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ABSTRACT OF THE DISSERTATION

Mixed Membership Models with Applications to Neuroimaging

by

Nicholas Daya Marco

Doctor of Philosophy in Biostatistics

University of California, Los Angeles, 2023

Professor Donatello Telesca, Chair

Mixed membership models, or partial membership models, are a flexible unsupervised learn-

ing method that allows each observation to belong to multiple clusters. In this dissertation,

we propose a Bayesian mixed membership model for multivariate Gaussian data in Chapter

2 and functional data in Chapter 3. Compared to previous work on mixed membership

models, our proposal allows for increased modeling flexibility, with the benefit of a directly

interpretable mean and covariance structure. Our work is primarily motivated by studies

in functional brain imaging through electroencephalography (EEG) of children with autism

spectrum disorder (ASD). In this context, our work formalizes the clinical notion of “spec-

trum” in terms of feature membership probabilities. In Chapter 4, we extend the functional

mixed membership model proposed in Chapter 3 to include covariate dependence. Using age

as our covariate, we revisit the ASD study to illustrate the effect age has on alpha oscillations

of developing children. The dissertation concludes with a discussion on possible extensions

of the mixed membership framework in Chapter 5.
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Marco, N., Şentürk, D., Jeste, S., DiStefano, C., Dickinson, A., & Telesca, D. (2023+).

Covariate Adjusted Functional Mixed Membership Models. (in preparation)
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Marco, N., Şentürk, D., Jeste, S., DiStefano, C., Dickinson, A., & Telesca, D. (2022).

Flexible Regularized Estimation in High-Dimensional Mixed Membership Models. arXiv

preprint arXiv :2212.06906.
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CHAPTER 1

Introduction

Cluster analysis often aims to identify homogeneous subgroups of statistical units within a

data-set [Hennig et al., 2015]. A typical underlying assumption of both heuristic and model-

based procedures posits the existence of a finite number of sub-populations, from which each

sample is extracted with some probability, akin to the idea of uncertain membership. A

natural extension of this framework allows each observation to belong to multiple clusters

simultaneously; leading to the concept of mixed membership models, or partial membership

models [Blei et al., 2003, Erosheva et al., 2004], akin to the idea of partial membership. This

dissertation aims to present a interpretable and flexible mixed membership framework for

multivariate data, as well as functional data.

The idea that cluster analysis should allow observations to belong to more than one

cluster originated in a paper on fuzzy sets by Zadeth [1965], gibing rise to a subgroup of

cluster analysis called fuzzy clustering [Ruspini et al., 2019]. Historically, fuzzy clustering

has referred to cost-based algorithms, meaning probabilistic uncertainty on the memberships

to each cluster is unobtainable. In this dissertation, we will use the term mixed membership

models to refer to a probabilistic representation of fuzzy clustering, leading to the idea of

mixed membership. One of the earliest uses of mixed membership models was to model

individuals into sub-populations using genotype data [Pritchard et al., 2000]. The added

flexibility of a mixed membership model allowed them to study admixed individuals, or

individuals that have parents that belong to two separate sub-populations. The use of mixed

membership models in the field of genetics, sometimes referred to as admixture models in

1



the genetics literature, became a popular model for reconstructing ancestries from genotype

data [Tang et al., 2005, Alexander et al., 2009]. Mixed membership models also became

popular in topic modeling with the advent of the latent Dirichlet allocation (LDA) model

[Blei et al., 2003], specifically within topic modeling of text corpora. While the first works

on mixed membership models were largely application or domain specific, Heller et al. [2008]

introduced a fully probabilistic mixed membership framework for data that is assumed to

have come from the exponential family of distributions (Heller et al. [2008] referred to the

model as a partial membership model). While the Gaussian case is covered in the framework

described by Heller et al. [2008], their framework had two main drawbacks: flexibility and

interpretability.

Beyond clustering, the ability to model an observation’s membership on a spectrum is

particularly advantageous when we consider applications to biomedical data. For example, in

diagnostic settings, the severity of symptoms may vary from person to person. It is therefore

important to ask which symptomatic features characterize the sample, and whether subjects

exhibit one or more of these features. Within this general context, our work is motivated by

functional brain imaging studies of neurodevelopmental disorders, such as autism spectrum

disorder (ASD). In this setting, typical patterns of neuronal activity are examined through

the use of brain imaging technologies (e.g. electroencephalography (EEG) or functional

magnetic resonance imaging (fMRI)), and result in observations which are naturally char-

acterized as random functions on a specific evaluation domain. We are primarily interested

in the discovery of distinct features characterizing the sample and in the explanation of how

these features determine subject-level heterogeneity. As our primary motivating case study

is a neurodevelopmental study, we expect patterns of alpha oscillations to change as children

age. Therefore, we develop a covariate adjusted mixed membership model in Chapter 4,

which allows us to study how the mean and covariance structure of the mixed membership

model changes as children age.

The remainder of the dissertation is organized as follows. Section 1.1 discusses the general

2



framework of the proposed mixed membership models and shows how it differs from tradi-

tional finite mixture models. Section 1.2 compares the general framework of the proposed

covariate adjusted mixed membership models to well established covariate-dependent clus-

tering techniques such as mixture of regressions and mixture of experts models. Chapters 2

and 3 contain an in-depth discussion of multivariate Gaussian mixed membership models and

functional mixed membership models, respectively. Section 1.2 discusses the general frame-

work of covariate adjusted mixed membership models, and how they compare to mixture of

regressions and mixture of experts models. Chapter 4 contains an in-depth discussion on

covariate adjusted functional mixed membership models, along with an example of how they

can be utilized to analyze neurodevelopmental data. Lastly, Chapter 5 contains a discussion

on possible extensions to the models proposed in this dissertation.

1.1 Overview of Mixed Membership Models

Finite mixture models are a well-studied class of models that provide a flexible and formal

framework for model-based clustering [Melnykov and Maitra, 2010, McLachlan and Basford,

1988, McLachlan and Peel, 2004]. In this section, we will show that our proposed model

can also be thought of as an extension of a Gaussian finite mixture model. For this section,

we will assume that the number of features or clusters, K, are known a-priori. While the

number of features are known a-priori for the technical developments of the paper, Sections

2.2.2 and 3.3.2 contain an in-depth discussion on the use of information criteria to aid in

choosing the number of features.

We will start by letting x1, . . . ,xN be the observed noise-free data, where xi ∈ RP . Under

the Gaussian finite mixture model framework, we would typically assume that x1, . . . ,xN

are independent and identically distributed from a distribution such that

p
(
xi|ρ(1:K),ν(1:K),C(1:K)

)
=

K∑
k=1

ρkN (xi|νk,Ck) ,
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where νk is the mean of the kth cluster, Ck is the covariance of the kth cluster, and ρk is

the mixing proportion for the kth cluster. The mixing proportion, ρk, can be thought of as

the proportion of observations that belong to the kth cluster. In the finite mixture model

framework, we have the constraint that
∑K

k=1 ρk = 1. In a Gaussian finite mixture model

framework, we assume that each observation comes from exactly one of the mixing compo-

nents or clusters, with a corresponding mean and covariance of ν(k) and C(k), respectively.

By introducing the latent variables πi = [πi1, . . . , πiK ] (πik ∈ {0, 1} and
∑K

k=1 πik = 1), we

can equivalently express our model as

p
(
xi|ρ(1:K),ν(1:K),C(1:K)

)
=
∑
πi

p(πi)
K∏
i=1

N (xi|νk,Ck)
πik , (1.1)

where p(πik = 1) = ρk. In this context, the latent variables πik can be interpreted as the

ith observations membership to the kth cluster. The mixed membership model proposed by

Heller et al. [2008] can directly be obtained from equation 1.1 by just making π a continuous

variable, such that π ∈ (0, 1). In the Gaussian case, this lead to the following likelihood:

xi|π(1:N),ν(1:K),C(1:K) ∼ N (Hihi,Hi) , (1.2)

where hi =
∑K

k=1 πikC
−1
k νk and Hi =

(∑K
k=1 πikC

−1
k

)−1

. Therefore, from equation 1.2, we

can see that in the Gaussian case, the likelihood proposed by Heller et al. [2008] is just

the pdf of a normal distribution, where the natural parameters are a convex combination

of the individual clusters’ natural parameters. Section 2.3 contains a more comprehensive

discussion on the differences between our proposed model and the mixed membership model

proposed by Heller et al. [2008].

If we condition on π1 · · ·πN , then we can equivalently express the finite mixture model

in equation 1.1 as

xi|π(1:N) =
K∑
k=1

πikfk, (1.3)
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where fk ∼ N (νk,Ck). In a Gaussian finite mixture model we can assume that the mixing

components are independent, or that fk ∼ind N (νk,Ck). Thus we can rewrite the likelihood

as

xi|π(1:N),ν(1:K),C(1:K) ∼ N

(
K∑
k=1

πikνk,

K∑
k=1

πikCk

)
. (1.4)

From equation 1.3, we can extend the Gaussian finite mixture model to arrive at our proposed

mixed membership model by allowing each observation to come from a positive finite number

of mixture components, which we will call features [Heller et al., 2008, Broderick et al., 2013,

Marco et al., 2022a]. To generalize the finite mixture model framework, we will first introduce

a new set of latent variables zi = [Zi1 · · ·ZiK ] such that Zik ∈ (0, 1) and
∑K

k=1 Zik = 1. Using

this new set of latent variables, we arrive at the general from of our mixed membership model

xi|z(1:N) =
K∑
k=1

Zikfk. (1.5)

In this context, the latent variables Zik can be interpreted as the ith observations propor-

tion of membership to the kth feature. While the random variables fk could be considered

independent in the finite mixture model case, they can no longer be considered independent

without making strong assumptions on the data generating process. Visualizations of the

effects of the cross-covariance can be seen in figure 2.1. Thus in order to maintain an ade-

quately expressive and flexible model, we will allow dependence between the K features by

modelling the cross-covariance between the features. Let C(k,k′) = Cov(fk, fk′) denote the

cross-covariance between the feature k and feature k′ and C denote the collection of covari-

ance and cross-covariance matrices. Thus, we arrive at the general form of the likelihood of

our proposed mixed membership model:

xi|z(1:N),ν(1:K),C ∼ N
(

K∑
k=1

Zikνk,
K∑
k=1

Z2
ikCk +

K∑
k=1

∑
k ̸=k′

ZikZik′C
(k,k′)

)
. (1.6)

Since we do not assume independence, a concise representation of the covariance structure is
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Figure 1.1: Visualization of the differences between mixed membership models, finite mixture
models, and factor models.

needed in order to ensure scalability. If we were to implement a näıve characterization of the

covariance structure, we would need O(K2P 2) parameters just to represent the covariance

structure, which does not scale well as we increase the dimension of the data (P ) or the

number of features (K). Instead, we will be using a joint decomposition of the K features,

which will allow us to represent the covariance structure with O(KPM) parameters, where

M is a user-determined variable that controls the accuracy of our representation of the

covariance structure. While the mixed membership model was derived with xi ∈ RP , a

similar derivation for square-integrable functions can be found in Section 1.2.

Figure 1.1 contains a visualization of the differences between the proposed multivariate

Gaussian mixed membership model, finite mixture models, and factor analysis models. From

Figure 1.1, we can see that the finite mixture model assumes that each observation comes

from one of the two clusters. When fitting the finite mixture model, the goal is often to infer

the mean and variance of the K Gaussian distributions used in the finite mixture model, as

well as the probability that each observation comes from each cluster. While it is unknown

which cluster each observation belongs to, the key assumption is that each observation

was generated from one of the K clusters. Alternatively, Figure 1.1 illustrates that mixed

membership models view membership as a spectrum instead of a binary concept, leading
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to increased model expressivity. Similarly to finite mixture models, the goal is to infer the

mean and covariance of the K Gaussian distributions, however we aim to also infer the cross-

covariance between theK features, as well as each observation’s proportion of membership to

the K features. The ability to model the cross-covariance between features allows us to have

a more flexible model, as illustrated in Figure 1.1, where distribution of observations that

belong to both features equally (denoted by purple contours) have relatively small variances.

While factor models are not used for clustering analysis, the proposed model has distinct

similarities to a common factor model. A detailed discussion on the differences between

factor models and our proposed mixed membership model can be found in Section A.4.

1.2 Overview of Covariate Adjusted Mixed Membership Models

Mixed membership models are unsupervised models that aim to explain the heterogeneity

in a dataset through a set of latent underlying features. While we often have little pre-

vious knowledge on how the data are correlated, there are certain situations in which the

distribution of the data is dependent on a covariate of interest, leading to the need for

covariate-dependent clustering techniques. In the fields of statistics and machine learning,

covariate-dependent clustering models can be found under numerous names, including fi-

nite mixture of regressions and mixture of experts. The term finite mixture of regressions

[McLachlan et al., 2019, Faria and Soromenho, 2010, Grün et al., 2007, Khalili and Chen,

2007, Hyun et al., 2023, Devijver, 2015] refers to fitting a mixture model, where the mean

structure is dependent on the covariates of interest through a regression framework. Mixture

of experts models [Jordan and Jacobs, 1994, Bishop and Svenskn, 2002] are similar to finite

mixture of regressions in that they assume that the likelihood is a weighted combination of

probability distribution functions. However, in the mixture of experts model, the weights

are dependent on the covariates of interest, adding an extra layer of flexibility compared to

traditional finite of regressions models.
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As discussed in Chapters 2 and 3, finite mixture models do a relatively poor job of

explaining the variability of alpha oscillations do to the assumption that each observation is

drawn from exactly one of the K clusters. Alternatively, mixed membership models assume

a continuous mixing of the features, leading to more interpretable results. Therefore a

finite mixture of regressions model may not be an appropriate model for inferring how age

affects alpha oscillations as children grow, leading to the need for a covariate adjusted mixed

membership model. In Chapter 4, we derive a covariate adjusted mixed membership model

specifically for functional data. In this setting, we assume that the covariates of interest

are scalar-valued or vector-valued, and the data which we would like to learn the allocation

structure of are functional.

Functional data analysis (FDA) focuses on analyzing the sample paths of continuous

stochastic processes f : T → R, where T is a compact subset of Rd. In FDA, we commonly

assume that the random functions are elements of a Hilbert space, or more specifically

that the random functions are square-integrable functions
(
f ∈ L2 or

∫
T | f(t) |

2 dt <∞
)
.

In this dissertation, we will assume that the continuous stochastic processes are Gaussian

processes (GP), meaning the distribution of function can be specified by a mean function,

µ(t) = E (f(t)), and a covariance function, C(s, t) = Cov (f(s), f(t)), for t, s ∈ T .

Since mixed membership models can be considered a generalization of finite mixture

models, we will show in this section how finite mixture of regressions and mixture of experts

models relate to our proposed mixed membership models. For the theoretical developments

discussed in this section, we will assume that the number of clusters or features, K, are

known a-priori. Functional clustering generally assumes that each sample path is drawn

from one of K underlying cluster-specific sub-processes [James and Sugar, 2003, Chiou and

Li, 2007, Jacques and Preda, 2014]. Assuming that f (1), . . . , f (K) are the K underlying

cluster-specific sub-processes with corresponding mean functions µ(1), . . . µ(K) and covariance
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functions C(1), . . . , C(K), we can arrive at the general form of a GP finite mixture model:

p
(
fi | ρ(1:K), µ(1:K), C(1:K)

)
=

K∑
k=1

ρ(k) GP
(
fi | µ(k), C(k)

)
, (1.7)

where ρ(k) (
∑K

k=1 ρ
(k) = 1) are the mixing proportions and fi are the sample paths for i =

1, . . . , N . Introducing the latent variables πi = (πi1, . . . , πiK), where πi ∼iid Mult(1; ρ(1), . . . , ρ(K)),

we can show that the likelihood can be written as

fi | πi, µ
(1:K), C(1:K) ∼ GP

(
K∑
k=1

πikµ
(k),

K∑
k=1

πikC
(k)

)
. (1.8)

Using this formulation of the likelihood, we can interpret πik as a binary indicator of the

ith observation’s membership to the kth cluster. Let xi = [Xi1 . . . XiR] be the covariates

of interest associated with the ith observation. We will let X denote the design matrix

(without an intercept column), where xi is the i
th row of the design matrix. Extending the

multivariate mixture of regressions model [McLachlan et al., 2019, Faria and Soromenho,

2010, Grün et al., 2007, Khalili and Chen, 2007, Hyun et al., 2023, Devijver, 2015] to a

functional setting, we can represent the general form of mixture of regressions model for

functional data as

fi | X,π1, . . . ,πN , µ
(1:K), C(1:K) ∼ GP

(
K∑
k=1

πikµ
(k)(xi),

K∑
k=1

πikC
(k)

)
. (1.9)

In the multivariate setting, the mean is often modeled through a regression framework,

leading to the functional form in the FDA setting of µ(k)(xi, t) = β0(t) +
∑R

r=1Xirβr(t),

where β0, . . . , βR ∈ L2 and t ∈ T . An in-depth review on functional regression can be found

in Section 4.2.4. Similarly to Equation 4.1, the mixture of experts model can be formulated

as

p
(
fi | ρ(1:K), µ(1:K), C(1:K)

)
=

K∑
k=1

πik(xi, αk) GP
(
fi | µ(k)(xi), C

(k)
)
. (1.10)
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From equation 1.10, we can see that the πik(xi,αk) act as mixing proportions, however they

are dependent on the covariates of interest. In the mixture of experts model, we assume that

πik(xi,αk) ∝ exp(α′
kxi), where αk is a learned set of parameters. Similarly to the mixture

of regressions model, the mean component is model through a regression framework, such

that µ(k)(xi, t) = β0(t) +
∑R

r=1XirβR(t), where β0, . . . , βR ∈ L2 and t ∈ T . The mixture of

experts model can be written in a similar form as Equation 1.9 with the introduction of the

latent variables πi, however, the distribution of πi now depends on xi. Similarly to Equation

1.5, we can rewrite the finite mixture model in Equation 1.8 as

fi | π1, . . . ,πN =d

K∑
k=1

πikf
(k). (1.11)

By introducing a new set of latent variables zi = (Zi1, . . . , ZiK)
′, where Zik ∈ (0, 1) and∑K

k=1 Zik = 1, we can arrive at the functional form of the of the functional mixed membership

model:

fi | Z1, . . . ,ZN =d

K∑
k=1

Zikf
(k). (1.12)

Thus we can see that under the functional mixed membership model, each sample path is

assumed to come from a convex combination of the underlying GPs, f (k). Unlike in the

case of traditional clustering, the functional mixed membership model does not assume that

the underlying GPs are mutually independent. Thus we will let C(k,j) represent the cross-

covariance function between the kth GP and the jth GP, for 1 ≤ k ̸= j ≤ K. Letting C

be the collection of covariance and cross-covariance functions, we can specify the sampling

model of the functional mixed membership model as

fi | z1, . . . , zN , µ(1:K),C ∼ GP
(

K∑
k=1

Zikµ
(k),

K∑
k=1

Z2
ikC

(k) +
K∑
k=1

∑
k′ ̸=k

ZikZik′C
(k,k′)

)
. (1.13)

Finite mixture models, as well as mixture of experts and finite mixture of regressions

models, can be represented in the same functional form as the representation in Equation
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1.11. However, for these covariate adjusted clustering models, the underlying stochastic

processes, f (k), have an associated mean that depends on the covariates of interest, which

we will denote as µ(k)(xi). Similarly, by assuming the underlying stochastic processes in

Equation 4.7 have a mean that depends on the covariates of interest, we can arrive at the

sampling model of the covariate functional mixed membership model:

fi | X, z1, . . . , zN , µ(1:K)(xi),C ∼ GP
(

K∑
k=1

Zikµ
(k)(xi),

K∑
k=1

Z2
ikC

(k) +
K∑
k=1

∑
k′ ̸=k

ZikZik′C
(k,k′)

)
.

(1.14)

Similarly to finite mixture of regressions models, we will leverage work from the func-

tional regression literature to model µ(1:K)(xi). Therefore, while a covariate adjusted mixed

membership model can be viewed as an extension of covariate-dependent clustering, it is

also natural to consider it as a generalization of linear regression. In linear regression, we

aim to model how the response relates to the covariates of interest. Linear regression can be

considered population level inference, as it assumes that the covariates of interest have the

same effect on each observation. However, in many complex modeling scenarios, there are

often sub-groups of observations that have responses which have different relationships with

the covariates of interest. This idea is one of the core ideas in Precision Medicine, where

analyses often try to take into account individuals characteristics [Kosorok and Laber, 2019].

The need to account for heterogeneous covariate effects is exemplified in Kravitz et al. [2004]

in the setting of evidence-based medicine, where they provide examples where population

level analyses can lead to medical interventions that lead to adverse affects to sub-groups

of the population. Finite mixture of regressions models aim to account for this heterogene-

ity in covariate effects, by allowing each observation to belong to a cluster with a unique

covariate-dependent mean structure. Covariate adjusted mixed membership models can be

thought of as the most granular model out of the three models, where each observation can

be modeled on a spectrum, or unit-simplex. Therefore, you can estimate covariate effects

at an individual level, as compared to a sub-group level in a mixture of regressions model

11



or population level in linear regression. This level of granularity is greatly desired in our

neurodevelopmental case study, where we would like to see how children compare to their

age-adjusted peers. Moreover, we are able to also specify the expected changes in alpha

oscillations as children age at an individual level, which is of scientific interest.
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CHAPTER 2

Flexible Regularized Estimation in High-Dimensional

Mixed Membership Models

As stated in section 1, Heller et al. [2008] introduced a generalized framework for data

that is assumed to have come from the exponential family of distributions. As seen in

section 1.1, the mixed membership model proposed by Heller et al. [2008] can be naturally

derived from finite mixture models, leading to the likelihood found in Equation 1.2. While

this model is appealing due to the flexibility of modeling the features as any distribution

from the exponentially family of distributions, using a Gaussian distribution to model the

features can lead to hard to interpret models that are inflexible, leading to unnatural data

generating assumptions. The same issue remains true in more recent generalizations of the

same modeling framework [Hou-Liu and Browne, 2022]. In this chapter, we introduce a

flexible and easily interpretable Gaussian mixed membership model for multivariate data.

This chapter starts by deriving a concise eigendecomposition of the features to ensure

that our model is relatively scalable. To ensure a relatively simple sampling scheme, we

leverage the multiplicative gamma process shrinkage prior proposed by Bhattacharya and

Dunson [2011] and relax the orthogonality constraints on the eigenvectors. In section 2.1.4

we talk about potential identifiability issues and show that our model maintains a lot of the

desired theoretical properties even though we relax the orthogonality constraint. Section 2.2

consists of two simulation studies and two case studies on real data. The first simulation

study focuses on the recovery of our model parameters, while the second one focuses on

the performance of various information criteria in choosing the number of features in our
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proposed model. We conclude this chapter with a discussion on some of the key differences

between our proposed model and the model proposed by Heller et al. [2008] in section 2.3.

2.1 Finite Mixture and Mixed Membership Models

Let y1, . . . ,yN be the observed data, where yi ∈ RP is the P -dimensional outcome for

observational unit i, (i = 1, 2, . . . , N). We denote with K, the number of pure mixture

components or latent features and defer to Section 2.2.2 for an in-depth discussion on the

use of information criteria to select the number of features.

Under the framework of finite mixture models, a typical assumption is that each obser-

vation is drawn from one of K subpopulations. When yi is continuous, a popular sampling

model assumes a mixture of multivariate Gaussian distributions. In this case, the sampling

model for each mixture component k is fully determined by a mean vector νk ∈ RP , and a

covariance matrix Ck ∈ SP
+ (where SP

+ denotes the set of all symmetric positive semi-definite

P × P matrices). Letting ρk ∈ (0, 1), (k = 1, 2, . . . , K), be the marginal probability for any

yi to be drawn from component k, the final sampling model assumes

P
(
yi | ρ(1:K),ν(1:K),C(1:K)

)
=

K∑
k=1

ρkN (yi | νk,Ck) , (2.1)

s.t.
∑K

k=1 ρk = 1. The mixing proportion, ρk, quantify uncertain membership for any

observation yi to mixture component k. An equivalent representation of the finite mixture

model in Equation 2.1, relies on the introduction of latent membership indicator variables,

πi = [πi1, . . . , πiK ] ∼ Cat(K,ρ = (ρ1, . . . , ρK)), s.t.

P
(
yi | πi,ν(1:K),C(1:K)

)
=

K∏
k=1

N (yi | νk,Ck)
πik , (2.2)

where πik ∈ {0, 1} is interpreted as the ith observations membership indicator to the kth
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mixture component. While, in this setting, probabilistic finite mixture models provide a little

room for ambiguity in interpretation, their generalizations to probability models describing

mixed or partial membership are open to alternative conceptualizations [Galyardt, 2014,

Gruhl and Erosheva, 2014]. A popular and direct generalization approach, simply replaces

the binary membership indicator variables πik ∈ {0, 1} with continuous membership scores

Zik ∈ (0, 1). Heller et al. [2008] and, similarly, Ghahramani et al. [2014], propose a direct

application of membership scores zi = [Zi1, · · · , Zik] to the latent membership representation

in Equation 2.2, obtaining:

P
(
yi | zi,ν(1:K),C(1:K)

)
∝

K∏
k=1

N (yi | νk,Ck)
Zik , (2.3)

s.t
∑K

k=1 Zik = 1. From here, defining hi =
∑K

k=1 ZikC
−1
k νk and Hi =

(∑K
k=1 ZikC

−1
k

)−1

as

convex combinations of the natural parameters,
(
C−1

k νk, C
−1
k

)
, of a multivariate Gaussian

distribution, we obtain:

yi | zi,ν(1:K),C(1:K) ∼ N (Hihi,Hi) . (2.4)

In the following section we argue that while seemingly natural, this probabilistic concep-

tualization of mixed membership may prove too rigid for many applications, and propose

an alternative representation based on convex combinations of dependent Gaussian random

vectors.

2.1.1 Mixed Membership through Convex Combinations of Dependent Gaus-

sian Features

The proposed probabilistic representation of mixed membership for continuous data starts

with the introduction of K dependent latent Gaussian feature vectors fk ∼ N (νk,Ck), with

cross-covariance Cov(fk, fk′) = C(k,k′), for k ̸= k′ = (1, 2, . . . , K).
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Like before, our representation maintains reliance on unit-specific mixed membership

scores zi = [Zi1, · · · , ZiK ], defined on the K-dimensional standard simplex ∆K . However,

in contrast to the representation found in Section 2.1, the application of our continuous

membership scores does not rely on the latent membership representation of Equation 2.2,

but exploits the direct convex combination of our latent Gaussian features. Specifically,

we note that conditioning on the membership indicator variables π1, . . . ,πN , the model in

Equation 2.2 may be restated through equivalence in distribution as follows:

yi | πi =d

K∑
k=1

πikfk, (2.5)

leading to the idea that yi | {πik = 1} =d fk ∼ N (νk,Ck).

At this point, a direct application of the continuous membership scores to Equation

2.5, rather than Equation 2.2, leads to the natural definition of a sampling model through

distributional equivalence with a convex combination of dependent Gaussian random vectors

s.t.

yi | zi =d

K∑
k=1

Zikfk. (2.6)

In this context, the latent membership scores Zik can be interpreted, arguably more

naturally, as the ith observations proportion of membership to the kth feature. Furthermore,

denoting with C the collection of covariance and cross-covariance matrices, we obtain a

sampling model defined in terms of the original means and covariances, s.t.

yi | zi,ν(1:K),C ∼ N
(

K∑
k=1

Zikνk,
K∑
k=1

Z2
ikCk +

K∑
k=1

∑
k ̸=k′

ZikZik′C
(k,k′)

)
. (2.7)

While the random variables fk could be assumed independent, the inclusion of cross-covariance

components allows for increased expressivity and flexibility of the ensuing sampling model.

A comparative visualization of the representation offered in Equation 2.4 versus the model

proposed in Equation 2.7, including the effects of cross-covariance components can be seen in
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Figure 2.1: Subfigures 2.1(a) and 2.1(d) depict data generated from a two cluster Gaussian
mixed membership model as specified in Heller et al. [2008]. Subfigures 2.1(b) and 2.1(c)
show two examples of data generated with the same mean vectors and covariance functions
as the clusters in subfigure 2.1(a), but with different cross-covariance functions. Similarly,
subfigures 2.1(e) and 2.1(f) have the same mean vectors and covariance functions as the
clusters in subfigure 2.1(d).
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Figure 2.1. Subfigures 2.1(a) and 2.1(d) visualize the distribution of data generated from the

Gaussian mixed membership model proposed by Heller et al. [2008]. Both scenarios have the

same cluster-specific means, however they have different covariances associated with each

cluster. We note that when the major axes of concentration for each cluster are close to

orthogonal (Subfigure 2.1(a)), the generated data appear to lie on a manifold. Alternatively,

Subfigures 2.1(b) and 2.1(c) show data generated from the proposed mixed membership

model. In these two scenarios, each feature has the same mean and covariance as in Sub-

figure 2.1(a), but with varying cross-covariance matrices. Even in less extreme settings, e.g.

when component mixtures are spherical (Subfigure 2.1(d)), our model generalizes sampling

expressivity through the introduction of cross covariance components (Subfigures 2.1(e) and

2.1(f)).

From this simple visualization, it is evident that the mixed membership model specified

by Equation 2.4 may lead to mean structures that are hard to interpret, especially in higher

dimensions. This interpretability challenge is largely due to the individual feature covariances

appearing in the mean term in Equation 2.4. Conversely, the mean structure in our model

is a simple convex combination of individual feature means, where the weighting is directly

determined by the membership proportions. More details on our analysis of alternative

mixed membership representations are offered in Section 2.3.

Increased representational flexibility does, however, come at the cost of an increased

dimensional parameter space. Therefore, a concise representation of the covariance structure

is needed in order to ensure scalability and regularizability in estimation. In particular, if

we were to implement a näıve characterization of the covariance structure, we would need

O(K2P 2) parameters just to represent the covariance structure, which does not scale well

as we increase the dimension of the data (P ) or the number of clusters (K). Instead, we

will be using a joint decomposition of the K features described in Section 2.1.2, which will

allow us to represent the covariance structure with O(KPM) parameters, where M is a

user-determined variable that controls the accuracy of our representation of the covariance
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structure. Once we have a concise representation of our K features, we will fully specify a

Bayesian version of our proposed mixed membership model in Section 2.1.3.

2.1.2 Joint Feature Decomposition

In this section we construct a joint representation of the K features based on a multivariate

eigendecomposition. This joint representation allows for a scalable representation of the

underlying high-dimensional covariance structure.

Let F = [f1, . . . , fK ] ∈ RP×K , be a random matrix stacking the K latent Gaussian

features. We define the corresponding mean matrix, µ = [ν1, . . . ,νK ], where νk is the mean

corresponding to the kth feature. Let C(k,k′) = Cov (fk, fk′) for 1 ≤ k, k′ ≤ K. By vectorizing

the matrix F, we obtain

Cov(vec(F)) = Σ =


C(1,1) . . . C(1,K)

...
. . .

...

C(K,1) . . . C(K,K)

 . (2.8)

Since Σ is a positive semi-definite matrix, we know that there exists a set of eigenvalues,

λ1 ≥ λ2,≥ · · · ≥ λKP ≥ 0, and a set of eigenvectors, Ψ1, . . . ,ΨKP , such that

ΣΨm = λmΨm.

Since the Ψm are eigenvectors, we know that they are orthonormal. We will define a set

of parameters Φm such that Φm =
√
λmΨm. Thus we can see that Φm are still mutually

orthogonal, but are scaled by the square root of the corresponding eigenvalue. Consider

partitioning Φm such that

Φm =


ϕ1m

...

ϕKm

 .
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From Equation 2.8, by using a spectral decomposition on Σ, we can see that

C(k,k′) =
KP∑
m=1

ϕkmϕ
′
k′m. (2.9)

Since Φm form a basis for RKP , we have that

vec(F)− vec(µ) = P ◦ (vec(F)− vec(µ))

=
KP∑
m=1

λ−1
m ⟨vec(F)− vec(µ),Φm⟩Φm, (2.10)

where P is the projection operator on RKP . Letting χm = λ−1
m ⟨vec(F)− vec(µ),Φm⟩, we

can see that

E(χm) = λ−1
m Φ′

mE (vec(F)− vec(µ)) = 0

Var (χm) = Cov
(
λ−1
m ⟨vec(F),Φm⟩

)
= λ−2

m Φ′
mCov(F)Φm

= λ−2
m Φ′

m

(
KP∑
j=1

ΦjΦ
′
j

)
Φm = 1.

Thus using the decomposition in Equation 2.10, we have that

vec(F) = vec(µ) +
KP∑
m=1

χmΦm,

where χm ∼ N (0, 1). In order to reduce the dimension of the model, we can often approxi-

mate F by only using the first M scaled eigenvectors, where M ≤ KP . Thus, for sufficiently

large M , we have

vec(F) ≈ vec(µ) +
M∑

m=1

χmΦm.

20



Equivalently, we can express this in terms of the K partitioned vectors, such that

fk ≈ νk +
M∑

m=1

χmϕkm. (2.11)

From Equation 2.11, we can see that each feature can be represented by a mean component,

νk, and deviations from the mean controlled by the eigenstructure of the covariance structure

of our model, ϕkm. In this context, the hyperparameter M is user defined, and controls the

approximation accuracy of the covariance structure. IfM = KP , we are then able to recover

the true covariance structure. However, in most applications, a relatively small M , allows

for a good fit to large models, while still ensuring relatively good approximations to the true

covariance structure. In the following section we discuss Bayesian estimation and adopt a

regularization approach to selecting the effective dimension of M .

2.1.3 Sampling Model and Prior Distributions

In this section we combine the convolutional representation of mixed membership intro-

duced in Section 2.1.1, with the multivariate eigen-approximation of Section 2.1.2 to define

a probability model of mixed membership amenable to formal Bayesian analysis. Using our

approximation in Equation 2.11, we let Θ be the full collection of model parameters, and

define the following sampling model:

yi | Θ ∼ N

{
K∑
k=1

Zik

(
νk +

M∑
m=1

χimϕkm

)
, σ2IP

}
, (2.12)

where we assume χim ∼iid N (0, 1), (i = 1, 2, . . . , N ; m = 1, 2, . . . ,M). Marginally, integrat-

ing out χim, we recover an approximation to the model in (2.7):

yi | Θ−χ ∼ N

{
K∑
k=1

Zikνk,
K∑
k=1

K∑
k′=1

ZikZik′

(
M∑

m=1

ϕkmϕ
′
k′m

)
+ σ2IP

}
, (2.13)
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where Θ−χ denotes the full collection of model parameters excluding the χim parameters.

Using Equation 2.9, we can see that the covariance in Equation 2.13 is a weighted sum of

the individual feature covariances and the cross-covariances between the features, with an

additional diagonal matrix to capture any residual noise. Similarly, the mean is a weighted

sum of the individual feature means. Thus, the model in Equation 2.13 is what we would

expect from a traditional additive model, however we only need O(KPM) parameters to

estimate the covariance structure. Selecting the number of eigencomponents, M , allows one

to balance computational cost and model flexibility.

From our derivations in Section 2.1.2, we know that Φk are often assumed to be or-

thogonal. While aiding likelihood identifiability of the Φ parameters, this constraint would

require posterior simulation on a non-compact Stiefel manifold, which would be computa-

tionally challenging, and negatively affect mixing of algorithms using Markov chain Monte

Carlo (MCMC) simulations. Section 2.1.4 shows that we can sample in an unconstrained

space while still maintaining many of the desired theoretical properties of our model. While

the Φ parameters can no longer be interpreted as scaled eigenvectors, posterior samples of

the eigenpairs can still be obtained via the posterior samples of the covariance matrix Σ in

Equation 2.8.

Furthermore, the eigen-representation of our model in Equation 2.13, allows for adaptive

regularization through shrinkage priors. Specifically, we know that the ϕkm should shrink

in magnitude as they are scaled by the corresponding eigenvalues. Thus we leverage the

multiplicative gamma process shrinkage prior proposed by Bhattacharya and Dunson [2011].

Letting ϕkpm be the pth element of ϕkm, we can specify our prior as:

ϕkpm|γkpm, τ̃mk ∼ N
(
0, γ−1

kpmτ̃
−1
mk

)
, γkpm ∼ Γ (νγ/2, νγ/2) , τ̃mk =

m∏
n=1

δnk

δ1k|a1k ∼ Γ(a1k, 1), δjk|a2k ∼ Γ(a2k, 1), a1k ∼ Γ(α1, β1), a2k ∼ Γ(α2, β2),

where 1 ≤ k ≤ K, 1 ≤ p ≤ P , 1 ≤ m ≤ M , and 2 ≤ j ≤ M . Since the Φ parameters can
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be thought of as eigenvectors scaled by the square root of their corresponding eigenvalues,

we would like a prior that promotes shrinkage as m increases. By setting α2 > β2, we have

that E(δjk) > 1, which will promote shrinkage in Φi as m increases.

The model is completed through a conjugate prior for the mean parameters, s.t.

νk|τk ∼ N (0P , τkIP ) and τk ∼ IG(α, β),

and, following Heller et al. [2008] and Ghahramani et al. [2014], we assume that

zi|π, α3 ∼ Dir(α3π), π ∼ Dir(c), α3 ∼ exp(b)

for i = 1, . . . , N . Lastly, we will assume that σ2 ∼ IG(α0, β0).

2.1.4 Identifiability and Posterior Consistency

Mixed membership models are subject to non-identifiability problems similar to the ones

affecting finite mixture models. As in finite mixture models, a common source of non-

identifiability in mixed membership models is what is commonly known as the label switching

problem. To solve this issue, we leverage the work of Stephens [2000] and implement rela-

belling algorithms to post-process the posterior samples after running MCMC simulations.

A second form of non-identifiability stems from the additional flexibility of the allocation

parameters, namely that Zik ∈ (0, 1) rather than just being a binary variable like in a finite

mixture model. Consider a two feature model, whereΘ0 denotes the set of “true” parameters

(i.e. (Zik)0 denotes the true value of Zik). Let Z∗
i1 = 1

3
(Zi1)0 and Z∗

i2 = (Zi2)0 +
2
3
(Zi1)0

(transformation preserves the constraint that Z∗
i1 +Z∗

i2 = 1). If we let ν∗
1 = 3(ν1)0− 2(ν2)0,

ν∗
2 = (ν2)0, ϕ

∗
1m = 3(ϕ1m)0 − 2(ϕ2m)0, ϕ

∗
2m = (ϕ2m)0, χ

∗
im = (χim)0, and (σ2)∗ = σ2

0, then

from Equation 2.12, we have that P (yi|Θ0) = P (yi|Θ∗). We will refer to this type of non-

identifiability as the rescaling problem. To mitigate the effects of the rescaling problem, we
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derived the membership rescale algorithm (Algorithm 2). In a two feature mixed membership

model, the membership rescale algorithm ensures that at least one observation completely

lies in each of the features. In the case when we have more than two features, we leverage

the work of Chen et al. [2022], which essentially rescales the allocation parameters such that

they cover as much of the unit simplex as possible.

A final source of non-identifiability arises due to the additional flexibility of the allocation

parameters. Specifically, when (νk′)0 ∝ (ϕkm)0 in Equation 2.12, we can see that the mean

vector and covariance matrices are unidentifiable. An underestimate of (ϕkm)0 will typically

lead to additional variability in the allocation parameters. This type of non-identifiability

needs to be taken into account when looking at the recovery of parameters, as in the first

simulation study (Section 2.2.1), however it is often of little practical importance since the

uncertainty is still being captured by the model.

In Section 2.1.3, we formulated a model where the Φm parameters are no longer mu-

tually orthogonal. Therefore, the Φm parameters can no longer be interpreted as scaled

eigenvectors. However, the relaxation of the orthogonality constraint facilitates easier sam-

pling schemes and the use of “black-box” samplers to obtain samples from the posterior

distribution. Relaxation of the orthogonality constraint tends to also lead to better mixing

of the Markov chain. Assuming we can still recover the mean and covariance structure, we

can still obtain posterior samples of the eigenvectors by reconstructing posterior draws of

the covariance matrix and then calculating the eigenvectors of the sampled covariance ma-

trices. The remaining part of this section will focus on proving that we can recover the mean

and covariance structure. However, due to the identifiability issues described earlier in this

section, we will be proving weak posterior consistency conditional on knowing the mixing

allocation parameters.

Since our main goal is to prove that we can recover the mean and covariance structure,

we will be proving weak posterior consistency using the likelihood in Equation 2.13 (inte-

grating out the χ parameters). Since the ϕkm are not identifiable, we will prove posterior
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consistency with respect to Σkk′ :=
∑KP

p=1

(
ϕkpϕ

′
k′p

)
. Let Π be the prior distribution on

ω := {ν1, . . . ,νK ,Σ11, . . . ,Σ1K , . . . ,ΣKK , σ
2}. We will denote the set of true parameters as

ω0 =
{
(ν1)0, . . . , (νK)0, (Σ11)0, . . . , (Σ1K)0, . . . , (ΣKK)0, σ

2
0

}
.

In order to prove weak posterior consistency, we will have to make the following two assump-

tions:

Assumption 1. The variables Zik are known a-priori for i = 1, . . . , N and k = 1, . . . , K.

Assumption 2. The true parameter modeling the random noise is positive (σ2
0 > 0).

Under assumptions 1 and 2, we would like to prove that the posterior distribution

ΠN(.|y1, . . . ,yN), is weakly consistent at ω0 ∈ Ω. In order to do that, we will have to

show that there is positive prior probability around the set of true parameters. To do this,

we will first define some quantities related to the Kullback–Leibler (KL) divergence. Follow-

ing the notation of Choi and Schervish [2007], we will define the following quantities:

Λi(ω0,ω) = log

(
fi(yi;ω0)

fi(yi;ω)

)
, Ki(ω0,ω) = Eω0(Λi(ω0,ω)), Vi(ω0,ω) = Varω0(Λi(ω0,ω)),

where fi(yi;ω0) is the likelihood when we have the parameters ω0. To simplify the

notation, we will let

µi =
K∑
k=1

Zikνk,

Σi =
K∑
k=1

K∑
k′=1

ZikZik′

(
KP∑
p=1

(
ϕkpϕ

′
k′p

))
+ σ2IP = U′

iDiUi + σ2IP ,

where U′
iDiUi is the spectral decomposition of

∑K
k=1

∑K
k′=1 ZikZik′

(∑KP
p=1

(
ϕkpϕ

′
k′p

))
. Let

Ωϵ(ω0) be the set of parameters such that Ωϵ(ω0) := {ω : Ki(ω0,ω) < ϵ for all i}. Thus we

have that Ωϵ(ω0) is the set of parameters such that the KL divergence is less than ϵ. We
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will let B(ω0) be the set of parameters such that

B(ω0) :=

{
ω :

1

a

(
(dil)0 + σ2

0

)
≤ dil + σ2 ≤ a

(
(dil)0 + σ2

0

)
, ∥ (µi)0 − µi∥ ≤ b

}

for some a, b ∈ R, where dil is the lth diagonal element of Di.

Lemma 1. Let C(ω0, ϵ) := B(ω0) ∩Ωϵ(ω0). Thus for ω0 ∈ Ω and ϵ > 0, there exists a > 1

and b > 0 such that

1.
∑∞

i=1
Vi(ω0,ω)

i2
<∞, for any ω ∈ C(ω0, ϵ),

2. Π (ω ∈ C(ω0, ϵ)) > 0.

Lemma 1 shows us that there are neighborhoods around ω0 that have positive prior

probability. Since y1, . . . ,yN are not identically distributed, the first condition of lemma 1

is needed in order to prove weak posterior consistency.

Lemma 2. Under assumptions 1 and 2, the posterior distribution, ΠN(.|y1, . . . ,yN), is

weakly consistent at ω0 ∈ Ω.

Lemma 2 states that given the known allocation structure, we are able to recover the mean

and covariance structure. Thus while we cannot directly make inference on the eigenvectors

of the covariance structure, we can still recover the covariance structure without enforcing

the orthogonality constraint on the Φ parameters. While the allocation parameters are

usually not known, empirical evidence in Section 2.2.1 shows that the mean and covariance

structure converge as we get more information.

2.2 Simulations and Case Studies

We conducted two simulation studies to explore the empirical performance of our model and

two case studies to illustrate the application of mixed membership models to substantive
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Figure 2.2: The relative squared error (RSE) for the mean and covariance structure evaluated
under various sample sizes. To evaluate the recovery of the allocation parameters, we used
the root mean squared error (RMSE).
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scientific applications in functional brain imaging and cancer genomics. The first simulation

study in Section 2.2.1 explores the empirical convergence of our model on simulated data.

We then look at how information criteria can aid in choosing the number of features in

Section 2.2.2. In Section 2.2.3, we look at using a mixed membership model to model

electroencephalography (EEG) signals in children with Autism spectrum disorder (ASD)

and typically developing (TD) children. Lastly, in Section 2.2.4, we look at how a mixed

membership model can be used to classify different breast cancer subtypes using targeted

gene-expression data.

