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RESEARCH ARTICLE Open Access

Growth factor genes and change in
mammographic density after stopping
combined hormone therapy in the
California Teachers Study
Eunjung Lee1* , Jianning Luo2, Fredrick R. Schumacher3, David Van Den Berg1, Anna H. Wu1, Daniel O. Stram1,
Leslie Bernstein2 and Giske Ursin1,4,5

Abstract

Background: The contribution of genetic polymorphisms to the large inter-individual variation in mammographic
density (MD) changes following starting and stopping use of estrogen and progestin combined therapy (EPT) has
not been well-studied. Previous studies have shown that circulating levels of insulin-like growth factors are associated
with MD and cross-talk between estrogen signaling and growth factors is necessary for cell proliferation in the breast.
We evaluated single nucleotide polymorphisms (SNPs) in growth factor genes in association with MD changes after
women stop EPT use.

Methods: We genotyped 191 SNPs in 13 growth factor pathway genes in 284 non-Hispanic white California Teachers
Study participants who previously used EPT and collected their mammograms before and after quitting EPT. Percent
MD was assessed using a computer-assisted method. Change in percent MD was calculated by subtracting percent
MD of an ‘off-EPT’ mammogram from percent MD of an ‘on-EPT’ (i.e. baseline) mammogram. We used multivariable
linear regression analysis to investigate the association between SNPs and change in percent MD. We calculated
P-values corrected for multiple testing within a gene (Padj).

Results: Rs1983210 in INHA and rs35539615 in IGFBP1/3 showed the strongest associations. Per minor allele of
rs1983210, the absolute change in percent MD after stopping EPT use decreased by 1.80% (a difference in absolute
change in percent MD) (Padj= 0.021). For rs35539615, change in percent MD increased by 1.79% per minor allele
(Padj= 0.042). However, after applying a Bonferroni correction for the number of genes tested, these associations
were no longer statistically significant.

Conclusions: Genetic variation in growth factor pathway genes INHA and IGFBP1/3 may predict longitudinal MD
change after women quit EPT. The observed differences in EPT-associated changes in percent MD in association
with these genetic polymorphisms are modest but may be clinically significant considering that the magnitude
of absolute increase in percent MD reported from large clinical trials of EPT ranged from 3% to 7%.
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Introduction
Mammographic density (MD), one of the strongest risk
factors for breast cancer, is a measure of the amount of
epithelium and stroma in the breast [1]. Estrogen and pro-
gestin combined therapy (EPT) use was shown to increase
MD in two randomized clinical trials, the Postmenopausal
Estrogen/Progestin Interventions (PEPI) trial and the
Women’s Health Initiative (WHI) randomized trial. In
these trials, women randomized to take EPT experienced
an average increase of 3-7% in MD [2–4]. Similarly, MD
decreased after discontinuing EPT [5, 6]. In a randomized
trial, EPT users who stopped their hormone use for 1
month and 2 months showed reductions in MD of 0.9%
and 1.5%, respectively, whereas no reduction was observed
among women who continued using EPT [6]. However,
inter-individual variation in MD changes was large follow-
ing EPT use [2–4] or cessation [6, 7]. For example, among
women in the EPT arm of the PEPI trial, ~20% experi-
enced a large increase (i.e. a one-category increase in
Breast Imaging Reporting and Data System (BI-RADS)
grade, corresponding to ~14-18% increase in MD), while
other women experienced smaller changes [2, 3]. Among
women in the cessation group of the short-term cessation
trial, about 25% experienced at least a 7.5% decrease in
MD while ~ 55% experienced a modest decrease or little
change and ~ 20% experienced some increase after EPT
cessation [7].
The evidence showing that breast cancer risk increases

