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Abstract

Multiple sclerosis (MS) is a common autoimmune disease that targets myelin in the central 

nervous system (CNS). Multiple GWAS in the last 10 years have uncovered more than 200 loci 

that independently contribute to disease pathogenesis. As with many other complex diseases, risk 

to MS is driven by multiple common variants whose biological effects are not immediately clear. 

This review will present a historical perspective on the progress made on MS genetics and discuss 

current work geared towards creating a more complete model that accurately represents the genetic 

landscape of MS susceptibility. Such a model necessarily includes a better understanding of the 

individual contributions of each common variant to the cellular phenotypes, and interactions with 

other genes and with the environment. Future genetic studies in MS will likely focus on the role of 

rare variants and endophenotypes.
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MS is a genetic disease

Multiple sclerosis (MS) is a chronic disease of the central nervous system (CNS) that affects 

more than two million individuals worldwide [1, 2]. MS is typically diagnosed between the 

third and forth decade of life, occurs more frequently in women than men, and is considered 

the most common cause of non-traumatic neurological disability in young adults. Although 

the trigger(s) of MS remains unknown, its pathogenesis is best explained by a multifactorial 

model that incorporates interactions between genetic, epigenetic, and infectious, nutritional, 

climatic, or other environmental influences including Epstein Barr virus (EBV) infection, 

sun light exposure and smoking [3–7]. This array of factors results in the loss of immune 

homeostasis and self-tolerance manifested in brain and spinal cord infiltration by activated 
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peripheral mononuclear cells, and the development of unregulated pathologic inflammatory 

responses against structural components of the CNS. Myelin loss, gliosis, and the resulting 

axonal pathology culminate in progressive, often severe neurological dysfunction. Emerging 

data show that the neuroinflammation and neurodegeneration that occur in MS are 

overlapping and have a complex dependence [8–11] but the autoimmune model of 

pathogenesis has set early the tone for immunotherapy as the primary clinical management 

strategy, first by global immune-suppression using aggressive anti-inflammatory drugs, and 

more recently by selectively targeting specific elements of the immune response [12–15]. 

The recognition that axonal damage unresponsive to immunotherapy is the main driver of 

disability in MS has brought the need to emphasize the genetics of grey and white matter 

cell death and repair as pressing research frontiers in this disease.

Heritable contributions to MS risk are undisputable. Pivotal epidemiological data consistent 

with a prominent role of genetic factors in MS include the high disease prevalence in distinct 

ancestral groups (particularly those of northern European origin) compared with others (e.g. 

Africans and Asians), in some cases irrespective of geographic location. Remarkably, the 

prevalence of MS appears to have steadily increased over the past century; this increase has 

apparently occurred primarily in women [16–18] and in regions previously considered low-

incidence [19, 20]. The higher prevalence rates (140–250 per 100,000) are still found in 

northern Europeans and in whites living in the northern US and Canada [2, 21]. In contrast, 

low prevalence rates are found in Asian countries (e.g. 6 per 100,000 in Japan) and native 

populations across the Americas and Oceania [22]. Notwithstanding difficulties in 

surveillance, MS is almost non-existent in black Africans and early estimates in the US 

suggested that the disease is significantly less prevalent in admixed African Americans than 

in European Americans (relative risk of 0.64 [23]). However, more recent studies are 

challenging this long-held belief, suggesting that MS incidence in African Americans may 

be equal to, or potentially even higher than in European Americans [24] [25]. Furthermore, 

compared with Europeans, African Americans also carry a greater risk of ambulatory 

disability that may be at least in part, genetically determined [26, 27].

Analogous to other autoimmune diseases, individuals with MS tend to cluster in families. 

Multiple studies have shown for example that monozygotic twins have a higher concordance 

rate (20% – 30%) compared to dizygotic twins (2% – 5%), providing strong support for a 

significant but complex genetic etiology in MS [28–30]. Equally important, siblings of an 

affected individual are at least seven times more likely to develop MS than the general 

population [31, 32]. Second and third degree relatives, but not spouses, carry a modest 

increased risk [33, 34], also in agreement with genetic factors causing the familial clustering. 

