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Behavioral/Cognitive

Rat Anterior Cingulate Cortex Continuously Signals
Decision Variables in a Patch Foraging Task

Gary A. Kane,1,2 Morgan H. James,3,4 Amitai Shenhav,5 Nathaniel D. Daw,1 Jonathan D. Cohen,1 and
Gary Aston-Jones4
1Department of Psychology and Neuroscience Institute, Princeton University, Princeton, New Jersey 08544, 2Center for Systems Neuroscience,
Boston University, Boston, Massachusetts 02155, 3Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University, Piscataway,
New Jersey 08854, 4Brain Health Institute, Rutgers University, Pisccataway, New Jersey 08854, and 5Department of Cognitive, Linguistic, &
Psychological Sciences and Carney Institute for Brain Science, Brown University, Providence, Rhode Island 02912

In patch foraging tasks, animals must decide whether to remain with a depleting resource or to leave it in search of a poten-
tially better source of reward. In such tasks, animals consistently follow the general predictions of optimal foraging theory
(the marginal value theorem; MVT): to leave a patch when the reward rate in the current patch depletes to the average
reward rate across patches. Prior studies implicate an important role for the anterior cingulate cortex (ACC) in foraging deci-
sions based on MVT: within single trials, ACC activity increases immediately preceding foraging decisions, and across trials,
these dynamics are modulated as the value of staying in the patch depletes to the average reward rate. Here, we test whether
these activity patterns reflect dynamic encoding of decision-variables and whether these signals are directly involved in deci-
sion-making. We developed a leaky accumulator model based on the MVT that generates estimates of decision variables
within and across trials, and tested model predictions against ACC activity recorded from male rats performing a patch for-
aging task. Model predicted changes in MVT decision variables closely matched rat ACC activity. Next, we pharmacologically
inactivated ACC in male rats to test the contribution of these signals to decision-making. ACC inactivation had a profound
effect on rats’ foraging decisions and response times (RTs) yet rats still followed the MVT decision rule. These findings indi-
cate that the ACC encodes foraging-related variables for reasons unrelated to patch-leaving decisions.

Key words: anterior cingulate cortex; decision-making; electrophysiology; foraging; marginal value theorem; rats

Significance Statement

The ability to make adaptive patch-foraging decisions, to remain with a depleting resource or search for better alternatives, is
critical to animal well-being. Previous studies have found that anterior cingulate cortex (ACC) activity is modulated at differ-
ent points in the foraging decision process, raising questions about whether the ACC guides ongoing decisions or serves a
more general purpose of regulating cognitive control. To investigate the function of the ACC in foraging, the present study
developed a dynamic model of behavior and neural activity, and tested model predictions using recordings and inactivation
of ACC. Findings revealed that ACC continuously signals decision variables but that these signals are more likely used to mon-
itor and regulate ongoing processes than to guide foraging decisions.

Introduction
Animals frequently encounter patch-foraging decisions; that is,
decisions about whether to persist in harvesting a depleting
resource within a patch, or to leave the patch, incurring a cost of
time and effort, in search of a potentially better resource. The
ability to make adaptive foraging decisions, choosing the appro-
priate time to leave a patch to maximize rewards or resources
over time, is a critical skill. The mathematically optimal behavior
in patch foraging tasks, described by the marginal value theorem
(MVT; Charnov, 1976), is to leave a patch when the local reward
rate (the reward rate offered by the current patch) depletes below
the level of the global reward rate (the average reward rate across all
patches visited in the environment). Although animals sometimes
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deviate quantitatively from the predictions of this theory (Nonacs,
2001; Wikenheiser et al., 2013; Kane et al., 2019), behavior is gener-
ally qualitatively consistent with the idea that decisions are based on
maximizing overall rewards by comparing estimates of the local
reward rate with estimates of the global reward rate (Hayden et al.,
2011; Constantino and Daw, 2015; Hayden, 2018).

Previous research into the neural mechanisms of foraging
decisions has focused on the role of the anterior cingulate cortex
(ACC). The ACC exhibits foraging decision-related changes in
neural activity: on average, ACC activity is greater when the cur-
rent offer of reward is close to the average of alternative options
in foraging tasks (e.g., when reward has depleted to the level of
the global reward rate; Hayden et al., 2011; Kolling et al., 2012;
Shenhav et al., 2014). Furthermore, single unit recordings in for-
aging tasks have revealed that ACC neurons exhibit transient
increases in activity around the time of foraging decisions, and
that ACC activity is modulated by task variables after decisions
(Hayden et al., 2011; Blanchard and Hayden, 2014). Whether
these foraging-related signals in ACC reflect a role for this region
in guiding patch-leaving decisions (e.g., by encoding value sig-
nals that are used directly in the MVT value comparison process
or by updating action selection policies for future trials) has been
heavily debated (Rushworth et al., 2011; Ebitz and Hayden, 2016;
Kolling et al., 2016; Shenhav et al., 2016a). Foraging decision-
related signals observed in the ACC could be important for several
functions unrelated to guiding decisions to stay in versus leave a
patch, such as monitoring of task performance (Shenhav et al.,
2014, 2016b; Li et al., 2019). Furthermore, foraging value signals

may be particularly important for regulating
response vigor (Niv et al., 2007; Yoon et al.,
2018).

In the present study, we investigated whether
within trial dynamics of ACC (e.g., transient
increases around the time of foraging decisions)
reflected continuous encoding of foraging decision
variables and whether these dynamics guided for-
aging decisions. We developed an evidence accu-
mulation model of foraging decision-making,
similar to Davidson and El Hady (2019), to (1)
compare changes in ACC activity to moment-by-
moment changes in MVT-derived decision varia-
bles, such as the local reward rate, global reward
rate, and choice difficulty; and (2) examine which
components of the foraging decision process were
affected by ACC inactivation. We report two key
findings. First, changes in ACC activity within and
across trials closely matched moment-by-moment
changes in MVT-derived decision variables.
Second, although ACC inactivation increased har-
vesting of rewards from patches, rats retained sen-
sitivity to foraging-related information (i.e., rats
still followed the MVT decision rule) and model-
based analyses revealed that increased harvesting
was associated with changes to nondecision com-
ponents of the decision process (components not
related to deliberation to stay in vs leave the patch).

Materials and Methods
Animals
Adult, male Long–Evans rats (Charles River; n= 22)
were used. Rats were housed on a reverse 12/12 h
light/dark cycle (lights off at 8 A.M.). All testing was
conducted during the dark period. Throughout behav-
ioral testing, rats were food restricted to maintain a

weight of 85–90% ad libitum feeding weight and were given ad libitum
access to water. All procedures were approved by the Rutgers University
Institutional Animal Care and Use Committee.

Foraging task
The task was implemented using Med Associates operant conditioning
chambers. Animals were trained and tested as previously described
(Kane et al., 2017, 2019). Rats were first trained to lever press for 10% su-
crose water on a fixed ratio (FR1) reinforcement schedule. Once exhibit-
ing 1001 lever presses in a 1-h session, rats were trained on a sudden
patch depletion paradigm: the lever stopped yielding reward after 4–12
lever presses, and rats learned to nose poke to reset the lever. Next, rats
were tested on the full foraging task.

A diagram of the foraging task is shown in Figure 1A. On a series of tri-
als, rats had to repeatedly decide to lever press to harvest reward from the
patch or to nose poke to travel to a new, full patch, incurring the cost of a
time delay. At the start of each trial, a cue light above the lever and inside
the nose poke turned on, indicating rats could now make a decision. The
time from cues turning on until rats pressed a lever or used the nose poke
was recorded as the decision time (DT). A decision to harvest from the
patch (lever press) yielded reward (10% sucrose water) as soon as the rat
entered the reward magazine. The next trial began after a 7-s intertrial inter-
val (ITI). With each consecutive harvest, rats received a smaller (exponen-
tially diminished) volume of reward to simulate depletion from the patch. A
nose poke to leave the patch caused the lever to retract for a delay of 10-s
simulating the time to travel to a new patch. After the delay, the other lever
extended, and rats could harvest from that now replenished patch.
Replenished patches started with varying amounts of reward, depleting via
the same exponential decay function (e.g., if the rat received 90 ml on one

Figure 1. Diagram of the foraging task. A, On trial n, the rat chose to press the lever to harvest from the patch,
then received reward in the reward magazine in the center of the chamber. After an ITI (7 s), the rat chose to press
the same lever on trial n1 1 to harvest a smaller volume of reward. On trial n1 2, the rat chose to nose poke in
the back of the chamber, initiating a “travel time” delay (10 s), after which, the rat could continue to harvest in a
replenished patch by pressing the lever on the other side of the chamber (trial n1 3). B, Reward depletion curves
for each of the nine patch starting reward volumes. Colors indicate whether the patch was a subjective low, me-
dium, or high reward patch, for consistency with further analyses.
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trial, they would receive 80 ml on the next trial regardless of the patch start-
ing reward; Fig. 1B). Rats were trained until they exhibited stable behavior,
no change in the mean number of trials spent in patches, across at least 3d
before testing sessions.

