UC Berkeley UC Berkeley Previously Published Works

Title

Search for nonminimal neutral Higgs bosons from Z-boson decays

Permalink

https://escholarship.org/uc/item/9km1r0n7

Journal

Physical Review Letters, 64(24)

ISSN

0031-9007

Authors

Komamiya, S Abrams, GS Adolphsen, CE <u>et al.</u>

Publication Date

1990-06-11

DOI

10.1103/physrevlett.64.2881

Copyright Information

This work is made available under the terms of a Creative Commons Attribution License, available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

Search for Nonminimal Neutral Higgs Bosons from Z-Boson Decays

S. Komamiya,⁽¹⁾ G. S. Abrams,⁽²⁾ C. E. Adolphsen,⁽³⁾ D. Averill,⁽⁴⁾ J. Ballam,⁽¹⁾ B. C. Barish,⁽⁵⁾ T. Barklow,⁽¹⁾ B. A. Barnett,⁽⁶⁾ J. Bartelt,⁽¹⁾ S. Bethke,⁽²⁾ D. Blockus,⁽⁴⁾ G. Bonvicini,⁽⁷⁾ A. Boyarski,⁽¹⁾ B. Brabson,⁽⁴⁾ A. Breakstone,⁽⁸⁾ F. Bulos,⁽¹⁾ P. R. Burchat,⁽³⁾ D. L. Burke,⁽¹⁾ R. J. Cence,⁽⁸⁾ J. Chapman,⁽⁷⁾ M. Chmeissani,⁽⁷⁾ D. Cords,⁽¹⁾ D. P. Coupal,⁽¹⁾ P. Dauncey,⁽⁶⁾ H. C. DeStaebler,⁽¹⁾ D. E. Dorfan,⁽³⁾ J. M. Dorfan,⁽¹⁾ D. C. Drewer,⁽⁶⁾ R. Elia,⁽¹⁾ G. J. Feldman,⁽¹⁾ D. Fernandes,⁽¹⁾ R. C. Field,⁽¹⁾ W. T. Ford,⁽⁹⁾ C. Fordham,⁽¹⁾ R. Frey,⁽⁷⁾ D. Fujino,⁽¹⁾ K. K. Gan,⁽¹⁾ C. Gatto,⁽³⁾ E. Gero,⁽⁷⁾ G. Gidal,⁽²⁾ T. Glanzman,⁽¹⁾ G. Goldhaber,⁽²⁾ J. J. Gomez Cadenas,⁽³⁾ G. Gratta,⁽³⁾ G. Grindhammer,⁽¹⁾ P. Grosse-Wiesmann,⁽¹⁾ G. Hanson,⁽¹⁾ R. Harr,⁽²⁾ B. Harral,⁽⁶⁾ F. A. Harris,⁽⁸⁾ C. M. Hawkes,⁽⁵⁾ K. Hayes,⁽¹⁾ C. Hearty,⁽²⁾ C. A. Heusch,⁽³⁾ M. D. Hildreth,⁽¹⁾ T. Himel,⁽¹⁾ D. A. Hinshaw,⁽⁹⁾ S. J. Hong,⁽⁷⁾ D. Hutchinson,⁽¹⁾ J. Hylen,⁽⁶⁾ W. R. Innes,⁽¹⁾ R. G. Jacobsen,⁽¹⁾ J. A. Jaros,⁽¹⁾ C. K. Jung,⁽¹⁾ J. Kadayk,⁽²⁾ J. Kent,⁽³⁾ M. King,⁽³⁾ S. R. Klein,⁽¹⁾ D. S. Koetke,⁽¹⁾ W. Koska,⁽⁷⁾ L. A. Kowalski,⁽¹⁾ W. Kozanecki,⁽¹⁾ J. F. Kral,⁽²⁾ M. Kuhlen,⁽⁵⁾ L. Labarga,⁽³⁾ A. J. Lankford,⁽¹⁾ R. R. Larsen,⁽¹⁾ F. Le Diberder,⁽¹⁾ M. E. Levi,⁽²⁾ A. M. Litke,⁽³⁾ X. C. Lou,⁽⁴⁾ V. Lüth,⁽¹⁾ J. A. McKenna,⁽⁵⁾ J. A. J. Matthews,⁽⁶⁾ T. Mattison,⁽¹⁾ B. D. Milliken,⁽⁵⁾ K. C. Moffeit,⁽¹⁾ C. T. Munger,⁽¹⁾ W. N. Murray,⁽⁴⁾ J. Nash,⁽¹⁾ H. Ogren,⁽⁴⁾ K. F. O'Shaughnessy,⁽¹⁾ S. I. Parker,⁽⁸⁾ C. Peck,⁽⁵⁾ M. L. Perl,⁽¹⁾ F. Perrier,⁽¹⁾ M. Petradza,⁽⁷⁾ R. Pitthan,⁽¹⁾ F. C. Porter,⁽⁵⁾ P. Rankin,⁽⁹⁾ K. Riles,⁽¹⁾ F. R. Rouse,⁽¹⁾ D. R. Rust,⁽⁴⁾ H. F. W. Sadrozinski,⁽³⁾ M. W. Schaad,⁽²⁾ B. A. Schumm,⁽²⁾ A. Seiden,⁽³⁾ J. G. Smitth,⁽⁹⁾ A. Snyder,⁽⁴⁾ E. Soderstrom,⁽⁵⁾ D. P. Stoker,⁽⁶⁾ R. Stroynowski,⁽⁵⁾ M. Swartz,⁽¹⁾ R.