Altogether, the population and family data lead to a broad acceptance that the MS-prone 

genotype results from multiple independent DNA variants relatively frequent in the 

population [35]. Recognizing the influence of specific HLA variants within the MHC gene 

complex (chro 6p21) in MS susceptibility in the early 1970’s represented the first empirical 

demonstration linking disease risk with common genetic variation, but it was the polygenic 

model of MS heritability that provided the theoretical justification for assembling multi-

center large DNA datasets to pursue genome-wide association studies (GWAS).
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Ten years of GWAS in MS

The first concerted efforts to identify susceptibility genome-wide were done through linkage 

analysis in multicase-families. These studies failed to identify any consistent statistically 

significant signal [36–38]. Yet, a suggestive LOD score found in the HLA region was later 

confirmed in larger studies, providing a statistical road map to take full advantage of the 

emerging microarray technology [39, 40]. The first GWAS in MS was completed by the 

International Multiple Sclerosis Genetics Consortium (IMSGC) on subjects from the US and 

UK using an unorthodox family-based (MS patients and both parents) study design for 

discovery coupled with case-control replication [41]. A number of GWAS and large-scale 

targeted studies followed in the ensuing 10 years [42–48], culminating in the collation of a 

genetic dataset representing 47,351 MS subjects and 68,284 controls that showed 

unequivocal statistical evidence for the association of 200 autosomal susceptibility variants 

outside the MHC, one chromosome X variant, and 32 independent associations within the 

extended MHC [49]. Altogether, different measures of the heritability explained by all 

associations are still in the 20–30% range, of which a substantial proportion can be assigned 

to the MHC region. While the explanation for this missing heritability may be rooted in 

gene-gene, gene-environment interactions, and epigenetic factors, it is also conceivable that 

the early measures of heritability were overestimated.

The power of genetic association studies mostly depends on 3 variables: effect size, sample 

size, and allele frequency. Initial power calculations for MS estimated that to detect an 

association with OR>1.2 investigating common variants (those with minor allele frequency 

> 5%) 10,000 samples would be required to ensure that a p-value of 10−7 is a hundred times 

more likely to be true than false (in contrast, the posterior odds of the same p-value with 

only 2000 patients would be in favor of a false discovery) [35]. While in later years a p-value 

threshold of 5 10−8 for GWAS emerged as a consensus [50], a systematic analysis of 

published studies suggested a further relaxation of this p-value would result in the discovery 

of additional genuine associations [51].

When all MS associations are analyzed by year of discovery (a proxy for study size), they 

show an ever-decreasing median odds ratio (OR; a measure of effect size) (Fig 1). For 

example, the association with HLA-DRB1*15:01 has an OR∼3.5 and was first reported in 

1972 with just a few hundred cases, while the first discovered non-HLA loci (in 2007) have 

OR∼1.15 and nearly 1000 cases were needed. The most recent studies (2011, 2013 and 

2017) analyzed tens of thousands of cases (10,000, 15,000 and 40,000 respectively), which 

enabled the reporting of statistically replicated signals down to OR=1.05. This asymptotic 

trend toward OR∼1 also means that the cost:benefit incentive for performing additional 

GWAS searching for additional common susceptibility signals in Europeans may no longer 

be justified or realistic. Associations in that low effect size-range mean that those variants 

are almost as frequent in cases as they are in controls thus raising the argument of whether 

they are biologically relevant. Quantitative risk scores have been developed to assess the 

significance of the “genetic load” of individual patients and whether all associations count 

equally towards risk [52, 53]. However, at least in these early versions, these algorithms are 

not able to accurately predict risk of individual subjects, and thus are not yet an option to be 

used in the clinic for precision medicine purposes.
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However, this does not mean the GWAS era is over in MS. Due to inherently different LD 
structures, studies of other populations (African-American/European, Hispanics, or Asians) 

is a meritorious proposal for fine-mapping and identification of population-specific effects, 

notwithstanding the difficulties in assembling the required large DNA sample sets [54, 55]. 

Likewise, the study of disease heterogeneity (clinical subtypes or endophenotypes among 

cases) by GWAS is a valid approach with high potential for discoveries of disease modifiers, 

particularly with the large cohorts that have been already assembled. Here, accurate and 

quantitative description of the phenotypes, beyond whether a subject has the disease or not, 

is crucial to success. Finally, the search for rare(r) variants by exome sequencing or similar 

approaches is an active field of investigation.

