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EVALUATE: Electric Vehicle Assessment and Leveraging of 
Unified models toward AbatemenT of Emissions, Phase I 

EXECUTIVE SUMMARY  

Vehicle electrification is currently considered one of the most attractive means of 
decarbonizing major segments of the transportation sector and can also directly contribute to 
improvements in urban air quality and public health. In spite of substantial progress and 
proactive policy support, the environmental impacts of electric vehicles (EVs) under the wide 
range of future deployment scenarios are poorly understood. In certain intermediate-term 
scenarios where EVs reach a much larger share of the fleet and demand a double-digit share of 
available electric power (e.g., 2030), marginal CO2 intensity during EV charging times will 
typically be higher than annual average CO2 rates from the bulk power grid, upon which many 
current studies base their projections. On a 24-hour basis, this may be true for off-peak periods 
(e.g., overnight) as well as certain peak periods (e.g., early afternoon in summer, or early 
morning in winter). In certain conditions, even now, the average emissions assumption breaks 
down because of the high variability of generation requirements at the hourly or sub-hourly 
level in peak periods of the day or year. 

This research explores vehicle-grid interactions with a focus on environmental impacts for 
future scenarios in which electric vehicles are on a trajectory toward substantial market share 
(e.g., 10% of the overall fleet mix). This project has leveraged and expanded a series of unique 
datasets and high-fidelity sub-system models that have previously stood alone as independent 
research contributions by the EVALUATE research team, its collaborators, and other researchers 
in the field. Those models govern vehicle energy consumption, travel demands, vehicle 
charging, and temporal emission profiles associated with electric power generation dispatch. 
Along with the expansion of those datasets and sub-system models, one of the most exciting 
contributions of this effort has been to develop an integrated methodology that enables high-
fidelity evaluation of emissions, in a systems-of-systems framework.  An initial use case has 
been explored as a means of validating and tuning the methodology, which has generated some 
valuable insights in its own right.  The scope of this work is initially based on a regional case 
study (Southeastern US) for a target vehicle classification (light duty commuter vehicles).  

This convergence research has revealed important findings relative to the comparative 
emissions impact of light-duty vehicle charging during various times of day. Such findings may 
be valuable to an individual vehicle owner. For instance, under certain simulated scenarios, we 
observe marginal emissions can be as much as 20% lower in the overnight hours compared to 
marginal CO2 emissions experienced during an identical charging event during the daytime. This 
finding suggests that it will be essential to adjust and/or coordinate charging schedules to 
reduce the environmental impacts of EVs. More specifically, to the extent emissions impacts 
are prioritized among other objectives, individuals and policymakers should be encouraged or 
incentivized to charge when marginal emissions are lowest whenever possible. This idea also 
has important implications for the location, type, and ownership models for tomorrow’s 
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charging infrastructure. Translating and operationalizing this type of guidance will require some 
combination of education, access to rigorous and clear resources, signals between stakeholders 
(e.g., utilities and consumers), risk management analyses, and behavioral change.  

The study has also shed light on the critical nature of assumptions made for the dispatch of 
electricity generation to meet incremental new demand to charge vehicles. Several related 
observations are important to note and may be valuable for vehicle owners, researchers, and 
policymakers.  First, our study is aimed at comparative analyses which provide insights into how 
a marginal assumption for CO2 emissions compares to other marginal assumptions, as well as to 
prevailing approaches (i.e., weighted average annual assumptions). To our knowledge, this has 
not been done at this level of granularity. Second, in nearly all cases, marginal CO2 assumptions 
yield higher CO2 impacts than identical simulations that assume weighted average emissions. 
This variance is broad, ranging from 22% less to 97% greater, depending on a host of case-
sensitive factors. The team believes its ability to initially quantify and bound this variance 
represents an important contribution, as it helps decision-makers quantify how important 
various assumptions are.  

The research and its findings are provocative for additional reasons. Weighted average 
emissions in the U.S. are on a gradual decline, driven primarily by the retirement of coal and the 
addition of renewables over the past decade. This trend has favorable environmental impacts, 
because the retirement of high-intensity generation resources means they are less likely used 
to meet marginal demands, and similarly, the addition of low to no carbon-emitting resources 
has a commensurate impact on the weighted CO2 intensity of the overall grid. However, it is 
highly unusual for renewables to be used as the principal means of meeting marginal demand 
because they are generally considered non-dispatchable. This means grid operators will use 
fossil-generating resources (with a few minor exceptions) as a means of meeting incremental 
load. Better foresight and energy storage are two areas that may eventually change this. On 
foresight, better awareness between stakeholders will help utilities predict and plan for EV 
charging events, which could presumably result in more holistic management of environmental 
impacts. Energy storage, at the moment, accounts for a very small fraction of total electrical 
demand, and it is therefore considered out of scope for the present study. Finally, despite 
encouraging trends in emissions for the bulk grid, the steady decline may plateau in the future 
for several reasons including: (a) if transportation demands a large share of electricity, (b) if 
costs to deliver electricity from zero to low carbon resources is substantially higher than 
conventional resources, or (c) if additional electrification occurs at scale within other sectors 
(e.g., conversion of process heating or large scale industrial processes from natural gas to 
electricity).  

Still, by quantifying technical parameters related to both the magnitude and the range of 
possible emissions impacts as compared to multiple baselines (i.e., for vehicles, and for the grid 
mix), the study’s findings can be useful for education and awareness by all EV users. They also 
have clear implications on policy and public investment as mentioned, including the urgent 
need for managed and coordinated charging, and greater attention to resource planning, in 
terms of generation resources, dispatch decision-making, infrastructure funding, and the long-
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run environmental benefits and impacts for EVs across a range of use cases and time horizons. 
The report concludes with several suggestions for future work, including the need to leverage 
this methodology to consider grid characteristics relative to energy, emissions, decision-making, 
and planning out to 2030, and the capability of the tool to be scaled and more broadly adapted 
for conducting similar analyses in other regions. 
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1 Introduction and Research Background 

Vehicle electrification is currently considered one of the most attractive means of 
decarbonizing major segments of the transportation sector and can also directly contribute to 
improvements in urban air quality and public health [1-4]. A key advantage of Electric Vehicles 
(EVs) compared to internal combustion engine vehicles (ICEVs) is that their carbon and 
emissions footprint is not fixed based on the vehicle technology from a given past model year, 
but instead can progressively improve in lockstep with a grid that is evolving toward a cleaner 
and lower carbon generating mix.  

Driven in part by policy, declining prices, and product availability, EV deployments are 
accelerating, having surpassed 1,600,000 total vehicles in the U.S. fleet by August 2020 [5]. 
Though EVs still account for less than 1% of the domestic vehicle fleet, this growth is notable 
compared to a near-zero baseline in 2010. Significant challenges have been overcome during 
this “first decade” of commercial adoption, including range limitations, charging infrastructure, 
total cost of ownership, and public acceptance. As of December 2020, U.S. consumers can 
choose from more than 50 light-duty EV models that span multiple vehicle classes, markets, 
and a wide MSRP price range from $27,500 to more than $100,000 [6]. 

Projections for continued EV growth through the present “second decade” (i.e., 2020-2030) of 
mass deployment are varied, but many suggest a sustained exponential growth as evidenced by 
Figure 1-1 [7], which shows future market share as a fraction of new vehicle sales. 

EVs are increasingly seen as a win-win solution by many policymakers, in that they can provide 
benefits to consumers, automakers, and utilities, while also reducing environmental impacts 
associated with tailpipe emissions [1-2]. Furthermore, while much public attention is focused 
on Light Duty vehicle markets, additional opportunities exist in Medium Duty (e.g., courier, 
public transit, school buses) and certain Heavy Duty (e.g., intra-state or regional) applications 
[8].  

Despite substantial progress, widespread optimism, and proactive policy support, new and non-
trivial barriers remain. These barriers may simultaneously threaten both broader adoption and 
certain beneficial outcomes of EV growth. Among the most critical and poorly understood, is 
the need to ensure environmental benefits live up to their promise, in particular under deep 
deployment scenarios where EVs comprise more than 10% of the future fleet by 2030, and 
demand commensurate new supplies of electric power in both time and space.  

It is desirable to assess the criticality of environmental impacts, so as to quantify the levels of 
decarbonization enabled by EV penetration. However, empirical methods are presently 
insufficient for near term projections, due to uncertainties related to related to charging levels, 
charging times and the spatial temporal impact of different electricity generation mixes. 
Further compounding this challenge are insufficient data on EV growth and uncertain adoption 
rates. What happens, for instance, when EV load growth will require 20% more power demand 
than is currently forecasted in existing integrated resource plans, which already must also 
provision for an approximate 15% peak reserve margin? What happens when this average 
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increase in power demand is considered on an hourly or seasonal basis, spiking to much greater 
shares of reserve (i.e., 50% or greater). Assuming that utilities embrace an opportunity to sell 
more kWh to meet new market demands, what assurances are in place to protect the 
environmental footprint of new load growth?  

 

Figure 1-1. EV deployment projections, based on new-vehicle market share [7] (Sources: 
BNEF, EEI, EPRI, DOE, etc.) 

Note: In our Drawdown GA model, a 20% market share for new EV sales in 2030 corresponds to an overall fleet 
share of about 4%, whereas if EVs comprise 40% of new sales, 9% of the fleet are EVs [9-10]. 

