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SUMMARY
Infection, autoimmunity, and cancer are principal human health challenges of the 21st century. Often re-
garded as distinct ends of the immunological spectrum, recent studies hint at potential overlap between
these diseases. For example, inflammation can be pathogenic in infection and autoimmunity. T resident
memory (TRM) cells can be beneficial in infection and cancer. However, these findings are limited by size
and scope; exact immunological factors shared across diseases remain elusive. Here, we integrate large-
scale deeply clinically and biologically phenotyped human cohorts of 526 patients with infection, 162 with
lupus, and 11,180 with cancer. We identify an NKG2A+ immune bias as associative with protection against
disease severity, mortality, and autoimmune/post-acute chronic disease. We reveal that NKG2A+ CD8+

T cells correlate with reduced inflammation and increased humoral immunity and that they resemble TRM

cells. Our results suggest NKG2A+ biases as a cross-disease factor of protection, supporting suggestions
of immunological overlap between infection, autoimmunity, and cancer.
INTRODUCTION

Infection, autoimmunity, and cancer are principal drivers of hu-

man mortality and disease; they are responsible for over 40%

of deaths worldwide.1–5 There is an urgent need to understand

shared human immunology across disease contexts to identify

potential pan-disease therapeutic strategies. For example, cur-

rent immunotherapies may provide benefit to the patient for

one disease while exacerbating another condition. Specifically,

certain cancer immunotherapies, such as immune checkpoint

blockade, can promote strong CD8+ T cell anti-tumor immunity

but can also trigger autoimmunity.6 Similarly, many autoimmune
This is an open access article und
disease treatments leverage systemic immunosuppressive

drugs that can leave patients more susceptible to infectious dis-

eases and cancer.7,8

It has historically been challenging to execute studies de-

signed to interrogate how immunological factors operate across

diverse disease settings, primarily because datasets that match

large human clinical cohorts with multi-omic biological data have

been limited. However, such studies, even when executed on

small patient cohorts representing only a few disease settings,

have yielded new insights into T cell biology. For example, one

recent study highlighted KIR+ CD8+ T cells as shared across

infection and autoimmunity contexts.9 Other studies have
Cell Reports 43, 113872, March 26, 2024 ª 2024 The Authors. 1
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connected pathogenic inflammation from both infection and

autoimmune disease with antigen-induced cell death (AICD) in

cytotoxic T cells.10–12 Further, additional works have established

connections between T cell dysfunction in cancer and immune

exhaustion in chronic infections such as HIV and hepatitis C vi-

rus13,14 and have also revealed T resident memory (TRM) cells

as essential to sustaining immune responses in both con-

texts.15–18 While these studies highlight the potential of pan-dis-

ease investigations, their limitations in cohort size, number of

diseases simultaneously studied, and depth of paired clinical

and biological data have made it difficult to identify specific im-

mune factors that can explain shared T cell phenomena across

diverse immunological disease settings.

To address this, we home in on NKG2A and NKG2C receptors

as putative factors underpinning T cell behaviors across multiple

diseases and disease classes. NKG2A/C receptors have

recently attracted significant interest within the immunology

community, as they allow for T and natural killer (NK) cells to

receive potent inhibitory (NKG2A) and stimulatory (NKG2C) sig-

nals through non-traditional means (i.e., not through PD1,

CD28, etc.). Their presence allows for T and NK cells to be func-

tionally regulated, even when traditional receptors are not pre-

sent or are blocked. For example, NKG2A can send inhibitory

signals via its ITIM (immunoreceptor tyrosine-based inhibitory

motif) domains and can disrupt lipid raft formation, potentially

disrupting immune synapse signaling.19,20 NKG2C pairs with

TYROBP (also known as DAP12) to send ITAM-dependent stim-

ulatory signals.21 In addition, there are recent reports that these

signals have conserved pan-disease roles in shaping T cell

phenotype, such as via chronic antigen stimulation.6,22,23 Here,

we explore the role of NKG2A/C through a systems immunology

approach that integrates deep clinical and multi-omic biological

data from several large-scale human patient studies covering

two infectious diseases, an autoimmune disease (systemic lupus

erythematosus [SLE]), and pan-cancer. We find that, in all dis-

ease settings, an NKG2A+ immune bias, at both bulk and sin-

gle-cell resolution, associates with decreased patient mortality,

decreased severity, and decreased prevalence of autoimmune

and post-acute chronic disease. We demonstrate that NKG2A+

CD8+ T cells significantly associate with protective humoral im-

munity across diseases and decreased levels of inflammatory

cytokines and cell types. We also identify similarities between

NGK2A+ CD8+ T cells and TRM cells in cancerous tumors. In mul-

tiple cancer types, we find that these cells correlate with immune

infiltration and spatially interact with tumor and immune cells.

RESULTS

Multi-omic atlas of NKG2A+ and NKG2C+ single immune
cells and patients from infection, autoimmune, and
cancer cohorts
We integrated single-cell and bulk multi-omic datasets from

seven highly phenotyped human clinical cohorts for infection (se-

vere acute respiratory syndrome coronavirus 2 [SARS-CoV-2]

n = 296 patients and chikungunya n = 231 patients), autoimmu-

nity (SLE n = 162 patients), and pan-cancer (n = 11,180 patients)

(Figure 1A; Table S1; see STAR Methods).24–29 As NKG2A/C

expression is dominantly restricted to CD8+ T cells and NK cells,
2 Cell Reports 43, 113872, March 26, 2024
we focused on these two cell types for single-cell analyses and

presumed bulk NKG2A/C measurements to represent expres-

sion from these two cell types alone (Figure 1B).30 Since

NKG2A/C receptors are known to form heterodimers with

CD94 for function, we account for CD94 expression when clas-

sifying single cells and bulk samples as NKG2A+ or NKG2C+

biased (Figure 1C; see STAR Methods).31,32 Given the divergent

biological signals sent by these two receptors, inhibitory for

NKG2A and stimulatory for NKG2C,32 and their restriction to T

and NK cells,30 we hypothesized that NKG2A or NKG2C is likely

involved in shared immunopathology and protection factors

across disease contexts. Thus, we took on a multi-disease

investigation into how NKG2A+ and NKG2C+ T cell and patient

biases associate with biological and clinical markers of disease

presence, severity, and patient mortality across three divergent

disease states (Figure 1D).

Patients with infection and NKG2A+ bias have
decreased disease severity, mortality, and prevalence
of post-acute chronic disease
We start by examining patients with infectious diseases, with a

focus on our previously reported longitudinal COVID-19 cohort

due to its depth of matched clinical and biological

profiling.24,25,33–35 Consistent with previous works, our assigned

NKG2A+ and NKG2C+ cells presented with divergent pheno-

types, with NKG2C+ cells appearing more activated in both the

CD8+ T and NK cell compartments, likely due to the stimulatory

nature of the NKG2C receptor (Figure S1A).31 Of note, NKG2C+

CD8+ T cells represented only 1% of total CD8+ T cells, suggest-

ing that they are not cytomegalovirus (CMV)-driven populations.