Nearly all the identified associations map to non-coding regions of the genome, either in 

intragenic or intergenic regions. Naturally, those mapping to intragenic regions were 

explored first (IL7RA, TNFSF10, etc.) as their relationship to function is thought to relate to 

splicing, mRNA stability or promoter activity of the gene in question. However, the vast 

majority of associations lie in genomic regions distant from any known gene. In those cases, 

the most likely explanation is that they modify regulatory sites and indirectly influence gene 

activity. Examples of regulatory regions include open chromatin, histone modifications, 

enhancers, and repressors. Efforts to integrate statistical evidence of association with their 

potentially regulatory effect are underway. In the most recent MS GWAS, an analysis of 

open chromatin regions was performed using DNase I hypersensitivity data collated from 56 

tissues from the NIH Roadmap Epigenomics project (REP) [56]. For each tissue, the 

proportion of SNPs in the list that were located on DHS regions to the proportion of all 

SNPs located on DHS regions active in that tissue were compared. Notably, statistically 

significant enrichment was observed only in 9 cells from the immune system, including 

CD3, CD4, CD8 (T cells), CD14 (monocytes) and CD19 (B cells) [49]. This finding 

highlights the immune nature of genetic MS susceptibility.

Sharing with other autoimmune diseases

One salient characteristic of the MS susceptibility map is the large proportion of the 

associations (either the exact same variant, or within the same gene or locus) that are shared 

with other autoimmune diseases, such as type 1 diabetes mellitus (T1D), rheumatoid arthritis 

(RA), systemic lupus erythematosus (SLE), and Crohn’s disease (CD), among others. 

Interestingly, some of these shared associations confer risk for one disease but protection for 

another. For example, allelic heterogeneity was reported in the IL2RA locus, where 

rs11594656-A was shown to be associated with susceptibility to one disease (MS) and 

protection to another (T1D). Furthermore, rs41295061-A only conferred susceptibility to 

T1D but not MS. Finally, rs2104286-G was only associated with T1D [57]. While somewhat 

surprising at first, genetic and allelic heterogeneity across autoimmune diseases is now 

recognized to be a distinctive feature of this group of disorders.

Figure 2 shows associated genes for most autoimmune diseases with GWAS data (obtained 

from the GWAS Catalog). The figure clearly shows a core of shared loci (blue triangles) and 

a number of disease-specific ones represented by different colors (MS in yellow). This 

remarkable sharing is the highest among the complex diseases, including cancers, 
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neurological and metabolic (data not shown). This particular architecture confirms that MS 

is at its core an autoimmune disease and strongly suggests that susceptibility to 

autoimmunity is an inherited risk which later in life may be compounded and shaped by 

additional genetic (and epigenetic) determinants and environmental exposures to ultimately 

define the predominant effector mechanism (cellular vs. humoral) and target organ of the 

autodestructive process.

From mapping to function

One of the most difficult steps in any GWAS is to infer the biologically relevant 

consequences of each statistical association. Given that the majority of associations map to 

non-coding regions, in the absence of obvious functional signals, earlier studies simply 

reported as candidate causative the closest gene(s) to the most significant independent effect. 

However, with continuous improvement in our understanding of the molecular machinery of 

gene regulation it has now become clear that this crude approach needs further refinement. 

One way to confirm the functional effect of genetic associations is to conduct in-vitro or in-

vivo experiments in which the presence of the variant is studied in the context of expression 

of the putative regulated gene target(s). The first such demonstration in MS was the 

discovery that rs6897932, a polymorphism located in chromosome 5p13.2 and previously 

associated with disease susceptibility (OR= 1.18) [41] influenced the function of interleukin 

7 receptor alpha gene (IL7RA). Specifically, inheritance of the risk allele (C) disrupts a 

splicing acceptor site and results in transcriptional skipping of exon 6 of the gene, thus 

altering the relative amounts of soluble and membrane bound isoforms of the gene [58]. 

