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1 Summary

2 Mn-based Li-excess cation-disordered rocksalt (DRX) oxyfluorides are promising 
candidates for

3 next-generation  rechargeable  battery  cathodes  owing  to  their  large  energy  
densities,  earth-

4 abundance of Mn and potential for low cost.  In this work, we synthesized and 
electrochemically

5 tested four representative compositions in the Li–Mn–O–F DRX chemical space with 
various Li

6 and F content.

7 material with high Li-excess (1.3333 per formula unit, LixMn2-xO2-yFy) and moderate 
fluorination

8

9 Higher fluorination (0.6667 per formula unit) at moderate Li-excess (1.25 per formula 
unit) can

10

11 Wh/kg) initial capacity (specific energy) with more than 85% retained after 30 cycles. 
We show

12 that  the Li-site distribution  (i.e., Li  percolation properties)  plays a more important role 
than the

13 metal-redox capacity in determining the initial capacity, whereas the metal-redox 
capacity is more

14 closely related to the cyclability of the materials. We apply these insights and generate a
capacity

15 map of the Li–Mn–O–F chemical space, LixMn2-xO2-yFy  (1.167 ≤ x ≤ 1.333, 0 ≤ y ≤ 
0.667), which

16 predicts  both the  accessible  Li  capacity  and  Mn-redox capacity.  This  map allows  to 
design

17 compounds which balance high capacity with good cyclability.

18

activate Mn2+/Mn4+ redox and there by balance capacity with cycle life, 
achieving 256 mAh/g (822

(0.3333 per formula unit) achieves 349 mAh g-1 initial capacity and 1068 Wh 
kg-1 specific energy.

While all compositions tested achieve higher than 200 mAh g-1 

initial capacity, the
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1 Introduction

2 The  tremendous  success  and  growth  of  Li-ion  based  energy  storage  in  a  broad  
range  of

3 applications1,2  is likely to  strain our natural resources3.  Projected  growth of  Li-ion  
production

4 towards 1 TWh/year will require more than a million  tons of Co/Ni combined, which 
constitutes

5 a very sizeable fraction of the annual production of these metals 4. The recent 
development of Li-

6 excess cation-disordered rocksalt (DRX) cathodes5 ,6,7 is providing an avenue for the Li-
ion battery

7 field to develop high energy density cathodes with more abundant and less expensive 
metals.  In

8 these DRX compounds Li migrates through a percolating network of so called ‘0-TM’ 
clusters in

9 which the absence of transition metals at the activated state enables facile migration5,6. 
Lifting the

10 restriction that cathode structures must be layered and remain layered during 
electrochemical

11 cycling has enabled the exploration of a much wider chemical space beyond the 
traditional Ni-Co-

12 Mn (NCM) space 5,8-17. In addition, the ability to substitute some of the oxygen by 
fluorine in

13 locally Li-rich environments in DRX structures provides an extra handle to optimize 
performance

14 by introducing additional metal-redox capacity 8,15,18 and improve cyclability 13,18.

15 Mn is a particularly promising redox active element for cathodes because of its low cost 
and natural

16 abundance. In addition, fully charged Mn-cathodes contain Mn4+ which is a stable 
valence state

17 thereby enhancing the thermal stability of cathode materials. The Mn3+/Mn4+ redox 



couple is

18 active in LiMn2O4 spinel cathodes but can only be partially utilized because of the 
collective Jahn-

19 Teller  distortion  upon  full  reduction  to  Mn3+   19. Recently, the highly F-substituted 
DRX

20 compounds Li2Mn2/3Nb1/3O2F and Li2Mn1/2Ti1/2O2F were shown to have very high 
capacity with

21 two electron Mn2+ to Mn4+ oxidation8. Other high capacity Mn-compounds include 
Li4Mn2O5,

22 which was argued to utilize a combination of Mn3+/Mn4+, O2−/O−, and Mn4+/Mn5+ 

redox, but

23 experiences severe capacity fading upon extended cycling10. In Li1.9Mn0.95O2.05F0.95,
partial



1 fluorine substitution was applied to improve cyclability15. In another example, V4+  was
applied as

2 a charge compensator in Li1.171Mn0.343V0.486O1.8F0.2 to obtain additional electron
capacity from the

3 V4+/V5+ redox in addition to that provided by the Mn2+/Mn4+ redox 14.

4 These   initial   results   demonstrate   that   the   Li–Mn–O–F   chemical   space   may   be
particularly

5 important for finding high-capacity, low cost cathodes.   Optimization of these materials
is likely

6 to involve several tradeoffs:   The Li-excess required for good transport in disordered
rocksalts

7 reduces the transition metal electron capacity, necessitating oxygen redox to achieve
high capacity.