Modern studies that compare the environmental impacts of EVs with ICEVs often make a 
simplifying assumption that grid-average carbon and pollutant intensities can be used to 
estimate CO2 and criteria pollutant impacts [e.g., 3,9-13]. Simplifying assumptions 
notwithstanding, Figure 1-2 and Figure 1-3 illustrate an inherent reality: leading studies suggest 
an extremely high degree of variability and uncertainty associated with the emissions impacts 
of EVs. 
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Figure 1-2. National variation of CO2 emissions from a typical light duty Electric Vehicle [11] 

Note: results are reported in gCO2eq/MILE 

 

Figure 1-3. Variation across the 23 most populated US cities for CO2 emissions (in gCO2eq/km) 
from various light-duty vehicles. With 2020/2025 projections for Atlanta (ATL) [13] 

Even when certain regional characteristics of the generating mix or the local climate are 
considered, researchers have traditionally constrained their modeling in ways that limit their 
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accuracy and usefulness under deep deployment scenarios [e.g., 3, 9-11, 13]. Some of the 
common simplifying assumptions often involve the following: 

• Simplifying assumptions involving vehicles: 

o Single vehicle model and architecture type (e.g., Nissan Leaf only) 

o Simplified use case for vehicle energy demand (e.g., City and Hwy EPA dyno 
schedules only, and thus less accurate for real-world energy consumption) 

• Simplifying assumptions involving charging: 

o Simplified charging profiles (e.g., convenience charging only, constant rate 
profiles, time-of-use charging not fully developed) 

o Locational characteristics of charging not fully developed (i.e., vehicle charging 
can occur where needed without regard to infrastructure availability) 

• Simplifying assumptions involving grid-generated electricity: 

o Exclusive focus on CO2 (i.e., criteria pollutants are often ignored) 

o Simplified or average spatial CO2 emission intensity assumptions (i.e., annual 
average for an entire region)  

o Simplified or average temporal CO2 emission intensity assumptions (i.e., average 
for an entire year, or constant throughout a 24-hour day)  

o Distribution constraints or grid-congestion factors are often ignored 

While prior research findings have been insightful and appropriate to date, many of the 
simplifying assumptions that have been made begin to break down when EV fleet market 
shares exceed their current level (i.e., less than 1% as of 2020). As implied above, the primary 
limitation of relying upon existing models is that complex interactions between an evolving mix 
of EVs across a range of applications and electric power supplies from the conventional grid are 
largely ignored. Even though some current research models may provide qualitative guidance 
up to larger EV market shares (e.g., about 3% of the overall fleet), data and modeling 
approaches, developed by the research team, are now available to more fully and concurrently 
explore several of the above factors. Of the simplifying assumptions above, the research team 
believes that the largest source of variability and uncertainty rests on assumptions made for the 
grid and the important aspect of when vehicles are charged during the day and across the 
seasons. Thus, an investigation that explores these interconnected issues could have significant 
value and provide stakeholders with timely and quantitative insights having much higher 
resolution due to the consideration of current and future vehicle-grid interactions. This would 
shed light upon preferred outcomes and recommendations for regionally tailored EV 
deployment scenarios with the greatest potential benefits toward 2030 and beyond while 
minimizing unintended consequences. 

1.1 Motivation and Scope 

The over-arching goal of this project is to ensure that bankable reductions in CO2 and pollutant 
emissions are fully understood and realized, even as EV market penetration scales up (e.g., 
between 1 and 2 orders of magnitude) through 2030. Integrated vehicle, transportation and 
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electric power systems research collectively form the framework by which strategic policy 
outcomes can be met. The scope includes a series of independent sub-system models, an 
integrated and generalizable model, and the validation of the model via a regional case study 
(e.g., Georgia). Three primary objectives are envisioned to achieve the goal as follows: 

1. Using an integrated system-of-systems model and grid data with high temporal 
resolution (i.e., hourly, seasonally, and annually out to 2030), the study characterizes 
net emissions from EVs for a representative vehicle classification across a range of 
driving profiles. The study will compare EVs under varying scenarios to conventional 
ICE and hybrid vehicles. 

2. The study conducts a series of scenarios by which key sensitivity parameters can be 
better understood. For instance, in a regional case study, the effect of charging time 
and location (e.g., residential vs. workplace) is explored. Additional parameters are 
considered, such as the rate of charge (e.g., Level 1 vs. Level 2), and the emissions 
levels of CO2 as well as a few key criteria pollutants. 

3. Conduct some preliminary translation of the findings toward possible implications 
upon next steps, including the need for targeted consumer education, the translation 
of results to help inform policy, and a growing interaction between the disparate 
communities of stakeholder groups (e.g., automakers, charging companies, utilities, 
consumers, policymakers) that can maximize key environmental benefits of EVs and 
inform strategic EV/grid resource planning and decision-making by policymakers based 
upon rigorous and unbiased analyses that leverage novel vehicle-grid convergence 
research. 

This research is directly relevant to sustainable transportation, and the scope of the 2021-22 
NCST solicitation, in that U.S. transportation remains reliant upon petroleum for more than 
88.5% of its primary energy resources [14]. While great strides are being made to decarbonize 
the electric power sector, still less than 0.1% of U.S. primary energy that propels transportation 
derives from the grid. Amid large investments by utilities and OEMs, and ambitious state and 
Federal policies, more rigorous and timely guidance is essential for EVs to sustain progress 
toward their overall promise of reduced environmental impacts. Research guidance that will 
determine the effectiveness of this technology in 2025 and 2030 is urgently needed now. 
Having completed the activities enabled by the NCST grant, the research team believes that the 
methods, initial results, and implications of the findings are uniquely positioned to address 
critical gaps and inform strategic decisions that will favorably advance EVs, sustainable 
transportation solutions, and their concomitant policies. 
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2 Methodology 

This research requires the synthesis of three independent models developed uniquely by the 
research team in the areas of (a) vehicle propulsion to satisfy prescribed trip/travel demands 
for a range of vehicle technologies, (b) EV charging profiles to reflect typical approaches for 
light duty vehicle use cases, and (c) grid generation dispatch with commensurate consideration 
of emissions intensities for CO2 and major criteria pollutants. The team has an established track 
record of developing high-fidelity sub-system models and applying them to both generalizable 
and regional scenarios. The team has leveraged more than three years of prior efforts, during 
which time we acquired and conditioned open-source data and amassed specifications for five 
representative alternative vehicle architectures, customized datasets for regional electric 
power dispatch (e.g., 2018, 2023, and 2030), and numerous travel route pathways. The scope 
of this project is to update and develop new, more accurate sub-system models and datasets 
that are relevant, representative, and granular. As described in the original proposal, the team 
has leveraged these data and iterated upon prior sub-system models with the express purpose 
of devoting focused attention to integration, simulation, and assessment of results and 
implications. The end result, therefore, is an integrated model that pulls high-fidelity data from 
real-world use cases to generate a range of simulations. The simulations will be primarily used 
to draw comparisons, understand the impact of fundamental assumptions around charging 
behavior and grid emissions, and develop initial guidance around the relative merits of EVs 
under representative use cases. 

 

Figure 2-1. Integrated modeling methodology for combining vehicle, grid, and emissions 
considerations for simulation. 

The first step in the analysis is the refinement of physics-based vehicle energy consumption 
models that permit comparison of a range of vehicle architectures that utilize energy from 
disparate primary sources (e.g., gasoline vs. grid electricity). A parallel task is to impose upon 
the vehicle propulsion model a range of driving cycles that can best approximate typical 
characteristics of representative use cases. Our methodology affords access to established data 
and extends prior vehicle propulsion energy and emissions analyses [9-10, 13]. As a parallel 
input, the team has utilized individual EPA dynamometer schedules, replicated the 5-cycle fuel 
economy label weighting protocol, and also consulted independently derived travel demands 
from representative use cases [e.g., 15-16, Figure 2-3]. A detailed discussion of the theory, 
model development, source data, and initial applications can be found in [13]. Minor 



 

 7 

adjustments have been made to vehicle modeling to accommodate key vehicle classifications of 
interest (i.e., LDV ICEV, HEV and EV), and to ensure appropriate reasoning to walk from 
prescribed EPA dyno schedules to the 5 cycle weighted means, and further to practical 
interpretations of household travel for representative use cases [17].  

2.1 Vehicle technology categories 

As discussed above, we adapt the physics-based powertrain models developed in [13] to 
accommodate target vehicle technologies of interest. This includes baseline vehicles (e.g., 
gasoline-consuming ICEV and HEV), as well as electrified powertrains (e.g., PHEV and EV). For 
the purposes of this study, only pure battery electric vehicles (BEV) have been evaluated. 
However, all relevant LDV vehicle technology models have been developed and coded, meaning 
PHEV analysis is readily available and may be of interest. Owing to their unique architecture 
which operate as both HEVs and EVs, depending on the battery state of charge, the 
environmental impacts of PHEVs can be estimated as a weighted mix of the individual impacts 
of HEVs and EVs respectively.  