More recently, several SNPs within the RNA helicase DEAD box polypeptide 39B 

(DDX39B) gene were shown to be associated with MS risk in a meta-analysis [59]. In 

particular, rs2523506-A --located within the 5’UTR of this gene-- was shown to reduce 

mRNA translation of DDX39B, which is in turn, a potent activator of IL7R exon 6 

transcription. This example provides functional evidence that two associated loci can work 

together to confer susceptibility to MS. Given the large number of independent associations, 

and the networked molecular pathways that underlie cellular behavior, this example may 

only be the tip of the iceberg in unraveling the complex genetic architecture of MS.

Another well-characterized example is the intronic SNP rs1800693 in the tumor necrosis 

factor receptor super family 1A (TNFRSF1A) gene. In this case, the risk allele also results in 

skipping of exon 6 and the production of a novel soluble form of the TNF receptor. This 

soluble protein is able to inhibit TNF signaling inside the cells, mirroring somehow, the 

exacerbating effects of TNF-blocking drugs on MS course [60].

One of the most complex regions in the MS susceptibility map is 1p22.1, which has been the 

subject of several reports with seemingly contradictory results, i.e. different genes in the 

locus were linked to the association signal [61–64]. In this locus, GWAS meta-analysis 

identified multiple statistically independent genome-wide effects, three of which were found 

under the same association peak. In 2011 the disease-associated SNP rs11804321, which is 

located in the last intron of the ecotropic viral integration site 5 (EVI5) gene, was shown to 

overlap with an insulator element that modulates the expression of the neighboring GFI1 via 

the transcriptional repressor CCCTC-binding factor (CTCF) [64]. More recently, it was 
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reported that the non-synonymous, strongly associated exonic SNP rs11808092 in the EVI5 
gene itself induces changes in superficial hydrophobicity patterns of the coiled-coil domain 

of EVI5 protein, which, in turns, affects the EVI5 interactome. In particular, this work 

showed that EVI5 protein bearing the risk allele selectively interacts with sphingosine 1-

phosphate lyase (SGPL1)–an enzyme important for the creation of the S1P gradient, which 

is relevant to adaptive immune response and the therapeutic management of MS [62].Thus, 

it is conceivable that the association peak in this region truly represents multiple independent 

functional effects.

A specific DNA polymorphism in TNFSF113B, insertion-deletion GCTGT->A (BAFF-var), 

was recently reported to be associated with MS risk in Sardinians [65]. Whereas the 

frequency in Sardinians is approaching 30%, presumably as a result of environmental 

pressures, BAFF-var frequency in other ancestral groups, including Europeans, ranges from 

less than 1% to 6%. TNFSF113B encodes the cytokine BAFF, which belongs to the TNF 

ligand super-family. BAFF is expressed in B lineage cells and acts as a potent B cell 

differentiator and activator. Noteworthy, BAFF-var results in a shorter transcript that escapes 

microRNA inhibition, resulting in increased production of soluble BAFF. In addition to 

disease risk, BAFF-var was shown to be significantly associated with several 

endophenotypic traits, such as B cell and monocyte counts and total IgG/IgA/IGM levels. 

The authors hypothesize that BAFF-var carriers would have a weaker response to B-cell 

depleting therapies due to an accelerated resurgence of memory B cells.

Additional studies with individual risk variants have been performed but our current 

understanding of the function of each bonafide susceptibility variant in the molecular 

pathogenesis of MS is merely superficial. Moreover, since DNA variants are likely to act in 

concert to confer risk, studies on their interaction and on how biological pathways are 

affected by them are needed.

Gene environment interactions in MS

A reasonable interpretation of the incidence increase and distinctive geo-prevalence 

distribution of MS implicates precipitating environmental or lifestyle triggers and/or the 

disappearance of protective environmental factors. The biological interactions between these 

environmental factors and genetic variance could also explain the inherent complexity of MS 

as a genetic trait. In recent years, several non-genetic risk factors for MS have been 

identified. These include vitamin D deficiency, exposure to the Epstein Barr virus (EBV) 

after early childhood and manifestations of infectious mononucleosis, and cigarette smoking 

[66, 67]. Although the causality of these associations remains somehow controversial, there 

is a justifiable interest in formally assessing the additive interactions between exposure and 

the emerging MS-susceptibility DNA map [68]. These studies have been limited to HLA 

genes so far, with positive results reported for active and passive smoking, EBV infection 

and infectious mononucleosis, and childhood/adolescent obesity [reviewed in [5]]. For 

example, in a pooled analysis of six datasets, smokers carrying HLA-DRB1*15 and lacking 

HLA-A*02 had a 13-fold increased disease risk compared with never smokers without these 

genetic risk factors (OR 12.7, 95% CI 10.8–14.9) [69]. Novel modeling approaches will 
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afford the analysis of gene-environment interactions genome-wide [70], potentially 

addressing an important knowledge gap in the understanding of MS heritability.