8 Fluorine substitution on anion sites can negate this to some extent by lowering the
average valence

9 requirement  on the cations.  At  the same  time, F  incorporation  is  expected  to
change  the   Li

10 percolation network due to the large bonding preference between Li and F over Mn and
F 20. In

11 this paper we systematically investigate the role of each compositional handle (Li
excess, transition

12 metal redox capacity, and F-content) on the initial discharge capacity and cycle life
within the

13 compositional space LixMn2-xO2-yFy (1.167 ≤ x ≤ 1.333, 0 ≤ y ≤ 0.667). We use ab-initio

14 simulations to study how Li percolation is modified by short-range order (SRO),
previously shown

15 to significantly affect the Li environments, their percolation, and ultimately the Li-
transport of

16 DRX  materials  21-24,  and  correlate  it  to  measured  electrochemical  performance  and
spectroscopic

17 information.



18 We  synthesize,  characterize,  model,  and  electrochemically  test  four  well-chosen
compositions

19 within  the  Li–Mn–O–F  DRX  chemical  space  with  different  Li   content

and   F   content:    20       Li1.3333Mn(III)0.6667O1.3333F0.6667,

Li1.3333Mn(III)0.5Mn(IV)0.1667O1.5F0.5,  21  Li1.3333Mn(III)0.3333Mn(IV)0.3333O1.6667F0.3333,

and Li1.25Mn(II)0.1667Mn(III)0.5833O1.3333F0.6667,

22 hereafter referred to as HLF67, HLF50, HLF33, LLF67, respectively, with ‘HL’ referring to
‘high

23 lithium  content’  (1.3333 per f.u.), ‘LL’  referring to ‘low lithium  content’  (1.25   per
f.u.) and



1 numbers denoting the F content. For one group of samples, the lithium content is kept 
the same

2 and the F content is gradually decreased from HLF67, HLF50 and HLF33, so that 
progressively

3 less TM redox capacity is expected because of the incorporation of more Mn4+  ions in 
the as-

4 synthesized material to maintain charge balance. For the other group, HLF67 and LLF67 
are used

5 to contrast Li-capacity versus TM capacity. These samples have the same F content, but 
Li-excess

6 is lowered in LLF67 in order to create more Mn2+  giving more transition metal (TM) 
redox

7 capacity.  The  redox  behavior  of  these  compounds  is  investigated  combining   
spectroscopic

8 methods and density functional theory (DFT) calculations,  while SRO in the materials is 
studied

9 using a combined DFT and Monte Carlo method. Our investigations reveal that the 
nature of the

10 Li network and its percolation properties play a more important role than the metal-
redox capacity

11 in determining the initial capacity of the compounds, whereas the metal-redox capacity 
has a

12 greater effect on the capacity retention. We then apply these insights and expand our 
computational

13 analysis to a larger compositional space within the Li–Mn–O–F chemistry and construct a 
capacity

14 map to provide more practical guidance for experimental design.

15

16 Results

17 Structural characterization



18 The  four  compounds  were  synthesized  using  a  mechanochemical  ball-milling  
method   (see

19 methodology).  The X-ray  diffraction (XRD)  patterns  shown  in Figure 1a  confirm that 
all  the

20 materials form a DRX structure with no observable impurity peaks. In addition, elemental
analysis

21 confirmed that the compositions of the materials are close to the target compositions, as
shown in

22 Table S1. The difference in lattice constants of the materials is consistent with the 
degree of Mn

23 oxidation. The presence of more Mn4+ reduces the lattice constant from 
4.1635±0.0008 Å (HLF67)



1 to 4.1477±0.0005 Å (HLF50) and 4.1184±0.0005 Å (HLF33), whereas the introduction of
large

2

3 Li content. The F to O ratio appears less significant in determining the lattice constant, 
consistent

4 with their small difference in ionic radius 25. Detailed refinements of the XRD 
patterns are

5 presented  in  Figure  S1.  Transmission  electron  microscopy  (TEM)  electron  diffraction
(ED)

6 patterns of the as-synthesized materials also show phase-pure DRX without observable 
impurities

7 (Figure 1b, S4). Nanosized small grains with different orientations pack  closely together 
to form

8 a polycrystalline primary particle (Figure S4), the size of which is in the range of 100–200
nm for

9 as-synthesized materials, as observed in the scanning electron microscopy (SEM) images
in Figure

10 S2.

11 Although no LiF impurity phases were detected using XRD and TEM ED techniques, we 
called

12 on 19F solid-state nuclear magnetic resonance spectroscopy (ssNMR) to further confirm 
that most

13 of the fluorine is incorporated within the bulk material rather than forming a separate LiF
phase.

14 The 19F NMR spectra collected on HLF67, HLF50 and LLF67 powders, as well as on LiF 
powder

15 and  an  empty  rotor for  reference,  are  presented  in  Figure  1c.  While  the small  
shoulder  at

16 approximately −163 ppm originates from the probe background, we find that the 19F 
NMR spectra

17 collected on the various cathode materials differ significantly from that of the LiF 

Mn2+ ions increases the lattice constant to 4.2141±0.0009 Å for LLF67, 
despite the reduction in



reference. The

18 former spectra are composed of a number of broad, overlapping signals shifted away 
from the

19 resonance frequency of LiF at −204 ppm. As discussed in previous NMR studies on 
related

20 oxyfluoride materials 8,13,14,18,26, these broad features arise from strong paramagnetic 
interactions

21 from short-range paramagnetic interactions between unpaired d electrons on Mn ions 
and the F

22 nucleus, which confirms the bulk incorporation of F into the disordered rocksalt phase.6 

When  F

23 is directly bonded to Mn ions, paramagnetic interactions are so strong that the 
resulting signals



1 are too broad to be detectable and are lost in the background noise. These invisible 
paramagnetic

2 F sites prevent us from quantifying the fraction of F in LiF-like domains or particles in the
pristine

3 cathode samples, as evidenced by the sharp signal centered at −204 ppm and present 
in all spectra.