NKG2C+ CD8+ T cells are known to expand to a significantly

larger fraction of patient CD8+ T cells upon CMV-driven stimula-

tion.36 Further, in line with the presence of NK-related NKG2A/C

receptors on these unique CD8+ T cells, both NKG2A+ and

NKG2C+ cells possessed increased NCAM1 (CD56) gene

expression and surface protein levels compared to other CD8+

T cells. CD56 is known to denote NK-like T cells (Fig-

ure S1B).37–40 Further, KIR proteins, which have also been re-

ported on NK-like T cells and appear involved in immunoregula-

tory behaviors,9 were markedly upregulated on NKG2A+ and

especially NKG2C+ CD8+ T cells (Figure S1C). We see additional

confirmation of our NKG2A+ and NKG2C+ assignment in the NK

cell compartment where NKG2C+ NK cells indeed present with

an adaptive-like phenotype, which NKG2C+ NK cells are known

to acquire (Figure S1D).35,41 Thus, we confirm the validity of our

NKG2A+ and NKG2C+ cell assignment in all cellular compart-

ments and demonstrate their phenotypic divergence from each

other.

To investigate the biological and clinical impacts of an NKG2A/

C immune bias during infection, we assigned each patient as

NKG2A+ or NKG2C+ biased based on their ratio of NKG2A+ to

NKG2C+ cells. This assignment was done for each cell type

(see STAR Methods). Interestingly, patients with an NKG2A+

bias had significantly greater odds of surviving than those with

an NKG2C+ bias even when accounting for the effects of sex,

age, and disease severity (Figure 2A). Similar trends, albeit less

significant, associating an NKG2A+ bias with increased survival

were observed in validation cohorts even when accounting for



Figure 1. Overview of study design, analytic methods, and dataset multi-omics

(A) Cartoon describing the collected single-cell and bulk multi-omic datasets with paired clinical data from infection, autoimmunity, and cancer contexts.

(B) Cartoon depicting experimental and analytic strategies for single-cell and bulk data with a focus on NKG2A/C-expressing cell types.

(C) Cartoon demonstrating NKG2A+ and NKG2C+ bias assignment at single-cell and bulk levels.

(D) Cartoon displaying the different clinical and biological -omics to be compared between NKG2A+ and patients with an NKG2C+ bias.
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demographic factors (Figure S2A). Given that expansion of

NKG2C+ NK cells is associated with prior CMV infection, a

known risk factor in infection contexts, we repeated these ana-

lyses based on whether a patient had prior CMV infection as a

co-variate (see STAR Methods). Interestingly, even when we ac-

counted for prior CMV infection, NKG2A+ biases were still signif-

icantly associated with greater odds of survival, suggesting that

the benefit derived from an NKG2A+ bias is not explained by

CMV infection history alone (Figure S2B).

To probe for the long-term impact of NKG2A+ biases, we

compared long COVID profiles of patients who did and did

not have NKG2A+-biased immune systems during acute dis-
ease. Intriguingly, we observed significant protection against

long COVID in patients with an initial NKG2A+ bias, even

when accounting for sex, age, and disease severity (Figure 2B).

We found NKG2A+-biased NK cells to associate with greater

protection than CD8+ T cells for all symptom groups except

for anosmia/dysgeusia, colloquially called loss of smell/taste.

This may be explained by previous observations that

anosmia/dysgeusia are driven by fundamentally different pa-

thology than unresolved inflammation,42–46 which associates

with other post-acute sequelae. As with the survival analyses,

we confirmed that NKG2A+ biases, especially those in the NK

cell compartment, significantly associate with long COVID
Cell Reports 43, 113872, March 26, 2024 3



Figure 2. NKG2A+ bias associates with clinical and biological correlates of protection in infection contexts

(A) Log-oddsmodel of patient mortality predicted by NKG2A+ bias while accounting for demographic factors. Top: bar plot with the x axis as different co-variates;

the y axis is the �log10(p value). Bottom: forest plot with the x axis as different co-variates and the y axis as ln(odds ratio) for a given co-variate, with 95%

confidence intervals plotted as whiskers. Red color indicates significance, meaning p < 0.05.

(B) Log-odds model of whether a patient has a given long COVID symptom as predicted by NKG2A+ bias while accounting for demographic factors. Top: bar plot

with the x axis as different co-variates and symptoms; the y axis is the�log10(p value). Bottom: forest plot with the x axis as different co-variates and symptoms

and the y axis as ln(odds ratio) for a given co-variate, with 95% confidence intervals plotted as whiskers. Colors indicate different co-variates; see legend at

bottom.

(C) Log-odds model of whether a patient has a given co-morbidity as predicted by NKG2A+ bias while accounting for demographic factors. Red color indicates

increased ln(odds ratio), as in given the presence of the co-variate on the x axis, there is increased odds of the co-morbidity on the y axis; blue colors indicate a

(legend continued on next page)
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protection even when accounting for prior CMV infection

(Figure S2C).

The critical role of inflammation in exacerbating severity in

acute and post-acute disease suggests that the benefit derived

from an NKG2A+ bias may in some way be related to quelling

inflammation. Consistent with this suggestion, patients with an

NKG2A+ bias had significantly decreased prevalence of pre-ex-

isting chronic conditions evenwhen accounting for demographic

differences (Figure 2C). Many of these co-morbidities are known

to have inflammation-driven origins or have pathology intimately

tied with inflammation, such as chronic obstructive pulmonary

disorder and coronary artery disease.47,48 Thus, these findings

strongly suggest, acrossmultiple infection contexts and cohorts,

that an NKG2A+ bias confers protection during acute and post-

acute disease given findings of reduced mortality, severity, and

long-term symptoms.

NKG2A+ biases correlate with reduced pathogenic
inflammation during infection
To investigate the suggestion from clinical data that NKG2A+

biases may confer protection through reduced inflammation,

we interrogated the biological profiles of patients with an

NKG2A+ versus an NKG2C+ bias for differences in inflammatory

proteins and cell types. Consistent with the clinical data, patients

with an NKG2A+ bias had significantly downregulated levels of

inflammatory proteins (Figure 2D; Table S2.1). By contrast, pa-

tients with an NKG2C+ bias had plasma proteomes enriched

for inflammatory pathways, such as interferon g (IFNg) response

and granulocyte chemotaxis, and upregulated well-known in-

flammatory proteins, such as IFNg and CXCL1, even into post-

acute disease (Table S2.2).49–51 This elevation of inflammatory

proteins in patients with an NKG2C+ bias was confirmed in our

validation cohorts, suggesting that this association holds

across different infection contexts and cohorts (Figure 2E;

Tables S2.3–S2.5).