To facilitate a direct comparison among vehicles using dissimilar energy sources, we identify 
vehicle specifications for a given light-duty vehicle classification and hold constant key 
parameters such as vehicle power output, vehicle footprint, passenger and cargo capacity, and 
so forth. Table 2-1 below depicts some of these operative specs. Note that some differences are 
inherent in other categories, such as vehicle curb weight. But these have been left as specified 
by the OEM, under the argument that mass-production specs are reflective of the current state 
of the art and therefore an excellent proxy for the inherent tradeoffs or interactions to deliver 
vehicles of similar performance. 
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Table 2-1. Specification table for the different vehicle architectures compared in the study 
[13] 

 
1. Vehicle mass reflects “vehicle inertia weight” (curb weight plus 136kg per EPA rule). 
2. Engine and motor power represent maximum rated values reported by OEMs at vehicle-specific engine or motor 

speeds. Total vehicle power applies to HEV and PHEV and reflects the maximum net combined propulsion of 
engine and motor.  

3. Battery mass and capacity represent complete battery modules. 
4. Fuel economy, consumption, and range values reflect 5-cycle EPA combined ratings [13]. 
5. This study uses U.S. gallons (not imperial) in all fuel economy MPG references.  
6. Electricity consumption is on a vehicle, not system, basis, and is derived by dividing the energy content of a 

gallon of gasoline (33.7 kWh) by the EPA-reported equivalent fuel economy in MPGe.  
7. The key specifications for three top-selling models (Toyota Corolla, Honda Civic, and Ford Focus) were averaged 

to represent a baseline non-aspirated ICE-SI (where SI = Spark ignition).  
8. Volkswagen Jetta Value Diesel (ICE-CI, where CI = Compression ignition).  
9. Toyota Prius (HEV-PS, where PS = Power split). 
10. Chevrolet Volt (PHEV-40, where 40 represents the all-electric range in miles). 
11. Nissan Leaf (EV-PAC, where PAC = Passively air cooled). 
Other vehicle specifications such as engine maps and motor performance, battery cell parameters, and physical or 
operational characteristics have been obtained from either OEM fact sheets or the literature [8a-f]. 
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2.2 Driving cycles  

The five distinct driving cycles that comprise the EPA test and labeling protocol are well-
documented and widely used for comparative analyses [15].  The three 23°C (75°F) tests include 
a derivative of the Urban Dynamometer Driving Schedule (UDDS) known as the Federal Test 
Protocol (FTP), the high-acceleration aggressive driving schedule identified as the Supplemental 
FTP (US06), and the Highway Fuel Economy Driving Schedule (HWFET).  The 35°C drive cycle is 
the Air Conditioning Supplemental FTP driving schedule referred to as SC03. The -7°C cold 
weather test schedule repeats the original FTP at the reduced temperature. 

As mentioned, the study has adopted the EPA “5-cycle” protocol and created an approach 
whereby a weighted mix of driving schedules is obtained to approximate major modes (e.g., 
city, highway, combined). Please see Appendix A for more details about the weighting of the 
constituent driving cycles, and the governing formulae. 

With the original development of the vehicle architecture models, and assumptions around the 
weighted driving cycle protocols, the team’s next step was to develop a MATLAB/Simulink code 
that generated a series of energy consumption values based on inputs of vehicle type and 
driving cycle. These intermediate outputs were then combined to generate effective fuel 
economy values, analogous to the EPA 5-cycle approach, for the stipulated categories (city, 
highway, combined). This was done and a set of energy consumption outputs were generated. 
These outputs are depicted in Table 2-2. 

Table 2-2. Effective fuel economy values 

 ICEV (mpg) HEV (mpg) EV (kWh/mi) 

City 28.67 55.79 0.24 

Highway 38.64 48.76 0.32 

Combined (Wts: 0.43 city, 0.57 highway) 33.61 51.55 0.29 

2.3  Mapping to representative commute categories  

The final step was to consult the DOT household transportation survey and refer to resident 
expertise within the research team (i.e., Rodgers) to determine some representative driving 
cycles for metro Atlanta. We select two urban commutes of 80.5 km (50 miles) and 32.2 (20 
miles), and a suburban vehicle use case of 48.2 km (30 mi). For the urban commutes, 
presumably into and out of a city like Atlanta, it is reasonable to employ the EPA “combined” 
rating and protocol to determine energy consumption for these trips. For the suburban errand 
use case, it is reasonable to employ the EPA “city” rating and protocol. This is summarized in 
Table 2-3 below. Shown in Figure 2-2 is a notional depiction of a baseline vehicle’s 
instantaneous power and cumulative energy for an example drive cycle. Figure 2-3 depicts a 
few of the standardized EPA dyno schedules that are fed into a 5-cycle weighting 
determination.  
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Table 2-3. Representative commutes developed for the comparative scenario analysis 

Commute Description Total Daily Distance Traveled 
km (Miles) 

Relevant EPA fuel economy 
category/calculation used  

Urban Commute (moderate) 80.5 (50) “Combined” 

Urban Commute (short) 32.2 (20) “Combined” 

Suburban Errands 48.3 (30) “City” 

 

Figure 2-2. Fundamental powertrain model specific to each vehicle architecture (ICEV output 
shown for reference) [8] 
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Figure 2-3. Basic EPA dyno schedules (UDDS, US06, and SC03 shown for reference). 

2.4 Models & Sources of Data 

This section briefly recaps the major sub-system models that are integrated in the present 
work. For the vehicle model, physics-based powertrain models are developed in [13] to 
accommodate target vehicle technologies of interest. These models utilize initialization 
parameters for official OEM specifications for these vehicles of interest as generally depicted in 
Table 2.1 and [13]. Five distinct driving cycles are then imposed for the selected vehicle models. 
This study utilizes the first key dynamometer cycles that comprise the EPA test and labeling 
protocol, which are well-documented and widely used for comparative analyses [15]. The 
output of the combined vehicle and driving cycle modeling then generates fuel and energy 
consumption data at the boundary of the vehicle system. The final steps are to incorporate 
electric vehicle charging profiles, map them to characteristic daily use cases, and estimate their 
energy and emissions impacts by considering upstream electric grid modeling efforts. These 
steps and the relevant models and data are described in Sections 2.5, 2.6 and 2.7.  

2.5 Overview of EV charging profile development and simplified use cases 

Regarding EV charging behavior, we consider about four primary sources of data to establish 
representative EV charging profiles. Two are explicitly for residential charging, one is explicitly 
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for workplace charging, and the fourth speaks with survey data collected for both and other 
categories (e.g., public charging). The authors acknowledge that there is a growing body of 
literature on the subject of charging behavior by numerous transportation research centers of 
note (e.g., NREL, Escalent [23], NCST UC Davis [27], among other examples). The authors further 
suggest that the approach taken herein is appropriate for the purposes of these comparative 
analyses. It is of note that this research study draws from a combination of analytical and 
empirical sources of information and data to develop its charging profiles and use cases. 
Included in this, as detailed below, are first hand studies by researchers involved in the study, 
utility rate structures that are specific to EV users in the target region, and real-world observed 
EV charging behavior for a selected network in downtown Atlanta. None of these is unique, and 
similar approaches are used elsewhere. This, this approach is intended to demonstrate the 
types of sources of data that this methodology may leverage, and to showcase how they may 
be applied in a representative set of simulations and outputs.   

As a first step, we refer to synthetic data generated by a separate research team from Georgia 
Tech that is evaluating the benefits and challenges associated with smart charging algorithms. 
[20-21]. Second, we consult the Georgia Power Electric Vehicle Rate scheme, which provides 
customers with EVs at a deeply discounted rate during off-peak times. In exchange, the rate is 
tiered, with a relatively expensive energy rate during summer afternoons, and then a fairly 
nominal price during all other times of the day/year [22]. 

Third, we refer to data from a ChargePoint dashboard portal and database that has been 
aggregated for workplace charging on the Georgia Tech campus since about 2015. An example 
of some of this data for a sample month (Feb 2020) is presented below. It is noteworthy that 
typical workplace charging occurs in two waves: morning and immediately following the noon 
hour. A part of the explanation for this has to do with policy: the GT Parking administrator 
provides a much lower rate for the first 4 hours and then adjusts this to severalfold higher to 
incentivize the EV owner to vacate the parking space and permit additional EV owners an 
opportunity to charge. This policy is important as it suggests that behavior will strongly respond 
to financial signals. The dashboard data is extremely valuable in providing statistically 
significant information (over a period of 5 years), that can inform real, not perceived or stated, 
preferences.  
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Figure 2-4. Example workplace charging data of EV charging events on Georgia Tech campus 
from February 2020 

 

Figure 2-5. Example workplace charging session duration on Georgia Tech campus from 
February 2020 

Finally, our research team conducted a verbal consultation with a third-party research firm, 
Escalent [23]. This conversation provided insight into when EV owners are most likely to be 
charging their EVs as recently as 2021. The following Figure 2-6 captures some of the relevant 
info that has been mined to inform assumptions and representative profiles for EV charging.  
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Figure 2-6. Example of 2020 survey data characterizing EV charging behavior provided by 
Escalent [23] 

Of note from the bar graphs in Figure 2-6 above is that close to 80% of individual EV owners 
charge at home. It is also obvious that for the period 2020-21, most charging events (about 
61%) are taking place on a Level 2 charger. Referring now to the purple pie charts, we see that 
roughly half of EV users are charging their vehicles at least once a day. (Note: the PI 
acknowledged these data may cover EV behavior that spans both pre- and post-COVID 
pandemic periods. It would not be surprising if EV charging behavior was irregular and/or 
reduced. The PI has a pending follow-up request with the third party for some additional 
feedback on this question but has not yet received an answer.) 