4 Nevertheless, the present data indicate that the vast majority of the fluorine of the as-
synthesized

5 materials  is  incorporated into the particles.  7Li NMR  spectra  are also  presented  in 
Figure S3.

6 Supplementary Note 1 discusses the problem of attributing the ~0 ppm signal to either 
impurities

7 or to the possible formation of diamagnetic Li-rich (Mn-poor) domains within the 
disordered oxide

8 matrix. Finally, TEM energy dispersive spectroscopy (EDS) mapping images are shown in
Figure

9 1d and S4 and indicate a homogeneous distribution of F throughout the particles, which
further

10 confirms the bulk substitution of F.

11

12 Electrochemical performance

13 The electrochemical performance of the Li–Mn–O–F compounds was tested in 
galvanostatic mode

14 at 20 mA g−1 and room temperature within different voltage windows (1.5 – 4.6/4.8/5.0 
V). Figure

15 2a summarizes the first cycle discharge capacities, average voltage, and specific 
energies for all of

16 the compounds. Figure 2b presents the voltage profiles of HLF67, HLF50, HLF33, and 
LLF67 for

17 the first cycle between 1.5 – 4.8V; the compounds exhibit discharge capacities (specific 
energies)



18 of 259 mAh g−1 (844 Wh kg−1), 284 mAh g−1 (909 Wh kg−1), 336 mAh g−1 (1059 Wh 
kg−1), and

19 242 mAh g−1 (771 Wh kg−1), respectively. When cycling between 1.5 – 5.0V, their initial 
discharge

20 capacities (specific energies)  increase to  290 mAh  g−1  (950 Wh  kg−1), 319 mAh  g−1  

(1016 Wh

21 kg−1), 349 mAh g−1 (1068 Wh kg−1), and 256 mAh g−1 (822 Wh kg−1), respectively, as 
shown in

22 Figure 2c.



1

2

3

4

5

6

7

8

9 cycling results are presented in Figure S5.

10

11

12 sections.

13

14 Redox mechanism

15 The redox mechanisms of the Li–Mn–O–F compounds were investigated using ex-situ 
hard X-ray

16 absorption spectroscopy (XAS) and ab-initio calculations. The top panel of Figure 3a 
shows the

17 Mn K-edge X-ray near-edge structure (XANES) of all  four pristine compounds. The Mn K-
edge

18 energy  increases in the order of LLF67  < HLF67 < HLF50  < HLF33. At the top of  
charge,  the

19 Mn3+ / Mn4+ redox process is almost complete in HLF50 and HLF33, while Mn ions in 
HLF67 and

20 LLF67 are oxidized to a lesser extent, as shown in the lower panel of Figure 3a. This 
finding is

21 consistent with the observation by Lee et al. that a large lattice constant and the 
presence of more

redox mechanism and local SRO in these compounds are carefully studied in 

In order to understand the relation between composition and 

with less than 15% capacity fading over the first 30 cycles (Figure 2f). More 

(specific energy) of 256 mAh g-1 (822 Wh kg-1) compared to HLF67 but 
improved cyclability,

capacity retention compared to that of HLF67 (Figure 2e). LLF67 shows a 

larger initial capacity (specific energy) of 349 mAh g-1 (1068 Wh kg-1) but 
somewhat worse

energy) of 290 mAh g-1 (950 Wh kg-1) and good capacity retention (Figure 
2d). HLF33 shows a

theoretical Mn-redox capacities in each compound. HLF67 exhibits an initial 

capacity retention, when cycling between 1.5 and 5.0 V. The red dashed lines

Figure 2d–f present the representative voltage profiles for HLF67, HLF33 and 



22 Mn-F bonds create more overlap between Mn and O redox and can prevent Mn from 
being fully



1 oxidized to Mn4+. 8 These interpretations are further supported by the Mn pre-edge 
derivative

2 analysis, as presented in Figure S6 and Supplementary Note 2.

3 To compare the oxidation behavior of Mn in HLF67 and LLF67, we select five points at 
different

4 states of charge in the first charge: the pristine state, and charged to 3.5 V, 4.2 V, 4.6V, 
and 5.0 V,

5 respectively, as shown in Figure 3b. In general, similar redox behavior is observed for 
the two

6 compounds: Mn oxidation dominates at low voltage, but at high voltage, the Mn K-edge
barely

7 shifts, indicating limited Mn redox. However, a small shift of the edge position to a lower 
energy

8 at high voltage is observed in HLF67 but not in LLF67; this shift has been ascribed to the
partial

9 reduction of the TM (Mn in this case) due to oxygen oxidation 27. Partial reduction of Mn 
at high

10 voltage is also observed in HLF50 and HLF33, as shown in Figure S7a and S7b, which 
suggests

11 that the participation of oxygen redox processes in the overall charge compensation 
mechanism is

12 more significant in HLF67, HLF50 and HLF33 than in LLF67.