or decreases in accordance with longitudinal changes in
MD is consistent [8–10]. Importantly, the longitudinal
change in MD after using EPT explained all of the in-
creased risk from EPT use in the WHI [9]. However,
despite the large inter-individual variation in MD change
when starting EPT and quitting EPT [2–4, 6, 7], determi-
nants of EPT-associated MD change remain largely un-
known. In the short-term cessation trial, none of the
tested risk factors for breast cancer, such as race, BMI,
parity, family history, and duration of hormone therapy
use, appeared to determine the amount of MD decrease
following hormone cessation [7], suggesting that genetic
factors might be important determinants [7]. A similar
conclusion was derived from the results of a study of
MD increase following initiation of hormone therapy
that was predominantly EPT [11]. Only a few studies, all
focusing on hormone metabolism pathway, have investi-
gated genetic determinants of MD change associated
with EPT use or cessation [12–15]. The most compre-
hensive study to date, our investigation of 30 hormone
metabolism pathway genes using data from the Califor-
nia Teachers Study (CTS) mammogram substudy,
showed that SNPs in SLCO1B1 (rs7489119) and ARSC
(rs5933863) to be associated with MD decrease follow-
ing EPT cessation [12]. Other SNPs reported from
smaller studies were not replicated [13–15].

Along with the female sex steroid hormone signaling
cascade, paracrine signals by growth factors such as epi-
dermal growth factor (EGF) and insulin-like growth
factor-1 (IGF-1) are crucial in mammary tissue develop-
ment [16, 17]. Although results from studies of growth
factor polymorphisms and MD have been inconsistent
[18–21], several cross-sectional studies have shown that
circulating or breast tissue levels of IGFs are associated
with MD [22–26]. Further, experimental evidence in
breast cancer cell lines suggests that cross-talk between
signaling pathways of steroids and growth factors such
as EGF or IGF-1 is necessary to induce cell growth and
proliferation [17]. Thus, we hypothesized that polymor-
phisms in growth factor pathway genes may contribute to
the inter-individual differences in EPT-associated MD
change and investigated associations between 191 SNPs in
13 growth factor genes and change in MD with cessation
of EPT use in the mammogram substudy of the CTS.

Materials and Methods
Participants
The CTS mammogram substudy was established to iden-
tify genetic polymorphisms associated with MD changes
when women initiate or quit EPT use. The design of this
substudy was previously described [12]. Briefly, the CTS is
a prospective cohort established in 1995-1996 and consists
of 133,479 current or former female public school
teachers and other public school professionals, who were
members of the California State Teachers Retirement Sys-
tem in 1995. When the cohort was formed, participants
completed and returned a mailed questionnaire which in-
cluded questions on menstrual history, parity, hormone
use, and medical history [27].
In 2006-2008, we mailed study invitation letters to

1,420 CTS participants who lived in California, did not
have a cancer diagnosis, were ages 40-60 years, had a
mammogram in the 2 years prior to cohort enrollment,
initiated EPT use between cohort enrollment and com-
pletion of the follow-up questionnaire in 2000-2001, and
did not participate in any other CTS substudy. We tele-
phoned 1,272 women and identified 1,251 eligible
women. A total of 1,004 eligible women participated and
completed a telephone interview providing current in-
formation on menstrual history and hormone use. Rea-
sons for non-participation included refusal (n = 111),
not returning signed informed consent (n = 134), with-
drawing consent (n = 1), and not completing the inter-
view (n = 1). We collected mammograms for 993
women, but excluded 29 who were missing information
on hormone therapy use. On average, 8 mammograms for
each participant were available. About 40% of these mam-
mograms were sent with a form summarizing history of
menstruation and hormone use as of the day of screening.
This information is expected to be more accurate than the
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information collected during the interview. Thus, we used
information from the records when available [12]. The
CTS mammographic density substudy was approved by
the University of Southern California (USC) Institutional
Review Board (HS-056027). All participants provided writ-
ten informed consent.