From individual loci to pathways and beyond

The multiple efforts in mapping MS susceptibility loci have succeeded in identifying more 

than 200 independent associations. Without an elaborated analysis, the overall flavor of the 

associations can be assumed to be heavily immunological. Furthermore, several associated 

SNPs have been shown to be eQTL in different cells of the immune system. For example, 

associated variants that are eQTLs for genes like IFITM3, CD37, and CD6 in CD4+ T cells 

strongly suggest that they may have an effect in modulating adaptive immune responses. 

Further, eQTL variants in or near CLECL1, RGS1, and MERTK in CD14+ monocytes 

suggest that the innate immune system might also be involved. Notably, variants in genes 

expressed in the central nervous system (CNS) are far less common in these studies, thus 

supporting a model in which genetic susceptibility to MS is mediated primarily by sustained 

dysregulation of immune responses over several decades before clinical symptoms appear.

However, as described above, the functional consequences have been described for only a 

handful of loci. Another way to contribute to the interpretability of genetic associations is to 

conduct pathway analysis. In its simplest form, pathway analysis is the search for 

enrichment of associated signals at or near genes with similar or complementary functions. 

Analogous to how large gene sets from transcriptomics data are analyzed, associated 

polymorphisms can be mined for their effects on genes from common predefined processes 

like gene ontologies or biological pathways. The main challenge with GWAS signals is that 

the affected gene(s) is not always obvious. While some analyses focus on the closest gene to 

the risk-associated SNP, it has now become clear that conserved motifs from promoters, 

enhancers and regulatory elements can be quite far away from the target gene(s). Modern 

approaches will likely incorporate this type of information from projects like REP [56], 

Encyclopedia of DNA elements (ENCODE) [71, 72] and the International Human 

Epigenome Consortium (IHEC) [73]. Once the SNP-to-gene mappings are performed in a 

biologically meaningful way, enrichment of the putative genes in specific pathways can be 

evaluated [74, 75].

Instead of performing enrichment analysis with canonical pathways (an approach that could 

lead to biased results based on our current knowledge) we and others proposed to merge the 

statistical evidence of association with the biological evidence of interaction at the protein 

level by virtue of a protein interaction network (PIN) [76–79]. The main question posed by 

this approach is whether genes known to be regulated by risk SNPs are more likely to 

interact among them than what would be expected by chance. A significantly higher number 

of interactions would indicate that those genes are likely participating in a common 

biological process (independently of whether that pathway was described in a database or 

not). We have termed this approach PIN-based pathway analysis (PINBPA) and have created 

a user-friendly analysis tool (as an App for the software Cytoscape, http://

www.cytoscape.org), which has more than 4,000 users worldwide [80, 81].
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To provide a more accurate representation of the overall risk posed by MS susceptibility 

loci, we propose an approach that integrates PINBPA with cell specific regulatory signals 

(Figure 3, Key Figure). Furthermore this approach can also be employed to compute 

personalized individual’s risk profile, an area of much interest within the precision medicine 

community.

Concluding remarks

It is hard to argue against the contribution of common genetic variation to the susceptibility 

of MS. While discovery of non HLA-related loci lagged for some time, MS is one of the 

great successes of the GWAS era in human genetics. The impressive pace of discovery in the 

last 10 years highlights the need for collaboration, as the number of cases necessary to 

achieve statistical power is only possible in the context of international consortia.

While additional susceptibility GWAS focusing on common variants will likely be more 

sporadic in the future, there is still much to be done (See Outstanding Questions Box). As 

efforts on precision medicine evolve, we anticipate that the study of non-European 

populations will take a more prominent role. Also, studies of rare variants will likely be 

undertaken, either by whole genome or exome sequencing, or targeted re-sequencing efforts. 