13 To obtain further insight into the oxidation mechanisms in these cathode materials, we 
used density

14 functional theory (DFT) to calculate the voltage curves and the evolution of Mn and O 
oxidation

15 states upon delithiation. Figure 3c and 3d show the calculated redox mechanism for 
HLF67and

16 LLF67. It is clear that oxygen redox happens earlier in HLF67 than in LLF67 and 
contributes more

17 to the overall capacity, consistent with the presence of more Li-excess in HLF67 to 
facilitate



18 oxygen oxidation 28. As a result, Mn partial reduction is observed in HLF67 at the top of 
charge

19 but not in LLF67. At the top of charge, Mn is less oxidized in LLF67 than in HLF67, which 
is

20 consistent with the XAS observations.

21 Combining the electrochemical performance and the redox center data establishes a 
clear

22 correlation between the charge compensation process and the capacity retention of the 
compounds:

23 with an increasing contribution of oxygen redox from LLF67 to HLF67, HLF50 and HLF33,
the



1

2

3

4

5

6

7 electrochemical mass spectroscopy (DEMS) results (shown in Figure S8).

8

9 Short-range order (SRO) analysis

10 The SRO in the Li–Mn–O–F compounds was investigated using a cluster expansion 
Hamiltonian

11 parameterized by DFT total energy calculations. As the Li network significantly affects 
the

12 electrochemical performance of DRX compounds 23, we first evaluate the frequency of 
tetrahedra

13 that are only occupied by Li ions (the 0-TM Li4 tetrahedra) in the four compounds as 
this is the

14 environment through which Li migrates. Figure 4a shows the fraction of tetrahedra that 
are 0-TM

15 in the simulated Li–Mn–O–F compounds at 2573K as well as in the random limit (infinite

16 temperature). As calibrated in previous work 20 the temperature of 2573K was chosen as 
a proxy

17 for the high energy conditions with which disorder is generated with ball milling in the 
Li–Mn–

18 O–F chemical space but should not be taken as a particularly significant value. The 
‘Random limit’

19

20 over the cation lattice, only satisfying the concentration requirement. Such a 

cation configuration in the structure is one where the cations are distributed 

is reduced in the order of HLF33 > HLF50 > LLF67, as can be observed 

metal redox to improve the capacity retention. Consistently, the amount of 

effective way to lower the average cation oxidation states, enabling the 

leaving behind a metal densified surface layer, which hinders Li transport. 

lead to less stable cycling compared to metal redox since it triggers 

capacity retention of the materials gradually decreases. Oxygen redox is 



21 SRO and can be used as a reference. Comparing the 0-TM occurrence in HLF67, 
HLF50, and

22 HLF33, it is clear that fluorination generally leads to a higher number of tetrahedra being
occupied

23 with Li4. This is consistent with the previously established idea that a F- anion in DRX 
materials



1 wants to maximize the Li content around it 20,21. The Li-rich octahedra around F- 

predispose the

2 tetrahedra with which they share three cations to be Li4. The ability of F- to create 
more Li4

3 tetrahedra is clear when comparing LLF67 which has a larger fraction of them than 
HLF33, despite

4 containing less Li. However, good Li transport requires connectivity of these Li4 
tetrahedra and

5 this is where F seems to have the largest perturbing effect.  Figure 4b presents the 
amount of Li

6 connected to the percolating network. Lowering the F content from HLF67 to HLF50, and 
HLF33,

7 increases the amount of percolating Li despite the fact that the fraction of Li4 tetrahedra 
decreases.

8 These trends with F-content indicate that F modifies the connectivity of the Li4 
tetrahedra in a very

9 significant way.  Li diffusion throughout the bulk materials only benefits from Li4 
tetrahedra that

10 create an efficient percolating network through the material. Highly localized Li 
clusters, for

11 example where one Li is shared by five 0-TM tetrahedrons or more (as illustrated in 
Figure 4c),

12 will trap a lot of Li within small domains and prevent the formation of an extended 
network of 0-

13 TM tetrahedra, thus reduce the ‘efficiency’ of 0-TM connectivity. Figure 4d shows the 
fraction of

14 Li in Li4 tetrahedra in all compounds, where the different Li environments are classified 
according

15 to the number of 0-TM units around a central Li. Both “isolated” or highly shared Li 
ions are

16 detrimental for transport as they have limited contributions to the overall percolation. 
We can see



17 that in HLF67 and LLF67, a larger fraction of 0-TM Li is shared by more than five 0-TM 
units,

18 whereas for HLF50 and HLF33, a larger fraction of the 0-TM Li is shared by two to four 
0-TM

19 units, which is a more ‘efficient’ way to connect all the 0-TM tetrahedrons. The 
influence of

20 different Mn valence states on the distribution of F is also investigated, but proven to 
be less

21 important  than  the  competition  between  Li-F  and  Mn-F,  as  discussed  in  Figure  
S9  and

22 Supplementary Note 3. The correlation between discharge capacity changes and 
the 0-TM



1 percolating Li fraction in Fig 4b shows that this percolation behavior, rather than just 
simply the

2 amount of Li4 tetrahedra, is the relevant factor that controls initial capacity.