Identifying EPT quitters
Detailed methods to select mammograms and identify
EPT quitters have been described [12]. Briefly, to deter-
mine MD changes following the changes in women’s
EPT use, we selected an “on-EPT mammogram” (taken
while a participant was post-menopausal and using EPT)
and an “off-EPT mammogram” (taken while a partici-
pant was postmenopausal and not using EPT or ET). Be-
cause many participants could not recall exactly when
they started or stopped hormone therapy [12] and many
EPT users quit hormones after the publication of WHI
findings in June 2002 [28], we preferred that on-EPT
mammograms were taken before July 1, 2002, and
off-EPT mammograms were taken after 2003 to
minimize misclassification of EPT use information at
time of mammograms [12]. When selecting off-EPT
mammograms, we preferred mammograms taken as
close as possible to the year of on-EPT mammograms,
but with at least one year interval between the on-EPT
and off-EPT mammograms; this was important because
MD changes after starting EPT use were reported to
occur primarily within the first 12 months and remain
constant for at least the next two years [2].
Applying these criteria, we selected both an “on-EPT

mammogram” and an “off-EPT mammogram” for 422
women. The majority (n = 371) were ‘quitters’ as op-
posed to ‘starters’ (n = 51) in that the time sequence of
their mammograms was an “on-EPT mammogram”
followed by an “off-EPT mammogram”. When inspect-
ing the year of menopause and year of EPT initiation,
we were concerned about the possibility that the
“off-EPT mammograms” we collected from the ‘starters’
were in fact taken during their menopausal transition.
Because MD change we measured on these starters is
represented by a mixture of a decline in MD associated
with menopausal transition (i.e. hormone levels decrease
[29, 30]) and an increase in MD associated with initi-
ation of EPT after they became completely postmeno-
pausal (i.e. hormone levels increase), we restricted the
study to the 371 EPT quitters [12].

MD assessment
Methods for MD measurements have been described
[3, 31]. Mammograms were digitized using a Cobras-
can CX812T scanner (Radiographic Digital Imaging,
Torrance, CA) at a resolution of 150 pixels/inch (59 dots/
cm). One of the authors (GU) assessed absolute density of

digitized mammograms using the USC Madena method,
which is a validated, computer-assisted, quantitative tech-
nique [32]. One research assistant trained by GU assessed
total area of the breast. MD (in percent) was calculated as
the absolute density divided by the total area of the breast.
Mammograms of the same individual were evaluated in the
same batch. Readers were blinded to subject identification
and EPT use status for each mammogram. Reader reprodu-
cibility based on 183 pairs of random blinded duplicates
was excellent (R=0.96).

Specimen collection and genotyping
Spit samples were collected using the Oragene DNA
self-collection kit (DNA Genotek, Kanata, ON, Canada)
which was mailed to participants with a return package.
Of the 371 EPT quitters, 328 women provided a suffi-
cient amount of sample. Linkage disequilibrium (LD)
tagging SNPs were selected across each gene, from 20kb
upstream of 5′ untranslated region (UTR) and to 10kb
downstream of 3′ UTR, using the Snagger software (for
FGF2, FGF9, IGF1, IGFBP1/3, RPS6KA1, TGFB1) [33]
and the TagSNPs program (for ACVR1, ACVR2, IGF2,
INHA, INHBA, INHBB) [34, 35]. The selected SNPs
were to tag all common SNPs (minor allele frequency
(MAF) ≥ 5%) in whites with minimum pairwise r2 of
0.80. For EGFR, we selected a few SNPs due to limited
space in the genotyping platform [12].
Genotyping was performed in the USC Core Facility

using the Illumina GoldenGate Assay (Illumina, San
Diego, CA, USA). After excluding SNPs with a call rate
<90% (15 SNPs), Hardy-Weinberg equilibrium P-value
<0.001 (2 SNPs), and MAF<1% (2 SNPs), 191 SNPs
remained for analyses. The number of SNPs genotyped
for each gene is listed in Table 1. After excluding sam-
ples with a call rate <90% (n = 19), 309 samples were
available for analyses. The duplicate genotyping con-
cordance was >99.9% [12].
Because the majority (n = 284) of these remaining 309

