture

upscaling algorithms is shown in Table 3.2.

When comparing PSNR/SSIM values, the values for both Ti-7Al datasets are much

higher than the those seen for the Ti-6Al-4V set. This is likely due to a combination of

grain size and texture differences between sets, with the Ti-6Al-4V set having smaller

grains and microtextured regions. Much larger grains makes shape inference at a 4×
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HR

Bicubic
Upsampling Layer

Bilinear
Upsampling Layer

Nearest Neighbor 
Upsampling Layer

Pixel Shuffle
Upsampling Layer

Ti-7Al 1%

LR

De-Convolution

Figure 3.16: Comparison of Upsampling layers for Ti-7Al 1 % Dataset:
Comparison of output of network trained on Ti-7Al 1 % with different upsampling
layers in upsampling and reconstruction part of network architecture
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Ti-7Al 3%

HR

Bicubic
Upsampling Layer

Bilinear
Upsampling Layer

Nearest Neighbor
Upsampling Layer

Pixel Shuffle
Upsampling Layer

LR

De-Convolution

Figure 3.17: Comparison of Upsampling layers for Ti-7Al 3 % Dataset:
Comparison of output of network trained on Ti-7Al 3 % with different upsampling
layers in upsampling and reconstruction part of network architecture
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Ti-6Al-4V Ti-7Al 3% Ti-7Al 1%
L1 (No
Physics)

14.94/
0.478

26.66/
0.865

25.37/
0.852

L1 with
Symmetry

15.19/
0.497

26.82/
0.869

25.38/
0.856

Rot. Dist. Approx
with Symmetry

15.35/
0.5264

27.25/
0.881

25.72/
0.871

Table 3.5: PSNR/SSIM Comparison for 4× Super-Resolution Scaling
across different materials: Ti-6Al-4V, Ti-7Al 1%, and Ti-7Al 3% for HAN Net-
work: Physics-based loss consistently outperforms Bilinear, Bicubic, Nearest Neigh-
bor, and pure L1 loss with no physics, and Columns represent different Titanium
datasets. Higher number is desired for both PSNR/SSIM.

scale reduction less difficult and strong material texture makes the range of orientations

in the dataset narrower, both of which reduce the burden on the network during the

learning/inference process. Regardless of dataset difficulty, rotational distance loss with

symmetry consistently produces the highest quality results.

3.4 EBSD SR BisQue Module

We have successfully integrated our Electron Backscatter Diffraction (EBSD) Super-

Resolution (SR) inference module into the BisQue platform. On BisQue, users can easily

upload a low-resolution EBSD map in numpy format and simply click the ’run’ button.

Upon activation, the module efficiently processes the input and generates a super-resolved

EBSD map, the quality of which is exemplified in the accompanying figure. This user-

friendly interface on the BisQue platform makes the application of advanced EBSD SR

technology both accessible and convenient. Architecture code is publicly accessible at

https://github.com/UCSB-VRL/EBSD-Superresolution.
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Figure 3.18: BisQue Module for EBSD SR: The input for the BisQue model is a
low-resolution Electron Backscatter Diffraction (EBSD) map in numpy format. This
module efficiently processes the input to generate a high-resolution EBSD map, also in
numpy format. Additionally, it facilitates the visualization of the EBSD map through
an Inverse Pole Figure (IPF) map, offering a clear and detailed representation.

3.5 Discussion and Conclusion

The results demonstrate that regardless of architecture or approach, the incorpora-

tion of domain-related physics into the training process leads to better results for the

SISR problem for scientific data. In both qualitative and quantitative evaluation across

every metric considered, physics-based loss consistently outperformed traditional L1 loss

regardless of the network used. When comparing physics-based losses specifically, ro-

tational distance consistently outperformed all other losses on all quantitative metrics,

though it should be noted that L1 with symmetry exhibited well-behaved grain shapes in

qualitative evaluation while also having quantitative results superior to traditional meth-
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ods. For the architectures studied here, comparison across all evaluation metrics shows

that attention based models outperform purely residual architectures in the EBSD-SR

problem, with holistic attention (HAN) exhibiting the best performance. This result is

somewhat expected, as the layer attention module and channel-spatial attention modules

present in the HAN architecture provide additional ability to learn spatial correlations

across different channels and layers [41]. For this reason, the HAN architecture also ex-

hibited the strongest performance on benchmark datasets for the traditional single image

super-resolution problem [41].

The results of this investigation present a strong case for the benefits of an adaptable

learning approach that can be applied to future architectures. Although HAN was the

best preforming network overall, it still was not able to consistently outperform other

networks across all metrics presented here. Furthermore, when considering the range of

possible microstructures that can exist across 230 different space groups and their multi-

phase combinations, it is likely there will never be a single architecture that consistently

performs best. The physics-based approach presented here improves performance and

presents a path for EBSD super-resolution to keep pace with developments across the

SISR field as a whole. This approach can be readily extended to other materials and

microstructures using phase masks labeled by space group, accounting for each of their

respective symmetries using the methods described here. Going forward, this approach

to physics-informed EBSD super-resolution can be used in high-throughput EBSD exper-

iments for the generation of larger, more robust datasets, and also to make higher reso-

lution 3D datasets when combined with asymmetric serial-sectioning approaches (higher

resolution in x, and y, lower resolution in z). With spatial super-resolution, the number

of time-consuming pattern gathering steps can be reduced. EBSD patterns in 2D, which

would normally take minutes or hours to gather can be super-resolved in seconds, and 3D

EBSD patterns which would normally take days or weeks to gather can be super-resolved
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in minutes. These super-resolution tools can accelerate the materials development pro-

cess while ensuring that all network learning occurs in the domain boundaries established

by physics and crystallography.

In conclusion, we designed an adaptable, physics-guided approach to the super-

resolution problem for EBSD orientation maps that employs several deep feature ex-

traction methods from existing single image super-resolution architectures, as well as

losses accounting for crystal symmetry and rotation physics. Unlike existing SR methods

which operate on scalar image data, the training pipeline is implemented in quaternion

orientation space. The inference pipeline produces quaternion output that is converted

into Euler angle representation and colored based on IPF projection conventions. Qual-

itative and quantitative image analysis demonstrate that networks with physics-based

learning consistently outperform both traditional upscaling algorithms and analogous

network approaches that do not employ physics. Accounting for crystal symmetry in

learning leads to increases in PSNR and SSIM, and also reduces single-pixel artifacts

and spurious visual features. L1 loss with symmetry produces well-behaved grain shapes,

and approximate rotational distance with symmetry greatly reduces the occurrence of

noise and visual artifacts. The presented framework can be readily applied to future

super-resolution network architectures.
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Chapter 4

Q-RBSA: High-Resolution 3D EBSD

Map Generation Using An Efficient

Quaternion Transformer Network

In this chapter, we expand our examination of 2D Electron Backscatter Diffraction

(EBSD) Super-Resolution (SR) to explore its applications in three dimensions. We in-

troduce a novel neural network architecture, grounded in physical principles, specifically

tailored for generating 3D microstructure datasets. The main contribution of this chapter

lies in the design of a quaternion-based neural network architecture and the development

of a comprehensive pipeline for the synthesis of 3D microstructure datasets.

Gathering 3D material microstructural information is time-consuming, expensive,

and energy-intensive. Acquisition of 3D data has been accelerated by developments in

serial sectioning instrument capabilities; however, for crystallographic information, the

electron backscatter diffraction (EBSD) imaging modality remains rate limiting. We

propose a physics-based efficient deep learning framework to reduce the time and cost

of collecting 3D EBSD maps. Our framework uses a quaternion residual block self-
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attention network (QRBSA) to generate high-resolution 3D EBSD maps from sparsely

sectioned EBSD maps. In QRBSA, quaternion-valued convolution effectively learns local

relations in orientation space, while self-attention in the quaternion domain captures

long-range correlations. We apply our framework to 3D data collected from commercially

relevant titanium alloys, showing both qualitatively and quantitatively that our method

can predict missing samples (EBSD information between sparsely sectioned mapping

points) as compared to high-resolution ground truth 3D EBSD maps. Compared to the

traditional signal processing method which uses local neighborhoods, our method uses

adaptive receptive fields of different spatial sizes with self-attention layers to learn both

local and long-range correlations for material datasets: Ti-6Al-4V, and Ti-7Al. The

contents of this chapter are discussed in our published paper [8].

4.1 Introduction

In the pursuit of materials development for extreme environments to understand the

limit of its performance, 3D microstructural information is essential input for structure-

property models [16]. Many engineering materials are polycrystalline, meaning they are

composed of many smaller crystals called grains, and the arrangement of these grains

impacts their thermomechanical properties. To collect crystallographic microstructure

information, 3D microscopy techniques have been developed that span lengthscales from

nanoscale to mesoscale [61]. These experiments require costly or challenging to access

equipment, like synchrotron light sources for high X-ray fluxes [62–64], precise automated

robotic mechanical polishing and imaging [65,66], or high-energy ion beams and/or short

pulse lasers coupled to electron microscopes [32,67].

Recent advances in 3D characterization have reduced the time required for data col-

lection, but serial sectioning methods (where material is progressively removed from the
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sample between images) are still slow processes that require expensive microscopes [23].

During serial sectioning for microstructural information, typical experimental steps might

include material removal and cleanup (mechanical polishing, laser ablation, focused ion

beam milling) and imaging for orientation or chemical information. As such, any efforts

that reduce the total number of required serial sections in a 3D experiment will ulti-

mately lead to substantive time and cost savings. This cost motivates methods to reduce

the number of required points, such as smart or sparse sampling [68–70], or machine

learning super-resolution [35]. In these methods, missing information can be inferred us-

ing interpolation-based algorithms (bicubic, bilinear, or nearest neighbor) or data-based

learning. Recent progress in computer vision [35, 40, 71] has shown that the generation

of missing samples/data with data-based learning outperforms traditional interpolation

algorithms for RGB images. However, unlike RGB images, EBSD maps carry embed-

ded crystallography, so existing learning-based methods are not well suited to generate

missing EBSD data.

In chapter 3, we developed a deep learning framework for 2D super-resolution that

utilized an orientationally-aware physics-based loss function to generate high-resolution

(HR) EBSD maps from experimentally gathered low-resolution (LR) maps. This ap-

proach allowed for significant gains in 2D resolution, but expansion to 3D remained

difficult due to data availability limitations as 3D EBSD is expensive and time consum-

ing to gather. To address this, here we propose a 3D deep learning framework based on

quaternion convolution neural networks with self-attention alongside physics-based loss

to super-resolve high resolution 3D maps using as little data as possible. Using real-

valued convolution for quaternion-based data has been shown to be inefficient in learning

the inter-channel relationship (see equation 2.1) that arise from quaternion vector com-

ponents (i, j, k component ) [28]; which leads to longer training times and larger data

burdens. We demonstrate that a quaternion-valued neural network is more efficient and

61



Q-RBSA: High-Resolution 3D EBSD Map Generation Using An Efficient Quaternion Transformer
Network Chapter 4

produces better results than real-valued convolution neural networks such as those used

in previous work [72].

The crystallographic information contained in EBSD maps is generally expressed in

the form of crystal orientations spatially resolved at each pixel or voxel. These orien-

tations, like other rotational data, can be expressed unambiguously using quaternions.

They therefore can be incorporated into network architecture as prior information by

using quaternion-valued convolution for local-level correlation, rather than real-valued

or complex-valued convolution. The basic component in traditional CNN-based archi-

tectures is real-valued convolutional layers, which extract high-dimensional structural

information using a set of convolution kernels. This approach is well-suited for un-

constrained image data like RGB, but when convolution kernels fail to account for strict

inter-channel dependencies where present, the result is greater learning complexity. Some

successful efforts have been made to design lower-complexity architectures by extending

real-valued convolution to complex-valued convolution [73,74] and quaternion-valued con-

volution [75–77] in the field of robotics [78], speech and text processing [28], computer

graphics [79,80], and computer vision [77,81]. Although these convolution layers are use-

ful to learn local correlations, they struggle to learn long-range correlations. In contrast,

transformer-based architectures have recently shown significant success in learning long-

range correlations in natural language [82] and vision tasks [71, 83]. However, the com-

putational complexity of transformer-based architectures grows quadratically with the

spatial resolution of input images due to self-attention layers, so transformers alone are

not well-suited for restoration tasks. However, recent work by Zamir [71] proposed self-

attention across channel dimensions to reduce complexity from quadratic to linear with

progressive learning for image restorations and showed superior results to convolution-

based architecture alone.

Inspired by this idea, we propose the use of quaternion self-attention for EBSD
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super-resolution, using physics-aware quaternion convolution for orientation recognition,

a physics-based loss function that is sensitive to material crystal symmetry, and progres-

sive learning to incorporate long-range material relationships. Physics-aware quaternion

convolution follows the approach of [28, 73, 84], where convolution is depth-wise across

channel dimension and uses a reduced number of interdependent weights whose connec-

tivity is based on the Hamiltonian product, as explained in equation 4.2. We use a

loss function that accurately measures the crystal orientations in EBSD maps and also

accounts for the hexagonal close-packed symmetry present in α-phase Ti-6Al-4V and

Ti-7Al, the two alloys investigated here. Finally, progressive learning refers to having

variable patch sizes instead of fixed patch sizes during training, which is relevant for most

engineered material microstructures, where important features can span across length

scales (and patch sizes). The titanium alloys studied herein are well-known to have

many different microstructural variants accessible via processing, resulting in varying

grain size and morphology. For the datasets that we consider specifically, the Ti-6Al-4V

variant has smaller equiaxed grains, while the Ti-7Al alloy has much larger grain size, so

applying a fixed patch size across these two materials would be sub-optimal. To enforce

long-range learning among these grain features, we used progressive patch sizes starting

from 16 to 100 during the training of the network. Training behaves in a similar fash-

ion to curriculum learning processes where the network starts with a simpler task and

gradually moves to learning more complex ones.