3 Equipped with an enhanced understanding of the charge compensation process and Li-
transport

4 property in these Li–Mn–O–F compounds, we discuss in the next section the trade-offs 
between

5 initial capacity and capacity retention, and rationalize some general design principles in 
a practical

6 compositional space LixMn2-xO2-yFy (1.167 ≤ x ≤ 1.333, 0 ≤ y ≤ 0.667).

7 Discussion

8 Transition metal redox capacity and Li-site distribution

9 Figure 5a summarizes the theoretical Li/Mn capacities, accessible 0-TM capacities 
predicted by

10 MC simulations, and experimental capacities obtained from the first charge/discharge 
at 20 mA

11 g−1 within the voltage window of 1.5–4.8 V for the Li–Mn–O–F compounds. Although 
both the

12 TM capacity and Li-site distribution can significantly affect the cycling performance of 
Li–Mn–

13 O–F compounds, their effects appear in different manner. Comparing HLF67, HLF50, and 
HLF33,

14 we observe that by increasing the amount of 0-TM percolating Li, the initial 
charge/discharge

15 capacity of the compounds increases, even though the Mn-redox capacity decreases. 
This trend is

16 further confirmed by the LLF67 compound which has the lowest theoretical Li capacity 
and

17 highest Mn-redox capacity but delivers the lowest initial charge/discharge capacity. 
These results



18 indicate that the initial capacity does not depend on the Mn-redox capacity but is more 
related to

19 the Li percolation properties. However, the Mn capacity does strongly influence the 
capacity decay

20 of the materials upon extended charge-discharge cycling. As observed in Figure 2 and 
Figure S5,

21 the capacity retention improves in the order HLF33 < HLF50 < HLF67 < LLF67, 
consistent with

22 the increase of Mn redox capacity. To strengthen our hypothesis, we selected two 
additional

23 compositions: DRX-Li2MnO3, which has more than 95% of its Li ions in the percolating 
network,



1 based on our calculation, and Li1.1667Mn(II)0.3333Mn(III)0.5O1.3333F0.6667 (denoted 
as L167F67), with

2 a high theoretical Mn-redox capacity which matches its theoretical Li capacity. Both 
materials

3 were synthesized  using  a similar mechanochemical  ball-milling method  described for 
the other

4 samples. The voltage profiles (first cycle) and cyclability of both compounds together 
with those

5 of the four previously studied compounds are presented in Figure 5b and 5c, 
respectively. We can

6 see that DRX-Li2MnO3 exhibits the highest initial charge capacity but worst capacity 
retention,

7 whereas L167F67F displays the opposite behavior, consistent with our analysis that Li 
percolation

8 controls initial capacities while Mn redox content controls capacity retention.

9 Based on these insights, we generate in Figure 5d a capacity map for Li–Mn–O–F 
compounds as

10 function of the Li excess content (x-axis) and fluorine content (y-axis). The color scale 
gives the

11 calculated total amount of percolating Li per formula unit (f.u.) at each composition and 
the solid

12 lines indicate the theoretical Mn-redox capacity. Ideally, a material would have high 
amount of

13 percolating Li as well as high Mn-redox capacity, but the Fig.5d shows that there is 
clearly a trade-

14 off between these two. Along the x-axis Li excess is increased at the cost of Mn-redox 
capacity

15 leading to a higher fraction of percolating Li. This is expected to increase the initial 
discharge

16 capacity but with rapid capacity fade. The percolation properties as a function of F 
content with

17 fixed Li-excess behave in a more complicated manner. In general, upon increasing F 



content at

18 fixed Li-excess, the fraction of percolating Li decreases initially but then increases. 
This trend

19 intuitively makes sense: when the fluorination level is low, the presence of F ions attracts
Li around

20 them forming Li-rich clusters which do not percolate because their concentration -
determined by

21 the F content- is not high enough for those Li-rich clusters to connect and percolate 
through the

22 sample. When the F content further increases, the Li-rich clusters around F connect 
together and

23 the overall percolation improves. The Li-percolation properties as a function of F 
content are



1

2

3

4

5

6

7 materials. This map will be useful in guiding experimental design within the Li–Mn–O–F 
space to

8 identify good candidates with both large 0-TM Li capacity and adequate Mn-redox 
capacity, e.g.

9

10 0.7 per f.u.

11

12 valid in other DRX chemical spaces.