samples were from participants who were non-Hispanic
white and the number of participants in other race/eth-
nic groups was limited, we restricted the analysis to 284
non-Hispanic whites. Among the 284 women genotyped
and eligible for the analyses, the time interval between
the on-EPT mammogram and off-EPT mammogram
was 5 years or less for over 85% of the participants [12].
Applying the methods to calculate MD change described
above, the mean change in percent MD was 4.0% (±
7.0% SD) among the participants included in the ana-
lyses [12]. Of the 422 women for whom we collected
both on-EPT mammograms and off-EPT mammograms,
the 284 non-Hispanic white women included in the ana-
lysis differed from the excluded (n = 138) women with
respect to time interval between the two mammograms
and age at time of off-EPT mammogram, reflecting the
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inclusion criteria (i.e. non-Hispanic white, EPT ‘quit-
ters’ as opposed ‘starters’). The two groups were similar
with respect to age, BMI, parity, menopausal status,
history of breast biopsy, and family history of breast
cancer (Additional file 1: Table S1).

Statistical Analysis
We calculated change in percent MD as “on-EPT MD”
minus “off-EPT MD”, representing the absolute change in
percent MD after stopping EPT use. Multivariable linear
regression analysis was used to evaluate the association be-
tween genotype and change in percent MD, adjusting for
age and BMI at baseline (i.e. on-EPT mammogram), time
interval and BMI change between the two mammograms,
and baseline MD (i.e. “on-EPT MD”). Parity was not asso-
ciated with change in MD and was not included in the
model; additional adjustment for parity did not change the
results (data not presented). We used an additive genetic
model, which estimates the difference in change in percent
MD per minor allele. Thus, the regression coefficient from

this model indicates the absolute difference, per minor al-
lele of the modeled SNP, in absolute change in percent MD
after stopping EPT. Compared to cross-sectional MD ran-
ging from 0% to 100%, which shows a highly skewed distri-
bution and requires square-root transformation to improve
normality of residuals in regression models [36], longitu-
dinal change in percent MD has a distribution more closely
approximate a normal distribution. We calculated P-values
corrected for multiple correlated tests within each gene
using a method which considers correlation between
SNPs (Padj) [37].
We also performed exploratory analyses stratified by par-

ity (nulliparous, parous) and calculated P values for inter-
action by conducting Wald tests for genotype-parity
product terms. This was planned a priori because nullipar-
ity is a risk factor of breast cancer and higher MD [38, 39],
and MD was more strongly associated with breast cancer
risk in nulliparous women than in parous women [40].

Results
We observed statistically significant associations for
rs1983210 in INHA and rs35539615 in IGFBP1/3 region
after we corrected for multiple testing in each gene. The
longitudinal absolute change in percent MD after stop-
ping EPT decreased by 1.80% (an absolute difference,
not a relative difference, in absolute change in percent
MD after stopping EPT) per minor allele of rs1983210
(INHA; Padj=0.021) and increased by 1.79% per minor al-
lele of rs35539615 (IGFBP1/3; Padj=0.042; Table 2).
However, if we further consider all tested genes and
apply multiple testing correction for all SNPs tested, nei-
ther of these associations remained statistically signifi-
cant. Another SNP in INHA (rs2278200) showed some
evidence of association with borderline statistical signifi-
cance (Padj=0.053), but this association was not observed
when adjusting for rs1983210. Results for all tested SNPs
are presented in Additional file 2: Table S2.
When examining the associations separately in nullipar-

ous vs. parous women, four SNPs (rs2278200, rs907142,
rs2059693, rs1039898) in INHA were associated with
change in percent MD in nulliparous women (Padj<0.05; P
values for interaction <0.022; Table 3), and the regression
coefficients for these SNPs from the nulliparous women