2.2.1 Simulation Study 1: Operating Characteristics under Increasing Sample

Size

This simulation study focuses on how well we can recover the mean, covariance, and allo-

cation structures under different sample sizes. In this simulation study, we will specifically

look at the case when we have 50, 250, and 1000 observations. For each of the three different

sample sizes, we generated 50 different datasets with observations yi ∈ R10. The data was

generated from a two feature model with M = 4. More information on how the simulation

study was conducted can be found in Section A.3.1.

To measure how well we can recover the mean vector, covariance matrices, and cross-

covariance matrices, we will use the relative squared error (RSE). The RSE is defined as

RSE =
∥f − f̂∥2
∥f∥2

× 100%,

where ∥ · ∥2 is the Euclidean norm if f is a vector and the Frobenius norm if f is a matrix.

In this simulation study, we will use the posterior median as our estimate, f̂ . To measure

how well we can recover the allocation parameters, we will use the root mean squared error

(RMSE).

From Figure 2.2, we can see that our recovery of the mean and covariance structure
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Figure 2.3: Information Criteria evaluated on our proposed Bayesian mixed membership
model for K = 2, 3, 4, and 5. The information criteria were evaluated on 50 different simu-
lated data sets, where the true number of features was 3.

improves as we obtain more data. While the RSE was relatively large in the simulations when

N = 50, the credible intervals were also significantly wider to account for the uncertainty in

the estimate. Specifically, the average credible interval width for the mean vectors when 50

observations were observed were roughly 4.8 times wider than the average credible interval

width for the mean vectors when 1000 observations were observed. Overall, this simulation

study provides empirical support that the mean and covariance structure converges to the

true parameters, even when the allocation parameters are unknown.

2.2.2 Simulation Study 2: Information Criteria for the Number of Latent Fea-

tures

In the finite mixed membership setting, inference and interpretation depends on the chosen

number of features. To aid in this choice, practitioners often use information criteria (IC) to

employ a data-driven approach for the selection of the number of clusters or features for their

model. In this section, we study how IC such as AIC [Akaike, 1974], BIC [Schwarz, 1978], and

DIC [Celeux et al., 2006, Spiegelhalter et al., 2002] perform in choosing the optimal number
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of mixtures. In this section, we will also observe how heuristics such as the “elbow-method”

perform in choosing the optimal number of clusters.

To evaluate the performance of the IC, we simulated 50 different data sets, where the true

number of features was 3. For each data set, four mixed membership models were fit using

a varying number of features (K = 2, 3, 4, and 5). Once the models were fit, we calculated

the BIC, AIC, and DIC for each one of the models and evaluated the performance of these

IC. Definitions of the IC used in this section, as well as detailed information on how the

simulation study was conducted, can be found in Section A.3.2.

From Figure 2.3, we note that the BIC exhibited the most reliable performance, selecting

the true number of features all 50 times. Since AIC does not penalize excess parameters as

much as BIC, we can see that AIC sometimes selected a model with 4 features over a model

with 3 features. Overall, the AIC selected the true number of features only 23 times out of

the 50 different datasets, and selected a model with 4 features in 27 of the 50 datasets. In

this setting, the DIC was shown to be the least reliable IC, selecting a model with 4 or more

features all 50 times. As discussed in Marco et al. [2022a], the average log-likelihood can

aid in the selection of the optimal number of features in mixed membership models. From

Figure 2.3, we can see that there is a distinct “elbow” at K = 3. Using the elbow method,

we would correctly identify the correct number of features all 50 times. Thus, based on the

simulation results, we recommend using the “elbow-method” in conjunction with BIC to

select the optimal number of features for our proposed model.

2.2.3 A Case Study on Functional Brain Imaging through EEG

Autism spectrum disorder (ASD) is a disorder that is characterized by social communication

deficits and/or unusual sensory-motor behaviors [Lord et al., 2018, Edition, 2013]. While once

a more narrowly defined disorder, autism is now viewed as a wide spectrum of symptoms,

ranging from very mild symptoms to severe symptoms that may require life-long care. In this

case study, we analyze electroencephalogram (EEG) data collected on 39 typically developing
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Figure 2.4: (Left Panel) Recovered means from fitting a k-means model with 3 clusters.
(Right Panel) Data from the T8 electrode of 20 individuals with varying clinical diagnosis
(TD vs ASD), colored by the estimated cluster membership.

(TD) children and 58 children diagnosed with ASD , between the ages of 2 and 12 years old

[Dickinson et al., 2018]. EEG data in the present analyses are considered spontaneous, in that

they reflect intrinsic functional brain dynamics under task-free conditions. EEG data were

recorded for two minutes using a 128-channel HydroCel Geodesic Sensory net. During the

recording, children were seated in front of a computer monitor displaying floating bubbles,

a commonly used approach for collecting resting EEG data in developmental populations

[Dawson et al., 1995, Stroganova et al., 1999, Tierney et al., 2012, McEvoy et al., 2015]. The

signal from the sensors were filtered to remove signals outside of the 0.1 to 100 Hz band range,

and were then interpolated to match the international 10-20 system 25 channel montage. A

fast Fourier transform was then applied to the data to transform the data into the frequency

domain. In this analysis, we consider the relative power in the frequency domain, meaning

each function is scaled to integrate to 1. Visualizations of the data, as well as the results

from a k-means analysis [Lloyd, 1982], can be seen in Figure 2.4.

When neuroscientists evaluate resting-state EEG data, one area of interest is the location

of a single prominent peak in the spectral density located in the alpha band of frequencies (6-

14 Hz), called the peak alpha frequency (PAF). The emergence of this peak has been shown to

be a biomarker of neural development in typically developing children [Rodŕıguez-Mart́ınez
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Figure 2.5: (Top Panels) Posterior median estimates of the recovered features, with corre-
sponding 95% credible intervals. (Bottom Panel) Posterior median estimates of the member-
ship to the first feature, stratified by clinical cohort. The red triangles represent the mean
membership to the first feature.

et al., 2017]. A clear alpha peak gradually emerges over the first year of life in typically

developing children, and increases in frequency over childhood before reaching stability in

adolescence/early adulthood [Rodŕıguez-Mart́ınez et al., 2017, Scheffler et al., 2019]. On the

other hand, both the emergence of peak alpha frequency and developmental frequency shifts

are shown to be atypical in children diagnosed with ASD. More specifically, children are

less likely to display a clear alpha peak than age-matched peers, and do not show the same

age-related increase that is well-documented in typical children [Scheffler et al., 2019].

In this case study, we conducted a multivariate analysis of the EEG analysis by using the

average power of the 25 electrodes at 33 frequencies of interest in the alpha frequency band

(from 6 Hz to 14 Hz with 0.25 Hz step sizes). By using the information criteria discussed

in Section 2.2.2, we found that a mixed membership model with 2 features seemed to be

optimal. Thus we fit a 2 feature mixed membership model (K = 2) with 5 eigenvectors
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(M = 5), and ran our chain for 500,000 iterations. To save on computational resources, the

Markov chain was thinned, saving every 10th iteration.

From Figure 2.5, we can see that the first functional feature can be interpreted as a

distinct alpha peak. On the other hand, the second feature can be interpreted as a 1/f trend,

or pink noise. These two features help to differentiate between periodic (alpha waves) and

aperiodic (1/f trend) neural activity patterns, which coexist in the EEG spectra. Loading

highly on feature 2 suggests that the 1/f trend is the most prominent in an individual’s

EEG recording, suggesting a clear alpha peak has not yet emerged. From Figure 2.5, we can

see that typically developing children seem to heavily load on the first feature, representing

individuals with a distinct alpha peak. On the other hand, children with ASD seem to have

relatively high heterogeneity in their loadings. We can see that on average children with

ASD tend to have a more attenuated alpha peak (more loading on feature 2), with some

individuals having no discernible alpha peak at all. These results closely match the results

obtained by Marco et al. [2022a], who used a functional mixed membership model to model

the spectral density as a random function.

Given that the presence and/or emergence of an alpha peak is a developmental biomarker,

objectively quantifying the presence of a peak is important. By allowing individuals to

partially belong to both features, we are able to objectively quantify the presence of a clear

alpha peak over and above 1/f aperiodic patterns. This approach offers a novel way to

quantify the progression of alpha peak emergence in individuals where the peak has not

yet reached maturity. Visualizations of the recovered covariance structure can be found in

Section A.3.3.

Figures 2.4 and 2.5 clearly depict the differences between traditional clustering models,

like a k-means model [Lloyd, 1982], and our proposed mixed membership model. Information

criteria determined that 3 clusters were the optimal number of clusters for a k-means anal-

ysis, illustrating how the increased flexibility of mixed membership models can potentially

represent data using fewer clusters than traditional clustering. In the k-means analysis, the
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first and third clusters can be interpreted as distinct alpha peaks, while the second cluster

can be interpreted as primarily 1/f aperiodic patterns. While the cluster means found in

the k-means analysis are relatively interpretable, we loose the ability to quantify the ratio of

periodic signals to aperiodic signals, which is of significant scientific interest. From a model-

ing standpoint, traditional clustering models assume that each observation comes from one

of the three clusters, meaning that children who have a developing alpha peak are not rep-

resented by any of the three clusters. Alternatively, the mixed membership model assumes

that each observation can be represented by a continuous mixture of periodic and aperiodic

neural activity patterns, leading to a more natural sampling model that is supported by

previous scientific literature.

2.2.4 A Case Study on Molecular Subtypes in Breast Cancer

As of 2015, breast cancer is the 29th leading cause of death in the world, with an estimated

534,000 deaths per year [Wang et al., 2016]. While there has been a significant increase

in the number of deaths between 2005 and 2015 (21.3%), the age-adjusted death rate has

decreased by 6.8% mainly due to our increased understanding of how to treat breast cancer.

In the last two decades, 5 molecular subtypes of breast cancer have been discovered; each

with a different prognosis, risk factors, and treatment sensitivity [Prat et al., 2015]. Parker

et al. [2009] discovered that the cancer subtype can be accurately classified by centroid-based

prediction methods using gene expression data from 50 genes (known as PAM50). Following

Xu et al. [2016], we will use the PAM50 dataset to fit a mixed membership model on patients

with LumA, Basal, and Her2 cancer subtypes. When restricting the PAM50 dataset to these

3 cancer subtypes, we have 115 patients with breast cancer (N = 115), and have 50 genes of

interest (P = 50). For this case study, we fit a 3 feature mixed membership model (K = 3)

with 4 eigenvectors to approximate the covariance structure (M = 4).

From Figure 2.6, we can see that each feature corresponds to a specific breast cancer

subtype. While the data is still separable by cancer subtype, we can see that there is
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Figure 2.7: Cluster centroids for the model constructed by Parker et al. [2009](left) and the
feature means for our mixed membership model (right).

considerable overlap between features 1 and 3 for some of the classified Her2 cancer subtype

patients. The added flexibility of a mixed membership model is crucial as physicians can

offer more personalized treatment plans for each patient. Since each cancer subtype has

particular risk factors and treatment sensitivity, physicians that have patients that load

heavily on two or more features will be aware that they should be monitoring all of the risk

factors in the corresponding features. Treatment plans can also be customized to account

for the treatment sensitivity of two or more cancer subtypes.

From Figure 2.7, we can see that there is more heterogeneity in the mean structure of
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our model than in the cluster centroids found by Parker et al. [2009]. Conceptually, these

mean structures represent two different ideas. In the centroid-based clustering, the data is

assumed to only belong to only one of the cancer subtypes. Therefore, the mean structure

in the centroid-based clustering model represents the average gene expression values for

an individual belonging to that cluster. On the other hand, our model assumes that each

individual can simultaneously belong to multiple cancer subtype groups. Therefore, the mean

for a particular feature represents the average gene expression values for an individual that

solely belongs to that feature. Thus the mean structure for the mixed membership model

is more heterogeneous because they represent the “extreme” cases, or cases that are the

most dissimilar from the other cancer subtypes. Overall, the added flexibility offered by our

proposed mixed membership model allows clinicians to make more personalized treatment

plans for patients, potentially leading to better clinical outcomes. Visualizations of the

correlation structure of the genes can be found in Section A.3.4.

2.3 Discussion

This chapter introduces a flexible, yet scalable mixed membership model for continuous

multivariate data. Mixed membership models, sometimes referred to as partial membership

models or admixture models, can be thought of as a generalization of clustering where each

observation can partially belong to multiple clusters. In Section 2.1, we derive our mixed

membership model by extending the framework of finite mixture models. To have a scalable

framework, we use a spectral decomposition of the K features, leveraging the multiplicative

gamma shrinkage prior to ensure that the scaled eigenvectors are stochastically shrunk. To

facilitate the use of simple sampling methods, we removed the constraint the the scaled eigen-

vectors, Φm, had to be mutually orthogonal. Within this context, we proved that the model

had conditional weak posterior consistency of our mean and covariance structures, allowing

us to facilitate relatively simple sampling schemes. Compared to previous works on mixed
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membership models, our proposed model has an easily interpretable mean and covariance

structure, allowing practitioners to easily and effectively communicate their findings from

the model.

For the case of continuous data, the mixed membership model representation proposed

by Heller et al. [2008] and discussed by [Ghahramani et al., 2014, Gruhl and Erosheva,

2014] is seemingly natural and generally applicable to data assumed to be sampled from

a multivariate exponential family of distributions. We note that for the case of Normally

distributed mixture components, this framework may prove to be too rigid to model more

complex datasets. Subfigures 2.1(a) and 2.1(d) contain visualizations of the distribution

of data generated from the Gaussian mixed membership model proposed by Heller et al.

[2008]. Both scenarios have the same cluster-specific means, however they have different

covariances associated with each cluster. In this setting, the generated data, follows the

direction associated with the eigenvectors of the pure mixture covariance matrices, which

can lead to unwieldy implied trajectories for plausible data realizations, e.g. data lying

on a manifold (Subfigure 2.1(a)). Alternatively, Subfigures 2.1(b) and 2.1(c) show data

generated from our proposed mixed membership model. In these two scenarios, each feature

has the same mean and covariance as in Subfigure 2.1(a), but they have different cross-

covariance matrices. In these cases, we can see a more natural trajectory of the data, where an

assumption of an Euclidean metric seems appropriate. In less extreme settings, e.g. assuming

spherical contours for the pure mixture components (Subfigure 2.1(d)), the representation

in Equation 2.4 still leads to natural trajectories for the generated data, where the variance

monotonically grows as an observation moves from the red to the blue cluster. Crucially, the

proposed mixed membership model in Equation 2.7 recovers the model in Equation 2.4 as a

special case, by setting the cross-covariance matrix equal to the zero matrix. The inclusion

of cross-covariance elements, however, can express more flexible sampling scenarios as shown

in Subfigures 2.1(e) and 2.1(f). Specifically, in Subfigure 2.1(e) we show the distribution

of data where the symmetric part of the cross-covariance matrix has positive eigenvalues,
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Figure 2.8: Comparative visualization of the differences between mixed membership models,
finite mixture models, and factor models. Each of the models were fit on the same set of
data, illustrated by the black dots.

while 2.1(f) shows the distribution of data where the symmetric part of the cross-covariance

matrix has negative eigenvalues. Overall, the inclusion of explicit cross-covariance elements

and the additive nature of our model leads to more natural trajectories of the implied model

and an increased expressivity of the implied data generating process.

Mixed membership models for continuous data, as encoded in our representation in Equa-

tion 2.5, are related to latent factor models as they rely on similar additive structures.

Nevertheless, mixed membership models obtain an alternative decomposition of the data

variation, leading to a different interpretation of the model parameters. An illustration of

the differences between Gaussian finite mixture models, factor models, and our proposed

mixed membership model can be seen in Figure 2.8. The principal difference between factor

models and mixed membership models being that mixed membership models restrict mix-

ing between latent features to be defined on the standard simplex. As a consequence, the

ensuing model defines margins which are not constrained to be elliptically symmetric, like in

the case of factor models. An in-depth discussion of how factor analysis compares to mixed

membership modeling is provided in Section A.4.

While flexibility is crucial to ensure that the model adequately fits the data, interpretabil-
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ity of a model is paramount when communicating scientific findings. Under the Gaussian

mixed membership model framework described by Heller et al. [2008], each observation is

distributed normally, where the natural parameters of the distribution are a convex com-

bination of the natural parameters associated with each cluster. The natural parameter

representation can be particularly hard to work with because the mean structure is influ-

enced by the covariance matrices of each individual cluster, leading to unnatural trajectories

of the memberships, as seen in Subfigure 2.1(a). While the mean structure can be easily

visualized in low dimensions, visualization of the mean structure can be particularly challeng-

ing in high dimensional model, leading to challenges in communicating the overall scientific

findings. In our proposed model, each observation is also normally distributed, however, the

mean parameter is simply a convex combination of the individual features’ mean parame-

ters. Similarly, the covariance of each observation can be written as a weighted sum of the

covariance and cross-covariance functions of the features. Overall this simple structure al-

lows practitioners to easily describe the distribution of observations that belong to multiple

features, while maintaining a relatively flexible model.

From a practitioner’s perspective, the main challenge to fitting a mixed membership

model is choosing the number of features (K). As shown in Section 2.2.2, information

criteria and simple heuristics such as the “elbow” method can be very informative in choos-

ing the number of features in a mixed membership model. In traditional finite mixture

models, Rousseau and Mengersen [2011] and Nguyen [2013] have shown that under certain

conditions, an overfit mixture model would have a posterior distribution where only the

“true” parameters would have positive weight, and the rest of the parameters would con-

verge to zero. In both manuscripts, they assumed that the parameters were identifiable if

we disregard the non-identifiability caused by the label-switching problem. However, as dis-

cussed in Section 2.1.4, the continuous nature of the allocation parameters create multiple

non-identifiability problems. These types of non-identifiability problems make applying the

results from Rousseau and Mengersen [2011] and Nguyen [2013] non-trivial. An alternative
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non-parametric approach can be used by leveraging the Indian Buffet Process [Griffiths and

Ghahramani, 2011], allowing for an infinite number of potential clusters. However, imple-

menting and conducting inference across changing-dimensions is a non-trivial task and still

an active area of research. Other than the number of features, users also are tasked with

choosing the number of eigenvectors (M) to use in the mixed membership model. The num-

ber of eigenvectors controls how accurate we can approximate the covariance structure of

the model. If M = KP , then we have a fully saturated model and we can have an ex-

act representation of the covariance structure. In large models, setting M = KP may be

computationally intractable, which means that we will have to approximated the covariance

structure by using a low-rank approximation of the covariance structure. Thus the choice of

M is a user-defined choice that primarily depends on the computational budget afforded to

fitting the model.

Due to the added flexibility of mixed membership model in general, we are often faced

with multiple modal posterior distributions. Due to the potential multiple modal nature of

the posterior distribution, we implemented tempered transitions (Section A.2.3) to ensure

adequate exploration of the posterior distribution by allowing the chain to traverse areas

of low posterior probability. While tempered transitions theoretically allow you to move

between modes of the posterior distribution, they can be computationally expensive and

sometimes tricky to tune. To limit the computational burden we suggest a mixture of

tempered transitions and untempered transitions when performing MCMC. To speed up

convergence of the Markov chain, we pick an informative starting position for our parameters

using the multiple start algorithm (Algorithm 1) . The added flexibility of the allocation

parameters also causes the rescaling problem described in Section 2.1.4. In order to make

interpretation easier for practitioners, we recommend using the membership rescale algorithm

(Algorithm 2). In the two feature case, this algorithm ensures that at least one observation

belongs entirely to one feature. In the case where we have more than two features, the

algorithm can be reformulated as an optimization problem. However, in practice, we found
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that the membership rescale algorithm is seldomly needed when we have 3 or more features.

An R package for our proposed Gaussian mixed membership model is available for download

at https://github.com/ndmarco/BayesFMMM.
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CHAPTER 3

Functional Mixed Membership Models

Functional data analysis (FDA) is concerned with the statistical analysis of realizations of

a random function. In the functional clustering framework, the random function is often

conceptualized as a mixture of stochastic processes, so that each realization is assumed to

be sampled from one of K < ∞ cluster-specific sub-processes. The literature on functional

clustering is well established and several analytical strategies have been proposed to handle

different sampling designs and to ensure increasing levels of model flexibility. In the setting of

sparsely observed functional data, James and Sugar [2003] proposed a mixed effects modeling

framework for efficient dimension reduction after projection of the observed data onto a basis

system characterized by natural cubic splines. Alternatively, Chiou and Li [2007] made use

of functional principal component analysis to help reduce dimensionality by inferring cluster

specific means and eigenfuctions. Jacques and Preda [2014] proposed a similar strategy for

clustering multivariate functional data. Petrone et al. [2009] extended the previous work

on functional mixture models by allowing hybrid species, where subintervals of the domain

within each functional observation can belong to a different cluster. This type of clustering

can be thought of as local clustering, where the cluster an observation belongs to changes

depending on where you are in the domain of the function. Alternatively, mixed membership

models can be thought of as a generalization of global clustering, where the membership

allocation parameters do not change with respect to the domain of the random function.

In this chapter, we introduce the concept of mixed membership functions to the broader

field of functional data analysis. Assuming a known number of latent functional features,
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we show how a functional mixed membership process is naturally defined through a simple

extension of finite Gaussian process (GP) mixture models, by allowing mixing proportions to

be indexed at the level of individual sample paths. Some sophistication is introduced through

the multivariate treatment of the underlying functional features to ensure sampling models

of adequate expressivity. Specifically, we represent a family of multivariate GPs through

the multivariate Karhunen-Loève construction of Happ and Greven [2018]. Using this idea,

we jointly model the mean and covariance structures of the underlying functional features,

and derive a sampling model through the ensuing finite dimensional marginal distributions.

Since näıve GP mixture models assume that observations can only belong to one cluster, they

only require the univariate treatment of the underlying GPs. However, when sample paths

are allowed partial membership in multiple clusters, we need to either assume independence

between clusters or estimate the cross-covariance functions. Since the assumption of inde-

pendence does not often hold in practice, we propose a model that allows us to jointly model

the covariance and cross-covariance functions through the eigenfunctions of the multivariate

covariance operator. Typically, this representation would require sampling on a constrained

space to ensure that the eigenfunctions are mutually orthogonal. However, in this context,

we are able to relax these constraints and keep many of the desirable theoretical properties

of our model by extending the multiplicative gamma process shrinkage prior proposed by

Bhattacharya and Dunson [2011].

The remainder of the chapter is organized as follows. Section 3.1 formalizes the concept

of functional mixed membership as a natural extension of functional clustering. Section

3.2 discusses Bayesian inference through posterior simulation, and establishes conditions for

weak posterior consistency. Section 3.3 carries out two simulation studies to assess operating

characteristics on engineered data, and illustrates the application of the proposed model to

a case study involving functional brain imaging through electroencephalography (EEG).

Finally, we conclude our exposition with a critical discussion of methodological challenges

and related literature in Section 3.4.
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3.1 Functional Mixed Membership

Functional data analysis (FDA) focuses on methods to analyze the sample paths of an

underlying continuous stochastic process f : T → R, where T is a compact subset of Rd. In

the iid setting, a typical characterization of these stochastic processes relies on the definition

of the mean function, µ(t) = E (f(t)), and the covariance function, C(s, t) = Cov (f(s), f(t)),

where t, s ∈ T . In this paper, we focus on jointly modelingK underlying stochastic processes,

where each stochastic process represents one cluster. In this section, we will proceed under

the assumption that the number of clusters, K, is known a priori. While K is fixed for the

technical developments of the paper, Section 3.3.2 discusses the use of various information

criteria for selection of the optimal number of features.

Let f (k) : T → R denote the underlying stochastic process associated with the kth cluster.

Let µ(k) and C(k) be, respectively, the mean and covariance function corresponding to the kth

stochastic process. To ensure desirable properties such as decompositions, FDA often makes

the assumption that the random functions are elements in a Hilbert space. Specifically,

we will assume f (k) ∈ L2(T )
(∫

T |f
(k)(t)|2dt <∞

)
. Within this context, a typical model-

based representation of functional clustering assumes that each underlying process is a latent

Gaussian process, f (k) ∼ GP
(
µ(k), C(k)

)
, with sample paths fi (i = 1, 2, . . . , N), assumed to

be independently drawn from a finite GP mixture

P
(
fi | ρ(1:K), µ(1:K), C(1:K)

)
=

K∑
k=1

ρ(k) GP
(
fi | µ(k), C(k)

)
;

where ρ(k) is the mixing proportion (fraction of sample paths) for component k, such that∑K
k=1 ρ

(k) = 1. Equivalently, by introducing latent variables πi = (πi1, . . . , πiK), such that

πi ∼iid Multinomial(1; ρ(1), . . . , ρ(K)), it is easy to show that,

fi | π1, . . . ,πN , µ
(1:K), C(1:K) ∼ GP

(
K∑
k=1

πikµ
(k),

K∑
k=1

πikC
(k)

)
. (3.1)
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Mixed membership is naturally defined by generalizing the finite mixture model to allow

each sample path to belong to a finite positive number of mixture components, which we call

functional features [Heller et al., 2008, Broderick et al., 2013]. By introducing continuous

latent variables zi = (Zi1, . . . , ZiK)
′, where Zik ∈ (0, 1) and

∑K
k=1 Zik = 1, the general form

of the proposed mixed membership model follows the following convex combination:

fi | z1, . . . , zN =
K∑
k=1

Zikf
(k). (3.2)

In equation 3.1, since each observation only belongs to one cluster, the Gaussian processes,

f (k), are most commonly assumed to be mutually independent. However, assuming that

the Gaussian processes, f (k), are independent in equation 3.2 leads to strong assumptions

on the data generating process. The same assumption is, however, too restrictive for the

model in equation 3.2. Thus, we will let C(k,k′) denote the cross-covariance function between

f (k) and f (k′), and denote with C the collection of covariance and cross-covariance functions.

Therefore, the sampling model for the proposed mixed membership scheme can be written

as

fi | z1, . . . , zN , µ(1:K),C ∼ GP
(

K∑
k=1

Zikµ
(k),

K∑
k=1

Z2
ikC

(k) +
K∑
k=1

∑
k′ ̸=k

ZikZik′C
(k,k′)

)
. (3.3)

Given a finite evaluation grid ti = (ti1, . . . , tini
)′, the process’ finite dimensional marginal

distribution can be characterized such that

fi(ti) | z1, . . . , zN , µ(1:K),C ∼ N
(

K∑
k=1

Zikµ
(k)(ti), Ci(ti, ti)

)
, (3.4)

where Ci(ti, ti) =
∑K

k=1 Z
2
ikC

(k)(ti, ti) +
∑K

k=1

∑
k′ ̸=k ZikZik′C

(k,k′)(ti, ti). Since we do not

assume that the functional features are independent, a concise characterization of the K

stochastic processes is needed in order to ensure that our model is scalable and computa-

tionally tractable. In Section 3.1.1, we review the multivariate Karhunen-Loève theorem
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Figure 3.1: Generative model illustration. (Left panel) Data generated under the functional
clustering framework. (Right panel) Data generated under a mixed membership framework.

[Happ and Greven, 2018], which will provide a joint characterization of the latent functional

features,
(
f (1), f (2), . . . , f (K)

)
. Using this joint characterization, we are able to specify a

scalable sampling model for the finite-dimensional marginal distribution found in equation

3.4, which is described in full detail in Section 3.1.2.

3.1.1 Multivariate Karhunen-Loève Characterization

To aid computation, we will make the assumption that f (k) is a smooth function and is in

the P -dimensional subspace, S ⊂ L2(T ), spanned by a set of linearly independent square-

integrable basis functions, {b1, . . . , bP} (bp : T → R). While the choice of basis functions are

user-defined, in practice B-splines (or the tensor product of B-splines for T ⊂ Rd for d ≥ 2)

are a common choice due to their flexibility. Alternative basis systems can be selected in

relation to application-specific considerations.

The multivariate Karhunen-Loève (KL) theorem, proposed by Ramsay and Silverman

[2005b], can be used to jointly decompose our K stochastic processes. In order for our
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model to be able to handle higher dimensional functional data, such as images, we will use

the extension of the multivariate KL theorem for different dimensional domains proposed by

Happ and Greven [2018]. While they state the theorem in full generality, we will only be

considering the case when f (k) ∈ S. In this section, we will show that the multivariate KL

theorem for different dimensional domains still holds under our assumption that f (k) ∈ S,

given that the conditions in lemma 4 are satisfied.

We will start by defining the multivariate function f(t) in the following way:

f(t) :=
(
f (1)

(
t(1)
)
, f (2)

(
t(2)
)
, . . . , f (K)

(
t(K)

))
, (3.5)

where t is a K-tuple such that t =
(
t(1), t(2), . . . , t(K)

)
, where t(1), t(2), . . . , t(K) ∈ T . This

construction allows for the joint representation of K stochastic processes, each at different

points in their domain. Since f (k) ∈ S, we have that f ∈H := S ×S × · · · ×S := SK . We

define the corresponding mean of f(t), such that

µ(t) :=
(
µ(1)

(
t(1)
)
, µ(2)

(
t(2)
)
, . . . , µ(K)

(
t(K)

))
,

where µ(t) ∈H, and the mean-centered cross-covariance functions as

C(k,k′)(s, t) := Cov
(
f (k)(s)− µ(k)(s), f (k′)(t)− µ(k′)(t)

)
,

for s, t ∈ T .

Lemma 3. S is a closed linear subspace of L2(T ).

Proofs for all results are given in Appendix Chapter B. From lemma 3, since S is a

closed linear subspace of L2(T ), we have that S is a Hilbert space with respect to the inner
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product ⟨f, g⟩S =
∫
T f(t)g(t)dt where f, g ∈ S. By defining the inner product on H as

⟨f ,g⟩H :=
K∑
k=1

∫
T
f (k)

(
t(k)
)
g(k)

(
t(k)
)
dt(k), (3.6)

where f ,g ∈H, we have thatH is the direct sum of Hilbert spaces. SinceH is the direct sum

of Hilbert spaces, H is a Hilbert space [Reed and Simon, 1972]. Thus we have constructed

a subspace H using our assumption that f (k) ∈ S, which satisfies proposition 1 in Happ

and Greven [2018]. Letting f ∈ H, we can define the covariance operator K : H → H

element-wise in the following way:

(Kf)(k) (t) :=
〈
C(·,k) (·, t(k)) , f〉H =

K∑
k′=1

∫
T
C(k′,k)

(
s, t(k)

)
f (k′)(s)ds. (3.7)

Since we made the assumption f (k) ∈ S, we can simplify equation 3.7. Since S is the span

of the basis functions, we have that f (k)(t) − µ(k)(t) =
∑P

p=1 θ(k,p)bp(t) = B′(t)θk, for some

θk ∈ RP and B′(t) = [b1(t) · · · bP (t)]. Thus we can see that

C(k,k′)(s, t) = Cov (B′(s)θk,B
′(t)θk′) = B′(s)Cov (θk,θk′)B(t), (3.8)

and we can rewrite equation 3.7 as (Kf)(k) (t) =
∑K

k′=1

∫
T B′(s)Cov (θk′ ,θk)B

(
t(k)
)
f (k′)(s)ds,

for some f ∈ H. The following lemma establishes conditions under which K is a bounded

and compact operator, which is a necessary condition for the multivariate KL decomposition

to exist.

Lemma 4. K is a bounded and compact operator if we have that

1. the basis functions, b1, . . . , bP , are uniformly continuous

2. there exists M ∈ R such that
∣∣Cov (θ(k,p), θ(k′,p′))∣∣ ≤M .

Assuming the conditions specified in lemma 4 hold, by the Hilbert-Schmidt theorem,
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since K is a bounded, compact, and self-adjoint operator, we know that there exists real

eigenvalues λ1, . . . , λKP and a complete set of eigenfunctions Ψ1, . . . ,ΨKP ∈ H such that

KΨp = λpΨp, for p = 1, . . . , KP. Since K is a non-negative operator, we know that λp ≥ 0

for p = 1, . . . , KP (Happ and Greven [2018], proposition 2). From theorem VI.17 of Reed

and Simon [1972], we have that the positive, bounded, self-adjoint, and compact operator K

can be written as Kf =
∑KP

p=1 λp ⟨Ψp, f⟩HΨp. Thus from equation 3.7, we have that

K∑
k′=1

∫
T
C(k′,k)

(
s, t(k)

)
f (k′)(s)ds =

K∑
k′=1

∫
T

(
KP∑
p=1

λpΨ
(k′)
p (s)Ψ(k)

p

(
t(k)
))

f (k′)(s)ds,

where Ψ
(k)
p (t(k)) is the kth element of Ψp(t). Thus we can see that the covariance kernel can

be written as the finite sum of eigenfunctions and eigenvalues,

C(k,k′)(s, t) =
KP∑
p=1

λpΨ
(k)
p (s)Ψ(k′)

p (t). (3.9)

Since we are working under the assumption that the random function, f ∈H, we can use a

modified version of the Multivariate KL theorem. Considering that {Ψ1, . . . ,ΨKP} form a

complete basis for H and f(t)− µ(t) ∈H, we have

f(t)− µ(t) = PH ◦ (f − µ) (t) =
KP∑
p=1

⟨Ψp, f − µ⟩HΨp(t),

where PH is the projection operator onto H. Letting ρp = ⟨Ψp, f − µ⟩H, we have that

f(t) − µ(t) =
∑KP

p=1 ρpΨp(t), where E(ρp) = 0 and Cov(ρp, ρp′) = λpδpp′ (Happ and Greven

[2018], proposition 4).

Since Ψp ∈ H and µ ∈ H, there exists νk ∈ RP and ϕkp ∈ RP such that µ(k)(t) =

ν ′
kB
(
t(k)
)
and

√
λpΨ

(k)
p (t) = ϕ′

kpB
(
t(k)
)
:= Φ(k)

p (t). These scaled eigenfunctions, Φ(k)
p (t),

are used over Ψ(k)
p (t) because they fully specify the covariance structure of the latent fea-

tures, as described in 3.1.2. From a modeling prospective, the scaled eigenfunction param-
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eterization is advantageous as it admits a prior model based on the multiplicative gamma

process shrinkage prior proposed by Bhattacharya and Dunson [2011], allowing for adaptive

regularized estimation [Shamshoian et al., 2022]. Thus we have that

f (k)(t) = µ(k)(t) +
KP∑
p=1

χpΦ
(k)
p (t) = ν ′

kB
(
t(k)
)
+

KP∑
p=1

χpϕ
′
kpB

(
t(k)
)
, (3.10)

where χp =
〈
(λp)

−1/2Ψp, f − µ
〉
H, E(χp) = 0, and Cov(χp, χp′) = δpp′ . Equation 3.10 gives

us a way to jointly decompose any realization of the K stochastic processes, f ∈ H, as a

finite weighted sum of basis functions.

Corollary 1. If χp ∼iid N (0, 1), then the random function f(t) follows a multivariate GP

with means µ(k)(t) = ν ′
kB
(
t(k)
)
, and cross-covariance functions C(k,k′)(s, t) =

B′(s)
∑KP

p=1(ϕkpϕ
′
k′p)B(t).

3.1.2 Functional Mixed Membership Process

In this section, we will describe a Bayesian additive model that allows for the constructive

representation of mixed memberships for functional data. Our model allows for direct infer-

ence on the mean and covariance structures of the K stochastic processes, which are often

of scientific interest. To aid computational tractability, we will use the joint decomposition

described in Section 3.1.1. In this section, we will make the assumption that f (k) ∈ S, and

that the conditions from lemma 4 hold.

We aim to model the mixed membership of N observed sample paths, {Yi(.)}Ni=1, to

K latent functional features f =
(
f (1), f (2), . . . , f (K)

)
. Assuming each path is observed

over ni evaluation points ti = [ti1 · · · tini
]′, without loss of generality we define a sampling

model for the finite dimensional marginals of Yi(ti). To allow for path-specific partial

membership, we extend the finite mixture model in equation 3.1 and introduce path-specific

mixing proportions Zik ∈ (0, 1), such that
∑K

k=1 Zik = 1, for i = 1, 2, . . . , N .
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Let S(ti) = [B(t1) · · ·B(tni
)] ∈ RP×ni , χim ∼ N (0, 1), and Θ denote a collection of

model parameters. Let M ≤ KP be the number of eigenfunctions used to approximate the

covariance structure of the K stochastic processes. Using the decomposition of f (k)(t) in

equation 3.10 and assuming a normal distribution on Yi(ti), we obtain:

Yi(ti)|Θ ∼ N

{
K∑
k=1

Zik

(
S′(ti)νk +

M∑
m=1

χimS
′(ti)ϕkm

)
, σ2Ini

}
. (3.11)

If we integrate out the latent χim variables, we obtain a more transparent form for the

proposed functional mixed membership process. Specifically, we have

Yi(ti)|Θ−χ ∼ N

{
K∑
k=1

ZikS
′(ti)νk, Vi + σ2Ini

}
, (3.12)

where Θ−χ is the collection of our model parameters excluding the χim variables, and

Vi =
∑K

k=1

∑K
k′=1 ZikZik′

{
S′(ti)

∑M
m=1 (ϕkmϕ

′
k′m)S(ti)

}
. Thus, for a sample path, we have

that the mixed membership mean is a convex combination of the functional feature means,

and the mixed membership covariance, is a weighted sum of the covariance and cross-

covariance functions between different functional features, following from the multivariate

KL characterization in Section 3.1.1. Furthermore, from equation 3.9 it is easy to show that,

for large enough M , we have S′(ti)
∑M

m=1

(
ϕkpϕ

′
k′p

)
S(ti) ≈ C(k,k′)(ti, ti),with equality when

M = KP .

Mixed membership models can be thought of as a generalization of clustering. As such,

these stochastic schemes are characterized by an inherent lack of likelihood identifiability. A

typical source of non-indentifiability is the common label switching problem. To deal with

the label switching problem, a relabelling algorithm can be derived for this model directly

from the work of Stephens [2000]. A second source of non-identifiabilty stems from allowing

Zik to be continuous random variables. Specifically, consider a model with 2 features, and let

Θ0 be the set of “true” parameters. Let Z∗
i1 = 0.5(Zi1)0 and Z∗

i2 = (Zi2)0 + 0.5(Zi1)0. If we
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let ν∗
1 = 2(ν1)0 − (ν2)0, ν

∗
2 = (ν2)0, ϕ

∗
1m = 2(ϕ1m)0 − (ϕ2m)0, ϕ

∗
2m = (ϕ2m)0, χ

∗
im = (χim)0,

and (σ2)∗ = σ2
0, we have that P (Yi(t)|Θ0) = P (Yi(t)|Θ∗) (equation 3.11). Thus we can

see that our model is not identifiable, and we will refer to this problem as the rescaling

problem. To address the rescaling problem, we developed the Membership Rescale Algorithm

(Algorithm 4). This algorithm will rescale the allocation parameters so that at least one

observation will completely belong to each of the two functional features. Section B.3.4 also

briefly reviews the work of Chen et al. [2022] which focuses on identifiability when we have

more than two functional features. A third non-identifiability problem may arise numerically

as a form of concurvity, i.e. when νk′ ∝ ϕkm in equation 3.11. Typically, overestimation of

the magnitude of ϕkm, may result in small variance estimates for the allocation parameters

(smaller credible intervals). This phenomenon does need to be considered when studying

how well we can recover the model parameters, as in Section 3.3.1, but it is typically of little

practical relevance in applications.

3.1.3 Prior Distributions and Model Specification

The sampling model in Section 3.1.2, allows a practitioner to select how many eigenfunctions

are to be used in the approximation of the covariance function. In the case where ofM = KP ,

we have a fully saturated model and can represent any realization f ∈ H. In equation

3.10, Φ parameters are mutually orthogonal (where orthogonality is defined by the inner

product defined in equation 3.6), and have a magnitude proportional to the square root of

the corresponding eigenvalue, λp. Thus, a modified version of the multiplicative gamma

process shrinkage prior proposed by Bhattacharya and Dunson [2011] will be used as our

prior for ϕkm. By using this prior, we promote shrinkage across the ϕkm coefficient vectors,

with increasing prior shrinkage towards zero as m increases.

To facilitate MCMC sampling from the posterior target we will remove the assumption

that Φ parameters are mutually orthogonal. Even though Φ parameters can no longer

be thought of as scaled eigenfunctions, posterior inference can still be conducted on the
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eigenfunctions by post-processing posterior samples of ϕkm (given that we can recover the

true covariance operator). Specifically, given posterior samples from ϕkm, we obtain posterior

realizations for the covariance function, and then calculate the eigenpairs of the posterior

samples of the covariance operator using the method described in Happ and Greven [2018].

Thus, letting ϕkpm be the pth element of ϕkm, we have

ϕkpm|γkpm, τ̃mk ∼ N
(
0, γ−1

kpmτ̃
−1
mk

)
, γkpm ∼ Γ (νγ/2, νγ/2) , τ̃mk =

m∏
n=1

δnk,

δ1k|a1k ∼ Γ(a1k, 1), δjk|a2k ∼ Γ(a2k, 1), a1k ∼ Γ(α1, β1), a2k ∼ Γ(α2, β2),

where 1 ≤ k ≤ K, 1 ≤ p ≤ P , 1 ≤ m ≤ M , and 2 ≤ j ≤ M . In order for us to promote

shrinkage across the M matrices, we need that δjk > 1. Thus letting α2 > β2, we have that

E(δjk) > 1, which will promote shrinkage. In this construction, we allow for different rates of

shrinkage across different functional features, which is particularly important in cases where

the covariance functions of different features have different magnitudes. In cases where the

magnitudes of the covariance functions are different, we would expect the δmk to be relatively

smaller in the k associated with the functional feature with a large covariance function.

To promote adaptive smoothing in the mean function, we will use a first order random

walk penalty proposed by Lang and Brezger [2004]. The first order random walk penalty

penalizes differences in adjacent B-spline coefficients. In the case where T ⊂ R, we have

that P (νk|τk) ∝ exp
(
− τk

2

∑P−1
p=1

(
ν ′pk − ν(p+1)k

)2)
, for k = 1, . . . , K, where τk ∼ Γ(α, β) and

νpk is the pth element of νk. Since we have that Zik ∈ (0, 1) and
∑K

k=1 Zik = 1, it is natural

to consider prior Dirichlet sampling for zi = [Zi1 · · ·ZiK ]. Therefore, following Heller et al.

[2008], we have

zi | π, α3 ∼iid Dir(α3π), π ∼ Dir(c), α3 ∼ Exp(b)

for i = 1, . . . , N . Lastly, we will use a conjugate prior for our random error component of
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the model, such that σ2 ∼ IG(α0, β0). While we relax the assumption of orthogonality, in

Section B.3.1, we outline an alternative sampling scheme where we impose the condition

that the Φ parameters form orthogonal eigenfunctions using the work of Kowal et al. [2017].

3.2 Posterior Inference

Statistical inference is based on Markov chain Monte Carlo samples from the posterior distri-

bution, by using the Metropolis-within-Gibbs algorithm. While the näıve sampling scheme is

relatively simple, ensuring good exploration of the posterior target can be challenging due to

the potentially multimodal nature of the posterior distribution. Specifically, some sensitivity

of results to the starting values of the chain can be observed for some data. Section B.3.2

outlines an algorithm for the selection of informed starting values. Furthermore, to mitigate

sensitivity to chain initialization, we also implemented a tempered transition scheme, which

improves the mixing of the Markov chain by allowing for transitions between modal config-

uration of the target. Implementation details for the proposed tempered transition scheme

are reported in Section B.3.3. Additional information on sampling schemes, as well as how

to construct simultaneous confidence intervals can be found in Section B.4.

3.2.1 Weak Posterior Consistency

In the previous section we saw that the Φ parameters are not assumed to be mutually or-

thogonal. By removing this constraint, we facilitate MCMC sampling from the posterior

target and can perform inference on the eigenpairs of the covariance operator, as long as

we can recover the covariance structure. Due to the complex identifiability issues men-

tioned in Section 3.1.2, establishing weak posterior consistency with unknown allocation

parameters unattainable, even if we include the orthogonality constraint on the Φ param-

eters. However, the model becomes identifiable when we condition on the allocation pa-

rameters. In this section, we show that we can achieve conditional weak posterior consis-
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tency without enforcing the orthogonality constraint of the Φ parameter. Therefore, we

will show that conditional on the allocation parameters, relaxing the orthogonality con-

straint does not affect our ability to recover the mean and covariance structure of the K

underlying stochastic processes from equation 3.12. Let Π be the prior distribution on

ω := {ν1, . . . ,νK ,Σ11, . . . ,Σ1K , . . . ,ΣKK , σ
2}, where Σkk′ :=

∑KP
p=1

(
ϕkpϕ

′
k′p

)
. We will be

proving weak posterior consistency with respect to the parameters Σkk′ because the pa-

rameters ϕkp are non-identifiable. Since the covariance and cross-covariance structure are

completely specified by the Σkk′ parameters, the lack of identifiability of the ϕkp parameters

bears no importance on inferential considerations. We will denote the true set of parame-

ter values as ω0 = {(ν1)0, . . . , (νK)0, (Σ11)0, . . . , (Σ1K)0, . . . , (ΣKK)0, σ
2
0} . In order to prove

weak posterior consistency, will make the following assumptions:

Assumption 3. The observed realizations Y1, . . . ,YN are observed on the same grid of

R > KP points in the domain, say {t1, . . . , tR}.