4.2 Method

In this section, we discuss about the datasets, network architecture, loss function,

and training strategy of neural network.
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Figure 4.1: Q-RBSA EBSD Resolution Enhancement Framework: In the
experimental pipeline shown in (a), material researchers collect EBSD orientation
information for each (x,y) coordinate in a given sectioning plane, and then remove
material using laser ablation or robotic polishing to reach the next plane in the z
direction to build a 3D volume. In our framework (b), researchers collect EBSD
information from a reduced set of points (blue planes), omitting some planes that
would normally be gathered (gray planes). The missing information (green planes)
are then generated in 2D as a series of (x,z) or (y,z) planes by our quaternion-based,
physics-informed deep learning framework, shown in (c). Here, the network takes
advantage of orthogonal independence to efficiently generate 3D volumes using less
data, as large amounts of EBSD are costly and the choice of serial sectioning direction
has minimal impact on the resultant final volume.

64



Q-RBSA: High-Resolution 3D EBSD Map Generation Using An Efficient Quaternion Transformer
Network Chapter 4

4.2.1 Dataset Preprocessing

High-Resolution (HR) Ground Truth: The ground truth data is experimental

3D EBSD data gathered from the titanium alloys, Ti-6Al-4V and Ti-7Al (one Ti-7Al

sample deformed in tension to 1% and one to 3%), using a commercially-available rapid-

serial-sectioning electron microscope known as the Tribeam [32, 33]. The Ti-6Al-4V

dataset, shown in Figure 4.2(a), is of pixel size 346 × 142 × 471 × 4 (z × y × x × ch),

where the last dimension is the quaternion component. Analogously, the Ti-7Al shown

in 4.2(b) and 4.2(c) are of size 232×674×770×4 (z×y×x×ch) and 224×770×770×4

(z×y×x×ch) pixels respectively, with all edges cropped to produce a perfect parallelpiped

volume. Each voxel in the Ti-6Al-4V set has resolution of 1.5×1.5×1.5µm, and in both

Ti-7Al sets, each voxel has a resolution of 1.3 × 1.3 × 1.3µm.

These titanium alloys are composed primarily of the hexagonal close packed grains.

The EBSD ground truth data was indexed using a combination of EMsoft dictionary

indexing (Ti-7Al 1% and 3%) [20] or spherical indexing (Ti-6AL-4V) [21] for improved

indexing accuracy beyond conventional Hough transform indexing. Experimental data

was cleaned using a minimum size filter of 27 voxels in volume and a minimum feature

neighbor filter of 2 neighbors per grain (applied using DREAM.3D [6]) to eliminate grains

that were insufficiently or inaccurately resolved by the 3D characterization technique.

In total, the Ti-6Al-4V dataset contains about 57,000 grains, visible in the IPF maps

as regions of different color. The Ti-7Al material has larger grain size, with 500-1000

grains in each dataset. The datasets were proportionally divided into training, validation,

and test subsets in ratios of 65%, 15%, and 20% respectively.

Sparsely Sectioned Input EBSD Data: Sparsely sectioned EBSD data are down-

scaled versions of the high-resolution EBSD data. However, because of how EBSD in-

formation is gathered, these EBSD data are not downscaled using blurring. Instead
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Figure 4.2: Rendering of 3D EBSD dataset Investigated: shown in IPF col-
oring of the titanium alloys, (a) Ti-6Al-4V and (b) Ti-7Al mechanically loaded in
tension to 1% strain and (c) 3%, used for network training, testing and validation.
Dataset details are available elsewhere [1, 2].

sparsely sectioned EBSD data are produced by removal of xy planes in the z direction

from the high-resolution ground truth with a downscale factor of 4x and 2x (LR = 1
4
HR

or LR=1
2
HR). This is done to imitate the skipping of collection planes that would occur

in a 3D experiment with more sparsely sectioned EBSD data (i.e. thicker section depth),

which would not influence the electron beam-material but rather lead to larger amounts

of material removal between consecutive planes.

4.2.2 Deep Learning for EBSD

The objective is to generate missing sample planes from experimental 3D EBSD data

that is sparse along the z-axis. In this approach, material researchers collect sparsely

sectioned 3D EBSD data (blue planes) as shown in Figure 4.1 (a), due to the high

cost associated with serial sectioning and collecting 3D EBSD data at higher resolution.

Ideally, a 3D deep learning framework would be designed to generate the missing planes

(gray planes), but experimental EBSD data is costly to gather, so available 3D data for

training is extremely limited. Additionally, 3D neural networks require more learned
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parameters, which, with limited available data, increases the likelihood of overfitting.

Instead of a full 3D architecture, a deep learning network is implemented on 2D EBSD

maps orthogonal to the sectioned planes, shown as the xz or yz planes in Figure 4.1

(c). Our network takes sparsely sectioned xz or yz EBSD maps as input to generate the

missing rows normal to the z-axis. The generated 2D EBSD maps are then combined

into a 3D volume. EBSD collection is a point-based scanning method that is directionally

independent; therefore missing z rows can be generated from xz or yz EBSD maps, and

two 3D volumes can be formed from each sparsely sectioned dataset.

4.2.3 Network Architecture

Although EBSD maps are visualized similarly to RGB images, they are multidimen-

sional maps with inter-channel relationships, where crystal orientation is described using

Euler angles, quaternions, matrices, or axis-angle pairs. In chapter 3 , we have demon-

strated that quaternion EBSD representation is well-suited to orientation expression for

loss function design, due to its efficient rotation simplification and avoidance of ambigu-

ous representation. However, we previously used real-valued convolution layers to learn

features, which is sub-optimal for EBSD orientation maps where orientations are rep-

resented as unit-vector quaternion rotations. Generally speaking, convolution networks

provide local connectivity and translation equivariance, which are desirable properties

for images, but if additional feature correlations are going to be learned efficiently, it is

critical to encode relevant structural modalities into the network architecture and loss

function. Real-valued convolution can still learn unit quaternion inter-channel informa-

tion, but it requires extra network complexity, and by consequence, additional data to

inform that complexity. Here, the use of quaternion convolution efficiently encodes prior

orientation information into kernels, and also has the advantage of reducing the number
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of trainable parameters by 4, as explained the appendix.

4.2.4 Quaternion Convolution

Quaternion convolution neural networks (QCNN) [85] use basic quaternion convolu-

tion operation which computes the Hamilton product between the input feature maps

and kernel filters rather than just computing correlations between them, as is done in

real-valued convolution [86]. For instance, if we consider Pinput as an input feature map

of size (4K2 ×H ×W ), and F as a quaternion kernel filter of size (4K2 × f × f), where

K2 is the number of kernel filters in the previous layer, H and W are the height and

width of the input feature map (Pinput), and f is the spatial size of the quaternion kernel

filter (F ), then we can split the input feature map (Pinput) into four components (PR,

PX , PY , PZ) along the channel dimension, where each component has a dimension of

(K2 ×H ×W ). Similarly, the kernel filter (F ) can be divided into four components (FR,

FX , FY , FZ) along the channel dimension, where each component has a dimension of

(K2 × f × f). The quaternion convolution (QConv) of input feature maps (Pinput) with

a single kernel filter (F ) is defined as follows

P ′
quaternion = F ⊗ Pinput (4.1)

P ′
R

P ′
X

P ′
Y

P ′
Z


=



FR ∗ PR − FX ∗ PX − FY ∗ PY − FZ ∗ PZ

FX ∗ PR + FR ∗ PX − FZ ∗ PY + FY ∗ PZ

FY ∗ PR + FZ ∗ PX + FR ∗ PY − FX ∗ PZ

FZ ∗ PR − FY ∗ PX + FX ∗ PY + FR ∗ PZ


(4.2)

Here, ⊗ is the Hamilton product, and ∗ represents real-valued convolution operation

[86]. The output quaternion feature map (P ′
quaternion) has a dimension of (4 × H ×W )

for a single kernel filter, where each component (P ′
R, P ′

X , P ′
Y , P ′

Z) has a dimension of
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(1 × H × W ). H and W are the height and width of the output feature maps. For a

better understanding of quaternion convolution, please refer to the Figures 4.14, 4.15 and

4.16 provided in appendix section.

4.2.5 Feature Extractors

Our network architecture shown in Figure 4.3 consists of two feature extractors com-

ponents: a shallow feature extraction module and a deep feature extraction module as

discussed below.

Shallow Feature Extractor: This module uses a single quaternion convolution

layer (QConv), explained in equation 4.2, to reduce the spatial size of sparsely sectioned

EBSD maps, while extracting shallow features.

F0 = HSF (ILR) (4.3)

Here, ILR is a sparsely sectioned 2D EBSD map and HSF (.) is a single quaternion con-

volution layer of kernel filter size 3 × 3, which has 4 input channels and 128 output

channels. The generated shallow features (F0) are given to the deep feature extractor

module (HDF ).

Deep Feature Extractor: To learn from sparsely sectioned EBSD maps, our deep

feature extractor module uses stacked quaternion residual self-attention (QRSA) blocks

to extract high-frequency information and long skip connection to bypass low-frequency

information. Residual blocks allow for a deeper network architecture, which provides a

larger receptive field and better training stability. In our QRSA module, we use both

CNN and transformer ideas to combine the effectiveness of the locality of CNNs with

the expressivity of transformers that enables them to synthesize high-resolution EBSD

maps. The CNN structure offers local connectivity and translation equivariance, allow-
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Figure 4.3: Quaternion Residual Block Self-attention (QRBSA) Net-
work: A sparsely sectioned 2D EBSD map is given to the QRBSA network (a)
to generate a high-resolution 2D EBSD map. QRBSA consists of three parts: a Shal-
low feature extractor, a Deep feature extractor, and Upsampling and Reconstruction.
The deep feature extractor uses a residual architecture (b) where residual self-atten-
tion blocks (c) are modified with quaternion convolution layers and transformer blocks
(d) to efficiently handle orientation data. Quaternion convolution is used to learn lo-
cal-level relationships, while quaternion transformer blocks learn the global statistics
of feature maps. Pixelshuffle layer, modified for 1-dimensional upsampling, is used in
the upsampling and reconstruction block to upsample feature maps.
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ing transformer components to freely learn complex and long-range relationships. Each

quaternion residual self-attention (QRSA) block consists of two quaternion convolution

layers and a piece-wise ReLU activation, explained in equation 4.11, between them,

and a quaternion transformer block. The quaternion convolution layers with piece-wise

ReLU activation help in learning the local structure of extracted shallow features, while

the quaternion transformer block captures long-range correlations among features. The

short-skip connection is useful to bypass low-frequency information during training.

FDF = HDF (F0) (4.4)

HDF = QRSA1 ◦QRSA2 ◦ ...QRSAi... ◦QRSA10 ◦QConv + I (4.5)

where, HDF (.) is a deep feature extractor module, and FDF is a 128 channels feature

map which goes to the upscale and reconstruction module. QConv is a quaternion

convolution layer as explained in equation 4.2, QRSAi is a ith quaternion residual self-

attention (QRSA) block, and I is an identity feature maps.

4.2.6 Quaternion Transformer Block

The standard transformer architecture [82] consists of self-attention layers, feedfor-

ward networks, and layer normalization. The original transformer architectures [82, 87]

are not suitable for restoration tasks due to the requirement of quadratic complexity of

spatial size O(W 2H2), where W , H is the spatial size of images or EBSD maps. Similar

to the approach of [71] and as shown schematically in Figure 4.4, we compute attention

maps across the features dimension, which reduces the problem to linear complexity.

However instead of depthwise convolution, we use quaternion convolution as explained

in equation 4.2, which can be considered as a combination of depthwise convolution and

group convolution, but with four-dimensional quaternion constraints. We have also incor-
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porated an equivalent quaternion-based gating mechanism into the feedforward network

within the transformer, and the traditional convolution used in [71] has been replaced

with quaternion convolution layers as explained in equation 4.2 to account for EBSD

data modalities. Layer normalization plays a crucial role in the stability of training in

transformer architectures. The quaternion layer-normalization is equivalent to the real-

valued one by computing normalized features across each component of the quaternion

separately, and allows the building of deeper architectures by normalizing the output at

each layer. From the normalized features, the quaternion self-attention layer first gener-

ates query (Q), key (K) and value (V) projections enriched with the local context. After

reshaping query and key projection to reshaped query (Qr) and reshaped key (Kr), a

transposed attention map (A) is generated. The refined feature map, which has global

statistical information, is calculated from the dot product of the value projection (Vr)

and the attention map (A).

Transposed Attention Map (A) = Softmax(Kr.
Qr

α
) (4.6)

Quat-SelfAttention(Qr, Kr, Vr) = Vr . A (4.7)

Gating(X2) = GeLU(W1(X2)) � W2(X2) (4.8)

Where � represents elementwise multiplication, α is a learnable scaling parameter to

control the magnitude of the dot product of Kr and Qr before applying softmax function

and GeLU is Gaussian Error Linear Units activation function [88], and Wi (i=1,2) is a

combination of quaternion convolution layers with kernel size 1 and 3, respectively.
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Figure 4.4: Quaternion Self Attention: Self-Attention in (a) is computed us-
ing quaternion convolution across feature dimension instead of spatial dimension to
reduce computational complexity to linear. A transposed attention map (A) is cal-
culated from reshaped query (Qr) and reshaped key (Kr). A quaternion self-atten-
tion is computed from the transposed attention map (A) and reshaped value (Vr).
Quaternion Feed Forward Network: Shown in (b), performs controlled feature
transformation to allow useful information to propagate further using gated quater-
nion convolution.