Table 1 List of investigated growth factor pathway genes and
number of genotyped single nucleotide polymorphisms (SNPs)

Gene Gene name N of SNPs
genotyped

EGFR Epidermal growth factor
receptor

7

FGF2 Fibroblast growth factor 2 24

FGF9 Fibroblast growth factor 9 15

IGF1 Insulin like growth factor 1 18

IGF2 Insulin like growth factor 2 7

IGFBP1/3 Insulin like growth factor
binding protein 1/3

24

RPS6KA1 Ribosomal protein S6
kinase A1

19

INHA Inhibin alpha subunit 12

INHBA Inhibin beta A subunit 15

INHBB Inhibin beta B subunit 15

TGFB1 Transforming growth
factor beta 1

7

ACVR1 Activin A receptor type 1 20

ACVR2 Activin A receptor type 2 9

Table 2 Single nucleotide polymorphisms (SNPs) associated with estrogen and progestin combined therapy (EPT)-associated
mammographic density change after multiple testing correction at gene levela

SNP (gene) Major/minor allele Minor allele frequency N (WW/WV/VV) Beta (SE) P (Padj
b)

rs1983210 (INHA) G/C 0.28 156/104/21 -1.80 (0.59) 0.003 (0.021)

rs35539615 (IGFBP1/3) C/G 0.26 160/104/20 1.79 (0.59) 0.002 (0.043)

rs2278200 (INHA)c C/G 0.45 70/137/53 -1.55 (0.57) 0.008 (0.053)
aBased on linear regression models adjusting for age and body mass index (BMI) at time of on-EPT mammogram, time interval and BMI change between the two
mammograms, and mammographic density of on-EPT mammogram. Additive genetic model was used
bP-values adjusted for multiple correlated tests (PACT) [37]
crs1983210 and rs2278200 (INHA), r2=0.43
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analyses (3.71% to 5.16% absolute difference in change in
percent MD per minor allele; Table 3) were much larger
than the coefficients for the most statistically significant
SNPs from the overall analyses (1.55% to 1.80% absolute
difference per minor allele; Table 2). Rs4674413 in INHA
was also associated with change in percent MD, but this
SNP was in LD with rs2059693 (r2=0.98). None of these
or other tested SNPs showed statistically significant asso-
ciations in parous women.

Discussion
In this longitudinal study, two SNPs located near growth
factor pathway genes INHA and IGFBP1/3 were associ-
ated with change in percent MD after quitting EPT after
we corrected for multiple testing in each gene. To our
knowledge, this is the first investigation of growth factor
pathway genes in relation to longitudinal change in per-
cent MD after EPT cessation. Our findings will contrib-
ute to improving our understanding of breast cancer
risk in current and former EPT users as well as in
women who are considering EPT use for menopausal
symptoms.
Experimental evidence in breast cancer and other cell

lines suggests that steroids and growth factor signaling
pathways such as EGF and IGF-1 have synergistic effects
in inducing cell proliferation and that cross-talk between
these pathways is important in estrogen action [41–45].
Rs1983210, which showed an association with the

smallest P-value, is located about 15kb upstream of the
INHA gene in chromosome 2. INHA encodes the inhibin
α, a subunit of heterodimeric glycoproteins called in-
hibins. Inhibins are members of the TGF-β superfamily,
are expressed in normal human breast tissue [46, 47]
and are involved in multiple aspects of cell differenti-
ation and proliferation including mammary gland