Assumption 4. The variables Zik are known a-priori for i = 1, . . . , N and k = 1, . . . , K.

Assumption 5. The true parameter modeling the random noise is positive (σ2
0 > 0).

In order to prove weak posterior consistency, we will first specify the following quanti-

ties related to the Kullback–Leibler (KL) divergence. Following the notation of Choi and

Schervish [2007], we will define the following quantities

Λi(ω0,ω) = log

(
fi(Yi;ω0)

fi(Yi;ω)

)
, Ki(ω0,ω) = Eω0(Λi(ω0,ω)), Vi(ω0,ω) = Varω0(Λi(ω0,ω)),

where fi(Yi;ω0) is the likelihood under ω0. To simplify the notation, we will define the
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following two quantities

µi =
K∑
k=1

ZikS
′(t)νk,

Σi =
K∑
k=1

K∑
k′=1

ZikZik′

(
S′(t)

KP∑
p=1

(
ϕkpϕ

′
k′p

)
S(t)

)
+ σ2IR = U′

iDiUi + σ2IR,

where U′
iDiUi is the corresponding spectral decomposition. Let dil be the lth diagonal

element of Di. Let Ωϵ(ω0) be the set of parameters such that the KL divergence is less than

some ϵ > 0 (Ωϵ(ω0) := {ω : Ki(ω0,ω) < ϵ for all i}). Let a, b ∈ R be such that a > 1 and b >

0, and define B(ω0) :=
{
ω : 1

a
((dil)0 + σ2

0) ≤ dil + σ2 ≤ a ((dil)0 + σ2
0) , ∥ (µi)0 − µi∥ ≤ b

}
.

Lemma 5. Let C(ω0, ϵ) := B(ω0) ∩Ωϵ(ω0). Thus for ω0 ∈ Ω and ϵ > 0, there exists a > 1

and b > 0 such that (1)
∑∞

i=1
Vi(ω0,ω)

i2
<∞, for any ω ∈ C(ω0, ϵ) and (2) Π (ω ∈ C(ω0, ϵ)) >

0.

Lemma 5 shows that the prior probability of our parameters being arbitrarily close (where

the measure of closeness is defined by the KL divergence) to the true parameters is positive.

Since Y1, . . . ,YN are not identically distributed, condition (1) in lemma 5 is need in order

to prove lemma 6.

Lemma 6. Under assumptions 3-5, the posterior distribution, ΠN(.|Y1, . . . ,YN), is weakly

consistent at ω0 ∈ Ω.

All proofs are provided in the supplemental appendix. Lemma 6 shows us that condi-

tional on the allocation parameters, we are able to recover the covariance structure of the

K stochastic processes. Thus, Relaxing the orthogonality constraint on the ϕkm parameters

does not affect our ability to perform posterior inference on the main functions of scientific

interest. Inference on the eigenstructure can still be performed by calculating the eigenvalues

and eigenfunctions of the covariance operator using the MCMC samples of the ϕkm param-

eter. Finally, we point out that, in most cases, the parameters Zik are unknown. While
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theoretical guarantees for consistent estimation of the latent mixed allocation parameters is

still elusive, we provide some empirical evidence of convergence in Section 3.3.1.

3.3 Case Studies and Experiments on Simulated Data

3.3.1 Simulation Study 1

In this simulation study, we examine how well our model can recover the mean and covariance

functions when we vary the number of observed functions. The model used in this section will

be a mixed membership model with 2 functional features (K = 2), that can be represented

by a basis constructed of 8 b-splines (P = 8), and uses 3 eigenfunctions (M = 3). We

consider the case when we have 40, 80, and 160 observed functional observations, where each

observation is uniformly observed at 100 time points. We then simulated 50 datasets for

each of the three cases (N = 40, 80, 160). Section B.2.1 goes into further detail of how the

model parameters were drawn and how estimates of all quantities of interest were calculated

in this simulation. To measure how well we recovered the functions of interest, we estimated

the relative mean integrated square error (R-MISE) of the mean, covariance, and cross-

covariance functions, where R-MISE =
∫
{f(t)−f̂(t)}2dt∫

f(t)2dt
× 100%. In this case, the f̂ used to

estimate the R-MISE is the estimated posterior median of the function f . To measure how

well we recovered the allocation parameters, Zik, we calculated the root-mean-square error

(RMSE).

From Figure 3.2, we can see that we have good recovery of the mean structure with as

little as 40 functional observations. While the R-MISE of the mean functions improve as

we increase the number of functional observations (N), this improvement will likely have

little practical impact. However, when looking at the recovery of the covariance and cross-

covariance functions, we can see that the R-MISE noticeably decreases as more functional

observations are added. As the recovery of the mean and covariance structures improve, the

recovery of the allocation structure (Z) improves. Visualizations of the recovered covariance
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Figure 3.2: R-MISE values for the latent feature means and cross-covariances, as well as
RMSE values for the allocation parameters, evaluated as we increase sample size (number
of functional observations).

structures for one of the datasets can be found in Section B.2.1.

3.3.2 Simulation Study 2

Choosing the number of latent features can be challenging, especially when no prior knowl-

edge is available for this quantity. Information criteria, such as the AIC, BIC, or DIC, are

often used to aid practitioners in the selection of a data-supported value for K. In this

simulation, we evaluate how various types of information criteria perform in recovering the

true number of latent features. To do this, we simulate 10 different data-sets, each with 200

functional observations, from a mixed membership model with three functional features. We

then calculate these information criteria on the 10 data-sets for mixed membership models

where K = 2, 3, 4, 5. In addition to examining how AIC, BIC, and DIC perform, we will
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Figure 3.3: AIC, BIC, DIC, and the average log-likelihood evaluated for each of the 10
simulated data-sets.

also look at the performance of simple heuristics such as the “elbow-method”. Additional

information on how the simulation study was conducted, as well as definitions of the infor-

mation criterion, can be found in Section B.2.2. As specified in Section B.2.2, the optimal

model should have the largest BIC, smallest AIC, and smallest DIC.

From the simulation results presented in Figure 3.3, we can see that on average, each

information criterion overestimated the number of functional features in the model. While

the three information criteria seem to greatly penalize models that do not have enough

features, they do not seem punish overfit models to a great enough extent. Figure 3.3 also

shows the average log-likelihood of the models. As expected, the log-likelihood increases as

we add more features, however, we can see that there is an elbow at K = 3 for most of the

models. Using the “elbow-method” led to selecting the correct number of latent functional

features 8 times out of 10, while BIC picked the correct number of latent functional features

twice. DIC and AIC were found to be the least reliable information criteria, only choosing

the correct number of functional features once. Thus, through empirical consideration,

we suggest using the “elbow-method” along with the information criteria discussed in this
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Figure 3.4: Preliminary Data Clustering. (Left Panel) Recovered means of Model-based
functional clustering with 4 clusters. (Right Panel) Alpha frequency patterns for a sample
of EEG recordings from the T8 electrode of children (TD and ASD). Individual observations
are color-coded to match the estimated cluster membership.

section to aid a final selection for the number of latent features to be interpreted in analyses.

While formal considerations of model-selection consistency are out of scope for the current

contribution, we maintain that some of these techniques are best interpreted in the context of

data exploration, with a potential for great improvement in interpretation if semi-supervised

considerations allow for an a-priori informed choice of K.

3.3.3 A Case Study of EEG in ASD

Autism spectrum disorder (ASD) is a term used to describe individuals with a collection

of social communication deficits and restricted or repetitive sensory-motor behaviors [Lord

et al., 2018]. While once considered a very rare disorder with very specific symptoms, today

the definition is more broad and is now thought of as a spectrum. Some individuals with ASD

may have minor symptoms, while other may have very severe symptoms and require lifelong

support. To diagnose a child with ASD, pediatricians and psychiatrists often administer a

variety of test and come to a diagnosis based off of the test results and reports from the

parents or caregivers. In this case study, we will be using electroencephalogram (EEG) data
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that was previously analyzed by Scheffler et al. [2019] in the context of regression. The

data-set consists of EEG recordings of 39 typically developing (TD) children and 58 children

with ASD between the ages of 2 and 12 years old, which were analyzed in the frequency

domain. Additional information on how the study was conducted can be found in Section

B.2.3.

Scheffler et al. [2019] found that the T8 electrode, corresponding to the right temporal

region, had the highest average contribution to the log-odds of ASD diagnosis, so we will

specifically be using data from the T8 electrode in our mixed membership model. We focus

our analysis to the alpha band of frequencies (6 to 14 Hz), whose patterns at rest are

thought to play a role in neural coordination and communication between distributed brain

regions. As clinicians examine sample paths for the two cohorts, shown in Figure 3.4 (right

panel), they are often interested in the location of a single prominent peak in the spectral

density located within the alpha frequency band called the peak alpha frequency (PAF). This

quantity has been previously liked to neural development in TD children [Rodŕıguez-Mart́ınez

et al., 2017]. Scheffler et al. [2019] found that as TD children grow, the peak becomes more

prominent and the PAF shifts to a higher frequency. Conversely, a discernible PAF pattern

is attenuated for most children with ASD when compared to their TD counterpart.

A visual examination of the data in Figure 3.4 (right panel) anticipates the potential

inadequacy of cluster analysis in this application, as path-specific heterogeneity does not

seem to define well separated sub-populations. In fact, if we cluster our data using the

model in Pya Arnqvist et al. [2021] with K = 4 (BIC-selection), we find cluster means of

dubious interpretability, and poor separation of sample paths between clusters.

In contrast to classical clustering, we use a mixed membership model with only 2 func-

tional features (K = 2), (AIC-BIC-selection). We note that the enhanced flexibility of

mixed membership models, induces parsimony in the number of pure mixture components

supported by the data. In particular, the mean function of the first feature, depicted in

Figure 3.5, can be interpreted as 1/f noise, or pink noise. This component noise is expected
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Figure 3.5: Posterior median and 95% credible (pointwise credible interval in dark gray and
simultaneous credible interval in light gray) of the mean function for each functional feature.

to be found in every individual to some extent, but we can see that the first feature has

no discernible alpha peak. The mean function of the second feature captures a distinct al-

pha peak, typically observed in EEGs of older neurotypical individuals. These two features

help differentiation between periodic (alpha waves) and aperiodic (1/f trend) neural activity

patterns, which coexist in the EEG spectrum.

In this context, a model of uncertain membership would be necessarily inadequate to

describe the observed sample path heterogeneity, as we would not naturally think of subjects

in our sample to belong to one or the other cluster. Instead, assuming mixed membership

between the two feature processes is likely to represent a more realistic and interpretable data

generating mechanism, as we conceptualize periodic and aperiodic neural activity patterns

to mix continuously.

From Figure 3.6, we find that TD children are highly likely to load heavily on feature

2 (well defined PAF), whereas ASD children exhibit a higher level of heterogeneity. These

loadings suggest that clear alpha peaks take longer to emerge in children with ASD, when

compared to their typically developing counterparts.
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Figure 3.6: Posterior median for the membership to feature 1, stratified by clinical cohort.
The red triangles represent the mean (feature-1)-membership for each clinical group.

Overall, our findings confirm related evidence in the scientific literature on developmental

neuroimaging, but offer a completely novel point of view in quantifying group membership as

part of a spectrum. An in-depth comparison between our method and alternative methods

such as FPCA and functional clustering are reported in Section B.2.3. An extended analysis

of multi-channel EEG for the same case study is reported in Section B.2.4, investigating how

spatial patterns vary across the scalp.

3.4 Discussion

This manuscript introduces the concept of functional mixed membership to the broader field

of functional data analysis. Mixed membership is defined as a natural generalization of the

concept of uncertain membership, which underlies the many approaches to functional cluster-

ing discussed in the literature. Our discussion is carried out within the context of Bayesian

analysis. In this paper, a coherent and flexible sampling model is introduced by defining

a mixed membership Gaussian process through projections on the linear subspace spanned

by a suitable set of basis functions. Within this context, we leverage the multivariate KL
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formulation [Happ and Greven, 2018], to define a model ensuring weak conditional posterior

consistency. Inference is carried out through standard MCMC with the inclusion of tempered

transitions to improve Markov chain exploration over differential modal configurations.

Our work is closely related to the approach introduced by Heller et al. [2008], who ex-

tended the theory of mixed membership models in the Bayesian framework for multivariate

exponential family data. For Gaussian marginal distributions, their representation implies

multivariate normal observations, with the natural parameters modeled as convex combina-

tions of the individual cluster’s natural parameters. While intuitively appealing, this idea

has important drawbacks. Crucially, the differential entropy of observations in multiple clus-

ters is constrained to be smaller than the minimum differential entropy across clusters, which

may not be realistic in many sampling scenarios.

The main computational challenge associated MCMC simulations from the posterior

target has to do with the presence of multiple modal configurations for the model parameters,

which is typical of mixture models. To ensure good mixing and irreducible exploration of

the target, our implementation included tempered transitions (Section B.3.3) allowing the

Markov chain to cross areas of low posterior density. We also recommend non-näıve chain

initialization by using the Multiple Start Algorithm (Section B.3.2). As it is often the case

for non-trivial posterior simulations, careful consideration is needed in tuning temperature

ladders and the associated tuning parameters.

Information criteria are often used to aid the choice of K in the context of mixture

models. However, in Section 3.3.2, we saw that they often overestimated the number of

features in our model. In simulations, we observed that using the “elbow-method” could

lead to the selection of the correct number of features with good frequency. The literature

has discussed non-parametric approaches to feature allocation models by using, for example,

the Indian Buffet Processes [Griffiths and Ghahramani, 2011], but little is known about

operating characteristics of these proposed procedures and little has been discussed about

the ensuing need to carry out statistical inference across changing-dimensions. Rousseau and
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Mengersen [2011], as well as Nguyen [2013], proved that under certain conditions, overfitted

mixture model have a posterior distribution that converges to a set of parameters where the

only components with positive weight will be the “true” parameters (the rest will be zero).

However, by allowing the membership parameters to be a continuous random variable we

introduce a stronger type of non-identifiability, which led to the rescaling problem discussed

in Section 3.1.2. Therefore, more work on the posterior convergence of overfitted models is

needed for mixed membership models.

To remove the interpretability problems caused by the rescaling problem, we recommend

using the Membership Rescale Algorithm (Algorithm 4) when using a model with only

two latent features. The Membership Rescale Algorithm ensures that the entire range of

the simplex is used, guaranteeing that at least one observation completely lies within each

latent feature. Maximizing the volume of the convex polytope constructed by the allocation

parameters can be more challenging when we have more than 2 functional features, but it

can be reformulated as solving an optimization problem (Section B.3.4). In practice, we

found that rescaling was seldomly needed when working with 3 or more functional features.

An R package for fitting functional mixed membership models is available for download at

https://github.com/ndmarco/BayesFMMM.
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CHAPTER 4

Covariate Adjusted Functional Mixed Membership

Models

4.1 Introduction

Clustering analysis is a unsupervised, exploratory task that aims to group similar observa-

tions into “clusters” to explain heterogeneity found in a dataset. While we often have little

previous knowledge on how the data are correlated, there are certain situations in which

the distribution of the data is dependent on a covariate of interest, leading to the need for

covariate-dependent clustering. Covariate-dependent clustering has been popular in the field

of clinical trials [Müller et al., 2011], where conditioning on factors like dose response, tumor

grade, and other clinical factors are often of interest when performing clustering. In addition

to clinical trial settings, covariate-dependent clustering has also become popular in fields like

genetics [Qin and Self, 2006], flow cytometry [Hyun et al., 2023], neuroimaging [Guha and

Guhaniyogi, 2022, Binkiewicz et al., 2017], and spatial statistics [Page and Quintana, 2016].

In the fields of statistics and machine learning, covariate-dependent clustering models

can be found under numerous names, including finite mixture of regressions, mixture of ex-

perts, and covariate adjusted product partition models. The term finite mixture of regressions

[McLachlan et al., 2019, Faria and Soromenho, 2010, Grün et al., 2007, Khalili and Chen,

2007, Hyun et al., 2023, Devijver, 2015] refers to fitting a mixture model, where the mean

structure is dependent on the covariates of interest through a regression framework. Mixture

of experts models [Jordan and Jacobs, 1994, Bishop and Svenskn, 2002] are similar to finite
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mixture of regressions in that they assume that the likelihood is a weighted combination of

probability distribution functions. However, in the mixture of experts model, the weights

are dependent on the covariates of interest, adding an extra layer of flexibility compared to

traditional finite of regressions models. Lastly, covariate adjusted product partition models

[Müller et al., 2011, Park and Dunson, 2010] are a Bayesian non-parametric version of covari-

ate adjusted clustering. Similarly to mixture of experts models, covariate adjusted product

partition models can make the cluster partitions dependent on the covariates of interest.

In this manuscript, we extend the class of functional mixed membership models proposed

by Marco et al. [2022b] to allow for features to depend on covariate information. Mixed

membership models [Erosheva et al., 2004, Heller et al., 2008, Gruhl and Erosheva, 2014,

Marco et al., 2022b,c] can be thought of as a generalization of traditional clustering, where

each observations is allowed to partially belong to multiple clusters or features. While

there have been many advancements in covariate adjusted clustering models for multivariate

data, to our knowledge there has been little work on incorporating covariate information

in functional mixed membership models or functional clustering models. Two important

exceptions are Yao et al. [2011], whom specified a finite mixture of regressions model where

the covariates are functional data and the data that are clustered is scalar, and Gaffney and

Smyth [1999] whom proposed a functional mixture of regressions model where the function is

modeled by a deterministic linear function of the covariates. In this manuscript we consider

the case where we have multivariate covariates and the data we cluster are functional.

This manuscript is primarily motivated by functional brain imaging studies on children

with autism spectrum disorder (ASD) through electroencephalography (EEG). Specifically,

Marco et al. [2022b] analyzed how alpha oscillations differ between children with ASD and

typically developing (TD) children. Since alpha oscillations are known to change as children

develop, the need for an age-dependent mixed membership model is crucial to ensure that

shifts in the alpha oscillations do not confound measures of alpha power [Haegens et al., 2014].

Unlike mixture of experts models and covariate adjusted product partition models, we aim
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to specify a mixed membership models in which the allocation structure does not depend on

the covariates of interest. While previous studies have shown that the alpha peak shifts to

a higher frequency and becomes more attenuated [Scheffler et al., 2019, Rodŕıguez-Mart́ınez

et al., 2017], the results can be confounded if this effect isn’t observed in all individuals. In

our model, since we assume that each individual’s allocation parameters do not change with

age, we can infer how alpha oscillations change as children age at an individual level, making

a covariate adjusted mixed membership model ideal for this case study.

This manuscript starts with a brief review of functional clustering and covariate-dependent

clustering frameworks such as mixture of experts and mixture of regressions models. Using

these previous frameworks as a reference, we derive the general form of our covariate adjusted

mixed membership model. In Section 4.2.1 we review the Multivariate Karhunen-Loève (KL)

theorem, which allows us to have a concise representation of the K latent functional features.

In Section 4.2.2, we leverage the KL decomposition to completely specify the covariate ad-

justed functional mixed membership model. A review of the identifiability issues that occur

in mixed membership models, as well as sufficient conditions to ensure identifiability in a two

feature covariate adjusted mixed membership model can be found in Section 4.2.3. Section

4.3 covers a simulation study which explores the empirical convergence properties of the

mean, covariance, and allocation structure of the proposed model. Section 4.4 illustrates the

usefulness of the covariate adjusted functional mixed membership model by analyzing EEG

data from children with ASD and TD children. Lastly, we conclude this manuscript with

discussion on some of the challenges of fitting these models, as well as possible theoretical

challenges when working with covariate adjusted mixed membership models with 3 or more

features.
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4.2 Covariate Adjusted Functional Mixed Membership Model

Functional data analysis (FDA) focuses on analyzing the sample paths of continuous stochas-

tic processes f : T → R, where T is a compact subset of Rd. In FDA, we commonly

assume that the random functions are elements of a Hilbert space, or more specifically

that the random functions are square-integrable functions
(
f ∈ L2 or

∫
T | f(t) |

2 dt <∞
)
.

In this manuscript, we will assume that the continuous stochastic processes are Gaussian

processes (GP), meaning the distribution of function can be specified by a mean function,

µ(t) = E (f(t)), and a covariance function, C(s, t) = Cov (f(s), f(t)), for t, s ∈ T . Since

mixed membership models can be considered a generalization of finite mixture models, we

will show in this section how finite mixture of regressions and mixture of experts models

relate to our proposed mixed membership models. While we don’t review covariate adjusted

product partition models due to the significant differences in both theory and implementa-

tion, detailed explanations can be found in Müller et al. [2011] and Park and Dunson [2010].

For the theoretical developments discussed in this section, we will assume that the number

of clusters or features, K, are known a-priori. While the number of clusters or features

are often unknown, the use of information criterion or simple heuristic methods such as the

“elbow” method have shown to be informative in choosing the number of features in a mixed

membership model Marco et al. [2022b].

Functional clustering generally assumes that each sample path is drawn from one of

K underlying cluster-specific sub-processes [James and Sugar, 2003, Chiou and Li, 2007,

Jacques and Preda, 2014]. Assuming that f (1), . . . , f (K) are the K underlying cluster-

specific sub-processes with corresponding mean functions µ(1), . . . µ(K) and covariance func-

tions C(1), . . . , C(K), we can arrive at the general form of a GP finite mixture model:

p
(
fi | ρ(1:K), µ(1:K), C(1:K)

)
=

K∑
k=1

ρ(k) GP
(
fi | µ(k), C(k)

)
, (4.1)
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where ρ(k) (
∑K

k=1 ρ
(k) = 1) are the mixing proportions and fi are the sample paths for i =

1, . . . , N . Introducing the latent variables πi = (πi1, . . . , πiK), where πi ∼iid Mult(1; ρ(1), . . . , ρ(K)),

we can show that the likelihood can be written as

fi | πi, µ
(1:K), C(1:K) ∼ GP

(
K∑
k=1

πikµ
(k),

K∑
k=1

πikC
(k)

)
. (4.2)

Using this formulation of the likelihood, we can interpret πik as a binary indicator of the

ith observation’s membership to the kth cluster. Let xi = [Xi1 . . . XiR] be the covariates

of interest associated with the ith observation. We will let X denote the design matrix

(without an intercept column), where xi is the i
th row of the design matrix. Extending the

multivariate mixture of regressions model [McLachlan et al., 2019, Faria and Soromenho,

2010, Grün et al., 2007, Khalili and Chen, 2007, Hyun et al., 2023, Devijver, 2015] to a

functional setting, we can represent the general form of mixture of regressions model for

functional data as

fi | X,π1, . . . ,πN , µ
(1:K), C(1:K) ∼ GP

(
K∑
k=1

πikµ
(k)(xi),

K∑
k=1

πikC
(k)

)
. (4.3)

In the multivariate setting, the mean is often modeled through a regression framework,

leading to the functional form in the FDA setting of µ(k)(xi, t) = β0(t) +
∑R

r=1Xirβr(t),

where β0, . . . , βR ∈ L2 and t ∈ T . Similarly to Equation 4.1, the mixture of experts model

can be formulated as

P
(
fi | X,α(1:K), µ

(1:K), C(1:K)
)
=

K∑
k=1

πik(xi,αk) GP
(
fi | µ(k)(xi), C

(k)
)
. (4.4)

From equation 4.4, we can see that the πik(xi,αk) act as mixing proportions, however they

are dependent on the covariates of interest. In the mixture of experts model, we assume that

πik(xi,αk) ∝ exp(α′
kxi), where αk is a learned set of parameters. Similarly to the mixture

of regressions model, the mean component is model through a regression framework, such
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that µ(k)(xi, t) = β0(t) +
∑R

r=1XirβR(t), where β0, . . . , βR ∈ L2 and t ∈ T . The mixture

of experts model can be written in a similar form as Equation 4.3 with the introduction of

the latent variables πi, however, the distribution of πi now depends on xi. To arrive at the

functional mixed membership model specified in Marco et al. [2022b], we can rewrite the

finite mixture model in Equation 4.2 as

fi | π1, . . . ,πN =d

K∑
k=1

πikf
(k). (4.5)

By introducing a new set of latent variables zi = (Zi1, . . . , ZiK)
′, where Zik ∈ (0, 1) and∑K

k=1 Zik = 1, we can arrive at the functional form of the of the functional mixed membership

model:

fi | Z1, . . . ,ZN =d

K∑
k=1

Zikf
(k). (4.6)

Thus we can see that under the functional mixed membership model, each sample path is

assumed to come from a convex combination of the underlying GPs, f (k). Unlike in the

case of traditional clustering, the functional mixed membership model does not assume that

the underlying GPs are mutually independent. Thus we will let C(k,j) represent the cross-

covariance function between the kth GP and the jth GP, for 1 ≤ k ̸= j ≤ K. Letting C

be the collection of covariance and cross-covariance functions, we can specify the sampling

model of the functional mixed membership model as

fi | z1, . . . , zN , µ(1:K),C ∼ GP
(

K∑
k=1

Zikµ
(k),

K∑
k=1

Z2
ikC

(k) +
K∑
k=1

∑
k′ ̸=k

ZikZik′C
(k,k′)

)
. (4.7)

Finite mixture models, as well as mixture of experts and finite mixture of regressions

models, can be represented in the same functional form as the representation in Equation 4.5.

However, for these covariate adjusted clustering models, the underlying stochastic processes,

f (k), have an associated mean that depends on the covariates of interest, which we will denote

as µ(k)(xi). Similarly, by assuming the underlying stochastic processes in Equation 4.7 have
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a mean that depends on the covariates of interest, we can arrive at the sampling model of

the covariate functional mixed membership model:

fi | X, z1, . . . , zN , µ(1:K)(xi),C ∼ GP
(

K∑
k=1

Zikµ
(k)(xi),

K∑
k=1

Z2
ikC

(k) +
K∑
k=1

∑
k′ ̸=k

ZikZik′C
(k,k′)

)
.

(4.8)

In section 4.2.1, we will review the Multivariate Karhunen-Loève (KL) theorem [Ramsay and

Silverman, 2005b, Happ and Greven, 2018], which will allow us to have a joint approximation

of the covariance structure of the K underlying GPs. Using the joint approximation, we are

able to concisely represent the K GPs, facilitating inference on higher dimensional functions

such as surfaces. Using the KL decomposition, we are able to fully specify our proposed

covariate adjusted functional mixed membership model (Equation 4.8) in section 4.2.2.

4.2.1 Multivariate Karhunen-Loève Characterization

In the previous section, we showed how our proposed covariate adjusted functional mixed

membership model relates to other covariate adjusted models such as the mixture of re-

gressions and mixture of experts models. While Equation 4.8 shows the proposed form of

our model, the mean functions and covariance functions that we are left to estimate are

infinite dimensional parameters. Thus in order to be able to estimate the mean functions

and covariance functions, we will assume that the underlying GPs are smooth and lie in

the P -dimensional subspace, S ⊂ L2(T ), spanned by a set of linearly independent square-

integrable basis functions, {b1, . . . , bP} (bp : T → R). While the choice of basis functions are

user-defined, the basis functions must be uniformly continuous in order to satisfy Lemma

2.2 of Marco et al. [2022b]. In this manuscript, we will primarily use B-splines for all case

studies and simulation studies.

The assumption that f (k) ∈ S allows us to turn an infinite-dimensional problem into a

finite-dimensional problem, making traditional inference tractable. While tractable, model-

ing the covariance functions and cross-covariance functions separately leads to a model that
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needs O(K2P 2) parameters to model the covariance structure. While the number of clus-

ters, K, and the number of basis functions, P , may be relatively small for simple problems,

the number of basis functions needed to model higher dimensional functional data such as

surfaces becomes large and computationally intractable. Thus we will use the multivariate

KL decomposition [Ramsay and Silverman, 2005b, Happ and Greven, 2018] to reduce the

number of parameters needed to estimate the covariance surface to O(KPM), where M is

the number of eigenfunctions used to approximate the covariance structure. A more detailed

derivation of a KL decomposition for functions in S can be found in Marco et al. [2022b].

To achieve a concise joint representation of theK latent GPs, we will define a multivariate

GP, which we will denote f(t) such that

f(t) :=
(
f (1)

(
t(1)
)
, f (2)

(
t(2)
)
, . . . , f (K)

(
t(K)

))
,

such that t =
(
t(1), t(2), . . . , t(K)

)
and t(1), t(2), . . . , t(K) ∈ T . Since S ⊂ L2 is a Hilbert

space, with the inner-product defined as the L2 inner-product, we can see that f ∈ H :=

S × S × · · · × S := SK , where H is defined as the direct sum of the Hilbert spaces S,

making H a Hilbert space as well. Since H is a Hilbert space and the covariance operator

of f , denoted K, is a positive, bounded, self-adjoint, and compact operator, we know there

exists a complete set of eigenfunctions Ψ1, . . . ,ΨKP ∈ H and corresponding eigenvalues

λ1 ≥ · · · ≥ λKP ≥ 0 such that KΨp = λpΨp, for p = 1, . . . , KP . Using the eigenpairs of the

covariance operator, we can rewrite f (k) as

f (k)(t) = µ(k)(x, t) +
KP∑
m=1

χm

(√
λmΨ

(k)
m (t)

)
,

where χm ∼ N (0, 1) and Ψ
(k)
m (t) is the kth element of Ψm(t). Since Ψ

(k)
m (t) ∈ S, we know

there exists ϕm ∈ RP such that
√
λmΨ

(k)
m (t) = ϕ′

kmB(t), whereB′(t) := [b1(t), b2(t), . . . , bP (t)].

Similarly, since µ(k)(x, t) ∈ S, we can introduce a mapping g : RR → RP , such that
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µ(k)(x, t) = (gk(x))
′ B(t). Therefore, we arrive at the general form of our decomposition:

f (k)(t) = (gk(x))
′B(t) +

KP∑
m=1

χmϕ
′
kmB(t). (4.9)

Using this decomposition, our covariance and mean structures can be recovered such that

C(k,k′)(s, t) = B′(s)
(∑KP

m=1ϕkmϕ
′
k′m

)
B(t) and µ(k)(x, t) = (gk(x))

′ B(t), for 1 ≤ k, k′ ≤ K

and s, t ∈ T . To reduce the dimensionality of the problem, we will only use the first M

eigenpairs to approximate the K stochastic processes. While traditional functional princi-

pal component analysis (FPCA) will choose the number of eigenfunctions based off of the

proportion of variance explained, the same strategy cannot be employed in functional mixed

membership models, because the allocation parameters of the model are typically not known.

Therefore, we suggest picking as large of M as your computational budget allows, in order

to get the best approximation to the covariance structure.

4.2.2 Model and Prior Specification

In this section, we will be fully specifying the covariate adjusted functional mixed membership

model utilizing a truncated version of the KL decomposition specified in Equation 4.9. We

start by first specifying how the covariates of interest will influence the mean function of

the functional mixed membership model, denoted as gk(x) in Equation 4.9. Following the

previous works of mixture of regressions and mixture of expert models, we will model the

dependence of the covariates on the mean structure using a regression framework. Under the

standard functional regression framework, we have that µ(k)(xi, t) = βk0 +
∑R

r=1Xirβkr(t)

for k = 1, . . . , K. Since we assumed that µ(k)(xi, t) ∈ S for k = 1, . . . , K, we know that

βk0, . . . , βkR ∈ S. Therefore, there exists νk ∈ RP and ηk ∈ RP×R such that

µ(k)(xi, t) = ν
′
kB(t) + (ηkx

′
i)
′
B(t). (4.10)
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Under a standardized set of covariates, νk specifies the population level mean of the kth

feature and ηk encodes the covariate dependence of the k
th feature. Thus, assuming the mean

structure specified in Equation 4.10 and using a truncated version of the KL decomposition

specified in Equation 4.9, we can specify the sampling model of our covariate adjusted

functional mixed membership model.

Let {Yi(.)}Ni=1 be the observed sample paths that we want to model to the K features,

f (k), conditionally on the covariates of interest, xi. Since the observed sample paths are

observed at only a finite number of points, we will let ti = [ti1, . . . , tini
]′ denote the time

points at which the ith function was observed over. Without loss of generality, we will define

the sampling distribution over the finite dimensional marginals of Yi(ti). Using the general

form of our proposed model defined in Equation 4.8, we have

Yi(ti) | Θ,X ∼ N

{
K∑
k=1

Zik

(
S′(ti) (νk + ηkx

′
i) +

M∑
m=1

χimS
′(ti)ϕkm

)
, σ2Ini

}
, (4.11)

where S(ti) = [B(t1) · · ·B(tni
)] ∈ RP×ni and Θ is the collection of the model parameters.

As defined in section 4.2, Zik are variables that lie on the unit simplex, such that Zik ∈ (0, 1)

and
∑K

k=1 Zik = 1. From this characterization, we can see that each observation is modeled

as a convex combination of realizations from the K features with additional Gaussian noise,

represented by σ2. If we integrate out the χim variables, for i = 1, . . . , N and m = 1, . . . ,M ,

we arrive the following likelihood:

Yi(ti) | Θ−χ,X ∼ N

{
K∑
k=1

ZikS
′(ti) (νk + ηkx

′
i) , V(ti, zi) + σ2Ini

}
, (4.12)

where Θ−χ is the collection of the model parameters excluding the χim parameters (i =

1, . . . , N andm = 1, . . . ,M) andV(ti, zi) =
∑K

k=1

∑K
k′=1 ZikZik′

{
S′(ti)

∑M
m=1 (ϕkmϕ

′
k′m)S(ti)

}
.

Equation 4.12 illustrates that the proposed covariate adjusted functional mixed membership

model can be expressed as an additive model. The mean structure is a convex combination
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of the feature specific means, while the covariance can be written as a weighted sum of

covariance functions and cross-covariance functions.

To have an adequately expressive and scalable model, we approximate the covariance

surface of the K features usingM scaled pseudo-eigenfunctions. In this framework, orthogo-

nality will not be imposed on the ϕ′
kmB(t) parameters, making them pseudo-eigenfunctions

instead of the eigenfunctions described in section 4.2.1. From a modeling prospective, this

allows us to sample on an unconstrained space, facilitating better Markov chain mixing and

easier sampling schemes. While direct analysis on the eigenfunctions are no longer available,

a formal analysis can still be conducted by reconstructing the posterior samples of the covari-

ance surface and calculating eigenfunctions from the posterior samples. To avoid overfitting

of the covariance functions, we follow Marco et al. [2022b] by using the multiplicative gamma

process shrinkage prior proposed by Bhattacharya and Dunson [2011] to achieve adaptive

regularized estimation of the covariance structure. Therefore, letting ϕkpm be the pth element

of ϕkm, we have that

ϕkpm | γkpm, τ̃mk ∼ N
(
0, γ−1

kpmτ̃
−1
mk

)
, γkpm ∼ Γ (νγ/2, νγ/2) , τ̃mk =

m∏
n=1

δnk,

δ1k | a1k ∼ Γ(a1k, 1), δjk | a2k ∼ Γ(a2k, 1), a1k ∼ Γ(α1, β1), a2k ∼ Γ(α2, β2),

where 1 ≤ k ≤ K, 1 ≤ p ≤ P , 1 ≤ m ≤ M , and 2 ≤ j ≤ M . By letting α2 > β2, we

can show that E(τ̃mk) > E(τ̃m′k) for 1 ≤ m < m′ ≤ M , leading to the prior on ϕkpm having

stochastically decreasing variance as m increases. This will have a regularizing effect on the

posterior draws of ϕkpm, making ϕkpm more likely to be close to zero as m increases.

In functional data analysis, we often desire smooth mean functions to safeguard against

overfit models. Thus, we utilize a first order random walk penalty proposed by Lang

and Brezger [2004] on our νk and νk parameters to promoted adaptive smoothing of the

mean function of the features in our model. Therefore, we have that P (νk | τνk
) ∝

exp
(
− τνk

2

∑P−1
p=1

(
ν ′pk − ν(p+1)k

)2)
, for k = 1, . . . , K, where τνk

∼ Γ(αν , βν) and νpk is the p
th
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element of νk. Similarly, we have that P ({ηprk}Pp=1 | τηrk
) ∝ exp

(
− τηrk

2

∑P−1
p=1

(
η′prk − η(p+1)rk

)2)
,

for k = 1, . . . , K and r = 1, . . . , R, where τηrk
∼ Γ(αη, βη) and ηprk is the pth row and rth

column of ηk. Following previous mixed membership models [Heller et al., 2008, Marco

et al., 2022b,c], we will assume that zi | π, α3 ∼iid Dir(α3π), π ∼ Dir(c), and α3 ∼ Exp(b).

Lastly, we will assume that σ2 ∼ IG(α0, β0). The posterior distributions of the parameters in

our model, as well as a sampling scheme with tempered transitions, can be found in Section

C.2.2 of the Supplementary Materials. A covariate adjusted model where the covariance is

also dependent on the covariates of interest can found in Section C.4.1 of the Supplementary

Materials.

4.2.3 Model Identifiability

Mixed membership models face multiple identifiability issues due to their increased flexibil-

ity over traditional clustering models [Chen et al., 2022, Marco et al., 2022b,c]. Similarly to

traditional clustering models, mixed membership models also face the common label switch-

ing problem, where the an equivalent model can be formulated by permuting the labels or

allocation parameters. Even though this is one source of non-identifiability, relabelling al-

gorithms can be formulated from the work of Stephens [2000]. More complex identifiability

problems arise since the allocation parameters are now continuous variables on the unit sim-

plex, rather than binary variables like in clustering. These identifiability issues are discussed

in further detail in Chen et al. [2022] and Marco et al. [2022b]. These identifiability issues

can be easily solved in a 2 feature mixed membership models by assuming the separability

condition holds. The separability condition assumes that at least one observation belongs

completely to each of the K features [Pettit, 1990, Donoho and Stodden, 2003, Arora et al.,

2012, Azar et al., 2001, Chen et al., 2022]. While the separability condition can also be as-

sumed in mixed membership models that have over 3 features, they make strong geometric

assumptions on the data generating process. Weaker geometric assumptions that ensure an

identifiable model in mixed membership models with 3 or more features are discussed in
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Chen et al. [2022], however implementing these constrains are non-trivial.

When considering a two feature mixed membership model, the separability condition is

an assumption that ensures identifiability up to a permutation of the labels without making

strong assumptions. When extending multivariate mixed membership models to functional

data and introducing a covariate-dependent mean structure, ensuring an identifiable mean

and covariance structure requires further assumptions. Lemma 7 states the conditions needed

in order to have an identifiable mean and covariance structure up to a permutation of the

labels. Proof of Lemma 7 can be found in Section 1 of the Supporting Materials. The

first assumption in Lemma 7 is similar to the assumptions needed in a regression setting

in order to ensure identifiability. We note that while the individual ϕkm parameters are

unidentifiable, an eigen analysis can still be conducted by constructing posterior draws of

the covariance structure and calculating the eigenvalues and eigenfunctions of the posterior

draws. While the assumptions are relatively minor for ensuring identifiability in a two

feature model, ensuring identifiability in models with 3 or more features requires stronger

assumptions. Section 4.3 provides empirical evidence that the mean and covariance structure

converge to the truth as we have more observations.

Lemma 7. Consider a two feature (K = 2) covariate adjusted model as specified in Equation

4.12. The parameters νk, ηk, Zik,
∑M

m=1 (ϕkmϕ
′
k′m), and σ

2 are identifiable up to a permu-

tation of the labels (i.e. label switching), for k, k′ = 1, 2, n = 1, . . . , N , and m = 1, . . . ,M ,

given the following assumptions:

1. X is full column rank with 1 not in the column space of X.

2. The separability condition holds on the allocation matrix (there exists ĩ1, ĩ2 such that

Zĩ11
= 1 and Zĩ22

= 1). Moreover, there exists at least 2 observations with allocation

parameters that lie in the interior of the unit simplex(
i.e. zi ∈

{
z ∈ R2 |

∑2
k=1 Zk = 1, 0 < Zk < 1

})
.

3. The sample paths Yi(ti) are sampled such that ni ≥ P , and furthermore, there exists
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a sample path Yi(ti) such that ni > 4M .

4.2.4 Relationship to Function-on-Scalar Regression

Function-on-scalar regression is a common method in FDA which allows the mean struc-

ture of the continuous stochastic process to be covariate-dependent. In function-on-scalar

regression, we often assume that the response is a GP, and that the covariates of interest

are scalar-valued or vector-valued. A comprehensive review of the broader area of functional

regression can be found in Ramsay and Silverman [2005a] and Morris [2015]. While there

have been many advancements and generalizations [Krafty et al., 2008, Reiss et al., 2010,

Goldsmith et al., 2015, Kowal and Bourgeois, 2020] of function-on-scalar regression since

the initial papers of Faraway [1997] and Brumback and Rice [1998], the general form of

function-on-scalar regression can be expressed as follows:

Y (t) = µ(t) +
R∑

r=1

Xrβr(t) + ϵ(t); t ∈ T , (4.13)

where Y (t) is the response function evaluated at t, βr(·) is the functional coefficient repre-

senting the effect that the rth covariate (Xr) has on the mean structure, and ϵ is a mean-

zero Gaussian process with covariance function C. The function µ : T → R in Equation

4.13 represents the mean of the GP when all of the covariates, Xir are set to zero. Un-

like the traditional setting for multiple linear regression in finite-dimensional vector spaces,

function-on-scalar regression requires the estimation of the infinite dimensional functions µ

and β1, . . . , βR from a finite number of observed sample paths at a finite number of points

(Yi(ti) for i = 1, . . . , N and ti = [ti1, . . . , tini
]′).

In order to make inference tractable, we assume that the data lie in the span of a finite

set of basis functions, which will allow us to expand µ and β1, . . . , βR as a finite sum of

the basis functions. The set of basis functions can be specified by using data-driven basis

functions, or by specifying the basis functions a-priori. If the basis functions are specified
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a-priori, common choices of basis functions are B-splines and wavelets due to their flexibility,

as well as Fourier series for periodic functions. Alternatively, if the use of data-driven basis

functions is desired, a common choice is to use the eigenfunctions of the covariance operator

as basis functions. In order to estimate the eigenfunctions, functional principal component

analysis [Shang, 2014] is often performed and the obtained estimates of the eigenfunctions are

used. Functional principal component analysis faces a similar problem in that the objective

is to estimate eigenfunctions using only a finite number of sample paths observed at a

finite number of points. To solve this problem, Rice and Silverman [1991] proposes using

a basis of splines to estimate smooth eigenfunctions, while Yao et al. [2005] proposes using

local linear smoothers to estimate the smooth eigenfunctions. Therefore even using data-

driven basis functions require smoothing assumptions, suggesting similar results between

data-driven basis functions and a reasonable set of a-priori specified basis functions paired

with a penalty to prevent overfitting.

Specifying the basis functions a-priori (b1(t), . . . , bP (t)), and letting Yi(ti) be the ob-

served sample paths at points ti = [ti1, . . . , tini
]′ (i = 1, . . . , N), we can simplify Equation

4.13 to get

Yi(ti) = S′(ti)ν̃ + S′(ti)η̃x
′
i + ϵi(ti), (4.14)

where ν̃ ∈ RP , η̃ ∈ RP×R, and S(ti) = [B(t1) · · ·B(tni
)] ∈ RP×ni are the set of basis function

evaluated at the time points of interest. As specified in the previous sections, B′(t) :=

[b1(t), b2(t), . . . , bP (t)]. Equation 4.14 shows that the function µ(.) evaluated at the points

ti can be represented by S′(ti)ν̃, and similarly the functional coefficients β1(·), . . . , βR(·)

can be represented by S′(ti)η̃. Therefore, we are left to estimate ν̃, η̃, and the parameters

associated with the covariance function of ϵ(·), denoted C.

The covariance function C represents the within-function covariance structure of the data.

In the simplest case, we often assume that ϵi(ti) ∼ N (0, σ̃2Ini
), meaning we only need σ̃2 to

specify C. In more complex models [Faraway, 1997, Krafty et al., 2008], we may make less

restrictive assumptions and assume that the covariance ϵi(ti) ∼ N (0ni
, Ṽ (ti)+ σ̃

2Ini
), where
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Ṽ (·) is a low dimensional approximation of a smooth covariance surface using an truncated

eigen-decomposition. While functional regression usually assumes that the functions are

independent, functional mixed membership models have been proposed to model between-

function variation, or cases where observations can be correlated [Morris and Carroll, 2006,

Staicu et al., 2010].

Assuming a relatively general covariance structure as in Krafty et al. [2008], the function-

on-scalar model assumes the following distributional assumptions on our sample paths:

Yi(ti) | ν̃, η̃, Ṽ(ti), σ̃
2,X ∼ N

{
S′(ti) (ν̃ + η̃x′

i) , Ṽ(ti) + σ̃2Ini

}
. (4.15)

From Equation 4.15 it is apparent that the proposed covariate adjusted mixed membership

model specified in Equation 4.12 is closely related to function-on-scalar regression. The

key difference between the two models is that the covariate adjusted mixed membership

model does not assume a common mean and covariate structure across all observations

conditionally on the covariates of interest. Instead, the covariate adjusted mixed membership

model allows each observation to be modeled as a convex combination of K underlying

features. Each feature is assumed allowed to have different different mean and covariance

structures, meaning that the covariates are not assumed to have the same affect on all

observations. By allowing this type of heterogeneity in our model, we are able to conduct a

more granular analysis and identify subgroups that interact differently with the covariates

of interest. Alternatively, if there are subgroups of the population that interact differently

with the covariates of interest, then the results from a function-on-scalar regression model

will be confounded, as the effects will likely be averaged out in the analysis.