4.2.7 Upsampling and Reconstruction

The upsampling and reconstruction module has 1D pixelshuffle layers and quaternion

convolution layers of kernel size 3. The original pixelshuffle layer [89] is designed for 2D

upsampling, but we have modified it for 1D upsampling in our framework that generates

73



Q-RBSA: High-Resolution 3D EBSD Map Generation Using An Efficient Quaternion Transformer
Network Chapter 4

information in z dimension. Each block of the upsampling and reconstruction module

upsamples deep features by a factor of 2, with the number of blocks depending on the

scaling factors.

F↑ = H↑(FDF ) (4.9)

ISR = HR(F↑) (4.10)

Where, each upsampling block (H↑) of the module has a quaternion convolution layer

of kernel size (3 × 3) as explained in equation 4.2, and a 1D pixel-shuffle layer. The

reconstruction block (HR) is a quaternion convolution layer of kernel size (3 × 3).

4.2.8 Activation Function

Introducing non-linearity through an activation function is not straightforward for

quaternions, as discussed in [84]. However, quaternion activation functions have been

adapted for use in QNNs with standard backpropagation algorithms [90, 91]. There are

two classes of these quaternion-valued activation functions: fully quaternion-valued func-

tions and split functions. Fully quaternion-valued activation functions are an extension

to the hypercomplex domain of real-valued functions, such as sigmoid or hyperbolic tan-

gent functions. Despite their better performance [92], careful training is needed due to

the occurrence of singularities that can affect performance. To avoid this, split activation

functions [92,93] have been presented as a simpler solution for QNNs. In split activation

functions, a conventional real-valued function is applied component-wise to a quater-

nion, alleviating singularities while holding true the universal approximation theorem as

demonstrated in [93]. We have used the split ReLU function which is defined as follows:
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ReLU(P ′
quaternion) =



ReLU(P ′
R)

ReLU(P ′
X)

ReLU(P ′
Y )

ReLU(P ′
Z)


(4.11)

4.2.9 2D to 3D EBSD

The output of the QRBSA network is a 2D high-resolution EBSD map from a sparsely

sectioned 2D EBSD map in the z direction. The 2D high-resolution EBSD maps are then

combined to make a 3D volume. The missing z rows, as in Figure 4.1 (c), can be generated

either from xz plane (ynormal) or yz plane (xnormal). Therefore, there are two ways to

form the 3D volume. In this work, we generated both 3D volumes separately, but we plan

to design an algorithm in the future to combine the xz plane and yz plane information

to make a single 3D volume.

4.2.10 Training Loss for the Network

The QRBSA network is trained using a physics based loss function [72], which uses

rotational distance approximation loss with enforced hexagonal crystal symmetry (HCP).

Rotational distance loss computes the misorientation angles between the predicted and

ground truth EBSD map in the same manner that they would be measured during crys-

tallographic analysis, with approximations to avoid discontinuities at the edge of the

fundamental zone. The rotational distance θ between two unit quaternions can be com-

puted as the following:

q1 · q2 = cos (θ) −→ θ = 4 sin−1

(
deuclid

2

)
(4.12)
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where, deuclid = ∥q1 − q2∥2. While deuclid is Lipschitz, the gradient of θ goes to ∞ as

deuclid → 2. To address this issue during neural network training, a linear approximation

was computed at deuclid = 1.9, and utilized for points > 1.9.

4.2.11 Network Implementation and Output Evaluation

We use a learning rate of 0.0002, an Adam optimizer with β1 = 0.9, β2=0.99, ReLU

activation, batch size of 4 and downscaling factor of 2 and 4. The patch size of HR EBSD

maps is selected from {16, 32, 64, 100} during training of the network. The framework

is implemented in PyTorch and trained on NVIDIA Tesla V100 GPU for 2000 epochs,

which took approximately 100 hours. Once training is completed, inference time for a

given 2D LR EBSD map is on the order of less than one second for an imaging area that

would normally take about 10 minutes to gather manually.

4.2.12 Progressive Learning

In chapter 3, we used a fixed patch size of dimension 64×64 for training the CNN based

architectures which help in learning local correlations. However, self-attention is required

to have larger patch sizes, which aids in learning global correlations. Inspired from the

work of Zamir [71], we use progressive patch samples from sizes of {16, 32, 64, 100} in the

training process to learn global statistics. We start from a smaller patch size in early

epochs and increase to a larger patch sizes in the later epochs. The progressive learning

acts like the curriculum learning process where a network starts with a simple tasks and

gradually moves to learning a more complex one.
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4.3 Results

4.3.1 Qualitative Output Comparison

Sparsely Sectioned
EBSD Maps

Network Output Ground Truth

Ti-6Al-4V

Ti-7Al 1%

Ti-7Al 3%

340.6 um

400.4 um

462 um

(a)

(b)

(c)

Figure 4.5: Visual comparison of network output for example 2D EBSD
maps with a scale factor of 4: The predicted EBSD maps (Network Output)
from the QRBSA network are similar to the ground truth EBSD maps in for both
the Ti-6Al-4V dataset (a) and both Ti-7Al datasets (b) and (c). The black rows
correspond to the missing data in the sparsely sectioned input EBSD maps. In this
case, one row of EBSD data is used for every three rows of missing EBSD data.

The sparsely sectioned 3D EBSD data is downsampled by scale factors of 2, 4 in the
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z dimension by removing the xy planes (znormal) to reflect how EBSD resolution would

be reduced in a serial sectioning experiment. Our network QRBSA is trained on 2D

orthogonal planes (xnormal and ynormal) of paired sparsely sectioned EBSD maps and high-

resolution EBSD maps, generating the high-resolution 2D maps in z dimension shown

in Figure 4.5. The most noticeable visual defects in 2D appear as pixel noise or short

vertical lines, particularly around small grain features and high-aspect-ratio grains whose

shortest axis is aligned with the z-direction. In addition to planar output analysis, we

can also create 3D volumes from the sparsely sectioned xz planar (ynormal) or yz planar

(xnormal) EBSD maps, and then sample the xy planes (znormal) from these volumes,

as represented by the black arrows in Figure 4.6, to evaluate how well the QRBSA is

inferring missing z-sample planes. Note that the planes visualized in Figure 4.6 are not

immediately adjacent to any ground truth planes. We can observe that our deep learning

framework is able to completely predict omitted xy planes, comparably to the ground

truth xy plane, with the exception of some shape variations around grain boundaries,

particularly in Ti-6Al-4V. We capture these errors in Figure 4.6 in the column labeled

misorientation angle map, which is contrast scaled such that all misorientation errors

greater than 3 ◦ appear as white. Looking at this map, most of the high misorientation

errors are at grain boundaries with the exception of some specific small grains in Ti-6Al-

4V. Observations of this difference map indicate that if the xy plane in Figure 4.6 had

been omitted during experimental data collection, our framework would have estimated

it with reasonable accuracy.

4.3.2 Quantitative Output Comparison

The pixel-wise distribution of minimum misorientations between network output and

ground truth, referred to as misorientation error, is shown in Figure 4.7. The x-axes of
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Material Estimated XY Plane (Z Normal) Experimental XY Plane (Z Normal)
(a) Ti-6Al-4V

213 um
262.6  um

310.7  um

(b) Ti-7Al 1%

(c) Ti-7Al 3%

Misorientation
Angle Map (Z Normal)

Figure 4.6: Neural network output vs. ground truth with difference
map: The deep learning framework is able to estimate the missing xy planes due to
sparse z-sampling (gray) with data that looks similar to the ground truth for Ti-6Al-4V
in (a) and Ti-7Al in (b) and (c). The misorientation angle map column shows the
minimum possible misorientation between ground truth and estimated EBSD maps
with 3 ◦ thresholded maximum to better show low magnitude errors. This map indi-
cates that learning grain shapes for Ti-6Al-4V is more difficult than for Ti-7Al, likely
due to smaller grain size and more grain boundary regions.
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*1e6 *1e6 *1e6Ti-6Al-4V

*1e6 *1e7 *1e7

Ti-7Al 1% Ti-7Al 3%(a)

(b)

(c)

Figure 4.7: Histogram of Misorientation Angle for Ti-6Al-4V, Ti-7Al 1%,
and Ti-7Al 3%: In (a), histograms of misorientation differences between predicted
and ground truth are shown, where all values greater than 3◦ are clamped to 3◦. For
all materials, most network error in predicted misorientation is lower than 0.5◦ in
magnitude. In (b), the same error histograms are displayed, but now misorientation
values less than 3◦ are clamped to 3◦. Because larger magnitude errors occur far less
frequently than smaller errors, (c) contains a zoomed inset of misorientation angles
greater than 3◦ to better show their distribution.

the histograms are thresholded and separated at 3◦, such that misorientation error of

magnitude less than 3◦ is shown in Figure 4.7(a), and error greater than 3◦ is shown

in Figure 4.7(b) and (c). These histograms show that the majority of network error
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is relatively unimodal and smaller in magnitude than about 0.4◦, meaning that it will

fall primarily within the dark regions of the grains in the difference maps in Figure 4.6,

which correspond to small intragranular misorientation errors. On the other hand, most

of the high misorientation errors in Figure 4.6 are much larger than 3◦, which mostly

correspond to errors in predicted grain boundary location, or small grains that were ill-

defined in the low resolution input. While these errors are much larger in magnitude,

Figure 4.7(b) shows that these represent a very small fraction of network error. A more

detailed inspection of this error in Figure 4.7(c) shows that this larger error is relatively

random and uniform, with the exception of a spike around 30◦, which can be seen in all

three datasets. This spike in error around 30◦ may be related to the hexagonal symmetry

of the titanium materials, as 30◦ is a high symmetry rotation within the 6/mmm point

group, but even so, these errors represent less than 2% of the total.

Network Trainable Parameters Ti-6Al-4V Ti-7Al 1% Ti-7Al 3%
x2 x4 x2 x4 x2 x4

HAN 63,315,578 26.12 25.64 33.67 33.55 35.10 34.36

EDSR 6,355,460 26.70 26.25 34.39 34.25 36.19 36.05

QEDSR 1,593,092 26.62 26.16 34.23 34.10 35.56 35.44

QRBSA 5,952,782 27.71 27.29 35.29 35.13 36.64 36.52

Table 4.1: PSNR: Comparison of PSNR of misorientation angle and com-
plexity for different networks for scale factors 2 and 4: Columns rep-
resent number of trainable parameters and PSNR for different titanium datasets. A
larger number is desired for both PSNR.

The peak signal to noise ratio (PSNR) of misorientation angle between ground truth

and experimental EBSD data is shown in Table 4.1 to quantitatively evaluate the per-

formance of the QRBSA network for scale factors 2 and 4 for all three materials. Higher

PSNR values represent more similarity with the ground truth. The PSNR of Ti-6Al-4V

is lower compared to Ti-7Al datasets due to its higher texture variability, wider range of

orientations, and generally smaller grain features. We performed this same analysis on
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four different network architectures with different computational complexity, as shown

in Table 4.1.

When considering the relationship between network complexity and performance for

this use-case, a simpler deep residual architecture (EDSR) [38], outperforms a more

complex holistic attention network (HAN) [41] on EBSD data despite having signifi-

cantly lower computational complexity. The amount of available EBSD data in this

case is significantly lower than open-source RGB image datasets, so simply increasing

network complexity does not improve performance, as this added complexity demands

additional training information and does not meaningfully consider relevant data modal-

ities. QEDSR incorporates quaternion considerations in a similar architecture to EDSR,

which greatly reduces in the number of network parameters, but also causes a slight drop

in performance due to overall lack of complexity. We take advantage of this reduction

in complexity to add in additional self-attention for better recognition of long-range pat-

terns and global statistics. This QRBSA network demonstrates the best performance

on EBSD map restoration, while still maintaining lower complexity than state-of-the-art

residual architectures for single-image super-resolution tasks.

4.3.3 Ablation Study

To show the effectiveness of quaternion convolution, we have done experiments with

an enhanced deep scale residual (EDSR) network [38] and a quaternion enhanced deep

residual (QEDSR) network as shown in Figure 4.10. The QEDSR is similar to EDSR

except that the real-valued convolution layer is replaced by quaternion convolution layer

that helps in reducing computational complexity. With decreased complexity due to

the quaternion convolution layer, we can add a quaternion transformer block into our

network architecture to learn global features of EBSD maps. The PSNR/SSIM [57]
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Nearest Neighbor Interpolation QRBSA Network Output Ground Truth

Figure 4.8: Comparison of Network output with Nearest Neighbour: Near-
est neighbor interpolation method gives blocky grains and visually identical results to
sparsely sectioned EBSD data.

values of IPF map for the generated EBSD maps and number of trainable parameters of

different neural network architectures are shown in Table 4.2. Our network QRBSA is

giving better PSNR and SSIM than EDSR [38], while having fewer trainable parameters.

To understand the effect of the quaternion transformer block in QRBSA, we have trained

our network with and without the quaternion transformer block as shown in Table 4.3.

We see an improvement in PSNR and SSIM with the quaternion transformer block for

the Ti6-Al-4V dataset, which has more crystallographic texturing and is difficult to learn

because of the mismatched lengthscales over which it persists, compared to the grain

structure. The quaternion transformer block will become even more useful for learning

global features as we increase our library of 3D datasets available to our deep learning

framework in future.

During analysis of our results, we found that some of generated xy planes (znormal)

in all three of the investigated datasets (Ti-6Al-4V, Ti-7Al 1 %, and Ti-7Al 3 %) have

minor noise, as shown in Figure 4.9. In future work, we will be focusing on reducing this

noise in the estimated xy planes by using 3D neural network architecture.
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Ti-7Al 1% Ti-7Al 3%Ti-6Al-4V

400.4 um

(a) (b) (c)

Figure 4.9: Noise in Estimated XY Plane: The deep learning framework is able
to estimate the missing xy planes in z dimension but there are some minor noises in
some of the xy planes.