W. Woods, D. T. Wu, W. Turko, C. Zaccardeni, and C. Von Zantiner

⁽¹⁾Stanford Linear Accelerator Center, Stanford University, Stanford, California 94309

⁽²⁾Lawrence Berkeley Laboratory and Department of Physics, University of California, Berkeley, California 94720

⁽³⁾University of California, Santa Cruz, California 95064

⁽⁴⁾Indiana University, Bloomington, Indiana 47405

⁽⁵⁾California Institute of Technology, Pasadena, California 91125

⁽⁶⁾Johns Hopkins University, Baltimore, Maryland 21218

⁽⁷⁾University of Michigan, Ann Arbor, Michigan 48109

⁽⁸⁾University of Hawaii, Honolulu, Hawaii 96822

⁽⁹⁾University of Colorado, Boulder, Colorado 80309

(Received 12 February 1990)

Using the Mark II detector at the SLAC Linear Collider, we search for decays of the Z boson to a pair of nonminimal Higgs bosons $(Z \rightarrow H^0_{,} H^0_{,\rho})$, where one of them is relatively light ($\lesssim 10$ GeV). We find no evidence for these decays and we obtain limits on the $ZH^0_sH^0_{,\rho}$ coupling as a function of the Higgs-boson masses.

PACS numbers: 14.80.Gt, 12.15.Cc, 13.38.+c

In the standard model, the Higgs sector is necessary to ensure the renormalizability of the model and to give mass to the weak gauge bosons (W^{\pm} and Z) as well as to the quarks and charged leptons. In the minimal standard model, only one physical scalar Higgs boson is expected to exist, whereas in nonminimal models there are additional physical neutral and charged Higgs bosons.¹ For two-doublet models, which are the minimum extension of the minimal standard Higgs sector, there are two physical neutral scalar (CP-even) Higgs bosons H_1^0 and H_2^0 , one neutral pseudoscalar (*CP*-odd) H_p^0 , and two charged Higgs bosons H^+ and H^- . At least two Higgs doublets are necessary for most supersymmetric models.² In this Letter, H_s^0 denotes either H_1^0 or H_2^0 . For the two Higgs bosons with opposite CP eigenvalues, we also use the notation H_l^0 and H_h^0 , where H_l^0 is defined to be lighter than H_h^0 . For simplicity, the models considered in this Letter are restricted to two-doublet models (not

necessarily supersymmetric).