Probing deeper into this connection between inflammation

and NKG2A/C biases, we compared the immune cell profiles

of patients with NKG2A+ biases to those with NKG2C+ biases.

Even during post-acute disease, patients with an NKG2C+ bias

presented with signs of continued inflammation as observed

through significantly higher levels of cytotoxic CD4+ T cells,

CD4+ T cell clonal expansion, and perforin-secretion capabilities
decrease; see legend on bottom right. Co-morbidities are abbreviated as follow

kidney disease; COPD, chronic obstructive pulmonary disease; T2DM, type II di

(D) Network of plasma proteins upregulated in patients with an NKG2C+ bias.

connection; a wider line means increased functional similarity. Significantly enri

Green outlines denote plasma proteins that are significantly upregulated in patie

(E) Bar plots with upper row from the chikungunya validation cohort and the botto

has an NKG2C+- (2C) or NKG2A+-biased (2A) response, and the y axis represen

(F) Bar plots with measurements from 2 to 3 months after initial infection. The x a

response, and the y axis represents, from left to right, the percentage of CD4+ T c

expansion index of CD4+ T cells from single-cell T cell receptor sequencing (scTC

plasmablasts from scRNA-seq.

(G) Venn diagram depicting the overlap between significantly upregulated gene

middle), chikungunya validation cohort (bottom left), and a defined antibody ge

overlap.

Bar plots are presented as the mean value with standard error. p values are anno

**p < 0.01, and *p < 0.05.
by those cells (Figure 2F). This continued reactivity in the CD4+

T cell compartment was accompanied by a simultaneous in-

crease in plasmablast percentages (Figure 2F, right). Given the

important collaborative roles of CD4+ T and B cells in humoral

immunity, we interrogated patients for differences in antibody

levels. Notably, while plasmablast levels were upregulated in pa-

tients with an NKG2C+ bias, it was patients with an NKG2A+ bias

who had greater odds of developing anti-SARS-CoV-2 anti-

bodies (Figure S3A). In contrast, an NKG2C+ bias associated

with increased levels of autoantibodies, particularly anti-IFNa2,

and the presence of atypical memory (AtM) B cells during acute

disease. AtM B cells are often associated with autoantibodies

and autoimmunity (Figures S3B and S3C).52,53 This phenomenon

of humoral immunity divergence was also observed in the valida-

tion cohorts, where we found genes upregulated by patients with

an NKG2A+ bias in the chikungunya cohort to display significant

overlap with antibody-associated genes and nearly significant

overlap for the other COVID-19 cohort (Figure 2G). Thus, we

demonstrate that, across multiple infection contexts and co-

horts, NKG2A+ biases not only associate with clinical metrics

of protection but also with biological metrics of protection as

observed through reduced short- and long-term inflammation,

reduced autoreactivity, and increased protective humoral

immunity.

NKG2A+ CD8+ T cells associate with protection and
reduced inflammation in lupus
Signs that NKG2A+ biasesmay potentially associate with protec-

tion against autoimmunity pushed us to investigate the role of

NKG2A+ biases in autoimmune disease. The most well charac-

terized of these is SLE (lupus).26,54 Given recent reports of the

importance of CD8+ T cells in lupus settings and their ability to

carry NKG2A/C receptors, we focused our autoimmune ana-

lyses on the clinical and biological impacts of an NKG2A+ bias

in the CD8+ T cell compartment.55

NKG2A+ and NKG2C+ CD8+ T cells, when projected onto a

transcriptome-defined uniformmanifold approximation and pro-

jection, present with canonical CD8+ T cell phenotypes along

with a prominent short-lived effector cell (SLEC)-like population

(Figure 3A). SLEC-like cells displayed upregulated levels of

CD57, confirming their terminal phenotype, and increased

IFNg mRNA. This suggests that SLEC-like cells may play a role
s: CHF, congestive heart failure; CAD, coronary artery disease; CKD, chronic

abetes.

Ovals are individual proteins, and line width indicates the strength of their

ched pathways are annotated via a smaller circle on the given protein’s oval.

nts with an NKG2C+ bias even 2–3 months after initial infection.

m from the COVID-19 validation cohort. The x axis denotes whether the patient

ts the mRNA level for the given transcript.

xis denotes whether the patient has an NKG2C+- (2C) or NKG2A+-biased (2A)

ells that are cytotoxic from single-cell RNA sequencing (scRNA-seq), the clonal

R-seq), perforin secretion from Isoplexis, and the percentage of B cells that are

s in patients with an NKG2A+ bias from the COVID-19 validation cohort (top

ne set (bottom right). Intersections are annotated with the significance of the

tated on all relevant plots with either value or stars, ****p < 0.0001, ***p < 0.001,
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Figure 3. NKG2A+-biased CD8+ T cells significantly associate with protection from lupus and related inflammation

(A) Uniform manifold approximation and projection (UMAP) of single CD8+ T cells that are either NKG2A+ or NKG2C+ from patients with lupus and healthy

controls. Colors indicate different phenotypes; see legend on left. Phenotypes are abbreviated as follows: MAIT, mucosal-associated invariant T cells; SLEC,

short-lived effector cells.

(B) Bar plots with x axis as whether the cell belongs to the SLEC-like phenotype defined in (A), where blue denotes SLEC-like cells and gray denotes other cells,

and the y axis as the mRNA level of a given transcript.

(C) Density plots on the CD8+ T cell UMAP, with darker colors indicating increased density and lighter colors indicating decreased presence. Each color indicates

a different cellular or patient subset; see the annotation on the bottom of each UMAP for the legend.

(D) Bar plots with x axis aswhether the patient has lupus, annotated as SLEwith an orange bar, or is a healthy control, annotated as HDwith a green bar. The y axis

represents the percentage of the given phenotype.

(E) Log-odds model of whether a patient has lupus as predicted by prevalence of NKG2A+-biased CD8+ T cells while accounting for demographic factors. Left:

forest plot with the y axis as different co-variates and x axis as ln(odds ratio) for a given co-variate, with 95% confidence intervals plotted as whiskers. Right: bar

plot with the y axis as different co-variates; the x axis is the �log10(p value). Red color indicates significance, meaning p < 0.05.

(F) Bar plots with x axis aswhether a patient is biased toward NKG2A+ or NKG2C+CD8+ T cells, and y axis represents the percentage of a given phenotype out of a

given patient’s peripheral blood mononuclear cells (PBMCs).