Leaky competing accumulator (LCA) model
The model of the foraging task had two layers. The first layer, termed the
value layer, consisted of two leaky accumulator units: one encoded the value
of staying in the patch as the local reward rate and the other encoded the
value of leaving the patch as the global reward rate. Importantly, these units
were not in competition with one another (no mutual inhibition between
them). The second layer, termed the decision layer, was a two-unit LCA
layer (Usher and McClelland, 2001). The two units in this layer accumu-
lated input from the value of staying and value of leaving units in the value
layer, respectively. Additionally, there was mutual inhibition between these
units. Decisions to stay versus leave the patch on each trial were made when
the activity of one of the decision units crossed a predefined threshold.

The value layer estimated the local reward rate, localRate, and the
global reward rate unit, globalRate, by integrating reward input, r, at dif-
ferent timescales: localRate integrated rewards quickly but decayed
quickly, and globalRate integrated rewards slowly but decayed slowly.
The change in localRate and globalRate over time were:

localRate
_

¼ �localRate1wr;localRate p r1wlocalRate;localRate p localRate

1 e rate

globalRate
_

¼ �globalRate1wr;globalRate p r1wglobalRate;globalRate

p globalRate1 e rate;

where wx1;x2 indicates the weight between units x1 and x2 and
e rate;N 0;s 2

rate

� �
. wr;localRateÞ ¼ 1 for all simulations. wlocalRate;localRate,

wr;globalRate, wglobalRate;globalRate, and s rate were all free parameters (the
noise terms for both value layer units had the same variance).

The localRate and globalRate units in the value layer units were inputs
to respective units in the decision layer, stayDecision and leaveDecision.
During the decision period, between the start of the trial and the exe-
cution of the lever press or nose poke, decision layer units integrated
input from the value layer. The activity of the decision units was:

stayDecision
_ ¼ �stayDecision1 s pwd�input p localRate1wd�rec

p stayDecision1wd�comp p leaveDecision1 e decision

leaveDecision
_

¼ �leaveDecision1 s pwd�input p globalRate1wd�rec

p leaveDecision1wd�comp p stayDecision1 e decision;

where s ¼ 1 during the decision period and s ¼ 0 otherwise, wd�input is the
weight between the value layer units and their respective decision layer unit
(wd�input.0), wd�rec is the weight of the recurrent connections in the deci-
sion layer (0,wd�rec,1), and wd�comp represents the competition between
the decision units (wd�comp,0), and e decision;N 0;s 2

decision

� �
. A sigmoidal

activation function was used to normalize the activity of the decision units,
instead of the ReLU function often used with LCA models (Usher and
McClelland, 2001):

stayDecisionActivity ¼ 1
11 exp �g stayDecision� bð Þð Þ

leaveDecisionActivity ¼ 1

11 exp �g leaveDecision� bð Þ� � :

A decision to stay versus leave was made when the activity of one of
the decision units, stayDecisionActivity or leaveDecisionActivity, crossed a
threshold z, where 0,z,1. Response times (RTs) were recorded as
the time from the start of a trial until threshold crossing, plus some non-
DT. Rats’ RTs were highly variable, with many very short (,0.1 s)
responses, as well as very long responses (.5 s). To accommodate this
variability, the non-DT was drawn from a long-tailedWeibull distribution,

characterized by a mean h and coefficient of variation g . Thus, the accu-
mulation to bound process consisted of nine free parameters: wd�input ,
wd�rec, wd�comp, sdecision, z, g, b, h , and g .

Following decisions to stay in the patch, an additional delay (0.4 s)
was added to the model to simulate the time it took rats to enter the
reward port after a lever press. To model slow delivery of reward (su-
crose water) from a syringe pump and the extra time rats spend consum-
ing the reward, reward input was switched from an off state (r ¼ 0) to
an on state (r ¼ 1) for double the duration that the syringe pump was
turned on. As in the rat foraging task, the model experienced a 7-s ITI
starting at the beginning of reward delivery, after which, the next trial
began. Following decisions to leave the patch, the model experienced a
10-s travel time delay with no input, after which, the next trial began.
The model was simulated at time steps of 0.1 s (10 steps/s).

LCAmodel fitting procedure
The model was fit to rats’ choices and RTs. As there was no closed-form
solution for the likelihood of choices and RTs given a set of parameters,
we devised a method to approximate the likelihood of choices and RTs
as a function of the number of trials spent in patches and the patch start-
ing reward volume. This method is outlined below:

1. For a given set of parameters, simulate a session of the foraging task
and record choices and RTs. For each simulation, we ran the equiva-
lent of a 6-h simulation to generate a large sample of simulated trials.
Because the global reward rate was initialized to a value of zero, the first
1 h of the simulated choices and RTs were discarded to allow the model
sufficient time to “learn” the global reward rate through experience.

2. Measure the likelihood of choices to stay versus leave as a function
of the patch starting reward and the number of trials spent in the
patch. Simulated choices were fit with a logistic regression model
using the glm function in R. The probability of observed choices as a
function of the simulated choices was calculated using the coeffi-
cients from this logistic regression (i.e., using the predict function):

choiceGLM ¼ glmðsimulatedChoices ; patchStartingReward

p trialInPatchÞ
choiceLikelihood ¼ predictðchoiceGLM; observedChoicesÞ

3. Measure the likelihood of RTs as a function of the choice (stay vs leave),
patch starting reward, and number of trials spent in the patch. Simulated
RTs were fit with a linear regression model using the lm function in R.
Coefficients from this regression model were used to predict the observed
(i.e., rats’) RTs. The probability of an observed RTwas assumed to be nor-
mally distributed, where the mean was equal to the predicted RT and the
variance was the residual variance from the regressionmodel:

rtModel ¼ lmðlogSimulatedRTs ; simulatedChoices p patchStartingReward

p trialInPatchÞ
logPredictedRTs ¼ predictðrtModel; logObservedRTsÞrtModelStDev

¼ summaryðrtModelÞ $ sigma rtLikelihood

¼ dnormðlogObservedRTs; logPredictedRTs; rtModelStDev

4. Calculate negative log likelihood of the joint likelihood of choices
and RTs:

negLogLik ¼ � sumðlogðchioceLikelihood p rtLikelihoodÞÞ

We found that this method produced a better fit to rat behavior than other
approaches to fit parameters to simulated RT distributions, such as mini-
mizing x 2 between simulated and observed RT distributions often used
with diffusion models of decision-making (Ratcliff and Tuerlinckx, 2002).
The maximum likelihood estimate (i.e., the parameters that minimized the
negative log likelihood) was found using a genetic algorithm (the GA pack-
age in R; Scrucca, 2013).

Electrophysiology
Before behavioral training, 11 rats underwent surgery to implant elec-
trode arrays consisting of 32, 50-mm diameter single stainless-steel wires
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or 8 tetrodes, each consisting of four, 25-mm diameter stainless steel
wires. Wires were connected to a 32-channel Omnetics connector, serv-
ing as the interface between microwires and the headstage. First, two 0–
80 machine screws were inserted into the skull over the posterior parietal
cortex (approximately�4 mmAP,63 mmML from bregma). A ground
wire (125mm stainless steel with insulation removed from 3 mm of the
tip of the wire) was fixed to one of the skull screws. Next, a 4� 2 mm
craniometry was made above the anterior cingulate (Cg1), from14 to 0
mm anterior-posterior from bregma and 0 to 62 mm medial-lateral
from bregma. Arrays (;2� 1 mm) were centered at approximately 12
mm anterior-posterior and positioned such that the most medial wires
were just lateral to the sagittal sinus (centered at ;0.6 mm ML), then
lowered slowly (0.1 mm/min) down to 1.25 mm below brain surface.
Once arrays were in their final position, craniotomies were filled with
kwik-cast (WPI; https://www.wpiinc.com/kwik-cast-kwik-cast-sealant),
then arrays were cemented to the skull using metabond (Parkell;
http://www.parkell.com/c-b-metabond_3). Additional Jet Denture
Repair Acrylic (Lang; https://www.langdental.com/products-Jet-
Denture-Repair-Package-44) was applied over the entire surface of
exposed skull and over the metabond to provide further stability to the
headcap, to secure the 32-channel Omnetics connector to the skull, and this
dental acrylic was shaped to provide a protective barrier in front of the
microwire array and connector. After the dental cement dried, sutures were
placed at the front and back of the incision as needed, and rats were
returned to their home cage to recover. Rats were given meloxicam (1mg/kg,
s.c.) at the start of the surgery for analgesia and again once every 24 h for 3d
after surgery. Rats were left to recover for one week before beginning testing.