2.5.1 LDV residential (overnight, evening) 

Based on the corroboration of multiple independent sources of data, the research team 
decided to define two representative EV charging profiles to govern “residential” behavior. 
These are simplified for the analysis but considered highly reflective of actual behavior. The EV 
profiles are depicted in Figure 2-7 below. The team opted to assume Level 2 chargers were used 
for the simulations in this study. 
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Figure 2-7. Examples of residential EV charging profiles used in the study 

Based on the combined input and the author’s judgment, Level 1 residential charging profiles 
were also designed and used for additional simulations. These Level 1 residential charging 
profiles can be seen in Appendix B.  

2.5.2 LDV workplace (morning, afternoon) 

Again, based on the corroboration of the aforementioned independent sources of data, the 
research team also defined two representative EV charging profiles to govern “workplace” 
behavior. These are simplified for the purpose of the analysis, and similar to the residential 
cases, are considered highly reflective of actual behavior. These EV profiles are shown in Figure 
2-8. 

 

Figure 2-8. Examples of workplace EV charging profiles used in the study 
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2.6 Overview of grid emissions vs. tailpipe emissions 

One of the team’s most significant contributions has been to leverage and extend grid modeling 
and optimization work [13,18-19]. In prior work, energy storage scenarios and their associated 
CO2 impacts were determined for various use case scenarios in a Southeastern regional context. 
A merit-order dispatch estimation has been developed and iterated based on actual data for 
the Southern Company Balancing Authority (also known as the Southeast Reliability 
Corporation/Southeast, or SERC/Southeast). These data are high resolution (hourly) and 
provide excellent detail of the individual plants and generating units for all technologies. The 
team has consulted official public sources of data that are disclosed in [9,18,20,22,24,25,26]. 

The PI worked closely with a Georgia Tech graduate student on a related project to explore and 
adapt a methodology based on [24]. The student and PI, along with a few additional co-authors 
have recently presented a published conference paper that describes the approach [25]. Some 
supporting information is included in the Appendix to summarize the method for marginal grid 
emissions estimation.  

Toward the primary objective of the present study, the team determined that it would be most 
useful to define a series of grid emissions assumption approaches as follows: 

• Annual average. By this assumption, the CO2 emissions intensity is estimated as the 
cumulative CO2 emissions for a given region divided by the cumulative electric power 
generation for the region, on an annual basis (i.e., CO2_annual-total/kWh_annual-total). 
This emissions intensity has been a commonly used metric in policy studies and is 
generally estimated for an entire balancing authority (e.g., Southern Co, TVA, PJM, etc.).  

• Monthly average. This assumption attempts to consider the impact of seasonal 
variation within a balancing authority. As such, a monthly average assumption for CO2 
emissions intensity is estimated as the cumulative CO2 emissions for a given region 
divided by the cumulative electric power generation for the region, on a monthly basis. 
(CO2_monthly-total/kWh_monthly-total). This emissions intensity has been used in 
recent research studies to better understand the impacts of seasonality as it relates to 
electric power supply and demand. Like the annual approach, it is generally estimated 
for an entire balancing authority (e.g., Southern Company, TVA, PJM, etc.).  

• Hourly weighted mix. This assumption takes into account the mix of electric power 
generation by hour for a given balancing authority. It relies upon much higher temporal 
resolution data sets that are now being tracked and reported publicly by government 
agencies (esp. DOE/EIA and EPA). For each of the year’s 8760 hours within a given 
balancing authority, cumulative CO2 emissions from all sources are divided by the 
cumulative electric power generation for the same hour. It reports on the mix as 
evidenced by historical data. This is done at the level of the balancing authority, but also 
at other levels. 

• Marginal hourly weighted mix. This approach considers the idea that certain sources of 
electric power generation are more or less likely to be used to meet marginal demands 
on an hourly basis, within certain grid constraints. This is, in fact, quite representative of 
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how the grid operates; a dispatcher responds to changing signals for demand and 
adjusts supervisory supply decisions to accommodate them. In this case, there is a sub-
set of generating resources in the hourly mix that can actually be “controlled” and 
“dispatched” to meet rising or falling demands. It is a key goal of this study to better 
understand the implication of this reality on the CO2 emissions that are experienced by 
a given EV charging event. A related goal is to promote more interaction within the 
interdisciplinary research community related to the limits of existing and future grid 
constraints on dispatchers ability to meet new and/or uncertain loads, including EVs. In 
the marginal hourly weighted mix assumption, we have applied a statistical approach, 
disclosed in detail in [24-25]. To recap, historical trends are inferred by month and hour 
to estimate the weighted mix of dispatchable generation resources. These are 
predominantly fossil-based, and therefore higher in CO2 than the overall grid mix; but 
they are also more capable of being predictably ramped up and down to meet load. The 
CO2 intensity is then the cumulative CO2 emissions from the marginal dispatchable 
resources for a given hour divided by the cumulative electric power generation from 
these sources for the same hour.  

• Marginal resource X. Continuing further on the marginal hourly weighted mix approach 
immediately above, this approach considers the eventuality that a specific generating 
resource (down to the plant and unit level having a specific fuel or energy source and a 
specific conversion technology) is ultimately responsible to meet the marginal electric 
power demand of an EV which charging. This assumption could be true when EV 
demand constitutes either a reasonably large or a reasonably uncertain share of near-
term demand requirements. These conditions may persist in the near future as EV 
market share reaches significant levels overall, quickly, without appropriate signals 
between utility and customer, or without duly substantiated charge management 
protocols. Here the CO2 intensity represents the cumulative CO2 emissions from the 
single generation resource that is most likely dispatched to meet the marginal electricity 
demand within a given hour. This assumption yields the greatest hour-to-hour variance 
when compared to other assumptions, since a range of resources may be used to meet 
the marginal demand of an additional kWh of load based on several external factors. Its 
variance is exacerbated by high-power, and short-duration charging events (e.g., Level 3 
DC Fast Charging DCFD). The bottom line here is that as EVs are deployed and the grid is 
modernized, there are near- to intermediate-term conditions pending (e.g., through 
2030) which are likely to add variability and uncertainty at the intersection of high-
power charging events and the need for the grid to respond. The expansion of the high-
power, short-duration charging events may be propelled by Level 3 buildout (e.g., NEVI 
infrastructure and interstate corridor installations), and suggest that predicting 
emissions from EVs will require a more nuanced understanding of how the grid meets 
marginal, uncertain, or high power, short duration loads.  

2.7 Overview of system integration and emissions aggregator 

The team has developed a system-of-systems model that enables the integration of the three 
sub-system models described in this section. Doing so enables comprehensive and quantitative 
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simulations of EV deployment for multiple driving cases, under varying EV charging and grid 
scenarios.  

The produced MATLAB/Simulink model consists of two user-loaded look-up tables for the 
selected grid emissions profile and EV charging profile that are imported using the initialization 
code. The look-up tables take the form of a time series with 1440 distinct time stamps, equal to 
the number of minutes in a day. The emissions profiles available to the team consisted of 
hourly emissions rates. The emissions rate during a given hour was assumed to be the same for 
each minute in that hour. In this manner, each hour of emissions was dissected into 60 periods 
to achieve 1440 rows of data. By creating minute-by-minute lookup tables, the model is able to 
stop accumulating grid emissions the same minute the vehicle’s battery is recharged, 
minimizing returns of surplus charge.  

Besides loading look-up tables, the initialization code also provides an opportunity for the user 
to calibrate the energy target (i.e., how much energy has been depleted from the battery that 
needs to be replenished). For this study, the energy targets were calculated for each simulated 
use case using our Vehicle Energy Model described in the previous section.  

The initialization code and input parameters utilized in this study can be found in Appendix C.  

Once the initialization code is run, the Simulink component of the model references the loaded 
look-up tables and parameters, integrating the sub-system models using a series of logical 
arguments. The completed simulation provides an aggregated output that describes the 
cumulative grid emissions attributed to the simulated recharge event. These emissions totals 
are easily converted to a per-unit distance rate. The architecture of the Simulink model can be 
seen in Figure 2-9.  
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Figure 2-9. Energy and emissions integrator (Simulink) 

The results of these simulations are presented in the next section and yield a first-of-a-kind 
distribution of projections for CO2 emissions and criteria pollutants. As a step to quantify these, 
energy consumption has been computed as an input variable. The team believes the method is 
robust and readily capable of scale-up and enhancement for use in other regions and in larger 
or smaller jurisdictions of interest. A goal is to better understand the current impacts of 
transportation energy use and emissions under various growth scenarios. A secondary eventual 
goal is to use this method to forecast future grid and EV adoption states to educate and inform 
the public and key decision-makers. 
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3 Results and Discussion 

A series of scenarios were developed and simulated in the system-of-systems model described 
above. Table 3-1 defines the variables from which the example scenarios were crafted and, 
where applicable, their abbreviations. A simulation was conducted for every possible 
combination of variables for a representative day in August, October, and December 20181. A 
total of 258 simulations were run for this analysis.  