Bar plots are presented as the mean value with standard error. p values are annotated on all relevant plots with either value or stars, ****p < 0.0001, ***p < 0.001,

**p < 0.01, and *p < 0.05.
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in lupus pathology given previous demonstrations of IFNg-de-

pendent inflammation and activation of autoreactive cells in pa-

tients with lupus (Figure 3B).56–58 When we interrogated SLEC-

like cells for NKG2A+ or NKG2C+ biases, we found a strong

NKG2C+ bias that was accompanied by a near-complete clinical

bias toward patients with lupus (Figure 3C, top ). In contrast, non-

SLEC-like cells were nearly all NKG2A+ and almost solely

derived from healthy donors (Figure 3C, bottom). We statistically

confirmed both the increased prevalence of NKG2C+ cells in pa-

tients with lupus and the lupus-specific CD8+ T cell bias toward

an SLEC-like phenotype (Figure 3D). Further, we confirmed the

SLEC-like phenotype of NKG2C+ cells through flow cytometry,
6 Cell Reports 43, 113872, March 26, 2024
where we found NKG2C+ cells to present significantly more

frequently than NKG2A+ cells as CD57+IL7R�, which is the liter-

ature definition of SLECs (Figures S4A–S4C; Table S3).59,60

Thus, we both demonstrate the increased prevalence of

NKG2C+ CD8+ T cells in patients with lupus, but we also exper-

imentally validated their inflammatory SLEC-like phenotype that

may, possibly through IFNg secretion, allow them to play patho-

genic roles.

To explore the larger immunological impacts of an NKG2A+

bias, we assigned each patient with lupus and each healthy

donor as NKG2A+ or NKG2C+ biased based on their ratio of

NKG2A+ and NKG2C+ CD8+ cells (see STAR Methods).



Figure 4. NKG2A+ CD8+ T cells are present across cancer types and associate with survival and immune infiltration into tumors

(A) Cartoon depicting the different biological -omics collected from patients with cancer along with clinical data and the associated analytic methods for each

-omic.

(B) Bar plots with x axis as different cancer types; the y axis represents the percentage of tumor-infiltrating CD8+ T cells for a given cancer type that are NKG2C+

(red) and NKG2A+ (blue). Cancer types are abbreviated as follows: THCA, thyroid carcinoma; ESCA, esophageal cancer; HNSCC, head and neck squamous cell

carcinoma; CRC, colorectal cancer; HCC, hepatocellular carcinoma; NPC, nasopharyngeal carcinoma; UCEC, uterine corpus endometrial carcinoma; RC, renal

cancer; PACA, pancreatic cancer; LUNG, lung cancer; CHOL, cholangiocarcinoma; MELA, melanoma; BRCA, breast cancer; STAD, stomach adenocarcinoma;

AML, acute myeloid leukemia; BCC, basal cell carcinoma.

(C) Kaplan-Meier survival plot of NKG2A+- (blue) versus NKG2C+ (red)-biased patients based on bulk RNA-seq data from TCGA patients. Log-rank test is used to

calculate the displayed p value.

(D) UMAP of tumor-infiltrating CD8+ T cells from patients across 33 cancer types. Colors indicate different phenotypes; see legend on right.

(E) Bar plots with x axis as different cancer types; y axis represents the percentage of tumor-infiltrating CD8+ T cells for a given phenotype that are NKG2C+ (red)

and NKG2A+ (blue).

(F) Density plots with x and y axes as the mRNA levels for a given transcript. Red densities are for NKG2C+ cells and blue densities are for NKG2A+ cells; darker

colors indicate greater density. Individual data points within the density plot are shown in the same respective colors. See legend on right.

(G) Bar plots with x axis indicating whether patients are biased for NKG2C+ (red) or NKG2A+ (blue) based on bulk data; the y axis represents the Z score of a given

tumor microenvironment-associated value.

(H) Spatial transcriptomics slide for a given patient with breast cancer with H&E (top left), interferon expression (bottom left), NKG2A+ cell density (top right), and

NKG2C+ cell density (bottom right) colored on; see legend on right. Annotations of the slide from pathology are outlined in red for invasive carcinoma, yellow for in

situ carcinoma, and green for benign hyperplasia.

(I) Venn diagram representing the overlap between differentially upregulated genes in spots biased for NKG2A+ (top middle), NKG2C+ (bottom left), and a defined

antibody gene set (bottom right). Significance is indicated in the intersection; a blue down arrow indicates less overlap than expected, and a red up arrow in-

dicates greater overlap than expected.

(legend continued on next page)
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Consistent with our CD8+ T cell analyses, patients with an

NKG2C+ biasweremore likely to have lupus evenwhen account-

ing for demographic co-variates (Figure 3E). When we compared

the percentages of other immune subtypes against patients with

either an NKG2A+ or an NKG2C+ bias, we observed that an

NKG2C+ bias associated with a clear increase in inflammatory

classical monocytes and cytotoxic T cells. In contrast, an

NKG2A+ bias associated with increased percentages of naive

CD4+ and naive CD8+ T cells (Figure 3F). These immune cell as-

sociations match what was observed for patients in infection

contexts. For example, inflammatory cell types are overrepre-

sented in patients with an NKG2C+ bias. Thus, we demonstrate

that, across disease classes, NKG2A+ biases are consistently

associated with both clinical protection as well as biological

markers of protection, such as reduced inflammation and hy-

per-activation.

Patients with cancer and NKG2A+ bias have increased
survival across cancer types
While we observed NKG2A+ biases as associated with protec-

tion within the context of two viral infections and one autoim-

mune disease, these are diseases where inflammation is closely

tied to, if not the source of, the disease pathology. Thus, an

NKG2A+ bias is understandably protective, as it provides cells

an additional method to receive inflammation quelling signals.

However, in cancer contexts, inflammation has been claimed

as both beneficial and harmful: beneficial for the promotion of

immune activation and infiltration and harmful due to inflamma-

tion- and activation-induced apoptosis of anti-tumor immune

cells.11,61–63 Thus, the impact of NKG2A+ biases in cancer con-

texts is unclear. To address this, we compiled single-cell and

bulk profiles of 397,810 tumor-infiltrating CD8+ T cells and

11,180 patients with cancer across 33 different cancer types

(Figure 4A).28,29 In addition, we gathered spatial transcriptomics

data from five different patients for breast, prostate, and ovarian

cancer to understand how cell-cell interactions differ between

NKG2A+ and NKG2C+ CD8+ T cells across cancer types.64

To assess the prevalence of NKG2A+ and NKG2C+ biases

across different cancer types, we measured the percentages

of NKG2A+ and NKG2C+ CD8+ T cells in cancer types for which

we had large numbers of patients with single-cell data. Interest-

ingly, not only did we observe widespread prevalence of these

immune cell subsets among cancer types, but cancer types

differed in their tendency toward an NKG2A+- or NKG2C+-

biased response (Figure 4B). Interestingly, melanoma, which is

well known for fostering an immunogenic tumor microenviron-

ment (TME),65 appeared significantly NKG2A+ biased. In

contrast, thyroid cancer, which presents as a cold tumor with

few immunogenic antigens,66 was significantly NKG2C+ biased.