We consider in this analysis³ the decay of the Z into a scalar and a pseudoscalar Higgs boson $(Z \rightarrow H_s^0 H_p^0)$. The decay width for two-doublet models is given by

$$\Gamma(Z \to H_s^0 H_\rho^0) = \frac{1}{2} \Gamma(Z \to v\bar{v}) \bar{\beta}^3 \cos^2(a-b) , \quad (1)$$

where

$$\bar{\beta} = \{ [s - (M_{H_s^0} + M_{H_\rho^0})^2] [s - (M_{H_s^0} - M_{H_\rho^0})^2] \}^{1/2} / s ,$$

 $\Gamma(Z \to v\bar{v})$ is the decay width of Z into a pair of massless neutrinos (one generation), $s = E_{c.m.}^2$, and a and b are mixing angles of Higgs bosons.⁴ The angular distribution in the e^+e^- center-of-mass system (c.m.s.) is $d\sigma/d\Omega$ $\propto \sin^2\theta$, where θ is the polar angle of the H_s^0 momentum direction in the e^+e^- c.m.s. Note that processes like $e^+e^- \to Z \to Z^*H_p^0 \to f\bar{f}H_p^0$ or $e^+e^- \to Z^* \to ZH_p^0$ are not allowed, since ZH_p^0Z coupling is forbidden at the tree level. These processes are allowed for H_s^0 but the rate is smaller than for the minimal standard Higgs boson by a factor² of $\sin^2(a-b)$. Therefore, as the decay width of $Z \rightarrow Z^*H_s^0$ becomes smaller, the $Z \rightarrow H_s^0H_p^0$ width becomes larger [see Eq. (1)].

The interactions of Higgs bosons with fermions are determined from the fermion-mass term in the Lagrangian. The couplings differ from model to model and depend on how each Higgs field contributes to each fermion mass. In principle, they are expected to decay dominantly into the heaviest available fermion pair: $H_i^0 \rightarrow f\bar{f}$ (i=1,2,p). If the scalar mass is more than 2 times the pseudoscalar mass, $H_s^0 \rightarrow H_p^0 H_p^0$ is the dominant decay mode unless it is suppressed by the Higgs mixing.⁵

The Mark II detector has been described in detail elsewhere.^{6,7} In this analysis, the main drift chamber, barrel and end-cap electromagnetic calorimeters are used. Events are selected if they contain at least two charged tracks and the sum of charged-particle energy and shower energy (E_{vis}) is greater than $0.25\sqrt{s}$. To ensure that the events are well contained within the detector, the polar angle of the thrust axis (θ_{th}) must satisfy the condition $|\cos\theta_{th}| < 0.8$. Events with charged multiplicity of two to four are rejected if the kinematics is consistent with a back-to-back e^+e^- , $\mu^+\mu^-$, or $\tau^+\tau^-$ pair. The number of events in this sample is 455. The background from beam-gas interactions is estimated to be smaller than 0.4 event. With an integrated luminosity of 19.7 ± 0.8 nb⁻¹ accumulated on and near the Z peak, the expected number of $H_s^0 H_p^0$ events is about $23\bar{\beta}^3$ $\times \cos^2(a-b)$.

We concentrate on the case in which one of the produced Higgs bosons (H_l^0) is relatively light (less than $2M_b$). We study four typical cases: (A) $M_{H_l^0} < 2M_{\mu}$, (B) $2M_{\mu} < M_{H_l^0} < 2M_{\tau}$ and H_h^0 decays into $f\bar{f}$, and (C) $2M_{\mu} < M_{H_l^0} < 2M_{\tau}$ and H_h^0 decays into $H_l^0 H_l^0$. We also investigate the case (D) in which $2M_{\tau} < M_{H_l^0} < 2M_b$ and H_l^0 decays into $\tau^+ \tau^-$.

In case (A) $(Z \rightarrow H_l^0 H_h^0, H_l^0 \rightarrow e^+ e^-$ or $\gamma \gamma$, $H_h^0 \rightarrow b\bar{b}, c\bar{c}, \text{ or } \tau^+\tau^-), H_l^0$ is sufficiently long lived to escape detection.⁸ If the heavier Higgs boson (H_h^0) decays into a heavy-fermion pair $(b\bar{b}, c\bar{c}, \text{ or } \tau^+\tau^-)$ and the mass is smaller than about the beam energy, the signature of $Z \rightarrow H_s^0 H_p^0$ events is a monojet topology. If the mass of the heavier Higgs boson is about equal to or greater than the beam energy, the momentum of the unseen H_l^0 is small and hence the event topology is two jets with a large angle between their axes (acoplanar two-jet events). The monojet events are selected with the following criteria: (M1) $|\cos\theta_{\rm th}| < 0.7$ and (M2) the sum of the charged and neutral energy in the lower-energy hemisphere (defined by the event thrust axis), E_{back} , is smaller than 3.0 GeV. The acoplanar two-jet events are selected by the following cuts: (P1) $|\cos\theta_{\rm th}| < 0.7$, (P2) P_T of the event must be larger than 15 GeV, and (P3) the acoplanarity angle⁹ ϕ_{acop} must be greater than 40°. In Fig. 1, E_{back} distributions after the (M1) cut