Table 3-1. Variables included in the system-of-systems modeling approach 

Vehicle Type Energy Consumption Charging Profile Emissions Profile 

EV Long Commute – 80.5km 
(50mi), 16.5 kWh 

Residential Overnight 
(RO) - 12AM to 5AM 
 

Annual Average (A) 

ICEV Short Commute – 32.2km 
(20mi), 6.59 kWh 

Residential Evening 
(RE) - 7PM to 12AM 
  

Monthly Average (M) 

HEV Suburban Errands – 
48.3km (30mi), 8.18 kWh 

Workplace Morning 
(WM) - 8AM to 12PM 
 

Hourly Average (H) 

  Workplace Afternoon 
(WA) – 1PM to 5PM 

Hourly Marginal Mix 
(HMM) 
 

   Hourly Marginal 
Resource X (HMRX) 

Figure 3-1, Figure 3-2, and Figure 3-3 are comparative visualizations of simulation outputs (CO2 

emissions per kilometer).  The purpose of these figures is to depict increased or abated CO2 
emissions under different emissions profiles and charging assumptions for different trip types 
at different times of year relative to an ICEV baseline. To enable such apples-to-apples 
comparisons, the energy demanded for each trip for the ICEV baseline was derived using 
standard EPA-weighted fuel economy mixes (city, highway, and combined) and converting the 
total gasoline consumed to kWh at a rate of 33.7 kWh per gallon of gasoline. The EPA combined 
fuel economy mix was used for both the Long Commute and Short Commute trips, while the 
EPA city mix was used for the Suburban Errands trip. Tailpipe CO2 emissions were calculated 
assuming an emissions rate of 8,887 grams of CO2 per gallon of gasoline. The same 
methodology was employed to simulate the HEV scenarios to provide an additional point of 
comparison.  

 

1 While 2018 grid data were utilized for the present study to demonstrate how to employ a real-world data, the 
methodologies are capable of generating simulations for current and future grid conditions equally well. This is 
considered an important contribution of the present effort. 
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Figure 3-1. CO2 emissions per kilometer (August) 
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Figure 3-2. CO2 emissions per kilometer (October) 
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Figure 3-3. CO2 emissions per kilometer (December) 
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When comparing resulting emissions rates under each grid assumption, it is immediately clear 
that accepting a monthly or annual average grid emissions rate fails to capture the significant 
variance that occurs throughout a given day. At higher temporal resolutions, daily grid 
emissions profiles begin to emerge that have important implications for finding the true 
environmental benefits of EVs and how those benefits vary depending on the timing of charging 
events. On average, CO2 emissions per kilometer for an EV charged under the Residential 
Overnight or Residential Evening charging profiles were found to be less than an EV charged 
under the Workplace Morning or Workplace Afternoon profiles, especially in the summer and 
shoulder months. For example, an EV performing the Short Commute trip and charging with the 
Residential Overnight charging profile in August was found to emit over 3% less CO2 per 
kilometer when using hourly grid emissions profiles compared to annual averages and nearly 
7% less CO2 per kilometer compared to monthly averages. Additionally, an EV performing the 
same trip in August but charging under the Workplace Morning charging profile was found to 
emit nearly 14% more CO2 per kilometer when using hourly grid emissions profiles instead of 
annual averages and nearly 10% more instead of monthly averages.  

This variance is even more pronounced under the marginal scenarios, though not always with 
the same directionality. Assuming the Hourly Marginal Mix tends to reduce the per-kilometer 
CO2 emissions of an EV charged with the Workplace Morning profile in the summer months, 
making that charging profile the most attractive in terms of environmental benefit in some 
cases. Under Hourly Marginal, Resource X assumptions, the CO2 emitted per kilometer for an EV 
can vary as much as 58% depending on the time it is charged on a given day.  

Importantly, almost all simulated EV scenarios realized reduced CO2 emissions per kilometer 
compared to ICEVs. However, the magnitude of these reductions varies substantially under 
different emissions assumptions, charging profiles, and seasons. The extreme hourly and 
seasonal variations in effective emissions rates of EVs found in this study indicate that reliance 
upon annual or monthly average emissions rates for the modeling of EV environmental benefits 
is inadequate. Table 3-2 depicts the wide variation in emissions rates from simulation to 
simulation relative to the ICEV baseline. 

Table 3-2. Percent improvement in CO2/km over ICEV baseline for the Long Commute trip in 
August 

  August 

Use Case Charging Profiles 

Commute (80.5km) RO RE WM WA 

H -34.81% -32.59% -23.03% -28.84% 

M -31.57% -31.57% -31.57% -31.57% 

A -34.08% -34.08% -34.08% -34.08% 

ICEV 0.00% 0.00% 0.00% 0.00% 

HEV -34.80% -34.80% -34.80% -34.80% 

HMM -8.47% -30.03% -17.96% -2.03% 

HMRX -9.57% -46.20% -7.10% 27.86% 
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Average emissions rates at lower resolutions obscure vital information that could otherwise be 
used to optimize environmental benefits as well as inform policy. Effective communication of 
hourly or higher resolution of grid CO2 intensity would help the consumer make an informed 
choice on when to charge their EV to maximize environmental benefits. With the maturation of 
“smart-charging,” enabling communication between the grid or utility and smart charger units 
would allow the smart charger to control the rate of charge to minimize effective EV emissions, 
subject to user-configured constraints involving required time of use, desired battery capacity, 
and cost.  

An additional pertinent takeaway from these results is the performance of the HEV. As 
expected, the HEV reduced CO2 emissions compared to an ICEV, but it also performed 
consistently on par or better than many EV scenarios.  When annual or monthly average 
emissions rates are assumed, HEVs already perform better on a per-kilometer basis than EVs 
beyond a certain distance threshold. These de-facto superiorities of HEVs become less 
pronounced at certain times when hourly emissions rates are assumed. Failing to understand 
and incorporate higher-resolution evolutions in grid emissions intensities can lead decision-
makers to ill-informed conclusions that could be sub-optimal for reducing environmental 
externalities. It is worth noting that both EVs and grid generating resources are evolving 
dynamically, placing renewed emphasis on studies that consider environmental impacts during 
this transition period (e.g., 2030, 2035).  

There is likely some threshold of EV penetration that will trigger a realignment in marginal 
emissions trends. As electrical power demand increases at peak charging times when 
consumers are incentivized to charge their vehicles, marginal resources in addition to those 
observed in this study, will eventually be required to supply sufficient power. Often, due to the 
inherent need for dispatchability, marginal resources are fossil-based or non-renewable in 
nature. Thus, if additional marginal resources need to be brought online, it could alter grid 
emissions profiles and lead to shifting environmentally optimal charging periods. Understanding 
the scaling behaviors of marginal power demand for growing rates of EV adoption will be 
critical for decision-makers to stay one step ahead of lagging realignments, anticipate them, 
and communicate optimal charging periods to consumers as well as intelligent infrastructure.  

An important benefit of the methodology employed in this study is that it can be easily adapted 
to model additional use cases, charging profiles, emissions profiles, and additional pollutants. 
To prove the feasibility of such adaptations, SO2 and NOx grid emissions were simulated for the 
same charging profiles as CO2 for the Suburban Errands trip in August and October. For these 
simulations, there were assumed to be no SO2 emissions for the ICEV and HEV baselines. NOx 
emissions for the ICEV and HEV baselines were calculated using a conversion factor of 0.000167 
(gNOx per mile/gCO2 per mile), as informed by the MoVES model [26].  

Figure 3-4 and Figure 3-5 depict pollutants that are greater per kilometer in EVs than ICEVs. SO2 
and NOx are examples of pollutants emitted in the production of electrical energy at fossil 
power plants that are essentially absent from or significantly reduced (via catalytic conversion) 
in vehicular tailpipe emissions. While these additional pollutants should be acknowledged, it is 
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critical to understand the spatial confines of their dispersion. While tailpipe, mobile-source 
emissions are present anywhere motor vehicles travel, emissions from electricity generation 
are localized in smaller areas immediately surrounding power plant facilities. Given that power 
plants are typically located in more rural areas, the per-unit damages from pollutants emitted 
by electricity generation can be much less. However, there are environmental justice issues 
inherent in these trade-offs that need to be addressed and explored further.  

 

Figure 3-4. SO2 and NOx emissions per kilometer (August) 
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Figure 3-5. SO2 and NOx emissions per kilometer (October) 
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4 Policy Implications 

Because of the potential opportunity of vehicle electrification to help decarbonize the 
transportation sector and improve air quality, the technical findings of this research could have 
some significant policy implications. To optimize the potential benefits, much greater attention 
will be required to the incremental difference in EV emissions relative to baseline ICEVs and 
HEVs. As some of the findings suggest, the individual vehicle and fleetwide improvements may 
be much lower than expected by some studies as scale-up occurs. However, the findings also 
provide some suggested means of ensuring that environmental and social improvements can 
be realized, and at the scales needed. Because this research begins to quantify technical 
parameters related to both the magnitude and the range of possible emissions impacts as 
compared to multiple baselines (i.e., for vehicles, and the grid mix), the study’s findings can be 
useful for education and awareness by all EV users. They also have clear implications on policy 
and public investment, including the urgent need for managed and coordinated charging, and 
greater attention to resource planning, in terms of generation resources, dispatch decision-
making, infrastructure funding, and the long-run environmental benefits and impacts for EVs 
across a range of use cases and time horizons. Some of these specific issues and implications 
will be explored in more detail in a subsequent (Phase II study), but the following opportunities 
are clearly raised by this study: 

• Educational and awareness programs to help consumers understand the emissions 
impacts of their charging behavior 

o Time of charging 

o Managed charging 

o Types of driving habits 

o Use cases for EV trips 

o Quantitative tools for comparing impacts to baselines and among different EV 
charging scenarios 