Figure 4.10: Quaternion CNN and Real CNN: Both QCNN and RCNN have
same number of layers except basic convolution operation layer. In QCNN, total
number of trainable parameters are reduced significantly which give us room to add
more complexity such self-attention layer to learn global features.
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Network Trainable Parameters Ti-6Al-4V Ti-7Al 1% Ti-7Al 3%

x2 x4 x2 x4 x2 x4

HAN 63,315,578
21.21/

0.839

17.55/

0.673

29.36/

0.919

26.54/

0.849

31.26/

0.941

28.90/

0.905

EDSR 6,355,460
21.49/

0.86

18.09/

0.718

30.06/

0.944

27.34/

0.907

32.16/

0.958

29.57/

0.932

QEDSR 1,593,092
21.44/

0.861

18.04/

0.710

29.89/

0.935

27.22/

0.904

32.05/

0.95

29.52/

0.93

QRBSA 5,952,782
21.60/

0.870

18.2/

0.730

30.20/

0.946

27.48/

0.908

32.36/

0.96

29.65/

0.94

Table 4.2: PSNR/SSIM of IPF Maps: Comparison of PSNR/SSIM of IPF
Maps and complexity for different networks for scale factors 2 and
4: Columns represent number of trainable parameters and PSNR/SSIM for different
titanium datasets. A larger number is desired for both PSNR/SSIM.

Experiments Ti-6Al-4V Ti-7Al 1% Ti-7Al 3%
QRBSA without
quat transformer

18.12/
0.718

27.27/
0.906

29.49/
0.9314

QRBSA with
quat transformer

18.2/
0.73

27.48/
0.908

29.65/
0.94

Table 4.3: PSNR/SSIM of IPF Maps: Comparison of PSNR/SSIM of IPF
Maps with and without quaternion transformer for scale factor 4:
Columns represent PSNR/SSIM for different titanium datasets. A larger number
is desired for both PSNR/SSIM.

4.4 Q-RBSA BisQue Module

We have successfully integrated the QRBSA inference module into the BisQue plat-

form, as depicted in the Figure 4.11. To utilize this feature, users are required to upload

sparsely sectioned EBSD data in numpy format and then click the ’Run’ button. The

module efficiently processes this input to produce three key outputs: Superresolved EBSD

data, also provided in numpy format, and HDF5 files corresponding to both the sparsely

sectioned input and the generated superresolved file. These HDF5 files can be readily

visualized on the BisQue platform, offering users a seamless and intuitive interface for

both input and output data, as demonstrated in the accompanying Figures 4.12 and 4.13.
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Figure 4.11: BisQue UI Interface A user interface of generating high-resolution
3D Microstructure from given sparsely sectioned 3D Microsstructure

Architecture code is publicly accessible through GitHub (https://github.com/UCSB-

VRL/Q-RBSA).

4.5 Discussion and Conclusion

Both quantitative and qualitative results demonstrate that this physics-based deep

learning framework can accurately estimate the missing xy planes (znormal) of 3D EBSD

data for multiple variants of titanium alloys, both with a coarser polycrystalline struc-

ture (Ti-7Al) and finer structure with stronger texture (Ti-6Al-4V). In 2D inferred EBSD

planes show noise around small features, mostly in the form of point and line defects in

the z-direction associated with grains whose overall shape information was lost due to
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Figure 4.12: Sparsely Sectioned Microstructure: Visualization of a sparsely
sectioned microstructure on BisQue

Figure 4.13: High Resolution Microstructure: Visualization of generated high
resolution microstructure
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omission of sample planes in low resolution. It is possible that a downsampling ap-

proach incorporating anti-aliasing could prevent this shape information loss [57], but

this approach would not be reflective of actual experimental downsampling in 3D EBSD.

This general shape loss effect, along with a larger number of small grains, varying local

crystallographic texture, and a wide range of represented crystal orientations, made the

Ti-6Al-4V the most difficult dataset for inference. This is further evidenced by a larger

number of grain boundary differences for Ti-6Al-4V in Figure 4.6, as well as a lower

PSNR score in Table 4.1. Additional noise analysis for generated xy planes is shown in

the Figure 4.9. In the future, 3D architectures and grain shape information [94] with

adaptive multi-scale imaging in z dimension can be used to improve performance as more

of this type of data becomes available. In this chapter, fixed scaling factors were employed

to downsample microstructure data. Moving forward, it will be essential to implement

adaptive scaling factors. This approach will enable the collection of high-resolution data

at smaller step sizes in areas where critical characteristics significantly influence the ma-

terial’s properties. Conversely, larger step sizes can be utilized in regions where the

information repeats and does not require high granularity. This method ensures a more

efficient and precise analysis of the microstructure, focusing on areas of importance while

conserving resources in less critical sections.

The limiting factor when using the network approach presented here on serial-sectioned

3D microstructures is the ratio of serial sectioning spacing in the low-resolution input

relative to the size of the microstructural features being imaged. For example, if the

serial section spacing is large enough to skip entire grains or microstructural features in

a material, those features will never be resolvable with super-resolution. Therefore, an

informed super-resolution scaling factor choice must be made prior to any experiment to

ensure that the low resolution input contains enough information for meaningful infer-

ence. Beyond this section depth limitation, the approach shown here is directly applicable
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to any serial sectioning technique for gathering 3D EBSD information, including FIB sec-

tioning, laser ablation, and robotic serial sectioning [65,66]. Further, data from other 3D

grain mapping techniques that rely on synchrotron X-ray sources such as diffraction con-

trast tomography (DCT) [64] or high energy diffraction microscopy (HEDM) [62,63] may

also be applicable for the infrastructure presented here. Similar approaches to this may

be particularly useful in lab source DCT experiments [95, 96], where the X-ray source

constraints limit grain mapping resolution in comparison to synchrotron sources. For

example, one could use difficult to acquire synchrotron X-ray mapping experiments as

HR data to train a network to inform LR X-ray mapping experiments collected more

routinely at the laboratory.

In summary, we have designed a quaternion-convolution-based deep learning frame-

work with crystallography physics-based loss to generate costly high-resolution 3D EBSD

data from sparsely sectioned 3D EBSD data while accounting for the physical constraints

of crystal orientation and symmetry. Alongside this, an efficient quaternion-based trans-

former block was developed to learn long-range trends and global statistics from EBSD

maps. Using quaternion convolution instead of regular convolution is critical for crys-

tallographic data, both in terms of output quality and neural network complexity, as

reducing the number of trainable parameters enables transformer addition without ma-

jor complexity burden (see Table 4.1). This framework can be directly applied to any

experimental 3D EBSD approaches that rely on serial sectioning techniques to collect ori-

entation information. In this thesis, fixed scaling factors were employed to downsample

microstructure data. Moving forward, it will be essential to implement adaptive scaling

factors. This approach will enable the collection of high-resolution data at smaller step

sizes in areas where critical characteristics significantly influence the material’s proper-

ties. Conversely, larger step sizes can be utilized in regions where the information repeats

and does not require high granularity. This method ensures a more efficient and precise
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microstructure analysis, focusing on important areas while conserving resources in less

critical sections.

4.6 Appendix

4.6.1 Quaternion Background

Quaternion Number System: A quaternion q is a four component number of the

form q = q0+iq1+jq2+kq3, where basis vectors (i, j, k) satisfy the following relationship:

i2 = j2 = k2 = ijk = −1 (4.13)

The quaternion can be represented as matrix of real numbers.



q0 q1 q2 q3

−q1 q0 −q3 q2

−q2 q3 q0 −q1

−q3 −q2 q1 q0


(4.14)

Quaternion Convolution: The difference between real-valued convolution neural

networks (RCNNs) and quaternion convolution neural networks (QCNNs) lies in their

approach to performing basic convolution operations, as illustrated in Figure 4.14. In RC-

NNs, scalar feature maps are computed by independently correlating channels of feature

maps with kernel filters, without considering inter-channel relationships. However, in

QCNNs, vector feature maps are generated using the Hamilton product between feature

maps and quaternion kernels. Both quaternion kernels and Hamilton products take inter-

channel relationships into account in quaternion convolutional neural networks. As a re-
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sult, for the same number of output channels, quaternion convolution requires one-fourth

of the kernel filters used in real-valued convolution, resulting in a four-fold reduction in

parameters. Quaternion output feature maps undergo a pooling and concatenation op-

eration to rearrange scalar and vector components of quaternion feature maps, as shown

in Figure 4.15. The concatenated quaternion feature maps are then fed into the second

layer to compute the Hamilton product with quaternion kernel filters, as shown in Figure

4.16. This process is repeated for further layers.
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Q2
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Quaternion
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Q1
Q2

Q3

Q0

Quaternion  Kernels Quaternion Feature
Maps

Hamilton Product

Real-Valued Convolution Operation Quaternion Convolution Operation

(a) (b)

dim = (4 x H x W)

dim = (1 x H x W)

dim = (1 x H x W)

dim = (1 x H x W)

dim = (4 x H x W)

dim = (4 x H x W)

dim = (4 x H x W)
dim = (1 x H x W)

dim = (1 x H x W)

1

K1

1

K2

dim = (4 x f x f)

dim = (4 x f x f)

dim = (4 x f x f)

f =  Spatial size of kernel filter  
K1 = Total number of kernel filters in real convolution
K2 = Total number of kernel filters in quaternion convolution
H =  Height of Input EBSD Map
W = Width of Input EBSD Map

1

K2

dim = (4 x f x f)

Figure 4.14: Differences between Real-Valued Convolution and Quater-
nion Convolution: Real-valued convolution operations compute correlations, which
are scalar quantities, between independent kernels and quaternion input feature maps.
In contrast, quaternion convolution operations compute the Hamilton product, which
is a vector quantity, between quaternion kernels and quaternion input feature maps.
Furthermore, quaternion convolution requires only one-fourth of the kernel filters
needed in real-valued convolution for the same number of output channels, result-
ing in a substantial reduction in total kernel filters.
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Pooling Concatenation

K2 = Total number of kernel filters in quaternion
convolution's  first layer
H =  Height of Input EBSD Map
W = Width of Input EBSD Map
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Feature Maps from

Layer 1

Pooling of Scalar and
Vector Components of

Quaternion Output
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Concatenated Quaternion Output
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K2

K2
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Figure 4.15: Pooling and Concatenation of Quaternion Feature Maps:
Following the first quaternion convolution layer with K2 filters, as illustrated in Figure
4.14, the resulting feature maps are pooled into scalar and vector components (ith,
jth, kth) of Quaternion Feature Maps, with each component having a K2 channel
dimension. These pooled features are then concatenated along the channel dimension,
resulting in a total of 4K2 channel dimensions.
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as shown in Figure 4.15, and K3 quaternion kernel filters. This results in K3 quater-
nion output feature maps, each with a dimension of (4, H, W).
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Chapter 5

3D Grain Shape Generation in

Polycrystals Using Generative

Adversarial Networks

Generative AI models significantly enhance materials discovery by overcoming the chal-

lenges of slow and expensive experimental processes. By generating detailed 3D synthetic

microstructures, these models rapidly explore complex process-structure-property rela-

tionships. Utilizing advanced algorithms and computational tools, they create accurate

representations of materials, providing a quicker, more cost-effective way to predict ma-

terial behaviors and properties.

In this chapter, we present a Generative Adversarial Network (GAN) capable of pro-

ducing realistic microstructure morphology features, a primary step to construct 3D

synthetic microstructure, and demonstrates its capabilities on a dataset of crystalline

titanium grain shapes. Alongside this, we present an approach to train deep learning

networks to understand material specific descriptor features, such as grain shapes, based

on existing conceptual relationships with established learning spaces, such as functional
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object shapes. A style-based GAN with Wasserstein loss, called M-GAN, is first trained

to recognize distributions of morphology features from function objects in the ShapeNet

dataset, and is then applied to grain morphologies from a 3D crystallographic dataset

of Ti-6Al-4V. Evaluation of feature recognition on objects showed comparable or bet-

ter performance than state-of-the-art voxel-based network approaches. When applied to

experimental data, M-GAN generated realistic grain morphologies comparable to those

seen in Ti-6Al-4V. A quantitative comparison of moment invariant distributions showed

that the generated grains were similar in shape and structure to the ground truth, but

scale invariance learned from object recognition led to difficulty in distinguishing between

the physical features of small grains and spatial resolution artifacts. The physical impli-

cations of M-GAN’s learning capabilities are discussed, as well as the extensibility of this

approach to other material characteristics related to grain morphology. The contents of

this chapter are discussed in our published paper [94].

5.1 Introduction

One of the most pervasive challenges of materials discovery and development is that

the process demands an enormous amount of time, labor, and capital. Reducing these de-

mands has been a central driver for a number of international initiatives ( [97–103]). This

challenge stems from the inefficient use of a linear approach to explore high-dimensional

materials spaces, which is compounded by critical metrics for material classes that ac-

count for both processing variations as well as complexity of application environment.

For example, there are a wide range of metal alloy compositions that can be used in

turbine engine components, and the type of alloy being used can vary widely depending

on the location and operating demands of the specific turbine section. But regardless of

composition chosen, any alloy must be able withstand the operating environment, and
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evaluations of its performance must cover thousands or even millions of manufacturing

iterations. The sheer size of these composition and application spaces places materi-

als science at a unique tipping point for the integration of machine learning to rapidly

accelerate design and discovery.

Deep learning methods have attracted attention as cost reducers in fields such as

voice, text, and image processing. Neural networks perform strongly both in accuracy

and efficiency when trained on large collections of well-labelled ground-truth data. These

networks may reliably outperform traditional algorithmic approaches and can make fur-

ther important distinctions, like the identification of specific voices, faces, or fingerprints,

with only a small amount of additional input. Neural networks can accelerate and refine

the research process by reducing the quantity of required experimental iterations and by

enhancing the accuracy and efficiency of material analyses. However, their performance

depends on the quality of material data available for training. For materials data in par-

ticular, providing sufficient amounts of meaningful information is difficult, and finding

ways to address this challenge is the goal of this study.