Figures 4.1 and 4.2 illustrate the differences in the results from fitting a function-on-scalar

regression model and a covariate adjusted mixed membership model. From Figure 4.2, we

can see that age does not have a common effect on the alpha oscillations of developing

children. For children that load heavily on feature 1 we see that age has relatively little
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effect on their alpha oscillations. Conversely, we see that the alpha oscillations of children

who load heavily on feature 2 are expected to have relatively large changes as they age.

As seen in Figure 4.1, the results from a function-on-scalar regression analysis average out

the effects of age on alpha oscillations. Perhaps the greatest advantage in performing a

covariate adjusted mixed membership analysis over a function-on-scalar regression analysis

is that we can make individualized inference. Covariate adjusted mixed membership models

allow us to compare how the alpha oscillations of an individual child compares to their age-

adjusted peers. Moreover, a covariate adjusted mixed membership model allows us to infer

an individual’s expected changes in alpha oscillations as they age, while a function-on-scalar

regression model only allows us to infer the changes at a population level. The mixture

of experts model and the mixture of regressions model, described in Section 4.2, can be

thought of as a tool that provides a moderate level of granularity, where we are able to infer

the changes at a sub-population level, but not at an individual level.

4.3 Simulation Study

In this section, we explore the empirical convergence properties of the proposed covari-

ate adjusted functional mixed membership models. In this simulation study, we generate

data from a covariate adjusted functional mixed membership model and see how well the

proposed framework can recover the true mean, covariance, and allocation structures. To

evaluate how how well we can recover the mean, covariance, and cross covariance functions,

we use calculate the relative mean integrated square error (R-MISE), which is defined as

R-MISE =
∫
{f(t)−f̂(t)}2dt∫

f(t)2dt
× 100% or R-MISE =

∫
t

∫
x{f(t,x)−f̂(t,x)}2dxdt∫

t

∫
x f(t,x)2dxdt

× 100% in the case of

a covariate adjusted model. In this simulation study, f̂(t) will be the posterior median

obtained from our posterior samples. To measure how well we recover the allocation struc-

ture, Zik, we calculated the root-mean-square error (RMSE). In addition to studying the

empirical convergence properties of correctly specified models, we also included a scenario
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where we fit a covariate adjusted functional mixed membership model, when the generating

truth had no covariate dependence. Conversely, we also studied the scenario where we fit

a functional mixed membership model with no covariates, when the generating truth was

generated from a covariate adjusted functional mixed membership model with one covariate.

Additional details on how the simulation was conducted can be found in Section C.3.1 of the

Supplementary Materials.

Table 4.1 contains summary statistics of the performance metrics from each of the 5

scenarios considered in this simulation study. We can see that our model does a good job

in recovering the mean structure with relatively few observations under a correctly specified

model. On the other hand, a relatively large number of observations are needed to recover

the covariance structure when we have a correctly specified model. This simulation study

also shows that we pay a penalty in terms of statistical efficiency when we over-specify a

model, however the over-specified model still shows signs of convergence to the true param-

eters. Conversely, an under-specified model seems to never be able to recover the mean or

covariance structure, and shows no signs of converging to the true parameters as we get more

observations.

4.4 Autism Spectrum Disorder Case Study

Autism spectrum disorder (ASD) is a developmental disorder characterized by social com-

munication deficits and restrictive and/or repetitive behaviors [American Psychiatric Asso-

ciation et al., 2013]. While once more narrowly defined, autism is now seen as a spectrum,

with some individuals having very mild symptoms, to others that require lifelong support

[Lord et al., 2018]. In this case study, we will be using electroencephalogram (EEG) data

that was obtained in a resting-state EEG study conducted by Dickinson et al. [2018]. The

study consisted of 58 children who have been diagnosed with ASD between the ages of 2 and

12 years old, and 39 age-matched typically developing (TD) children, or children who have
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Table 4.1: The median RISE/RSE, as well as the 10th and 90th percentiles, from 50 simulated data sets under a variety
of conditions. The left column contains the true number of parameters used to simulate the column, as well as the
number of covariates used when fitting the covariate adjusted functional mixed membership models.

Truth /
Model
(#

Covariates)

Parameter N = 60 N = 120 N = 240

2/2

µ1 1.9% (0.3%, 24.7%) 1.1% (0.2%, 10.4%) 0.3%(0.1%, 8.8%)
µ2 1.5% (0.4%,14.5%) 1.0% (0.2%, 10.5%) 0.2% (0.1%, 10.9%)

C(1,1) 156.1% (2.1%, 112219.4%) 110.3% (0.1%, 1806067.0%) 6.1% (0.1%, 362938.9%)
C(2,2) 88.1% (1.8%, 60673.8%) 416.2% (1.9%, 1008651.0%) 4.9% (0.5%, 22725.8%)
C(1,2) 431.2% (3.5%, 35924.4%) 433.7% (2.2%, 246646.3%) 22.3% (0.6%, 29231.3%)
Z 0.047 (0.020, 0.099) 0.030 (0.013, 0.074) 0.013 (0.008, 0.054)

N = 50 N = 100 N = 200

1/1

µ1 1.5% (0.2%, 7.6%) 0.8% (0.1%, 4.9%) 1.1%(0.2%,5.4%)
µ2 1.6% (0.3%,5.7%) 1.2% (0.2%, 7.6%) 1.2% (0.2%, 5.4%)

C(1,1) 218.5% (26.0%, 11299.6%) 30.8% (14.4%, 308.4%) 37.1% (9.5%, 421.2%)
C(2,2) 204.4% (22.5%, 2603.4%) 40.2% (8.3%, 597.6%) 25.5% (5.7%, 157.7%)
C(1,2) 219.8% (42.9%, 1912.9%) 89.1% (21.2%, 403.0%) 60.6% (13.0%, 350.2%)
Z 0.067 (0.047, 0.085) 0.056 (0.042, 0.081) 0.051 (0.040, 0.065)

1/0

µ1 382.2% (153.4%, 961.9%) 650.7% (91.1%, 1511.0%) 1076.7%(94.8%,2339.0%)
µ2 394.6% (117.5%,1292.3%) 751.4% (69.0%, 1721.0%) 885.1% (145.0%, 2313.0%)

C(1,1) 1581365.0% (81644.7%, 23059352.5%) 1328559.4% (64656.5%, 40230314.1%) 1348112.9% (98035.6%, 65828353.0%)
C(2,2) 730829.2% (133764.2%, 9829513.4%) 1015747.1% (86551.9%, 17361755.8%) 802590.5% (44704.4%, 21037857.8%)
C(1,2) 1271237.9% (90303.1%, 9356418.4%) 1917180.3% (91394.3%, 20373022.9%) 1392890.2% (81254.1%, 19419032.6%)
Z 0.202 (0.180, 0.217) 0.172 (0.157, 0.184) 0.144 (0.121, 0.156)

N = 40 N = 80 N = 160

0/1

µ1 2.3% (0.3%, 36.7%) 2.5% (0.2%, 33.6%) 1.9%(0.2%,20.4%)
µ2 4.1% (0.3%,36.1%) 1.9% (0.3%, 21.6%) 3.8% (0.2%, 26.1%)

C(1,1) 27.1% (7.7%, 703.6%) 19.1% (3.3%, 95.5%) 20.3% (3.1%, 64.9%)
C(2,2) 28.9% (9.4%, 319.1%) 19.0% (3.7%, 206.9%) 13.5% (3.0%, 74.8%)
C(1,2) 31.4% (8.8%, 353.3%) 24.2% (7.7%, 61.2%) 26.9% (4.9%, 67.1%)
Z 0.0957 (0.070, 0.148) 0.083 (0.061, 0.107) 0.068 (0.048, 0.088)

0/0

µ1 0.23% (0.04%, 1.23%) 0.12% (0.01%, 0.35%) 0.04%(0.01%,0.31%)
µ2 0.27% (0.09%,0.88%) 0.12% (0.02%, 0.42%) 0.04% (0.01%, 0.31%)

C(1,1) 3.5% (0.9%, 16.0%) 1.9% (0.3%, 7.4%) 1.3% (0.3%, 4.4%)
C(2,2) 4.5% (0.6%, 18.0%) 1.6% (0.3%, 8.0%) 1.1% (0.2%, 4.5%)
C(1,2) 5.3% (1.1%, 19.9%) 2.0% (0.6%, 9.5%) 1.3% (0.6%, 5.4%)
Z 0.032 (0.023, 0.049) 0.018 (0.013, 0.024) 0.011 (0.009, 0.015)
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never been diagnosed with ASD. The children were instructed to view bubbles on a monitor

in a dark, sound-attenuated room for 2 minutes, while EEG recordings ere taken. The EEG

recordings were obtained using a 128-channel HydroCel Geodesic Sensory net, and were then

interpolated to match the international 10-20 system 25 channel montage. The data were

filtered using a band pass of 0.1 to 100 Hz, and then were transformed into the frequency

domain using a fast Fourier transform. Lastly, to obtain the relative power, we scaled the

functions so that they integrate to 1. Visualizations of the functional data obtained from

the T8 electrode can be seen in Figure 4.1.
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Figure 4.1: (Left Panel) Alpha frequency patterns for a sample of EEG recordings from the
T8 electrode of 30 individuals (ASD and TD) with varying ages. (Right Panel) Estimated
affects of age on alpha oscillations obtained by fitting a function-on-scalar model.

In this case study, we will specifically be analyzing the alpha alpha band of frequencies

(neural activity between 6Hz and 14Hz), and comparing how alpha oscillations differ between

children with ASD and TD children. The alpha band of frequencies have been shown to play

a role in neural coordination and communication between distributed brain regions [Fries,

2005, Klimesch et al., 2007]. Alpha oscillations are composed of periodic and aperiodic neural

activity patterns that coexist in the EEG spectra. Neuroscientists are primarily interested

in the periodic signals, specifically in the location of a single prominent peak in the spectral
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density located in the alpha band of frequencies, called the peak alpha frequency (PAF).

The peak alpha frequency has shown to be a biomarker of neural development in typically

developing children [Rodŕıguez-Mart́ınez et al., 2017]. Studies have shown that the alpha

peak becomes more prominent and shifts to a higher frequency within the first years of life

for TD children [Rodŕıguez-Mart́ınez et al., 2017, Scheffler et al., 2019]. Compared to TD

children, the emergence of a distinct alpha peak and developmental shifts have been shown

to be atypical in children with ASD [Dickinson et al., 2018, Scheffler et al., 2019, Marco

et al., 2022b,c].

In Section 4.4.1, we conduct a formal analysis on how age affects alpha oscillations by

fitting a covariate adjusted functional mixed membership model with age as the only covari-

ate. This analysis is extended in Section 4.4.2 where an analysis on how developmental shifts

differ based on diagnostic group. To conduct this analysis, a covariate adjusted functional

mixed membership mode was fit with age, diagnostic group, and an interaction between age

and diagnostic group as the covariates.

4.4.1 Alpha Oscillations Stratified by Age

In this study, we will primarily be looking at the T8 electrode, which is located in the right

temporal region of the scalp. By using the T8 electrode, we will directly be able to compare

the results from our covariate adjusted model to the results found in Marco et al. [2022b],

which used a non-adjusted functional mixed membership model on this data. From Figure

4.2, we can see that the first feature mainly consists of aperiodic neural activity patterns,

which are commonly referred to as a 1/f trend or pink noise. The second feature on the

other hand can be interpreted as a distinct alpha peak, which is considered a periodic neural

activity. We can see that as children that load heavily on the second feature age, the alpha

peak becomes larger in magnitude and the PAF shifts to a higher frequency, which has

been observed in many other studies [Haegens et al., 2014, Rodŕıguez-Mart́ınez et al., 2017,

Scheffler et al., 2019]. As stated in Haegens et al. [2014], this shift in PAF can confound
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the measures of alpha power, thus demonstrating the need for a covariate adjusted model.

From a clinical perspective, it is also valuable to compare children’s alpha power conditional

on age since we know that are developmental changes in alpha oscillations as children age.

From Figure 4.2, we can also see that on average children with ASD have a less attenuated

alpha peaks when compared to their age adjusted TD counterpart.
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Figure 4.2: (Top Panels) Estimates of the mean functions of the two functional features
conditional on Age. (Bottom Panel) Estimates of the allocation parameters found by fitting
a covariate adjusted functional mixed membership model. Diagnostic group level means of
allocation to the first feature is depicted as a red triangle.

In this analysis, we assume that the alpha oscillations of children with ASD and TD

children can be represented as a continuous mixture of the same two features shown in

Figure 4.2. Just as shifts in PAF can confound the measures of alpha power [Haegens et al.,

2014], this assumption can also confound the results found in this section if the assumption

is shown to be incorrect. In Section 4.4.2, we relax this assumption and allow for the features

to differ based on diagnostic group.
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4.4.2 Alpha Oscillations Stratified by Age and Diagnostic Group

Previous studies have shown that both the emergence of alpha peaks and the developmental

shifts in frequency are atypical in children with ASD [Dickinson et al., 2018, Scheffler et al.,

2019, Marco et al., 2022b,c]. Therefore, assuming that the alpha oscillations of children with

ASD and TD children can be represented by the same two features may not be realistic.

In this section, we will be fitting a covariate adjusted functional mixed membership model

with age, clinical diagnosis, and an interaction of age and clinical diagnosis as the covariates

of interest. By including the interaction between age and diagnostic group, we allow for

differences in the developmental changes of alpha oscillations between diagnostic groups.
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Figure 4.3: (Top Panels) Estimates of the mean functions of the first two features for ASD
children conditional on Age. (Middle Panels) Estimates of the mean functions of the first
two features for TD children conditional on Age. (Bottom panel) Estimates of the allocation
parameters by clinical Diagnosis, where the red triangles depict the group level means.
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By fitting a covariate adjusted functional mixed membership model with age and di-

agnostic group, we can see that the two features seems to greatly differ between children

with ASD and TD children (Figure 4.3). TD children that load heavily on feature 2 have a

relatively distinct alpha peak and tend to have a shift in PAF to a higher magnitude as they

age, reaffirming results found in the neuroscience literature [Haegens et al., 2014, Rodŕıguez-

Mart́ınez et al., 2017, Scheffler et al., 2019]. Alternatively, TD children that load heavily

on feature 1 tend to have more aperiodic alpha frequencies and do not develop a prominent

alpha peak even as they age. Compared to the two features found for TD children, the two

features found for ASD children are more abstruse. Similarly to the second feature for TD

children, the second feature for children with ASD can be interpreted as individuals with a

distinct alpha peak. Compared to the second feature of TD children, we can see that the

second feature’s alpha peak is less prominent and there is no sign of a developmental shift in

PAF as children age. The second feature for children with ASD can also be interpreted as

a signal with mainly aperiodic neural activity, with no discernible alpha peak. We can see

that the changes to feature 1 as children with ASD age seem to directly oppose the changes

to feature 2 as children with ASD age. This phenomenon leads to sample paths that are

less featured in children with ASD that have roughly equal weighting of both features. This

is apparent in Figure 4.4, where the average alpha oscillations stratified by developmental

group are shown for various ages. This figure was created by using the estimated sample

path for individuals with the group average allocations (depicted by the red triangles in

Figure 4.3). From Figure 4.3, we can see that on average, children with ASD have a stronger

1/f trend and a less attenuated alpha peak than their age-adjusted TD counterpart.
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Figure 4.4: Estimated average developmental trajectory of alpha oscillations stratified by
diagnostic group.

As discussed in Section 4.2.4, the proposed covariate adjusted mixed membership model

can be thought of as a generalization of function-on-scalar regression. Figure 4.5 contains

the estimated developmental trajectories obtained by fitting a function-on-scalar regression

model using the package “refund” package in R [Goldsmith et al., 2016]. The results from

function-on-scalar regression coincide with the estimated average developmental trajectory

of alpha oscillations obtained from our covariate adjusted mixed membership model visual-

ized in Figure 4.4. However, the function-on-scalar analysis does not allow practitioners to

conduct analysis at an individual level. Compared to function-on-scalar regression, covariate

adjusted mixed membership models allow practitioners to quantitatively compare the alpha

oscillations of an individual to peers of the same age. Moreover, covariate adjusted mixed

membership models are able to specify individualized predictions of the estimated changes

of the alpha oscillations based off of an individual’s estimate allocation parameters. Over-

all, the added flexibility of covariate adjusted mixed membership models allows scientists to

have greater insight into the developmental changes of alpha oscillations when compared to

function-on-scalar regression.
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Figure 4.5: Estimated population level developmental trajectories stratified by diagnostic
group, obtained by fitting a function-on-scalar regression model. The model included age,
diagnostic group, and an interaction between age and diagnostic group as the covariates of
interest.

4.4.3 Comparison Between Mixed Membership Models

In this section, we extended the analysis on alpha oscillations conducted by Marco et al.

[2022b] to allow for a covariate depended mixed membership model. While previous studies

[Haegens et al., 2014, Rodŕıguez-Mart́ınez et al., 2017, Scheffler et al., 2019] have shown that

alpha oscillations are dependent on age, little is known about how alpha oscillations differ

between children with ASD and TD children conditional on age. While it is enticing to

add more covariates to our model, the small sample sizes often found in neurodevelopmental

studies limit our ability to fit models with a large amount of covariates. Thus in order to

prevent having overfit models, we can perform cross-validated methods such as conditional

predictive ordinates (CPO) [Pettit, 1990, Chen et al., 2012, Lewis et al., 2014]. CPO for

our model can be defined as P (Yi(ti) | {Yj(tj)}j ̸=i). Unlike traditional cross-validation

methods, CPO requires no extra sampling to be conducted. Following Chen et al. [2012] and

Lewis et al. [2014], an estimate of CPO for our model can be obtained through the following
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MCMC approximation:

ĈPOi =

 1

NMC

NMC∑
r=1

1

P
(
Yi(ti) | Θ̂

r

−χ,xi

)
−1

, (4.16)

where Θ̂
r

−χ are the samples from the rth MCMC iteration, NMC are the number of MCMC

iterations (not including burn-in), and P
(
Yi(ti) | Θ̂

r

−χ,xi

)
is specified in Equation 4.12.

While CPO is a measure of how well the model fits each individual observation, the pseu-

domarginal likelihood (PML), defined as P̂ML =
∏N

i=1 ĈPOi, is an overall measure of how

well the model fits the entire dataset. Using CPO and PML, we will compare the unad-

justed functional mixed membership model [Marco et al., 2022b] as well as the two covariate

adjusted functional mixed membership models fit in this section.

In this section, we will letM0 denote the unadjusted functional mixed membership model

from Marco et al. [2022b], M1 denote the age adjusted functional mixed membership model,

and M2 denote the age and diagnostic group adjusted functional mixed membership model.

From Figure 4.6, we can see that the age adjusted functional mixed membership model

tends to fit the data slightly better than the unadjusted model (M0 log (PML) = 6543.9, M1

log (PML) = 6657.9). The covariate adjusted model with age and diagnostic group as covari-

ates had a slightly worse fit than the covariate adjusted model with just age alone, suggesting

that more data may be needed in order to conduct such an analysis (M2 log (PML) = 6616.1).

While the fit may be slightly worse for the covariate adjusted model with age and diagnostic

group as covariates, this model does give us useful insight into how the two features differ

between children with ASD and TD children. Moreover, besides the one TD individual, we

can see that the model tends to fit children with ASD worse than TD children, supporting

that the alpha oscillations are more irregular compared to TD individuals.
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Figure 4.6: CPO comparisons between different models on the log scale. M0 denotes the
unadjusted functional mixed membership model, while M1 denotes model stratified by age
and M2 denotes the model stratified by age and diagnostic group.

4.5 Conclusion

In this manuscript, we extended the functional mixed membership model framework pro-

posed by Marco et al. [2022b] to allow for covariate dependence. This work was primarily

motivated by a neurodevelopmental study on alpha oscillations, where alpha oscillations are

known to change as children age. While mixed membership models provided a novel way to

quantify the emergence and presence of developmental biomarker known as an alpha peak

[Marco et al., 2022b,c], it has been shown that not accounting for developmental shifts in

the alpha peak can confound measures of the peak alpha frequency [Haegens et al., 2014],

leading to a need for a covariate adjusted functional mixed membership model. In Section

4.2, we derive the covariate adjusted functional mixed membership models and compare the

framework to common covariate-dependent clustering frameworks such as mixture of experts

and mixture of regressions models. Once we completely specify the model and priors, we

provide a set of sufficient conditions in Lemma 7 to ensure that a two feature covariate ad-

justed mixed membership model has identifiable mean, covariance, and allocation structures.

Section 4.3 contains a simulation study exploring the empirical convergence properties of our

model. We conclude by revisiting the neurodevelopmental case study on alpha oscillations
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in Section 4.4, where we use covariate adjusted functional mixed membership models to gain

novel insight into developmental differences of alpha oscillations between children with ASD

and TD children.

While we primarily focus on a mixed membership model where the covariate dependence

encoded in the mean structure, we can encode covariate dependence into the covariance

structure by introducing covariate-dependent pseudo-eigenfunctions, as discussed in Section

C.4.1 of the Supplementary Materials. While formulating such a model is relatively straight-

forward, the amount of data needed to fit such a model would be relatively large compared

to just model where the mean depends on the covariates of interest. This is supported by

the simulation study conducted in Section 4.3, where even with 200 functional observations,

a covariate adjusted mixed membership model with one covariate (with no covariate de-

pendence on the covariance structure) has relatively high R-MISE for the covariance and

cross-covariance functions. Therefore, in order to justify using a functional mixed member-

ship that encodes covariate dependence into the mean and covariance structure, one would

not only need a lot of data, but also a justification for sacrificing statistical efficiency in

return for a more expressive covariance structure.

While the framework described in this manuscript works for any number of functional

features, the guarantees for model identifiability described in Lemma 7 only hold for mod-

els with 2 functional features. Chen et al. [2022] describes in great detail the identifiability

challenges that exists in mixed membership models, especially when considering mixed mem-

bership models with 3 or more features. One way to ensure identifiability is to assume the

separability condition [Pettit, 1990, Donoho and Stodden, 2003, Arora et al., 2012, Azar

et al., 2001, Chen et al., 2022], which assumes that for each feature, there exists at least one

observation that completely belongs to that feature. In the setting of a two feature model,

this is very weak assumption that does not impact the flexibility of the model. However,

in models with 3 or more features, this assumption makes strong geometric assumptions on

the model. However, if we are able to assume the separability condition, a generalization of
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Lemma 7 can be derived, but we will need at least k2−k
2

+1 observations with allocation pa-

rameters that lie in the interior of the unit simplex in order to ensure identifiability. Weaker

assumptions utilizing the work of Chen et al. [2022] can be made to ensure identifiability,

however an extension to the proposed work is non-trivial. While choosing the number of

features is one of the main challenges when fitting a mixed membership model, Marco et al.

[2022b] and Marco et al. [2022c] discuss how information criteria can be informative in choos-

ing the correct number of clusters. Similarly, definitions of information criteria, such as BIC,

or simple heuristics such as the “elbow-method” can be informative in choosing the number

of features in the covariate adjusted model. Conducting an unadjusted analysis prior to a

covariate adjusted analysis can also be informative in choosing the number of latent features.

Most importantly, we maintain that the most interpretable model is the optimal model, as

covariate adjusted functional mixed membership models are an unsupervised technique that

aims to explain data heterogeneity conditional on covariates of interest.

As observed in unadjusted mixed membership models [Marco et al., 2022b,c], the pos-

terior distribution often has multiple modes, leading to poor posterior exploration using

traditional sampling methods. Thus we use a similar algorithm to Algorithm 1 described in

the supplement of Marco et al. [2022b] to pick a good starting point for our Markov chain.

In addition to finding good initial starting points, we also outline a tempered-transition

sampling scheme [Pritchard et al., 2000, Behrens et al., 2012] in Section 2.2 of the Sup-

plementary Materials, which allows us to traverse areas of low posterior probability. An R

package for the proposed covariate adjusted functional mixed membership model is available

for download at https://github.com/ndmarco/BayesFMMM.
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CHAPTER 5

Future Extensions

Mixed membership models can be thought of as generalizations of traditional clustering

models such as finite mixture models, where membership is thought of as a spectrum rather

than a binary variable. Due to the added flexibility of mixed membership models, ensuring

identifiability becomes more challenging. One way to ensure identifiability is to assume the

separability condition, which assumes that for each feature at least one observation belongs

completely to that feature. In the case when we only have two features, assuming the

separability condition does not make any major assumptions on the sampling distribution.

However, in cases when we have three or more features, the separability condition makes

strong geometric assumptions on the sampling distribution. Chen et al. [2022] discusses

weaker geometric assumptions that also ensure an identifiable model. While the assumptions

are weaker, implementing them and performing Markov chain Monte Carlo under those

constraints is not trivial. While challenging, the implementation of these constraints into

a mixed membership model would be a significant step forward in the mixed membership

literature from both an application perspective, as well as a theoretical perspective. From

a theoretical perspective, we would have an identifiable model, which is a necessary step

in ensuring posterior consistency without conditioning on the allocation variables. Once

identifiability is established, research can also be conducted on theoretical results such as

posterior contraction rates.

In this dissertation, we proposed mixed membership models for multivariate data and

functional data (for both one-dimensional functions and higher-dimensional functions). One

96



type of data structure that often arises in neurodevelopmental studies is data that is both

longitudinal and functional. One way this type data could arise would be from EEG experi-

ments where a subject will visit multiple times over a certain time period, and at each visit

an EEG recording was obtained. While our model can handle functional data, our model

does not account for the structured dependence created from repeat measurements of the

same subject, leading to a need for a mixed membership models that can handle longitudinal

functional data. The proposed models can be also be extended to handle a combination of

functional data and multivariate Gaussian data. Similarly to Happ and Greven [2018], we

can obtain a eigen decomposition of the combination of functional data and multivariate

data by first jointly representing the data as a direct sum of vector spaces. Once the joint

representation is formalized, an eigen decomposition should be obtainable, allowing for the

specification of a mixed membership model.

In Chapter 4, we derived a covariate adjusted mixed membership model where the covari-

ates of interest were scalars and the data which we wanted to learn the allocation structure

of were functional. Similar models can be formulated where the covariates of interest are

functional. Instead of leveraging the literature of function-on-scalar regression, we would

leverage the vast amount of work on function-on-function regression. When dealing with

function-on-function regression, we assume that

Y (t) = µ(t) +
R∑

r=1

∫
s∈Txr

Xr(s)βr(t, s)ds+ ϵ(t); t ∈ T ,

where βr(t, s) is the r
th coefficient surface and Txr is the domain of the function Xr(·). Simi-

larly to Chapter 4, we can assume the basis functions can be represented by basis functions.

By leveraging the function-on-function regression framework, a covariate adjusted mixed

membership model can be formulated for covariates which are functional. Similarly, covari-

ate adjusted mixed membership models for multivariate data can be formulated, and are

implemented in the “BayesFMMM” package (https://github.com/ndmarco/BayesFMMM).
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APPENDIX A

Appendix: Flexible Regularized Estimation in

High-Dimensional Mixed Membership Models

A.1 Proofs

A.1.1 Proof of Lemma 2.1

We will start be explicitly defining the functions Λi(ω0,ω), Ki(ω0,ω), and Vi(ω0,ω). Thus

we have

Λi(ω0,ω) = log

(
|(Σi)0|

−1/2 exp
{
−1

2
(yi − (µi)0)

′ (Σi)
−1
0 (yi − (µi)0)

}
|Σi|−1/2 exp

{
−1

2
(yi − µi)

′ (Σi)
−1 (yi − µi)

} )
=− 1

2
[log (|(Σi)0|)− log (|Σi|)]

− 1

2

[
(yi − (µi)0)

′ (Σi)
−1
0 (yi − (µi)0)− (yi − µi)

′ (Σi)
−1 (yi − µi)

]
=− 1

2

[
P∑
l=1

log
(
(dil)0 + σ2

0

)
− log

(
dil + σ2

)]
− 1

2

[
(yi − (µi)0)

′ (Σi)
−1
0 (yi − (µi)0)− (yi − µi)

′ (Σi)
−1 (yi − µi)

]
(A.1)
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Ki(ω0,ω) =−
1

2

[
P∑
l=1

log
(
(dil)0 + σ2

0

)
− log

(
dil + σ2

)]
− 1

2
Eω0

[
(yi − (µi)0)

′ (Σi)
−1
0 (yi − (µi)0)− (yi − µi)

′ (Σi)
−1 (yi − µi)

]
=− 1

2

[
P∑
l=1

log
(
(dil)0 + σ2

0

)
− log

(
dil + σ2

)]
− 1

2

[
P −

(
tr
(
Σ−1

i (Σi)0
)
+ ((µi)0 − µi)

′ (Σi)
−1 ((µi)0 − µi)

)]
(A.2)

Vi(ω0,ω) =
1

4
Varω0

[
(yi − (µi)0)

′ (Σi)
−1
0 (yi − (µi)0)− (yi − µi)

′ (Σi)
−1 (yi − µi)

]
=
1

4
Varω0

[
y′
i

(
(Σi)

−1
0 +Σ−1

i

)
yi − 2y′

i

(
(Σi)

−1
0 (µi)0 +Σ−1

i µi

)]
Letting Mv = (Σi)

−1
0 +Σ−1

i , and mv = (Σi)
−1
0 (µi)0 +Σ−1

i µi, we have

Vi(ω0,ω) =
1

4
Varω0

[
(yi −M−1

v mv)
′Mv(yi −M−1

v mv)
]

=
1

4

[
2tr (Mv (Σi)0Mv (Σi)0) + 4

(
(µi)0 −M−1

v mv

)′
(Σi)0

(
(µi)0 −M−1

v mv

)]
=
1

2

[
P + 2tr

(
Σ−1

i (Σi)0
)
+ tr

(
Σ−1

i (Σi)0Σ
−1
i (Σi)0

)]
+ ((µi)0 − µi)

′ (Σ−1
i (Σi)0Σ

−1
i

)
((µi)0 − µi) . (A.3)

Let Ωϵ(ω0) = {ω : Ki(ω0,ω) < ϵ for all i} for some ϵ > 0. We will assume that σ2
0 > 0.

Consider the set B(ω0) = {ω : 1
a
((dil)0+σ

2
0) ≤ dil+σ

2 ≤ a((dil)0+σ
2
0), ∥ (µi)0−µi∥ ≤ b} for

some a, b ∈ R such that a > 1 and b > 0. Thus for a fixed ω0 ∈ Ω and any ω ∈ C(ω0, ϵ) :=

B(ω0)∩Ωϵ(ω0), we can bound Vi(ω0,ω). We will let λr(A) denote the rth eigenvalue of the

matrix A, and λmax(A) denote the largest eigenvalue of A. Thus we have

tr
(
Σ−1

i (Σi)0
)
≤ Pλmax

(
Σ−1

i (Σi)0
)
≤ Pa

σ2
0

(
max

l
(dil + σ2

0)
)
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tr
(
Σ−1

i (Σi)0Σ
−1
i (Σi)0

)
≤ tr

(
Σ−1

i (Σi)0
)2 ≤ (Pa

σ2
0

(
max

l
(dil + σ2

0)
))2

((µi)0 − µi)
′ (Σ−1

i (Σi)0Σ
−1
i

)
((µi)0 − µi) ≤ b2λmax

(
Σ−1

i (Σi)0Σ
−1
i

)
≤ a2b2

σ4
0

max
l

(dil + σ2
0)

Thus we can see that for any ω ∈ C(ω0, ϵ),

Vi(ω0,ω) ≤
1

2

[
P + 2

(
Pa

σ2
0

(
max

l
(dil + σ2

0)
))

+

(
Pa

σ2
0

(
max

l
(dil + σ2

0)
))2

]

+
a2b2

σ4
0

max
l

(dil + σ2
0)

=MV .

If we can bound λmax ((dil)0 + σ0), then we have that Vi(ω0,ω) is bounded. Let ∥ · ∥F be

the Frobenius norm. Using the triangle inequality, we have

∥(Σi)0∥F ≤
K∑
k=1

K∑
j=1

KP∑
p=1

ZijZik∥(ϕkp)0(ϕjp)
′
0∥F + σ2

0∥IP∥F

≤
K∑
k=1

K∑
j=1

KP∑
p=1

∥(ϕkp)0(ϕjp)
′
0∥F + σ2

0∥IP∥F

=
K∑
k=1

K∑
j=1

KP∑
p=1

√
tr
(
(ϕjp)0(ϕkp)

′
0(ϕkp)0(ϕjp)

′
0

)
+
√
Pσ2

0

=
K∑
k=1

K∑
j=1

KP∑
p=1

√
tr
(
ϕ′

kp(ϕkp)0(ϕjp)
′
0(ϕjp)0

)
+
√
Pσ2

0

=
K∑
k=1

K∑
j=1

KP∑
p=1

∥(ϕjp)0∥2∥(ϕkp)0∥2 +
√
Pσ2

0

=MΣ0 <∞,
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for all i ∈ N. Therefore, we know that λmax ((dil)0 + σ0) ≤ MΣ0 , as the Frobenius is the

squareroot of the sum of the squared eigenvalues for a square matrix. Therefore, we have

for all i ∈ N and ω ∈ C(ω0, ϵ), we have that

Vi(ω0,ω)

i2
≤ MV

i2
.

Since
∑∞

i=1
1
i2
= π2

6
, we have that

∑∞
i=1

MV

i2
= MV π2

6
<∞. Thus we have

∞∑
i=1

Vi(ω0,ω)

i2
<∞. (A.4)

We will next show that for ω0 ∈ Ω and ϵ > 0, Π(C(ω0), ϵ) > 0. Fix ω0 ∈ Ω. While the (ϕjp)0

may not be identifiable (for any orthogonal matrix H, (ϕjp)0HH′(ϕkp)0 = (ϕjp)
′
0(ϕkp)0), let

(ϕjp)0 be such that
∑KP

p=1(ϕjp)
′
0(ϕkp)0 = (Σjk)0. Thus we can define the following sets:

Ωϕjp
=
{
ϕjp : (ϕjp)0 ≤ ϕjp ≤ (ϕjp)0 + ϵ11

}
Ωνk

= {νk : (νk)0 ≤ νk ≤ (νk)0 + ϵ21}

Ωσ2 =
{
σ2 : σ2

0 ≤ σ2 ≤ (1 + ϵ1)σ
2
0

}
.

We define ϵ1jp and ϵ2k such that each element of ϵ1jp is between 0 and ϵ1, and each element

of ϵ2k is between 0 and ϵ2. Therefore (ϕjp)0 + ϵ1jp ∈ Ωϕjp
and (νk)0 + ϵ2k ∈ Ωνk

. We will

define

ΩΣjk
:=

{
KP∑
p=1

ϕ′
jpϕkp

∣∣∣∣∣ϕjp ∈ Ωϕjp
,ϕkp ∈ Ωϕkp

}
.
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Thus for Σi such that ϕjp ∈ Ωϕjp
and σ2 ∈ Ωσ2 , we have that

Σi =
K∑
k=1

K∑
j=1

ZikZij

(
KP∑
p=1

((
(ϕkp)0 + ϵ1kp

) (
(ϕjp)0 + ϵ1jp

)′))
+ (1 + ϵσ)σ

2
0IP

=(Σi)0 +
K∑
k=1

K∑
j=1

KP∑
p=1

ZikZij

(
(ϵ1kp) (ϕjp)

′
0

)
+

K∑
k=1

K∑
j=1

KP∑
p=1

ZikZij

(
(ϕkp)0 (ϵ1jp)

′)
+

K∑
k=1

K∑
j=1

KP∑
p=1

ZikZij

(
(ϵ1kp) (ϵ1jp)

′)+ ϵσσ
2
0IP

=(Σi)0 + Σ̃i,

for some ϵkp and ϵσ such that 0 < ϵσ ≤ ϵ1. Thus, letting ζjkp =
(
(ϵ1kp) (ϕjp)

′
0

)
+
(
(ϕkp)0 (ϵ1jp)

′),
we have

∣∣∣∣ZikZijζjkp
∣∣∣∣2

F
≤
∣∣∣∣ζjkp∣∣∣∣2F

=tr
((
(ϵ1kp) (ϕjp)

′
0

) (
(ϕjp)0 (ϵ1kp)

′))
+ tr

((
(ϵ1kp) (ϕjp)

′
0

) (
(ϵ1jp) (ϕkp)

′
0

))
+ tr

((
(ϕkp)0 (ϵ1jp)

′) ((ϕjp)0 (ϵ1kp)
′))

+ tr
((
(ϕkp)0 (ϵ1jp)

′) ((ϵ1jp) (ϕkp)
′
0

))
≤ϵ21tr

(
(ϕjp)

′
0(ϕjp)01

′1
)

+ 2tr
(
(ϕjp)

′
0 (ϵ1jp) (ϕkp)

′
0 (ϵ1kp)

)
(A.5)

+ ϵ21tr
(
1′1(ϕkp)

′
0(ϕkp)0

)
.
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Using the Cauchy-Schwarz inequality, we can simplify Equation A.5, such that

(A.5) = 2⟨(ϕjp)0, ϵ1jp⟩⟨(ϕkp)0, ϵ1kp⟩

≤ 2∥(ϕjp)0∥2∥ϵ1jp∥2∥(ϕkp)0∥2∥ϵ1kp∥2

≤ 2ϵ21P∥(ϕjp)0∥2∥(ϕkp)0∥2.

Letting

M̃jkp = P
[
∥(ϕjp)0∥22 + ∥(ϕkp)0∥22 + 2∥(ϕjp)0∥2∥(ϕkp)0∥2

]
,

we have ∣∣∣∣ZikZijζjkp
∣∣∣∣2
F
≤ ϵ21M̃jkp.

In a similar fashion, we can show that

∥ZikZij

((
(ϵ1kp) (ϵ1jp)

′)) ∥2F ≤ ϵ21P

and

∥ϵσσ2
0IP∥2F ≤ ϵ21σ

4
0P.

By using the triangle inequality we have

∥Σ̃i∥F ≤ ϵ1

(
K∑
j=1

K∑
k=1

KP∑
p=1

(√
M̃jkp

)
+ JK2P 3/2 + σ2

0

√
P

)
:= ϵ1MΣ (A.6)

for all i ∈ N. By the Wielandt-Hoffman Theorem (Golub and Van Loan [2013] Theorem

8.1.4), we have that

P∑
p=1

(
λp

(
(Σi)0 + Σ̃i

)
− λp ((Σi)0)

)2
≤ ∥Σ̃i∥2F ,
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which implies that

max
p

∣∣∣λp ((Σi)0 + Σ̃i

)
− λp ((Σi)0)

∣∣∣ ≤ ∥Σ̃i∥F (A.7)

where λp(A) are the eigenvalues of the matrix A. By using Equation A.6, we can bound the

log-determinant of the ratio of the two covariance matrices as follows

log

(
|Σi|
|(Σi)0|

)
= log

∏P
p=1 λp

(
(Σi)0 + Σ̃i

)
∏P

p=1 λp ((Σi)0)


≤ log

(
P∏

p=1

((dip)0 + σ2
0) + ϵ1MΣ

(dip)0 + σ2
0

)

≤ P log

(
1 +

ϵ1MΣ

σ2
0

)
. (A.8)

We can also bound tr
(
Σ−1

i (Σi)0
)
. To do this, we will first consider the spectral norm,

defined as ∥A∥2 =
√
A∗A for some matrix A. In the case where A is symmetric, we have

that ∥A∥2 = maxr |λr(A)|. By the submultiplicative property of induced norms, we have

that

max
p
|λp(AB)| = ∥AB∥2 ≤ ∥A∥2∥B∥2 = max

p
|λp(A)|max

p
|λp(B)|, (A.9)

for two symmetric matrices A and B. By using the Sherman–Morrison–Woodbury formula,

we can see that

Σ−1
i =

(
(Σi)0 + Σ̃i

)−1

= (Σi)
−1
0 − (Σi)

−1
0 Σ̃i

(
(Σi)0 + Σ̃i

)−1

.

Thus, we have that

Σ−1
i (Σi)0 = IR − (Σi)

−1
0 Σ̃i

(
(Σi)0 + Σ̃i

)−1

(Σi)0 . (A.10)

Using Equation A.9, we would like to bound the magnitude of the eigenvalues of
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(Σi)
−1
0 Σ̃i

(
(Σi)0 + Σ̃i

)−1

(Σi)0. We know that

max
p

∣∣∣∣λp(((Σi)0 + Σ̃i

)−1
)∣∣∣∣ ≤ 1

σ2
0

and

max
p

∣∣∣λp(Σ̃i)
∣∣∣ ≤ ϵ1MΣ,

with the second inequality coming from Equation A.6. From Equation A.10 and basic

properties of the trace, we have that

tr
(
Σ−1

i (Σi)0
)
= tr

(
IP − (Σi)

−1
0 Σ̃i

(
(Σi)0 + Σ̃i

)−1

(Σi)0

)
= tr (IP )− tr

(
Σ̃i

(
(Σi)0 + Σ̃i

)−1

(Σi)0 (Σi)
−1
0

)
= tr (IP )− tr

(
Σ̃i

(
(Σi)0 + Σ̃i

)−1
)

Thus, using the fact that the trace of a matrix is the sum of its eigenvalues, we have that

tr
(
Σ−1

i (Σi)0
)
≤ P + P max

p

∣∣∣∣λp(Σ̃i

(
(Σi)0 + Σ̃i

)−1
)∣∣∣∣ .

Using the submultiplicative property stated in Equation A.9, we have

tr
(
Σ−1

i (Σi)0
)
≤ P +

Pϵ1MΣ

σ2
0

. (A.11)
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Lastly, we can bound the quadratic term in Ki(ω0,ω) in the following way:

((µi)0 − µi)
′ (Σi)

−1 ((µi)0 − µi) ≤ ||(µi)0 − µi||
2
2max

p
λp(
(
Σi)

−1
)

≤ 1

σ2

K∑
k=1

∥(νk)0 − νk∥22

=
1

σ2

K∑
k=1

ϵ′2kϵ2k

≤ KPϵ22
σ2
0

. (A.12)

Thus letting

ϵ1 < min

{
σ2
0

MΣ

(
exp

(
2ϵ

3P

)
− 1

)
,

2ϵσ2
0

3PMΣ

}
(A.13)

and

ϵ2 <

√
2σ2

0ϵ

3KP
, (A.14)

we have from Equations A.8, A.11, and A.12 that

Ki(ω0,ω) < ϵ for all ω ∈ Ω1

whereΩ1 :=
(
×K

j=1×K

k=1
ΩΣjk

)
×
(
×K

k=1
Ωνk

)
×Ωσ2 . Letting a > max

{
1 + ϵ1MΣ

σ2
0
,
(
1− ϵ1MΣ

σ2
0

)−1
}

and b >
√
KPϵ22 in the definition of C(ω0, ϵ), we have that Ω1 ⊂ C(ω0, ϵ). Let Hϕ be the

set of hyper-parameters corresponding to the ϕ parameters, and let Π(ηϕ) be the prior

distribution on ηϕ ∈ Hϕ. Thus we have that

Π (ω ∈ C(ω0, ϵ)) ≥
∫
Hϕ

K∏
j=1

KP∏
p=1

P∏
r=1

∫ (ϕjrp)0+ϵ1

(ϕjrp)0

√
γjrpτ̃pj
2π

exp

{
−γjrpτ̃pj

2
ϕ2
jrp

}
dϕjrpdΠ(ηϕ)

×
K∏
k=1

∫ ∞

0

∫ (νk)0+ϵ21

(νk)0

( τk
2π

)P/2

exp
{τk
2
ν ′
kνk

}
dνkdΠ(τk)

×
∫ (1+ϵ1)σ2

0

σ2
0

βα0
0

Γ(α0)
(σ2)−α0−1exp

{
−β0
σ2

}
dσ2.
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Restricting the hyper-parameters of ϕ to only a subset of the support, say H̃ϕ, where

H̃ϕ =

{
ηϕ :

1

10
≤ γjrp ≤ 10, 1 ≤ δpj ≤ 2, 1 ≤ a1j ≤ 10, 1 ≤ a2j ≤ 10

}
,

we can see that there exists a Mϕjrp
> 0 such that

√
γjrpτ̃pj
2π

exp

{
−γjrpτ̃pj

2
ϕ2
jrp

}
≥Mϕjrp

,

for all ϕjrp ∈ [(ϕjrp)0, (ϕjrp)0 + ϵ1]. Similarly, we can find a lower bound MH̃ϕ
> 0, such that

∫
H̃ϕ

d(ηϕ) ≥MH̃ϕ
.