After recovery, rats were trained 5 d/week for three to six weeks on
the foraging task before recordings. One recording session was taken per
rat. Before the recording session, a 32-channel digitizing headstage
(Plexon) was plugged into the Omnetics connector on the rats’ head.
From the headstage, signals were passed via a flexible cable, through a
commutator, then to a Plexon Omniplex recording system. Wideband
signals were sampled at 40,000Hz. Further processing was performed in
Plexon Offline Sorter software. The wideband signal for each channel
was first bandpass filtered between 600 and 6000Hz, and spikes were
detected using a threshold of five times the median absolute deviation of
the signal. Spike waveforms, from 1ms before threshold crossing to 2ms
after threshold crossing, were extracted and clusters were manually iden-
tified using a combination of principal components (PCs), waveform
energy, and waveform amplitude. Only clusters that exhibited consistent
firing throughout the entire session were included for analysis. Clusters
were characterized as single units if ,2% of spikes within the cluster
exhibited an interspike interval of,2ms, and the cluster had an L-ratio
(Schmitzer-Torbert et al., 2005) of ,0.1. All other clusters were charac-
terized as multi-units. Altogether, this resulted in a total of 42 single-units
and 106 multi-units. All units were combined for all further analyses
unless otherwise noted.

After the completion of recordings, small electrolytic lesions were
made by passing current (25 mA for 15 s) through wires at the front and
back of the array. Twenty-four hours later, rats were perfused with 4%
paraformaldehyde (PFA) and their brains were extracted. Brains were
postfixed in 4% PFA for 24 h, then cryoprotected in 30% sucrose in
phosphate buffered saline for 72 h. Finally, brains were flash frozen and
sectioned into 40-mm sections on a cryostat. Electrode locations were
confirmed by locating lesions.

Pharmacological inactivation of ACC
Before behavioral training,11 rats underwent surgery to implant a bilateral
cannula targeting the ACC (Cg1). Similar to electrode array implant sur-
geries, two 0–80 machine screws were inserted into the skull above the
posterior parietal cortex. Next, a large craniotomy was drilled, spanning
the ACC bilaterally (from approximately �1 to 11 mm ML and 11 to
13 mm AP from bregma). The bilateral cannula (PlasticsOne) was posi-
tioned to target Cg1 at60.5 ML and12 mm AP from bregma. The can-
nula was lowered slowly (0.1 mm/min) to a depth of 0.75 mm below the
brain surface. The implant was secured to the skull using metabond, and
the Jet Denture acrylic was used to further secure the implant to the skull
and skull screws, and it was shaped to create a protective barrier in front

of the cannula. Following completion of the surgery, sutures were applied
as needed to secure the front and back of the incision and was then placed
in its home cage to recover. Rats followed the same analgesia protocol and
postoperative recovery as with electrode array implants.

After full recovery, rats were trained 5 d/week for four weeks on
the foraging task before testing. On test days, 15min before the start of
the session, rats underwent a microinjection of either a cocktail of the
GABA agonists baclofen and muscimol (Bac-Mus; 1 and 0.1 mM,
respectively; 0.5 ml/side), or artificial CSF (aCSF; 0.5 ml/side) as a con-
trol. A bilateral injector (33 G, PlasticsOne) that protruded 0.5 mm
below the bottom of the cannula (to a depth of 1.25 mm) was inserted
through the cannula, and Bac-Mus or aCSF was injected at a rate of
100 nl/min. The injector was left in place for 2min after completion of
the injection to allow the drug cocktail to diffuse into the tissue and to
avoid backflow of the drug cocktail up the cannula track. The injector
was then removed, and rats were placed in the operant chamber await-
ing testing. The day before the first injection, rats underwent one sham
injection to acclimate to the procedure. Rats were tested with Bac-Mus
and aCSF for one session with each drug, counterbalanced (four rats
received aCSF followed by Bac-Mus, four vice versa). Rats were given
one recovery day, in which they were tested without an injection,
between the two testing sessions.

Experimental design and statistical analysis
Rat foraging behavior
All statistical analyses and computational modeling were conducted in R
(R Core Team, 2020). Mixed effects (ME) models were fit using the lme4
package (Bates et al., 2015), and significance tests for linear ME models
were performed using the lmerTest package (Kuznetsova et al., 2017).
Unless otherwise specified, all continuous predictors in ME models were
z-scored.

To investigate the behavioral performance of rats that participated in
the ACC recording experiment, we analyzed rats’ foraging decisions (the
number of trials spent in each patch) and RTs (the time from the start of
the trial until the lever press or nose poke) during the final three training
sessions before the recording session. Examination of their training data
allowed us to pool behavior across multiple sessions. In this experiment,
two main hypotheses were tested: (1) that rats would spend more trials
in patches that offered greater rewards (a standard prediction of the
MVT); and (2) as patches depleted, RTs to decide to stay versus leave
would increase (reflecting greater decision difficulty). The first hypothe-
sis was tested using a linear ME model of the number of trials spent in
each patch, with a fixed effect of the starting reward volume of the patch
and random intercept for each rat (lme4 syntax: TrialsInPatch;Pat
chStartingReward 1 PatchStartingRewardjRat� �

). To test whether rats
adopted the same reward rate leaving threshold across patches, a MEmodel
of the reward rate at the time rats left patches, with a fixed effect of the patch
starting volume and random intercept for each rat. In this model, to directly
compare the leaving threshold at each of the nine patch starting reward
volumes, patch starting reward was treated as a categorical variable
(dummy coded) and we conducted pairwise comparisons of the reward
rate when rats left the patch across all patch starting reward volumes.

The second hypothesis, that RTs would increase as patches depleted,
was initially tested using a linear ME model of the log of RTs with fixed
effects of the patch starting reward volume, the number of trials spent in
the patch, and the starting reward � trials in patch interaction, and a ran-
dom intercept for each rat (logRT;PatchStartingReward pTrialsInPatch
1 PatchStartingReward pTrialsInPatchjRat� �

). The log of RTs was used
as the raw RTs were positively skewed. However, if rats exhibit longer RTs
as patches deplete, then it is likely that they will exhibit longer RTs, on av-
erage, in patches that start with smaller rewards because a greater propor-
tion of trials spent in these patches will be at lower reward volumes. To
better examine whether there were differences in RTs across patches,
another linear ME model was used to examine the effect of the number
of trials remaining in the patch and patch starting reward on the log of
RTs (logRT; PatchStartingReward p exp TrialsRemainingð Þ1 PatchStarð
tingReward p exp TrialsRemainingð ÞjRatÞ). An exponential function of
TrialsRemaining was used, as it proved to be a better fit to data than a lin-
ear function (Fig. 2D). In this model, if the RTs around the trial at which
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rats chose to leave the patch were similar across dif-
ferent patch types, there would be no main effect of
PatchStartingReward.

As it was not possible to test the hypothesis that RTs
are influenced by foraging decision variables and not only
tied to the magnitude of reward in the novel experiments
conducted here, we tested this hypothesis by conducting
new analyses on data initially reported in Kane et al.
(2019). In this experiment, rats were tested in the same
foraging task described above, but in two conditions: a
10- and a 30-s travel time delay between patches. A ME
model was used to test the effect of the starting reward
in the patch, the number of trials in the patch, and
travel time on the log of RTs (logRT; PatchStarting
Reward pTrialsInPatch pTravelTime1 TrialsInPatch1ð
TravelTimejRatÞ). Trials in the patch and travel time
were treated as random effects, including any additional
random effects led to a singular fit of the model and did
not alter any of the reported statistical effects. As reward
magnitude is entirely dependent on the patch starting
reward and the number of trials in the patch, a significant
effect of travel time on RTs would indicate that RTs are not
entirely tied to the reward magnitude, but are influenced by
foraging decision variables (e.g., the change in the global
reward rate which is caused by a change in the travel time).