and ϕ_{acop} distributions after the (P1-2) cuts are shown for data, the expected multihadron background, and $Z \rightarrow H_s^0 H_p^0$ events. In order to increase the detection efficiency for the case of $M_{H_l^0} \approx \sqrt{s}/2$, events satisfying either of the two criteria are selected. After applying cuts [(M1-2) or (P1-3)], no events survive. The expected number of background events from ordinary quark (*udscb*) production is estimated to be 0.3-0.7 using QCD-based Monte Carlo models.¹⁰⁻¹² If H_h^0 decays into $b\bar{b}$ or $c\bar{c}$ ($\tau^+\tau^-$) with 100% branching fraction, the detection efficiency for the $H_h^0 H_l^0$ events is about 80% (55%) at $M_{H_h^0} = 10$ GeV and it decreases to 60% (31%) when $M_{H_h^0}$ is increased to 45 GeV.

Uncertainties in detection efficiency from Monte Carlo statistics ($\approx 2\%$), detector simulation and beam backgrounds ($\approx 1\%$), and hadronization of H_h^0 decay ($\approx 4\%$) are estimated. The last one is estimated by switching on and off gluon radiation (parton shower) in the H_h^0 decay. The statistical error on the number of multihadron hadron events and systematic error on $\epsilon_{q\bar{q}}$ used to calculate the total expected number of signal events are 5% and 2%, respectively. The total error on the number of events expected to survive the selection procedure is calculated by summing the individual statistical and systematic errors in quadrature. In obtaining the limits, the total error is subtracted from the number of events expected. The same procedure is applied for other cases (B)-(D).

In Fig. 2(a), the 95%-C.L. contour for the excluded region is shown in the plane of the suppression factor $[\cos^2(a-b)]$ vs $M_{H_h^0}$, assuming H_l^0 is light $(M_{H_l^0} < 2M_{\mu})$ and stable. As shown in the figure, if H_h^0 decays into $b\bar{b}$ or $c\bar{c}$ ($\tau^+\tau^-$), $M_{H_h^0}$ is excluded from 5 (5) to 43 GeV (36 GeV) for $\cos^2(a-b)=0.5$, and from 5 (5) to 53 GeV (45 GeV) for $\cos^2(a-b)=1$. Similar searches were done at the DESY, SLAC, and KEK storage rings PETRA, PEP, and TRISTAN, respectively, with virtual Z decays.¹³⁻¹⁵ The limits from JADE (Ref. 13) and AMY (Ref. 15) Collaborations are shown in the figure. Also shown in the figure is the limit from a search for the standard Higgs boson by the ALEPH Col-

FIG. 1. Distributions used in case (A) for data (points with error bars), QCD model predictions (histograms), and predictions of $H_{\nu}^{0}H_{\rho}^{0}$ events (shaded histograms) normalized to the integrated luminosity. (a) The E_{back} distributions. (b) The ϕ_{acop} distribution after the cut P_{T} (event) > 15 GeV.

FIG. 2. The 95%-C.L. contours for the excluded region in the plane of the suppression factors $[\cos^2(a-b)]$ vs $M_{H_h^0}$. (a) The lighter Higgs boson (H_l^0) is light $(M_{H_l^0} < 2M_{\mu})$ and stable. (b) The lighter Higgs boson (H_l^0) decays into a pair of opposite charges and the heavier one (H_h^0) decays into $b\bar{b}$, $c\bar{c}$ (solid curve), or $\tau^+\tau^-$ (dashed curve). We assume $M_{H_l^0} = 0.5$ GeV but the limit is valid for $M_{H_l^0}$ smaller than a few GeV as long as it decays dominantly into a particle pair of opposite charges. (c) The case $Z \rightarrow H_v^0 \rightarrow H_p^0 H_p^0 \rightarrow 3(\mu^+\mu^-)$ or $3(e^+e^-)$. $M_{H_p^0} = 0.5$ GeV is assumed in the plot but the limit is valid for $M_{H_s^0}$ smaller than a few GeV as long as it decays dominantly into a particle pair of opposite charges. (d) The lighter Higgs boson (H_l^0) decays into $\tau^+\tau^-$ with 100% branching fraction; the heavier one (H_h^0) decays into $b\bar{b}$, $c\bar{c}$, or $\tau^+\tau^-$.