Similarly, if we bound τk such that 1
10
≤ τk ≤ 10, it is easy to see that there exists constants

Mνk
,Mτk ,Mσ2 > 0 such that

( τk
2π

)P/2

exp
{τk
2
ν ′
kνk

}
≥Mνk

,

for all νk ∈ [(νk)0, (νk)0 + ϵ21], ∫ 10

1
10

Π(τk) ≥Mτk ,

and
βα0
0

Γ(α0)
(σ2)−α0−1exp

{
−β0
σ2

}
≥Mσ2
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for all σ2 ∈ [σ2
0, (1 + ϵ1)σ

2
0]. Therefore we have that

Π (ω ∈ C(ω0, ϵ)) ≥MH̃ϕ

K∏
j=1

KP∏
p=1

P∏
r=1

ϵ1Mϕjrp

×
K∏
k=1

Mτkϵ
P
2Mνk

× ϵ1σ2
0Mσ2

0

> 0.

Therefore, for ϵ > 0, there exists a and b such that
∑∞

i=1
Vi(ω0,ω)

i2
< ∞ for any ω ∈ C(ω0, ϵ)

and Π (ω ∈ C(ω0, ϵ)) > 0.

A.1.2 Proof of Lemma 2.2

Following the notation of Ghosal and Van der Vaart [2017], we will let P
(N)
ω0 denote the

joint distribution of y1, . . . ,yN at ω0 ∈ Ω. In order to show that the posterior distribution,

ΠN(.|y1, . . . ,yN), is weakly consistent at ω0 ∈ Ω, we need to show thatΠN(U c|y1, . . . ,yN)→

0 a.s. [Pω0 ] for every weak neighborhood, U of ω0. Following a similar notation to Ghosal and

Van der Vaart [2017], let ψN be measurable mappings, ψN : SN ×ZN → [0, 1], where Z is

the sample space of {Zi1, . . . , ZiK}. Let ψN(y1, . . . ,yN , z1, . . . , zN) be the corresponding test

function, and

PN
ω ψN = EPN

ω
ψN(y1, . . . ,yN , z1, . . . , zN) =

∫
ψNdP

N
ω , where PN

ω denotes the joint distribu-

tion on y1, . . . ,yN with parameters ω. Suppose there exists tests ψN such that PN
ω0
ψN → 0,
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and supω∈UcPN
ω (1− ψN)→ 0. Since ψN(y1, . . . ,yN , z1, . . . , zN) ∈ [0, 1], we have that

Πn(U
c|y1, . . . ,yN) ≤ Πn(U

c|y1, . . . ,yN) + ψN(y1, . . . ,yN) (1−Πn(U
c|y1, . . . ,yN))

= ψN(y1, . . . ,yN) +
(1− ψN(y1, . . . ,yN))

∫
Uc

∏N
i=1

fi(yi;ω)
fi(yi;ω0)

dΠ(ω)∫
Ω

∏N
i=1

fi(yi;ω)
fi(yi;ω0)

dΠ(ω)
.

(A.15)

To show that Πn(U
c|y1, . . . ,yN)→ 0, it is sufficient to show the following three conditions:

1. ψN(y1, . . . ,yN , z1, . . . , zN)→ 0 a.s. [Pω0 ],

2. eβ1N (1− ψN(y1, . . . ,yN , z1, . . . , zN))
∫
Uc

∏N
i=1

fi(yi;ω)
fi(yi;ω0)

dΠ(ω) → 0 a.s. [Pω0 ] for some

β1 > 0,

3. eβN
(∫

Ω

∏N
i=1

fi(yi;ω)
fi(yi;ω0)

dΠ(ω)
)
→∞ a.s. [Pω0 ] for all β > 0.

We will start by proving (c). Fix β > 0. Thus we have

eβN

(∫
Ω

N∏
i=1

fi(yi;ω)

fi(yi;ω0)
dΠ(ω)

)
= eβN

(∫
Ω

exp

[
−

N∑
i=1

log

(
fi(yi;ω0)

fi(yi;ω)

)]
dΠ(ω)

)
.

By Fatou’s Lemma, we have

lim inf
N→∞

∫
Ω

exp

[
βN −

N∑
i=1

log

(
fi(yi;ω0)

fi(yi;ω)

)]
dΠ(ω)

≥
∫
Ω

lim inf
N→∞

exp

[
βN −

N∑
i=1

log

(
fi(yi;ω0)

fi(yi;ω)

)]
dΠ(ω)

Let β > ϵ > 0 and a, b > 0 be defined such that lemma 3.1 holds. Since C(ω0, ϵ) ⊂ Ω, we
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have that

∫
Ω

lim inf
N→∞

exp

[
βN −

N∑
i=1

log

(
fi(yi;ω0)

fi(yi;ω)

)]
dΠ(ω)

≥
∫
C(ω0,ϵ)

lim inf
N→∞

exp

[
βN −

N∑
i=1

log

(
fi(yi;ω0)

fi(yi;ω)

)]
dΠ(ω)

By Kolmogorov’s strong law of large numbers for non-identically distributed random vari-

ables, we have that

1

N

N∑
i=1

(Λi(ω0,ω)−Ki(ω0,ω))→ 0

a.s. [Pω0 ]. Thus for each ω ∈ C(ω0, ϵ), with Pω0-probability 1,

1

N

N∑
i=1

Λi(ω0,ω)→ E(Ki(ω0,ω)) < ϵ < B,

since ω ∈ C(ω0, ϵ). Therefore, we have that

∫
C(ω0,ϵ)

lim inf
N→∞

exp

[
βN −

N∑
i=1

log

(
fi(yi;ω0)

fi(yi;ω)

)]
dΠ(ω) ≥

∫
C(ω0,ϵ)

inf
N→∞

exp {N(β − ϵ)} dΠ(ω).

Since β − ϵ > 0, and Π (θ ∈ C(ω0, ϵ)) > 0 (lemma 3.1), we have that

eβN

(∫
Ω

N∏
i=1

fi(yi;ω)

fi(yi;ω0)
dΠ(ω)

)
→∞ (A.16)

a.s. [Pω0 ] for all β > 0. We will now show that exists measurable mappings such that

PN
ω0
ψN → 0 and supω∈UcPN

ω (1 − ψN) → 0. Consider weak neighborhoods U of ω0 of the

form

U =

{
ω :

∣∣∣∣∫ fidPω −
∫
fidPω0

∣∣∣∣ < ϵi, i = 1, 2, . . . , r

}
, (A.17)

where r ∈ N, ϵi > 0, and fi are continuous functions such that fi : S×Z → [0, 1]. As shown

in Ghosh and Ramamoorthi [2003], for any particular fi and ϵi > 0,
∣∣∫ fidPω −

∫
fidPω0

∣∣ <
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ϵi iff
∫
fidPω −

∫
fidPω0 < ϵi and

∫
(1− fi)dPω −

∫
(1− fi)dPω0 < ϵ. Since f̃i := (1− fi) is

still a continuous function such that f̃i : S ×Z → [0, 1], we can rewrite Equation A.17 as

U = ∩2ri=1

{
ω :

∫
gidPω −

∫
gidPω0 < ϵi

}
, (A.18)

where gi are continuous functions such that gi : S×Z → [0, 1] and ϵi > 0. Following Ghosal

and Van der Vaart [2017], it can be shown by Hoeffding’s inequality that using the test

function ψ̃, defined as

ψ̃iN(y1, . . . ,yN , z1, . . . , zN) := 1

{
1

N

N∑
j=1

gi(yj, zj) >

∫
gidPω0 +

ϵi
2

}
, (A.19)

leads to ∫
ψ̃iN(y1, . . . ,yN , z1, . . . , zN)dPω0 ≤ e−Nϵ2i /2

and ∫ (
1− ψ̃iN(y1, . . . ,yN , z1, . . . , zN)

)
dPω ≤ e−Nϵ2i /2

for any ω ∈ U c. Let ψn = maxi ψ̃iN be our test function and ϵ = mini ϵi. Using the fact that

E(maxi ψ̃iN) ≤
∑

i E(ψ̃iN) and E(1−maxi ψ̃iN) ≤ E(1− ψ̃iN), we have

∫
ψN(y1, . . . ,yN , z1, . . . , zN)dPω0 ≤ (2r)e−Nϵ2/2 (A.20)

and ∫
(1− ψN(y1, . . . ,yN , z1, . . . , zN)) dPω ≤ e−Nϵ2/2, (A.21)

for any ω ∈ U c. Using Markov’s inequality on Equation A.20, we have that

P
(
ψN(y1, . . . ,yN , z1, . . . , zN) ≥ e−nC

)
≤ E (ψN(y1, . . . ,yN , z1, . . . , zN))

e−NC

≤ (2r)e−N(ϵ2/2−C)
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Thus letting C < ϵ2/2, we have that
∑∞

N=1 P
(
ψN(y1, . . . ,yN , z1, . . . , zN) ≥ e−NC

)
< ∞.

Thus by the Borel-Cantelli lemma, we know that

P

(
lim sup
N→∞

P
(
ψN(y1, . . . ,yN , z1, . . . , zN) ≥ e−NC

))
= 0

Thus we have that ψN(y1, . . . ,yN , z1, . . . , zN) → 0 a.s. [Pω0 ] (Condition (a)). To prove

condition (b), we will first start by taking the expectation with respect to Pω0 :

EPN
ω0

(
eβN (1− ψN(y1, . . . ,yN , z1, . . . , zN))

∫
Uc

N∏
i=1

fi(yi;ω)

fi(yi;ω0)
dΠ(ω)

)

=

∫
SN

(
eβN (1− ψN(y1, . . . ,yN , z1, . . . , zN))

∫
Uc

N∏
i=1

fi(yi;ω)

fi(yi;ω0)
dΠ(ω)

)
dPN

ω0

=

∫
Uc

(
N∏
i=1

∫
S
eβN (1− ψN(y1, . . . ,yN , z1, . . . , zN)) fi(yi;ω)dyi

)
dΠ(ω)

=eβN
∫
Uc

EPN
ω
(1− ψN(y1, . . . ,yN , z1, . . . , zN)) dΠ(ω)

≤eβ1Ne−Nϵ2/2,

where the last inequality is from Equation A.21. Thus by Markov’s inequality and letting

β1 < ϵ2/2, we have that

P

(
eβN (1− ψN(y1, . . . ,yN , z1, . . . , zN))

∫
Uc

N∏
i=1

fi(yi;ω)

fi(yi;ω0)
dΠ(ω) ≥ e−N((ϵ2/2−β1)/2)

)

≤
EPN

ω0

(
eβN (1− ψN(y1, . . . ,yN , z1, . . . , zN))

∫
Uc

∏N
i=1

fi(yi;ω)
fi(yi;ω0)

dΠ(ω)
)

e−N((ϵ2/2−β1)/2)

≤e−N((ϵ2/2−β1)/2)

Letting EN be the event that eβN (1− ψN(y1, . . . ,yN , z1, . . . , zN))
∫
Uc

∏N
i=1

fi(yi;ω)
fi(yi;ω0)

dΠ(ω)

≥ e−N((ϵ2/2−β1)/2), we have that
∑∞

i=1 P (EN) < ∞. Thus by the Borel-Cantelli lemma, we
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have that

eβN (1− ψN(y1, . . . ,yN , z1, . . . , zN))

∫
Uc

N∏
i=1

fi(yi;ω)

fi(yi;ω0)
dΠ(ω)→ 0

a.s. [Pω0 ] for 0 < β1 < ϵ2/2. Therefore, we have proved conditions (a), (b), and (c). Thus

by letting β in condition (c) be such that β = β1, where 0 < β1 < ϵ2/2, we can see that

ΠN(U c|y1, . . . ,yN)→ 0 a.s. [Pω0 ] for every weak neighborhood, U of ω0.

A.2 Computation

A.2.1 Posterior Distributions and Computation

In this section, we will discuss the computational strategy used to perform Bayesian inference.

In cases where the posterior distribution is a known distribution, a Gibbs update will be

performed. We will let Θ be the collection of all parameters, and Θ−ζ be the collection of

all parameters, excluding the ζ parameter. We will first start with the ϕkm parameters, for

j = 1, . . . , K and m = 1, . . . ,M . Let Dkm = τ̃−1
mkdiag

(
γ−1
k1m, . . . , γ

−1
kPm

)
. By letting

mjm =
1

σ2

N∑
i=1

(
χim

(
yiZij − Z2

ijνj − Z2
ij

∑
n̸=m

χinϕjn −
∑
k ̸=j

ZijZik

[
νk +

M∑
n=1

χinϕkn

]))

and

M−1
jm =

1

σ2

N∑
i=1

(
Z2

ijχ
2
im

)
IP +D−1

km,

we have that

ϕjm|Θ−ϕjm
,y1, . . . ,yN ∼ N (Mjmmjm,Mjm).
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The posterior distribution of δ1 is

δ1k|Θ−δ1k ,y1, . . . ,yN ∼Γ

(
a1k + (PM/2), 1 +

1

2

P∑
r=1

γk,r,1ϕ
2
k,r,1

+
1

2

M∑
m=2

P∑
r=1

γk,r,mϕ
2
k,r,m

(
m∏
j=2

δj

))
.

The posterior distribution for δik, for i = 2, . . . ,M , is

δik|Θ−δik ,y1, . . . ,yN ∼Γ

(
a2 + (P (M − i+ 1)/2), 1

+
1

2

M∑
m=i

P∑
r=1

γk,r,mϕ
2
k,r,m

(
m∏

j=1;j ̸=i

δj

))
.

The posterior distribution for a1k is not a commonly known distribution, however we have

that

P (a1k|Θ−a1k ,y1, . . . ,yN) ∝
1

Γ(a1k)
δa1k−1
1k aα1−1

1k exp {−a1kβ1} .

Since this is not a known kernel of a distribution, we will have to use Metropolis-Hastings al-

gorithm. Consider the proposal distribution Q(a′1k|a1k) = N
(
a1k, ϵ1β

−1
1 , 0,+∞

)
(Truncated

Normal) for some small ϵ1 > 0. Thus the probability of accepting any step is

A(a′1k, a1k) = min

{
1,
P
(
a′1k|Θ−a′1k

,y1, . . . ,yN

)
P (a1k|Θ−a1k ,y1, . . . ,yN)

Q (a1k|a′1k)
Q (a′1k|a1k)

}
.

Similarly for a2k, we have

P (a2k|Θ−a2k ,y1, . . . ,yN) ∝
1

Γ(a2k)M−1

(
M∏
i=2

δa2k−1
ik

)
aα2−1
2k exp {−a2kβ2} .

We will use a similar proposal distribution, such that Q(a′2k|a2k) = N
(
a2k, ϵ2β

−1
2 , 0,+∞

)
for
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some small ϵ2 > 0. Thus the probability of accepting any step is

A(a′2k, a2k) = min

{
1,
P
(
a′2k|Θ−a′2k

,y1, . . . ,yN

)
P (a2k|Θ−a2k ,y1, . . . ,yN)

Q (a2k|a′2k)
Q (a′2k|a2k)

}
.

For the γj,r,m parameters, for j = 1, . . . K, r = 1, . . . , P , and m = 1, . . . ,M , we have

γj,r,m|Θ−γj,r,m ,y1, . . . ,yN ∼ Γ

(
νγ + 1

2
,
ϕ2
j,r,mτ̃mj + νγ

2

)
.

The posterior distribution for the zi parameters are not a commonly known distribution, so

we will have to use the Metropolis-Hastings algorithm. We know that

p(zi|Θ−zi ,y1, . . . ,yN) ∝
K∏
k=1

Zα3πk−1
ik

× exp

{
− 1

2σ2

(
yi −

K∑
k=1

Zik

(
νk +

M∑
n=1

χinϕkn

))′

(
yi −

K∑
k=1

Zik

(
νk +

M∑
n=1

χinϕkn

))}
.

We will use Q(z′i|zi) = Dir(azzi) for some large az ∈ R+ as the proposal distribution. Thus

the probability of accepting a proposed step is

A(z′i, zi) = min

{
1,
P
(
z′i|Θ−z′i

,y1, . . . ,yN

)
P (zi|Θ−zi ,y1, . . . ,yN)

Q (zi|z′i)
Q (z′i|zi)

}
.

Similarly, a Gibbs update is not available for an update of the π parameters. We have that

p(π|Θ−π,y1, . . . ,yN) ∝
K∏
k=1

πck−1
k

×
N∏
i=1

1

B(α3π)

K∏
k=1

Zα3πk−1
ik .

Letting out proposal distribution be such that Q(π′|π) = Dir(aππ), for some large aπ ∈ R+,
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we have that our probability of accepting any proposal is

A(π′,π) = min

{
1,
P (π′|Θ−π′ ,y1, . . . ,yN)

P (π|Θ−π,y1, . . . ,yN)

Q (π|π′)

Q (π′|π)

}
.

The posterior distribution of α3 is also not a commonly known distribution, so we will use

the Metropolis-Hastings algorithm to sample from the posterior distribution. We have that

p(α3|Θ−α3 ,y1, . . . ,yN) ∝ e−bα3

×
N∏
i=1

1

B(α3π)

K∏
k=1

Zα3πk−1
ik .

Using a proposal distribution such that Q(α′
3|α3) = N (α3, σ

2
α3
, 0,+∞) (Truncated Normal),

we are left with the probability of accepting a proposed state as

A(α′
3, α3) = min

{
1,
P
(
α′
3|Θ−α′

3
,y1, . . . ,yN

)
P (α3|Θ−α3 ,y1, . . . ,yN)

Q (α3|α′
3)

Q (α′
3|α3)

}
.

Letting

Bj =

(
1

τj
IP +

1

σ2
IP

N∑
i=1

Z2
ij

)−1

and

bj =
1

σ2

N∑
i=1

Zij

(
yi −

(∑
k ̸=j

Zikνk

)
−

(
K∑
k=1

M∑
m=1

Zikχimϕkm

))
,

we have that

νj|Θ−νj
,y1, . . . ,yN ∼ N (Bjbj,Bj),

for j = 1, . . . , K. Thus we can perform a Gibbs update to update our ν . parameters. The τl

parameters, for l = 1, . . . K, can also be updated by using a Gibbs update since the posterior

distribution is:

τl|Θ−τl ,y1, . . . ,yN ∼ IG

(
α + P/2, β +

1

2
ν ′
lν l

)
.
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The parameter σ2 can be updated by using a Gibbs update. If we let

βσ =
1

2

N∑
i=1

(
yi −

K∑
k=1

Zik

(
νk +

M∑
m=1

χimϕkm

))′(
yi −

K∑
k=1

Zik

(
νk +

M∑
m=1

χimϕkm

))

then we have

σ2|Θ−σ2 ,y1, . . . ,yN ∼ IG

(
α0 +

PN

2
, β0 + βσ

)
,

where ni are the number of time points observed for the ith observed function. Lastly, we

can update the χim parameters, for i = 1, . . . , N and m = 1, . . . ,M , using a Gibbs update.

If we let

wim =
1

σ2

((
K∑
k=1

Zikϕkm

)′(
yi −

K∑
k=1

Zik

(
νk +

∑
n̸=m

χinϕkn

)))

and

W−1
im = 1 +

1

σ2

((
K∑
k=1

Zikϕkm

)′( K∑
k=1

Zikϕkm

))
,

then we have that

χim|ζ−χim
,y1, . . . ,yN ∼ N (Wimwim,Wim).

In our paper, we have relaxed the assumption that the Φ are mutually orthogonal pa-

rameters. We have shown that we can still maintain many of the desirable properties, while

not having to sample in a constrained space. This relaxation makes implementation easier,

and may actually help with mixing of the Markov chain. However, we realize that users may

want to enforce that the Φ parameters are orthogonal and therefore can be interpreted as

scaled eigenvectors. Using the approach described by Kowal et al. [2017], we will describe

how to sample in this constrained space.

In order to impose the orthogonality constraint, we have that

Φ′
iΦj =

K∑
k=1

ϕ′
ikϕjk = 0,
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for some i such that 1 ≤ i ≤ KP and for all j ̸= i. Letting

L−ip =



ϕi1

...

ϕi(p−1)

ϕi(p+1)

...

ϕi(KP )


and c−ip =



∑
k ̸=iϕ

′
kpϕk1

...∑
k ̸=iϕ

′
kpϕk(p−1)∑

k ̸=iϕ
′
kpϕk(p+1)

...∑
k ̸=iϕ

′
kpϕk(KP )


,

we can write the constraint as

ϕipL−ip = −c−ip,

for 1 ≤ i ≤ KP and 1 ≤ p ≤ K. Using the results in Kowal et al. [2017], we have that

ϕip ∼ N (M̃ipmip, M̃ip), where

M̃ip = Mip −MipL−ip

(
L′

−ipMipL−ip

)−1 (
L′

−ipMip + c−ip

)
.

Like in Kowal et al. [2017], Mip and mip are such that when we relax the orthogonal con-

straints, we have ϕip ∼ N (Mipmip,Mip). By using this alternate sampling scheme, one can

ensure the orthogonality of the Φ parameters.

A.2.2 Multiple Start Algorithm

Due to the flexible nature of our model, we often end up with multimodal posterior distri-

butions, which makes posterior inference challenging. In addition to tempered transitions

(described in Section A.2.3), we implement an algorithm called the multiple start algorithm

(MSA) in order to obtain a good starting position for our Markov chain. The MSA, Algo-

rithm 1, starts by first trying to recover the mean and allocation structure. Once a suitable

starting point for the mean and allocation parameters are found, we then estimate to covari-

ance structure conditioned on the starting point for the mean and allocation parameters.
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Algorithm 1 Multiple Start Algorithm

Require: n try1, n try2, Y,K, n MCMC1, n MCMC2, . . .
P ← BPMM Nu Z(Y, K, n MCMC1, ...) ▷ Returns the likelihood and estimates for ν and
Z
max likelihood← P [“likelihood”]
i← 1
while i ≤ n try1 do

Pi ← BPMM Nu Z(Y, K, n MCMC1, ...)

if max likelihood < Pi[“likelihood”] then
max likelihood ← P [“likelihood”]
P ← Pi

end if
i← i+ 1

end while
θ ← BPMM Theta(P, Y, K, n MCMC2, ...) ▷ Returns estimates for the rest of the
parameters
max likelihood← θ[“likelihood”]
i← 1
while i ≤ n try2 do

θi ← BPMM Theta(P, Y, K, n MCMC2, ...)

if max likelihood < θi[“likelihood”] then
max likelihood ← θi[“likelihood”]
θ ← θi

end if
i← i+ 1

end while
return (θ, P ) ▷ Returns estimates for all model parameters
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We can see that the MSA primarily calls two functions, BPMM Nu Z(...) and BPMM Theta(...).

The first function, BPMM Nu Z(...), finds initial starting points for the zi parameters, νk

parameters, and related hyperparameters, while setting χim and ϕkm equal to 0 (or 0). The

second function, BPMM Theta(...), finds initial starting points for the χim parameters, ϕ

parameters, σ2, and related hyperparameters, conditioning on the initial starting point of the

zi and νk parameters. In order to get the best results, we recommend standardizing the raw

data before performing inference. The multiple start algorithm can be easily implemented

in R using the accompanying software package to this paper.

A.2.3 Tempered Transitions

As stated in the previous section, the posterior distribution may often be multimodal, which

often causes traditional MCMC methods to get stuck in local modes. In order to be able

to move across modes, we implement tempered transitions, which will allow us to traverse

areas of low posterior probability.

Following the works of Behrens et al. [2012] and Pritchard et al. [2000], we will only

temper the likelihood of the model, which can often be written as

p(x) ∝ π(x)exp (−βhh(x)) , (A.22)

where βh controls how much the distribution is tempered. We will assume 1 = β0 < · · · <

βh < · · · < βNt and that the hyperparameters Nt and βNt are user specified. For larger and

more complex models, we will often need a larger Nt, however our tempered transitions will

be more computationally expensive with larger Nt. We will assume that the parameters βh
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follow a geometric scheme. We can rewrite our likelihood to fit Equation A.22:

ph(yi|Θ) ∝exp

{
−βh

(
1

2
log(σ2) +

1

2σ2

(
yi −

K∑
k=1

Zik

(
νk +

M∑
m=1

χimϕkm

))′

(
yi −

K∑
k=1

Zik

(
νk +

M∑
m=1

χimϕkm

)))}

=
(
σ2
)−βh/2 exp

{
− βh
2σ2

(
yi −

K∑
k=1

Zik

(
νk +

M∑
m=1

χimϕkm

))′

(
yi −

K∑
k=1

Zik

(
νk +

M∑
m=1

χimϕkm

))}
.

Let Θh be the set of parameters generated from the model using the tempered likelihood

associated with βh. The tempered transition algorithm can be summarized by the following

steps:

1. Start with initial state Θ0.

2. Transition from Θ0 to Θ1 using the tempered likelihood associated with β1.

3. Continue in this manner until we transition from ΘNt−1 to ΘNt using the tempered

likelihood associated with βNt .

4. Transition from ΘNt to ΘNt+1 using the tempered likelihood associated with βNt .

5. Continue in this manner until we transition from Θ2Nt−1 to Θ2Nt using β1.

6. Accept transition from Θ0 to Θ2Nt with probability

min

{
1,

Nt−1∏
h=0

∏N
i=1 ph+1(yi)|Θh)∏N
i=1 ph(yi|Θh)

2Nt∏
h=Nt+1

∏N
i=1 ph(yi)|Θh)∏N

i=1 ph+1(yi)|Θh)

}
.

Since we only temper the likelihood, many of the posterior distributions from Section A.2.1

can be used. Thus we will only have to modify the posterior distributions for the ν, σ2, χ,
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ϕ, and Z parameters. We will start with the (ϕ)h parameters. Letting

(mkm)h =
βh

(σ2)h

N∑
i=1

(
(χim)h

(
yi(Zij)h − (Zij)h

2(νj)h − (Zij)
2
h

∑
n̸=m

(χin)h(ϕjn)h

−
∑
k ̸=j

(Zij)h(Zik)h

[
(νk)h +

M∑
n=1

(χin)h(ϕkn)h

]))
,

and

(Mkm)
−1
h =

βh
(σ2)h

N∑
i=1

(
(Zij)

2
h(χim)

2
h

)
IP + (Dkm)

−1
h ,

we have that

(ϕkm)h|Θ−(ϕkm)h ,y1, . . . ,yN ∼ N ((Mkm)h(mkm)h, (Mkm)h).

The posterior distribution of the (Z)h parameters are still not commonly known distributions,

so we have to use the Metropolis-Hastings algorithm. Thus, we have that

p((zi)h|(Θ−(zi)h)h,y1, . . . ,yN) ∝
K∏
k=1

(Zik)
(α3)h(πk)h−1
h

× exp

{
− βh
2(σ2)h

(
yi −

K∑
k=1

(Zik)h

(
(νk)h +

M∑
n=1

(χin)h(ϕkn)h

))′

(
yi −

K∑
k=1

(Zik)h

(
(νk)h +

M∑
n=1

(χin)h(ϕkn)h

))}
.

We will use Q((zi)
′
h|(zi)h−1) = Dir(az(zi)h−1) for some large az ∈ R+ as the proposal

distribution. Thus the probability of accepting a proposed step is

A((zi)
′
h, (zi)h−1) = min

{
1,
P
(
(zi)

′
h|(Θ−(zi)′h

)h,y1, . . . ,yN

)
P
(
(zi)h−1|Θ−(zi)h−1

,y1, . . . ,yN

)Q ((zi)h−1|(zi)′h)
Q ((zi)′h|(zi)h−1)

}
.
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Next, letting

(Bj)h =

(
βh

(τj)h
IP +

1

(σ2)h
IP

N∑
i=1

(Zij)
2
h

)−1

and

bj =
βh

(σ2)h

N∑
i=1

(Zij)h

(
yi −

(∑
k ̸=j

(Zik)h(νk)h

)
−

(
K∑
k=1

M∑
m=1

(Zik)h(χim)h(ϕkm)h

))

we have that

(νj)h|Θ−(νj)h ,y1, . . . ,yN ∼ N ((Bj)h(bj)h, (Bj)h).

The posterior distribution for (σ2)h is a distribution that can be easily sampled from, so we

can use Gibbs sampling to get posterior draws. Letting

(βσ)h =
βh
2

N∑
i=1

[(
yi −

K∑
k=1

(Zik)h

(
(νk)h +

M∑
m=1

(χim)h(ϕkm)h

))′

(
yi −

K∑
k=1

(Zik)h

(
(νk)h +

M∑
m=1

(χim)h(ϕkm)h

))]

we have

(σ2)h|Θ−(σ2)h ,y1, . . . ,yN ∼ IG

(
α0 +

βhPN

2
, β0 + (βσ)h

)
.

Lastly, we can sample from (χ)h using a Gibbs sampler to get posterior draws. Letting

(wim)h =
βh

(σ2)h

((
K∑
k=1

(Zik)h(ϕkm)h

)′(
yi −

K∑
k=1

(Zik)h

(
(νk)h +

∑
n̸=m

(χin)h(ϕkn)h

)))

and

(W−1
im)h = 1 +

βh
(σ2)h

((
K∑
k=1

(Zik)h(ϕkm)h

)′( K∑
k=1

(Zik)h(ϕkm)h

))
,

then we have that

(χim)h|ζ−(χim)h
,y1, . . . ,yN ∼ N ((Wim)h(wim)h, (Wim)h).
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As stated before, complex models will often require largeNt to accept the tempered transition

proposed states. Unfortunately, this can be very computationally expensive, which is why

we recommend using a mixture of tempered transitions and standard sampling techniques

as described in Section A.2.1. From proposition 1 of Roberts and Rosenthal [2007], we

know that an independent mixture of tempered transitions and untempered transitions will

preserve the stationary distribution of the Markov chain.

A.2.4 Membership Rescale Algorithm

As discussed in Section 2.1.4, our model can be unidentifiable. To make the clusters more

interpretable, we will rescale the allocation parameters Zik such that in the two feature

model, at least one observation belongs completely to each feature. This specific assumption

that one observation belongs entirely in each feature is known as the seperability condition

[Papadimitriou et al., 1998, McSherry, 2001, Azar et al., 2001, Chen et al., 2022]. Thus

in order to ensure identifiability, algorithm 2 can be used when we only have two features.

In the case where there are more than two features, the assumption of seperability can

be relatively strong, and weaker geometric assumptions, such as the sufficiently scattered

condition [Huang et al., 2016, Jang and Hero, 2019, Chen et al., 2022] can be used to ensure

identifiability. From Chen et al. [2022], we have that an allocation matrix Z is sufficiently

scattered if:

1. cone(Z′)∗ ⊆ K

2. cone(Z′)∗ ∩ bdK ⊆ {λef , f = 1, . . . , k, λ ≥ 0}

where K :=
{
x ∈ RK |∥x∥2 ≤ x′1K

}
, bdK :=

{
x ∈ RK |∥x∥2 = x′1K

}
,

cone(Z′)∗ :=
{
x ∈ RK |xZ′ ≥ 0

}
, and ef is a vector with the ith element equal to 1 and zero

elsewhere. The first condition can be interpreted as the allocation parameters should from
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a convex polytope that contains the dual cone K∗. Thus we have that

Conv(Z′) ⊆ K∗,

where K∗ :=
{
x ∈ RK |x′1K ≥

√
k − 1∥x∥2

}
and Conv(Z′) := {x ∈ RK |x = Z′λ, λ ∈ ∆N},

where ∆k denotes the N-dimensional simplex. Ensuring that these conditions are met in our

proposed model is non-trivial. The major non-identifiabilty problem we wish to solve is the

rescaling problem discussed in Section 2.1.4. Therefore, we will focus on trying to promote

allocation structures such that the first condition is satisfied. Similarly to the case of two

functional features, we aim to find a linear transformation such that the convex polytope of

our transformed allocation parameters covers the most area. Thus letting T ∈ RK ×RK be

our transformation matrix, we aim to solve the following optimization problem:

max
T
|Conv(TZ′)|

s.t. ziT ∈ C ∀ i,

where |Conv(TZ′)| denotes the volume of the convex polytope constructed by the allocation

parameters. Since the second condition is likely not met, we cannot ensure that our model

is identifiable. However, the model is more interpretable, making inference easier for the

end user. Once the transformation matrix (T) is found, then we can rescale the allocation

parameters (zi) and the corresponding mean and covariance parameters (νk and ϕkm). From

empirical evidence, we found that the membership rescale algorithm is almost always needed

in the case when we have only two features, however when we have more than 2 features,

the rescaling may often not be needed.
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Algorithm 2 Membership Rescale Algorithm

Require: Z,ν,Φ,M
T ← matrix(0, 2, 2) ▷ Initialize inverse transformation matrix (2 x 2)
i← 1
while i ≤ 2 do

max ind← max ind(Z[, i]) ▷ Find index of max entry in ith column
T [i, ]← (Z[max ind, ])
i← i+ 1

end while
Z t← Z× inv(T ) ▷ Transform the Z parameters
ν t← T × ν ▷ Transform the ν parameters
i← 1
while i ≤M do

Φ t[, , i]← T ×Φ[, , i] ▷ Transform the Φ parameters
i← i+ 1

end while
return (Z t,ν t,Φ t)

A.3 Simulations and Case Studies

A.3.1 Simulation Study 1

In this simulation study, we empirically study the convergence properties of our model on

simulated data. In this simulation study, we considered a two feature mixed membership

model, where the observed data are 10-dimensional vectors (y ∈ R10). Since we have an

identifiability problem between the mean and covariance parameters, we will have to ensure

that the ν parameters are orthogonal to the ϕ parameters. Thus in order to generate the

dataset, we first will generate the model parameters in the following way:

νk ∼ N (010, 9I10),

χim ∼ N (0, 1),

for k = 1, 2 and m = 1, . . . , 4. In order to ensure that the ϕ parameters are orthogonal

to the mean parameters, we will let B⊥ := {b1, . . . ,b8} be a set of basis vectors such that
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the B⊥ spans the subspace orthogonal to the ν parameters. Thus we can generate the ϕ

parameters in the following way:

ϕkm = qkmB
⊥,

where qk1 ∼ N (08, I8), qk2 ∼ N (08, 0.49I8), qk3 ∼ N (08, 0.25I8), and qk4 ∼ N (08, 0.09I8).

The allocation parameters zi were drawn from a mixture of Dirichlet distributions. Roughly

30% of the allocation parameters were dawn from a Dirichlet distribution with α1 = 10 and

α2 = 1. Another roughly 30% were drawn from a Dirichlet distribution with α1 = 1 and

α2 = 10. The final roughly 40% of the allocation parameters were drawn from a Dirichlet

distribution with α1 = α2 = 1. Lastly, σ2 was set to 0.01 for this simulation study. Once all

of the parameters were drawn, we generated a dataset and repeated this process 50 times

for each of the three different sample sizes (i = 50, 250, 1000). A mixed membership model

was then fit for each of the datasets using 200,000 MCMC iterations saving only every 100

iterations (n try1 = 150, n try2 = 10, n MCMC1 = 4000, n MCMC2 = 4000, M = 4).

Lastly, convergence metrics were calculated and displayed in Figure 2.2.

A.3.2 Simulation Study 2

In this simulation study, we evaluate the performance of various information criteria in

choosing the number of features in our proposed mixed membership model. To evaluate the

information criteria (BIC, AIC, and DIC), we fit multiple mixed membership models with

as little as 2 features to as many as 5 features (K = 2, . . . , 5) on 50 different datasets. The

datasets were generated from our proposed mixed membership model with 3 features. In

order to generate the datasets, we first randomly generated the parameters of our model.

For each of the 50 datasets, the parameters were drawn in the following way:

νk ∼ N (020, 10I20),

ϕi1 ∼ N (020, I20),
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ϕi2 ∼ N (020, 0.5I20),

ϕi3 ∼ N (020, 0.2I20),

χim ∼ N (0, 1),

where i = 1, . . . , 200 and m = 1, . . . , 3. Similarly to simulation study 1, the allocation

parameters were drawn from a mixture of Dirichlet distributions. Roughly 20% of the al-

location parameters were dawn from a Dirichlet distribution with α1 = 10 and α2 = 1.

Another roughly 20% were drawn from a Dirichlet distribution with α1 = 1 and α2 = 10.

The final roughly 60% of the allocation parameters were drawn from a Dirichlet distribution

with α1 = α2 = 1. Similarly, we set σ2 equal to 0.01 for all 50 datasets. Once all of the

parameters were drawn, the 200 observation (yi ∈ R20) datasets were drawn. Once the data

sets were created, we fit 4 models (K = 2, . . . , 5) using a MCMC with 100,000 iterations,

saving only every 10 iterations, with the following hyperparameters: n try1 = 50, n try2 =

5, n MCMC1 = 4000, n MCMC2 = 10000, M = 4.

The first IC we considered for this simulation study is the Bayesian information criterion

(BIC). The BIC, proposed by Schwarz [1978], is defined as:

BIC = 2 logP
(
Y|Θ̂

)
− d log(N)

where d is the number of parameters, Θ̂ is the collection of maximum likelihood estimators

(MLE) of our parameters, and Y = {yi}Ni=1 is the collection of our observed vectors. In the

case of our mixed membership model, we have that

BIC = 2 logP
(
Y|ν̂, Φ̂, σ̂2, Ẑ, χ̂

)
− d log(N) (A.23)

where d = (N + P )K + 2MKP + 4K + (N +K)M + 2.
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Similarly, the Akaike IC (AIC), proposed by Akaike [1974], can be written as

AIC = −2 logP
(
Y|ν̂, Φ̂, σ̂2, Ẑ, χ̂

)
+ 2d. (A.24)

Following the work of Roeder and Wasserman [1997], we will use the posterior mean

instead of the MLE for our estimates of BIC and AIC. Due to identifiability problems, the

posterior mean of the mean component in Equation 2.12 for each observation, as well as the

posterior mean of σ2, will be used to estimate the BIC and AIC instead of estimates of the

posterior mean for each individual parameter.

The modified Deviance IC (DIC), proposed by Celeux et al. [2006], is advantageous to the

original DIC proposed by Spiegelhalter et al. [2002] when we have a posterior distribution

with multiple modes, and when identifiability may be a problem. The modified DIC (referred

to as DIC3 in Celeux et al. [2006]) is specified as:

DIC = −4EΘ[log f(Y|Θ)|Y] + 2logf̂(Y) (A.25)

where f̂(yi) =
1

NMC

∑NMC

l=1 P
(
yi|ν(l),Φ(l), (σ2)

(l)
,Z(l)

)
, f̂(Y) =

∏N
i=1 f̂(yi), and NMC is the

number of MCMC samples used for estimating f̂(yi). We can approximate EΘ[log f(Y|Θ)|Y]

by using the MCMC samples, such that

EΘ[log f(Y|Θ)|Y] ≈ 1

NMC

NMC∑
l=1

N∑
i=1

log
[
P
(
yi|ν(l),Φ(l),

(
σ2
)(l)

,Z(l)
)]
.

A.3.3 EEG Case Study

In this case study, we analyze resting-state EEG data from typically developing (TD) children

and children with Autism spectrum disorder (ASD) [Dickinson et al., 2018]. For this case

study, we fit a 2 feature mixed membership model and a 3 feature mixed membership model

with 5 eigenvectors (M = 5) for each model. Using AIC and BIC to help inform our
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choice on the number of features, we find that the 2 feature model seems to be a better

model for the data (AIC2 = −12905.6, AIC3 = −12204.5, BIC2 = 9236.7, BIC3 = 7328.0,

DIC2 = −14010.5, DIC3 = −14197.9). To get a good starting position, we used the

multiple start algorithm (Algorithm 1) with n try1 = 50, n try2= 50, n MCMC1 = 8000,

and n MCMC2 = 8000. Once we had our initial starting position, we ran a Markov chain for

500,000 iterations, saving only every 10 iterations. Figure A.1 shows the recovered covariance

structure from our mixed membership model. We can see that the covariance structure for

feature 1 accounts for the shift in the alpha peak that was found in Scheffler et al. [2019].

On the other hand, we can see that most of the variation in feature 2 is in the low frequency

range, which is where we expect the most pink noise.
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Figure A.1: Visualization of the covariance structure for the two feature mixed membership
model. Light blue represents positive covariance, while dark blue represents negative covari-
ance.

A.3.4 Molecular Subtypes of Breast Cancer

For this case study, we used the data provided in Parker et al. [2009], and only used the

observations labeled as LumA, Her2, or Basal (N = 115). The data set contained some

missing values, so we used MICE [Van Buuren and Groothuis-Oudshoorn, 2011] to impute

the missing data. To get a good starting position, we used the multiple start algorithm
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(Algorithm 1) with n try1 = 50, n try2 = 6, n MCMC1 = n MCMC2 = 10000, and K = 3.

Using the informed starting position, we then ran our Markov chain for 500,000 iterations,

saving every 10th iteration. The parameters were then rescaled for ease of interpretation

by using the membership rescale algorithm (Algorithm 2). From Figure A.2, we can see

the correlation structure in each of the 3 features. We can see that there is relatively high

correlation between many of the genes in feature 1 (corresponding to the LumA cancer

subtype).
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Figure A.2: Visualization of the correlation structure of the each feature (Feature 1: Top
Left, Feature 2: Top Right, Feature 3: Bottom Middle). Positive correlation is depicted by
a red chord, while negative correlation is depicted by a blue chord. Pairwise correlations of
less than 0.8 were omitted from the diagrams above.
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Figure A.3: Comparative visualization of the differences between mixed membership models,
finite mixture models, and factor models. Each of the models were fit on the same set of
data, illustrated by the black dots.

A.4 Factor Models and Mixed Membership Models

Mixed membership models for continuous data, as encoded in our representation in (2.5),

are related to latent factor models, as they rely on similar additive structures. Nevertheless,

mixed membership models obtain an alternative decomposition of the data variance, leading

to a different interpretation of the model parameters. An illustration of the differences

between Gaussian finite mixture models, factor models, and our proposed mixed membership

model can be seen in Figure A.3.

Factor models are a common tool used in multivariate analysis to model dependence in

high-dimensions through a lower-dimensional linear combination of latent factors [Bernardo

et al., 2003, Carvalho et al., 2008, Bhattacharya and Dunson, 2011]. The general form of a

factor model can be written as

yi − µ = Bλi + νi,

where B ∈ RP×K is known as a matrix of factor loadings and λi ∼ NP (0, IP ) are known

as latent factors. The parameters νi ∼ NP (0,Σ) are parameters accounting for random

error, where Σ is a P ×P diagonal matrix. Integrating out the latent factors, factor models
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generally assume the following distribution on our data:

yi ∼ N (µ,BB′ +Σ).

Using this parameterization, we can see how factor models are useful in estimating high

dimensional covariance matrices using a low-dimensional representation using factors.

Factor models can be written in an alternative representation that look similar to the

mixed membership model in Equation 2.13. Treating the latent factors in a similar fashion

as the allocation parameters in Equation 2.13, we arrive at

yi|λi ∼ N

(
µ+

K∑
k=1

λikbk,Σ

)
,

where λik is the kth element of λi and bk is the kth column of B. If we try to interpret λik

in a similar way as the allocation parameters in our proposed mixed membership model, we

have that the mean of the kth feature becomes µ + bk. While the form of factor models

may seem similar to our proposed mixed membership model, there are two key differences

between the models. The first, and most important difference, is that λi do not lie on the

unit simplex. This constraint greatly affects the estimation of the feature specific means,

more than just a simple rescaling of the means. Constraining the allocation parameters

also helps extremely with interpretability. Since zi lie on the unit simplex, we can interpret

the elements Zik as the ith observation’s proportion of membership to the kth feature. On

the other hand,
∑K

k=1 λik is not necessarily equal to 1, meaning we cannot interpret the

λik parameters in a similar fashion. Moreover, the λik parameters can be negative, making

interpretability of the λik parameters challenging. The second key difference is that the

factor model conditional on the latent factors has the same covariance, Σ. Thus using a

factor model, we cannot estimate the correlation structure stratified by feature (i.e. Figures

1 and 2 in the Supplementary Materials).
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on simulated data. The top subfigure illustrates the difference in the mean components
between the two models, while the bottom subfigure illustrates the difference between the
latent factors of a factor model and allocation parameters of a mixed membership model.

An illustration of the differences between factor models and mixed membership models

can be seen in Figure A.4. To compare the differences between factor models and mixed

membership models, we simulated 250 data points (yi ∈ R10) and fit a factor analysis model

with 2 factors, as well as a mixed membership model with 2 features. Even though factor

models and mixed membership models have a similar additive mean structure, we can see

that the estimated means significantly differ due to the added constraint on the allocation

parameters in a mixed membership model. Figure A.4 also illustrates that the allocation

parameters (zi) are closely related to both factors in a factor model. However, trying to

interpret the factors as membership to a cluster or feature is challenging because the factors

lie R2, which is an unconstrained space. On the other hand, the allocation parameters can

simply be represented on the unit interval, allowing for easy interpretation. Therefore, while

there are similarities between factor models and mixed membership models, we can see that

there are substantial differences between the two models. We maintain that while factor
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models are a useful tool to estimated the covariance structure of high dimensional data, they

are not well suited for the clustering-type problems discussed in this manuscript.
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APPENDIX B

Appendix: Functional Mixed Membership Models

B.1 Proofs

B.1.1 Proof of Lemma 3

Proof. We will first show that S is a linear subspace of L2(T ). Let w1, w2 ∈ S, and let

α1, α2 ∈ R. Since S is the space spanned by the square-integrable basis functions b1, . . . bP(
S =

{∑P
p=1 apbp : ai ∈ R

})
, we can write w1 =

∑P
p=1 δpbp and w2 =

∑P
p=1 βpbp for some

δp, βp ∈ R. Therefore we have that

α1w1 + α2w2 = α1

(
P∑

p=1

δpbp

)
+ α2

(
P∑

p=1

βpbp

)
.