Leaky accumulator model predictions
To examine whether the LCA model with 13 parameters
overfit behavioral data, that parameters were optimized to
capture noise in the data and, thus, would not generalize to
new data, cross validation analysis was performed. Behavioral
data for each rat was separated into three “splits.” The LCA
model was fit to data in which one of the splits was omitted,
and the likelihood of themodel on the left-out data was calcu-
lated. This process was repeated such that each split served as
the left-out data. The sum of the likelihoods on the three left-
out splits was compared with the likelihood of the model fit
to all the data from each rat using a paired t test.

Simulated behavioral data and the time course of ac-
tivity of each of the LCA units were obtained via simula-
tions as described above. To generate peri-event time
histograms (PETHs) of LCA unit activity around the time
of decisions, first, the time of decisions was obtained from
the simulated behavioral data and the activity of each
LCA unit was extracted for eight simulated seconds (80
time steps) before the decision and 4 s (40 time steps) af-
ter. PETHs were created for three additional foraging de-
cision variables, the relative value of leaving the patch,
decision difficulty, and decision conflict. The relative
value of leaving the patch was the moment-by-moment
difference between the local and global reward rate units:
globalRate� localRate; decision difficulty or the similarity
in the value of staying versus leaving was defined as:
�abs localRate� globalRateð Þ; and decision conflict was the
product of the activity of the decision units: globalRate� localRate; decision
difficulty or the similarity in the value of staying versus leaving was defined
as: �abs localRate� globalRateð Þ; and decision conflict was the product of
the activity of the decision units: stayDecisionActivitypleaveDecisionActivity.
Each of these variables were first normalized (z-scored), then PETHs were
created the same as for the four LCAmodel units.

Analysis of ACC activity
First, generalized linear models (GLMs) were used to examine whether
ACC neurons were responsive in specific trial epochs and whether
such responses varied between patches on the right versus the left le-
ver. Spike counts for each unit were calculated in 100-ms nonover-
lapping bins through the entire session. Spike counts were regressed
using GLMs with a quasi-Poisson link function (Poisson regression
with overdispersion parameter) against three trial events: the start of

the trial (when cue lights turn on), the decision, and reward delivery
(SpikeCounts; startEpoch1 decisionEvent1 rewardEventÞ. Fifteen
regressors were used for each trial event (15 time bins spanning 0.5 s
before the event and 1 s after the event). As these events were some-
times overlapping, to distinguish responses to a particular event, four
total models were fit: a model containing all regressors (15 regressors/
event � three events = 45 regressors), and three additional models in
which one of the events had been removed. If, for example, a unit was
responsive to decision events, removing the decision event regressors
would lead to a significantly worse model fit. Units were considered
responsive to an event if the full model produced a significantly better
fit than the model that omitted regressors for a particular event, as
determined by the likelihood ratio between the models. P-values were
determined using a permutation test: the null distribution of likeli-
hood ratios was determined by conducting this analysis on shuffled
data (using randomly generated event times), and p-values were corrected

Figure 2. Rat behavior in the patch foraging task. In all panels, points, dark lines, and error bars represent
the mean and SE across rats, and lighter lines represent behavior of each individual rat. A, The number of trials
spent in each patch as a function of the starting reward volume of the patch. B, The reward rate (reward vol-
ume/trial time) rats received on the trial before rats chose to nose poke to leave the patch. C, The median RTs
for each rat over the course of trials in the patch, split by patches that started with low (30–60ml), medium
(75–105ml), or high (120–150ml) starting reward volumes. D, The median RTs for each rat as rats became
closer to leaving patches; 0 trials remaining in the patch indicated the trial in which they nose poked to leave
the patch, 1 trial remaining is the last lever press to stay in the patch, 2 is the second to last lever press before
leaving the patch, etc. E, Pairwise t tests across the patch leaving threshold (the local reward rate when rats
decided to leave the patch), for all patch types. Colors indicate the difference in the reward rate threshold at
which rats decided to leave the patches (i.e., y-axis leaving threshold – x-axis leaving threshold). Asterisks indi-
cate statistically significant comparisons (pairwise x 2 tests with Holm–Bonferroni correction). F, Median RTs of
rats from the travel time experiment by Kane et al. (2019). Rats visited patches that started with 60, 90, or
120ml within sessions and experienced travel time delays of 10 or 30 s in separate sessions.
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for multiple comparisons (across 148 units) using Holm–Bonferroni
correction.

To test whether ACC neurons exhibited side-selective responses to
these task epochs, a similar GLM approach was used. In addition
to event-specific regressors, interaction terms between events and
left versus right side were included (SpikeCounts ; startEpoch +
decisionEvent + rewardEvent + startEvent : PatchSide + decisionEvent
PatchSide + rewardEvent:PatchSide). Again, four total models were fit: the
full model and three additional models in which one of the interaction
terms was omitted. A unit was considered responsive to a trial event in a
side-selective manner if the full model provided a better fit than a model
omitting only one of the event � side interaction terms as determined by
the likelihood ratio test. P-values were calculated using the same permuta-
tion test procedure described above.

To analyze the correlation between average ACC activity and forag-
ing decisions and RTs, first, the firing rate of each unit was calculated for
each trial. A linear ME model was used to test the effect of trials until
leaving, the number of trials the rat spent in the patch before choosing to
leave (e.g., trials until leaving = 0 is the trial in which the rat chose to
leave and trials until leaving = 1 is the last decision to stay before choos-
ing to leave on the next trial), and starting patch reward, with random
effects for all parameters for each unit:

FiringRate; exp TrialsUntilLeaveð Þ p PatchStartingReward

1 exp TrialsUntilLeaveð Þ pPatchStartingRewardjUnit� �

A second linear ME model was used to test the effect of the log of RTs,
with random intercepts and slopes for each unit:

FiringRate; logResponseTime1 logResponseTimejUnit� �

To examine (1) at what point in the decision process ACC activity
was influenced by foraging decisions and RTs and (2) which units
encoded these two variables over the course of the entire trial, PETHs
were created for each unit, from 8 s before the lever press to stay in the
patch to 4 s after the lever press, in time bins of 0.1 s (120 total time
points). Next, three GLMs with a quasi-Poisson link function (Poisson
regression with an overdispersion parameter) were fit to the spike counts
in each bin of the PETH for each unit. The first model included an inter-
cept, effect of trials until leaving, and effect of the log of RTs for
each time point (a total of 360 parameters). Coefficients of the
effect of trials until leaving and effect of log of RTs were used to
determine the strength of encoding of these variables at that spe-
cific point within the trial. To determine whether these variables
significantly contributed to the variance in each unit’s activity,
separate GLMs that excluded either the effect of trials until leaving
or the effect of log of RTs were fit to each unit, and likelihood ratio
tests were conducted between the full model and the models
excluding one of these variables. If the full model provided a better
fit to a specific unit’s PETH, assessed via likelihood ratio test
against a model with one predictor removed, that would indicate
significant encoding of the variable excluded from the reduced
model. Based on this analysis, units were characterized as encoding
the number of trials until leaving, the log of RTs, or both.

Finally, the dynamics of ACC activity within trials and the modula-
tion of these dynamics were compared with moment-by-moment
changes in decision variables derived from the LCA model. Cross-corre-
lations between PETHs of LCA model activity and PETHs of neural ac-
tivity were computed, with a maximum time lag of 61 s in 0.1-s shifts.
To test for statistical significance, correlation coefficients were compared
with “shuffled” neural activity data. Shuffled PETHs were created using
random event times instead the time of the decision, this method was
chosen to preserve any autocorrelation present in neural activity. Cross-
correlations were conducted on 10,000 shuffled PETHs. For each
cross-correlation, only the strongest correlation coefficient was
used (i.e., using the lag that exhibited the greatest correlation coeffi-
cient). P-values were calculated as the probability that the correlation
coefficient from real neural data is greater than the correlation coeffi-
cient using shuffled data.

First, LCA derived variables were compared with an average PETH,
constructed by taking the PETH for each unit described above, normal-
izing the activity of each unit, taking the z-score of activity across all bins
for that unit, and taking the average normalized activity within each bin
across units. Next, to examine the diversity in encoding across units, two
approaches were taken. (1) The average, normalized PETH was calcu-
lated for each unit on a subset of trials leading up to the decision to leave
the patch (5, 3, 1, or 0 trials until leaving the patch). For each unit, these
four PETHs were concatenated into a vector with 480 features (120 time-
points for each of the four PETHs), and PC analysis (PCA) was per-
formed on these 480 features across all 148 units to extract the
dimensions that capture the most variance across all units at each time
point for each of these four trials until leaving the patch. PCs, represent-
ing the dimensions which captured the most variance across units on
these trials, were compared with LCAmodel units. (2) LCA derived vari-
ables were directly compared with PETHs of each individual unit. For
the PCA and individual unit correlations, p-values were further cor-
rected for multiple comparisons (148 PCs or units).

