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ABSTRACT 
This paper presents an approach for determining three-dimensional global displacement (for arbitrarily-sized deformations) 
of thin rod- or tether-like structures from a limited set of scalar strain measurements. The approach is rooted in exploiting a 
reference frame that is materially adapted, i.e., it moves with the cross section. Local linearization of the frame evolution 
equations is shown to yield local solutions that may be assimilated into a global solution via continuity relationships. The 
solution is shown to be robust to potential singularities from vanishing bending and twisting angle derivatives and from 
vanishing measured strain, and the approach includes strain resulting from pure neutral axis extension (such as due to thermal 
loads). Validation of the approach is performed through comparison with finite element simulations. The average root mean 
square reconstruction error of 0.01%-1% of the total length, for reasonable sensor counts.  Analysis of error due to extraneous 
noise sources and boundary condition uncertainty shows how error scales with those effects. 
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1. INTRODUCTION 
 

Many applications require monitoring the deflection of long, slender, highly flexible structures such as cables, long rods, 
tethers, or any structure whose geometry is dominated by a single length scale. Such structures all tend to share a kinematic 
state characterized by arbitrarily large multi-mode deflection (bending, twisting, torsion, extension) under relatively linear, 
elastic stress/strain material behavior. Euler is credited with initiating studies in the Elastica, followed by more modern 
theories [1-5]. In most structural monitoring applications of interest, a common objective is to obtain the displacement of the 
these structures from distributed measurements of some kind, whether the measurements are direct non-contact measures of 
displacement (such as with laser vibrometry), acceleration (requiring integration), or indirectly through distributed local 
measurements of a kinematically-related quantity, such as strain. This last approach comprises the scope of the present paper, 
since strain gages are a highly ubiquitous and a useful sensor modality for structural load and response. The main challenge 
in this class of monitoring problems lies in obtaining a reasonable inverse model that converts a finite number of local strain 
measurements into global displacement estimations. For small displacements of certain geometrically simple structural 
models for which analytical solutions exist (beams, plates), classical theories may be directly inverted or forward models may 
be fit to data directly, but no such viable method currently exists for long, highly-deformable structures. This paper presents a 
kinematic model rooted in Cosserat theory and introduces a material basis reference frame to describe the deformation more 
precisely in a way that measurable strain metrics are estimable from the theory. Then, under local linearization assumptions, 
the resulting displacement/material frame evolution equations are integrated in terms of the strain metrics to obtain global 
displacement. The approach is validated against several full finite element displacement simulations of a rod-like structure 
loaded to arbitrarily large deflections in this paper. 
 
 
 



2. KINEMATIC MODELING AND SOLUTION APPROACH 
 

Todd et al. [6] presented an earlier version of this approach that was limited to bending and twisting. The present approach 
has relaxed the previous assumptions and including extension of the centerline. Figure 1 (left) shows the geometry of an 
arbitrarily deformed structure with relevant length scales; the circular cross section shown is arbitrary, although the negligible 
warping assumptions made shortly will strictly only hold true for circular cross sections.  
 

 
Fig. 1 (left) Fundamental geometric description of the deformed structure and (right) the geometry of the cross section. 

 
The fundamental independent variable is the arc-length coordinate s, which moves along the tangent lin to the dominant 
length direction. An arbitrary point P on the centroid of the deformed structure may be described in the inertial i-j-k reference 
frame by parameterization of three functions, a pitch function θ (s) , an azimuth function φ(s) , and a stretch function u(s). 
The vector locator R(s) for P may be thus expressed as 
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where a prime mark denotes differentiation with respect to s. When there is no centerline stretching, i.e. ′u = 0 , all 
deformation is due to bending and twisting, and the distal end of the structure resides on a sphere for all deformation 
possibilities (hence the spherical angular parameterization). When there is no bending or twisting, i.e. θ = φ = 0 , the vector 

R reduces to R(s) = s + u(s)( )i , which is just the location along the initially straight (undeformed) structure, plus any 
additional pure stretch. In the present formulation, it is assumed that the initial configuration is straight (for convenience) and 
unstrained (a more strict assumption). Furthermore, warping of the cross section of the structure and transverse shearing are 
neglected in the present approach. 
 