When considering available material data for use in deep learning approaches, the

most significant obstacles are limitations in data scope and dimensionality. Here, data

scope is defined as the breadth of readily available data, and what range of information

that data describes. Large amounts of materials data have been captured, but much of

this data is either difficult to access or is tailored to a specific purpose that limits its

broader context. In other deep learning applications, such as text and voice, a great

deal of data is made available through literary and audio collections and social media.

In materials, not all data is readily available due to the expense of data generation or

proprietary concerns, and when data is available, the wide array of collection methods

can make establishing broader connections challenging.

With regard to data dimensionality, limitations can be considered in terms of both
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variable and spatial dimensions. Variable dimensions refers to the number of different

descriptors or characteristics represented in a given dataset. This challenge is particularly

prevalent in engineering materials like the ones considered in this investigation. The vast

majority of engineering materials are polycrystalline in character, so the bulk material

is typically composed of billions of crystals that are rarely uniform in their crystallo-

graphic, morphological, or chemical properties. The effects of external environment and

test conditions (e.g. specimen geometry, surface treatment, loading conditions) must also

be considered, which adds further complexity to these material descriptors. In addition

to the number of data variables, it is also critical to consider the dimensions of physical

space being represented. In materials analysis, an important point to note is the diffi-

culty of generating and subsequent lack of three-dimensional experimental measurements,

which are essential for physically accurate neural network training. Recent experimental

advances have greatly improved volumetric materials characterization ( [62,66,104–109]),

but the quality and quantity of available data are limited by inherent restrictions, such

as costly and specialized equipment, reduced spatial/temporal resolution, limitations on

sample material/geometry, and sample destruction during characterization.

Deep learning capabilities that have been developed in other domains can be leveraged

to address the problem of limited data in the materials domain. Adapting these capabil-

ities for the characteristics of materials requires establishing a relationship between the

processing-structure-properties space of materials science and the classification spaces

used in other fields of deep learning. One such established space in deep learning is

object recognition, where semantically labeled objects are recognized by neural networks

based on the collection of features that compose that object. Approaches in this space are

readily extensible to materials structure, where relationships can be established between

microstructural morphology and other image recognition approaches that focus specifi-

cally on object shape. For example, in polycrystalline metals, much of the relationship
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between material processing, structure, and properties manifests through the shape and

arrangement of the crystalline subdomains we call grains. In the case of uniform crystal-

lization, the physics are well understood. Grains take the shape of faceted polyhedrons,

where the number of facets is dictated by impinging neighbors, and facet size and shape

are dictated by interfacial energies. Morphologically, these polyhedral shapes are rela-

tively simple, but variations in thermal and mechanical processing can drastically alter

the distribution of possible shapes, as demonstrated in Figure 5.1. Under normal growth

conditions, the most probable grain shapes are polyhedrons, but orientationally biased

mechanical or thermal processing can create conditions where anisotropic grains that

are flattened, twisted, or directionally aligned become more probable. When considered

from the standpoint of deep learning, these types of processing-structure relationships

can be seen as changes to the distribution of expected grain morphologies for a given

material system. While learning just the standard class of polyhedrons might be be a

relatively simple task, additional processing possibilities present changes to the shape dis-

tribution that vary based on the functional constraints of the applied process. This type

of constraint-based change in morphology is fundamentally similar to the learnable con-

straints for other functional object classes, and building off this conceptual relationship

is the premise for this investigation.

Here, we develop a novel network architecture that learns the shape of volumetric

data with functional constraints and applies it to the problem of grain morphology of

polycrystalline metals. This approach integrates recent advances in Generative Adversar-

ial Networks (GANs) ( [3]) into the materials domain to generate new grain morphologies

based on the distributions of training data. As grains are stochastic and valid morpholo-

gies are not always recognizable, network training and refinement was initially performed

on functional objects (e.g. chair, guitar, etc.) from a publicly available dataset built for

deep-learning-based object recognition, and the network was subsequently trained to
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Figure 5.1: Grain Distributions Across Materials and Processes: 3D
datasets collected from Ti-6Al-4V (top left), strontium titanate (top right), and ad-
ditively manufactured (AM) Inconel 718 superalloy (bottom) samples with detailed
examples of specific grains contained within. Data shown was gathered with 3D elec-
tron backscatter diffraction (EBSD). Average grain size is much larger relative to voxel
size resolution in the strontium titanate dataset compared the Ti-6Al-4V dataset, re-
sulting in fewer total grains, but better defined grain facets. The Inconel 718 sample
and the grain contained within the melt pool on the top surface of the sample are
elongated due to the fast cooling rates present in AM processes.

generate Ti-6Al-4V microstructures. The resultant grain morphologies were evaluated

for adherence to the shape constraints of actual polycrystalline metals. The results of

this analysis are discussed in detail, and the limitations and potential benefits of this

type of network-based approach are discussed in the context of the physics of crystalline

materials.

5.2 Previous Studies in 3D Object Generation

As this investigation builds on the foundations of machine learning for 3D object

recognition and synthesis, we will briefly describe relevant established approaches. Until

recently, the majority of studies on 3D object generation have focused on the retrieval or
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combination of components of the object of interest, such as in [110], [111], and [112]. In

these approaches, for a given database of shapes, a probabilistic graphical model learns

the geometric and semantic relationships that will yield a stylistically compatible object.

Taking this a step further, [113] represented geometric 3D shapes as probability distri-

butions of binary variables on a 3D voxel grid and was able to successfully demonstrate

shape completion from “2.5-dimensional” depth maps. A related investigation from [114]

proposed a network that used the ShapeNet dataset to learn a mapping from 2D images

to their underlying 3D shapes, enabling the generation of a 3D representation of an ob-

ject from an input 2D image. This led to efforts from [115–117] and [118] to generate 3D

representations from 2D images. Although these methods showed encouraging results,

most relied on some form of human supervision and did not focus on directly generating

3D objects from latent space, which can be thought of as a compressed data space used by

the network to describe different possible output of interest. In this case, a lack of focus

on latent space focus means these methods were not as well-suited for the recognition

and synthesis of broadly described stochastic objects like grain morphologies. In the con-

text of unsupervised 3D object synthesis, [119] proposed a promising autoencoder-based

network to learn a deep embedding of object shapes, which yielded then state-of-the-art

shape completion results, but overall, supervised approaches have historically had greater

success with libraries of readily distinguishable objects.

When considering GAN-based approaches for shape generation, the most relevant

approaches are from [4] and [120], which focus on 3D shape generation from a probabilistic

latent space with feature-based learning and adversarial loss components. The 3D-GAN

network from [4] generates 3D objects from a low-dimensional latent space, thus allowing

for both the sampling of objects without a reference image or CAD model as well as the

exploration of the 3D object manifold. Similarly, [120] proposed a novel 3D GAN network,

but supplemented it with a 2D image enhancer network. This enhancer network was able
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to effectively learn and feed image features into the 3D model generator to synthesize

high quality 3D data. While both of these networks deliver on their promise to provide

a solution to the 3D model generation problem, they offer somewhat limited resolution

and detail in the shapes that they generate. Furthermore, enhancement of 3-dimensional

object results using 2-dimensional supplemental images is not readily achievable with

images of materials microstructure because most, if not all, 2D microstructure imaging

techniques offer only a planar image of surface microstructure with minimal depth of field,

no photographic perspective, and no real means by which underlying 3D microstructure

can be inferred.

5.2.1 Materials-Specific Approaches

Within the materials domain, the earliest computational approaches used to generate

microstructural morphologies derive from physics-based models, which have been recog-

nized for both their high level of detail and realistic output. A study by [121] used a

Voronoi tessellation model that simulated ceramic grain boundary evolution based on

well-established equations developed by [122], [123], and [124]. Additionally, research

approaches by [125] combined Monte Carlo simulations and grain growth kinetics to

model metal crystallization. These physics-based models are promising, but often re-

quire significant computational power and detailed knowledge of the energetic of the

system. These are not always readily available, especially in more complex processing

scenarios. To avoid this knowledge and computational burden, models have also been

developed to generate microstructures based primarily on their statistical properties. For

example, [5] and [126] used statistical descriptors to generate microstructures using tes-

sellation and ellipsoid coarsening, respectively. A method for the robust comparison of

synthetic microstructures (e.g. generated by the model of [126]) with experimental results
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is described in [127], with the finding that certain morphological descriptors resulted in

improved discrimination, and that the starting shapes for grain generation impacted dif-

ferent descriptors. Approaches such as these are computationally efficient and versatile,

compared to physics-based models, but tend to result in less realistic grain morphologies

and limited accuracy in local grain environment descriptions.

Beyond physics-based models, machine learning has been employed to explore the ma-

terial microstructure space of non-crystalline materials. [128] used graph neural networks

of 3D atomic arrangements to describe general amorphous structures, such as those found

in glassy materials. These graphical descriptions were then used as predictive tools to

explore how the observed structure affects mobility and resultant glass properties. This

approach showed promise for glasses, but does not extend to the crystalline domain. In

the context of more general two-phase microstructures, [129] used 3D convolutional neu-

ral networks to characterize possible stochastic microstructures made from filtered noise.

These types of stochastic microstructures have also been investigated in 2D by [130] using

classification trees and by [131] using GANs.

Machine learning techniques have also been previously applied specifically to exper-

imental crystalline structures. Investigations by [132] compiled a database of 2D ultra-

high-carbon steel micrographs, and classified these images into microstructures based

on the distributions of their microstructural features ( [133]). In [134], a Wasserstein

GAN with gradient penalty was used to generate 2D microstructures using the database

of [132] as training data. Related to this investigation, [135] used StyleGAN to generate

various 2D microstructures, and [136] used a convolutional deep belief network to gen-

erate 2D microstructures of the same titanium alloy explored in this study. Approaches

such as these have strong experimental underpinnings; however, validation of microstruc-

tures is difficult in 2D. The challenge in 2D microstructure assessment stems from the

fact that material micrographs are planar images of solid material that offer very little
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or no perspective-based information from which 3D appearance can be inferred. For

quantitative evaluation, the challenge becomes virtually impossible, as establishing 3D

structure from 2D for anisotropic shape classes is mathematically intractable ( [137]).

In order for the output from machine learning-based models to be fully comparable to

material microstructures, generation and evaluation robust 3D information on material

microstructure.

Noteworthy advances have also been made in 3D crystalline material generation and

evaluation in property space. [138] used structural optimization to explore the microstruc-

ture space of the iron-gallium alloy Galfenol. This approach focused on techniques for

optimizing grain arrangement in the Galfenol microstructure to achieve an orientation

distribution that would improve desired properties. While this approach allows for ex-

tensive exploration of property space, the basis of the model is theoretical, and there

are no means of verifying that the proposed microstructures can be physically realized

with available processing techniques. More recently, [139] used GAN-based approaches to

generate three-phase microstructures of solid oxide fuel cells, which were then evaluated

against experimental results and similar structures generated by the statistical methods

of [126]. This approach evaluated microstructures both at the feature and property level,

and demonstrated strong representation and promising results. As the focus of the net-

work was to generate distributions of the three phases present in the fuel cell anode,

namely yttria-stabilized zirconia, nickel, and pore/void, it was tailored around producing

phase distributions specifically and did not address features within those phases. Often,

deep learning approaches rely on some form of experimental ground truth data, and for

the investigation presented here, the experimental ground truth was gathered using a

technique known as electron backscatter diffraction (EBSD). EBSD is a scanning elec-

tron microscopy technique where electrons from the microscope beam are diffracted by

a crystalline structure according to Bragg’s law ( [140]), forming a pattern that can be
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indexed to determine information about the underlying structure. This approach is a well

established crystallography technique whose capabilities are discussed in [141] and [142].

Typically, the first step in processing EBSD data is indexing, where the diffraction pattern

gathered from the microscope is mapped to a particular crystal structure and orienta-

tion. The most conventional method of indexing is mapping using a Hough transform,

but other more sophisticated mathematical and machine-learning-based approaches, such

as those presented by [21, 143, 144] and [55], allow for more efficient and higher quality

indexing with reduced error. Because indexing is a mapping of a diffraction patterns to

specific locations, all EBSD data is inherently in pixel or voxel form. After the data is

indexed, additional material information can be extracted based on the relative orien-

tations and deformation states of the mapped crystalline grain structures. Because this

study is interested in grain morphology, all ground truth data used in this study is fully

indexed and segmented into grains based on continuity of crystalline domains. However,

in the investigation presented here, much of the novelty arises not from the demonstrated

experimental application, but rather from the extensibility of the approach. By learning

morphologies from general distributions of relevant features, a network can be produced

that is applicable to a wide variety of materials systems and applications with no needed

architectural refinement.

5.3 Method

In this investigation, we demonstrate the GAN-based recognition and synthesis of

crystalline grain morphologies using learned feature distributions built on the same fun-

damental principles used for the generation of other functional objects. We start with

readily available databases of easily recognized functional objects to refine the GAN’s syn-

thesis capabilities and evaluate network performance on recognizable objects. We then
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apply the established architecture to materials systems, more specifically grain morpholo-

gies, where the scope of accessible data is limited and recognition is not straightforward.

While this is not directly equivalent to transfer learning, it demonstrates how available in-

formation databases might be used to teach relevant broader concepts to networks, which,

in the right context, can be applied to scientific problems where large-scale datasets are

not easily obtained.

5.3.1 Architecture and Training

First proposed by [3], a simple GAN consists of a generator G and a discriminator

D. The generator tries to synthesize samples that look like the training data, while the

discriminator tries to determine whether a given sample is a real sample that originated

from the ground truth data distribution or is synthesized from the generator. The dis-

criminator D then outputs a confidence value D(x) of whether input x is real or synthetic.