Pharmacological inactivation of ACC
Foraging behavior in the inactivation experiment was analyzed in a
similar manner as described above. Linear ME models were used to
test the effect of ACC inactivation (aCSF injection vs Bac-Mus
injection) on the number of trials spent in the patch (lme4 syntax:
TrialsInPatch ; PatchStartingReward * Inactivation + (Patch
StartingReward * Inactivation|Rat)) and RTs (lme4 syntax: logRT
; exp(TrialsUnitLeaving) * PatchStartingReward * Inactivation +
(exp(TrialsUnitLeaving) * PatchStartingReward * Inactivation|Rat)). An
additional ME model was used to test the relative value of leaving
the patch (the difference in the global and local reward rate) at the
time that rats chose to leave the patch, termed the valueAtLeaving.
This analysis was designed to measure whether ACC inactivation
caused rats to overharvest to a greater degree than observed in con-
trol sessions. valueAtLeaving was calculated as follows:

valueOfLeaving ¼

X
rewardX
time

valueOfStaying ¼ rewardi
timei

valueAtLeaving ¼ valueOfLeaving � valueOfStaying:

The value of leaving across the three patch types was tested as a func-
tion of the patch starting reward and drug treatment (ACC inactivation
vs control; lme4 syntax: valueAtLeaving ; PatchStartingReward *
Treatment + (PatchStartingReward * Treatment|Rat)).

To further examine the effect of ACC inactivation on foraging behav-
ior, the optimal number of trials in each patch, according to MVT, was
calculated for each rat in control and inactivation sessions. The relative
value of leaving (valueOfLeaving � valueOfStaying, as described above)
was calculated for all trials. For each rat, we found the average relative
value of leaving across trials in the patch for each patch starting reward
that rats encountered. The optimal time to leave the patch was the first
trial in which the average relative value of leaving for that trial was.0.

Finally, the LCA model was fit to each drug treatment as described
above. Paired t tests were run on each of the 13 parameters, and Holm–
Bonferroni-corrected p-values (Holm, 1979) are reported.

Results
Rats spend more time in patches that offer greater rewards
Rats (n=11) were trained to perform a patch foraging task in
which they randomly encountered patches with starting rewards
that ranged from 30 to 150ml (Fig. 1B). This wide range in
reward offered by different patches tested whether rats followed
a central prediction of MVT: when offered greater levels of
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reward, rats should harvest for more trials until these patches
deplete to the leaving threshold (the global reward rate or aver-
age reward rate across all patches). To test this prediction, rat
behavior during their final three training sessions was ana-
lyzed. Rats participated in 553–1162 trials, visiting 99–202
patches each. As in a previous study (Kane et al., 2017), rats
harvested for more trials in patches that started with greater
rewards (main effect of patch starting reward: b = 2.294,
SE = 0.079, F(1,11.332) = 837.14, p, 0.001; Fig. 2A). Among
patches that started with greater rewards (75–150 ml), there
was no difference in the reward rate at which rats chose to
leave patches. However, rats left patches that started with
smaller rewards (30–60 ml) at a lower reward rate than patches
that started with greater rewards (Fig. 2B; pairwise x 2 tests
presented in Fig. 2E). As predicted by MVT, rats adopted a
constant reward rate threshold at which to leave patches when
in patches that yielded larger rewards, but contrary to MVT,
they exhibited a bias to harvest reward beyond this threshold
in patches that yielded smaller amounts of reward.

Rats’ RTs increase as patches deplete
As the reward rate within the patch depleted to the level of the
global reward rate across patches, rats may have experienced
increased difficulty to decide to stay versus leave, which would
be reflected in increased RTs. As rats spent more time in patches,
their RTs increased (main effect of trials in patch: b = 0.512,
SE= 0.056, F(1,9.791) = 85.203, p, 0.001; Fig. 2C). Furthermore,
their RTs were, on average, greater in lower rewarding patches
(b = �0.398, SE= 0.046, F(1,9.830) = 75.67, p, 0.001). Slower av-
erage RTs in lower starting reward patches is likely because of a
greater proportion of trials spent with lower reward volumes, as
lower starting reward patches start out in a depleted state, there
are few to no trials in which rats should exhibit faster RTs to stay
in the patch. To test this hypothesis, RTs were also analyzed as a
function of the number of trials remaining in the patch. If rats
experienced reduced decision difficulty in patches that started
with smaller rewards, then RTs should have been faster as rats
approached the point to leave these patches. Across all patch
types, rats’ RTs increased as they approached the point at which
they left patches (main effect of trials remaining in the patch:
b = 0.555, SE= 0.058, F(1,10.751) = 92.662, p, 0.001; Fig. 2D), but
there was no difference in the average RTs (main effect of
patch starting reward: b = 0.691, SE= 0.118, F(1,9.963) = 0.002,
p=0.968) or in the rate at which RTs increased among different
patch types (trials remaining � patch starting reward interac-
tion: b = 0.010, SE = 0.018, F(1,9.663) = 0.290, p = 0.602; Fig.
2D). Despite leaving smaller starting reward patches at a lower
threshold than higher starting reward patches, rats exhibited
similar RTs in these patches as they became closer to leaving,
suggesting that they experienced the same decision difficulty
when deciding to leave patches that started with greater rewards.
Alternatively, this increase in RT as patches depleted could be
interpreted as an increased need to override the default response
of staying in the patch to choose to leave or a reduction in moti-
vation or response vigor in anticipation of smaller rewards.

To test whether reduction in response vigor in anticipation of
smaller rewards can fully explain rats’ increase in RTs as patches
deplete, additional analysis were conducted on rat foraging task
data previously reported (Kane et al., 2019). In this experiment,
rats visited three patch types that started with 60, 90, or 120 ml
of reward. In separate sessions, rats experienced either a 10- or
30-s travel time delay between patches. If rats’ RTs are tied to
reward magnitudes and not influenced by decision difficulty or

increased need for cognitive control, then there should be no
effect of the travel time on RTs. If rats’ RT increase as patches
deplete because of increasing decision difficulty, then longer
travel times should result in faster RTs earlier in the patch.
Consistent with the hypothesis that rats increase in RTs is
driven by decision difficulty, RTs were faster when the travel
time was longer, given the same reward magnitude (main effect
of travel time: b = 0.364, SE = 0.154, F(1,664) = 5.589, p= 0.018;
Fig. 2F).

An LCAmodel of rat foraging behavior
Evidence accumulation models have proven successful in
describing not only perceptual decisions requiring moment-to-
moment sampling of sensory information, but also value-based
decisions (Polanía et al., 2014; Tajima et al., 2016; Pisauro et al.,
2017; Frömer et al., 2019; Lin et al., 2020; Peters and D’Esposito,
2020; Callaway et al., 2021). Recent theoretical work has applied
the evidence accumulation framework to foraging decisions
(Davidson and El Hady, 2019). To describe rats’ foraging deci-
sions as a function of their moment-by-moment estimate of the
local versus global reward rates, we developed an evidence accu-
mulation model that implemented the MVT decision rule, to
leave a patch when the local reward rate in the current patch
depletes to the level of the global reward rate, using leaky accu-
mulators. The model consisted of two layers, the value and deci-
sion layer. The value layer units estimated the local and global
reward rate by integrating rewards at different timescales: the
local reward rate unit integrated rewards quickly but decayed
quickly, whereas the global reward rate unit integrated rewards
slowly but decayed slowly. These units were not in competition
with one another, there was no reciprocal inhibition between
them. The decision layer was an LCA (Usher and McClelland,
2001) that implemented an accumulation to bound process. At
the start of the trial, decision layer units integrated the activity of
the value layer units until one of the decision units crossed a
threshold, at which point, the model chose the corresponding
option (Fig. 3A). A demonstration of the activity of the value
layer and decision layer units during a simulation is shown in
Figure 3B,C. The model was fit to rats’ choices and RTs (see
Materials and Methods for details, fit parameter estimates in
Table 1). This LCAmodel, fit to rat behavioral data, captured im-
portant features of rats’ behavior: the model predicted spending
more trials in patches that yielded larger rewards and predicted
longer RTs as patches depleted, with longer RTs for patches that
started with smaller rewards (Fig. 3D,E).