laboration¹⁶ interpreted as a limit on H_s^0 . The ALEPH limit is valid independent of the H_p^0 mass.

For case (B) $(Z \to H_l^0 H_h^0, H_l^0 \to \pi^+ \pi^- \text{ or } \mu^+ \mu^-, H_h^0 \to b\bar{b}, c\bar{c}, \text{ or } \tau^+ \tau^-)$, the event topology is an isolated particle pair with opposite charge (for instance, $\mu^+ \mu^-, \pi^+ \pi^-, \text{ or } K^+ K^-)$ which recoils against jets. We require that E_{vis} be greater than $0.5\sqrt{s}$ and that there be at least one isolated particle pair with opposite charge. An isolated pair of charged particles (i,j) is defined as two oppositely charged particles with momentum sum $(|\mathbf{p}_i + \mathbf{p}_j|)$ larger than 20 GeV, individual momenta greater than 2 GeV, and isolation parameter $\rho_{ij} > 4.0$ GeV^{1/2}. The isolation parameter ρ_{ij} is defined as follows: The LUND jet-finding algorithm is applied¹⁷ to all charged tracks in the event (except the candidate pair ij) and neutral tracks with energy greater than 1.5 GeV. We then define

$$\rho_{ij} \equiv \min_{\text{jets } J} \sqrt{2E_{ij}(1 - \cos\chi_{ijJ})} ,$$

where E_{ij} is the pair energy assuming the pair to be $\pi^+\pi^-$ and χ_{ijj} is the angle between the pair momentum direction and the jet axis. The distribution of ρ_{event} , the maximum value of ρ_{ij} for all oppositely charged-track pairs in an event, is shown in Fig. 3 for our data sample,

FIG. 3. The distributions of the isolation parameter of particle pair of opposite charges defined in the text in case (B) for the data (points with error bars), for the QCD model predictions (histogram), and for the expected $H_s^0 H_p^0$ events (shaded histogram).

for a five-quark QCD Monte Carlo model¹⁰ and for a $H_s^0 H_p^0$ Monte Carlo model. For $H_s^0 H_p^0$ events, a peak is seen at $|\mathbf{p}_i + \mathbf{p}_j| \approx (\sqrt{s}/2)(1 - M_{H_h^0}^2/s)$. Events are selected if

$$0.75 \frac{\sqrt{s}}{2} \left[1 - \frac{M_{H_h^0}^2}{s} \right] < |\mathbf{p}_i + \mathbf{p}_j| < 1.25 \frac{\sqrt{s}}{2} \left[1 - \frac{M_{H_h^0}^2}{s} \right]$$

for an assumed value for $M_{H_h^0}$.

No events survive the selection criteria. The number of expected background events increases with $M_{H_h^0}$ from 0.1 ($M_{H_h^0}$ =5 GeV) to 0.5 ($M_{H_h^0}$ =60 GeV), and is estimated using Monte Carlo models.¹⁰⁻¹² The detection efficiency is typically 40%-50% taking into account the losses due to the $H_l^0 \rightarrow \pi^0 \pi^0$ mode.