• Quantitative measures for comparing and contrasting public support for charging 
infrastructure for residential vs. workplace 

o Grants, tax credits, supporting utility charging programs 

o Limited claims to manage scaling and growth 

o Need to identify single family vs multi-family dwellings 

o Incentivizing residential charging  

o Rate rebates/alternative rate structures, tax credits, vouchers, etc 

• Facilitating information transfer between utility and consumer 

o (near) real-time communication from utility on emissions intensities to inform 
consumer decision making 

• Supporting dynamic smart charging infrastructure and IoT 

o Optimizing charging for maximum environmental benefits at minimal cost, 
subject to user-defined constraints 
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• More investigation to workplace infrastructure utilization 

o Opportunity to utilize in off-peak 

o Incentivize use when emissions rates are more beneficial 

• Electric grid and dispatch tools 

o Opportunities to increase visibility of utilities to information 

o Long term resource planning 

o Infrastructure investment decisions for future distribution/charging as well as 
future generation assets 

• Expansion of HEV tax credits  

o HEVs consistently perform on-par with EVs in most scenarios, usually cheaper 

• Importance of battery storage 

o Charge utility-scale batteries during periods of low emissions or with renewables 
to add to marginal mix as needed, reducing dependence on fossil marginal 
resources.  

o Important for grid resilience, managing increased demand for electrical power 
due to EV growth. Helps to mitigate “duck curve” issues.  
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5 Future Work & Limitations 

5.1 Future Work 

While this study has developed a novel and comprehensive methodology and explored an initial 
use case for comparison purposes, it has also raised important issues and additional dimensions 
that are suggestive of future work. These include the need to leverage this methodology to 
consider grid characteristics relative to energy, emissions, decision-making, and planning out to 
2030, a closer look at additional vehicle categories, and the capability of the tool to be scaled 
and more broadly adapted for conducting similar analyses in other regions. Following are some 
specific suggestions for deepening, extending, and scaling the present work: 

• Forecasting future grid compositions and marginal resources to predict and inform 
policy 

o Understanding how marginal resources will be deployed as growth in EV market 
share increases demand for electrical power 

o Pay particular attention to the interplay of deep deployment and popular 
charging times (such as overnight), as such insights will enable decision-makers 
to strategize to manage EV growth 

• Incorporating MD/HD vehicles into simulations 

o The adaptable simulation methodology in this study can be used to understand 
MD/HD EV emissions and identify use cases that allow for optimized charging 
schedules 

o Attention to return-to-base MD delivery/service/fleet vehicles and the value 
proposition for public and private investments  

• Geospatial distribution of pollutants and health impacts, equity considerations 

o Power plant vs. tailpipe 

o Comparative analyses between concentrating (point-source) emissions and 
dispersing (mobile-source) emissions; which is better from a public health 
perspective? 

o Environmental justice concerns, social impact of electric vehicles, costs, 
affordability, access to vehicles and chargers, etc. 

• Exploration of additional EV charging considerations 

o A case study using EVALUATE to characterize fast charging devices in urban 
settings and estimation of emissions for Level 3 (vs. Level 2,1) 

o We can envision a means of aggregating the impacts of individual analyses, for 
instance by weighting vehicle classes and charging events based on their 
likelihood and current behaviors. 
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• Extension of the model to explore future projections of electric grid characteristics and 
response to EV growth with data from travel demand models 

o Convert historical electric grid basis to predictive tools for approximating grid 
dispatch characteristics and protocols into the near and intermediate future 
(e.g., 2025, 2030, 2040) 

o Develop guidance and toolkits to assist others in adapting EVALUATE for other 
regions 

• Innovation 

o Technology transfer guidance for practitioners and decision-makers to maximize 
the effectiveness of upcoming public and private investments in fast-charging 
infrastructure 

o Consideration of battery charging as a grid resource and the potential for 
vehicle-to-grid (bidirectional) flows of energy.  

5.2 Limitations 

To investigate the true variability associated with CO2 and other transportation-related vehicle 
emissions, this study has developed a simulation framework that explores multiple parameters 
concurrently. The goal has not been to determine with high precision a given case as much as it 
is to develop a broad comparison among major inputs and factors. In this way, we explore 
electric vehicles as compared to a baseline case (e.g., gasoline vehicles). We explore several 
driving cycles and charging profiles that represent typical approaches both for residential and 
workplace charging at various times of the day. And then, we develop various methods for 
estimating CO2 and other vehicle emissions. As noted, studies that have addressed this 
previously have often utilized annualized averages to simplify the analysis. In our research 
review of other tools and dashboards (e.g., ChargePoint charge event portals, EPA locality CO2 
estimator via zip code), we confirmed that a very basic algorithm is utilized (such as a fixed or 
weighted average value for grid emissions, that does not consider time of day or seasons of the 
year). We acknowledge such traditional approaches provide a kind of first-order, initial 
estimation that can be useful to some audiences in some contexts. However, it is imperative to 
recognize and explain the limitations of accepted approaches, and the risk of relying too heavily 
on average emissions estimates, as they are highly subject to change in the future, and to 
variability during the present (including on multiple timescales, like throughout a given day, or 
season to season). In short, new tools and methodologies are needed that can estimate the 
impact of taking various assumptions for how the grid will meet marginal demands in the near, 
intermediate and long terms. This transition period from a few million EVs to 100 million EVs 
will take some time, and environmental impacts will need to be more fully understood. As EV 
adoption increases and the grid is expanded to meet new demands for electrification, such 
transition tools and methods can be increasingly valuable to researchers, planners, 
policymakers, and infrastructure decision-makers. As such, our present work provides much-
needed additional insight and may be useful to inform 2nd order factors and more complex and 
integrated guidance. Going a step further by exploring limitations and pursuing additional 
rough orders of magnitude could have tremendous value for the transportation research 
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community. It would also facilitate a more direct and apples-apples comparison of EVs to other 
technologies there are substantial shortcomings as penetration rates grow.  

We conclude with a brief recap. It is clear that at certain very low very modest levels of EV 
deployment, something like an average assessment of the weighted mix of resources may not 
be illogical or even inaccurate. It is beyond the scope of this study to determine exactly at what 
penetration rates things change, but it can be stated that at significant increases in EV charging, 
in particular at certain hours of the day and months and seasons of the year, the assumption of 
weighted mixes breaks down. Some preliminary findings from the use cases investigated in the 
present study reveal that conditions most at risk of yielding higher than desired CO2 emissions 
rates include (a) afternoon charging at the workplace and (b) early evening charging at the 
residence. Conversely, it seems that residential overnight charging may, at present, be one of 
the lowest impact scenarios for EV charging.  

The implications of these findings affect both the behavior of EV owners and the future 
planning of technical resources. On the behavior side, it’s clear that managing charging events 
throughout the 24 hours of the day should merit greater attention. It appears that residential 
charging may be environmentally preferred compared to workplace charging under certain 
conditions. This may be an important near-term way to mitigate the unintended effects of 
higher marginal emissions impacts. This, however, is a simplified observation, since it assumes 
adequate all-electric range and adequate access to residential EV charging. Neither of these 
assumptions is necessarily sound at higher penetration rates or given certain economic barriers 
and social inequities. Furthermore, charging management and behavior alone will likely be 
inadequate as EV shares grow to levels that push up against current resource capacities and are 
not yet envisioned fully and accommodated for utility resource plans in the 3-to-10-year 
horizon. Future study is anticipated to further inform decision-making around such scenarios, 
including the ability to convert the predominantly historical approach dispatch to a predictive 
forecasting approach where a 2030 scenario is developed that can better simulate future 
resources, both fossil, and non-fossil, and how they will be deployed to meet a growing load to 
support electric transportation.  

While the use case results are of interest in their own right, it should be noted they are 
sensitive to the source data for the selected region and approaches taken to integrate electric 
charging behaviors. While the particular insights may not apply to other regions, it is important 
to note that the research term also intended to conduct a regional use case as a validation for 
the methodology. The methodology has been constructed and described in sufficient detail that 
it can be combined with other data sets and regional attributes for the purpose of adapting it as 
a decision support tools, beyond the particular region selected herein. Thus, the methodology is 
shown to be scalable and more broadly applied to other time horizons and regions, and 
leverage other data sets. 
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6 Conclusion 

This research study focuses on a few specific vehicle types around light-duty vehicle uses in 
order to develop a comparative framework with a manageable technical scope. While 
additional use cases and extensions are suggested as areas of future work, the frameworks and 
simulation-based comparisons are extremely generalizable and extendable because of the 
organizational approach. A lot of attention to detail has been paid to the development of 
physics-based vehicle models, including consideration of architectures, powertrain, overall 
accessory loads, and sensitivity to drive cycle and external ambient temperatures. Similar 
attention to detail has been paid to developing practical and representative EV charging 
profiles, reasonable mapping of standard drive cycles to real-world trips and travel behavior, 
and high-fidelity analyses of existing grid dispatch methods based on real-world data. 

A primary contribution of this effort is therefore the integration of each of the individual sub-
systems and independent data sources, including hourly grid characteristics, toward a novel 
understanding of the complex impacts of vehicle electrification. In short, the team has 
successfully achieved its chief aim of laying the groundwork for a more complete understanding 
of these results at scale.   