In linewith these observations, we foundNKG2A+-biased cancer

types to mildly associate with greater tumor immunogenicity

(Figure S5A). This suggestion of NKG2A+ association with pro-
(J) Scatterplot of protein-protein interactions within tumor-infiltrating CD8+ T cells

T cell+ spots over other CD8+ T cell spots, and the y axis is the�log10(p value). Col

x and y values. Individual interactions with clinical and biological relevance are la

Bar plots are presented as the mean value with standard error. p values are annot

**p < 0.01, and *p < 0.05.
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immune response TMEs prompted us to compare the long-

term survival of patients with NKG2A+- versus NKG2C+-biased

tumors. Interestingly, NKG2A+-biased tumors associated with

significantly increased pan-cancer patient survival rates, with

especially prominent survival benefits for specific cancers,

such as certain renal cancer subtypes (Figures 4C and S5B).

For no cancers did an NKG2C+ bias confer a survival advantage.

Thus, across a broad range of cancer types, we find that

NKG2A+ biases are positively associated with cancer survival.

In contrast to previous suggestions that NKG2A may function

as a druggable immune checkpoint,23 our analyses suggest

that, instead, treatments designed to promote NKG2A+-biased

immune responses may benefit patients with cancer.

NKG2A+CD8+ T cells in tumors associate with increased
immune infiltration and tumor-immune interactions
To more deeply investigate the biological underpinnings behind

the seemingly beneficial NKG2A+ bias, we sought to understand

how NKG2A+ CD8+ T cell tumor infiltrates differ from their

NKG2C+ counterparts. To achieve this, we examined the tran-

scriptomic profiles of nearly 400,000 CD8+ T cells from 21 cancer

types (Figure 4D) and assigned them as NKG2A+, NKG2C+, or

neither based on mRNA expression levels (see STAR Methods).

Interestingly, we observed NKG2A+ andNKG2C+ cells to occupy

distinct phenotypes with NKG2A+ cells significantly biased for a

TRM phenotype and NKG2C+ cells biased toward TEMRA and

killer cell lectin-like receptor-expressing T cell phenotypes (Fig-

ure 4E).67,68 The preference of NKG2A+ cells toward a TRM
phenotype and NKG2C+ cells toward more strongly activated

phenotypes was confirmed through their differential expression

of key marker genes (Figure 4F; Table S4). TRM cells have been

well characterized as potent supporters of anti-infection and

cancer immune responses, and their presence is associated

with survival. TRM cells are also known to present with an acti-

vated phenotype that allows for effector responses while avoid-

ing AICD.15,18 These characterizations not only match the

observed benefit NKG2A+ biases provide patients with cancer

but also align with clinical and biological characterizations of

NKG2A+ CD8+ T cells and biases we observed in infection and

autoimmunity contexts. This suggests that the pan-disease

benefit of NKG2A may arise from NKG2A+ cells biasing toward

TRM or analogous phenotypes that allow for control of a given

target without pathogenic inflammation.

To further characterize the biological nature of an NKG2A+

bias in cancer settings, we compared the TME profiles of pa-

tients with NKG2A+ and NKG2C+ biases. In agreement with

our previous suggestions of increased immune activity in

NKG2A+-biased tumors, patients with NKG2A+ biases pre-

sented with increased CD8+ T cell infiltration, T cell receptor

engagement, dendritic cell presence, and decreased prevalence

of M2 macrophages (Figure 4G). The first three factors not only

confirm that patients with an NKG2A+ bias have increased
with the x axis as the log2-transformed fold change (log2FC) of NKG2A+ CD8+

or corresponds to log2FC, see legend on right, and dot size is the product of the

beled.

ated on all relevant plots with either value or stars, ****p < 0.0001, ***p < 0.001,



Article
ll

OPEN ACCESS
immune infiltration in their tumors but also suggest that patients

with an NKG2A+ bias are equipped with the proper immune ma-

chinery of dendritic cells to prime and present CD8+ T cells with

tumor antigens to permit cancer cell recognition and killing. M2

macrophages are well known to be pro-tumorigenic, have

been frequently associated with metastasis, and are claimed

as direct players in fostering cold immunosuppressive

TMEs.69–73 Thus, their decreased prevalence in patients with

NKG2A+ biases demonstrates that NKG2A+ biases not only

associate with increased immune infiltration of key anti-tumor

players but also positively correlate with immune cell behaviors

that facilitate, not hinder, anti-tumor responses.

Inspired by these suggestions of NKG2A+ biases fostering

pro-survival anti-cancer TMEs, we gathered spatial transcrip-

tomics samples from five separate patients that comprised three

different cancer types: breast, prostate, and ovarian (Fig-

ure 4A).64 One of the breast cancer samples was already well

characterized by a pathologist, and thus we focused our ana-

lyses on that sample. Reminiscent of their divergent phenotypes,

NKG2A+ and NKG2C+ spots occupied distinct spatial regions of

the tumor (Figure 4H). While NKG2C+ spots did differ from

NKG2A+ spots by sitting in an IFN-expressing zone of the tumor,

both subsets were either in or directly adjacent to tumor tissue,

perhaps suggesting active tumor engagement and possibly

killing. Further, consistent with the observed association be-

tween NKG2A+ biases and immune infiltration, differentially up-

regulated genes in NKG2A+ spots were significantly enriched

for antibody-related genes (Figure 4I). This phenomenon

matches our observations across viral infection contexts and

thus suggests that this association may hold true across very

diverse disease settings. To confirm the active immune cell

and tumor engagement suggested to occur in NKG2A+ spots,

we performed cell-cell interaction analysis by looking for

ligand-receptor pairs differentially enriched in NKG2A+ CD8+

T cell spots compared to NKG2A� CD8+ T cell spots across all

five spatial transcriptomics datasets (Figure 4J). Interestingly,

not only did we observe enrichment for HLA-E:NKG2A, which

suggests that there may be active engagement of NKG2A in tu-

mors, but we also observed increased chemokine, cytokine, and

exhaustion receptor engagement. This suggests active recruit-

ment of immune cells, consistent with increased immune infiltra-

tion in bulk RNA sequencing samples, and suggests the possibil-

ity of tumor-immune cell engagement, for example through the

well-known PD-1:PD-L1 axis.74–76 Thus, we demonstrate across

dozens of cancer types, thousands of patients, and hundreds of

thousands of tumor-infiltrating CD8+ T cells that NKG2A+ biases

associate with increased survival and immune infiltration of tu-

mors, as confirmed through in situ measurements, possibly

due to the acquirement of a TRM phenotype by NKG2A+ CD8+

T cells that allows for sustained anti-tumor effector T cell

responses.