13

14 Conclusion

15 In  this  work,  we investigated  Li–Mn–O–F  DRX  oxyfluorides  which form a  very  
promising

16 chemical space to create high energy, resource-light cathodes. We systematically 
studied four

17 representative  compounds  combining  electrochemical  tests,  spectroscopy,  and  
modeling, and

18 demonstrated reversible capacities between 200 and 350 mAh g-1. We found that 
the Li-site

19 distribution plays a more important role in determining the initial capacity, whereas 
the metal

20 redox capacity is more important for determining the cyclability of the material. This 
intrinsic

materials, our general findings within the Li-Mn-O-F DRX chemical space are 

Considering the general presence of SRO23 and facile oxygen 
redox28,29 in DRX

those with metal redox capacity larger than 0.6 e- per f.u. and percolating Li
amount larger than

do not consider that range here due to the difficulty in synthesizing the very 

range shown on the map. It is possible that a critical F content can be found 

and for x = 1.33 the fraction of percolating Li actually decreases with F 

(marked in red) at which percolation starts to improve with F content 

1.208, 1.25, 1.292, and 1.333 in LixMn2-xO2-yFy, as shown in Figure 5e. The 
critical F concentration

presented at five different Li-excess levels calculated from Monte Carlo 



21 tradeoff in DRX materials is related to the role of oxygen redox: increasing Li-excess 
leads to

22 better Li transport in DRXs, but results in a larger reliance on oxygen redox to 
achieve high

23 capacity, thus worse cyclability. Fluorination can compensate for this to some extent by 
enabling



1 more metal redox capacity, but its presence modifies the Li network in a significant 
way. A

2 capacity  map,  which includes  both  the Li  percolation  properties  and Mn  redox 
capacities, is

3 presented to provide further guidance for experimental design in this Li–Mn–O–F 
chemical space.

4

5 Experimental procedures

6 Synthesis

7 All Li-Mn-O-F compounds were synthesized by mechanochemical ball-milling. Li2O (Alfa 
Aesar,

8 ACS, 99% min), MnO (Sigma-Aldrich, 99.99%), Mn2O3 (Alfa Aesar, 99%), MnO2 (Alfa 
Aesar,

9 99.9%), and LiF (Alfa Aesar, 99.99%) were used as precursors. Precursors were 
stoichiometrically

10 mixed according to charge-balance with a Retsch PM 200 Planetary Ball Mill at a rate of 
300 rpm

11 for 2 hours. The mixed precursors were then ball-milled at 500 rpm in Argon-filled 
stainless-steel

12 ball-mill jars, using a Retsch PM 200 Planetary Ball Mill. The duration of ball-mill 
synthesis for

13 HLF67, HLF50, HLF33, and LLF67 is 40 hours, and for L167F167 and Li2MnO3 is 55 hours.
The

14 total amount of precursors was 1g. The grinding media were five 10mm (diameter) 
stainless balls

15 and ten 5mm (diameter) balls.

16 Electrochemistry

17 All cathode films were composed of active materials,
SUPER C65 (Timcal), and



18 polytetrafluoroethylene (PTFE, DuPont, Teflon 8A) at a weight ratio of 70:20:10. To 
make the

19 cathode films, 280 mg active materials and 80 mg SUPER C65 were mixed and shaker-
milled for

20 1 hour in argon atmosphere with SPEX 800M Mixer/Mill, and PTFE was later added and 
manually

21 mixed with the shaker-milled mixture for 40 minutes. The components were then rolled 
into thin

22 films inside the glovebox. Commercialized 1M LiPF6 in ethylene carbonate (EC) and 
dimethyl

23 carbonate (DMC) solution (volume ratio 1:1) was used as electrolyte. Glass microfibers 
(Whatman)



1 were used as separator. FMC Li metal foil was used as anode. Coin cells were 
assembled inside

2 the glovebox and tested on Arbin battery test instrument at room temperature. The 
loading density

3 of the films was around 3 mg cm−2 based on active materials. The specific capacities 
were then

4 calculated based on theweight of active materials (70%)
in the cathode films.

5 Potentiostatic  intermittent titration technique (PITT) measurements were conducted on 
the same

6 electrode for HLF67, HLF50, HLF33, and LLF67 to obtain quasi-equilibrium voltage 
profiles. All

7 materials were charged from the open-circuit voltages to 4.8 V with a 0.01V step 
interval, and the

8 voltage was held constant for 1 hour at each step.

9 Characterization

10 X-ray diffraction (XRD) patterns for the as-synthesized compounds were collected using a
Rigaku

11 MiniFlex diffractometer (Cu source) in a 2 range of 5°-85°. Rietveld refinement was 
done with

12 PANalytical X’pert HighScore Plus software. Elemental analysis was performed by Luvak
Inc.

13 with direct current plasma emission spectroscopy (ASTM E 1079-12) for lithium, 
manganese and

14 with an ion-selective electrode (ASTM D 1179-10) for fluorine. Scanning electron 
microscopy

15 (SEM) images were collected using a Zeiss Gemini Ultra-55 Analytical Field Emission 
SEM in

16 the Molecular Foundry at Lawrence Berkeley National Lab (LBNL). Scanning transmission

17 electron microscopy (STEM) / energy dispersive spectroscopy (EDS) measurements were



18 performed on a JEM-2010F microscope in the Molecular Foundry at LBNL. Neutron power

19 diffraction was measured at Nanoscale Ordered Materials Diffractometer (NOMAD) at the

20 Spallation Neutron Source at Oak Ridge National Laboratory. The neutron pair-
distribution

21

22 Solid-state nuclear magnetic resonance (NMR) spectroscopy

function (NPDF) refinement was performed using 
PDFGui software. 30



1 19F and 7Li NMR data on the as-synthesized HLF67, HLF50, and LLF67 powder samples 
were

2 obtained  at  room  temperature  using  a  Bruker  Avance  500  MHz  (11.7  T)  wide-bore
NMR

3 spectrometer, at Larmor frequencies of -470.7 MHz and -194.4 MHz, respectively. The 
spectra

4 were acquired under 50 kHz magic angle spinning (MAS), using a 1.3 mm double-
resonance probe,

5 and chemical shifts were referenced against lithium fluoride powder (LiF, (19F) = -204 
ppm and

6 δ(7Li)= -1 ppm).