While the vector R, written in the inertial basis, is sufficient to locate the loci of centroids, it does not successfully describe 
the material deformation about P, other than the case of pure stretch (as just shown in the previous paragraph). Thus, recourse 
is made to connecting R to a reference frame that is better adapted to the structure, i.e., it evolves with the deformation. The 
Frenet basis, consisting of a tangent vector T, a normal vector N, and a binormal vector B, is such an adapted frame, and its 
evolution is described by the well-known Frenet-Serrat equations, where all explicit dependences upon s are dropped for 
brevity: 
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where κ and τ are the local curvature and torsion of the deformed centroid, both of which may be related back to complicated 
expressions involving the pitch, azimuth, and stretch functions by substituting Equation (1) into Equation (2). The Frenet 
basis, while useful, is nonetheless not material-adapted; rather, it is adapted to the curvature and torsion of the centroid and 
not to the actual physical bending and rotation of the material, which is what directly encodes the strain. As a consequence, 
the Frenet frame suffers discontinuities at inflection points, where N will vanish. This singularity in N prohibits its use in 
estimating local strain, which is not discontinuous. Thus, a material twist function σ (s)  is used to relate the N-B orientation 
at a particular cross section to a new vector basis D1-D2 that evolves with the cross section, as shown in Figure 1 (right). The 
definitions of D1 and D2 define the cosines of the two angle functions,  D1 i j = cosθ  and D2 i k = cosφ , such that the material 
twist and its derivative are defined by 
 

κ cosσ = − ′φ cosθ
κ sinσ = ′θ

′σ = −τ − ′φ sinθ
 ,      (3) 

 
and Equation (2) may be rewritten in this new material-adapted reference frame as 
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Equation (4) clearly shows how the material-adapted frame encodes the pitch, azimuth, and stretch functions in its evolution 
description. In fact, these matrix components are the material-adapted frame’s strain measures, which are obtained by 
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The direct shearing strain measures are both zero, in accordance with the kinematic assumptions made earlier. 
 
The total strain at the surface of the structure (where a strain gage could be arbitrarily located), say point Q in Figure 1 
(right), is comprised of the orientation change in the coordinate system (which gives rise to bending and torsional strain) and 
any length change in the T direction (which gives rise to the axial strain). Thus, vector of non-zero strains in the material-
adapted frame is given by 
 



ε = ′rQ/P + ′u T
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where rQ/P  is the vector locating Q relative to P. This strain vector is then dotted with the orientation vector of an arbitrary 

strain gage, given by − sinµ sinαD1 + sinµ cosαD2 + cosµT  where µ  is an angle relative to the T direction (i.e., a gage 
aligned in the tangential direction corresponds to µ = 0 ). The final scalar strain at the point Q is then obtained by dotting 
Equation (6) with this gage orientation vector to obtain 
 

 

ε = ε i − sinµ sinαD1 + sinµ cosαD2 + cosµT( )
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where the definitions of the strain metrics em, m = 1...4 , 
 

e1 = ′u
e2 = r ′θ
e3 = r ′φ cosθ
e4 = r ′φ sinθ

        (8) 

 
were made.  
 
It is then assumed that arrays of strain gages are placed on the surface of the structure, with each array having a gage at a 
discrete location s = sn , circumferential position α = α n ,m , and orientation µ = µn ,m , as shown in Fig. 2.,  
 

 
Fig. 2. Strain gage location nomenclature. 

 
 
Thus, in the n-th cross-sectional neighborhood of each gage, Equation (4) may be written 
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The predicted strain in Equation (7) for the n-th neighborhood may subsequently be written as 
 

ε n ,m = cosµn ,m en ,1 − en ,2 cosα n ,m − en ,3 sinα n ,m( )− sinµn ,men ,4 .    (10) 
 
As it stands, Equation (9) is still nonlinear through the definitions made in Equation (8), but given a sufficient sensor density, 
it is assumed that the strain metrics en,j are constant in their n-th neighborhood. Then, Equation (9) comprises a linear system 

with constant coefficients that may be solved.  Defining γ n = en ,2
2 + en ,3

2 + en ,4
2 , the solution for the local position vector is 
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where the an ,m  are vector constants of integration, and the strain metrics en,m are linearly related to the actual measured strains 

εn,m through Equation (10). Equation (11) represents the basis set solution, assuming locally constant strains, for the global 
displacement of the structure as a function of the measured strains. Similar-looking solutions with the same functional form 
but different integration constants describe the other vector components of Equation (9). The solution contains no obvious 
singularities other than potentially in the case of vanishing bending/torsional strain measures, i.e., en ,m = 0  for m=2…4 

(implying that γ n = 0  also). However, a careful limiting process of Equation (11) shows that 
 

lim
en ,2 ,en ,3 ,en ,4 ,γ n→0

Rn (s) = an ,1 + an ,4 1+ en ,1( )s ,     (12) 

 
which is a local linear stretch in the s direction only. Clearly, if there is also no stretching, i.e. en ,1 = 0 , then Rn  remains 
linear in the n-th neighborhood, but with a different slope. The situation of vanishing bending/torsional strain would only 
occur in situations where the derivatives of both θn  and φn  vanish simultaneously, implying a vanishing local curvature.  
 