DISCUSSION

Therapies that target disease specific biology often fail to ac-

count for the negative impacts of said therapy in different health

contexts. This can subject patients to harmful side effects, as pa-

tients can transition in and out of different health states even dur-
ing the same disease journey. Current immunotherapies often

have this pitfall of singular-context benefit. One prime example

is immune checkpoint blockade cancer immunotherapy and its

established potential to trigger immune-related adverse events

(AEs), many of which are largely autoimmune in nature.62,77

Similar dilemmas arise for autoimmune disease, where clinicians

must balance the potential benefit of immune-suppressive treat-

ments, such as corticosteroids or anti-interleukins, against the

known increased risk of infection.8,78 These principal examples

highlight the cross-field need to identify fundamental immu-

nology shared across diseases to identify immunological factors

that, when promoted or avoided, allow for a balanced immune

response that can clear pathogenic elements without immune-

related side effects.

Here, we leverage systems biology techniques to integrate

immunological cell types across multiple disease states to

demonstrate that anNKG2A immune bias, and thus an increased

presence of NKG2A+ CD8+ T cells, serves as a cross-disease

correlate of clinical and biological protection. This shared benefit

across multiple infectious diseases, at least one autoimmune

disease, and many cancer types reinforces recent suggestions

of significant similarities across these disease families.6 By inter-

rogating the biological associations of NKG2A+ biases, we sug-

gest that hyper-inflammation is pathogenic in infection, autoim-

mune, and cancer contexts. In fact, our findings suggest that the

promotion of non-hyper-inflammatory NKG2A+ cells may

achieve the desired goals of a sustained anti-tumor immune

response: an orchestrated immune infiltration into the tumor

and improved patient survival. Such benefits may be attributable

to the TRM phenotype that NKG2A+ CD8+ T cells dominantly

bear. TRM cells are thought to play an immunological balancing

act where they are restrained enough to avoid AICD yet activated

enough that they can enact potent anti-tumor immune re-

sponses.16,18 Further, both TRM cells and NKG2A expression

can be induced through interleukin-12 (IL-12) and transforming

growth factor b (TGF-b), a unique combination of cytokines

that confers both effector- and memory-related responses and

may allow for the long-term survival and effector function of

these cells.79,80 In support of our suggestion that NKG2A+ cells

present as protective, recent checkpoint blockade clinical trials

targeting NKG2A have had markedly limited success and report

a significant number of treatment-emergent serious AEs, likely

due to the inhibition of inflammation-quelling signaling from

NKG2A engagement.81

Limitations of the study
Our multi-disease analysis of NKG2A+ cells, while principally a

correlative study, also suggests a roadmap for future mecha-

nistic and causal studies that might more clearly resolve how

anNKG2A bias associates with immunological protection inmul-

tiple disease settings. Dissecting the biological mechanisms

behind NKG2A signaling, perhaps through quantitative epige-

netic analyses designed to identify signaling and transcription

factors that control the up- and downstream regulators of

NKG2A+ cells, would constitute an important first step and

may shed light on perturbations that can alter NKG2A expression

levels. An additional avenue of exploration will be to more fully

resolve the strong association reported here between NKG2A
Cell Reports 43, 113872, March 26, 2024 9
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and resident memory T cells and also to observe whether, and if

so how, NKG2A biases change over patient disease journeys.

This work also serves to highlight the value of cross-disease,

systems biology studies that can quantitate immunological sig-

natures in multiple contexts. We show that such an approach

can not only resolve robust correlates of protection but may

also force a rethinking of what does and does not constitute a

good drug target for immunotherapy. It is worth noting that the

NKG2A+-biased response we observe here for NK cells is limited

to responses that do not require a NKG2C+ NK cell response.

Our levels of NKG2C+ NK cells are much lower than what one

would expect for an NKG2C+-inducing infection, such as by

CMV; thus, they likely represent baseline levels, such as baseline

inflammation, rather than the capacity to respond to, for

example, Epstein-Barr virus (EBV), whose control by NKG2C+

NK cells has been linked to reduced prevalence of multiple

sclerosis.82
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FITC anti-human CD56 (NCAM) Antibody BioLegend Cat#318303; RRID:AB_604091

BD OptiBuild BUV395 anti-human CD8 BD Biosciences Cat#740303; RRID:AB_2740042

Brilliant Violet 421 anti-human CD159a

(NKG2A) antibody

BioLegend Cat#375139; RRID:AB_2941547

PE anti-human CD159c (NKG2C) Antibody BioLegend Cat#375003; RRID:AB_2888871

APC/Cyanine7 anti-human CD127 (IL-7Ra) Antibody BioLegend Cat#351347; RRID:AB_2629571

Brilliant Violet 785 anti-mouse/human

KLRG1 (MAFA) antibody

BioLegend Cat#138429; RRID:AB_2629749

PE/Cyanine7 anti-human CD16 antibody BioLegend Cat#302015; RRID:AB_314215

LIVE/DEAD Fixable Aqua Dead Cell Stain Kit,

for 405 nm excitation

ThermoFisher Cat#L34965

Biological samples
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Institute of Systems Biology

N/A
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Su et al.25
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Soares-Schanoski et al.83
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Chikungunya cohort (pediatric) Zheng et al.27

Michlmayr et al.84
PRJNA390289

Lupus single cell cohort Perez et al.26 GSE174188

Pan-cancer single cell cohort Zheng et al.28 GSE156728

Pan-cancer TCGA cohort Thorsson et al.29 https://portal.gdc.cancer.gov/

Spatial cancer cohort 10x Genomics 10x Visium (v1) spaceranger count datasets

for breast, prostate, and ovarian

Other

Scanpy (v1.9.3) Wolf et al.85 https://github.com/scverse/scanpy

harmonypy (v0.0.9) Korsunsky et al.86 https://github.com/slowkow/harmonypy

bbkNN (v1.5.1) Pola�nski et al.87 https://github.com/Teichlab/bbknn

UMAP (v0.5.3) McInnes et al.88 https://github.com/lmcinnes/umap

Leiden (v0.9.1) Traag et al.89 https://github.com/vtraag/leidenalg

STRING (v12) Szklarczyk et al.90 https://string-db.org/

BayesSpace (v1.1.3) Zhao et al.64 https://www.bioconductor.org/packages/release/

bioc/html/BayesSpace.html

statsmodels (v0.13.2) Seabold and Perktold et al.91 https://www.statsmodels.org

scipy (v1.9.3) Virtanen et al.92 https://scipy.org/

cellphoneDB (v4) Garcia-Alonso et al.93 https://www.cellphonedb.org/

FlowJo (v10.9.0) BD Life Sciences https://www.flowjo.com/
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Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, James R.