Letting γp = α1δp + α2βp, we have that

α1w1 + α2w2 =
P∑

p=1

γpbp ∈ S.

Therefore, by definition, we know that S is a linear subspace of L2(T ). Next, we will show

that S is a closed linear subspace. Let fn be a Cauchy sequence in S. Thus by definition,

for some ϵ > 0, there exists a m ∈ N such that for i, j > m we have

∥fi − fj∥S < ϵ. (B.1)
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Since fi, fj ∈ S, we know that fi, fj ∈ span{b1, . . . , bP}. Thus using the Gram–Schmidt

process, we know that there exists an orthonormal set of functions such that span {b1, . . . , bP}

= span
{
b̃1, . . . , b̃P

}
. Thus can expand fi and fj such that fi =

∑P
p=1 αipb̃p and fj =∑P

p=1 αjpb̃p. Thus we can rewrite equation B.1 as

∥fi − fj∥S =

(〈
P∑

p=1

(αip − αjp)b̃p,
P∑

p=1

(αip − αjp)b̃p

〉)1/2

=

(
P∑

p=1

〈
(αip − αjp)b̃p, (αip − αjp)b̃p

〉)1/2

=

(
P∑

p=1

∣∣∣∣∣∣(αip − αjp)b̃p

∣∣∣∣∣∣
S

)1/2

=

(
P∑

p=1

∫
T

(
(αip − αjp)b̃p(t)

)2
dt

)1/2

=

(
P∑

p=1

(αip − αjp)
2

∫
T
b̃p(t)

2dt

)1/2

. (B.2)

Since b̃p(t) are orthonormal, we know that
∫
T b̃p(t)

2dt = 1. Thus from equations B.1 and

B.2, for i, j > m, we have that

ϵ > ∥fi − fj∥S

=

(
P∑

p=1

(αip − αjp)
2

∫
T
b̃p(t)

2dt

)1/2

=

(
P∑

p=1

(αip − αjp)
2

)1/2

.

(B.3)

Thus we can see that the sequence αip is a Cauchy sequence. Since the Euclidean space is a

complete metric space, there exists αp ∈ R such that αip → αp. Letting f =
∑P

p=1 αpb̃p(t),
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we have

∥fi − f∥ =

(
P∑

p=1

(αip − α)2
∫
T
b̃p(t)

2dt

)1/2

=

(
P∑

p=1

(αip − αp)
2

)1/2

=
P∑

p=1

||αip − αp|| , (B.4)

for all i, j > m. By definition of αip → αp, we know that for ϵ2 =
ϵ1
P
, there exists a m1 ∈ N,

such that for all i > m1 we have ||αip − αp|| < ϵ1 for p = 1, . . . , P . Thus from equation B.4,

we have that for all i > m1, we have

∥fi − f∥ < ϵ2.

Thus by definition, we have that the Cauchy sequence is convergent, and that S is a closed

linear subspace.

B.1.2 Proof of Lemma 4

Proof. We will start by fixing ϵ > 0. Notice that since bj are uniformly continuous functions

and T is a closed and bounded domain, we know that bj is bounded. Thus let R be such

that |bj(s)| < R for j = 1, . . . , P and any s ∈ T . Let ϵ̃ := ϵ
P 2RM

, where M is defined in (b)

of lemma 4. Since b1, . . . , bk are uniformly continuous we have that there exists δi > 0 such

that for all t, t∗ ∈ T , we have

∥t− t∗∥ < δi =⇒ |bi(t)− bi(t∗)| < ϵ̃, (B.5)
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for i = 1, . . . , P . Define δ̃ = mini δi. Thus from equation 3.8, if ∥t− t∗∥ < δ̃, then we have

∣∣C(i,j)(s, t)− C(i,j)(s, t∗)
∣∣ = |B′(s)Cov (θi,θj) [B(t)−B(t∗)]|

=

∣∣∣∣∣
P∑

k=1

P∑
l=1

bk(s)Cov
(
θ(i,k), θ(j,l)

)
[bl(t)− bl(t∗)]

∣∣∣∣∣
≤

∣∣∣∣∣
P∑

k=1

P∑
l=1

bk(s)M [bl(t)− bl(t∗)]

∣∣∣∣∣
≤

P∑
k=1

P∑
l=1

|bk(s)M [bl(t)− bl(t∗)]|

=
P∑

k=1

P∑
l=1

|bk(s)M | |bl(t)− bl(t∗)| .

From equation B.5, we have that

∣∣C(i,j)(s, t)− C(i,j)(s, t∗)
∣∣ < P∑

k=1

P∑
l=1

|bk(s)M | ϵ̃

≤
P∑

k=1

P∑
l=1

RMϵ̃

= ϵ.

Thus we have that for any ϵ > 0, there exists a δ̃ > 0, such that for any t, t∗, s ∈ T and

1 ≤ i ≤ j ≤ K, we have

∥t− t∗∥ < δ̃ =⇒
∣∣C(i,j)(s, t)− C(i,j)(s, t∗)

∣∣ < ϵ. (B.6)

Consider BZ := {f ∈ H : ∥f∥ < Z} for some Z ∈ R+. We will show that the family of

functions KfBZ
:= {Kf : f ∈ BZ} is an equicontinuous set of functions. We will fix ϵ1 > 0.
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Letting f ∈ BZ and t(i), t
(i)
∗ ∈ T such that ∥t(i) − t(i)∗ ∥ < δ̃, we have from equation 3.7 that

∣∣∣(Kf)(i) (t)− (Kf)(i) (t∗)
∣∣∣ = ∣∣∣∣∣

K∑
k=1

∫
T
C(k,i)

(
s, t(i)

)
f (k)(s)− C(k,i))

(
s, t(i)∗

)
f (k)(s)ds

∣∣∣∣∣
≤

K∑
k=1

∫
T

∣∣C(k,i)
(
s, t(i)

)
f (k)(s)− C(k,i)

(
s, t(i)∗

)
f (k)(s)

∣∣ ds
=

K∑
k=1

∫
T

∣∣C(k,i)
(
s, t(i)

)
− C(k,i)

(
s, t(i)∗

)∣∣ ∣∣f (k)(s)
∣∣ ds. (B.7)

Thus from equation B.6 we have that
∣∣∣(C(k,i)

(
s, t(i)

)
− C(k,i)

(
s, t

(i)
∗

))∣∣∣ < ϵ. Notice that

since f ∈ H, we know that f (k)(s) can be written as f (k)(s) =
∑P

i=1 aibi(s). Since the sum of

uniformly continuous functions is also a uniformly continuous function, we know that f (k)

is uniformly continuous. Therefore, since T is a closed and bounded domain, we know that

f (k) is bounded. Let M1 be such that |f (k)| < M1. Thus we can write equation B.7 as

∣∣∣(Kf)(i) (t)− (Kf)(i) (t∗)
∣∣∣ < K∑

k=1

∫
T
ϵM1ds

= ϵM1

K∑
k=1

∫
T
1ds.

Since T is compact subset of Rd, by the Bolzano–Weierstrass theorem, we know that T is

closed and bounded. Therefore, let B be such that
∫
T 1dt = B. Thus, for i = 1, . . . , K, we

have

∣∣∣(Kf)(i) (t)− (Kf)(i) (t∗)
∣∣∣ < ϵM1KB.

Since

||(Kf) (t), (Kf) (t∗)|| =

(
K∑
i=1

∣∣∣(Kf)(i) (t)− (Kf)(i) (t∗)
∣∣∣2)1/2

,
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we know that

||(Kf) (t), (Kf) (t∗)|| < ϵM1K
3/2B.

If we let ϵ = ϵ1
M1K3/2B

(
ϵ̃ = ϵ1

M1K3/2BP 2RM

)
, then we have that ||(Kf) (t), (Kf) (t∗)|| < ϵ1.Thus,

from the assumption that bj are uniformly continuous (equation B.5), we know there exists

a δ̃ such that for j = 1, . . . , K, we have that

∥t− t∗∥ < δ̃ =⇒ |bj(t)−bj(t∗)| <
ϵ1

M1K3/2BP 2RM
=⇒ ||(Kf) (t), (Kf) (t∗)|| < ϵ1. (B.8)

Thus by definition, we have proved that KfBZ
is an equicontinuous set of functions. Next,

we will show that KfBZ
is a family of uniformly bounded functions. If t ∈ T , then we have

| (Kf)(i) (t)| =

∣∣∣∣∣
K∑
k=1

∫
T
B′(s)Cov (θk,θi)B

(
t(i)
)
f (k)(s)ds

∣∣∣∣∣
=

∣∣∣∣∣
K∑
k=1

∫
T

P∑
p=1

P∑
l=1

bp(s)Cov
(
θ(k,l), θ(i,p)

)
bl
(
t(i)
)
f (k)(s)ds

∣∣∣∣∣
=

∣∣∣∣∣
K∑
k=1

P∑
p=1

P∑
l=1

bl
(
t(i)
)
Cov

(
θ(k,l), θ(i,p)

) ∫
T
bp(s)f

(k)(s)ds

∣∣∣∣∣
≤

(
K∑
k=1

P∑
p=1

P∑
l=1

∣∣∣∣bl (t(i))Cov (θ(k,l), θ(i,p)) ∫
T
bp(s)f

(k)(s)ds

∣∣∣∣
)

=

(
K∑
k=1

P∑
p=1

P∑
l=1

∣∣bl (t(i))∣∣ ∣∣Cov (θ(k,l), θ(i,p))∣∣ ∣∣∣∣∫
T
bp(s)f

(k)(s)ds

∣∣∣∣
)
.

Using the R defined such that |bj(s)| < R for all s ∈ T , and condition (b), we have that

| (Kf)(i) (t)| <

(
K∑
k=1

P∑
p=1

P∑
l=1

RM

∣∣∣∣∫
T
bp(s)f

(k)(s)ds

∣∣∣∣
)
.
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Using Hölder’s Inequality, we have

| (Kf)(i) (t)| <

(
K∑
k=1

P∑
p=1

P∑
l=1

RM

(∫
T
|bp(s)|2 ds

)1/2(∫
T

∣∣f (k)(s)
∣∣2 ds)1/2

)

<

(
K∑
k=1

P∑
p=1

P∑
l=1

RM

(∫
T
R2ds

)1/2(∫
T

∣∣f (k)(s)
∣∣2 ds)1/2

)
.

Since K is the direct sum of Hilbert spaces, we know that if f ∈ BZ , then ∥f (j)∥ < Z for

all j, since ∥f∥ =
∑K

j=1 ∥f (j)∥. Since ∥f (j)∥ =
∫
T f

(j)(s)2ds =
∫
T |f

(j)(s)|2ds, we know that∫
T |f

(k)(s)|2ds < Z. Thus, we have

| (Kf)(i) (t)| <

(
K∑
k=1

P∑
p=1

P∑
l=1

RM
(
R2B

)1/2
(Z)1/2

)

= KP 2R2MB1/2Z1/2 <∞. (B.9)

Since ∥Kf∥2H =
∑K

i=1 | (Kf)(i) (t)|2, we have that

∥Kf∥2H < K3/2P 2R2MB1/2Z1/2 <∞.

Thus we know that KfBZ
is a bounded equicontinuous set of functions. Therefore, using

Ascoli’s Theorem (Reed and Simon [1972], page 30), we know that for every sequence fn ∈

BZ , the set KfBZ
has a subsequence that converges (Reed and Simon [1972], page 199).

Therefore, KfBZ
is precompact, which implies that K is compact.

We will now show that K is a bounded operator. Let f ∈ BZ . Thus, we have

∥Kf∥2H =
K∑
i=1

∫
T
| (Kf)(i) (t)|2dt.
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From equation B.9, we have that

∥Kf∥2H <
K∑
i=1

∫
T

(
KP 2R2MB1/2Z1/2

)2
dt

= K3P 4R4M2BZ

∫
T
dt.

Using the B defined above (
∫
T 1dt < B), we have that

∥Kf∥2H = K3P 4R4M2BZ

∫
T
1dt

< K3P 4R4M2B2Z <∞

Therefore we have that K is a bounded linear operator. Therefore, if conditions (a) and (b)

are met, then K is a bounded and compact linear operator.

B.1.3 Proof of Lemma 5

We will start be explicitly defining the functions Λi(ω0,ω), Ki(ω0,ω), and Vi(ω0,ω). Thus

we have

Λi(ω0,ω) =log

(
|(Σi)0|

−1/2 exp
{
−1

2
(Yi − (µi)0)

′ (Σi)
−1
0 (Yi − (µi)0)

}
|Σi|−1/2 exp

{
−1

2
(Yi − µi)

′ (Σi)
−1 (Yi − µi)

} )
=− 1

2
[log (|(Σi)0|)− log (|Σi|)]

− 1

2

[
(Yi − (µi)0)

′ (Σi)
−1
0 (Yi − (µi)0)− (Yi − µi)

′ (Σi)
−1 (Yi − µi)

]
=− 1

2

[
R∑
l=1

log
(
(dil)0 + σ2

0

)
− log

(
dil + σ2

)]
− 1

2

[
(Yi − (µi)0)

′ (Σi)
−1
0 (Yi − (µi)0)− (Yi − µi)

′ (Σi)
−1 (Yi − µi)

]
(B.10)
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Ki(ω0,ω) =−
1

2

[
R∑
l=1

log
(
(dil)0 + σ2

0

)
− log

(
dil + σ2

)]
− 1

2
Eω0

[
(Yi − (µi)0)

′ (Σi)
−1
0 (Yi − (µi)0)− (Yi − µi)

′ (Σi)
−1 (Yi − µi)

]
=− 1

2

[
R∑
l=1

log
(
(dil)0 + σ2

0

)
− log

(
dil + σ2

)]
− 1

2

[
R−

(
tr
(
Σ−1

i (Σi)0
)
+ ((µi)0 − µi)

′ (Σi)
−1 ((µi)0 − µi)

)]
(B.11)

Vi(ω0,ω) =
1

4
Varω0

[
(Yi − (µi)0)

′ (Σi)
−1
0 (Yi − (µi)0)− (Yi − µi)

′ (Σi)
−1 (Yi − µi)

]
=
1

4
Varω0

[
Y′

i

(
(Σi)

−1
0 +Σ−1

i

)
Yi − 2Y′

i

(
(Σi)

−1
0 (µi)0 +Σ−1

i µi

)]
Letting Mv = (Σi)

−1
0 +Σ−1

i , and mv = (Σi)
−1
0 (µi)0 +Σ−1

i µi, we have

Vi(ω0,ω) =
1

4
Varω0

[
(Yi −M−1

v mv)
′Mv(Yi −M−1

v mv)
]

=
1

4

[
2tr (Mv (Σi)0Mv (Σi)0) + 4

(
(µi)0 −M−1

v mv

)′
(Σi)0

(
(µi)0 −M−1

v mv

)]
=
1

2

[
R + 2tr

(
Σ−1

i (Σi)0
)
+ tr

(
Σ−1

i (Σi)0Σ
−1
i (Σi)0

)]
+ ((µi)0 − µi)

′ (Σ−1
i (Σi)0Σ

−1
i

)
((µi)0 − µi) . (B.12)

Let Ωϵ(ω0) = {ω : Ki(ω0,ω) < ϵ for all i} for some ϵ > 0. We will assume that σ2
0 > 0.

Consider the set B(ω0) = {ω : 1
a
((dil)0+σ

2
0) ≤ dil+σ

2 ≤ a((dil)0+σ
2
0), ∥ (µi)0−µi∥ ≤ b} for

some a, b ∈ R such that a > 1 and b > 0. Thus for a fixed ω0 ∈ Ω and any ω ∈ C(ω0, ϵ) :=

B(ω0)∩Ωϵ(ω0), we can bound Vi(ω0,ω). We will let λr(A) denote the rth eigenvalue of the

matrix A, and λmax(A) denote the largest eigenvalue of A. Thus we have

tr
(
Σ−1

i (Σi)0
)
≤ Rλmax

(
Σ−1

i (Σi)0
)
≤ Ra

σ2
0

(
max

l
(dil + σ2

0)
)
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tr
(
Σ−1

i (Σi)0Σ
−1
i (Σi)0

)
≤ tr

(
Σ−1

i (Σi)0
)2 ≤ (Ra

σ2
0

(
max

l
(dil + σ2

0)
))2

((µi)0 − µi)
′ (Σ−1

i (Σi)0Σ
−1
i

)
((µi)0 − µi) ≤ b2λmax

(
Σ−1

i (Σi)0Σ
−1
i

)
≤ a2b2

σ4
0

max
l

(dil + σ2
0)

Thus we can see that for any ω ∈ C(ω0, ϵ),

Vi(ω0,ω) ≤
1

2

[
R + 2

(
Ra

σ2
0

(
max

l
(dil + σ2

0)
))

+

(
Ra

σ2
0

(
max

l
(dil + σ2

0)
))2

]

+
a2b2

σ4
0

max
l

(dil + σ2
0)

=MV .

If we can bound λmax ((dil)0 + σ0), then we have that Vi(ω0,ω) is bounded. Let ∥ · ∥F be

the Frobenius norm. Using the triangle inequality, we have

∥(Σi)0∥F ≤
K∑
k=1

K∑
j=1

KP∑
p=1

ZijZik∥S′(t)(ϕkp)0(ϕjp)
′
0S(t)∥F + σ2

0∥IR∥F

≤
K∑
k=1

K∑
j=1

KP∑
p=1

∥S′(t)(ϕkp)0(ϕjp)
′
0S(t)∥F + σ2

0∥IR∥F

=
K∑
k=1

K∑
j=1

KP∑
p=1

√
tr
(
S′(t)(ϕjp)0(ϕkp)

′
0S(t)S

′(t)(ϕkp)0(ϕjp)
′
0S(t)

)
+
√
Rσ2

0

=
K∑
k=1

K∑
j=1

KP∑
p=1

√
tr
(
(ϕkp)

′
0S(t)S

′(t)(ϕkp)0(ϕjp)
′
0S(t)S

′(t)(ϕjp)0
)
+
√
Rσ2

0

=
K∑
k=1

K∑
j=1

KP∑
p=1

∥S′(t)(ϕjp)0∥2∥S′(t)(ϕkp)0∥2 +
√
Rσ2

0

=MΣ0 <∞,
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for all i ∈ N. Therefore, we know that λmax ((dil)0 + σ0) ≤ MΣ0 , as the Frobenius is the

squareroot of the sum of the squared eigenvalues for a square matrix. Therefore, we have

for all i ∈ N and ω ∈ C(ω0, ϵ), we have that

Vi(ω0,ω)

i2
≤ MV

i2
.

Since
∑∞

i=1
1
i2
= π2

6
, we have that

∑∞
i=1

MV

i2
= MV π2

6
<∞. Thus we have

∞∑
i=1

Vi(ω0,ω)

i2
<∞. (B.13)

We will next show that for ω0 ∈ Ω and ϵ > 0, Π(C(ω0), ϵ) > 0. Fix ω0 ∈ Ω. While the (ϕjp)0

may not be identifiable (for any orthogonal matrix H, (ϕjp)0HH′(ϕkp)0 = (ϕjp)
′
0(ϕkp)0), let

(ϕjp)0 be such that
∑KP

p=1(ϕjp)
′
0(ϕkp)0 = (Σjk)0. Thus we can define the following sets:

Ωϕjp
=
{
ϕjp : (ϕjp)0 ≤ ϕjp ≤ (ϕjp)0 + ϵ11

}
Ωνk

= {νk : (νk)0 ≤ νk ≤ (νk)0 + ϵ21}

Ωσ2 =
{
σ2 : σ2

0 ≤ σ2 ≤ (1 + ϵ1)σ
2
0

}
.

We define ϵ1jp and ϵ2k such that each element of ϵ1jp is between 0 and ϵ1, and each element

of ϵ2k is between 0 and ϵ2. Therefore (ϕjp)0 + ϵ1jp ∈ Ωϕjp
and (νk)0 + ϵ2k ∈ Ωνk

. We will

define

ΩΣjk
:=

{
KP∑
p=1

ϕ′
jpϕkp

∣∣∣∣∣ϕjp ∈ Ωϕjp
,ϕkp ∈ Ωϕkp

}
.
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Thus for Σi such that ϕjp ∈ Ωϕjp
and σ2 ∈ Ωσ2 , we have that

Σi =
K∑
k=1

K∑
j=1

ZikZij

(
S′(t)

KP∑
p=1

((
(ϕkp)0 + ϵ1kp

) (
(ϕjp)0 + ϵ1jp

)′)
S(t)

)
+ (1 + ϵσ)σ

2
0IR

=(Σi)0 +
K∑
k=1

K∑
j=1

KP∑
p=1

ZikZij

(
S′(t)

(
(ϵ1kp) (ϕjp)

′
0

)
S(t)

)
+

K∑
k=1

K∑
j=1

KP∑
p=1

ZikZij

(
S′(t)

(
(ϕkp)0 (ϵ1jp)

′)S(t))
+

K∑
k=1

K∑
j=1

KP∑
p=1

ZikZij

(
S′(t)

(
(ϵ1kp) (ϵ1jp)

′)S(t))+ ϵσσ
2
0IR

=(Σi)0 + Σ̃i,

for some ϵkp and ϵσ such that 0 < ϵσ ≤ ϵ1. Thus, letting ζjkp =
(
S′(t)

(
(ϵ1kp) (ϕjp)

′
0

)
S(t)

+S′(t)
(
(ϕkp)0 (ϵ1jp)

′)S(t)), we have

∣∣∣∣ZikZijζjkp
∣∣∣∣2

F
≤
∣∣∣∣ζjkp∣∣∣∣2F

=tr
(
S′(t)

(
(ϵ1kp) (ϕjp)

′
0

)
S(t)S′(t)

(
(ϕjp)0 (ϵ1kp)

′)S(t))
+ tr

(
S′(t)

(
(ϵ1kp) (ϕjp)

′
0

)
S(t)S′(t)

(
(ϵ1jp) (ϕkp)

′
0

)
S(t)

)
+ tr

(
S′(t)

(
(ϕkp)0 (ϵ1jp)

′)S(t)S′(t)
(
(ϕjp)0 (ϵ1kp)

′)S(t))
+ tr

(
S′(t)

(
(ϕkp)0 (ϵ1jp)

′)S(t)S′(t)
(
(ϵ1jp) (ϕkp)

′
0

)
S(t)

)
≤ϵ21tr

(
(ϕjp)

′
0S(t)S

′(t)(ϕjp)0 (1)
′ S(t)S′(t) (1)

)
+ 2tr

(
(ϕjp)

′
0S(t)S

′(t) (ϵ1jp) (ϕkp)
′
0S(t)S

′(t) (ϵ1kp)
)

(B.14)

+ ϵ21tr
(
(1)′ S(t)S′(t) (1) (ϕkp)

′
0S(t)S

′(t)(ϕkp)0
)
.
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Using the Cauchy-Schwarz inequality, we can simplify equation B.14, such that

(B.14) = 2⟨S′(t)(ϕjp)0,S
′(t)ϵ1jp⟩⟨S′(t)(ϕkp)0,S

′(t)ϵ1kp⟩

≤ 2∥S′(t)(ϕjp)0∥2∥S′(t)ϵ1jp∥2∥S′(t)(ϕkp)0∥2∥S′(t)ϵ1kp∥2

≤ 2ϵ21∥S′(t)(ϕjp)0∥2∥S′(t)1∥2∥S′(t)(ϕkp)0∥2∥S′(t)1∥2.

Letting

M̃jkp = ∥S′(t)1∥22
[
∥S′(t)(ϕjp)0∥22 + ∥S′(t)(ϕkp)0∥22

]
+ 2

(
∥S′(t)(ϕjp)0∥2∥S′(t)1∥2∥S′(t)(ϕkp)0∥2∥S′(t)1∥2

)
,

we have ∣∣∣∣ZikZijζjkp
∣∣∣∣2
F
≤ ϵ21M̃jkp.

In a similar fashion, we can show that

∥ZikZij

(
S′(t)

(
(ϵ1kp) (ϵ1jp)

′)S(t)) ∥2F ≤ ϵ21∥S′(t)1∥42

and

∥ϵσσ2
0IR∥2F ≤ ϵ21σ

4
0R.

By using the triangle inequality we have

∥Σ̃i∥F ≤ ϵ1

(
K∑
j=1

K∑
k=1

KP∑
p=1

(√
M̃jkp

)
+ JK2P∥S′(t)1∥22 + σ2

0

√
R

)
:= ϵ1MΣ (B.15)

for all i ∈ N. By the Wielandt-Hoffman Theorem (Golub and Van Loan [2013] Theorem
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8.1.4), we have that

R∑
r=1

(
λr

(
(Σi)0 + Σ̃i

)
− λr ((Σi)0)

)2
≤ ∥Σ̃i∥2F ,

which implies that

max
r

∣∣∣λr ((Σi)0 + Σ̃i

)
− λr ((Σi)0)

∣∣∣ ≤ ∥Σ̃i∥F (B.16)

where λr(A) are the eigenvalues of the matrix A. By using equation B.15, we can bound

the log-determinant of the ratio of the two covariance matrices as follows

log

(
|Σi|
|(Σi)0|

)
= log

∏R
r=1 λr

(
(Σi)0 + Σ̃i

)
∏R

r=1 λr ((Σi)0)


≤ log

(
R∏

r=1

((dir)0 + σ2
0) + ϵ1MΣ

(dir)0 + σ2
0

)

≤ Rlog

(
1 +

ϵ1MΣ

σ2
0

)
. (B.17)

We can also bound tr
(
Σ−1

i (Σi)0
)
. To do this, we will first consider the spectral norm,

defined as ∥A∥2 =
√
A∗A for some matrix A. In the case where A is symmetric, we have

that ∥A∥2 = maxr |λr(A)|. By the submultiplicative property of induced norms, we have

that

max
r
|λr(AB)| = ∥AB∥2 ≤ ∥A∥2∥B∥2 = max

r
|λr(A)|max

r
|λr(B)|, (B.18)

for two symmetric matrices A and B. By using the Sherman–Morrison–Woodbury formula,

we can see that

Σ−1
i =

(
(Σi)0 + Σ̃i

)−1

= (Σi)
−1
0 − (Σi)

−1
0 Σ̃i

(
(Σi)0 + Σ̃i

)−1

.
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Thus, we have that

Σ−1
i (Σi)0 = IR − (Σi)

−1
0 Σ̃i

(
(Σi)0 + Σ̃i

)−1

(Σi)0 . (B.19)

Using equation B.18, we would like to bound the magnitude of the eigenvalues of

(Σi)
−1
0 Σ̃i

(
(Σi)0 + Σ̃i

)−1

(Σi)0. We know that

max
r

∣∣∣∣λr (((Σi)0 + Σ̃i

)−1
)∣∣∣∣ ≤ 1

σ2
0

and

max
r

∣∣∣λr(Σ̃i)
∣∣∣ ≤ ϵ1MΣ,

with the second inequality coming from equation B.15. From equation B.19 and basic prop-

erties of the trace, we have that

tr
(
Σ−1

i (Σi)0
)
= tr

(
IR − (Σi)

−1
0 Σ̃i

(
(Σi)0 + Σ̃i

)−1

(Σi)0

)
= tr (IR)− tr

(
Σ̃i

(
(Σi)0 + Σ̃i

)−1

(Σi)0 (Σi)
−1
0

)
= tr (IR)− tr

(
Σ̃i

(
(Σi)0 + Σ̃i

)−1
)

Thus, using the fact that the trace of a matrix is the sum of its eigenvalues, we have that

tr
(
Σ−1

i (Σi)0
)
≤ R +Rmax

r

∣∣∣∣λr (Σ̃i

(
(Σi)0 + Σ̃i

)−1
)∣∣∣∣ .

Using the submultiplicative property stated in equation B.18, we have

tr
(
Σ−1

i (Σi)0
)
≤ R +

Rϵ1MΣ

σ2
0

. (B.20)

152



Lastly, we can bound the quadratic term in Ki(ω0,ω) in the following way:

((µi)0 − µi)
′ (Σi)

−1 ((µi)0 − µi) ≤ ||(µi)0 − µi||
2
2max

r
λr(
(
Σi)

−1
)

≤ 1

σ2

K∑
k=1

∥S′(t)(νk)0 − S′(t)νk∥22

=
1

σ2

K∑
k=1

ϵ′2kS(t)S
′(t)ϵ2k

≤ KRϵ22
σ2
0

λmax
S(t) , (B.21)

where λmax
S(t) is the maximum eigenvalue of the matrix S(t)S′(t). Thus letting

ϵ1 < min

{
σ2
0

MΣ

(
exp

(
2ϵ

3R

)
− 1

)
,

2ϵσ2
0

3RMΣ

}
(B.22)

and

ϵ2 <

√
2σ2

0ϵ

3KRλmax
S(t)

, (B.23)

we have from equations B.17, B.20, and B.21 that

Ki(ω0,ω) < ϵ for all ω ∈ Ω1

whereΩ1 :=
(
×K

j=1×K

k=1
ΩΣjk

)
×
(
×K

k=1
Ωνk

)
×Ωσ2 . Letting a > max

{
1 + ϵ1MΣ

σ2
0
,
(
1− ϵ1MΣ

σ2
0

)−1
}

and b >
√
KRϵ22λ

max
S(t) in the definition of C(ω0, ϵ), we have that Ω1 ⊂ C(ω0, ϵ). Let Hϕ be

the set of hyper-parameters corresponding to the ϕ parameters, and let Π(ηϕ) be the prior
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distribution on ηϕ ∈ Hϕ. Thus we have that

Π (ω ∈ C(ω0, ϵ)) ≥
∫
Hϕ

K∏
j=1

KP∏
p=1

P∏
r=1

∫ (ϕjrp)0+ϵ1

(ϕjrp)0

√
γjrpτ̃pj
2π

exp

{
−γjrpτ̃pj

2
ϕ2
jrp

}
dϕjrpdΠ(ηϕ)

×
K∏
k=1

∫ ∞

0

∫ (νk)0+ϵ21

(νk)0

( τk
2π

)P/2

|P|−1/2exp
{τk
2
ν ′
kPνk

}
dνkdΠ(τk)

×
∫ (1+ϵ1)σ2

0

σ2
0

βα0
0

Γ(α0)
(σ2)−α0−1exp

{
−β0
σ2

}
dσ2.

Restricting the hyper-parameters of ϕ to only a subset of the support, say H̃ϕ, where

H̃ϕ =

{
ηϕ :

1

10
≤ γjrp ≤ 10, 1 ≤ δpj ≤ 2, 1 ≤ a1j ≤ 10, 1 ≤ a2j ≤ 10

}
,

we can see that there exists a Mϕjrp
> 0 such that

√
γjrpτ̃pj
2π

exp

{
−γjrpτ̃pj

2
ϕ2
jrp

}
≥Mϕjrp

,

for all ϕjrp ∈ [(ϕjrp)0, (ϕjrp)0 + ϵ1]. Similarly, we can find a lower bound MH̃ϕ
> 0, such that

∫
H̃ϕ

d(ηϕ) ≥MH̃ϕ
.

Similarly, if we bound τk such that 1
10
≤ τk ≤ 10, it is easy to see that there exists constants

Mνk
,Mτk ,Mσ2 > 0 such that

( τk
2π

)P/2

|P|−1/2exp
{τk
2
ν ′
kPνk

}
≥Mνk

,

for all νk ∈ [(νk)0, (νk)0 + ϵ21], ∫ 10

1
10

Π(τk) ≥Mτk ,

154



and
βα0
0

Γ(α0)
(σ2)−α0−1exp

{
−β0
σ2

}
≥Mσ2

for all σ2 ∈ [σ2
0, (1 + ϵ1)σ

2
0]. Therefore we have that

Π (ω ∈ C(ω0, ϵ)) ≥MH̃ϕ

K∏
j=1

KP∏
p=1

P∏
r=1

ϵ1Mϕjrp

×
K∏
k=1

Mτkϵ
P
2Mνk

× ϵ1σ2
0Mσ2

0

> 0.

Therefore, for ϵ > 0, there exists a and b such that
∑∞

i=1
Vi(ω0,ω)

i2
< ∞ for any ω ∈ C(ω0, ϵ)

and Π (ω ∈ C(ω0, ϵ)) > 0.

B.1.4 Proof of Lemma 6

Following the notation of Ghosal and Van der Vaart [2017], we will let P
(N)
ω0 denote the

joint distribution of Y1, . . . ,YN at ω0 ∈ Ω. In order to show that the posterior distribution,

ΠN(.|Y1, . . . ,YN), is weakly consistent at ω0 ∈ Ω, we need to show thatΠN(U c|Y1, . . . ,YN)→

0 a.s. [Pω0 ] for every weak neighborhood, U of ω0. Following a similar notation to Ghosal and

Van der Vaart [2017], let ψN be measurable mappings, ψN : SN×ZN → [0, 1], whereZ is the

sample space of {Zi1, . . . , ZiK}. Let ψN(Y1, . . . ,YN , z1, . . . , zN) be the corresponding test

function, and

PN
ω ψN = EPN

ω
ψN(Y1, . . . ,YN , z1, . . . , zN) =

∫
ψNdP

N
ω , where PN

ω denotes the joint distribu-

tion on Y1, . . . ,YN with parameters ω. Suppose there exists tests ψN such that PN
ω0
ψN → 0,
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and supω∈UcPN
ω (1− ψN)→ 0. Since ψN(Y1, . . . ,YN , z1, . . . , zN) ∈ [0, 1], we have that

Πn(U
c|Y1, . . . ,YN) ≤ Πn(U

c|Y1, . . . ,YN) + ψN(Y1, . . . ,YN) (1−Πn(U
c|Y1, . . . ,YN))

= ψN(Y1, . . . ,YN) +
(1− ψN(Y1, . . . ,YN))

∫
Uc

∏N
i=1

fi(Yi;ω)
fi(Yi;ω0)

dΠ(ω)∫
Ω

∏N
i=1

fi(Yi;ω)
fi(Yi;ω0)

dΠ(ω)
.

(B.24)

To show that Πn(U
c|Y1, . . . ,YN)→ 0, it is sufficient to show the following three conditions:

1. ψN(Y1, . . . ,YN , z1, . . . , zN)→ 0 a.s. [Pω0 ],

2. eβ1N (1− ψN(Y1, . . . ,YN , z1, . . . , zN))
∫
Uc

∏N
i=1

fi(Yi;ω)
fi(Yi;ω0)

dΠ(ω)→ 0 a.s. [Pω0 ] for some

β1 > 0,

3. eβN
(∫

Ω

∏N
i=1

fi(Yi;ω)
fi(Yi;ω0)

dΠ(ω)
)
→∞ a.s. [Pω0 ] for all β > 0.

We will start by proving (c). Fix β > 0. Thus we have

eβN

(∫
Ω

N∏
i=1

fi(Yi;ω)

fi(Yi;ω0)
dΠ(ω)

)
= eβN

(∫
Ω

exp

[
−

N∑
i=1

log

(
fi(Yi;ω0)

fi(Yi;ω)

)]
dΠ(ω)

)
.

By Fatou’s lemma, we have

lim inf
N→∞

∫
Ω

exp

[
βN −

N∑
i=1

log

(
fi(Yi;ω0)

fi(Yi;ω)

)]
dΠ(ω)

≥
∫
Ω

lim inf
N→∞

exp

[
βN −

N∑
i=1

log

(
fi(Yi;ω0)

fi(Yi;ω)

)]
dΠ(ω)

Let β > ϵ > 0 and a, b > 0 be defined such that lemma 5 holds. Since C(ω0, ϵ) ⊂ Ω, we have
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that

∫
Ω

lim inf
N→∞

exp

[
βN −

N∑
i=1

log

(
fi(Yi;ω0)

fi(Yi;ω)

)]
dΠ(ω)

≥
∫
C(ω0,ϵ)

lim inf
N→∞

exp

[
βN −

N∑
i=1

log

(
fi(Yi;ω0)

fi(Yi;ω)

)]
dΠ(ω)

By Kolmogorov’s strong law of large numbers for non-identically distributed random vari-

ables, we have that

1

N

N∑
i=1

(Λi(ω0,ω)−Ki(ω0,ω))→ 0

a.s. [Pω0 ]. Thus for each ω ∈ C(ω0, ϵ), with Pω0-probability 1,

1

N

N∑
i=1

Λi(ω0,ω)→ E(Ki(ω0,ω)) < ϵ < B,

since ω ∈ C(ω0, ϵ). Therefore, we have that

∫
C(ω0,ϵ)

lim inf
N→∞

exp

[
βN −

N∑
i=1

log

(
fi(Yi;ω0)

fi(Yi;ω)

)]
dΠ(ω) ≥

∫
C(ω0,ϵ)

inf
N→∞

exp {N(β − ϵ)} dΠ(ω).

Since β − ϵ > 0, and Π (θ ∈ C(ω0, ϵ)) > 0 (lemma 5), we have that

eβN

(∫
Ω

N∏
i=1

fi(Yi;ω)

fi(Yi;ω0)
dΠ(ω)

)
→∞ (B.25)

a.s. [Pω0 ] for all β > 0. We will now show that exists measurable mappings such that

PN
ω0
ψN → 0 and supω∈UcPN

ω (1 − ψN) → 0. Consider weak neighborhoods U of ω0 of the

form

U =

{
ω :

∣∣∣∣∫ fidPω −
∫
fidPω0

∣∣∣∣ < ϵi, i = 1, 2, . . . , r

}
, (B.26)

where r ∈ N, ϵi > 0, and fi are continuous functions such that fi : S×Z → [0, 1]. As shown

in Ghosh and Ramamoorthi [2003], for any particular fi and ϵi > 0,
∣∣∫ fidPω −

∫
fidPω0

∣∣ <
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ϵi iff
∫
fidPω −

∫
fidPω0 < ϵi and

∫
(1− fi)dPω −

∫
(1− fi)dPω0 < ϵ. Since f̃i := (1− fi) is

still a continuous function such that f̃i : S ×Z → [0, 1], we can rewrite equation B.26 as

U = ∩2ri=1

{
ω :

∫
gidPω −

∫
gidPω0 < ϵi

}
, (B.27)

where gi are continuous functions such that gi : S×Z → [0, 1] and ϵi > 0. Following Ghosal

and Van der Vaart [2017], it can be shown by Hoeffding’s inequality that using the test

function ψ̃, defined as

ψ̃iN(Y1, . . . ,YN , z1, . . . , zN) := 1

{
1

N

N∑
j=1

gi(Yj, zj) >

∫
gidPω0 +

ϵi
2

}
, (B.28)

leads to ∫
ψ̃iN(Y1, . . . ,YN , z1, . . . , zN)dPω0 ≤ e−Nϵ2i /2

and ∫ (
1− ψ̃iN(Y1, . . . ,YN , z1, . . . , zN)

)
dPω ≤ e−Nϵ2i /2

for any ω ∈ U c. Let ψn = maxi ψ̃iN be our test function and ϵ = mini ϵi. Using the fact that

E(maxi ψ̃iN) ≤
∑

i E(ψ̃iN) and E(1−maxi ψ̃iN) ≤ E(1− ψ̃iN), we have

∫
ψN(Y1, . . . ,YN , z1, . . . , zN)dPω0 ≤ (2r)e−Nϵ2/2 (B.29)

and ∫
(1− ψN(Y1, . . . ,YN , z1, . . . , zN)) dPω ≤ e−Nϵ2/2, (B.30)

for any ω ∈ U c. Using Markov’s inequality on equation B.29, we have that

P
(
ψN(Y1, . . . ,YN , z1, . . . , zN) ≥ e−nC

)
≤ E (ψN(Y1, . . . ,YN , z1, . . . , zN))

e−NC

≤ (2r)e−N(ϵ2/2−C)
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Thus letting C < ϵ2/2, we have that
∑∞

N=1 P
(
ψN(Y1, . . . ,YN , z1, . . . , zN) ≥ e−NC

)
< ∞.

Thus by the Borel-Cantelli lemma, we know that

P

(
lim sup
N→∞

P
(
ψN(Y1, . . . ,YN , z1, . . . , zN) ≥ e−NC

))
= 0

Thus we have that ψN(Y1, . . . ,YN , z1, . . . , zN) → 0 a.s. [Pω0 ] (Condition (a)). To prove

condition (b), we will first start by taking the expectation with respect to Pω0 :

EPN
ω0

(
eβN (1− ψN(Y1, . . . ,YN , z1, . . . , zN))

∫
Uc

N∏
i=1

fi(Yi;ω)

fi(Yi;ω0)
dΠ(ω)

)

=

∫
SN

(
eβN (1− ψN(Y1, . . . ,YN , z1, . . . , zN))

∫
Uc

N∏
i=1

fi(Yi;ω)

fi(Yi;ω0)
dΠ(ω)

)
dPN

ω0

=

∫
Uc

(
N∏
i=1

∫
S
eβN (1− ψN(Y1, . . . ,YN , z1, . . . , zN)) fi(Yi;ω)dYi

)
dΠ(ω)

=eβN
∫
Uc

EPN
ω
(1− ψN(Y1, . . . ,YN , z1, . . . , zN)) dΠ(ω)

≤eβ1Ne−Nϵ2/2,

where the last inequality is from equation B.30. Thus by Markov’s inequality and letting

β1 < ϵ2/2, we have that

P

(
eβN (1− ψN(Y1, . . . ,YN , z1, . . . , zN))

∫
Uc

N∏
i=1

fi(Yi;ω)

fi(Yi;ω0)
dΠ(ω) ≥ e−N((ϵ2/2−β1)/2)

)

≤
EPN

ω0

(
eβN (1− ψN(Y1, . . . ,YN , z1, . . . , zN))

∫
Uc

∏N
i=1

fi(Yi;ω)
fi(Yi;ω0)

dΠ(ω)
)

e−N((ϵ2/2−β1)/2)

≤e−N((ϵ2/2−β1)/2)

Letting EN be the event that eβN (1− ψN(Y1, . . . ,YN , z1, . . . , zN))
∫
Uc

∏N
i=1

fi(Yi;ω)
fi(Yi;ω0)

dΠ(ω)

≥ e−N((ϵ2/2−β1)/2), we have that
∑∞

i=1 P (EN) < ∞. Thus by the Borel-Cantelli lemma, we
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have that

eβN (1− ψN(Y1, . . . ,YN , z1, . . . , zN))

∫
Uc

N∏
i=1

fi(Yi;ω)

fi(Yi;ω0)
dΠ(ω)→ 0

a.s. [Pω0 ] for 0 < β1 < ϵ2/2. Therefore, we have proved conditions (a), (b), and (c). Thus

by letting β in condition (c) be such that β = β1, where 0 < β1 < ϵ2/2, we can see that

ΠN(U c|Y1, . . . ,YN)→ 0 a.s. [Pω0 ] for every weak neighborhood, U of ω0.

B.2 Case Studies

B.2.1 Simulation Study 1

In this simulation study, we looked at how well we could recover the mean, covariance,

and cross-covariance functions at different numbers of functional observations. For this

simulation, we used 3 different number of functional observations (N = 40, 80, 160), and ran

50 MCMC chains for 500, 000 iterations. To help the chain converge, we used the Multiple

Start Algorithm (Algorithm 3) with n try1 = 50, n try2 = 10, n MCMC1 = 2000, and

n MCMC2 = 20000. Due to our allocated computation budget, we did not use tempered

transitions to help move around the space of parameters. In order to save on memory, we

only saved every 100 iterations. We used 8 functions to form the basis of the observed

functions, such that the observed smooth functions lie in a space spanned by cubic b-spline

basis functions with 4 equally spaced internal nodes (P = 8), and that 3 eigenfunctions can

capture the entire covariance process (M = 3). For this simulation, we used the two feature

model (K = 2). For each simulation, we used the same ν, Φ, and σ2 parameters for each

simulation. We specified that σ2 = 0.001, while the ν parameters were drawn according to

the following distributions:

ν1 ∼ N ((6, 4, . . . ,−6,−8)′, 4P) ,
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ν2 ∼ N ((−8,−6, . . . , 4, 6)′, 4P) ,

where P is the matrix corresponding with the first order random walk penalty. Due to the

non-identifiability described in Section 3.1.2, we drew theΦ parameters from the subspace or-

thogonal to the space spanned by the ν parameters. Thus let colsp(B⊥) := span{b⊥1 , . . . , b⊥6 } ⊂

R8 be the subspace orthogonal to the ν parameters, which can be described as the span of

6 vectors in R8. The Φ parameters were drawn according to the following distributions:

ϕkm = qkmB
⊥ k = 1, 2 m = 1, 2, 3,

where qk1 ∼ N (06, 2.25I6), qk2 ∼ N (06, I6), qk3 ∼ N (06, 0.49I6). While this may not

completely remove the effect of the non-identifiability mentioned in Section 3.1.2, it should

help minimize its impact on our recovery of the mean and covariance structures.