As shown in Fig. 2(b), a region in the plane of $\cos^2(a-b)$ vs $M_{H_h^0}$, similar to case (A), is excluded for $H_h^0 \rightarrow b\bar{b}, c\bar{c}$ or $H_h^0 \rightarrow \tau^+ \tau^-$. The previous limit from Mark II at PEP (90% C.L. and only valid for $H_l^0 \rightarrow \mu^+\mu^-$)¹⁸ is also shown in the figure, together with the ALEPH limit.¹⁶

For case (C) $(Z \rightarrow H_s^0 H_p^0 \rightarrow H_p^0 H_p^0 H_p^0, H_p^0 \rightarrow \mu^+ \mu^-)$, the event topology is three pairs of oppositely charged particles. The $H_p^0 \rightarrow \mu^+ \mu^-$ decay mode is dominant since $\pi\pi$ or $\pi\pi\pi$ modes are suppressed for the H_p^0 decay.¹⁹ We require that the total charged-particle energy E_{ch} be greater than $0.5\sqrt{s}$ and that exactly three jets are found using the LUND jet-finding algorithm.²⁰ We require for each jet that the energy be larger than 4 GeV, the invariant mass be smaller than 4 GeV, and the total charge of each jet be -1, 0, or 1. We further require that the maximum charged multiplicity of the jets be either 2 or 3 and the minimum is either 1 or 2.

No events survive the selection criteria. The expected number of background events due to ordinary multihadron production is estimated to be about 0.1.¹⁰⁻¹² The detection efficiency for $Z \rightarrow H_s^0 H_p^0 \rightarrow 3H_p^0$ events is about 60%-70% for $M_{H_s^0}$ between 10 and 60 GeV assuming $M_{H_0^0} = 0.5$ GeV.

The excluded region is shown in the plane of $M_{H_s^0}$ vs $\cos^2(a-b)$ in Fig. 2(c). $M_{H_s^0}$ is excluded from 5 to 44 GeV for $\cos^2(a-b) \ge 0.5$. Also shown in the figure is a previous Mark II limit¹⁸ and the interpretation of the ALEPH standard-Higgs-boson limit.¹⁶

For case (D) $(Z \rightarrow H_l^0 H_h^0 \rightarrow \tau^+ \tau^- + \text{jets})$, the LUND jet-finding algorithm¹⁷ is applied. We select events with only two jets in either of the hemispheres defined by the plane perpendicular to the event-thrust axis. Further, we require that the two jets be consistent with a τ pair (the invariant mass of each jet is smaller than 2 GeV, the number of charged particles in each jet is one, and the charge of the two jets is opposite). Since a τ^{\pm} decay involves missing neutrinos, we cannot look for an invariant-mass peak of $\tau^+ \tau^-$. We look for the peak in the $\tau^+\tau^-$ opening angle. Events are selected between 75% and 150% of the Jacobian peak of the opening angle (24° at $M_{H_h^0} = 10$ GeV and 31° at $M_{H_h^0} = 45$ GeV). After the cuts no events survive in the angular region and the expected number of background events is 0.3-0.5, which is estimated from QCD Monte Carlo models. 10-12

The detection efficiency for the $Z \rightarrow H_s^0 H_\rho^0$ events is about 30%-25% for $M_{H_h^0} = 10$ -30 GeV, where $M_{H_\rho^0} = 10$ GeV is assumed. The excluded region is shown in Fig. 2(d) for the case that the H_l^0 decays into $\tau^+ \tau^-$ with 100% branching fraction.

In conclusion, we have searched for the associated production of nonminimal neutral Higgs bosons in Z-boson decays $(Z \rightarrow H_s^0 H_p^0)$ where one of the Higgs bosons is relatively light (≤ 10 GeV) using the Mark II detector at the SLAC Linear Collider. Event topologies we have looked for are (A) monojet event or two acoplanar jets, (B) isolated particle pair with opposite charge, (C) three pairs of oppositely charged particles, and (D) $\tau^+ \tau^- +$ jets. We find no evidence for these signals and we obtain limits on the suppression factor of the decay process $Z \rightarrow H_s^0 H_p^0$ as a function of the Higgs-boson masses for generic two-doublet Higgs models.

This work was supported in part by Department of Energy Contracts No. DE-AC03-81ER40050 (California Institute of Technology), No. DE-AM03-76SF00010 (University of California, Santa Cruz), No. DE-AC02-86ER40253 (University of Colorado), No. DE-AC03-83ER40103 (University of Hawaii), No. DE-AC03-84ER40125 (Indiana University), No. DE-AC03-76SF00098 (LBL), No. DE-AC02-84ER40125 (University of Michigan), and No. DE-AC03-76SF00515 (SLAC), and by the National Science Foundation (Johns Hopkins University). ty of California, Davis, Report No. UCD 89-4, 1989 (to be published).