A basic layout of the GAN architecture is shown in Figure 5.2. StyleGAN, developed

by [145], garnered widespread attention for its life-like image quality and unsupervised

high-level attribute separation in the generated output. Because of these characteris-

tics, we used StyleGAN as the base architecture for our network. Instead of passing

a random noise vector z to the generator, z is first mapped to an intermediate latent

space W , which is transformed into spatially invariant styles y = (ys,yb). This is then

used to control the generator through adaptive instance normalization (AdaIN) at each

convolutional layer. The AdaIN is described by [145] using the form:

AdaIN(xi,y) = ys,i
xi − µ(xi)

σ(xi)
+ yb,i (5.1)

where xi is a feature map normalized separately for each instance i and then scaled and
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Figure 5.2: Generative Adversarial Network (GAN) Architecture
Overview. A layout of the architecture of a traditional GAN, as described by [3].

biased using the corresponding scalar components ys and yb from style y. Mapping to

intermediate latent space allows for disentanglement, which provides clearer tracking of

the influence of latent space variations on the generated output. For generative archi-

tectures, latent space is the random source noise used as input, and disentanglement,

as described by [145], allows for the fluctuations in this space to be separated and ap-

plied independently for different generated features. This helps produce better results

in scenarios where features are not represented proportionally to the initial sampling,

such as for the anisotropic feature distributions expected for both the functional objects

and experimental material data investigated here. Additionally, the use of style based

representation allows for better evaluation of network understanding at different feature

levels, which is particularly useful in stochastic structures of variable size, such as grains.

5.3.2 M-GAN Network

In our 3D Generative Adversarial Network (M-GAN), an initial latent space vector

z of size 512 is chosen through Gaussian sampling of latent space, similar to the work

of [145]. In their work, [145] determined that a size of 512 for z was sufficiently large to

keep all components of latent space disentangled. The generator G then maps this latent
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Figure 5.3: Generator Architecture of M-GAN. A mapping network comprised
of eight Fully Connected layers (FC) with Leaky ReLU activation function after each
FC layer takes as input a 512 dimensional latent vector z. The output is then mapped
to an intermediate latent space W, converted into styles using a learned affine trans-
formation (A), and passed through an AdaIN operation for each of the five blocks
in the synthesis network. Block 1 passes constant input through AdaIN and ReLU
activation functions, while Blocks 2-5 are deconvolution blocks progressively grown
from 8× 8× 8 → 64× 64× 64.

vector into an intermediate latent space W using a mapping network of 8 fully connected

layers with a LeakyReLU activation function after each layer. The output W is then

converted into the styles previously described as y using a learned affine transformation,

denoted as A in Figure 5.3, and these styles are used to control adaptive instance normal-

ization (AdaIN) in the synthesis network, as described in Equation 5.1. This localization

of styles better preserves the small scale physical features of each object or grain, allow-

ing for more detailed morphology output compared to other networks ( [4, 120]). Our

synthesis architecture diverges from that of StyleGAN by using blocks consisting of a

3D deconvolution passed through an AdaIN operation and ReLU activation function.

The synthesis network has a total of five blocks, with the first having a constant input

vector and normalization, and the fifth having a sigmoid activation function instead of
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a ReLU. In comparison, StyleGAN blocks use upsampling followed by two alternating

convolution layers and AdaIN operations, with noise introduced after each convolution to

add stochastic variation. However, in 3D, this noise was found to add instability during

training, and was therefore not included in the M-GAN network. Architecturally, the

discriminator is similar to that of [4] in that it consists of 5 progressive 3D convolution

layers with no downsampling. Each of these convolution layers has a LeakyReLU activa-

tion function except for the last layer, which has no activation function. The first four

layers have a kernel size of 4, stride size of 2, and padding size of 1, and the last block

has kernel size of 4 and stride size 2 with no padding. The output of this last block goes

directly into the loss function. In this investigation discriminator makes its decisions

(real vs. generated) based on collections of multiple objects from the same class, rather

than just singular instances, similar to the method presented by [146].

5.3.3 Material Dataset for Training

The data used to train M-GAN includes of a combination of object based data for

network refinement and evaluation as well as fully-indexed EBSD data for application to

material microstructures. For object-based data, six major categories from the ShapeNet

Dataset by [147] were used in the network training: car, chair, plane, guitar, sofa, and

rifle. Each category has a 128-sample training set. All objects are presented in a voxel-

based format, and each individual object instance is contained within of 64 × 64 × 64

voxel volume.

The material microstructure data used in this study was 3D EBSD gathered by J.

Wendorf, A. Polonsky, J. C. Stinville, and M. P. Echlin ( [1]) using a method developed

by [148] known as the Tribeam system, which performs rapid serial sectioning using

ablation with ultrashort pulse femtosecond lasers. The material investigated here is a
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polycrystalline wrought titanium alloy containing 6.75 wt.% aluminum and 4.5 wt.%

vanadium. This alloy, commonly referred to as Ti-6Al-4V, has applications in turbine

engines, aerospace, and medical prostheses. The grain information is gathered at the

voxel level using electron backscatter diffraction, with each voxel having a size of 1.5 µm

× 1.5 µm × 1.5 µm. Each grain is passed to the network inside a cubic volume of size

64 × 64 × 64 voxels.

The full dataset is illustrated in Figure 5.4. This Ti-6Al-4V dataset was originally

gathered to study slip behavior and long-range plastic deformation across multiple length

scales ( [149]) as well as explore how microtextured regions in titanium alloys affect overall

mechanical response ( [1, 150]). To better capture long-range mechanical response, the

sample size is relatively large compared to the grain size, so many grains are relatively

small compared to the voxel resolution and detailed grain facets are not easily resolved.

Despite these resolution limitations, this set has the major advantage of offering a large

number of grains as a good foundation for network training. In total, 84,215 grains from

this dataset are used for network training.

Stable training of the GAN was achieved by setting the learning rate for both the

generator and discriminator at 0.0002, with a batch size of 16. Similar to [4], the discrim-

inator in this approach is updated five times for each generator update and employs the

Adam optimizer described by [151] with β = 0.5. The output of the network is in a 64

× 64 × 64 dimensional space. The Wasserstein loss as described in [152] with a gradient

penalty is used for the discriminator and the generator, which are defined as follows:
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Figure 5.4: Experimental Training Set: Ti-6Al-4V dataset, whose grains were
used to train M-GAN on grain shape recognition. Sample is shown to scale in inverse
pole figure (IPF) color. The IPF color indicates the orientation for each individual
voxel, and these orientations are used in the segmentation process to identify individ-
ual grains, which are subsequently used for training.
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Here, Gθ is the generator network, Dϕ is the discriminator network, z(i)
m

i=1 ∼ p(z) is a

batch of random noise from latent space (p(z) = population distribution for latent space),

x(i) is instance i of real data from a batch of size m such that x(i)m

i=1 ∼ Pr (Pr = population

distribution of real data), ∇ is the gradient operator, λ is a gradient penalty coefficient as

described by [153], and x̂(i) is defined as ϵx(i)+(1−ϵ)Gθ(z
(i)) where ϵ is a uniform random

variable in [0,1]. This Wasserstein loss metric, also known as the ”earth-mover” metric,

quantitatively compares the difference between two distributions by considering the area
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under each distribution curve and measuring how much area would have to be moved

from one distribution for it to match the other. When applied to feature distributions,

it is a measure of how well the features in the generated data match those found within

the feature distribution of the ground truth dataset. This type of comparison uses the

ground truth data as guide for training without relying directly on one-to-one mappings

between generated and ground truth data, which enables the network to better produce

results that are similar to the ground truth without being direct copies. By definition,

this lack of a one-to-one mapping also means this approach is considered an unsupervised

learning method. Furthermore, since this approach is unsupervised, all hyperparameters

used in this study are preset before training, and all validation of data is done as analysis

on objects generated by the network during inference time.

5.3.4 Evaluation

We evaluate our network across several areas. First, we show qualitative results of

generated 3D objects from the ShapeNet dataset by [147]. Then, we evaluate the un-

supervised learned representations from the discriminator by using them as features for

3D object classification. Next, quantitative results are shown on the popular benchmark

ModelNet dataset from [113]. Finally, we apply the network approach to grain mor-

phologies from real, experimentally gathered materials data. Because grain shapes are

stochastic, direct recognition of resultant objects is not straightforward, so shape quality

must is validated by other means. Here, shapes are validated using the moment invariant

approach described in [154].

We train one M-GAN for each object category using a 512 dimensional random vector

that follows a normal distribution with mean 0 and variance 0.2. We compare our gener-

ated objects with [4], because [120] used an enhancer network and additional information
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from 2D rendered images during training. Our network synthesizes high-resolution 3D

objects (64 × 64 × 64) with detailed shape information trained from only 3D input. To

ensure that the network is not simply memorizing the training data, we analyze synthe-

sized objects using comparisons to nearest neighbors in discriminator feature space as

described by [4]. For this analysis, discriminator feature vectors are captured for both

the generated samples and ground truth data, and nearest neighbors in feature space are

determined using minimum ℓ2 distance, which is far more efficient than direct 3D object

comparison. Feature analysis shows that the generated samples were not identical to

their nearest neighbors.

To evaluate the unsupervised learned features from our network and assess perfor-

mance, we use the feature extraction approach discussed in [4] to provide a means of

comparison, as there is no established standard. In this approach, features identified in

the convolution layers of the discriminator are collected for a variety of different categor-

ically classified objects. This library of features is then integrated into a support vector

machine whose classification performance is tested using a new dataset of equivalently

classified objects. We train our M-GAN network on six object categories (bed, car, chair,

plane, sofa, table) from [4]. Each object category has 25 samples, similar to [4] in the

training set from the ShapeNet dataset.

Next, we use the ModelNet dataset from [147] to evaluate the unsupervised features

learned by our network. The ModelNet dataset has two categories: ModelNet10 (10

classes) and ModelNet40 (40 classes). ModelNet10 has a total of 3991 training samples

and 908 test samples. From this dataset, we use 100 samples from each category, totaling

1000 training samples. ModelNet40 has a total of 9843 training samples and 2468 test

samples. From this dataset, we use up to 100 samples from each category when available,

totaling 3906 training samples, as some categories had fewer than 100 samples. For

ModelNet10 and ModelNet40, we use the entire test dataset provided, though fewer
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training samples than were used by [4] and [120].

When evaluating feature extraction accuracy, to provide a fair comparison, we use the

same kernel size = {8, 4, 2} defined by both [4] and [120], as well as the defined stride =

{4, 2, 1} by [120]. We calculate features from the second, third and fourth layers of the

trained discriminator, which are then concatenated after applying max-pooling with the

defined kernel size and stride. We then train a linear Support Vector Machine (SVM) on

training features and calculate classification accuracy on the test features.

Functional object data from the ShapeNet and ModelNet sets are well suited for

network refinement and performance assessment, in part due to their easy visual recog-

nition. Grain shapes, on the other hand, have a stochastic morphological appearance,

so they cannot be easily evaluated by visual means or by direct object comparison. For

this reason, we use statistical distribution comparison of 3D moment invariants to assess

the quality of generated results for single grains. Much like the image moments used

in 2D analysis, 3D moment invariants are integration-based descriptors that numerically

quantify an object based on the distribution of its solid volume. These types of invariants

have been used previously by [155] as shape descriptors for general 3D objects, and in

materials science by [154] and [156] to describe the shapes of particles such as grains and

inclusions. Following the approach of [154], Cartesian moment descriptors µpqr take the

form:

µpqr =

∫ ∫ ∫
xpyqzrF (r)dr (5.4)

where F (r) is a characteristic function that has a value of one in material regions and

a value of zero in void regions. As all ground-truth data is in voxel-based form in this

investigation, all integrations herein are calculated as Riemann sums in voxel space rather

than as continuous integrals. Following this Cartesian moment form, µ000 is directly equal
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to the volume V of an object, and the centroid (Xc, Yc, Zc) of an object can be expressed

in the following form:

(Xc, Yc, Zc) =
(µ100

V
,
µ010

V
,
µ001

V

)
(5.5)

Working from a coordinate space originating at the centroid, the non-normalized moment

invariants O1,O2,O3 are as follows:

O1 = µ200 + µ020 + µ002 (5.6)

O2 = µ200µ020 + µ200µ002 + µ020µ002 − µ2
110 − µ2

101 − µ2
011 (5.7)

O3 = µ200µ020µ002 + 2µ110µ101µ011 − µ200µ
2
011 − µ020µ

2
101 −−µ002µ

2
110 (5.8)

These can be normalized to object volume to produce the moment invariants (Ω1,Ω2,Ω3):

(Ω1,Ω2,Ω3) =

(
3V 5/3

O1

,
3V 10/3

O2

,
V 5

O3

)
(5.9)

The distributions of these moment invariants are used to evaluate the shape quality of

the generated grains. Additional analysis of 3D moment invariants can be found in [154].

5.4 Results

5.4.1 Object-Based Data

For object-based datasets, the network showed strong performance. Examples of

generated object output based on ShapeNet training are shown in Figure 5.5, and network

performance against existing architectures is shown in the Table 5.1. With fewer training

samples than [4] and [120], we achieved 92.29% accuracy on the ModelNet10 dataset and
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85.08% accuracy on the ModelNet40 dataset. If we use a comparable training set size

to [4], we achieve a 2.29% improvement on ModelNet10 and a 3.78% improvement on

ModelNet40 dataset. Furthermore, [120] uses all available training samples as well as

additional rendered 2D images for both datasets, compared to our use of fewer training

samples and only 3D input.

CAR

PLANE

GUITAR

CHAIR

Figure 5.5: Shapenet Output. The M-GAN network generates detailed shape
information for a diverse range of 3D objects. As the network learns from shape
feature distributions, these objects are similar but not identical; such as the different
styles of chairs shown in the bottom row. The variation within a class of generated
objects that satisfies functional requirements is applied to the generation of grains
across different material and processing classes as shown in Figure 5.1.