7 Because the resonant frequency range of the 19F nuclei in the as-synthesized HLF67, 
HLF50, and

8 LLF67 cathodes is larger than the excitation bandwidth of the radio frequency (RF) pulse 
used in

9 the NMR experiment, nine spin echo spectra were collected for each sample, with the  
irradiation

10 frequency varied in steps of 250 ppm or 118 kHz from -1200 ppm to 800 ppm. The 
individual sub-

11 spectra were processed using a zero-order phase correction so that the on-resonance 
signal was in

12 the absorption mode. The four sub-spectra were then added to give an overall sum 
spectrum with

13 no further phase correction required. This ‘frequency stepping’ 31,32, ‘spin echo 
mapping’ 33, or

14 ‘VOCS’ 34 (variable offset cumulative spectrum) methodology provides a large excitation

15 bandwidth with uniform excitation of the broad 19F signals. Individual 19F spin echo 
spectra were

16 collected using a 90o RF excitation pulse of 1.6 µs and a 180o RF pulse of 3.2 µs at 76.3 W
(or 156

17 kHz), with a recycle delay of 50 ms. For comparison,  a spin echo spectrum was collected



on LiF

18 using similar RF pulses but a longer recycle delay of 14 s. A 19F probe background 
spin echo

19 spectrum, acquired under the same conditions as the individual LMVF20 spin echo 
spectra but on

20 an empty rotor, revealed the presence of a low intensity background signal.

21 7Li spin echo spectra were collected on the HLF67, HLF50, and LLF67 cathode powders 
using a

22 90° RF pulse of 0.9 µs and a 180° RF pulse of 1.8 µs at 110 W and a recycle delay of 30 
ms.

23 Ex-situ hard X-ray absorption spectroscopy (XAS)



1 The  X-ray  absorption  near  edge  spectroscopy  (XANES)  of  Mn  K-edge  was  
acquired  in

2 transmission mode at beamline 20-BM-B in Advanced Photon Source. The incident beam 
energy

3 was  selected  using  a  Si  (111)  monochromator.  The  energy  calibration  was  
performed  by

4 simultaneously   measuring   the  spectra   of   appropriate   metal   foil. Harmonic  
rejection  was

5 accomplished using a Rh-coated mirror. All the ex-situ samples are electrodes films, 
composed of

6 active materials, SUPER C65 and PTFE with weight ratio of 70:20:10, and loading 
density of 5

7 mg cm−2 (based on active materials). They were assembled as coin cells, charged to 
designated

8 capacities, then disassembled and washed with DMC in glovebox (except for pristine 
materials).

9 Additional spectra of reference standards were also measured to facilitate the 
interpretation. The

10 raw data was normalized and calibrated using Athena software35.

11 Differential electrochemical mass spectrometer (DEMS) 
measurement

12 The custom-built DEMS, cell geometry, and instrument operation is described in previous

13 publications 36-38. The electrochemical cells used with the DEMS device were prepared 
in glove

14 box using modified Swagelok design and the cathode film is composed of active 
materials, carbon

15 black and PTFE with weight ratio of 70:20:10, and loading density of ~10 mg cm−2 

(based on

16 active materials). The electrolyte, separators, and anodes used were identical to those 
used for the

17 coin cell tests in this study. The assembled cells were charged at 20 mA g−1  under a 



static head of

18 positive argon pressure (around 1.2 bar) at room temperature after being appropriately 
attached to

19 the DEMS.

20 Computational methods

21 A combination of density functional theory (DFT) calculations together with cluster 
expansion

22 Monte Carlo simulations as described in previous reports14,39 has been applied to 
understand the

23 energetics, short range order and Li percolation in LiF-MnO-LiMnO2-Li2MnO3 
compositional



1 space. Using the DFT energy of 1019 structures, a cluster expansion for cation 
occupancy in the

2 rocksalt structure consisting of pair interactions up to 7.1 Å, triplet interactions up to 
4.0 Å, and

3 quadruplet interactions up to 4.0 Å was fitted. The effective cluster interactions and 
dielectric

4 constant were obtained from a L1-regularized least squares regression40, with the 
regularization

5 parameters chosen to minimize cross-validation error40. By this procedure, an root-
mean-squared

6 error below 7 meV/atom has been obtained.