development [47, 48]. While the functional significance
of rs1983210 on the expression of inhibin α is not known,
results from a microarray-based expression profiling study
have shown that lower expression of TGF-β pathway genes
was associated with higher MD [49], supporting the role of
INHA SNPs in determining EPT-associated MD change.
Alternatively, our observation may be related to the amino
acid change (Glu1365Asp) in obscurin like 1 (OBSL1) gene
resulting from rs1983210. Although rs1983210 was in-
cluded in our study as a part of the SNPs located in the
vicinity (i.e. from 20kb upstream to 10kb downstream) of
INHA, rs1983210 is in fact located in exon 2 of OBSL1 and
leads to amino acid change (Glu1365Asp). While the func-
tion of OBSL1 gene is not well characterized, rare muta-
tions in OBSL1 lead to severe pre-natal and postnatal
growth restriction known as 3-M syndrome, an
autosomal-recessive growth disorder [50–52]. In one ex-
perimental study, a fibroblast cell line with an OBSL1 mu-
tation displayed disrupted IGF-1 signaling [50]. Rs1983210
was assessed as not having clinical significance in relation
to 3-M disease in dbSNP [53], but it is not known whether
this SNP might contribute to other common diseases. The
observed association for rs1983210 should be replicated in
future studies and it needs to be determined whether the
association is related to INHA or OBSL1.
IGFBP1 and IGFBP3 genes are located adjacent to

each other and are important regulators of bioavailability
of IGF-1, which stimulates proliferation of breast cancer
cell lines and primary culture [43, 45]. Cross-sectional
studies investigating polymorphisms in IGF1 and
IGFBP1/3 in association with MD have reported mixed
results [18–21, 54, 55]. However, several lines of evi-
dence indicate that our observation for rs35539615 in
relation to EPT-associated MD change is biologically
plausible. Cross-sectional studies have shown that higher

Table 3 Single nucleotide polymorphisms (SNPs) associated with estrogen and progestin combined therapy (EPT)-associated
mammographic density change among nulliparous women after multiple testing correction at gene level; results from parous
women (n = 219) are presented for comparisona

SNP (gene) Major/
minor
allele

Minor
allele
frequency

Nulliparous (n = 63) Parous (n = 219) P for
interactioncN

(WW/WV/VV)
Beta (SE) P Padj

b N
(WW/WV/VV)

Beta (SE) P Padj
b

rs2278200d

(INHA)
C/G 0.45 17/23/15 -3.78 (1.03) 0.0006 0.005 51/114/38 -0.49 (0.68) 0.47 >0.99 0.013

rs907142d

(INHA)
G/C 0.32 27/30/4 3.97 (1.31) 0.004 0.028 82/101/20 0.21 (0.68) 0.76 >0.99 0.007

rs2059693d

(INHA)
C/T 0.28 31/27/4 3.71 (1.27) 0.005 0.033 107/94/16 0.10 (0.68) 0.88 >0.99 0.013

rs1039898
(INHA)

T/C 0.10 50/13/0 5.16 (1.91) 0.009 0.048 183/34/1 -0.14 (1.09) 0.90 >0.99 0.022

aBased on linear regression model adjusting for age and body mass index (BMI) at time of on-EPT mammogram, time interval and BMI change between the two
mammograms, and mammographic density of on-EPT mammogram. Additive genetic model was used
bMultiple testing corrected P-value; PACT (P values adjusted for correlated tests) within each gene was calculated using the methods by Conneely and
Boehnke [35]
cP-values for interaction were not corrected for multiple testing
drs2278200 and rs907142, r2=0.37; rs907142 and rs2059693, r2=0.55
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IGF-1 levels and lower IGFBP-3 levels in blood samples
are associated with higher MD [23–25, 56, 57]. In all
[23–25, 56] but one [57] of these studies, the associa-
tions were observed among premenopausal women but
not among postmenopausal women who were not taking
hormone therapy, supporting the role of the interaction
between IGF-1/IGFBP-3 and female sex steroid hormones
in determining MD. Data from experimental and animal
studies also show that IGF-1 and estrogen signaling path-
ways activate each other and that IGF-1, estrogen, and
progesterone synergistically stimulate mammary gland de-
velopment [42, 58, 59]. Further, in a small phase I clinical
trial, decreases in cell proliferation in atypical hyperplasia
and proliferative lesions in the breast were observed in pa-
tients diagnosed with atypical hyperplasia and treated with
an IGF-1 pathway inhibitor, pasireotide, but not in un-
treated patients [60].
It is worth noting that estrogen therapy reduces circulat-

