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bDepartment of Evolution and Ecology, University of California, Davis, California, USA
cDepartment of Medical Microbiology and Immunology, University of California, Davis, California, USA
dGenome Center, University of California, Davis, California, USA
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ABSTRACT Here, we report results from PCR and sequencing of bacterial 16S rRNA
genes from leaf and root surfaces from nine submerged aquatic vegetation (SAV)
samples comprising five species. Samples were from four sites along the Potomac
River.

Submerged aquatic vegetation (SAV) comprises plants that grow fully submerged in
marine or freshwater most of the time and are often restricted to shallow water (1).

They are globally distributed, provide habitat and food for coastal fauna, absorb wave
energy and nutrients, produce oxygen, and stabilize coastal sediment (2). Human
activities have heavily affected coastal regions via pollution and reduced suitable SAV
habitat, particularly in the Chesapeake Bay (3). The presence of SAV is also known to
influence the structure, density, and metabolic activity of sediment and rhizosphere
microbial communities (4–8). Furthermore, there is evidence that different SAV species
take up different amounts of nitrogen and phosphorus, which can, in turn, affect the
abundance of denitrifying bacteria on their roots (8). This paper reports the results of
16S rRNA gene PCR and sequencing of samples from roots and leaves of five SAV
species at four sites along the Potomac River, which feeds into the Chesapeake Bay
(Table 1).

Triplicate leaf and root samples were taken from an individual of each visually
distinct species of SAV identified at each site and stored in a sterile tube of Xpedition
lysis/stabilization solution (Zymo Research, Irvine, CA) at room temperature until DNA
extraction. Sites were named P1 to P4, with P1 being the most freshwater site (0.18 ppt)
and P4 being the most marine (8.08 ppt) and closest to the Chesapeake Bay. Briefly, we
processed the samples as follows. DNA was extracted using the PowerSoil DNA
isolation kit (MoBio Laboratories, Carlsbad, CA). PCR amplification of the V4 region of
the 16S rRNA gene was conducted with the bacterial/archaeal primers 515F/806R (9)
and custom barcodes (Invitrogen, Carlsbad, CA) (10). Samples were sequenced on a
MiSeq instrument (Illumina, San Diego, CA) at the University of California (UC) Davis
Genome Center Sequencing Core, using the MiSeq 500-cycle v2 kit for 250-bp paired-
end sequencing. This yielded 1,070,385 reads for 56 samples, ranging from 6 reads per
sample to 100,126 reads per sample.

Sequence processing was done on a lab server (Linux 3.2.0-29-generic number
46-Ubuntu, 16 central processing units [CPUs] and 48 GB of RAM). Demultiplexing used
a custom script which automates quality assessment and trimming (https://github.com/
gjospin/scripts/blob/master/Demul_trim_prep.pl). The script trims bases from the right
side of the reads that are below Q20 and then discards reads less than 35 bp long. Once
sequences are trimmed, they are merged. Open-reference operational taxonomic units
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(OTUs) were picked at a 97% cutoff with QIIME version 1.9.0 (11) and the Greengenes
database (12). Reads identified as being from chloroplasts or mitochondria, flagged as
chimeric, or not assigned a taxonomy were removed from further processing. Detailed
protocols and workflow documentation are available online (https://doi.org/10.6084/
m9.figshare.5860926.v3).

There were 1,070,385 reads total for 56 samples after the above sequence-

TABLE 1 Sample collection list

Sample description
No. of reads
per sample Raw count in bp

Trimmed count in
bp (% of raw count)

Merged count in
bp (% of raw count)