Heath (jim.heath@isbscience.org).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d For infectious disease: COVID-19 single cell data were retrieved from our previously published multi-omics dataset,24,25

COVID-19 validation cohort and chikungunya adult and pediatric validation cohorts were kindly provided by Dr. Purvesh Khatri

and his team from "inflammatix86" (COVID-19 cohort from Greece), "PRJNA507472", and "PRJNA390289"; these datasets

were also previously published and analyzed by them.27,83,84

d For autoimmune disease: systemic lupus erythematosus single cell data were retrieved from Perez et al., 2022.26

d For cancer: pan-cancer tumor-infiltrating single CD8+ T cell data were retrieved from Zheng et al., 2021, TCGA data are from

Thorsson et al., 2018 retrieved via NCI-GDC.28,29 Spatial datasets were retrieved from Zhao et al., 2021 and 10x Genomics.64

d This paper does not report original code. Scripts were run using public Python and R packages and are available upon reason-

able request.

d Any additional information required to reanalyze the data reported in this work is available upon reasonable request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

For infectious disease: COVID-19 single cell data were retrieved from our previously published multi-omics dataset.24,25 We utilized

the dataset as was published, an H5AD file, and filtered for NKG2A/C positive cells, see next section. COVID-19 validation cohort and

chikungunya adult and pediatric validation cohorts, bulkRNA-seq, were kindly provided by Dr. Purvesh Khatri and his team with both

raw and normalized gene expression values, we only utilized the normalized values. They were formally named the following "inflam-

matix86" (COVID-19 bulkRNA-seq from Greece), and "PRJNA507472" and "PRJNA390289" (chikungunya bulkRNA-seq datasets)

and were previously utilized and published.27,83,84 For autoimmune disease: systemic lupus erythematosus single cell data were

retrieved from Perez et al., 2022,26 we utilized ln(CPM +1) normalized values for our analyses. For cancer: pan-cancer tumor-infil-

trating single CD8+ T cell data were retrieved from Zheng et al., 2021, this was normalized by the previous authors via library size

and a per-gene Z score, and we retrieved TCGA data from Thorsson et al., 2018 via NCI-GDC via controlled access requests.28,29

Spatial datasets were retrieved from Zhao et al., 2021 and publicly available 10x Genomics datasets.64 They were normalized and

processed using BayesSpace (v1.1.3). Aside from the spatial workups, Scanpy (v1.9.3) was utilized for the vast majority of these an-

alyses, additional packages and their versions are listed in their appropriate sections. Four lupus patients enrolled in a control arm of a

study of long COVID (UNCOVR, Providence St. Joseph Health IRB: STUDY2020000852) contributed PBMCs for comparisons with

Bloodworks and Stemcell acquired controls.

METHOD DETAILS

Log-odds models of NKG2A+ biases accounting for demographic factors
Log-odds was modeled using the Logit modeling function within the statsmodels (v0.13.2) package. Sex was binarized and people

with a female sex were given the value one while those with a male sex were given the value 0. Age was accounted for in years. If

NKG2A positivity was not already called at a sample level (i.e., single-cell datasets) then an NKG2A+ bias was called for a given pa-

tient if they had three times more NKG2A+ cells than NKG2C+ cells for NK cells, due to the inherent NKG2A+ bias in NK cells, and if

they had more NKG2A+ cells than NKG2C+ cells for CD8+ T cells. For the COVID-19 patient dataset, as we had multiple timepoints

during acute infection, NKG2A+ bias was assigned if the patient had a bias at any of the acute timepoints. Further, severity was deter-

mined asWHOOrdinal Scale (WOS) value greater than or equal to five, a previously determined value for severe patients.24 For lupus

patients, the relative ratio of NKG2A+ and NKG2C+ CD8+ T cells was utilized. For validation cohorts, any demographic factors were

utilized when available, this mainly consisted of a patient’s assigned sex. All coefficient estimates were plotted with 95% confidence

intervals.

HCMV serostatus
To predict CMV serostatus of patients from immunosequencing data, we replicated a previously published classification model from

Emerson et al., 2017.94 Using the study’s two cohorts (HIP and KECK) and its list of 164 CMV-associated TCRb chains (defined by

CDR3 amino acid sequence, V gene, and J gene), we trained and validated our classifier that predicted CMV serostatus using the

number of detected CMV� associated TCRbs and the total number of unique TCRbs. The classifier model was trained using a sup-

port vector machine with linear kernel and 6-fold cross validation. Based on area under the receiver operating characteristic curve
Cell Reports 43, 113872, March 26, 2024 15
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(AUROC), the performance of this classifier was during training. The best performing model was used to predict CMV serostatus of

the validation cohort (AUROC= 0.92) and of our INCOV cohort. Patientswith any samples predicted to beCMVpositive are labeled as

CMV positive. Convalescent serum sample from predicted CMV+ patients were used for CMV viremia and CMV serology assays.

75/82 (91%) of these samples had positive results from CMV serology assays. We then utilized these CMV serostatus values to ac-

count for prior CMV infection history in our log-odds models by adding it as an additional co-variate.

Enrichment analysis of NKG2C+ enriched plasma proteome
Differentially expressed proteins, as identified across all threemeasured timepoints at p < 0.05 and greater than zero log-transformed

fold change, were compiled and pathways were enriched for via the multiple protein enrichment analysis by the STRING database.90

Hypergeometric overlap probability analysis
Hypergeometric overlap probabilities were calculated using scipy (v1.9.3) using the cumulative density function (CDF). The p value for

testing the hypothesis that two sets overlap asmuch as ismeasured ormore, is then defined as 1 – CDF, and therefore the probability

that two sets overlap less than expected is defined as the CDF itself.

CD8+ T cell phenotype assignment in lupus patients
NKG2A/C+ CD8+ T cells were extracted based on the assignments aforementioned in the ‘‘NKG2A+ and NKG2C+ quantification and

assignment’’ section in the Methods. Genes with zero expression within the NKG2A/C+ CD8+ T cell subset were removed. Highly

variable genes were called using the ‘‘Seurat’’ method with the minimum dispersion of 0.5 and mean between 0.5 and 7.5 to remove

constantly lowly and constantly highly expressed genes. Principal component analysis (PCA) was then called and 20 PCs were then

utilized to compute uniform manifold approximation projections (UMAP via umap-learn v0.5.3) using a k-nearest-neighbor (kNN)

graph computed via bbkNN (v1.5.1).87,88 Leiden clusters were then called via the leidnalg package (v0.9.1) with resolution of 0.4.