To ensure that this model would accurately predict foraging
behavior, that it was not overfit or overly flexible as to explain
noise in the dataset used to estimate model parameters, a cross-
validation analysis was performed. Rat behavioral data were sep-
arated into three “splits.” The LCA model was fit to behavioral
data in which one of the splits was omitted and the likelihood of
the model was calculated on the left-out split. This process was
repeated such that each split served as the omitted data. The like-
lihood of the model on the omitted splits was not significantly
different from the likelihood of the model when fit to all behav-
ioral data (t(10) = 1.790, p=0.104; Fig. 4).

The LCA model was then used to generate predictions
regarding ACC activity in the foraging task. As the model esti-
mates important MVT decision variables, the local and global
reward rates, on a moment-by-moment basis, the activity of
LCA model units was used to calculate specific decision variables
that the ACC has been hypothesized to encode. Three particular
hypotheses were tested: (1) ACC encodes the relative value of
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leaving a patch as the difference between the global reward rate
and local reward rate (Kolling et al., 2012); (2) ACC encodes de-
cision difficulty, quantified as the similarity in the value of stay-
ing and the value of leaving a patch (Shenhav et al., 2014); and
(3) ACC encodes the conflict between choosing to stay versus
choosing to leave a patch, defined as the product of the decision
units (Botvinick et al., 2001). The relative value of leaving the
patch and decision difficulty hypotheses are equivalent while the
rat is in the patch; however, they differ during the travel time.
PETHs of the activity of each model unit, as well as the relative

value of leaving the patch, decision difficulty,
and decision conflict, were created from simula-
tion data by averaging the value of these variables
over trials, locked to the time of the decision
(time of execution of the lever press or nose poke
in the simulation; Fig. 5). These PETHs were later
compared with recorded ACC activity.

ACC activity correlates with foraging
decisions and RTs
First, we examined whether ACC neurons
(n=148; Fig. 6A; Extended Data Fig. 6-1) were
responsive to different task events: cue lights
turning on at the start of the trial, execution of
decisions (lever press or nose poke) and reward
delivery. ACC activity was regressed against the
time period surrounding each trial event (0.5 s
before to 1 s after). A large proportion of units
were responsive to trial events (41% to trial start,
52% to decisions, and 68% to rewards). We also
tested whether ACC responses were side-selec-
tive, whether ACC neurons responded differ-
ently to events in patches on the right lever
versus the left lever; 10% of units exhibited sig-
nificantly different responses around the time of
decisions based on the side, but only 3% of units
exhibited side selectivity to rewards (which were
always delivered in the center of the box) and,1%
exhibited side selectivity to cue lights turning on
(example units in Fig. 6D). Responsivity of ACC
neurons in these different epochs, as well as side se-
lectivity in responses of a subset of ACC neurons is
consistent with prior investigations (Strait et al.,
2016).

Next, we examined whether changes in ACC
activity correlated with rats’ foraging decisions

and RTs. Average ACC activity over the course of trials (the
number of spikes during trial/time of trial, averaged across units)
increased as rats became closer to leaving a patch (main effect of
trials until leave or the number of times the rat chose to stay
before choosing to leave that particular patch: b = 0.287,
SE= 0.061, F(1,147) = 22.028, p, 0.001). Similar to the relation-
ship between trials until leaving the patch and RTs, average ACC
activity as rats became closer to leaving a patch was not influ-
enced by the patch starting reward (main effect of patch starting
reward: b = 0.008, SE= 0.043, F(1,138) = 0.032, p= 0.858). Also,
the rate at which ACC activity increased as rats became closer to
leaving a patch did not depend on the patch starting reward
(patch starting reward � trials until leave interaction: b = 0.013,
SE= 0.019, F(1,145) = 0.509, p=0.477; Fig. 6C). Accordingly, aver-
age ACC activity over the course of trials increased linearly with
RTs (main effect of RTs: b = 0.175, SE= 0.038, F(1,148) = 20.883,
p, 0.001; Fig. 6B). No differences were noted between single-
and multi-units (Fig. 6B,C).

To investigate the effect of rats’ foraging decisions and RTs
on ACC activity in more detail, PETHs of activity around the
time of the lever press to stay in the patch were created for each
unit, and a series of GLMs was used to examine (1) at which
point in the decision process ACC encoded the number of trials
until leaving the patch versus the RT on a given trial, and (2)
which units significantly encoded either variable over the entire
course of the trial (see Materials and Methods for full details).
Encoding of the number of trials until leaving the patch was

Figure 3. The leaky accumulator model of the foraging task. A, Diagram of the model, consisting of two layers of
leaky accumulators. The bottom layer, the value layer (“local rate” and “global rate” units), estimated the local
reward rate and global reward rate by integrating over rewards on different timescales. The top layer, the decision
layer, was an LCA model that made decisions to stay versus leave via an accumulation to bound process at the start
of the trial, with input from the local and global rate units. B, C, Example activity of the value layer and decision
layer units during a 600-s sample of a model simulation. The solid black lines represent the local reward rate and
decision stay unit activity, and the solid red lines represent the global reward rate and decision leave unit activity.
The dotted blue and green vertical lines indicate the start of a trial in which the model decided to stay in the patch
or to leave the patch, respectively. The horizontal dashed line in C represents the decision threshold. D, E, The leaky
accumulator model-predicted number of trials spent in each patch type (D) and predicted RTs as by the number of
trials spent in patches (E) plotted against observed rat behavior. Points and error bars represent the mean 6 SE
across rats, lines and ribbon represents the mean6 SE of model-predicted behavior for each rat.

Table 1. Parameter estimates for LCA fits to animal behavior during recording
sessions

Parameter 1st quartile Median 3rd quartile

wglobalRate 0.008 0.01 0.012
wlocalRate�localRate 0.753 0.766 0.775
wglobalRate�globalRate 0.994 0.995 0.996
s rate 0.025 0.026 0.029
wd�input 1.181 1.443 1.913
wd�rec 0.675 0.707 0.743
wd�comp �1.497 �1.147 �0.814
s decision 0.023 0.026 0.03
z 0.61 0.648 0.665
g 4.997 5.15 5.274
b �0.1 �0.05 0.048
h 2.44 2.895 3.225
g 1.635 1.777 1.999
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weakest during the time period before
decisions and grew stronger after deci-
sions (through the reward and ITI peri-
ods), evidenced by increasing average
regression coefficients and an increase in
the number of units with a statistically
significant regression coefficient for the
number of trials until leaving (with
p, 0.05, z-test; Fig. 6E,F). At the same
time, encoding of RTs was strongest
preceding decisions, with the strongest
regression coefficients occurring dur-
ing a window of ;6–2 s preceding the
decision, and a greater number of units
encoding RTs preceding the decision
versus after the decision (Fig. 6E,F).
Lastly, we found that a large number of
units (69 of 148) encoded both RTs and
trials until leaving, excluding one of these
variables resulted in a worse model fit
according to likelihood ratio tests (p,
0.05 with Holm–Bonferroni correction for
multiple comparisons across 148 units),
with additional units encoding either RTs
only (36/148) or trials until leaving only (6/
148). Again, no differences in encoding
were observed between single- and multi-
units (Fig. 6E,F).

ACC activity continuously tracks
decision variables
To examine potential causes for encod-
ing of RTs before the decision and
encoding of decisions later in the trial,
PETHs of recorded ACC activity were
compared with decision variables derived
from the LCA model. First, we discov-
ered that average normalized ACC activ-
ity, the average PETH across neurons,
split by the number of trials until leaving
the patch, closely tracked the value of
leaving or the difference between the
value of staying in the patch versus leav-
ing the patch (globalRate - localRate; Fig.
7A). Importantly, both the value of leav-
ing the patch and average normalized
ACC activity (1) increased leading up
to decisions; (2) was inhibited during
reward delivery following a decision to
stay in the patch (5, 3, or 1 trial until
leaving); and (3) maintained elevated ac-
tivity following decisions to leave (0 trials
until leaving). A cross-correlation analy-
sis revealed a strong quantitative correla-
tion between average ACC activity and
the value of leaving (r=0.797, p, 0.001,
tested against shuffled data; Fig. 7A). As
many LCA variables are highly correlated
with one another, there were also strong
correlations among average ACC activity
and additional LCA variables (Table 2).
This finding indicates that the dynamics
of ACC activity within and across trials

Figure 4. Cross-validation analysis of the LCA model. A, The likelihood of the LCA model fit to all data (x-axis) compared
with the likelihood of the model on left-out samples (parameters fit to two thirds of the data, likelihood calculated on the left-
out third; y-axis). Each point represents individual rats; the dashed line represents the identity line (y = x). B, C, LCA predicted
behavior (lines and ribbon) plotted against the left-out splits (points and error bars). Number of trials spent in patches is shown
in B and RTs as a function of the number of trials spent in patches is shown in C. Points and lines indicate the mean across
rats, error bars and ribbon indicate the SEM across rats.