Kit.control 25 140 87 (62.14) 54 (38.57)
Kit.control 22 67 48 (71.64) 31 (46.27)
Site.P1.UnkSps.Leaf 11 64 46 (71.88) 28 (43.75)
Site.P1.UnkSps.Leaf 2,815 3,466 3,293 (95.01) 2,991 (86.3)
Site.P1.UnkSps.Leaf 9,023 12,438 11,785 (94.75) 10,174 (81.8)
Site.P1.UnkSps.Root 84,120 102,951 97,670 (94.87) 91,468 (88.85)
Site.P1.UnkSps.Root 100,126 130,084 120,239 (92.43) 110,333 (84.82)
Site.P1.UnkSps.Root 90,173 112,716 106,847 (94.79) 99,397 (88.18)
Site.P1.Vallisneria_sps_unk.Leaf 104 437 366 (83.75) 261 (59.73)
Site.P1.Vallisneria_sps_unk.Leaf 6,982 13,335 12,735 (95.5) 12,145 (91.08)
Site.P1.Vallisneria_sps_unk.Leaf 16,302 24,985 23,611 (94.5) 22,038 (88.2)
Site.P1.Vallisneria_sps_unk.Root 22,369 32,515 31,401 (96.57) 30,335 (93.3)
Site.P1.Vallisneria_sps_unk.Root 14,430 25,714 24,428 (95) 22,771 (88.55)
Site.P1.Vallisneria_sps_unk.Root 46,096 67,889 64,803 (95.45) 61,161 (90.09)
Site.P1.Ruppia_maritima.Leaf 1,237 4,174 4,045 (96.91) 3,813 (91.35)
Site.P1.Ruppia_maritima.Leaf 34 263 230 (87.45) 147 (55.89)
Site.P1.Ruppia_maritima.Leaf 280 882 811 (91.95) 714 (80.95)
Site.P1.Ceratophyllum_demersum.Leaf 4,041 10,431 10,180 (97.59) 9,805 (94)
Site.P1.Ceratophyllum_demersum.Leaf 2,037 4,099 3,908 (95.34) 3,627 (88.48)
Site.P1.Ceratophyllum_demersum.Leaf 6,237 21,693 21,296 (98.17) 20,790 (95.84)
Site.P2.Potamogeton_perfoliatus.Leaf 20,481 50,697 49,585 (97.81) 48,095 (94.87)
Site.P2.Potamogeton_perfoliatus.Leaf 13,513 37,567 36,566 (97.34) 35,302 (93.97)
Site.P2.Potamogeton_perfoliatus.Leaf 16,021 38,842 37,440 (96.39) 35,605 (91.67)
Site.P2.Potamogeton_perfoliatus.Root 39,788 46,487 45,037 (96.88) 42,876 (92.23)
Site.P2.Potamogeton_perfoliatus.Root 11,998 14,095 13,611 (96.57) 12,944 (91.83)
Site.P2.Potamogeton_perfoliatus.Root 31,799 35,214 34,276 (97.34) 32,998 (93.71)
Site.P2.Vallisneria_sps_unk.Leaf1 16,774 60,180 59,031 (98.09) 57,467 (95.49)
Site.P2.Vallisneria_sps_unk.Leaf1 14,042 44,402 43,358 (97.65) 41,775 (94.08)
Site.P2.Vallisneria_sps_unk.Leaf1 20,938 84,103 81,431 (96.82) 77,746 (92.44)
Site.P2.Vallisneria_sps_unk.Root 98,013 128,459 120,010 (93.42) 112,773 (87.79)
Site.P2.Vallisneria_sps_unk.Root 22,709 33,065 30,031 (90.82) 27,348 (82.71)
Site.P2.Vallisneria_sps_unk.Root 26,191 40,148 37,109 (92.43) 34,564 (86.09)
Site.P2.Vallisneria_sps_unk.Leaf2 11,863 37,872 36,591 (96.62) 34,886 (92.12)
Site.P2.Vallisneria_sps_unk.Leaf2 172 720 663 (92.08) 550 (76.39)
Site.P2.Vallisneria_sps_unk.Leaf2 5,914 20,316 19,772 (97.32) 19,030 (93.67)
Site.P2.Myriophyllum_spicatum.Leaf 33,577 119,521 117,639 (98.43) 115,176 (96.36)
Site.P2.Myriophyllum_spicatum.Leaf 32,088 106,020 103,336 (97.47) 98,959 (93.34)
Site.P2.Myriophyllum_spicatum.Leaf 38,571 113,778 110,832 (97.41) 106,517 (93.62)
Site.P3.Myriophyllum_spicatum.Leaf 8,767 26,684 26,169 (98.07) 25,325 (94.91)
Site.P3.Myriophyllum_spicatum.Leaf 4,555 10,840 10,498 (96.85) 10,095 (93.13)
Site.P3.Myriophyllum_spicatum.Leaf 452 1,534 1,466 (95.57) 1,336 (87.09)
Site.P3.Myriophyllum_spicatum.Root 18,799 23,568 22,105 (93.79) 20,838 (88.42)
Site.P3.Myriophyllum_spicatum.Root 42,702 51,778 47,966 (92.64) 45,262 (87.42)
Site.P3.Myriophyllum_spicatum.Root 16,185 18,642 17,771 (95.33) 17,138 (91.93)
Site.P3.Vallisneria_sps_unk.Leaf 1,692 3,746 3,657 (97.62) 3,563 (95.11)
Site.P3.Vallisneria_sps_unk.Leaf 53 259 165 (63.71) 107 (41.31)
Site.P3.Vallisneria_sps_unk.Leaf 12,516 20,122 19,408 (96.45) 18,394 (91.41)
Site.P3.Vallisneria_sps_unk.Root 41,072 49,833 47,140 (94.6) 44,681 (89.66)
Site.P3.Vallisneria_sps_unk.Root 34,861 41,769 40,052 (95.89) 37,960 (90.88)
Site.P3.Vallisneria_sps_unk.Root 7,965 9,528 8,991 (94.36) 8,594 (90.2)
Site.P4.Myriophyllum_spicatum.Leaf 7,395 10,019 9,588 (95.7) 9,240 (92.22)
Site.P4.Myriophyllum_spicatum.Leaf 6 29 25 (86.21) 12 (41.38)
Site.P4.Myriophyllum_spicatum.Leaf 4,404 6,691 5,855 (87.51) 5,498 (82.17)
Site.P4.Myriophyllum_spicatum.Root 2,935 4,721 4,510 (95.53) 4,254 (90.11)
Site.P4.Myriophyllum_spicatum.Root 4,988 9,583 9,088 (94.83) 8,510 (88.8)
Site.P4.Myriophyllum_spicatum.Root 122 411 314 (76.4) 221 (53.77)

Alexiev et al.

Volume 9 Issue 1 e01175-19 mra.asm.org 2

https://doi.org/10.6084/m9.figshare.5860926.v3
https://doi.org/10.6084/m9.figshare.5860926.v3
https://mra.asm.org


processing steps. The average number of reads per sample was 19,114 and ranged from
6 to 100,126. Sample-specific metrics are listed in Table 1. We identified 6,634 microbial
OTUs total from our samples (n � 40). OTUs assigned to the genera Methylotenera (2.2%
of all sequences), Sulfurimonas (1.4%), and Sulfuricurvum (2.9%) and the family Rhodo-
cyclaceae (1.4%) are the most common among all the samples. Leaf samples were
dominated by Methylotenera mobilis (3.5% of leaf-associated sequences) and the genus
Planctomyces (2.2%), whereas root samples were dominated by Sulfuricurvum kujiense
(6.8% of root-associated sequences), the genus Sulfurimonas (6.0%), and the family
Rhodocyclaceae (5.7%).

Data availability. Sequences from this data set are available through NCBI under

the accession number PRJNA305164. Detailed protocols and workflow documentation
are available on FigShare (https://doi.org/10.6084/m9.figshare.5860926.v3).
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