For the zi and χim parameters, we would draw 3 different sets of parameters (correspond-

ing to the various number of functional observations). The χim parameters were drawn from

a standard normal distribution. The zi parameters were drawn from a mixture of Dirichlet

distributions. Roughly 30% of the zi parameters were drawn from a Dirichlet distribution

with α1 = 10 and α2 = 1. Another roughly 30% of the zi parameters were drawn from

a Dirichlet distribution where α1 = 1 and α2 = 10. The rest of the zi parameters were

drawn from a Dirichlet distribution with α1 = α2 = 1. For each simulation, we used these

parameters to simulate observed functions from our model.

Before getting the posterior median estimates of the functions of interest, we used the

Membership Rescale Algorithm (algorithm 4) to help with interpretability and identifiability.

From figure B.1, we can see that that we do a good job in recovering the covariance and

cross-covariance functions. The estimated functions are slightly conservative, as they tend

to slightly underestimate the magnitude of the covariance functions. Figure B.2 show the

median posterior mean recovered from each of the 10 MCMC chains when we have 250

functional observations. As we can see from the figure, there is very little variation in the
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estimates of the mean function between 10 MCMC chains.

B.2.2 Simulation Study 2

Picking the number of features can be a challenging task for many practitioners, especially

when there is little scientific knowledge on the data. Practitioners often rely on information

criterion to help aid in picking the number of features. In this simulation, we simulate 10

different “true” data-sets from a 3 feature model to see if information criterion can help

pick the correct number of features. For this simulation study, we considered testing the

information criterion under the model when K = 2, 3, 4, and 5 (where K is the number of

features in our model). For each K and each data-set, we ran a MCMC chain for 100,000

iterations each. To help the chain converge, we used the Multiple Start Algorithm (Algorithm

3) with n try1 = 50, n try2 = 5, n MCMC1 = 2000, and n MCMC2 = 4000. To save on

memory, we only saved every 10 iterations.

For the 10 “true” data-sets with 3 functional features (K = 3) and 200 functional obser-

vations (N = 200, ni = 100), we assumed that the observed smooth functions lie in a space

spanned by cubic b-spline basis functions with 4 equally spaced internal nodes (P = 8), and

that 3 eigenfunctions can capture the entire covariance process (M = 3). In this simulation,

we assumed that σ2 = 0.001, and randomly drew the ν and Φ parameters for each data-set

according to the following distributions:

ν1 ∼ N ((6, 4, . . . ,−6,−8)′, 4P) ,

ν2 ∼ N ((−8,−6, . . . , 4, 6)′, 4P) ,

ν1 ∼ N (0, 4P) ,

ϕk1 ∼ N (0, I8) ,

ϕk2 ∼ N (0, 0.5I8) ,
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(a) C(1,1) (b) C(2,2)

(c) C(1,2)

Figure B.1: Posterior median estimates of the covariance and cross-covariance functions
(opaque) along with the true functions (transparent) for a simulated data set with 160
functional observations.
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Figure B.2: 95% credible interval of the posterior mean functions for the case when we have
160 functional observations.

ϕk3 ∼ N (0, 0.2I8) .

The χim parameters were drawn from a standard normal distribution, while the Z pa-

rameters were drawn from a mixture of Dirichlet distributions. 20% of the zi parameters

were drawn from a Dirichlet distribution with α1 = 10, α2 = 1, and α3 = 1. Another 20%

of the zi parameters were drawn from a Dirichlet distribution where α1 = 1, α2 = 10, and

α3 = 1. Another 20% of the zi parameters were drawn from a Dirichlet distribution where

α1 = 1, α2 = 1, and α3 = 10. The rest of the zi parameters were drawn from a Dirichlet

distribution with α1 = α2 = 1. Once all of the parameters for the “true” data-set were

specified, the observed data points were generated according to the model. MCMC was then

conducted with various values of K, but with the correct number of eigenfunctions, M , and

the correct basis functions.
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B.2.3 A Case Study of EEG in ASD

In this study, we grouped patients based off of their T8 electrode signal. We used a two

functional feature model, and found that patients in the first feature could be interpreted

as 1/f noise, while the second feature could be interpreted as a distinct PAF. We also fit

a three functional feature mixed membership model, but found that the two feature mixed

membership model (AIC = -13091.31, BIC = 9369.66, DIC = -13783.5) seemed to be optimal

compared to the three feature paratial membership model (AIC = -12831.17, BIC = 8138.12,

DIC= -13815.34). Figure B.3 shows the median of the posterior posterior distribution of the

covariance and cross-covariance functions. We can see that the covariance function associated

with feature 1 (C(1,1)) has high covariance around 6 Hz, which is where we have the highest

power of 1/f noise.

When looking at the mean function for feature 2 (figure 3.5), we can see that the peak

power occurs at around 9 Hz. However, for people who have a distinct PAF pattern, it is

common for their peak power to occur anywhere between 9 Hz and 11 Hz. When looking

at the covariance function associated with feature 2 (C(2,2)), we can see that this is being

modeled by the high variance at 9 Hz and at 11 Hz. We can also see that people who

only have high Alpha power typically tend to only have one peak in the alpha band, which

is also accounted for in our model by the negative covariance between 9 Hz and 11 Hz.

When looking at the cross-covariance function, we can see that there is high cross-covariance

between 9 Hz in feature 1 and 6 Hz in feature 2, and negative cross-covariance between 11

Hz in feature 1 and 6 Hz in feature 2. This means that patients who are simultaneously

in feature 1 and 2 that have moderate 1/f noise are likely to have moderate alpha power

around 9 Hz and are less likely to have a peak around 11 HZ. According to the scientific

literature, this is likely to occur in younger TD individuals.

From figure 3.6, we can see that on average ASD children were tended to belong to feature

1 more than feature 2. Thus on average, ASD children tended to have a less distinct PAF
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when compared to TD children.

B.2.4 Analysis of Multi-Channel EEG Data

The proposed modeling framework is suitable for the analysis of functional data evaluated

over T ⊂ Rd. Therefore, we extend our analysis in the main manuscript to include EEG

data measured on the entire cortex. Specifically, we will use a model with 2 latent functional

features (K = 2) where T ⊂ R3. Two of the three indices denote the spatial position on

the scalp, while the third index contains information on the frequency observed. Similarly,

the value of the function at some point t ∈ T represents the spectral power of the observed

signal. For computational purposes, we project the true three-dimensional coordinates of

the electrodes to a two-dimensional bird’s eye view of electrodes using the ‘eegkit’ package

developed by Helwig [2018]. In this section, we used two eigenfunctions to capture the

covariance process (M = 2). We used a tensor product of B-splines to create a basis for

our space of functions. For each dimension we used quadratic B-splines, with 3 internal

nodes for each spatial index and 2 internal nodes for the frequency index (P = 180). Since

we are using functional data analysis techniques to model the EEG data, we assume that

the smoothness over the spatial and frequency domains. Since EEG data has poor spatial

resolution [Grinvald and Hildesheim, 2004] and we have relatively sparse sampling across

the spatial domain (25 channels), the smoothness assumption can be thought of as a type of

regularization over the domain of our function. Due to computational limitations, we ran the

Multiple Start Algorithm (algorithm 3) with n try1 = 6, n try2 = 1, n MCMC1 = 3000,

and n MCMC2 = 4000. We then ran the chain for 19,000 iterations, saving only every 10

iterations.

Figure B.4 reports posterior mean estimates for the feature means over a sample of

electrodes. Our findings are similar to our results on electrode T8, analyzed in the main

manuscript; one latent feature corresponding to 1/f noise, and the other exhibiting well de-

fined PAF across electrodes. Figure B.5, reports the electrode-specific variance at frequency
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(a) C(1,1) (b) C(1,2)

(c) C(2,2)

Figure B.3: Posterior estimates of the covariance and cross-covariance functions
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Figure B.4: Posterior estimates of the means of the two functional features viewed at specific
electrodes.

6 Hz and 10 Hz, corresponding respectively to the highest relative power in the first latent

feature and the average peak alpha frequency in second latent feature.

The right-temporal region around electrode T8, is found to exhibit a high level of hetero-

geneity (high relative variance) at 6 Hz, within latent feature 1 (poorly defined PAF), which

relates to the findings of Scheffler et al. [2019], who identified patterns of variation in the

right-temporal region as the highest contributor to log-odds of ASD vs. TD discrimination.

Contrastingly, feature 2 (well defined PAF) exhibits high levels of heterogeneity (relative

variance) throughout the cortex at frequency 10 Hz, corresponding to the location of the

PAF in feature 2. Overall, results for our analysis on the whole set of electrodes agree with

our findings for electrode T8 in the main manuscript.

Figure B.6 shows the posterior median estimates of the membership allocations for each

individual. We can see from both the mean functions and membership allocations that these

results seem to match the univariate results in Section 3.3.3.
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(a) 6 Hz (b) 10 Hz

Figure B.5: Variance of the electrodes at 6 and 10 Hz for each functional feature. The
relative magnitude of the variance of each electrode is indicated by the color of the electrode
(red is relatively high variance, while blue is relatively low variance).
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Figure B.6: Posterior estimates of the median membership to the first functional feature.
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B.3 Computation

B.3.1 Posterior Distributions and Computation

In this section, we will discuss the computational strategy used to perform Bayesian inference.

In cases where the posterior distribution is a known distribution, a Gibbs update will be

performed. We will let Θ be the collection of all parameters, and Θ−ζ be the collection of

all parameters, excluding the ζ parameter. We will first start with the ϕkm parameters, for

j = 1, . . . , K and m = 1, . . . ,M . Let Djm = τ̃−1
mjdiag

(
γ−1
j1m, . . . , γ

−1
jPm

)
. By letting

mjm =
1

σ2

N∑
i=1

ni∑
l=1

(
B(til)χim

(
yi(til)Zij − Z2

ijν
′
jB(til)− Z2

ij

∑
n̸=m

[
χinϕ

′
jnB(til)

]
−

∑
k ̸=j

ZijZik

[
ν ′
kB(til) +

M∑
n=1

χinϕ
′
knB(til)

]))
,

and

M−1
jm =

1

σ2

N∑
i=1

ni∑
l=1

(
Z2

ijχ
2
imB(til)B

′(til)
)
+D−1

jm,

we have that

ϕjm|Θ−ϕjm
,Y1, . . . ,YN ∼ N (Mjmmjm,Mjm).

The posterior distribution of δ1k, for k = 1, . . . , K, is

δ1k|Θ−δ1k ,Y1, . . . ,YN ∼Γ

(
a1k + (PM/2), 1 +

1

2

P∑
r=1

γk,r,1ϕ
2
k,r,1

+
1

2

M∑
m=2

P∑
r=1

γk,r,mϕ
2
k,r,m

(
m∏
j=2

δjk

))
.

.
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The posterior distribution for δik, for i = 2, . . . ,M and k = 1, . . . , K, is

δik|Θ−δik ,Y1, . . . ,YN ∼Γ

(
a2k + (P (M − i+ 1)/2), 1

+
1

2

M∑
m=i

P∑
r=1

γk,r,mϕ
2
k,r,m

(
m∏

j=1;j ̸=i

δj

))
.

The posterior distribution for a1k is not a commonly known distribution, however we have

that

P (a1k|Θ−a1k ,Y1, . . . ,YN) ∝
1

Γ(a1k)
δa1k−1
1k aα1−1

1k exp {−a1kβ1} .

Since this is not a known kernel of a distribution, we will have to use Metropolis-Hastings al-

gorithm. Consider the proposal distribution Q(a′1k|a1k) = N
(
a1k, ϵ1β

−1
1 , 0,+∞

)
(Truncated

Normal) for some small ϵ1 > 0. Thus the probability of accepting any step is

A(a′1k, a1k) = min

{
1,
P
(
a′1k|Θ−a′1k

,Y1, . . . ,YN

)
P (a1k|Θ−a1k ,Y1, . . . ,YN)

Q (a1k|a′1k)
Q (a′1k|a1k)

}
.

Similarly for a2k, we have

P (a2k|Θ−a2k ,Y1, . . . ,YN) ∝
1

Γ(a2k)M−1

(
M∏
i=2

δa2k−1
ik

)
aα2k−1
2k exp {−a2kβ2} .

We will use a similar proposal distribution, such that Q(a′2k|a2k) = N
(
a2k, ϵ2β

−1
2 , 0,+∞

)
for

some small ϵ2 > 0. Thus the probability of accepting any step is

A(a′2k, a2k) = min

{
1,
P
(
a′2k|Θ−a′2k

,Y1, . . . ,YN

)
P (a2k|Θ−a2k ,Y1, . . . ,YN)

Q (a2k|a′2k)
Q (a′2k|a2k)

}
.

For the γj,r,m parameters, for j = 1, . . . K, r = 1, . . . , P , and m = 1, . . . ,M , we have

γj,r,m|Θ−γj,r,m ,Y1, . . . ,YN ∼ Γ

(
νγ + 1

2
,
ϕ2
j,r,mτ̃mj + νγ

2

)
.
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The posterior distribution for the zi parameters are not a commonly known distribution, so

we will have to use the Metropolis-Hastings algorithm. We know that

p(zi|Θ−zi ,Y1, . . . ,YN) ∝
K∏
k=1

Zα3πk−1
ik

×
ni∏
l=1

exp

− 1

2σ2

(
yi(til)−

K∑
k=1

Zik

(
ν ′
kB(til) +

M∑
n=1

χinϕ
′
knB(til)

))2
 .

We will use Q(z′i|zi) = Dir(azzi) for some large az ∈ R+ as the proposal distribution. Thus

the probability of accepting a proposed step is

A(z′i, zi) = min

{
1,
P
(
z′i|Θ−z′i

,Y1, . . . ,YN

)
P (zi|Θ−zi ,Y1, . . . ,YN)

Q (zi|z′i)
Q (z′i|zi)

}
.

Similarly, a Gibbs update is not available for an update of the π parameters. We have

that

p(π|Θ−π,Y1, . . . ,YN) ∝
K∏
k=1

πck−1
k

×
N∏
i=1

1

B(α3π)

K∏
k=1

Zα3πk−1
ik .

Letting out proposal distribution be such that Q(π′|π) = Dir(aππ), for some large aπ ∈ R+,

we have that our probability of accepting any proposal is

A(π′,π) = min

{
1,
P (π′|Θ−π′ ,Y1, . . . ,YN)

P (π|Θ−π,Y1, . . . ,YN)

Q (π|π′)

Q (π′|π)

}
.

The posterior distribution of α3 is also not a commonly known distribution, so we will use

the Metropolis-Hastings algorithm to sample from the posterior distribution. We have that

p(α3|Θ−α3 ,Y1, . . . ,YN) ∝ e−bα3

×
N∏
i=1

1

B(α3π)

K∏
k=1

Zα3πk−1
ik .
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Using a proposal distribution such that Q(α′
3|α3) = N (α3, σ

2
α3
, 0,+∞) (Truncated Normal),

we are left with the probability of accepting a proposed state as

A(α′
3, α3) = min

{
1,
P
(
α′
3|Θ−α′

3
,Y1, . . . ,YN

)
P (α3|Θ−α3 ,Y1, . . . ,YN)

Q (α3|α′
3)

Q (α′
3|α3)

}
.

Let P be the following tridiagonal matrix:

P =



1 −1 0

−1 2 −1
. . . . . . . . .

−1 2 −1

0 −1 1


.

Thus, letting

Bj =

(
τjP+

1

σ2

N∑
i=1

ni∑
l=1

Z2
ijB(til)B

′(til)

)−1

and

bj =
1

σ2

N∑
i=1

ni∑
l=1

ZijB(til)

(
yi(til)−

(∑
k ̸=j

Zikν
′
kB(til)

)
−

(
K∑
k=1

M∑
m=1

Zikχimϕ
′
kmB(til)

))
,

we have that

νj|Θ−νj
,Y1, . . . ,YN ∼ N (Bjbj,Bj),

for j = 1, . . . , K. Thus we can perform a Gibbs update to update our ν parameters. The τl

parameters, for l = 1, . . . K, can also be updated by using a Gibbs update since the posterior

distribution is:

τl|Θ−τl ,Y1, . . . ,YN ∼ Γ

(
α + P/2, β +

1

2
ν ′
lPν l

)
.
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The parameter σ2 can be updated by using a Gibbs update. If we let

βσ =
1

2

N∑
i=1

ni∑
l=1

(
yi(til)−

K∑
k=1

Zik

(
ν ′
kB(til) +

M∑
n=1

χinϕ
′
knB(til)

))2

,

then we have

σ2|Θ−σ2 ,Y1, . . . ,YN ∼ IG

(
α0 +

∑N
i=1 ni

2
, β0 + βσ

)
,

where ni are the number of time points observed for the ith observed function. Lastly, we

can update the χim parameters, for i = 1, . . . , N and m = 1, . . . ,M , using a Gibbs update.

If we let

wim =
1

σ2

(
ni∑
l=1

(
K∑
k=1

Zikϕ
′
kmB(til)

)(
yi(til)−

K∑
k=1

Zik

(
ν ′
kB(til) +

∑
n̸=m

χinϕ
′
knB(til)

)))

and

W−1
im = 1 +

1

σ2

ni∑
l=1

(
K∑
k=1

Zikϕ
′
kmB(til)

)2

,

then we have that

χim|ζ−χim
,Y1, . . . ,YN ∼ N (Wimwim,Wim).

In our model, we relax the assumption that the Φ parameters are orthogonal. Even

though we relaxed the assumption, we proved that many of the desirable properties still

hold. However, if users do not want to relax this assumption, Kowal et al. [2017] describes

a framework that allows us to sample when orthogonality constraints are imposed. In our

model, orthogonality is defined by the inner product in equation 3.6. Therefore, for p such

that 1 ≤ p ≤ KP , we must have that

⟨Φp,Φj⟩H = 0 ∀j ̸= p.
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By rearranging terms, we can see that we have

⟨Φp,Φj⟩H =
K∑
k=1

∫
T
ϕ′

kpB(t)ϕ′
kjB(t)dt

=
∑
k ̸=i

∫
T
ϕ′

kpB(t)ϕ′
kjB(t)dt+ ϕ′

ip

∫
T
B(t)B(t)′dtϕij,

where
∫
T B(t)B(t)′dt is the element-wise integration of the P × P matrix. Letting

L−ip =



∫
T B(t)B(t)′dtϕi1

...∫
T B(t)B(t)′dtϕi(p−1)∫
T B(t)B(t)′dtϕi(p+1)

...∫
T B(t)B(t)′dtϕi(KP )


and c−ip =



∑
k ̸=i

∫
T ϕ

′
kpB(t)ϕ′

k1B(t)dt
...∑

k ̸=i

∫
T ϕ

′
kpB(t)ϕ′

k(p−1)B(t)dt∑
k ̸=i

∫
T ϕ

′
kpB(t)ϕ′

k(p+1)B(t)dt
...∑

k ̸=i

∫
T ϕ

′
kpB(t)ϕ′

k(KP )B(t)dt


,

we can write our orthogonality constraint for ϕip given the other ϕ parameters as

ϕ′
ipL−ip = −c−ip.

Thus using the results in Kowal et al. [2017], we have that ϕip ∼ N (M̃ipmip, M̃ip), where

M̃ip = Mip −MipL−ip

(
L′

−ipMipL−ip

)−1 (
L′

−ipMip + c−ip

)
.

Like in Kowal et al. [2017], Mip and mip are such that when we relax the orthogonal con-

straints, we have ϕip ∼ N (Mipmip,Mip) (defined in Section B.3.1). Thus one can use the

modified Gibbs update to ensure orthogonality. However, by using this alternative update,

the mixing of the Markov chain will likely suffer.

175



B.3.2 Multiple Start Algorithm

One of the main computational challenges that we encounter in this model is the multi-modal

posterior distribution. Often times, the MCMC chain can get stuck in a mode, and it can

have trouble moving through areas of low posterior density. One way to traverse through

areas of low posterior density is to use tempered transitions. However, tempered transitions

are computationally intensive and the hyperparameters can be somewhat difficult to tune.

Thus, one of the best ways to converge to the correct mode is to have a good starting point.

The Multiple Start Algorithm, found in algorithm 3, is a way to pick an optimal starting

point. To get optimal performance our of this algorithm, we recommend that the initial data

is standardized before running this algorithm.

The function calls two other functions, BFPMM Nu Z(Y, time, K, n MCMC1, ...) and

BFPMM Theta(P, Y, time, K, n MCMC2, ...). The first function, BFPMM Nu Z(Y, time,

K, n MCMC1, ...), starts with random parameter values for ν, Z, σ2, and other hyperpa-

rameters relating to these parameters. We then run an MCMC chain with the values of the χ

and ϕ variables fixed as 0 (or as the matrix O). The function returns the mean likelihood for

the last 20% of the MCMC chain as well as the entire MCMC chain. The variable n MCMC1

is assumed to be picked such that the chain converges in the first 80% of the MCMC itera-

tions. Since the starting points are random, the MCMC chains are likely to explore different

modes. Once we have a good initial starting point, we estimate the χ, ϕ , and other param-

eters that have not already been estimated using the function BFPMM Theta(P, Y, time,

K, n MCMC2, ...). In this function, we run an MCMC chain while fixing the values of ν

and Z to their optimal values found previously. We will use the outputs of algorithm 3 as a

starting point for our final MCMC chain.
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Algorithm 3 Multiple Start Algorithm

Require: n try1, n try2, Y, time, K, n MCMC1, n MCMC2, . . .
P ← BFPMM Nu Z(Y, time, K, n MCMC1, ...) ▷ Returns the likelihood and estimates
for ν and Z
max likelihood← P [“likelihood”]
i← 1
while i ≤ n try1 do

Pi ← BFPMM Nu Z(Y, time, K, n MCMC1, ...)

if max likelihood < Pi[“likelihood”] then
max likelihood ← P [“likelihood”]
P ← Pi

end if
i← i+ 1

end while
θ ← BFPMM Theta(P, Y, time, K, n MCMC2, ...) ▷ Returns estimates for the rest of
the parameters
max likelihood← θ[“likelihood”]
i← 1
while i ≤ n try2 do

θi ← BFPMM Theta(P, Y, time, K, n MCMC2, ...)

if max likelihood < θi[“likelihood”] then
max likelihood ← θi[“likelihood”]
θ ← θi

end if
i← i+ 1

end while
return (θ, P ) ▷ Returns estimates for all model parameters
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B.3.3 Tempered Transitions

Tempered transitions are used to help traverse areas of low posterior probability density

when running MCMC chains. In problems that have multi-modal posterior distributions,

traditional methods often have difficulty moving from one mode to another, which can cause

the chain to not explore the entire state-space and therefore not converge to the true posterior

distribution. Thus by using tempered transitions, we are potentially able to traverse the

state-space to explore multiple modes. In simulations, we found that the tuning parameters

can be difficult to tune to get acceptable acceptance probabilities, however in this section

we will outline a way to use tempered transitions with our model.

We will be following the works of Behrens et al. [2012] and Pritchard et al. [2000] and only

temper the likelihood. The target distribution that we want to temper is usually assumed

to be written as

p(x) ∝ π(x)exp (−βhh(x)) ,

where βh controls how much the distribution is tempered. We will assume 1 = β0 < · · · <

βh < · · · < βNt . The hyperparameters Nt and βNt are user specified, and will depend on the

complexity of the model. For more complex models, we will most likely need a larger Nt.

We will also assume that the parameters βh follow a geometric scheme. We can rewrite our

likelihood to fit the above form:

ph(yi(t)|Θ) ∝ exp

−βh
1

2
log(σ2) +

1

2σ2

(
yi(t)−

K∑
k=1

Zik

(
ν ′
kB(t) +

M∑
n=1

χinϕ
′
knB(t)

))2


=
(
σ2
)−βh/2 exp

− βh
2σ2

(
yi(t)−

K∑
k=1

Zik

(
ν ′
kB(t) +

M∑
n=1

χinϕ
′
knB(t)

))2
 .

Let Θh be the set of parameters generated from the model using the tempered likelihood

associated with βh. The tempered transition algorithm can be summarized by the following

steps:
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1. Start with initial state Θ0.

2. Transition from Θ0 to Θ1 using the tempered likelihood associated with β1.

3. Continue in this manner until we transition from ΘNt−1 to ΘNt using the tempered

likelihood associated with βNt .

4. Transition from ΘNt to ΘNt+1 using the tempered likelihood associated with βNt .

5. Continue in this manner until we transition from Θ2Nt−1 to Θ2Nt using β1.

6. Accept transition from Θ0 to Θ2Nt with probability

min

{
1,

Nt−1∏
h=0

∏N
i=1

∏ni

l=1 ph+1(yi(til)|Θh)∏N
i=1

∏ni

l=1 ph(yi(til)|Θh)

2Nt∏
h=Nt+1

∏N
i=1

∏ni

l=1 ph(yi(til)|Θh)∏N
i=1

∏ni

l=1 ph+1(yi(til)|Θh)

}
.

Since we only temper the likelihood, we can use many of updates in Section B.3.1. However,

we will have to modify how we update the ν, ϕ, σ2, Z, and χ parameters. By letting

(mjm)h =
βh

(σ2)h

N∑
i=1

ni∑
l=1

(
B(til)(χim)h

(
yi(til)(Zij)h − (Zij)

2
h(νj)

′
hB(til)

− (Zij)
2
h

∑
n̸=m

[
(χin)h(ϕjn)

′
hB(til)

]
−
∑
k ̸=j

(Zij)h(Zik)h

[
(νk)

′
hB(til) +

M∑
n=1

(χin)h(ϕkn)
′
hB(til)

]))
,

and

(Mjm)
−1
h =

βh
(σ2)h

N∑
i=1

ni∑
l=1

(
(Zij)

2
h(χim)

2
hB(til)B

′(til)
)
+ (Djm)

−1
h ,

we have that

(ϕjm)h|Θ−(ϕjm)h ,Y1, . . . ,YN ∼ N ((Mjm)h(mjm)h, (Mjm)h).

The posterior distribution for (zi)h is still not a commonly known distribution, so we will
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still have to use the Metropolis-Hastings algorithm. The new posterior distribution when

using tempered transitions changes into

p((zi)h|(Θ−(zi)h)h,Y1, . . . ,YN) ∝
K∏
k=1

(Zik)
(α3)h(πk)h−1
h

×
ni∏
l=1

exp

{
− βh
2(σ2)h

(
yi(til)

−
K∑
k=1

(Zik)h

(
(νk)

′
hB(til) +

M∑
n=1

(χin)h(ϕkn)
′
hB(til)

))2
 .

We will use Q((zi)
′
h|(zi)h−1) = Dir(az(zi)h−1) for some large az ∈ R+ as the proposal

distribution. Thus the probability of accepting a proposed step is

A((zi)
′
h, (zi)h−1) = min

{
1,
P
(
(zi)

′
h|(Θ−(zi)′h

)h,Y1, . . . ,YN

)
P
(
(zi)h−1|Θ−(zi)h−1

,Y1, . . . ,YN

)Q ((zi)h−1|(zi)′h)
Q ((zi)′h|(zi)h−1)

}
.

Letting

(Bj)h =

(
(τj)hP+

βh
(σ2)h

N∑
i=1

ni∑
l=1

(Zij)
2
hB(til)B

′(til)

)−1

and

(bj)h =
βh

(σ2)h

N∑
i=1

ni∑
l=1

(Zij)hB(til)

(
yi(til)−

(∑
k ̸=j

(Zik)h(ν
′
k)hB(til)

)

−

(
K∑
k=1

M∑
n=1

(Zik)h(χin)h(ϕkn)
′
hB(til)

))
,

we have that

(νj)h|Θ−(νj)h ,Y1, . . . ,YN ∼ N ((Bj)h(bj)h, (Bj)h).

The parameter (σ2)h can be updated by using a Gibbs update. If we let

(βσ)h =
βh
2

N∑
i=1

ni∑
l=1

(
yi(til)−

K∑
k=1

(Zik)h

(
(νk)

′
hB(til) +

M∑
n=1

(χin)h(ϕkn)
′
hB(til)

))2

,
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then we have

(σ2)h|Θ−(σ2)h ,Y1, . . . ,YN ∼ IG

(
α0 +

βh
∑N

i=1 ni

2
, β0 + (βσ)h

)
.

Lastly, letting let

(wim)h =
βh

(σ2)h

(
ni∑
l=1

(
K∑
k=1

(Zik)h(ϕkm)
′
hB(til)

)(
yi(til)

−
K∑
k=1

(Zik)h

(
(νk)

′
hB(til) +

∑
n̸=m

(χin)h(ϕkn)
′
hB(til)

)))

and

(W−1
im)h = 1 +

βh
(σ2)h

ni∑
l=1

(
K∑
k=1

(Zik)h(ϕkm)
′
hB(til)

)2

,

then we have that

(χim)h|ζ−(χim)h
,Y1, . . . ,YN ∼ N ((Wim)h(wim)h, (Wim)h).

One of the biggest drawbacks to using tempered transition is the computational cost of

just one iteration. It is common for Nt to be in the thousands, especially when dealing

with a complex model, so each tempered transition will take thousands of times longer than

an untempered transition. Thus we recommend using a mixture of tempered transition and

untempered transitions to speed up computation. From proposition 1 in Roberts and Rosen-

thal [2007], we know that an independent mixture of tempered transitions and untempered

transitions will still preserve our stationary distribution of our Markov chain.

B.3.4 Membership Rescale Algorithm

As discussed in Section 3.1.2, our model is unidentifiable. To help with interpretability, we

will apply a linear transformation to the Z matrix to ensure that we use as much of the unit
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simplex as possible. In the case when K = 2, this will correspond to rescaling the observa-

tions such that at least one observation is entirely in each feature. This specific assumption

that one observation belongs entirely in each feature is known as the seperability condition

[Papadimitriou et al., 1998, McSherry, 2001, Azar et al., 2001, Chen et al., 2022]. Thus in or-

der to ensure identifiability, algorithm 4 can be used when we only have two features. In the

case of a two feature model, the seperability condition is a very weak assumption, however

as we move to models with more features, it can be a relatively strong assumption. Weaker

geometric assumptions such as the sufficiently scattered condition [Huang et al., 2016, Jang

and Hero, 2019, Chen et al., 2022]. In cases when we have more than two features, we can

use the idea of the sufficiently scattered condition to help with identifiability. From Chen

et al. [2022], we have that an allocation matrix Z is sufficiently scattered if:

1. cone(Z′)∗ ⊆ K

2. cone(Z′)∗ ∩ bdK ⊆ {λef , f = 1, . . . , k, λ ≥ 0}

where K :=
{
x ∈ RK |∥x∥2 ≤ x′1K

}
, bdK :=

{
x ∈ RK |∥x∥2 = x′1K

}
,

cone(Z′)∗ :=
{
x ∈ RK |xZ′ ≥ 0

}
, and ef is a vector with the ith element equal to 1 and zero

elsewhere. The first condition can be interpreted as the allocation parameters should from

a convex polytope that contains the dual cone K∗. Thus we have that

Conv(Z′) ⊆ K∗,

where K∗ :=
{
x ∈ RK |x′1K ≥

√
k − 1∥x∥2

}
and Conv(Z′) := {x ∈ RK |x = Z′λ, λ ∈ ∆N},

where ∆k denotes the N-dimensional simplex. Ensuring that these two conditions are met is

not trivial in our setting. Therefore, we will focus on trying to promote allocation structures

such that the first condition is satisfied. Similarly to the case of two functional features,

we aim to find a linear transformation such that the convex polytope of our transformed

allocation parameters covers the most area. Thus letting T ∈ RK×RK be our transformation
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matrix, we aim to solve the following optimization problem:

max
T
|Conv(TZ′)|

s.t. ziT ∈ C ∀ i,

where |Conv(TZ′)| denotes the volume of the convex polytope constructed by the allocation

parameters. While this will not ensure that the first condition is met, it will promote an

allocation structure that uses the entire simplex. While this algorithm does not ensure iden-

tifiability in the case when we have more than 2 functional features, it does make inference on

the model more interpretable. Once the memberships are rescaled, we can conduct posterior

inference on the mean function and covariance functions using the rescaled parameters.

Algorithm 4 Membership Rescale Algorithm

Require: Z,ν,Φ,M
T ← matrix(0, 2, 2) ▷ Initialize inverse transformation matrix (2 x 2)
i← 1
while i ≤ 2 do

max ind← max ind(Z[, i]) ▷ Find index of max entry in ith column
T [i, ]← (Z[max ind, ])
i← i+ 1

end while
Z t← Z ∗ inv(T ) ▷ Transform the Z parameters
ν t← T ∗ ν ▷ Transform the ν parameters
i← 1
while i ≤M do

Φ t[, , i]← T ∗Φ[, , i] ▷ Transform the Φ parameters
i← i+ 1

end while
return (Z t,ν t,Φ t)
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B.4 Simulation-Based Posterior Inference

Statistical inference is based on Markov chain Monte Carlo samples from the posterior dis-

tribution. To achieve this we used the Metropolis-within-Gibbs algorithm. By introducing

the latent χim variables, many of the posterior distributions related to the covariance pro-

cess were easily sampled through Gibbs updates. More details on the sampling scheme can

be found in section C.1 of the web-based supporting materials. The sampling scheme is

relatively simple, and was implemented using the RcppArmadillo package created by Eddel-

buettel and Sanderson [2014] to speed up computation.

While the näıve sampling scheme is relatively simple, ensuring good exploration of the

posterior target can be challenging due to the potentially multimodal nature of the posterior

distribution. Specifically, some sensitivity of results to the starting values of the chain

can be observed for some data. Section B.3.2 outlines an algorithm for the selection of

informed starting values. Furthermore, to mitigate sensitivity to chain initialization, we

also implemented a tempered transition scheme, which improves the mixing of the Markov

chain by allowing for transitions between modal configuration of the target. Implementation

details for the proposed tempered transition scheme are reported in section B.3.3.

Given Monte Carlo samples from the posterior distribution of all parameters of interest,

posterior inference is implemented descriptively; either directly on the Monte Carlo sam-

ples for parameters of interest, such as the mixed membership proportions zi, or indirectly

through the evaluation of relevant functions of the parameters of interest, e.g. the mean and

cross-covariance functions of the latent features.

In this setting, to calculate the simultaneous credible intervals, we will use the simultane-

ous credible intervals proposed by Crainiceanu et al. [2007]. Let gn be simulated realizations

using the MCMC samples of the function of interest, and let {t1, . . . , tR} be a fine grid of

time points in T . Let E(g(ti)) be the expected value of the function evaluated at time point

ti ∈ T , and SD(g(ti)) be the standard deviation of the function evaluated at time point
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ti ∈ T . Let Mα be the (1 − α) quantile of max1≤i≤R

∣∣∣gn(ti)−E(g(ti))
SD(g(ti))

∣∣∣ , for 1 ≤ n ≤ NMC ,

where NMC are the number of MCMC samples of the converged MCMC chain. Thus the

simultaneous credible intervals can be constructed as

I(ti) = [E(g(ti))−MαSD(g(ti)),E(g(ti)) +MαSD(g(ti))] .

Thus we estimate simultaneous credible intervals for all mean functions, µ(k), and similarly

generalize this procedure to define simultaneous credible intervals for the cross-covariance

functions, C(k,k′). Figure 3.5, illustrates the difference between a simultaneous credible in-

terval and a pointwise credible interval for one of the EEG case studies.
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APPENDIX C

Appendix: Covariate Adjusted Mixed Membership

Models

C.1 Proof of Lemma 2.1

We will start by defining identifiability and defining some of the notation used in this section.

Let ω = {ν1,ν2,η1,η2, Z11, . . . , Z1N ,Σ11,Σ12,Σ22, σ
2}, whereΣkk′ =

∑M
m=1 (ϕkmϕ

′
k′m). We

will say that the parameters ω are unidentifiable if there exists at least one ω∗ ̸= ω such

that L(Yi(ti) | ω,xi) = L(Yi(ti) | ω∗,xi) for all sets of observations {Yi(ti)}Ni=1, that

follow assumptions (1)-(3). Otherwise, the parameters ω are called identifiable. In this case,

L(Yi(ti) | ω,xi) is the likelihood specified in equation 12 in the main text.

From equation 12 in the main text, we have that

L (Yi(ti) | ω,xi) ∝ exp
{
−1

2
(Yi(ti)− µi(xi, ti))

′ (V(ti, zi) + σ2Ini
)
−1

(Yi(ti)− µi(xi, ti))
}
, (C.1)

where

µi(xi, ti) =
2∑

k=1

ZikS
′(ti) (νk + ηkx

′
i)

and

V(ti, zi) =
2∑

k=1

2∑
k′=1

ZikZik′

{
S′(ti)

M∑
m=1

(ϕkmϕ
′
k′m)S(ti)

}
.

Assume that L (Yi(ti) | ω,xi) = L (Yi(ti) | ω∗,xi) for all sets of observations {Yi(ti)}Ni=1

that follow assumptions (1)-(3) . Thus we would like to prove that ω∗ = ω must necessarily
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be true. Since L (Yi(ti) | ω,xi) is written as a quadratic form inYi(ti) and (V(ti, zi) + σ2Ini
)

is full rank, we have that the following must necessarily be true:

1. µ∗
i (xi, ti) = µi(xi, ti),

2. V∗(ti, z
∗
i ) + (σ2)∗Ini

= V(ti, zi) + σ2Ini
.

By (1), we have that

2∑
k=1

ZikS
′(ti) (νk + ηkx

′
i) =

2∑
k=1

Z∗
ikS

′(ti) (ν
∗
k + η

∗
kx

′
i) (i = 1, . . . , N).

Letting µk = [νk ηk] ∈ RP×(R+1) and x̃i = [1 xi] (X̃ ∈ RN×(R+1) is the design matrix with

the ith row as x̃), we have that

2∑
k=1

ZikS
′(ti)µkx̃

′
i =

2∑
k=1

Z∗
ikS

′(ti)µ
∗
kx̃

′
i (i = 1, . . . , N)

⇐⇒
2∑

k=1

Zikµkx̃
′
i =

2∑
k=1

Z∗
ikµ

∗
kx̃

′
i (i = 1, . . . , N),

since ni ≥ P by assumption (3). Since Zi1 = (1 − Zi1) in a two feature mixed membership

model, we have

(Zi1µ1 + (1− Zi1)µ2) x̃
′
i = (Z∗

i1µ
∗
1 + (1− Z∗

i1)µ
∗
2) x̃

′
i (i = 1, . . . , N). (C.2)

Since X̃ is full column rank from assumption (1), we know that the solution to the system

of equations in equation C.2 takes the following form

Z∗
i1 = aZi1 + b(1− Zi1),

µ∗
1 =

(
1− b
a− b

)
µ1 −

(
1− a
a− b

)
µ2,

µ∗
2 =

(
a

a− b

)
µ2 −

(
b

a− b

)
µ1,
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where a, b ∈ R such that a, b > 0, a + b = 1, and (a, b) ̸= (0.5, 0.5). From assumption (2),

the only way that there can exist ĩ∗1, ĩ
∗
2 such that Zĩ∗11

= 1 and Zĩ∗22
= 1 is that (a, b) = (1, 0)

or (a, b) = (0, 1). Since the solution (a, b) = (0, 1) is simply a permutation of the labels (i.e.

label switching), we can see that Zil = Z∗
il, µ1 = µ

∗
1, and µ2 = µ

∗
2 up to a permutation of the

labels. It is important to note that if assumption (2) did not hold, and X̃ is not full column

rank, we could add any vector in the nullspace of X̃ to each row of µ∗
1 or µ∗

2 and equation

C.2 would still hold. Therefore, assuming assumptions (1) - (3) hold, we have that Zik = Z∗
ik,

νk = ν
∗
k, and ηk = η

∗
k up to the permutation of the labels, for k = 1, 2 and i = 1, . . . , N .

From (2), we have that

V∗(ti, z
∗
i ) + (σ2)∗Ini

= V(ti, zi) + σ2Ini

⇐⇒ V∗(ti, z
∗
i )−V(ti, zi) = ((σ2)∗ − σ2)Ini

.

Suppose that ((σ2)∗ − σ2) ̸= 0, then we have that

rank (V∗(ti, z
∗
i )−V(ti, zi)) = rank

(
((σ2)∗ − σ2)Ini

)
> 4M,

by assumption (3) (there exists i such that ni > 4M) . However, from the definition of

V(ti, zi), we have that

V(ti, zi) =
2∑

k=1

2∑
k′=1

ZikZik′

{
S′(ti)

M∑
m=1

(ϕkmϕ
′
k′m)S(ti)

}
.

Thus, we can see from the functional form ofV(ti, zi), we can see that rank(V(ti, zi)) ≤ KM ,

meaning that rank (V∗(ti, z
∗
i )−V(ti, zi)) ≤ 2KM , leading to a contradiction. Therefore we

have that (σ2)∗ = σ2 and V∗(ti, z
∗
i ) = V(ti, zi). From assumptions 2 (there are at least 2

points zi in the interior of the simplex) and assumptions 3 (ni > P ), as well as the fact that
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Z∗
ik = Zik up to a permutation of the labels, we can see that

M∑
m=1

(
(ϕkm)

∗ (ϕ′
k′m)

∗)
=

M∑
m=1

(ϕkmϕ
′
k′m)

up to a permutation of the labels. Therefore, we have that the parameters νk, ηk, Zik,∑M
m=1 (ϕkmϕ

′
k′m), and σ

2 are identifiable up to a permutation of the labels given assumptions

(1)-(3).

C.2 Computation

C.2.1 Posterior Distributions

In this subsection, we will specify the posterior distributions specifically for the functional

covariate adjusted mixed membership model proposed in the main manuscript. We will

first start with the ϕkm parameters, for j = 1, . . . , K and m = 1, . . . ,M . Let Dϕjm
=

τ̃−1
ϕmj

diag
(
γ−1
ϕj1m

, . . . , γ−1
ϕjPm

)
. By letting

mϕjm
=

1

σ2

N∑
i=1

ni∑
l=1

(
B(til)χim

(
yi(til)Zij − Z2

ij

(
νj + ηjx

′
i

)′
B(til)− Z2

ij

∑
n̸=m

χinϕ
′
jnB(til)

−
∑
k ̸=j

ZijZik

[
(νk + ηkx

′
i)
′
B(til) +

M∑
n=1

χinϕ
′
knB(til)

]))
,

and

M−1
ϕjm

=
1

σ2

N∑
i=1

ni∑
l=1

(
Z2

ijχ
2
imB(til)B

′(til)
)
+D−1

ϕjm
,

we have that

ϕjm|Θ−ϕjm
,Y1, . . . ,YN ,X ∼ N

(
Mϕjm

mϕjm
,Mϕjm

)
.
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The posterior distribution of δ1k, for k = 1, . . . , K, is

δ1k|Θ−δ1k ,Y1, . . . ,YN ,X ∼Γ

(
a1k + (PM/2), 1 +

1

2

P∑
r=1

γk,r,1ϕ
2
k,r,1

+
1

2

M∑
m=2

P∑
r=1

γk,r,mϕ
2
k,r,m

(
m∏
j=2

δjk

))
.

.

The posterior distribution for δik, for i = 2, . . . ,M and k = 1, . . . , K, is

δik|Θ−δik ,Y1, . . . ,YN ,X ∼Γ

(
a2k + (P (M − i+ 1)/2), 1

+
1

2

M∑
m=i

P∑
r=1

γξk,r,mϕ
2
k,r,m

(
m∏

j=1;j ̸=i

δjk

))
.

The posterior distribution for a1k (k = 1, . . . , K) is not a commonly known distribution,

however we have that

P (a1k|Θ−a1k ,Y1, . . . ,YN ,X) ∝ 1

Γ(a1k)
δa1k−1
1k aα1−1

1k exp {−a1kβ1} .

Since this is not a known kernel of a distribution, we will have to use Metropolis-Hastings al-

gorithm. Consider the proposal distribution Q(a′1k|a1k) = N
(
a1k, ϵ1β

−1
1 , 0,+∞

)
(Truncated

Normal) for some small ϵ1 > 0. Thus the probability of accepting any step is

A(a′1k, a1k) = min

{
1,
P
(
a′1k|Θ−a′1k

,Y1, . . . ,YN ,X
)

P (a1k|Θ−a1k ,Y1, . . . ,YN ,X)

Q (a1k|a′1k)
Q (a′1k|a1k)

}
.

Similarly for a2k (k = 1, . . . , K), we have

P (a2k|Θ−a2k ,Y1, . . . ,YN ,X) ∝ 1

Γ(a2k)M−1

(
M∏
i=2

δa2k−1
ik

)
aα2k−1
2k exp {−a2kβ2} .

We will use a similar proposal distribution, such that Q(a′2k|a2k) = N
(
a2k, ϵ2β

−1
2 , 0,+∞

)
for
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some small ϵ2 > 0. Thus the probability of accepting any step is

A(a′2k, a2k) = min

{
1,
P
(
a′2k|Θ−a′2k

,Y1, . . . ,YN ,X
)

P (a2k|Θ−a2k ,Y1, . . . ,YN ,X)

Q (a2k|a′2k)
Q (a′2k|a2k)

}
.