Since all benchmarking for M-GAN was done on recognizable objects with well-defined

orientations, no rotational augmentation of datasets was used during training with ob-

jects or grains, and all results are shown in their as-generated orientation. Analysis

of generated objects indicates that the M-GAN network is not generating any rotated

objects in cases where rotation effects are distinguishable. For microstructural objects

like grains, since they are fundamentally stochastic and have no defined top or bottom,

rotation augmentation may prove beneficial as an additional training tool, especially for

anisotropic grain structures, but the influence of rotational augmentation is not explored
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Method (Supervised) ModelNet10 (%) ModelNet40 (%)

3D ShapeNets( [113]) 83.54 77.32
VoxNet ( [157]) 92.00 83.00
Geometry Image ( [158]) 88.40 83.90
PointNet ( [159]) 77.60 -
GIFT ( [160]) 92.35 83.10
FusionNet ( [161]) 93.11 90.80

Method (Unsupervised) ” ”

SPH ( [162]) 79.79 68.23
LFD ( [163]) 79.87 75.47
VConv-DAE ( [119]) 80.50 75.50
3D-GAN ( [4]) 91.00 83.30
3D-GAN ( [4]) (≈ 100 samples) 90.00 81.30
Ours (M-GAN) (100 samples) 92.29 85.08

Table 5.1: Comparison of object-based performance for the ModelNet10 and Model-
Net40 datasets using the feature extraction approach described by [4].

in this work.

5.4.2 Material Data

Following functional object generation, the network was trained on experimentally

gathered Ti-6Al-4V grain morphologies. Representative volumes of grains generated

using the M-GAN are shown in Figure 5.6. Unlike the benchmark results, which are

shown as contour displays, these figures are shown in voxel form, which matches the

representation of the ground-truth data. It should be noted that some generation artifacts

were present in 64 × 64 × 64 volume containing these grains, with the most common of

these artifacts being filled single voxels at random locations in the render volume. Some

examples of these artifacts can be seen in the contour images of the benchmark set shown

in Figure 5.5. In the case of grain volumes shown in Figure 5.6, only the largest connected

volume is shown. These representative volumes show shapes that would be reasonably

expected of grains in an equiaxed polycrystalline metal like wrought Ti-6Al-4V, but these
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representative volumes alone are insufficient verification of generated grain quality.

REAL GRAINS GENERATED GRAINS

Figure 5.6: Visual comparison of grains. Sampling of grains from real and
generated sets are shown to verify visual similarity. Voxel size is 1.5 µm × 1.5 µm ×
1.5 µm. For generated grains, only largest connected component is shown. Stochastic
nature of grains means no directly matching shapes are expected. Shape distributions
are compared in Figure 5.7.

For quantitative shape evaluation, the distributions of the 3D moment invariants

(Ω1,Ω2,Ω3) evaluated in this study are shown in Figure 5.7. The ground truth dataset

contained 84,215 grains and the M-GAN generated a total of 150,000 grains. For each

of the three invariants, less than 0.2% of the grains had values that were either infinite

or nonphysical across both the ground truth and generated sets. In observed cases, this

resulted from very small grain structures that were linear or planar in nature, which led

to extremely large errors in Riemann summation during the calculation of the invariants.

Due to their nonphysicality, these values were omitted from the statistical distribution

comparisons.

A comparison of the experimental moment invariant distributions in this investigation

compared to those analyzed in [127] shows that ones presented here are of slightly lower

average value, which indicates grains being more cube-like in shape. This is expected

though, given that the grains in this set are of lower resolution in order to capture a

large volume, and lower resolution will mean more cube-like grain features. The means

and standard deviations for each of the distributions are shown in the insets of Figure

5.7. These values show that the generated data consistently exhibited lower means and

larger standard deviations. Comparison of the distribution shapes in Figure 5.7 reveals

the cause to be that the generated data has a range of moment invariants values in the
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Figure 5.7: Quantitative evaluation of M-GAN grain generation: Moment
invariants (Ω1,Ω2,Ω3) are used to evaluate the similarity of real and generated shape
distributions, as grains shapes are stochastic and correctness is a matter of shape
probability rather than object recognition. Histograms are shown for both real (top)
and generated (bottom) grain shapes. Vertical lines indicate the mean.

region close to zero that is not seen in the real dataset.

Analysis of generated grains from these lower magnitude moment invariant values

revealed two common issues. The first is that many of the generated grains in this

regionare smaller in volume than the ground truth. In the ground truth dataset, the

smallest grains that could be reliably distinguished from artifacts and noise are on the

order of 25 voxels in volume, but many of the generated grains with low moment invariant

values had volumes of fewer than 20 voxels. While small volume alone is not necessarily a

concern, these smaller grains had a greater negative interaction with the other major issue

of generator noise, which was also noticed in the some object based data as in Figure 5.5.

Although the generator noise is not displayed in Figure 5.6 for visual clarity, this noise is

still included in the moment invariant calculation both to minimize quantitative bias and

because no steps are included in the architecture or training process to directly mitigate

noise. Noise removal with the aid of domain knowledge is a widely accepted practice
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for microstructural data, but since the goal of this work is direct evaluation of network

performance, denoising is considered a post-processing step that is outside the scope of

the network. This consideration of noise is critical because some generated grains had

very small volumes compared to the ground truth, and many more still had relatively

small volumes compared to the 64 × 64 × 64 voxel region in which they were generated.

Thus, generator artifacts located far away from the grain itself can cause significant

shifts in the centroid location used to establish the coordinate basis for the calculation

of the moment invariants, thereby creating distortions in the data. However, beyond

these factors, the overall shape and position of the main peaks for both distributions are

very similar, indicating that the M-GAN network is producing data that is similar to the

ground truth data without directly replicating it.

5.5 M-GAN BisQue Module

We have successfully developed and implemented a BisQue module for 3D grain

generation, as illustrated in the Figure 5.8. Within the BisQue user interface, users

can simply click the ’Run’ button, and the module will efficiently generate single 3D

grains from the latent space. This streamlined process on the BisQue platform offers a

user-friendly and efficient approach to 3D grain generation, making it accessible for users.

5.6 Discussion

5.6.1 Relation to Material Physics

While a quantitative analysis of morphology shows promising results, network per-

formance must be considered in the context of actual material physics. Here, the issue of

small grain volumes brings to light another challenge with GAN-based morphology syn-
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Figure 5.8: BisQue module for MGAN. This module generates a 3D single grain
from a random noise vector.

thesis, namely that of size-shape relationships. Throughout object training, the network

is constrained to a 64×64×64 voxel final output size, regardless of the object morphology

being generated. As such, it learns to recognize morphological features independent of

the object size, and voxels are assigned whatever physical length scale is necessary to

render the object in the available volume. Thus, when considering for example, cars and

guitars, the relevant features on both of these objects are learned in the context of the

available rendering scale, even though the physical size of the guitar and car are different.

Grain Size Issues: In many scenarios, size-independent morphological recognition is

an asset that offers greater versatility. However, for materials data, it has some unde-
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sired consequences. In the previously discussed case of low-volume grains, the network

generated objects smaller than the experimental resolution of the dataset, even going as

far as to produce an instance of a grain with single-voxel volume. While these results are

inaccurate with respect to the ground truth data, this is primarily due to voxel-based

resolution limitations rather than physical inaccuracies. Even for the most extreme case

of a single voxel grain, if we apply the ground truth length scale of 1.5 µm × 1.5 µm ×

1.5 µm per voxel, it is certainly possible for a grain with a diameter of 1.5 µm to exist

in a variety of real materials. However, regardless of material, that grain will possess

morphological constraints that are not represented by a single-voxel rendering. This tells

us the network has challenges with distinguishing feature constraints associated with

physics from those associated with resolution limitations. This is a challenging problem

to address in EBSD images, where data is gathered using a rastering electron beam, and

therefore will always be pixel- or voxel-based. Currently, the most promising outlook

for resolving this issue is an automated means of enhancing 3D images with resolution

artifacts, such as super-resolution, a survey of which is presented by [164]. With sufficient

resolution enhancement, small-scale grains could be presented to the network at a volume

scale where physical features can be readily recognized beyond resolution limitations. It

may be possible to remove some of these resolution limitations using either networks

that produce non-voxel output, or networks that allow for continuous resolution scaling,

such as Infinity GAN by [165]. However, achieving meaningful results on materials data

with either of these approaches would require detailed 3D information across a variety

of different length scales, which is nontrivial to obtain.

Grain Shape and Connectivity Issues: The other challenge that must be ad-

dressed for crystalline materials is grain connectivity relationships. For both the object

and material data, all learning was performed with independent renderings of single
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objects. Recognition of individual objects regardless of context can be beneficial; how-

ever, in polycrystals, the shape of each grain depends on physical interaction with its

surrounding neighbors. The network presented here has a good understanding of grain

morphology, but cannot infer how different grain shapes are related to one another in

the bulk material. It is possible that graph or label-based approaches may offer a means

to clarify these 3D connectivity relationships, but to date, the available resources for

achieving this are limited.

The presented M-GAN approach demonstrates how fundamental materials concepts,

such as grain morphology, can be learned by network-based approaches in cases where an

abundance of data is not readily available. Grain morphology is addressed herein as it

is a principal component in understanding the relationships between microstructure and

material properties. Network-based approaches such as M-GAN enable the generation of

material features (e.g. grain morphologies) in a generalizable context. This broad genera-

tive capacity expands our exploration of the processing-structure and structure-property

relationships that are critical to materials discovery and development. For example, the

M-GAN approach is directly applicable to the generation of bulk synthetic polycrystalline

microstructures from constituent components. M-GAN can readily be used to generate

collections of grain morphologies based on a distribution of interest, and these morpholo-

gies can be iteratively packed and assigned crystallographic orientations to form a bulk

polycrystalline solid. Network-based approaches like M-GAN also serve as a foundation

to explore morphology-dependent relationships, such as the formation of micro-textured

regions in titanium alloys ( [166–168]), or the formation of thermomechanically-dependent

grain structures, such as columnar grains from directional melt solidification in additive

manufactured metals ( [169–171]).
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5.7 Conclusions

In this chapter, we present M-GAN, a generative adversarial network to recognize

and synthesize 3D grain morphologies in crystalline microstructures. All objects are

generated from latent space vectors without any supplemental 2D input.

Network capabilities are demonstrated on the ModelNet benchmark datasets and

on an experimental 3D material dataset of Ti-6Al-4V. On benchmark datasets, the M-

GAN yielded more reliable discriminator classification with exposure to fewer objects,

highlighting the quality of its discriminator feature recognition. On experimental data,

the M-GAN network produced results that were morphologically similar to ground truth

without being a direct replication. The effects of generator noise produced some variation

in the moment invariant distribution compared to experimental data, particularly at low

value invariants, and most often with grains of smaller volume. These challenges with

smaller grains indicate a limitation of the network in distinguishing grain shape features

from spatial resolution artifacts.

This approach lays a foundation for the use of network based approaches to under-

stand key relationships between grain structure and properties of crystalline materials.

In future work, this approach could also be extended to relate grain shape to neighbor

connectivity in the bulk material structure.

5.8 Appendix

5.8.1 Dataset Preprocessing and Postprocessing

Preprocessing: 3D objects in ShapeNet Dataset are in binvox format, while objects

in ModelNet Dataset are in .off object format, which is converted into binvox format

using the software found at: https://www.patrickmin.com/binvox/.
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Postprocessing: The generated 3D objects from the trained network are produced

in both vtk and binvox format. ParaView software has been used to visualize vtk files

using the contour filter for shapes, and the threshold filter for grains. Binvox files are

viewed using the ViewVox software (https://www.patrickmin.com/viewvox/).

5.8.2 Network Architecture Details

Generator Network: The Generator network is composed two parts: the Mapping

network and Synthesis network.

Mapping Network: Mapping network has 8 fully connected layers of dimension

(512, 512). Each layer has Leaky ReLU activation function with leak value of 0.2. The

dimension of z, which is input to the mapping network, is (1, 512).

Synthesis Network: The synthesis network is composed of 5 styled convolutional

blocks. The first block has a constant vector of dimension (512× 4× 4× 4), AdaIN nor-

malization, and ReLU activation function. The second through fourth blocks have 3D

deconvolutions with kernel size 4, stride of 2, padding size of 1, 3D batch normalization,

AdaIn normalization and ReLU activation functions. The fifth block has a 3D decon-

volution of kernel size 4, stride size of 2, AdaIN normalization, and Sigmoid activation

function. The output dimension of the fifth layer in the Synthesis network is 64×64×64.

Discriminator Network: The discriminator network has five convolution blocks in

total. The first four have a kernel size of 4, stride size of 2, and padding size of 1, with

LeakyReLU activation function of leak value 0.2. The last convolutional block has kernel

size of 4 and stride size 2 with no padding and no activation function.
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Figure 5.9: Generated results for Rifle

5.8.3 3D Object Classification for evaluation

For each object, we take the output of the second, third and fourth convolution layers

of the discriminator and apply max pooling of kernel sizes of {8, 4, 2} and strides {4, 2, 1}

respectively. We then concatenate the outputs into a vector, which is used by a linear

SVM for training and classification. We use a Linear SVM with penalty ℓ2, squared hinge

loss, and C = 1

While our network was able to learn the shape of a sofa successfully, it struggled to

learn the attributes of a rifle. As shown in Figure 5.9, the shape of a variety of rifles are

shown, but details such as the barrel, sight, trigger guard, and the magazine are sparsely

captured.