Clusters were then annotated via literature derived genes: proliferation via MKI67, MAIT via KLRB1, memory via IL7R, short lived

effector cell (SLEC) -like via CD57 and IFNg, and effector as non SLEC-like but still expressing GZMB.63,95–97

Flow cytometry validation of NKG2A/C phenotypes
Four PBMC vials from patients with lupus were taken from our UNCOVR database, and four healthy donors, from Bloodworks and

Stemcell, were taken as well. These samples were assayed with the following antibodies: APC anti-human CD57 Antibody

(BioLegend #359609), FITC anti-human CD56 (NCAM) Antibody (BioLegend #318303), BD OptiBuild BUV395 anti-human CD8

(BD Biosciences #740303), Brilliant Violet 421 anti-human CD159a (NKG2A) antibody (BioLegend #375139), PE anti-human

CD159c (NKG2C) Antibody (BioLegend #375003), APC/Cyanine7 anti-human CD127 (IL-7Ra) Antibody (BioLegend #351347), Bril-

liant Violet 785 anti-mouse/human KLRG1 (MAFA) antibody (BioLegend #138429), PE/Cyanine7 anti-human CD16 antibody

(BioLegend #302015), and LIVE/DEAD Fixable Aqua Dead Cell Stain Kit, for 405 nm excitation (ThermoFisher #L34965). PBMC sam-

ples were resuspend from�80�C in R10media to remove and dilute freezing media. Post-washing each pellet was resuspended and

washed in onemL ice-cold PBS then resuspended in live-dead stain for 30min at 4�C. Stained cells were then washed in onemL ice-

cold PBS and stained with the surface-protein antibody master mix for 30 min at 4�C. Stained cells were then washed with cell stain-

ing buffer, the same that was utilized for themaster mix, and resuspended in 100 mL and run on BD FACSymphony A5Cell Analyzer at

Fred Hutchinson Cancer Center.

Tumor immunogenicity and NKG2A/C percentage analysis
Cancer types were ranked by a previously published paper that took tumor mutational burden and antigen presentation machinery

into account.66 Spearman correlation was used because it is more suited for rank-based analyses compared to Pearson correlation

which is best suited for continuous against continuous correlations.

Kaplan-meier survival analysis on TCGA samples
TCGA samples were called as NKG2A+ or NKG2C+ via the aforementioned log2 fold change criteria. To ensure we only utilized confi-

dently assigned patients, we took only the top 20% and bottom 20%, similar to the aforementioned bulkRNA-seq analyses above.

Kaplan-meier curves were then called for each cancer type individually and then for all cancer types and patients together as a ‘‘pan-

cancer’’ model.

Breast cancer spatial transcriptomics characterization
All spatial datasets were downloaded from 10x Genomics’ publicly available datasets and processed via BayesSpace as aforemen-

tioned. Pathology annotations were taken directly from those done in Zhao et al., 2021.64 Density plots for NKG2A/C positive cells

were computed by utilizing spatial neighbors; each positive spot was diffused outwards to determine regions of occupancy for

NKG2A+ or NKG2C+ spots. Denser regions, the densest being the positive spots themselves, are plotted as darker colors while

less dense regions are plotted with lighter colors. This method is the spatially analogous method to those typically done to compute

embedding density for transcriptomic or multi-omic UMAPs (e.g., those via scanpy.tl.embedding_density). Hypergeometric analysis

was done as stated in previous Methods sections. For hypergeometric tests that involve antibodies, both those for this spatial
16 Cell Reports 43, 113872, March 26, 2024
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transcriptomics cancer dataset, and for the infectious disease datasets, genes were considered if they were confidently expressed;

defined as within the top 10% for the infection contexts and greater than 0.01 for genes in the cancer context. The antibody gene set

was defined as those from heavy chain immunoglobin genes, and light chain lambda and kappa immunoglobin genes.

Spatially-informed cell-cell ligand-receptor analysis
All spatial transcriptomics datasets were concatenated together using Scanpy and AnnData objects. Identified NKG2A+ and

NKG2A� CD8+ T cells were called via the Methods in the aforementioned sections and ligand-receptor interactions were called

from the CellphoneDB list of known protein-protein interactions through a product calculation.93 Mann-Whitney U-tests were then

utilized to calculate differential protein-protein interaction values between NKG2A+ and NKG2A� CD8+ T cell subsets.

QUANTIFICATION AND STATISTICAL ANALYSIS

NKG2A+ and NKG2C+ quantification and assignment
For single cell datasets: where log-transformed library-normalized values were available, for example ln(CPM+1), we called cells

NKG2A+ if they had mRNA levels of CD94 and NKG2A that were R2.5. Similarly, NKG2C+ cells were called if they had CD94 and

NKG2C mRNA levels that were R2.5. We require the simultaneous expression of CD94 when it is feasibly measured and analyzed

because it forms a hetero-dimer with NKG2A/C to permit their expression.31 For Zheng et al.’s dataset, as it was Z score normalized

absolute expression based analyses were not feasible. Thus, we derived an NKG2A/Cmetric based on the relative NKG2A to NKG2C

Z-scores, those who NKG2A value was at least one greater than their NKG2C value were deemed NKG2A+. Similarly, cells with

NKG2C values at least one greater than their NKG2A values were deemed NKG2C+. For bulk datasets: log2 fold changes were calcu-

lated between the product of a given samples CD94 and NKG2A (or NKG2C) normalized expression levels. To analyze confidently

assigned NKG2A+ and NKG2C+ cells we deemed NKG2A+ samples as those in the upper pentile (top 20%) of log2(CD94:NKG2A/

CD94:NKG2C) patients, and similarly NKG2C+ samples were those in the lowest pentile (bottom 20%). For spatial datasets: due

to the sparse nature of the captured expression, for the breast cancer sample, those with NKG2A or NKG2C expression were

deemed NKG2A+ or NKG2C+, respectively. When combining all of the spatial transcriptomic datasets together we were able to

more robustly identify CD8+ T cells, using CD3 and CD8 mRNA expression, and within that subset classified cells as NKG2A+ or

NKG2A� based on their expression. Specifically, a T cell score was determined through the average expression of CD3D, CD3E,

and CD3G. Cells positive for this score were then interrogated for CD8 expression via averaging of CD8A and CD8B mRNA. Cells

positive for this score were now considered CD8+ T cells, we then simply utilized NKG2A expression to divide CD8+ T cells into

an NKG2A+ CD8+ T cell and NKG2A� CD8+ T cell subset.

Statistical analyses
All correlations were calculated using Pearson, and all p values were calculated using Mann-Whitney U test unless otherwise spec-

ified. Log-odd plots, also called forest plots, were plottedwith coefficient value, ln(odds ratio), with 95%confidence intervals as whis-

kers. Bar charts were provided with error bars when multiple values were present, and these bars represented standard errors. Bar

level represent the mean variable value.
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