Figure 5. PETHs of LCA model unit activity in the foraging task. Each panel represents the PETH of activity of LCA model
units (localRate, globalRate, stayDecisionActivity, leaveDecisionActivity) or hypotheses for ACC activity measured from LCA model
units (decision difficulty, value of leaving, and decision conflict) during a simulation of the foraging task. For each PETH,
time = 0 represents the time of the lever press to harvest reward or nose poke to leave the patch, and colors represent the
number of trials until leaving the patch.
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Figure 6. ACC activity correlates with foraging decisions and RTs. A, Diagram of recording locations within the Cg1 region; labels indicate distance from bregma. Example unit traces and isolation are
shown in Extended Data Figure 6-1. B, C, Average ACC activity over the course of entire trials, normalized and averaged across units, as a function of the log of RTs (B) and trials until leaving the patch
and the patch starting reward (C). Points and lines represent the mean normalized (z-scored) activity across units and error bars represent the SE across units. D, Trial-by-trial raster plot (top) and trial-
averaged PETH (bottom) locked to the time of decisions for one example single unit and one example multi-unit. E, The average absolute effect of trials until leaving and RTs at each time point within a
trial, locked to the time of the lever press to stay in the patch. F, The proportion of units with significant effects of trials until leaving, RTs or both (p, 0.05, z-test on regression coefficient), at each time
point within the trial. The horizontal dashed lines represent the median and 95% confidence interval of the expected proportion of false positives given a=0.05.

Kane et al. · ACC Continuously Signals Decision Variables J. Neurosci., July 20, 2022 • 42(29):5730–5744 • 5739

https://doi.org/10.1523/JNEUROSCI.1940-21.2022.f6-1


are consistent with the hypothesis that ACC activity is related to
LCA-derived decision variables, such as the value of leaving the
patch.

To better understand the heterogeneity in the modulation of
ACC firing across different units, we created PETHs for each
unit (both single- and multi-units) at 5, 3, 1, and 0 trials until
leaving the patch, and compared unit activity to LCA variables.
To determine whether there are components of neural activity
across units that correlate with LCA variables, PCA was

performed on PETHs for each unit (including 120 time points�
four trials = 480 features and 148 units or observations). Next,
the PCs, the dimensions which explained the most variance in
ACC activity (Extended Data Fig. 7-1A), were compared with de-
cision variables derived from the LCAmodel using cross-correla-
tion analyses. The first two PCs explained 25% of variance across
ACC units, and it required 10 PCs to explain .50% of the var-
iance (Fig. 7D). A total of five out of 148 PCs were significantly
correlated with at least one LCA model variable: PC1 correlated
most strongly with localRate (r=0.872, p, 0.001), PC2 and PC6
with leaveDecisionActivity (r =�0.656 and�0.715, p=0.027 and
0.004, respectively), and PC3 and PC4 with decision difficulty
(r = �0.562 and 0.664, p=0.045 and 0.001, respectively; see
Extended Data Fig. 7-1B for complete cross-correlation results).

Individual ACC units also exhibited correlations with a
diverse set of LCA model variables. Overall, 39% of ACC units
correlated with at least one LCA model variable. Units were
characterized by the LCA variable with which it exhibited the
strongest correlation (the greatest absolute correlation coeffi-
cient). ACC units most strongly correlated with a diverse set of
LCAmodel variables, with the greatest proportion of units corre-
lating with localRate (9.5%), followed by decision difficulty
(8.1%) and stayDecisionActivity (7.4%; Fig. 7E). These findings

Table 2. Correlation between PETH of average ACC activity and LCA model
variables

LCA variable R-value P-value

localRate �0.798 ,0.001
globalRate 0.268 0.008
stayDecisionActivity �0.715 ,0.001
leaveDecisionActivity 0.492 ,0.001
decision difficulty 0.767 ,0.001
value of leaving 0.797 ,0.001
decision conflict �0.678 ,0.001

R-values represent the strongest absolute correlation coefficient observed across all lags tested; p-values are
calculated by comparing correlation coefficients against the correlation coefficient observed using shuffled
data.

Figure 7. ACC activity correlates with leaky accumulator model decision variables. A, The value of leaving (globalRate – localRate; top) plotted next to average, normalized PETH across ACC
units for 5, 3, 1, or 0 trials until leaving the patch (bottom). B, C, PCA was performed across the PETH for all units on these trials. The first nine PCs are presented in Extended Data Figure 7-1.
B, The localRate unit activity from the model (top), next to the first PC of ACC activity (second panel), and an example unit that with a strong loading for the first PC (trial-by-trial raster in the
third panel and trial-averaged PETH in the bottom panel). C, leaveDecisionActivity from the model (top), next to the second PC of ACC activity (second panel), and an example unit with a
strong loading for the second PC (trial-by-trial raster in the third panel and trial-averaged PETH in the bottom panel). PETHs are locked to the time of decisions (the lever press or nose poke).
PETHs of leaky accumulator model decision variables were created from simulations using parameters fit to each rat, lines and ribbon represent the average across these simulations. D,
Cumulative proportion of variance explained by each PC. E, The proportion of individual units that correlated with each model variable. As many units exhibited significant correlations with
multiple model variables, units were assigned to the variable with which they exhibited the strongest correlation.
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suggest that the ACC signals multiple decision variables such as
reward rates and decision accumulators.

ACC inactivation does not alter the foraging decision process
Continuous encoding of decision variables in ACC could play a
central role in decision-making, such as participating in the value
comparison process for ongoing decisions, or indicate a more
general role such as monitoring ongoing performance for the
purpose of allocating cognitive control or regulating response
vigor. To test the contribution of the ACC to foraging decisions,
ACC was pharmacologically inactivated via microinjection of a
cocktail of the GABA receptor agonists Bac-Mus immediately
before testing rats in the foraging task (Fig. 8A). In this experi-
ment, rats were tested on a simplified version of the foraging
task, with only three starting patch reward volumes (60, 90, and
120ml). Compared with control sessions in which rats were injected
with aCSF as a control, ACC inactivation caused rats to stay in
patches for more trials (main effect of aCSF versus Bac-Mus: b =
2.397, SE=0.227, F(1,870) =111.913, p, 0.001; Fig. 8B), and
increased RTs as rats came closer to leaving the patch (main effect
of aCSF vs Bac-Mus: b = 0.669, SE=0.054, F(1,7876) =149.849,
p, 0.001; Fig. 8C). However, despite ACC inactivation, rats still
stayed longer in patches that started with greater rewards (main
effect of patch starting reward: b = 1.635, SE=0.144, F(1,869) =
202.462, p, 0.001; no patch starting reward � treatment interac-
tion; b = 0.056, SE=0.226, F(1,869) =0.062, p=0.803), and rats still
exhibited longer RTs as they became closer to leaving the patch
(main effect of trials until leaving: b = 0.287, SE=0.022, F(1,7876) =
277.213, p, 0.001; no trials until leaving � treatment interaction;
b = 0.043, SE=0.032, F(1,7877) =1.876, p=0.171).

That rats stay longer in patches and exhibit longer RTs
because of ACC inactivation does not necessarily imply that the
ACC is directly involved in comparing the value of staying versus
leaving a patch. MVT predicts that foraging decisions are based
on estimates of reward rate, not reward value, and animals that
exhibit longer RTs experience lower reward rates. Thus, staying

longer in patches could be a compensatory mechanism for lower
reward rates experienced as a consequence of longer RTs. The
relative value of leaving, the difference between the global and
local reward rate, over the course of trials in patches was lower
during sessions in which rats were injected with Bac-Mus com-
pared with aCSF (Fig. 8F). Furthermore, there was little to no dif-
ference in the value of leaving on the last decision to stay in
patches between Bac-Mus and aCSF sessions (main effect of Bac-
Mus vs aCSF: b = 0.245, SE= 0.128, F(1,887) = 3.690, p=0.055;
Fig. 8D). We also examined the optimal number of trials to
spend in each patch, according to MVT, in aCSF versus Bac-Mus
sessions. Given the observed RTs in each condition, MVT pre-
dicts that rats should spend one to two additional trials in each
patch during Bac-Mus sessions (Fig. 8G). Finally, to determine
whether ACC inactivation may have caused rats to move slower,
we examined the time it took rats to move from the lever to the
reward magazine, a period of time that reflects only movement
as no decision needs to be made. Rats were slower to move from
the lever to the reward port during Bac-Mus sessions compared
with aCSF sessions (t(10) = 5.649, p, 0.001, paired t test; Fig. 8E).
These findings did not provide evidence for the hypothesis that
the ACC plays an important role in comparing the value of stay-
ing versus leaving. Rather, they supported the notion that ACC
inactivation may have slowed RTs unrelated to decision delibera-
tion (or value comparison), causing rats to stay longer in patches
to compensate for lower reward rates.