7 The DFT calculations have been performed with the Vienna ab-initio simulation package 
(VASP)41

8 and  the  projector-augmented  wave  (PAW)  method42.  For  each  of  the  structural 
optimization

9 calculation, a reciprocal space discretization of 25 Å is applied, and the convergence 
criteria are

10 set as 10-6 eV for electronic loops and 0.02 eV/Å for ionic loops. The PBE exchange–
correlation

11 functional with the rotationally-averaged Hubbard U correction43 has been applied for 
obtaining

12 more accurate DFT energetics, the U parameters are chosen from a previously reported 
calibration

13 to oxide formation energies44 (3.9 eV for Mn).

14 Short range order and percolation information was obtained from canonical Monte Carlo 
sampling

15 of fully lithiated structure using the Metropolis–Hastings algorithim45,46. To guarantee 
good

16 statistics percolation analysis and short-range order for each composition and 
temperature are

17 averaged over 500 structures with each consist of 6×6×8 supercells with 576 atoms.



18 To evaluate the voltage curve and redox mechanism, all possible Li-Vacancy ordering 
in small

19 supercells are enumerated with energies calculated by the SCAN meta-GGA exchange 
correlation

20 functional47 which provides a more accurate ranking of structural energetics48,49. With 
energetics

21 evaluated by SCAN, the delithated cluster expansion is then fitted as an offset from a 
baseline of

22 formal charge electrostatics. The various oxidation states of Mn and O were treated as 
different

23 species and were identified according from the magnetic moment on these species in 
the SCAN



1 calculations. The final root-mean-square error of this cluster expansion is less than 5 
meV/atom.

2 With  this cluster  expansion,  the most stable Li-Vacancy  ordering at each delithiation 
stage  has

3 been fully optimized using DFT for constructing the voltage curve. The pymatgen code 50 

has been

4 utilized for all the structure analysis and post-processing.

5

6 Supplementary information

7 Supplemental information can be found with the article online at XXXX.
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2 Figure 1 | Structural characterization of the as-synthesized Li-Mn-O-F 
compounds. a. XRD

3 patterns and refined lattice constants of the as-synthesized materials. b. Electron 
diffraction pattern

4 of as-synthesized HLF50. c. 19F frequency-stepping spectra obtained for the as-
synthesized HLF67,

5 HLF50,  LLF67  powders  by  summing  over  nine  spin  echo  sub-spectra  acquired  at 
different

6 excitation frequencies. The spectra are scaled according to the amount of sample in the 
rotor. For

7 comparison, 19F spin echo spectra collected on LiF powder and on an empty rotor (to 
measure the

8 probe background signal) are overlaid. The shoulder observed to the left of the most 
intense peak

9 in the spectra, at ca. -163 ppm, is ascribed to the probe background signal. Spinning 
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2 Figure 4 | SRO analysis of Li–Mn–O–F compounds. a. Fraction of 0-TM tetrahedral 
clusters in

3 Li–Mn–O–F compounds obtained from the simulated MC structures at 2573K and random
limit

4 (infinite temperature). b. Amount of 0-TM-connected Li (percolating Li) per formula 
unit and

5 comparison with random limits in Li–Mn–O–F compounds. c. Illustration of representative 
local

6 bonding configurations around a central Li (highlighted in yellow), with green spheres 
and purple

7 spheres  referring to  Li and  Mn ions  respectively.  Configuration (I)  presents  an  
‘efficient’ Li

8 connectivity  with  the  central  Li  shared  by  two  0-TM  units;  configuration  (II)  
presents  an

9 ‘inefficient’ way to create an extended percolation network, where five 0-TM units are 
highly

10 localized. d. Distribution of different bonding environments around all the Li that are 
presented in

11 0-TM tetrahedrons: the x-axis represents the number of 0-TM units one Li is shared by.

12
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3 redox  capacities,  accessible  0-TM  capacities  predicted  by  Monte  Carlo  
simulations,  and

4 experimental   capacities   obtained   from  the  first  charge/discharge   at  20  mA   g-1 

and  room

5 temperature  within  the  voltage  window  of   1.5-4.8V  for  HLF67,  HLF50,   HLF33,  
LLF67.

6 Experimental first cycle b. voltage profiles and c. cyclability for all the Li–Mn–O–F 
compounds

7 at 20 mA g-1 and room temperature within a voltage window of 1.5-4.8V. d. Design map
within

8 the Li-Mn-O-F DRX space. The color scale maps  the total amount of percolating Li per 
formula



1 unit (f.u.) through 0-TM percolation network at each composition, obtained from Monte
Carlo

2 simulations at 2573K. The solid lines and numbers in the map indicate the theoretical 
Mn-redox

3 capacity. The red circles mark the compositions that are studied in previous sections. 
The pink and

4 yellow stars mark the composition with the highest amount of 0-TM Li (DRX-Li2MnO3) 
and the

5 highest  Mn-redox  capacity (L167F67, Li1.1667Mn(II)0.3333Mn(III)0.5O1.3333F0.6667)
in the map,

6 respectively. e. Li percolation analyses in LixMn2-xO2-yFy as a function of F (y values) at 
various

7 Li-excess levels (x values). The critical F contents (local minimum) are highlighted in red.
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