Thus, the algorithm proceeds by determining if all the measured strains at a given cross section are zero (or nearly zero by 
some tolerance) and then selects either the solution Equation (11) or (12) appropriately. Then, conditions of continuity 
between neighborhoods are imposed, along with boundary conditions, to fully determine the integration constants and arrive 
at a unique solution for the global displacement. The final displacement vector is then just assimilated by summing up over 
each n-th local contribution to get 
 

R(s) = Rn (s) u s − sn−1
*( ) − u s − sn

*( )[ ]
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∑ ,      (13) 

 
where the sn

*  are the locations chosen to impose continuity between regions (a typical choice may be the midpoint between 
strain sensors), and u(*) is the Heaviside function. 
 
Although not absolutely required if global displacement is all that is needed, the local pitch, azimuth, and stretch functions 
may be computed from Equation (8) to be 
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where the an, bn, and cn are integration constants whose values are also determined by imposing continuity and boundary-
related conditions on these functions (consistent with whatever other conditions were imposed). 
 
 

3. VALIDATION OF THE APPROACH 
 

The proposed described was tested on finite-element based simulation of large deformations of a hollow plastic pipe of length 
50 m, inner diameter 20 cm, and outer diameter 30 cm. The material constants chosen were an elastic modulus E=2.3 GPa 
and Poisson’s ratio ν=0.39. Abaqus S4R general-purpose shell elements were employed to model this structure, given their 
superior capability and computational efficiency in modeling large-scale bending and torsional behavior.  Four strain gages at 
each cross section were simulated at 90O separation circumferentially (α direction) and alternating orientations (µ) of ±45O . 
There is nothing optimal about this arrangement, but the use of 4 fibers with orientation diversity adds robustness; if µ=0 is 
chosen to orient all gages, then in principle only 3 strain gages at each cross section would be required.  In all cases, the gage 
clusters were spread at 50/N m apart, i.e., uniformly spaced. 
 
Figure 3 shows the results of the reconstruction approach for one simulation that contained only two major changes in 
curvature/torsion (and negligible stretch). The finite element simulation of the cylinder centerline is shown as the solid black 
line (the dashed black line is the initially straight, undeformed cylinder), and the gray line is the continuous reconstruction 
from the algorithm of Section 2. For this first shape, even for just N=5, fairly good reconstruction is observed, with an 
average (over the total length) rms error of about 2 m (4% of the length); this error decreases quite rapidly, and for N=25, the 
average rms error is only 1 mm. 
 

 
Fig. 3. Simulation #1 reconstruction results for various sensor counts. 

 



 
 

Fig. 4. Simulation #2 reconstruction results for various sensor counts. 
 

 
Fig. 5. Simulation #3 reconstruction results for various sensor counts. 

 
Figures 4 and 5 show the same kind of results for two increasingly complex deformations with added stretch components and 
multiple curvature and torsion changes.  The complexity increases naturally demand higher sensor counts before equivalent 
levels of accuracy are obtained, essentially 50 sensor locations for simulation #2 and 100 sensor locations for simulation #3. 
In all cases, however, the algorithm smoothly converges. The largest errors are typically at locations farthest from whatever 
location a boundary condition was imposed.  In this work, it was assumed that the proximal end of the cylinder was at a 
known location (the origin); consequently, the error is maximal at the distal end.  This propagation of error would be different 
if a known condition were imposed at a different location. 
 
In practical applications, the measurements of strain from a real sensor array contain noise, and additionally other sources of 
external uncertainty can corrupt the algorithm’s performance. To address robustness, Monte Carlo simulations on all three 



shapes were performed with uniform noise added at both the [-5,5] microstrain and [-50,50] microstrain levels to each gage. 
The average root mean square error over the length of the cylinder between prediction and finite element simulation was 
computed for the first simulation only (for illustrative purposes) for a number of cross section sensor counts. Fig. 6 shows 
these results. The error is dominated by algorithm performance at very low sensor counts, but above about N=25, the error 
becomes more noise-dominated. For noise-free data, the algorithm approaches 0.001% of length in rms error for N=100. 
 

 
Fig. 6. RMS reconstruction error for different sensor counts for simulation case #1. 

 
4. SUMMARY 

 
This paper proposed a model-based method for obtaining the global three-dimensional displacement of rod-like structures 
from discrete strain measurements. The method utilizes a material-adapted reference and finds an analytical solution for local 
strain neighborhoods. The solution is robust to singularities and was validated with three finite element models of a 50 m 
hollow plastic cylinder undergoing significant three-dimensional deformations. Average rms errors of a few mm (hundredths 
of a percent of length) were obtained which were either noise- or sensor count-limited, depending on shape complexity. The 
approach has good applicability for embedded platforms, since the only computation involves a matrix inversion. 
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