To better understand how ACC inactivation altered the forag-
ing decision process to produce slower RTs without altering the
relative patch leaving threshold (the value of leaving at the time
that rats chose to leave the patch), the LCA model was fit to rat
behavior on aCSF and Bac-Mus sessions. Changes in LCA pa-
rameters across sessions were tested using paired t tests with
Holm–Bonferroni correction for multiple comparisons (across
13 parameters). Model predictions for aCSF and Bac-Mus ses-
sions and all parameter estimates are shown in Figure 9. Only
one parameter, the non-DT, h , was significantly different across
sessions (results for all parameters in Table 3). This finding

Figure 8. Effects of Inactivation of ACC on foraging behavior. A, Diagram of cannula locations in Cg1. B, The number of trials spent in each of the three patch types. C, RTs as rats became
closer to leaving patches, where 0 trials until leaving is the nose poke to leave the patch, 1 is the last lever press in the patch, and so on. D, The value of leaving (global reward rate – local
reward rate) the rat experienced on the last trial in which they harvested reward from the patch (trials until leaving = 1). In B–D, points and error bars represent the mean and SE across rats,
whereas lines and ribbons represent mean and SE across leaky accumulator model predictions for each rat. E, The handling time or time from lever press to entering the reward magazine.
Transparent points and lines represent individual rat behavior, and the horizontal bar shows the mean across rats for each condition. F, The value of leaving (global reward rate – local reward
rate) over the course of trials in the patch for each of the three patch starting reward volumes. Points and error bars represent the mean and SE across rats. The horizontal dashed line repre-
sents the optimal time to leave patches (global rate – local rate = 0), according to MVT. G, Extrapolating from F, the optimal time to leave patches in the aCSF and Bac-Mus conditions, accord-
ing to MVT.
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corroborated the hypothesis that during ACC inactivations, rats
stayed in patches longer to compensate for lower reward rates
because of slower movement and slower RTs. Furthermore, this
finding did not provide evidence that behavioral changes because
of ACC inactivation were related to altered encoding of the value
of staying versus leaving, nor to changes in the accumulation to
bound decision process.

Discussion
Previous studies showed that ACC activity is modulated during
foraging decisions (Hayden et al., 2011; Kolling et al., 2012, 2014;
Blanchard and Hayden, 2014; Shenhav et al., 2014, 2016b), but
what this modulation of ACC activity represents, or how the
ACC contributes to foraging decisions, is not fully understood.
In the present study, we found that rat ACC neurons separately

correlate with both foraging decisions and RTs. Using an LCA
model that estimates MVT-derived decision variables within and
across trials, we found that individual ACC neurons encode
lower-level task variables such as the reward rate and decision
accumulators, and that as a population, the average ACC activity
reflects decision difficulty as indexed by the similarity in the
value of staying in the patch versus leaving. Finally, inactivation
of ACC neurons altered foraging behavior, but this change was
best explained not by changes to the decision process, but by
altering non-DT, a latent variable meant to represent the time
for nondecisional sensory processing and motor execution,
which may include motivation or response vigor.

The findings that ACC neurons continuously signal impor-
tant foraging decision variables, but that the ACC is not neces-
sary to follow the MVT decision rule, may provide important
information about its function. Despite encoding value signals
that could be used for decisions, results from the ACC inactiva-
tion experiment indicate that the ACC is not necessary for com-
paring the values of options for the decision at hand in the task
we employed. The lack of involvement of ACC in the primary
decision strategy is consistent with a recent study that performed
optogenetic silencing of ACC in mice performing a foraging-
style task (Vertechi et al., 2020). In this study, mice chose to
stay versus leave a patch for which the probability of receiving
a reward was reduced with every decision to stay, and deci-
sions to stay versus leave were equally guided by failures to
receive reward despite ACC inactivation. These findings, to-
gether with the results of the present experiment, support a
more general role for the ACC. One possibility is that the
ACC regulates cognitive control, a function long associated
with the ACC (Botvinick et al., 2001), and a role that ACC has
been previously hypothesized to perform in foraging tasks
(Blanchard and Hayden, 2014; Shenhav et al., 2014, 2016b).
Another, closely related interpretation of the effect of ACC

Table 3. Pairwise t tests on LCA model parameters fit to aCSF sessions versus
parameters fit to Bac-Mus sessions

Parameter t value df P-value

wglobalRate �1.468 10 1
wlocalRate�localRate 0.636 10 1
wglobalRate�globalRate 1.186 10 1
s rate �2.102 10 0.618
wd�input �1.221 10 1
wd�rec 1.398 10 1
wd�comp 0.362 10 1
s decision �2.421 10 0.396
z 2.492 10 0.383
g �1.047 10 1
b �1.726 10 1
h �9.287 10 , 0.001
g 0.709 10 1

Figure 9. LCA model parameters fit to aCSF and Bac-Mus (B-M) sessions. The box represents the first and third quartile, whiskers represent 1.5 times the interquartile range, with all individ-
uals plotted transparently.
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inactivation on non-DTs is that the ACC may play a role in
setting response vigor, or the speed at which animals choose
to perform a task, rather than a specific role in discrete patch
leaving decisions. These two hypothetical functions parallel to
one another, in that both sorts of decisions should, for essen-
tially the same reasons, be governed by the long-run average
reward acting as the opportunity cost of time. Thus, both
interpretations are consistent with a general role for ACC in
optimizing performance. In particular, models of how animals
should rationally govern response vigor, trading off energetic
costs of speedy actions versus the opportunity costs of delay,
predict that vigor should increase in more rewarding environ-
ments (Niv et al., 2007). Human participants have been shown
to modulate their response vigor in response to changes in the
foraging environment in an information foraging task (Yoon
et al., 2018). Thus, although the ACC may not contribute to
setting the patch leaving threshold, it may serve to optimize
performance by setting response vigor based on the estimated
patch-leaving threshold.

Alternatively, it is possible that the ACC plays a critical role in
the value comparison process of foraging decisions, but only in
settings (unlike the current one) that require updating of one’s
internal model (e.g., a change in the possible patch types that ani-
mals may encounter). Previous studies found that perturbation
of ACC activity affects animals’ ability to perform task or strategy
switching or to update internal models of the environment
(Kennerley et al., 2006; Tervo et al., 2014; Sarafyazd and Jazayeri,
2019; Akam et al., 2021). In foraging tasks, even if there is some
uncertainty about the exact reward to be received in future
patches (e.g., if there are multiple patch types), animals have
learned the average expected future reward. Thus, an animal can
learn the appropriate time to leave different patch types without
updating internal models of the environment.

The present findings also contribute to a growing body of
literature that indicates that rodents can serve as a model to
understand the function of the ACC and the behavioral conse-
quences of ACC dysfunction. Although the degree of homol-
ogy between rodent and primate cingulate cortex is still not
entirely clear (Seamans et al., 2008; Heilbronner and Hayden,
2016; Heilbronner et al., 2016; van Heukelum et al., 2020),
multiple recent reports indicate that rodent ACC exhibits sim-
ilar signals to human and nonhuman primate ACC. In this
study, rat ACC activity correlates closely with decision diffi-
culty in a foraging task, similar to foraging-related ACC activ-
ity that has been reported in humans and nonhuman primates
(Hayden et al., 2011; Shenhav et al., 2014, 2016b). Rodent
ACC neurons also exhibit other signals that have long been
associated with human ACC, including the feedback-related
negativity (Warren et al., 2015), error monitoring (Narayanan
et al., 2013), and increased activity during response competi-
tion (Bryden et al., 2018). Additionally, a recent lesion study
found that the ACC is necessary to resolve response competi-
tion (Brockett et al., 2020). Together, these studies indicate
that the use of rodent models, and the advanced tools for re-
cording and perturbing neural activity in rodent models,
promise to advance knowledge of ACC function.
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