The posterior distribution for the zi parameters are not a commonly known distribution,

so we will use the Metropolis-Hastings algorithm. We know that

p(zi|Θ−zi ,Y1, . . . ,YN ,X) ∝
K∏
k=1

Zα3πk−1
ik

×
ni∏
l=1

exp

{
− 1

2σ2

(
yi(til)−

K∑
k=1

Zik

(
(νk + ηkx

′
i)
′
B(til)

+
M∑

m=1

χimϕ
′
kmB(til)

))2
 .

We will use Q(z′i|zi) = Dir(azzi) for some large az ∈ R+ as the proposal distribution. Thus

the probability of accepting a proposed step is

A(z′i, zi) = min

{
1,
P (z′i|Θ−zi ,Y1, . . . ,YN ,X)

P (zi|Θ−zi ,Y1, . . . ,YN ,X)

Q (zi|z′i)
Q (z′i|zi)

}
.

Similarly, a Gibbs update is not available for an update of the π parameters. We have

that

p(π|Θ−π,Y1, . . . ,YN ,X) ∝
K∏
k=1

πck−1
k

×
N∏
i=1

1

B(α3π)

K∏
k=1

Zα3πk−1
ik .

Letting out proposal distribution be such that Q(π′|π) = Dir(aππ), for some large aπ ∈ R+,

we have that our probability of accepting any proposal is

A(π′,π) = min

{
1,
P (π′|Θ−π′ ,Y1, . . . ,YN ,X)

P (π|Θ−π,Y1, . . . ,YN ,X)

Q (π|π′)

Q (π′|π)

}
.
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The posterior distribution of α3 is also not a commonly known distribution, so we will use

the Metropolis-Hastings algorithm to sample from the posterior distribution. We have that

p(α3|Θ−α3 ,Y1, . . . ,YN ,X) ∝ e−bα3

×
N∏
i=1

1

B(α3π)

K∏
k=1

Zα3πk−1
ik .

Using a proposal distribution such that Q(α′
3|α3) = N (α3, σ

2
α3
, 0,+∞) (Truncated Normal),

we are left with the probability of accepting a proposed state as

A(α′
3, α3) = min

{
1,
P
(
α′
3|Θ−α′

3
,Y1, . . . ,YN ,X

)
P (α3|Θ−α3 ,Y1, . . . ,YN ,X)

Q (α3|α′
3)

Q (α′
3|α3)

}
.

Let P be the following tridiagonal matrix:

P =



1 −1 0

−1 2 −1
. . . . . . . . .

−1 2 −1

0 −1 1


.

Thus, letting

Bνj
=

(
τνj

P+
1

σ2

N∑
i=1

ni∑
l=1

Z2
ijB(til)B

′(til)

)−1

and

bνj
=

1

σ2

N∑
i=1

ni∑
l=1

ZijB(til)

[
yi(til)−

(∑
k ̸=j

Zikν
′
kB(til)

)

−

(
K∑
k=1

Zik

[
xiη

′
kB(til) +

M∑
m=1

χimϕ
′
knB(til)

])]
,

we have that

νj|Θ−νj
,Y1, . . . ,YN ,X ∼ N

(
Bνj

bνj
,Bνj

)
.
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Let ηjd denote the dth column of the matrix ηj. Thus, letting

Bηjd
=

(
τηjd

P+
1

σ2

N∑
i=1

ni∑
l=1

Z2
ijx

2
idB(til)B

′(til)

)−1

and

bηjd
=

1

σ2

N∑
i=1

ni∑
l=1

ZijxidB(til)

[
yi(til)−

(∑
r ̸=d

Zijxirη
′
jrB(til)

)
−

(∑
k ̸=j

Zikxiη
′
kB(til)

)

−

(
K∑
k=1

Zik

[
ν ′
kB(til) +

M∑
m=1

χimϕ
′
knB(til)

])]
,

we have that

ηjd|Θ−ηjd
,Y1, . . . ,YN ,X ∼ N

(
Bηjd

bηjd
,Bηjd

)
.

Thus we can see that we can draw samples from the posterior of the parameters con-

trolling the mean structure using a Gibbs sampler. Similarly, we can use a Gibbs sampler

to draw samples from the posterior distribution of τηjd
and τνj

. We have that the posterior

distributions are

τνj
|Θ−τνj

,Y1, . . . ,YN ,X ∼ Γ

(
αν + P/2, βν +

1

2
ν ′
jPνj

)

and

τηjd
|Θ−τηjd

,Y1, . . . ,YN ,X ∼ Γ

(
αη + P/2, βη +

1

2
η′
jdPηjd

)
,

for j = 1, . . . , K and d = 1, . . . , R. The parameter σ2 can be updated by using a Gibbs

update. If we let

βσ =
1

2

N∑
i=1

ni∑
l=1

(
yi(til)−

K∑
k=1

Zik

(
(νk + ηkx

′
i)
′
B(til) +

M∑
n=1

χinϕ
′
knB(til)

))2

,
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then we have

σ2|Θ−σ2 ,Y1, . . . ,YN ,X ∼ IG

(
α0 +

∑N
i=1 ni

2
, β0 + βσ

)
.

Lastly, we can update the χim parameters, for i = 1, . . . , N and m = 1, . . . ,M , using a Gibbs

update. If we let

wim =
1

σ2

[
ni∑
l=1

(
K∑
k=1

Zikϕ
′
kmB(til)

)
(
yi(til)−

K∑
k=1

Zik

(
(νk + ηkx

′
i)
′
B(til) +

∑
n̸=m

χinϕ
′
knB(til)

))]

and

W−1
im = 1 +

1

σ2

ni∑
l=1

(
K∑
k=1

Zikϕ
′
kmB(til)

)2

,

then we have that

χim|ζ−χim
,Y1, . . . ,YN ,X ∼ N (Wimwim,Wim).

C.2.2 Tempered Transitions

One of the main computational problems we face in these flexible, unsupervised models is a

multi-modal posterior distribution. In order to help the Markov chain move across modes,

or traverse areas of low posterior probability, we can utilize tempered transitions.

In this paper, we will be following the works of Behrens et al. [2012] and Pritchard et al.

[2000] and only temper the likelihood. The target distribution that we want to temper is

usually assumed to be written as

p(x) ∝ π(x)exp (−βhh(x)) ,
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where βh controls how much the distribution is tempered (1 = β0 < · · · < βh < · · · < βNt).

In this setting, we will assume that the hyperparameters Nt and βNt are user specified, and

will depend on the complexity of the model. For more complex or larger models, we will need

to set Nt relatively high. In this implementation, we assume the βh parameters to follow a

geometric scheme, but in more complex models, βNt may need to be relatively small.

We can rewrite our likelihood for the functional covariate adjusted model to fit the above

form:

ph(yi(t)|Θ,X) ∝exp

{
−βh

(
1

2
log(σ2) +

1

2σ2

(
yi(t)−

K∑
k=1

Zik

(
(νk + ηkx

′
i)
′
B(t)

+
M∑
n=1

χinϕ
′
k′nB(t)

))2


=
(
σ2
)−βh/2 exp

{
− βh
2σ2

(
yi(t)−

K∑
k=1

Zik

(
(νk + ηkx

′
i)
′
B(t)

+
M∑
n=1

χinϕ
′
k′nB(t)

))2
 .

Let Θh be the set of parameters generated from the model using the tempered likelihood

associated with βh. The tempered transition algorithm can be summarized by the following

steps:

1. Start with initial state Θ0.

2. Transition from Θ0 to Θ1 using the tempered likelihood associated with β1.

3. Continue in this manner until we transition from ΘNt−1 to ΘNt using the tempered

likelihood associated with βNt .

4. Transition from ΘNt to ΘNt+1 using the tempered likelihood associated with βNt .

5. Continue in this manner until we transition from Θ2Nt−1 to Θ2Nt using β1.
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6. Accept transition from Θ0 to Θ2Nt with probability

min

{
1,

Nt−1∏
h=0

∏N
i=1

∏ni

l=1 ph+1(yi(til)|Θh,Xi)∏N
i=1

∏ni

l=1 ph(yi(til)|Θh,Xi)

2Nt∏
h=Nt+1

∏N
i=1

∏ni

l=1 ph(yi(til)|Θh,Xi)∏N
i=1

∏ni

l=1 ph+1(yi(til)|Θh,Xi)

}

in the functional case, or

min

{
1,

Nt−1∏
h=0

∏N
i=1

∏ni

l=1 ph+1(yi|Θh,Xi)∏N
i=1

∏ni

l=1 ph(yi)|Θh,Xi)

2Nt∏
h=Nt+1

∏N
i=1

∏ni

l=1 ph(yi|Θh,Xi)∏N
i=1

∏ni

l=1 ph+1(yi|Θh,Xi)

}

in the multivariate case.

Since we only temper the likelihood, many of the posterior distributions derived in Section

C.2.1 can be utilized. Thus the following posteriors are the only ones that change due to the

tempering of the likelihood. Starting with the Φ parameters, we have

(
mϕjm

)
h
=

βh
(σ2)h

N∑
i=1

ni∑
l=1

(
B(til)(χim)h

(
yi(til)(Zij)h − (Zij)

2
h

(
(νj)h + (ηj)hx

′
i

)′
B(til)

−(Zij)
2
h

∑
n ̸=m

(χin)h(ϕjn)
′
hB(til)

−
∑
k ̸=j

ZijZik

[
((νk)h + (ηk)hx

′
i)
′
B(til) +

M∑
n=1

χin(ϕkn)
′
hB(til)

]))
,

and (
Mϕjm

)−1

h
=

βh
(σ2)h

N∑
i=1

ni∑
l=1

(
(Zij)

2
h(χim)

2
hB(til)B

′(til)
)
+
(
Dϕjm

)−1

h
,

we have that

(
ϕjm

)
h
|Θ−(ϕjm)h

,Y1, . . . ,YN ,X ∼ N
((

Mϕjm

)
h

(
mϕjm

)
h
,
(
Mϕjm

)
h

)
.

As in the untempered case, we have that the posterior distribution Z parameters under

the tempered likelihood is not a commonly known distribution. Therefore, we will use the
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Metropolis-Hastings algorithm. We have that

p((zi)h|Θ−(zi)h ,Y1, . . . ,YN ,X) ∝
K∏
k=1

(Zik)
(α3)h(πk)h−1
h

×
ni∏
l=1

exp

{
− βh
2(σ2)h

(
yi(til)−

K∑
k=1

(Zik)h
(
((νk)h + (ηk)hx

′
i)
′
B(til)

+
M∑

m=1

(χim)h(ϕkm)
′
hB(til)

))2
 .

We will useQ((zi)
′
h|(zi)h) = Dir(az(zi)h) for some large az ∈ R+ as the proposal distribution.

Thus the probability of accepting a proposed step is

A((zi)
′
h, (zi)h) = min

{
1,
P
(
(zi)

′
h|Θ−(zi)′h

,Y1, . . . ,YN ,X
)

P
(
(zi)h|Θ−(zi)h ,Y1, . . . ,YN ,X

)Q ((zi)h|(zi)′h)
Q ((zi)′h|(zi)h)

}
.

Letting (
Bνj

)
h
=

((
τνj

)
h
P+

βh
(σ2)h

N∑
i=1

ni∑
l=1

(Zij)
2
hB(til)B

′(til)

)−1

and (
bνj

)
h
=

βh
(σ2)h

N∑
i=1

ni∑
l=1

(Zij)hB(til)

[
yi(til)−

(∑
k ̸=j

(Zik)h(ν
′
k)hB(til)

)

−

(
K∑
k=1

(Zik)

[
xi(ηk)

′
hB(til) +

M∑
m=1

(χim)h(ϕkn)
′
hB(til)

])]
,

we have that

(νj)h |Θ−(νj)h
,Y1, . . . ,YN ,X ∼ N

((
Bνj

)
h

(
bνj

)
h
,
(
Bνj

)
h

)
.

Let
(
ηjd

)
h
denote the dth column of the matrix (ηj)h. Thus, letting

(
Bηjd

)
h
=

((
τηjd

)
h
P+

βh
(σ2)h

N∑
i=1

ni∑
l=1

(Zij)
2
hx

2
idB(til)B

′(til)

)−1
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and

(
bηjd

)
h
=

βh
(σ2)h

N∑
i=1

ni∑
l=1

(Zij)hxidB(til)

[
yi(til)−

(∑
r ̸=d

(Zij)hxir(ηjr)
′
hB(til)

)

−

(∑
k ̸=j

(Zik)hxi(ηk)
′
hB(til)

)

−

(
K∑
k=1

(Zik)h

[
(νk)

′
hB(til) +

M∑
m=1

(χim)h(ϕkn)
′
hB(til)

])]
,

we have that

(
ηjd

)
h
|Θ−(ηjd)h

,Y1, . . . ,YN ,X ∼ N
((

Bηjd

)
h

(
bηjd

)
h
,
(
Bηjd

)
h

)
.

If we let

(βσ)h =
βh
2

N∑
i=1

ni∑
l=1

(
yi(til)−

K∑
k=1

(Zik)h

(
((νk)h + (ηk)hx

′
i)
′
B(til)

+
M∑
n=1

(χin)h(ϕkn)
′
hB(til)

))2

,

then we have

(σ2)h|Θ−(σ2)h ,Y1, . . . ,YN ,X ∼ IG

(
α0 +

βh
∑N

i=1 ni

2
, β0 + (βσ)h

)
.

Lastly, we can update the χim parameters, for i = 1, . . . , N and m = 1, . . . ,M , using a Gibbs

update. If we let

(wim)h =
βh

(σ2)h

[
ni∑
l=1

(
K∑
k=1

(Zik)h(ϕkm)
′
hB(til)

) (
yi(til)

−
K∑
k=1

(Zik)h

(
((νk)h + (ηk)hx

′
i)
′
B(til) +

∑
n ̸=m

(χin)h(ϕkn)
′
hB(til)

))]
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and

(Wim)
−1
h = 1 +

βh
σ2

ni∑
l=1

(
K∑
k=1

(Zik)h(ϕkm)
′
hB(til)

)2

,

then we have that

(χim)h|ζ−(χim)h
,Y1, . . . ,YN ,X ∼ N ((Wim)h (wim)h , (Wim)h) .

C.3 Simulation Study and Case Studies

C.3.1 Simulation Study

This subsection contains detailed information on how the simulation study in Section 3 of

the main text was conducted. This simulation study primarily looked at how well we could

recover the true mean structure, covariance structure, and allocation structure. In this

simulation study, we simulated datasets from 3 scenarios at 3 different sample sizes for each

scenario. Once the datasets were generated, we fit a variety of covariate adjusted functional

mixed membership models, as well as unadjusted functional mixed membership models, on

the datasets to see how well we could recover the mean, covariance, and allocation structures.

The first scenario we considered was a covariate adjusted functional mixed membership

model with 2 true covariates. To generate all of the datasets, we assumed that the observa-

tions were in the span of B-spline basis with 8 basis functions. For this scenario, we generated

3 datasets with sample sizes of 60, 120, and 240 functional observations, all observed on a

grid of 50 time points. The data was generated by first generating the model parameters (as

discussed below) and then generating data from the likelihood specified in Equation 11 of

the main text. The model parameters for this dataset were generated as follows:

ν1 ∼ N ((6, 4, . . . ,−6,−8)′, 4P) ,

ν2 ∼ N ((−8,−6, . . . , 4, 6)′, 4P) ,
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ηk1 ∼ N (1,P) k = 1, 2

ηk2 ∼ N ((3, 2, . . . ,−4)′,P) k = 1, 2

We drew the Φ parameters from the subspace orthogonal to the space spanned by the ν

parameters. Thus let colsp(B⊥) := span{b⊥1 , . . . , b⊥6 } ⊂ R8 be the subspace orthogonal to

the ν parameters, which can be described as the span of 6 vectors in R8.The Φ parameters

were drawn according to the following distributions:

ϕkm = qkmB
⊥ k = 1, 2 m = 1, 2, 3,

where qk1 ∼ N (06, 2.25I6), qk2 ∼ N (06, I6), qk3 ∼ N (06, 0.49I6). The χim parameters were

drawn from a standard normal distribution. The zi parameters were drawn from a mixture

of Dirichlet distributions. Roughly 30% of the zi parameters were drawn from a Dirichlet

distribution with α1 = 10 and α2 = 1. Another roughly 30% of the zi parameters were drawn

from a Dirichlet distribution where α1 = 1 and α2 = 10. The rest of the zi parameters were

drawn from a Dirichlet distribution with α1 = α2 = 1. The covariates, X, were drawn

from a standard normal distribution. Models in this scenario were run for 500,000 MCMC

iterations.

For the second scenario, we considered data drawn from a covariate adjusted functional

mixed membership model with one covariate. We considered three sample sizes of 50, 100,

and 200 functional samples observed on a grid of 25 time points. The model parameters for

this dataset were generated as follows:

ν1 ∼ N ((6, 4, . . . ,−6,−8)′, 4P) ,

ν2 ∼ N ((−8,−6, . . . , 4, 6)′, 4P) ,

η11 ∼ N (2,P)
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η21 ∼ N (−2,P)

We drew the Φ parameters from the subspace orthogonal to the space spanned by the ν and

η parameters. Thus let colsp(B⊥) := span{b⊥1 , . . . , b⊥4 } ⊂ R8 be the subspace orthogonal

to the ν and η parameters, which can be described as the span of 4 vectors in R8.The Φ

parameters were drawn according to the following distributions:

ϕkm = qkmB
⊥ k = 1, 2 m = 1, 2, 3,

where qk1 ∼ N (06, 4I6), qk2 ∼ N (06, 2.25I6), qk3 ∼ N (06, I6). The χim parameters were

drawn from a standard normal distribution. The zi parameters were drawn from a mixture

of Dirichlet distributions. Roughly 30% of the zi parameters were drawn from a Dirichlet

distribution with α1 = 10 and α2 = 1. Another roughly 30% of the zi parameters were drawn

from a Dirichlet distribution where α1 = 1 and α2 = 10. The rest of the zi parameters were

drawn from a Dirichlet distribution with α1 = α2 = 1. The covariates, X, were drawn from

a normal distribution with variance of nine and mean of zero. Models in this scenario were

run for 300,000 MCMC iterations.

For the third scenario, we generated data from an unadjusted functional mixed member-

ship model. We considered three sample sizes of 40, 80, and 160 functional samples observed

on a grid of 25 time points. The model parameters for this dataset were generated as follows:

ν1 ∼ N ((6, 4, . . . ,−6,−8)′, 4P) ,

ν2 ∼ N ((−8,−6, . . . , 4, 6)′, 4P) ,

η11 ∼ N (2,P)

η21 ∼ N (−2,P)

We drew the Φ parameters from the subspace orthogonal to the space spanned by the ν
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parameters. Thus let colsp(B⊥) := span{b⊥1 , . . . , b⊥4 } ⊂ R8 be the subspace orthogonal to

the ν parameters, which can be described as the span of 4 vectors in R8.The Φ parameters

were drawn according to the following distributions:

ϕkm = qkmB
⊥ k = 1, 2 m = 1, 2,

where qk1 ∼ N (06, 2.25I6) and qk2 ∼ N (06, I6). The χim parameters were drawn from a

standard normal distribution. The zi parameters were drawn from a mixture of Dirichlet

distributions. Roughly 30% of the zi parameters were drawn from a Dirichlet distribution

with α1 = 10 and α2 = 1. Another roughly 30% of the zi parameters were drawn from a

Dirichlet distribution where α1 = 1 and α2 = 10. The rest of the zi parameters were drawn

from a Dirichlet distribution with α1 = α2 = 1. Models in this scenario were run for 500,000

MCMC iterations.

The code for running this simulation study can be found on Github.

C.4 Mean and Covariance Covariate-dependent Mixed Member-

ship Model

C.4.1 Model Specification

In this section, we completely specify a mixed membership model where the mean and

covariance structures are dependent on the covariates of interest. As in the main text of this

manuscript, we will let {Yi(.)}Ni=1 be the observed sample paths and ti = [ti1, . . . , tini
]′ denote

the time points at which the ith function was observed over. We will also let X ∈ RN×R

denote the design matrix and xi = [Xi1 . . . XiR] denote the ith row of the design matrix

(or the covariates associated with the ith observation). By introducing covariate-dependent

pseudo-eigenfunctions, we arrive at the likelihood of our mixed membership model where

202



the mean and covariance structures are dependent on the covariates of interest:

Yi(ti) | Θ,X ∼ N
{∑K

k=1 Zik

(
S′(ti) (νk + ηkx

′
i) +

∑M
m=1 χimS

′(ti) (ϕkm + ξkmx
′
i)
)
, σ2Ini

}
. (C.3)

From equation C.3, we can see that ξkm ∈ RP×R, directly controls the effect that the

covariates have on the pseudo-eigenfunctions for k = 1, . . . , K and m = 1, . . . ,M . By

integrating out the χim parameters (i = 1, . . . , N and m = 1, . . . ,M), we get a model of the

following form:

Yi(ti) | Θ−χ,X ∼ N

{
K∑
k=1

ZikS
′(ti) (νk + ηkx

′
i) , V(ti, zi) + σ2Ini

}
, (C.4)

where Θ−χ is the collection of our model parameters excluding the χim variables, and the

error-free mixed membership covariance is

V(ti, zi) =
K∑
k=1

K∑
k′=1

ZikZik′

{
S′(ti)

M∑
m=1

[
(ϕkm + ξkmx

′
i) (ϕk′m + ξk′mx

′
i)
′]
S(ti)

}
. (C.5)

As with the pseudo-eigenfunctions in the unadjusted model, we will utilize the multiplicative

gamma process prior as our prior on the ξkm variables. Letting ξ(krm)p denote the element

in the pth row and rth column of ξkm. Thus we have:

ξ(krm)p | γξkrmp
, τ̃ξmkr

∼ N
(
0, γ−1

ξkrmp
τ̃−1
ξmkr

)
, γξkrmp

∼ Γ (νγ/2, νγ/2) , τ̃ξmkr
=

m∏
n=1

δξnkr
,

δξ1kr | aξ1kr ∼ Γ(aξ1kr , 1), δξjkr | aξ2kr ∼ Γ(aξ2kr , 1), aξ1kr ∼ Γ(α1, β1), aξ2kr ∼ Γ(α2, β2),

for k = 1, . . . , K, r = 1, . . . , R, m = 1, . . . ,M , and p = 1, . . . P . The rest of the parameters

in the model have the same prior distributions as the model with the covariate-dependence
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on the mean structure only in the main text. Specifically, we have

ϕkpm|γkpm, τ̃mk ∼ N
(
0, γ−1

kpmτ̃
−1
mk

)
, γkpm ∼ Γ (νγ/2, νγ/2) , τ̃mk =

m∏
n=1

δnk,

δ1k|a1k ∼ Γ(a1k, 1), δjk|a2k ∼ Γ(a2k, 1), a1k ∼ Γ(α1, β1), a2k ∼ Γ(α2, β2),

for k = 1, . . . , K, m = 1, . . . ,M , and p = 1, . . . P . Similarly, we have

P (νk|τνk
) ∝ exp

(
−τνk

2

P−1∑
p=1

(
ν ′pk − ν(p+1)k

)2)
,

for k = 1, . . . , K, where τνk
∼ Γ(αν , βν) and νpk is the pth element of νk. Likewise, we have

that

P ({ηprk}Pp=1|τηrk
) ∝ exp

(
−
τηrk

2

P−1∑
p=1

(
η′prk − η(p+1)rk

)2)
,

for k = 1, . . . , K and r = 1, . . . , R, where τηrk
∼ Γ(αη, βη) and ηprk is the pth row and rth

column of ηk. Lastly, we assume that zi | π, α3 ∼iid Dir(α3π), π ∼ Dir(c), α3 ∼ Exp(b),

and σ2 ∼ IG(α0, β0).

C.4.2 Posterior Distributions

In this subsection, we will specify the posterior distributions specifically for the functional

covariate adjusted mixed membership model where the covariance is covariate-dependent.

We will first start with the ϕkm parameters, for j = 1, . . . , K and m = 1, . . . ,M . Let

Dϕjm
= τ̃−1

ϕmj
diag

(
γ−1
ϕj1m

, . . . , γ−1
ϕjPm

)
. By letting

mϕjm
=

1

σ2

N∑
i=1

ni∑
l=1

(
B(til)χim

(
yi(til)Zij − Z2

ij

(
νj + ηjx

′
i

)′
B(til)− Z2

ij

∑
n̸=m

χinϕ
′
jnB(til)

−Z2
ij

M∑
n=1

χinxiξ
′
jnB(til)−

∑
k ̸=j

ZijZik

[
(νk + ηkx

′
i)
′
B(til) +

M∑
n=1

χin (ϕkn + ξknx
′
i)
′
B(til)

]))
,
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and

M−1
ϕjm

=
1

σ2

N∑
i=1

ni∑
l=1

(
Z2

ijχ
2
imB(til)B

′(til)
)
+D−1

ϕjm
,

we have that

ϕjm|Θ−ϕjm
,Y1, . . . ,YN ,X ∼ N

(
Mϕjm

mϕjm
,Mϕjm

)
.

Let ξkrm be the rth column of the matrix ξkm. We will letDξkrm = τ̃−1
ξmjr

diag
(
γ−1
ξjrm1

, . . . , γ−1
ϕξjrmP

)
.

We will also let xir denote the rth element of xi. Thus, letting

mξkdm =
1

σ2

N∑
i=1

ni∑
l=1

(
B(til)χimxidZik

(
yi(til)−

K∑
j=1

Zij

[(
νj + ηjx

′
i

)′
B(til) +

M∑
n=1

χinϕ
′
jnB(til)

]

−
∑

(j,n,r)̸=(k,m,d)

Zijχinxirξ
′
krnB(til)



M−1
ξkdm

=
1

σ2

N∑
i=1

ni∑
l=1

(
Z2

ikχ
2
imx

2
idB(til)B

′(til)
)
+D−1

ξkdm
,

we have that

ξkdm|Θ−ξkdm ,Y1, . . . ,YN ,X ∼ N
(
Mξkdmmξkdm ,Mξkdm

)
.

The posterior distribution of δϕ1k
, for k = 1, . . . , K, is

δϕ1k
|Θ−δϕ1k

,Y1, . . . ,YN ,X ∼Γ

(
aϕ1k

+ (PM/2), 1 +
1

2

P∑
r=1

γϕk,r,1
ϕ2
k,r,1

+
1

2

M∑
m=2

P∑
r=1

γϕk,r,m
ϕ2
k,r,m

(
m∏
j=2

δϕjk

))
.

.
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The posterior distribution for δϕik
, for i = 2, . . . ,M and k = 1, . . . , K, is

δϕik
|Θ−δϕik

,Y1, . . . ,YN ,X ∼Γ

(
aϕ2k

+ (P (M − i+ 1)/2), 1

+
1

2

M∑
m=i

P∑
r=1

γξk,r,mϕ
2
k,r,m

(
m∏

j=1;j ̸=i

δϕjk

))
.

The posterior distribution of δξ1kd , for k = 1, . . . , K and d = 1, . . . , R, is

δξ1kd|Θ−δξ1kd
,Y1, . . . ,YN ,X ∼Γ

(
aξ1kd + (PM/2), 1 +

1

2

P∑
r=1

γξkdr1ξ
2
kdr1

+
1

2

M∑
m=2

P∑
r=1

γξkdrmξ
2
kdrm

(
m∏
j=2

δξjkd

))
.

.

The posterior distribution for δξikd , for i = 2, . . . ,M , k = 1, . . . , K, and d = 1, . . . , D is

δξikd|Θ−δξikd
,Y1, . . . ,YN ,X ∼Γ

(
aξ2kd + (P (M − i+ 1)/2), 1

+
1

2

M∑
m=i

P∑
r=1

γξkdrmϕ
2
kdrm

(
m∏

j=1;j ̸=i

δξjkd

))
.

The posterior distribution for aϕ1k
(k = 1, . . . , K) is not a commonly known distribution,

however we have that

P (aϕ1k
|Θ−aϕ1k

,Y1, . . . ,YN ,X) ∝ 1

Γ(aϕ1k
)
δ
aϕ1k

−1

ϕ1k
aα1−1
ϕ1k

exp
{
−aϕ1k

β1
}
.

Since this is not a known kernel of a distribution, we will have to use Metropolis-Hastings

algorithm. Consider the proposal distribution Q(a′ϕ1k
|aϕ1k

) = N
(
aϕ1k

, ϵ1β
−1
1 , 0,+∞

)
(Trun-
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cated Normal) for some small ϵ1 > 0. Thus the probability of accepting any step is

A(a′ϕ1k
, aϕ1k

) = min

1,
P
(
a′ϕ1k
|Θ−a′ϕ1k

,Y1, . . . ,YN ,X
)

P
(
aϕ1k
|Θ−aϕ1k

,Y1, . . . ,YN ,X
)Q

(
aϕ1k
|a′ϕ1k

)
Q
(
a′ϕ1k
|aϕ1k

)
 .

Similarly for aϕ2k
(k = 1, . . . , K), we have

P (aϕ2k
|Θ−aϕ2k

,Y1, . . . ,YN ,X) ∝ 1

Γ(aϕ2k
)M−1

(
M∏
i=2

δ
aϕ2k

−1

ϕik

)
a
αϕ2k

−1

ϕ2k
exp

{
−aϕ2k

β2
}
.

We will use a similar proposal distribution, such that Q(a′ϕ2k
|aϕ2k

) = N
(
aϕ2k

, ϵ2β
−1
2 , 0,+∞

)
for some small ϵ2 > 0. Thus the probability of accepting any step is

A(a′ϕ2k
, aϕ2k

) = min

1,
P
(
a′ϕ2k
|Θ−a′ϕ2k

,Y1, . . . ,YN ,X
)

P
(
aϕ2k
|Θ−aϕ2k

,Y1, . . . ,YN ,X
)Q

(
aϕ2k
|a′ϕ2k

)
Q
(
a′ϕ2k
|aϕ2k

)
 .

Similarly, the posterior distribution for aξ1kd (k = 1, . . . , K and d = 1, . . . , R) is not a

commonly known distribution, however we have that

P (aξ1kd|Θ−aξ1kd
,Y1, . . . ,YN ,X) ∝ 1

Γ(aξ1kd)
δ
aξ1kd−1

ξ1kd
aα1−1
ξ1kd

exp
{
−aξ1kdβ1

}
.

We will use a similar proposal distribution, such thatQ(a′ξ1kd|aξ1kd) = N
(
aξ1kd , ϵ1β

−1
1 , 0,+∞

)
for some small ϵ1 > 0. Thus the probability of accepting any step is

A(a′ξ1kd , aξ1kd) = min

1,
P
(
a′ξ1kd|Θ−a′ξ1kd

,Y1, . . . ,YN ,X
)

P
(
aξ1kd|Θ−aϕ1k

,Y1, . . . ,YN ,X
) Q

(
aξ1kd|a

′
ξ1kd

)
Q
(
a′ξ1kd|aξ1kd

)
 .
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Similarly for aξ2kd (k = 1, . . . , K and d = 1, . . . , R), we have

P (aξ2kd|Θ−aξ2kd
,Y1, . . . ,YN ,X) ∝ 1

Γ(aξ2kd)
M−1

(
M∏
i=2

δ
aξ2kd−1

ξikd

)
a
αξ2kd

−1

ξ2kd
exp

{
−aξ2kdβ2

}
.

We will use a similar proposal distribution, such thatQ(a′ξ2kd|aξ2kd) = N
(
aξ2kd , ϵ2β

−1
2 , 0,+∞

)
for some small ϵ2 > 0. Thus the probability of accepting any step is

A(a′ξ2kd , aξ2kd) = min

1,
P
(
a′ξ2kd|Θ−a′ξ2kd

,Y1, . . . ,YN ,X
)

P
(
aξ2kd|Θ−aξ2kd

,Y1, . . . ,YN ,X
)Q

(
aξ2kd|a

′
ξ2kd

)
Q
(
a′ξ2kd|aξ2kd

)
 .

For the γϕjrm
parameters, for j = 1, . . . K, p = 1, . . . , P , and m = 1, . . . ,M , we have

γϕjpm
|Θ−γϕjpm

,Y1, . . . ,YN ,X ∼ Γ

(
νγ + 1

2
,
ϕ2
jpmτ̃ϕmj

+ νγ

2

)
.

Similarly, for the γξjdpm parameters, we have

γξjrpm |Θ−γξjrpm
,Y1, . . . ,YN ,X ∼ Γ

(
νγ + 1

2
,
ξ2jrpmτ̃ξmjr

+ νγ

2

)
,

for j = 1, . . . , K, r = 1, . . . , R, p = 1, . . . , P , and m = 1, . . . ,M . The posterior distribution

for the zi parameters are not a commonly known distribution, so we will use the Metropolis-

Hastings algorithm. We know that

p(zi|Θ−zi ,Y1, . . . ,YN ,X) ∝
K∏
k=1

Zα3πk−1
ik

×
ni∏
l=1

exp

{
− 1

2σ2

(
yi(til)−

K∑
k=1

Zik

(
(νk + ηkx

′
i)
′
B(til)

+
M∑

m=1

χim (ϕkm + ξkmx
′
i)
′
B(til)

))2
 .
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We will use Q(z′i|zi) = Dir(azzi) for some large az ∈ R+ as the proposal distribution. Thus

the probability of accepting a proposed step is

A(z′i, zi) = min

{
1,
P (z′i|Θ−zi ,Y1, . . . ,YN ,X)

P (zi|Θ−zi ,Y1, . . . ,YN ,X)

Q (zi|z′i)
Q (z′i|zi)

}
.

Similarly, a Gibbs update is not available for an update of the π parameters. We have

that

p(π|Θ−π,Y1, . . . ,YN ,X) ∝
K∏
k=1

πck−1
k

×
N∏
i=1

1

B(α3π)

K∏
k=1

Zα3πk−1
ik .

Letting out proposal distribution be such that Q(π′|π) = Dir(aππ), for some large aπ ∈ R+,

we have that our probability of accepting any proposal is

A(π′,π) = min

{
1,
P (π′|Θ−π′ ,Y1, . . . ,YN ,X)

P (π|Θ−π,Y1, . . . ,YN ,X)

Q (π|π′)

Q (π′|π)

}
.

The posterior distribution of α3 is also not a commonly known distribution, so we will use

the Metropolis-Hastings algorithm to sample from the posterior distribution. We have that

p(α3|Θ−α3 ,Y1, . . . ,YN ,X) ∝ e−bα3

×
N∏
i=1

1

B(α3π)

K∏
k=1

Zα3πk−1
ik .

Using a proposal distribution such that Q(α′
3|α3) = N (α3, σ

2
α3
, 0,+∞) (Truncated Normal),

we are left with the probability of accepting a proposed state as

A(α′
3, α3) = min

{
1,
P
(
α′
3|Θ−α′

3
,Y1, . . . ,YN ,X

)
P (α3|Θ−α3 ,Y1, . . . ,YN ,X)

Q (α3|α′
3)

Q (α′
3|α3)

}
.
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Let P be the following tridiagonal matrix:

P =



1 −1 0

−1 2 −1
. . . . . . . . .

−1 2 −1

0 −1 1


.

Thus, letting

Bνj
=

(
τνj

P+
1

σ2

N∑
i=1

ni∑
l=1

Z2
ijB(til)B

′(til)

)−1

and

bνj
=

1

σ2

N∑
i=1

ni∑
l=1

ZijB(til)

[
yi(til)−

(∑
k ̸=j

Zikν
′
kB(til)

)

−

(
K∑
k=1

Zik

[
xiη

′
kB(til) +

M∑
m=1

χim (ϕkn + ξknx
′
i)
′
B(til)

])]
,

we have that

νj|Θ−νj
,Y1, . . . ,YN ,X ∼ N

(
Bνj

bνj
,Bνj

)
.

Let ηjd denote the dth column of the matrix ηj. Thus, letting

Bηjd
=

(
τηjd

P+
1

σ2

N∑
i=1

ni∑
l=1

Z2
ijx

2
idB(til)B

′(til)

)−1

and

bηjd
=

1

σ2

N∑
i=1

ni∑
l=1

ZijxidB(til)

[
yi(til)−

(∑
r ̸=d

Zijxirη
′
jrB(til)

)
−

(∑
k ̸=j

Zikxiη
′
kB(til)

)

−

(
K∑
k=1

Zik

[
ν ′
kB(til) +

M∑
m=1

χim (ϕkn + ξknx
′
i)
′
B(til)

])]
,
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we have that

ηjd|Θ−ηjd
,Y1, . . . ,YN ,X ∼ N

(
Bηjd

bηjd
,Bηjd

)
.

Thus we can see that we can draw samples from the posterior of the parameters con-

trolling the mean structure using a Gibbs sampler. Similarly, we can use a Gibbs sampler

to draw samples from the posterior distribution of τηjd
and τνj

. We have that the posterior

distributions are

τνj
|Θ−τνj

,Y1, . . . ,YN ,X ∼ Γ

(
αν + P/2, βν +

1

2
ν ′
jPνj

)

and

τηjd
|Θ−τηjd

,Y1, . . . ,YN ,X ∼ Γ

(
αη + P/2, βη +

1

2
η′
jdPηjd

)
,

for j = 1, . . . , K and d = 1, . . . , R. The parameter σ2 can be updated by using a Gibbs

update. If we let

βσ =
1

2

N∑
i=1

ni∑
l=1

(
yi(til)−

K∑
k=1

Zik

(
(νk + ηkx

′
i)
′
B(til) +

M∑
n=1

χin (ϕkn + ξknx
′
i)
′
B(til)

))2

,

then we have

σ2|Θ−σ2 ,Y1, . . . ,YN ,X ∼ IG

(
α0 +

∑N
i=1 ni

2
, β0 + βσ

)
.

Lastly, we can update the χim parameters, for i = 1, . . . , N and m = 1, . . . ,M , using a Gibbs

update. If we let

wim =
1

σ2

[
ni∑
l=1

(
K∑
k=1

Zik (ϕkm + ξkmx
′
i)
′
B(til)

)
(
yi(til)−

K∑
k=1

Zik

(
(νk + ηkx

′
i)
′
B(til) +

∑
n ̸=m

χin (ϕkn + ξknx
′
i)
′
B(til)

))]
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and

W−1
im = 1 +

1

σ2

ni∑
l=1

(
K∑
k=1

Zik (ϕkm + ξkmx
′
i)
′
B(til)

)2

,

then we have that

χim|ζ−χim
,Y1, . . . ,YN ,X ∼ N (Wimwim,Wim).

C.4.3 Tempered Transitions

Since we only temper the likelihood, many of the posterior distributions derived in Section

C.4.2 can be utilized. Starting with the Φ parameters, we have

(
mϕjm

)
h
=

βh
(σ2)h

N∑
i=1

ni∑
l=1

(
B(til)(χim)h

(
yi(til)(Zij)h − (Zij)

2
h

(
(νj)h + (ηj)hx

′
i

)′
B(til)

−(Zij)
2
h

∑
n ̸=m

(χin)h(ϕjn)
′
hB(til)− (Zij)

2
h

M∑
n=1

(χin)xi(ξjn)
′
hB(til)

−
∑
k ̸=j

ZijZik

[
((νk)h + (ηk)hx

′
i)
′
B(til) +

M∑
n=1

χin ((ϕkn)h + (ξkn)hx
′
i)
′
B(til)

]))
,

and (
Mϕjm

)−1

h
=

βh
(σ2)h

N∑
i=1

ni∑
l=1

(
(Zij)

2
h(χim)

2
hB(til)B

′(til)
)
+
(
Dϕjm

)−1

h
,

we have that

(
ϕjm

)
h
|Θ−(ϕjm)h

,Y1, . . . ,YN ,X ∼ N
((

Mϕjm

)
h

(
mϕjm

)
h
,
(
Mϕjm

)
h

)
.
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Letting

(
mξkdm

)
h
=

βh
(σ2)h

N∑
i=1

ni∑
l=1

(
B(til)(χim)hxid(Zik)h

(
yi(til)−

K∑
j=1

(Zij)h

[(
(νj)h + (ηj)hx

′
i

)′
B(til) +

M∑
n=1

(χin)h(ϕjn)
′
hB(til)

]

−
∑

(j,n,r) ̸=(k,m,d)

(Zij)h(χin)hxir(ξkrn)
′
hB(til)



(
Mξkdm

)−1

h
=

βh
(σ2)h

N∑
i=1

ni∑
l=1

(
(Zik)

2
h(χim)

2
hx

2
idB(til)B

′(til)
)
+
(
Dξkdm

)−1

h
,

we have that

(ξkdm)h |Θ−(ξkdm)h
,Y1, . . . ,YN ,X ∼ N

((
Mξkdm

)
h

(
mξkdm

)
h
,
(
Mξkdm

)
h

)
.

As in the untempered case, we have that the posterior distribution Z parameters under

the tempered likelihood is not a commonly known distribution. Therefore, we will use the

Metropolis-Hastings algorithm. We have that

p((zi)h|Θ−(zi)h ,Y1, . . . ,YN ,X) ∝
K∏
k=1

(Zik)
(α3)h(πk)h−1
h

×
ni∏
l=1

exp

{
− βh
2(σ2)h

(
yi(til)−

K∑
k=1

(Zik)h
(
((νk)h + (ηk)hx

′
i)
′
B(til)

+
M∑

m=1

(χim)h ((ϕkm)h + (ξkm)hx
′
i)
′
B(til)

))2
 .

We will useQ((zi)
′
h|(zi)h) = Dir(az(zi)h) for some large az ∈ R+ as the proposal distribution.
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Thus the probability of accepting a proposed step is

A((zi)
′
h, (zi)h) = min

{
1,
P
(
(zi)

′
h|Θ−(zi)′h

,Y1, . . . ,YN ,X
)

P
(
(zi)h|Θ−(zi)h ,Y1, . . . ,YN ,X

)Q ((zi)h|(zi)′h)
Q ((zi)′h|(zi)h)

}
.

Letting (
Bνj

)
h
=

((
τνj

)
h
P+

βh
(σ2)h

N∑
i=1

ni∑
l=1

(Zij)
2
hB(til)B

′(til)

)−1

and

(
bνj

)
h
=

βh
(σ2)h

N∑
i=1

ni∑
l=1

(Zij)hB(til)

[
yi(til)−

(∑
k ̸=j

(Zik)h(ν
′
k)hB(til)

)

−

(
K∑
k=1

(Zik)

[
xi(ηk)

′
hB(til) +

M∑
m=1

(χim)h ((ϕkn)h + (ξkn)hx
′
i)
′
B(til)

])]
,

we have that

(νj)h |Θ−(νj)h
,Y1, . . . ,YN ,X ∼ N

((
Bνj

)
h

(
bνj

)
h
,
(
Bνj

)
h

)
.

Let
(
ηjd

)
h
denote the dth column of the matrix (ηj)h. Thus, letting

(
Bηjd

)
h
=

((
τηjd

)
h
P+

βh
(σ2)h

N∑
i=1

ni∑
l=1

(Zij)
2
hx

2
idB(til)B

′(til)

)−1

and

(
bηjd

)
h
=

βh
(σ2)h

N∑
i=1

ni∑
l=1

(Zij)hxidB(til)

[
yi(til)−

(∑
r ̸=d

(Zij)hxir(ηjr)
′
hB(til)

)

−

(∑
k ̸=j

(Zik)hxi(ηk)
′
hB(til)

)

−

(
K∑
k=1

(Zik)h

[
(νk)

′
hB(til) +

M∑
m=1

(χim)h ((ϕkn)h + (ξkn)hx
′
i)
′
B(til)

])]
,
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we have that

(
ηjd

)
h
|Θ−(ηjd)h

,Y1, . . . ,YN ,X ∼ N
((

Bηjd

)
h

(
bηjd

)
h
,
(
Bηjd

)
h

)
.

If we let

(βσ)h =
βh
2

N∑
i=1

ni∑
l=1

(
yi(til)−

K∑
k=1

(Zik)h

(
((νk)h + (ηk)hx

′
i)
′
B(til)

+
M∑
n=1

(χin)h ((ϕkn)h + (ξkn)hx
′
i)
′
B(til)

))2

,

then we have

(σ2)h|Θ−(σ2)h ,Y1, . . . ,YN ,X ∼ IG

(
α0 +

βh
∑N

i=1 ni

2
, β0 + (βσ)h

)
.

Lastly, we can update the χim parameters, for i = 1, . . . , N and m = 1, . . . ,M , using a Gibbs

update. If we let

(wim)h =
βh

(σ2)h

[
ni∑
l=1

(
K∑
k=1

(Zik)h ((ϕkm)h + (ξkm)hx
′
i)
′
B(til)

) (
yi(til)

−
K∑
k=1

(Zik)h

(
((νk)h + (ηk)hx

′
i)
′
B(til) +

∑
n̸=m

(χin)h ((ϕkn)h + (ξkn)hx
′
i)
′
B(til)

))]

and

(Wim)
−1
h = 1 +

βh
σ2

ni∑
l=1

(
K∑
k=1

(Zik)h ((ϕkm)h + (ξkm)hx
′
i)
′
B(til)

)2

,

then we have that

(χim)h|ζ−(χim)h
,Y1, . . . ,YN ,X ∼ N ((Wim)h (wim)h , (Wim)h) .
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