²J. F. Gunion and H. E. Haber, Nucl. Phys. **B272**, 1 (1986).

³This work differs from a recent search by the ALEPH Collaboration which assumed the minimal supersymmetric model, ALEPH Collaboration, D. Decamp *et al.*, CERN Report No. CERN-EP/89-168 (unpublished).

⁴G. Pocsik and G. Zsigmond, Z. Phys. C 10, 367 (1981).

⁵Ying Liu, Z. Phys. C **30**, 631 (1986).

⁶Mark II Collaboration, G. S. Abrams *et al.*, Phys. Rev. Lett. **63**, 1558 (1989).

⁷Mark II Collaboration, G. S. Abrams *et al.*, Nucl. Instrum. Methods Phys. Res., Sect. A **281**, 55 (1989).

⁸If $H_l^0 = H_\rho^0$ and H_s^0 decays into $H_\rho^0 H_\rho^0$ and H_ρ^0 is stable, the events are invisible. This case can be studied by the neutrinocounting method (measuring the width of the Z into invisible final states). A special case in which H_l^0 decays into e^+e^- or $\gamma\gamma$ with intermediate decay length (a few centimeters to a few meters) is not studied in this analysis.

⁹The acoplanarity angle ϕ_{acop} is defined in the following way: Two hemispheres are defined by the plane perpendicular to the thrust axis. In each hemisphere particle momentum vectors are summed. The kink angle of the two resultant hemisphere momentum projected on to the plane perpendicular to the beam axis is defined to be the acoplanarity angle. If an event has no particles in one of the thrust hemispheres, ϕ_{acop} is defined to be 180°.

¹⁰The LUND shower model is described in T. Sjöstrand, Comp. Phys. Commun. **39**, 347 (1986); T. Sjöstrand and M. Bengtsson, Comp. Phys. Commun. **43**, 367 (1987).

¹¹G. Marchesini and B. R. Webber, Nucl. Phys. **B238**, 1 (1984); B. R. Webber, Nucl. Phys. **B238**, 492 (1984).

 12 The LUND model (Ref. 10) based on the α_s^2 matrix element is calculated by T. D. Gottschalk and M. P. Shatz, Phys. Lett. **150B**, 451 (1985); California Institute of Technology Reports No. CALT-68-1172, and No. CALT-68-1173, 1985 (unpublished).

¹³JADE Collaboration, W. Bartel *et al.*, Phys. Lett. **155B**, 288 (1985), and an updated result is in H. Hagiwara and S. Komamiya, *High Energy Electron-Positron Physics*, edited by A. Ali and P. Soding (World Scientific, Singapore, 1988), p. 804.

¹⁴Mark II Collaboration, G. J. Feldman *et al.*, Phys. Rev. Lett. **54**, 2289 (1985); HRS Collaboration, C. Akerlof *et al.*, Phys. Lett. **156B**, 271 (1985); MAC Collaboration, W. Ash *et al.*, Phys. Rev. Lett. **54**, 2477 (1985); CELLO Collaboration, H. J. Behrend *et al.*, Phys. Lett. **161B**, 182 (1985).

¹⁵AMY Collaboration, E. L. Low *et al.*, Phys. Lett. B 228, 548 (1989).

¹⁶ALEPH Collaboration, D. Decamp *et al.*, CERN Report No. CERN-EP/89-157, 1989 (unpublished). Strictly speaking, the interpretation of the ALEPH result is valid if the decay modes of H_v^0 are similar to those of the minimal standard Higgs boson.

¹⁷T. Sjöstrand, Comp. Phys. Commun. **28**, 229 (1983). The jet-forming cutoff parameter d_{join} is changed from its default value to $d_{\text{join}} = 0.5$ GeV.

¹⁸Mark II Collaboration, S. Komamiya *et al.*, Phys. Rev. D **40**, 721 (1989).

¹⁹H. E. Haber (private communication).

²⁰In this case, the jet-forming cutoff parameter d_{join} is set to the default value of 2.5 GeV.

¹A phenomenological review can be found, for example, in J. F. Gunion, H. E. Haber, G. L. Kane, and S. Dawson, Universi-