ing levels of IGF-1 and possibly IGFBP-3 and increases
IGFBP-1 levels [61]. Addition of androgenic progestins
such as medroxyprogesterone acetate or norethisterone
appears to oppose the estrogen therapy effect on IGF and
IGFBP levels [61, 62]. Nevertheless, future studies of IGF
pathway polymorphisms should examine and consider any
changes in IGF and IGFBP levels associated with EPT use.
These results suggest that genetic variation in INHA

and IGFBP1/3 may influence change in percent MD fol-
lowing EPT cessation. The estimated absolute differences
of 1.80% (for rs1983210) and 1.79% (for rs35539615) in
change in percent MD per minor allele are modest; how-
ever, when considering that the absolute increases in
percent MD following EPT treatment in the WHI trial
and the PEPI trial were 3-7% on average [2–4] and that
each 1% increase in MD (absolute increase in percent
MD) increased breast cancer risk by 3% [9], these ob-
served differences may be clinically significant. Further,
our exploratory investigation stratifying by parity indi-
cates that SNPs in INHA may have greater influence in
nulliparous women. The larger regression coefficients
for SNPs in the analysis of nulliparous women compared
to those in the analysis of parous women suggest that
genetic variation may be more important for nulliparous
women as determinants of the EPT-associated change in
percent MD. This is a potentially important observation
considering that nulliparous women have greater breast
cancer risk than parous women [63] and that identifying
risk factors for nulliparous women is important. Breast
tissue of nulliparous women may differ biologically from
that of parous women and this may be associated with
different gene expression patterns [63, 64]. Future inves-
tigations need to include a sufficient number of nullipar-
ous women to attain adequate statistical power.
To our knowledge, this is the first investigation of growth

factor pathway as genetic predictors of EPT-associated

changes in percent MD. Additional strengths include that
MD of all mammograms was estimated by one experienced
investigator using a validated method and each pair of the
before- and after-quitting mammograms was assessed in
the same batch. One limitation, which our group acknowl-
edged previously [12], is that our study did not include a
comparison group whose EPT use status did not change
between two mammograms, such as those who contin-
ued to use EPT or who never used EPT. Thus, it is pos-
sible that the identified genetic predictors of
EPT-associated change in percent MD might also be as-
sociated with natural decreases in percent MD due to
aging. Additional limitation is that this study was con-
ducted in non-Hispanic whites only. Future investigations
in other race/ethnic groups are warranted especially for
SNPs with higher MAFs in other race/ethnic groups such
as African Americans. Our observations, if confirmed in
larger studies that include a comparison group, will be
clinically important since some women still use EPT for
their menopausal symptoms, and if we can identify genetic
predictors of the decrease in percent MD after quitting
EPT, this information will help women and physicians to
make informed decisions when they consider using EPT.

Conclusions
In this longitudinal study, polymorphisms in growth fac-
tor pathway genes INHA and IGFBP1/3 were associated
with changes in percent MD after women quit EPT. If
confirmed in larger studies as well as in women starting
EPT, our findings may help to identify a subgroup of
women who will benefit from EPT with minimal in-
crease in breast cancer risk and a subgroup of women
who will be subject to a large increase in risk associated
with EPT and thus should avoid starting EPT at all.

Additional files

Additional file 1: Table S1. Comparison of characteristics of women
who were included in the analyses with characteristics of participants
who were included in the longitudinal set (i.e. both on-EPT and off-EPT
mammograms were available) but excluded from the analyses. (DOCX 14
kb)

Additional file 2: Table S2. Association between mammographic
density change after quitting EPT use and SNPs in growth factor genes.
(XLSX 47 kb)
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