Similarly the contribution of genetic variation to endophenotypes has not yet been fully 

explored and with the advent of wearables and other digital technology that can precisely 

sense and record internal variables (gait, vision, MRI, micro-movement detection, etc.), we 

anticipate these studies will see much development.

Finally, the development of affordable and massively parallel sequencing technologies has 

enabled the exploration of genomes other than our own, giving birth to the field of 

metagenomics. It is expected that in the near future large studies will be carried out to 

characterize the genomes of all microscopic entities that co-exist with humans (e.g. bacteria, 

archea, viruses, etc.) and their potential relationship to disease triggering or perpetuation.

In summary, the genetics architecture of MS has been largely unraveled by international, 

collaborative efforts. The next frontier seems to be the identification of their functional 

consequence, the pathways affected by these variants, and finally, the integration of multi-

modal data sources into a subject’s medical record, a process that could bring the promise of 

precision medicine in MS one step closer.

MHC Box

GWAS have confirmed that the main MS susceptibility association signal genome-wide 

maps to the HLA-DRB1 locus in the Major Histocompatibility Complex (MHC). This 

region is located on the short arm of chromosome 6 at p21.3, spans almost 4000 KB of 

DNA, and contains ∼165 closely linked genes, about half having pivotal roles in the immune 

system [82]. These include the HLA genes, which have been extensively studied as the 

principal determinants of allogeneic transplantation outcomes [83]. The polymorphism of 

many of the HLA genes is extraordinary, with more than 14,000 alleles identified to date; 

more than 100 infectious, autoimmune and inflammatory disease phenotypes, including MS, 

as well as drug reactions and cancers are associated with HLA genes variation [84, 85]. The 
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association of the HLA locus with MS risk was first described several decades ago [86] and 

since then has been observed across all populations studied [87]. HLA-DRB1 allelic 

heterogeneity vis-a-vis MS risk and copy number effects have been described [88]. 

Individuals who are HLA-DRB1*15:01 homozygotes carry a high-risk genotype with ORs 

exceeding 7.0, compared to a range between 3.5 and 5.0 for heterozygotes HLA-
DRB1*15:01/X. In addition to risk, HLA-DRB1*15:01 has been associated with phenotypic 

markers of disease severity [89]. A decade long effort of genomic screens provided 

statistical evidence for over 30 independent allelic and genetic associations within the 

extended MHC region. Hierarchical allelic lineages and epistatic effects affecting risk are 

described but poorly understood [90, 91]. It is sobering to recognize that despite the fact that 

examination of HLA variation at this level has been performed in MS cohorts comprised of 

many thousands of individuals, a complete understanding of the role of the MHC in disease 

pathogenesis remains elusive.
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Glossary

self-tolerance
Immunological tolerance is the failure to mount an immune response to an antigen. Self-

tolerace refers to the (normal) failure to respond to one own’s antigens, thus avoiding avoid 

autoimmunity

Gliosis
A process leading to scars in the CNS that involves the production of a dense fibrous 

network of neuroglia (supporting cells) in areas of damage. In MS gliosis ensues after 

axonal loss

GWAS
Genome wide association study. This strategy is an examination of a genome-wide set of 

genetic variants in different individuals to see if any variant is associated with a trait. 

GWASs typically focus on associations between single-nucleotide polymorphisms (SNPs) 

and traits like major human diseases, but can equally be applied to any other organism

HLA
The human leukocyte antigen (HLA) system is a genomic locus encoding the major 

histocompatibility complex (MHC) proteins in humans

LOD
Logarithm of the odds ratio (OR). In genetics, the OR is one way to quantify how strongly 

the presence or absence of a given phenotype is associated with the frequency of a particular 

allele in a specific population

MHC
The major histocompatibility complex (MHC) is a set of cell surface proteins essential for 

the acquired immune system to recognize foreign molecules in vertebrates, which in turn 
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determines histocompatibility. Failure to match HLA types between donor and recipient in 

an organ or tissue transplant can result in rejection

Heritability
Is a statistical term to represent the proportion of phenotypic variance attributable to genetic 

variance

Splicing acceptor site
In the splicing of RNA, the site at the 3' end of an intron.