Regarding EV charging behavior, we have considered data from multiple concurrent sources 
which provides insight into when people are most likely to be charging their EVs today. A key 
finding is that overnight charging currently has the lowest absolute level of CO2 emissions and a 
relatively low variance compared to other times of charging. This may not imply that an EV 
solution is categorically preferred on the grounds of net CO2 emissions compared to a baseline 
HEV, although the research does permit such quantitative comparisons. And it does convey 
actionable information given the vast temporal optionality currently allowed for charging. 
Going forward, we can envision a means of aggregating the impacts of individual analyses, 
meaning that these events will be weighted based on their likelihood and current behaviors. 
We can furthermore consider behaviors will evolve as time goes by and as larger shares of EVs 
are realized.  

However, within a transition period (e.g., 5 to 10 years) where EV growth and grid dynamics 
adapt iteratively, this study conducted novel simulations of the primary grid-vehicle scenarios 
which are reflective of current EV behavior and grid characteristics in recent years. The study’s 
consultations with experts, literature review, and data analysis revealed that about ¾ of events 
occur at home, with 50% on a level two charger and 25% on a level one charger. This would 
suggest, for the near and intermediate term, that EVs will act as a kind of aggregated demand in 
the evening/overnight hours and that as a block (en masse as an emerging market segment), 
EVs are more likely to require marginal resources because they act together to force demand 
projections out of the expected regime. The good news is that, for the foreseeable future, these 
are, on balance, hours that are moderately lower in terms of marginal resource carbon 
intensity, since they can be met by intermediate resources (and not peaking resources). 
Whereas workplace charging is substantially less common, perhaps the marginal mix or the 
hourly estimation is reasonable for the effective CO2 signatures.  
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As one thinks about the scale, and a situation where of EV reach double-digit shares of the 
fleet, it’s very likely that all the modes and locations of charging will eventually be subject to 
conditions where marginal assumptions prevail. How the transition period is defined and how 
the system boundaries between EV growth and grid resources are balanced are important, but 
open questions. Another essential unknown that will impact effective CO2 emissions from EVs 
are how predictable EV charging events become, with an emphasis on the high power, 
coincident peak events. More research into this question can help inform more accurate 
methods and models for simulating the environmental impacts of EVs. The present framework 
sets up an approach that will be valuable in estimating future impacts under such conditions. 
While additional focus and scope lie beyond this study, it is clear that a more complete 
understanding of popular EV charging profiles and EV driving behaviors will be essential inputs 
to better decision-making and resource planning. As EV use and charging habits become more 
predictable and well-known, the relevant data and insights can be critically valuable to utilities. 
For instance, foreknowledge of EV charging events (in time and space) will be needed at an 
aggregate level and could be beneficial to grid operators. The reason is that they can better 
plan and iterate their learning for those types of loads and events for which currently they lack 
visibility. 
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8 Data Summary 

Products of Research  

The following data were collected and used in the study. Relevant source data and 
methodologies are cited.  

• Electric Vehicle energy consumption [9-15]  

o MATLAB/SIMULINK Codes [9, 13] 

▪ Vehicle parameters [13] 

▪ Powertrain characteristics [13] 

▪ Battery specs and control variables [13] 

o EPA dynamometer schedules [15]  

• EV charging [9, 20-23] 

• Electric Grid marginal emissions [24-25] 

• CO2 and other criteria pollutants [9, 13, 26]  

Sub-system models involve datasets that are on file and disclosed in prior published work. The 
relevant data have been disclosed in part, represented graphically, and/or disclosed as tables 
within the body of this report, or its appendices. Interim datasets and the outputs of specific 
simulations are also available in the appendices on file and accessible electronically. The 
methodologies have been described and presented such that future sets of (source or interim) 
data can be utilized by existing or new models to generate new simulation outputs.  

Data Format and Content  

The data used and generated in this study has taken the form of Excel spreadsheet data, excel 
models, Excel-based lookup tables, MATLAB initialization codes, MATLAB Source codes, 
SIMULINK system, and sub-system models. Other public datasets have been acquired and 
conditioned for use in this study.  

Data Access and Sharing  

Some of the data and outputs from this study have been presented in the body of the report 
and in the appendices. Additional data and files are included in a dataset file and published at 
https://doi.org/10.5281/zenodo.14347411. 

Reuse and Redistribution  

Reuse and/or redistribution of the data and methods is encouraged by the general public. The 
authors request appropriate citation and attribution of the present study (or the source data, 
publications and prior work upon which it rests). When citing, please refer to the DOI identifiers 
for the written report and datasets of the present work as may be appropriate.  

https://doi.org/10.5281/zenodo.14347411
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9 Appendices  

9.1 Appendix A – EPA Five-Cycle Computations 

Computation of EPA five-cycle city and highway fuel economy 

Formulae for computing official city, highway and combined fuel economy estimates per the 
U.S. Environmental Protection Agency official rule [13].  

𝐶𝑖𝑡𝑦𝐹𝐸 = 0.905 ∗ (1/(𝑆𝑡𝑎𝑟𝑡𝐹𝐶 + 𝑅𝑢𝑛𝑛𝑖𝑛𝑔𝐹𝐶𝐶𝑖𝑡𝑦 (A.1) 

𝑅𝑢𝑛𝑛𝑖𝑛𝑔𝐹𝐶𝐶𝑖𝑡𝑦 = 0.82 ∗ [
0.89

𝐹𝐸𝐹𝑇𝑃75

+
0.11

𝐹𝐸𝑈𝑆06𝐶𝑖𝑡𝑦75

] + 0.18 ∗  [
1

𝐹𝐸𝐹𝑇𝑃20

] + 0.14 ∗  [𝐹𝐶𝐴𝐶] (A.2) 

𝐻𝑖𝑔ℎ𝑤𝑎𝑦𝐹𝐸 = 0.905 ∗ (1/(𝑆𝑡𝑎𝑟𝑡𝐹𝐶 + 𝑅𝑢𝑛𝑛𝑖𝑛𝑔𝐹𝐶𝐻𝑤𝑦 (A.3) 

𝑅𝑢𝑛𝑛𝑖𝑛𝑔𝐹𝐶𝐻𝑤𝑦 = 1.07 ∗ [
0.79

𝐹𝐸𝑈𝑆06_𝐻𝑤𝑦_75
+ 

0.21

𝐹𝐸𝐻𝑊𝐹𝐸𝑇_75
] + 0.05 ∗ [𝐴𝐶] (A.4) 

Above, FE=Fuel Economy, FC=Fuel Consumption and EC=Energy Consumption. Subscripts 
represent either test cycles or HVAC modes where the number following an underscore 
indicates the test temperature in °F. 

9.2 Appendix B – Level 1 Residential Charging Profiles 

 

Figure 9-1. Level 1 Residential Overnight Charging Profile  
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Figure 9-2. Level 1 Residential Daytime Charging Profile 
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9.3 Appendix C – MATLAB Initialization Code 

%Initialization 

clear; 

close all; 

 

load [insert charging profile file name here]; 

load [insert emissions profile file name here]; 

 

hours = 24; %no hours in day 

E_init = 0.0; %Initial Energy Transferred 

E_target = [insert target energy value]; %Target Value of Energy Consumption 
in kWh 

X_init = 0; %Initial Ontime State Variable 

t_step = 1/60; %time step, set to 1/60 hour 

eta_charging=0.88; %efficiency of Level 2 charger 

eta_ref=0.83; %efficiency of Level 1 charger 
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9.4 Appendix D – Output Data 

Table 9-1. Percent Improvement in kgCO2/km over ICEV baseline (December outputs continued on the following page) 

  August   October 

Commute (80.5km) RO RE WM WA   RO RE WM WA 

H -34.81% -32.59% -23.03% -28.84%   -30.53% -35.05% -25.61% -32.47% 

M -31.57% -31.57% -31.57% -31.57%   -33.84% -33.84% -33.84% -33.84% 

A -34.08% -34.08% -34.08% -34.08%   -34.08% -34.08% -34.08% -34.08% 

ICEV 0.00% 0.00% 0.00% 0.00%   0.00% 0.00% 0.00% 0.00% 

HEV -34.80% -34.80% -34.80% -34.80%   -34.80% -34.80% -34.80% -34.80% 

HMM -8.47% -30.03% -17.96% -2.03%   -0.53% -32.37% -11.31% -21.89% 

HMRX -9.57% -46.20% -7.10% 27.86%   -11.15% -22.74% 1.23% -34.35% 

Commute (32.2km)                   

H -35.71% -30.66% -24.36% -26.88%   -30.66% -33.19% -25.62% -31.93% 

M -31.02% -31.02% -31.02% -31.02%   -33.31% -33.31% -33.31% -33.31% 

A -33.55% -33.55% -33.55% -33.55%   -33.55% -33.55% -33.55% -33.55% 

ICEV 0.00% 0.00% 0.00% 0.00%   0.00% 0.00% 0.00% 0.00% 

HEV -34.80% -34.80% -34.80% -34.80%   -34.80% -34.80% -34.80% -34.80% 

HMM -23.78% -13.53% -34.07% -5.67%   -20.77% -32.39% -1.61% -15.18% 

HMRX -46.17% -46.17% -46.17% 30.98%   -46.30% -22.12% 27.83% -22.12% 

Suburban Errands (48.3km)                   

H -54.61% -51.16% -46.58% -48.50%   -51.08% -52.94% -47.52% -52.00% 

M -51.36% -51.36% -51.36% -51.36%   -52.97% -52.97% -52.97% -52.97% 

A -53.14% -53.14% -53.14% -53.14%   -53.14% -53.14% -53.14% -53.14% 

ICEV 0.00% 0.00% 0.00% 0.00%   0.00% 0.00% 0.00% 0.00% 

HEV -48.61% -48.61% -48.61% -48.61%   -48.61% -48.61% -48.61% -48.61% 

HMM -45.52% -39.78% -52.77% -33.25%   -43.12% -52.32% -31.01% -40.53% 

HMRX -60.29% -62.04% -60.29% -7.64%   -60.44% -45.08% -11.00% -45.63% 
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  December 