Nearest Neighbor Test: To compute the nearest neighbor of a generated object, we

calculate features of the object and all training samples by taking the output of fourth

layer of the discriminator after applying max pooling with kernel size of 4. We then

calculate ℓ2 distance between features of a generated object and all training samples and

find minimum distance. This is done in feature space because computing ℓ2 distance

directly between 3D objects is computationally expensive.
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NEAREST NEIGHBORGENERATED

Figure 5.10: Single Grains. Nearest Neighbor Results
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NEAREST NEIGHBORGENERATED

Figure 5.11: ShapeNet Dataset. Nearest Neighbor Results
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NEAREST NEIGHBORGENERATED

Figure 5.12: ShapeNet Dataset. Nearest Neighbor Results
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

The central objective of this dissertation is to devise methodologies for generating

high-resolution microstructure generation and synthetic 3D grain generation for the ap-

plication of 3D microstructure generation. This endeavor aims to expedite the exploration

of the process-structure-property (PSP) relationship, thereby facilitating the discovery

of new materials while conserving time, labor, and capital. We first discuss microstruc-

ture data representation which are significantly different from common computer vision

dataset. The microstructure dataset contains 3D crystal orientation information at each

voxel which follows physics principles from crystallography. A Inverse Pole Figure (IPF)

mapping technique different from RGB color coding is used to visualize microstructure

dataset.

In this thesis, we discuss two key problems for the purpose of improving the explo-

ration of the PSP relationship. The first involves the generation of high-resolution 3D

microstructures using a physics-informed machine learning approach. A challenge here is

the limited availability of experimental 3D microstructure datasets. To overcome this, we
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have integrated prior physics knowledge into both the network architecture and the loss

functions of machine learning algorithms. The crystal symmetry and quaternion orienta-

tion information are used in machine learning frameworks. Unlike existing SR methods

which operate on scalar image data, the training pipeline is implemented in quaternion

orientation space. The inference pipeline produces quaternion output that is converted

into Euler angle representation and colored based on IPF projection conventions, We

demonstrate that a network underpinned by physics principles outperforms traditional

neural networks in synthesizing high-resolution microstructure datasets.

The second problem tackled in this dissertation concerns the generation of synthetic

3D grains for synthetic 3D microstructure generation. Creating individual grains with

specific crystal orientations is less complex than synthesizing entire 3D microstructures,

especially given the scarcity of comprehensive 3D microstructure datasets. To address

this, we have developed the first known generative adversarial network (GAN) capable

of realistically synthesizing individual grains from a latent space. This novel approach

establishes a foundational framework for network-based methods in understanding the

intricate relationships between grain structure and the properties of crystalline materials.

Through this research, we aim not only to advance the field of material science but

also to provide a more efficient and resource-effective pathway for the exploration and

development of new materials. Our work, at its core, seeks to bridge the gap between

theoretical knowledge and practical application in the realm of microstructure analysis.

We have provided our machine learning inference model on BisQue, an open source cloud

infrastructure.
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6.2 Future Work

For 3D microstructure generation, generating isolated synthetic grains is not suffi-

cient. We require an advanced algorithm capable of constructing a continuous 3D syn-

thetic microstructure from these grains, while adhering to the governing physical prin-

ciples of grain boundary interactions, which combined with material processing steps,

contribute to the grain morphology. Current methods [6, 172] often involve employing

random space-filling methods with simplified grain shapes like spheres or ellipsoids, over-

looking the intrinsic relationships between grains and actual shapes of grain boundaries.

One promising approach is to leverage large language models [173] to guide the as-

sembly of synthetic grains using physical principles, such as minimizing boundary energy,

ensuring a more precise representation. A pivotal element is leveraging latent space op-

erations in Large Language Models (LLMs). Latent space refers to a condensed, feature-

rich domain where complex data relationships are more tractable. The choice of latent

space not only streamlines synthesis but also has the potential to elevate the quality of

the resulting synthetic 3D microstructures. In the following, we will introduce exam-

ples of physics-based relationships that can be applied to generative models for synthetic

microstructures, encompassing techniques such as GANs, variational autoencoders, dif-

fusion models, and large language models. These approaches aim to further enhance the

accuracy and efficiency of synthetic microstructure generation for materials science.

Our initial step as shown in figure involves creating individual synthetic 3D grains,

each characterized by localized crystal orientation data. This task is simplified when

approached through generative models rather than attempting to synthesize an entire

3D microstructure directly. Here we will leverage our prior work [94] on using GANs and

explore the coupling with language models to cluster and describe the size and shape of

such grains - like words in a sentence in natural language processing. There is no well
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defined vocabulary that exists today, so we anticipate this to be an important first step

in creating a language model for materials microstructures.

In the second step as shown in figure, we tackle the challenge of assembling these

individual synthetic grains into a cohesive 3D microstructure. Conventional algorithms

[6,172] often rely on random space-filling techniques using standard geometric shapes like

ellipsoids and spheres to represent grains. Our approach involves developing a learning-

based algorithm that leverages large language models (LLM) to synthesize these single

grains. This approach will take into account the boundary relationships between adjacent

grains. Given the high-dimensional nature of grain datasets, we plan to represent indi-

vidual 3D grains within a latent space using an Encoder-Decoder architecture, enabling

efficient encoding/decoding into 3D grains.

The third step focuses on identifying the optimal arrangement of neighboring grains

for a single grain within the latent space, guided by processing parameters. LLMs will be

trained to discern the relative ordering of grains that minimizes boundary energy [174],

facilitating grain synthesis through a Decoder. Utilizing the ordered 3D grains, we will

be equipped to synthesize the final 3D microstructure in the last step.

In the final Step 4, we will use the latent vectors that have embedded relative posi-

tional information, to initiate the generation of 3D grains utilizing our decoder. Subse-

quently, we will employ a space-filling algorithm to arrange these 3D grains within the

prescribed volume. This process will result in the reconstruction of the 3D microstruc-

ture, incorporating the knowledge of learned grain and crystal orientation, ensuring their

physical feasibility.

In summary, the four steps described above enable the creation of 3D synthetic mi-

crostructures that accurately embody both local crystal orientation and grain neighbor

information. This achievement is made possible through the use of physics-guided gen-

erative models. By employing this method, we can generate 3D synthetic microstruc-
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tures that not only exhibit desired physical properties but also mirror those that can be

achieved through real-world material design processes.

The ability to generate such 3D synthetic microstructures significantly accelerates

the exploration of process-structure-property (PSP) relationships. Leveraging generative

models to access a diverse array of 3D synthetic microstructures under varying process-

ing conditions alleviates the traditional constraints faced in materials discovery, including

the slow pace of experimentation, as well as the high costs, labor, and capital require-

ments. This method offers a promising pathway to more efficient and innovative material

development.
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Figure 6.1: Synthetic 3D Microstructure Generation Process: In our frame-
work, we want to generate 3D synthetic microstructure from given processing param-
eters which satisfies certain physical properties. In the first step, synthetic grains
with crystal orientation information are generated using generative models from given
parameters. In the second step, grains are encoded into latent space. In step 3, we
learn optimal arrangement of grains using large language models in latent space. In
step 4, latent spaces are decoded into grains and packed into a 3D volume to form 3D
microstructure.
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[1] S. Hémery, A. Näıt-Ali, M. Guéguen, J. Wendorf, A. Polonsky, M. Echlin,
J. Stinville, T. Pollock, and P. Villechaise, A 3d analysis of the onset of slip
activity in relation to the degree of micro-texture in ti–6al–4v, Acta Materialia
181 (Dec., 2019) 36–48.

[2] M. Charpagne, J. C. Stinville, A. T. Polonsky, M. P. Echlin, and T. M. Pollock, A
multi-modal data merging framework for correlative investigation of strain
localization in three dimensions, JOM 73 (Sept., 2021) 3263–3271.

[3] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio, Generative adversarial nets, in Advances in Neural
Information Processing Systems 27 (Z. Ghahramani, M. Welling, C. Cortes, N. D.
Lawrence, and K. Q. Weinberger, eds.), pp. 2672–2680. Curran Associates, Inc.,
2014.

[4] J. Wu, C. Zhang, T. Xue, B. Freeman, and J. Tenenbaum, Learning a
probabilistic latent space of object shapes via 3d generative-adversarial modeling,
in Advances in Neural Information Processing Systems 29 (D. D. Lee,
M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, eds.), pp. 82–90. Curran
Associates, Inc., 2016.

[5] R. Quey, P. Dawson, and F. Barbe, Large-scale 3d random polycrystals for the
finite element method: Generation, meshing and remeshing, Computer Methods in
Applied Mechanics and Engineering 200 (2011), no. 17-20 1729–1745.

[6] M. A. Groeber and M. A. Jackson, Dream. 3d: a digital representation
environment for the analysis of microstructure in 3d, Integrating materials and
manufacturing innovation 3 (2014), no. 1 56–72.

[7] A. E. Robertson, C. Kelly, M. Buzzy, and S. R. Kalidindi, Local-global
decompositions for conditional microstructure generation, Acta Materialia (2023)
118966.

[8] D. K. Jangid, N. R. Brodnik, M. P. Echlin, C. Gudavalli, C. Levenson, T. M.
Pollock, S. H. Daly, and B. Manjunath, Q-rbsa: high-resolution 3d ebsd map

136



generation using an efficient quaternion transformer network, npj Computational
Materials 10 (2024), no. 1 27.

[9] A. Senthilnathan, P. Acar, and M. D. Graef, Markov random field based
microstructure reconstruction using the principal image moments, Materials
Characterization 178 (Aug., 2021) 111281.

[10] T. Hsu, W. K. Epting, H. Kim, H. W. Abernathy, G. A. Hackett, A. D. Rollett,
P. A. Salvador, and E. A. Holm, Microstructure generation via generative
adversarial network for heterogeneous, topologically complex 3d materials, JOM
73 (Dec., 2020) 90–102.

[11] A. Brust, E. Payton, T. Hobbs, V. Sinha, V. Yardley, and S. Niezgoda,
Probabilistic reconstruction of austenite microstructure from electron backscatter
diffraction observations of martensite, Microscopy and Microanalysis 27 (Sept.,
2021) 1035–1055.

[12] H. Cao, C. Tan, Z. Gao, Y. Xu, G. Chen, P.-A. Heng, and S. Z. Li, A survey on
generative diffusion model, arXiv preprint arXiv:2209.02646 (2022).

[13] J. Ho, A. Jain, and P. Abbeel, Denoising diffusion probabilistic models, Advances
in neural information processing systems 33 (2020) 6840–6851.

[14] K. Kvilekval, D. Fedorov, B. Obara, A. Singh, and B. Manjunath, Bisque: a
platform for bioimage analysis and management, Bioinformatics 26 (2010), no. 4
544–552.

[15] D. K. Jangid, N. R. Brodnik, M. P. Echlin, S. Daly, T. Pollock, and
B. Manjunath, Titanium 3d microstructure for physics-based generative models: a
dataset and primer, in 1st Workshop on the Synergy of Scientific and Machine
Learning Modeling@ ICML2023, 2023.

[16] N. R. Council, Integrated Computational Materials Engineering: A
Transformational Discipline for Improved Competitiveness and National Security.
The National Academies Press, Washington, DC, 2008.

[17] A. J. Schwartz, M. Kumar, B. L. Adams, and D. P. Field, Electron backscatter
diffraction in materials science, Electron Backscatter Diffraction in Materials
Science (2009) 1–403.

[18] N. C. Krieger Lassen, D. Juul Jensen, and K. Conradsen, Image processing
procedures for analysis of electron back scattering patterns, Scanning microscopy 6
(1992), no. 1 115–121.

[19] B. L. Adams, S. I. Wright, and K. Kunze, Orientation imaging: The emergence of
a new microscopy, Metallurgical Transactions A 24 (Apr., 1993) 819–831.

137



[20] M. A. Jackson, E. Pascal, and M. D. Graef, Dictionary indexing of electron
back-scatter diffraction patterns: a hands-on tutorial, Integrating Materials and
Manufacturing Innovation 8 (May, 2019) 226–246.

[21] W. Lenthe, S. Singh, and M. D. Graef, A spherical harmonic transform approach
to the indexing of electron back-scattered diffraction patterns, Ultramicroscopy 207
(Dec., 2019) 112841.

[22] Z. Ding, C. Zhu, and M. D. Graef, Determining crystallographic orientation via
hybrid convolutional neural network, Materials Characterization 178 (Aug., 2021)
111213.

[23] M. P. Echlin, A. T. Polonsky, J. Lamb, R. Geurts, S. J. Randolph, A. Botman,
and T. M. Pollock, Recent developments in femtosecond laser-enabled TriBeam
systems, JOM 73 (Nov., 2021) 4258–4269.

[24] S. J. Randolph, J. Filevich, A. Botman, R. Gannon, C. Rue, and M. Straw, In
situ femtosecond pulse laser ablation for large volume 3d analysis in scanning
electron microscope systems, Journal of Vacuum Science & Technology B 36
(Nov., 2018) 06JB01.

[25] D. Rowenhorst, A. D. Rollett, G. S. Rohrer, M. Groeber, M. Jackson, P. J.
Konijnenberg, and M. D. Graef, Consistent representations of and conversions
between 3d rotations, Modelling and Simulation in Materials Science and
Engineering 23 (Oct., 2015) 083501.

[26] M. De Graef, “Marc degraef’s 3d rotations github repository.” Accessed: 2023-05.

[27] D. K. Jangid, N. R. Brodnik, M. G. Goebel, A. Khan, S. Majeti, M. P. Echlin,
S. H. Daly, T. M. Pollock, and B. Manjunath, Adaptable physics-based
super-resolution for electron backscatter diffraction maps, npj Computational
Materials 8 (2022), no. 1 255.

[28] T. Parcollet, Y. Zhang, M. Morchid, C. Trabelsi, G. Linarès, R. De Mori, and
Y. Bengio, Quaternion convolutional neural networks for end-to-end automatic
speech recognition, arXiv preprint arXiv:1806.07789 (2018).
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