Interactome (protein)
The entire set of molecular interactions of a cell or target protein.

LD
Linkage disequilibrium. In population genetics, LD is the non-random association of alleles 

at different loci in a given population

eQTL (expression quantitative trait loci)
Regions of the genome containing DNA sequence variants that influence the expression 

level of one or more genes

Metagenomics
The study of genetic material recovered directly from environmental samples. In this work, 

it refers to the genomes of bacteria and other microorganisms inhabiting in or around the 

human body

REP
Roadmap Epigenomics Project (http://www.roadmapepigenomics.org). An NIH sponsored 

initiative to produce a public resource of human epigenomic data to catalyze basic biology 

and disease-oriented research
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Trends Box

• More than 200 loci have been associated with MS susceptibility to date (half 

of them in the last 4 years alone).

• There is extensive sharing of genetic risk variants between MS and other 

autoimmune diseases. This suggests a model in which a general risk for 

autoimmunity is inherited. Additional genetic (and epigenetic) determinants 

and environmental exposures are compounded to ultimately define the target 

organ of the autodestructive process.

• Efforts to characterize the biological consequences of reported associations 

are undergoing.

• Cell specific pathways are being developed to understand disease 

heterogeneity and individualized risk assessment.
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Outstanding questions (BOX)

• Rare variants: The role of rare variation in MS susceptibility has not yet been 

systematically explored. However, exome sequencing in other common 

diseases (T2diabetes, etc) has met with only moderate success.

• Endophenotypes: In addition to identification of susceptibility (risk) alleles, 

genetic association studies can also focus on the presence of modifiers of 

disease severity, response to therapy or other traits that alter disease 

expressivity. For these studies, availability of quantitative, reproducible and 

measurements is critical. Such endophenotypes include imaging metrics 

(MRI/OCT), electrophysiological parameters, biomarkers, and high-

definition, computerized gait analysis, among others.

• Gene-gene and gene-environment interactions: More sophisticated models of 

interacting molecular pathways and cellular networks and their interaction 

with the environment will need to be developed.

• Metagenomics: The cross-talk between the genomes of the host and those of 

human symbionts (bacteria, viruses, archea, etc) is started to be studied in 

MS. Initial findings suggest the presence of certain gut bacteria can influence 

susceptibility.

• Non-whites: Mounting on the success in Europeans, the next round of studies 

will likely focus on non-white populations such as African, Asian, Native 

Americans, Hispanics, etc. Emerging evidence suggests that while some risk 

loci are conserved, ethnic-specific variants may contribute to shaping disease 

susceptibility in different populations (50, 69–72).

• Risk prediction/precision medicine: Efforts to use risk variants either alone or 

in combination with other clinical or environmental variables to define an 

individual-specific susceptibility profile are underway.
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Fig 1. Decreasing OR as study n increases
Box plots represent the median and quartiles of the odds ratio (OR) of studies performed at 

the indicated years. With exception of 2010, each new study revealed associations with 

smaller OR.
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Fig 2. An autoimmunity gene network
All known associations to common autoimmune diseases were obtained from the GWAS 

Catalog [92] and mapped to the closest or most likely affected gene, as reported by the 

authors of each publication. Then, data was displayed graphically as a network using the 

software Cytoscape [93]. Nodes represent either diseases (circles) or genes (triangles), while 

edges indicate genetic associations. Genes associated with more than one disease are shown 

in blue and lie at the center of the network. Genes associated with only one disease are 

displayed with the same color as their corresponding disease and organized in outward 

fashion.
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Figure 3. Strategy for cell specific PINBPA
A. Each of the 200 MS-associated SNPs and those in LD (regions) is queried for regulatory 

features such as eQTL, enhancer, DNase hypersensitivity region, histone modification, etc. 

from ENCODE, REP and IHEC. B. All signals are integrated in a cell specific manner. C. 

Regulatory potentials are computed for each gene in proximity to associated SNPs for 

different cell types. D. The regulatory potentials are incorporated as node attributes into a 

protein interaction network and the number of edges among genes with score > 0 is 

computed. E. The number of edges among genes for each cell type is displayed along with 

the distribution of edges from random networks of similar size.
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