Commute 
(80.5km) RO RE WM WA 

H -34.20% -38.76% -40.58% -35.25% 

M -38.76% -38.76% -38.76% -38.76% 

A -34.08% -34.08% -34.08% -34.08% 

ICEV 0.00% 0.00% 0.00% 0.00% 

HEV -34.80% -34.80% -34.80% -34.80% 

HMM -16.30% -11.74% -8.04% -17.54% 

HMRX -48.23% -39.80% -4.01% -45.76% 

Commute 
(32.2km)         

H -34.45% -36.97% -39.49% -38.23% 

M -38.27% -38.27% -38.27% -38.27% 

A -33.55% -33.55% -33.55% -33.55% 

ICEV 0.00% 0.00% 0.00% 0.00% 

HEV -34.80% -34.80% -34.80% -34.80% 

HMM -19.52% -32.59% -9.69% -20.78% 

HMRX -47.81% -47.81% -32.85% -47.81% 

Suburban 
Errands 
(48.3km)         

H -53.75% -55.61% -57.36% -56.30% 

M -56.47% -56.47% -56.47% -56.47% 

A -53.14% -53.14% -53.14% -53.14% 

ICEV 0.00% 0.00% 0.00% 0.00% 

HEV -48.61% -48.61% -48.61% -48.61% 

HMM -43.07% -50.56% -36.17% -43.99% 

HMRX -63.20% -62.80% -51.23% -63.20% 
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Table 9-2. kgCO2/km (Level 2 charger) (December outputs continued on the following page) 

  August   October 

Use Case Charging Profiles   Charging Profiles 

Commute (80.5km) RO RE WM WA   RO RE WM WA 

H 0.107 0.111 0.126 0.117   0.114 0.107 0.122 0.111 

M 0.112 0.112 0.112 0.112   0.109 0.109 0.109 0.109 

A 0.108 0.108 0.108 0.108   0.108 0.108 0.108 0.108 

ICEV 0.164 0.164 0.164 0.164   0.164 0.164 0.164 0.164 

HEV 0.107 0.107 0.107 0.107   0.107 0.107 0.107 0.107 

HMM 0.150 0.115 0.135 0.161   0.163 0.111 0.146 0.128 

HMRX 0.149 0.088 0.153 0.210   0.146 0.127 0.166 0.108 

Commute (32.2km)                   

H 0.106 0.114 0.124 0.120   0.114 0.110 0.122 0.112 

M 0.113 0.113 0.113 0.113   0.110 0.110 0.110 0.110 

A 0.109 0.109 0.109 0.109   0.109 0.109 0.109 0.109 

ICEV 0.164 0.164 0.164 0.164   0.164 0.164 0.164 0.164 

HEV 0.107 0.107 0.107 0.107   0.107 0.107 0.107 0.107 

HMM 0.125 0.142 0.108 0.155   0.130 0.111 0.162 0.139 

HMRX 0.088 0.088 0.088 0.215   0.088 0.128 0.210 0.128 
Suburban Errands 
(48.3km)                   

H 0.087 0.094 0.103 0.099   0.094 0.091 0.101 0.092 

M 0.094 0.094 0.094 0.094   0.091 0.091 0.091 0.091 

A 0.090 0.090 0.090 0.090   0.090 0.090 0.090 0.090 

ICEV 0.193 0.193 0.193 0.193   0.193 0.193 0.193 0.193 

HEV 0.099 0.099 0.099 0.099   0.099 0.099 0.099 0.099 

HMM 0.105 0.116 0.091 0.129   0.110 0.092 0.133 0.115 

HMRX 0.076 0.073 0.076 0.178   0.076 0.106 0.171 0.105 



 

 45 

  December 

Use Case Charging Profiles 

Commute 
(80.5km) RO RE WM WA 

H 0.108 0.101 0.098 0.106 
M 0.101 0.101 0.101 0.101 

A 0.108 0.108 0.108 0.108 

ICEV 0.164 0.164 0.164 0.164 
HEV 0.107 0.107 0.107 0.107 

HMM 0.137 0.145 0.151 0.135 

HMRX 0.085 0.099 0.158 0.089 

Commute 
(32.2km)         

H 0.108 0.104 0.099 0.101 

M 0.101 0.101 0.101 0.101 
A 0.109 0.109 0.109 0.109 

ICEV 0.164 0.164 0.164 0.164 

HEV 0.107 0.107 0.107 0.107 

HMM 0.132 0.111 0.148 0.130 

HMRX 0.086 0.086 0.110 0.086 

Suburban 
Errands 
(48.3km)         

H 0.089 0.085 0.082 0.084 

M 0.084 0.084 0.084 0.084 
A 0.090 0.090 0.090 0.090 

ICEV 0.193 0.193 0.193 0.193 

HEV 0.099 0.099 0.099 0.099 

HMM 0.110 0.095 0.123 0.108 

HMRX 0.071 0.072 0.094 0.071 
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Table 9-3. kgCO2/km (Level 1 charger, residential charging) 

  August October December 

Use Case 
Charging 
Profiles   

Charging 
Profiles   

Charging 
Profiles   

Commute (80.5km) 
ResON - 
Lvl1 

ResDT - 
Lvl1 

ResON - 
Lvl1 

ResDT - 
Lvl1 

ResON - 
Lvl1 

ResDT - 
Lvl1 

H 0.126 0.127 0.129 0.124 0.121 0.113 

M 0.122 0.122 0.118 0.118 0.109 0.109 

A 0.117 0.117 0.117 0.117 0.117 0.117 

ICEV 0.164 0.164 0.164 0.164 0.164 0.164 

HEV 0.107 0.107 0.107 0.107 0.107 0.107 

HMM 0.151 0.172 0.149 0.154 0.128 0.134 

HMRX 0.153 0.192 0.155 0.143 0.092 0.108 

         

  August October December 

Use Case 
Charging 
Profiles   

Charging 
Profiles   

Charging 
Profiles   

Commute (32.2km) 
ResON - 
Lvl1 

ResDT - 
Lvl1 

ResON - 
Lvl1 

ResDT - 
Lvl1 

ResON - 
Lvl1 

ResDT - 
Lvl1 

H 0.121 0.134 0.126 0.127 0.121 0.106 

M 0.122 0.122 0.118 0.118 0.109 0.109 

A 0.117 0.117 0.117 0.117 0.117 0.117 

ICEV 0.164 0.164 0.164 0.164 0.164 0.164 

HEV 0.107 0.107 0.107 0.107 0.107 0.107 

HMM 0.162 0.156 0.156 0.144 0.146 0.116 

HMRX 0.153 0.166 0.132 0.138 0.092 0.092 

        

  August October December 

Use Case 
Charging 
Profiles   

Charging 
Profiles   

Charging 
Profiles   

Commute (48.3km) 
ResON - 
Lvl1 

ResDT - 
Lvl1 

ResON - 
Lvl1 

ResDT - 
Lvl1 

ResON - 
Lvl1 

ResDT - 
Lvl1 

H 0.125 0.131 0.130 0.125 0.125 0.110 

M 0.122 0.122 0.118 0.118 0.109 0.109 

A 0.117 0.117 0.117 0.117 0.117 0.117 

ICEV 0.193 0.193 0.193 0.193 0.193 0.193 

HEV 0.099 0.099 0.099 0.099 0.099 0.099 

HMM 0.162 0.162 0.156 0.144 0.139 0.129 

HMRX 0.173 0.182 0.151 0.129 0.092 0.180 
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Table 9-4. gSO2/km for Suburban Errands Trip 

SO2 (g/km) 

  August   October 

  Charging Profiles   Charging Profiles 

  RO RE WM WA   RO RE WM WA 

H 0.126 0.095 0.100 0.102   0.179 0.152 0.134 0.116 

M 0.076 0.076 0.076 0.076   0.085 0.085 0.085 0.085 

A 0.080 0.080 0.080 0.080   0.080 0.080 0.080 0.080 

ICEV 0.000 0.000 0.000 0.000   0.000 0.000 0.000 0.000 

HEV 0.000 0.000 0.000 0.000   0.000 0.000 0.000 0.000 

HMM 0.089 0.093 0.040 0.123   0.120 0.000 0.167 0.067 

HMRX 0.011 0.002 0.011 0.308   0.012 0.002 0.304 0.002 

Table 9-5. gNOx/km for Suburban Errands Trip 

Nox (g/km) 

  August   October 

  RO RE WM WA   RO RE WM WA 

H 0.163 0.149 0.147 0.149   0.324 0.300 0.319 0.333 

M 0.130 0.130 0.130 0.130   0.208 0.208 0.208 0.208 

A 0.168 0.168 0.168 0.168   0.168 0.168 0.168 0.168 

ICEV 0.032 0.032 0.032 0.032   0.032 0.032 0.032 0.032 

HEV 0.017 0.017 0.017 0.017   0.017 0.017 0.017 0.017 

HMM 0.121 0.134 0.079 0.174   0.226 0.259 0.397 0.290 

HMRX 0.031 0.024 0.030 0.258   0.041 0.150 0.593 0.303 
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