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Abstract 
 
 

Laterality of Movement Encoding in the Cortex and Basal Ganglia 
 

by 
 

Christina M. Merrick 
 

Doctor of Philosophy in Psychology 
 

University of California, Berkeley 
 

Professor Richard B. Ivry, Chair 
 

 
1. Movements of either the contralateral or ipsilateral arm produce changes in neural activity in 
sensorimotor cortex as well as subcortical structures. To better understand what information is 
encoded by the ipsilateral arm, and if this information could be used in more applied settings 
(i.e., deep brain stimulation), we conducted two experiments utilizing patients who have 
intracranial recordings for clinical purposes. In the first study we examined patients with 
intracranial grids implanted in either the left or the right hemisphere. Implementing a cross-
validated kinematic encoding model, we found stronger bilateral encoding in the left 
hemisphere, an effect that was present during preparation and was amplified during execution. 
Consistent with this asymmetry, we also observed better across-arm generalization in the left 
hemisphere. The more extensive bilateral encoding in the left hemisphere adds a new 
perspective to the pervasive neuropsychological finding that the left hemisphere plays a 
dominant role in praxis. In the second study we examined neural recordings from patients with a 
deep brain stimulation lead targeting the subthalamic nucleus as well as a cortical strip while 
they made repetitive hand movements. We fit the continuous EMG to the neural activity using a 
cross-validated encoding model and found that electrodes in the subthalamic region encode 
both hands equally well whereas in the sensorimotor cortex we found a strong contralateral 
bias. In addition, we found that electrodes in the subthalamic region generalize across arms 
better than the sensorimotor cortex and appear to be more sensitive to context (i.e., whether 
the other arm is engaged in the task or not). 2. Non-invasive brain stimulation (NIBS) can safely 
manipulate neural excitability in the human brain, providing neuroscientists with a powerful tool 
to advance our understanding of brain function and clinicians with novel interventions in the 
treatment of neurological and psychiatric disorders. We have developed a new NIBS system, 
kilohertz transcranial magnetic perturbation (kTMP), which can produce subthreshold 
modulations of neural activity with a cortical E-field of up to 7.6 V/m at 5 kHz. In two 
experiments we show that kTMP can modulate cortical excitability both with non-modulated 
waveforms at kilohertz frequencies and with amplitude modulated frequencies which are 
physiologically relevant for endogenous frequencies.  
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Chapter 1 

Left Hemisphere Dominance for Bilateral Kinematic Encoding in the 
Human Brain 

 

1.1 Abstract 

Neurophysiological studies in humans and non-human primates have revealed movement 
representations in both the contralateral and ipsilateral hemisphere. Inspired by clinical 
observations, we ask if this bilateral representation differs for the left and right hemispheres. 
Electrocorticography (ECoG) was recorded in human participants during an instructed-delay 
reaching task, with movements produced with either the contralateral or ipsilateral arm. Using a 
cross-validated kinematic encoding model, we found stronger bilateral encoding in the left 
hemisphere, an effect that was present during preparation and was amplified during execution. 
Consistent with this asymmetry, we also observed better across-arm generalization in the left 
hemisphere, indicating similar neural representations for right and left arm movements. Notably, 
these left hemisphere electrodes were largely located over premotor and parietal regions. The 
more extensive bilateral encoding in the left hemisphere adds a new perspective to the pervasive 
neuropsychological finding that the left hemisphere plays a dominant role in praxis. 

1.2 Introduction  

A primary tenet of neurology is the contralateral organization of movement. The vast majority of 
the fibers from the corticospinal tract cross to the opposite side of the body (Nyberg-Hansen & 
Rinvik, 1963) and functionally, hemiparesis resulting from cortical stroke is manifest on the 
contralateral side of the body (Bourbonnais, & Noven, 1989). Although direct control of arm 
movements is primarily mediated through contralateral projections, unimanual arm movements 
elicit bilateral activity in the primary motor cortex (M1, Babiloni et al., 1999; Ghacibeh et al., 2007), 
indicating that neural activity in the ipsilateral hemisphere contains information relevant to 
ongoing movement. Correspondingly, kinematic and movement parameters of the ipsilateral limb 
can be decoded from ipsilateral hemisphere intracortical recordings in monkeys (Ganguly et al., 
2009; Ames & Churchland, 2019) and from electrocorticography (ECoG) in humans (Bundy, 
Szrama, Pahwa & Leuthardt, 2018; Ganguly et al., 2009, Wisneski et al., 2008). Ipsilateral signals 
represent an intriguing source of neural activity, both for understanding how activity across the 
two hemispheres results in coordinated movement and because this information might be 
exploited for rehabilitative purposes.  

While it is established that information about unimanual movements is contained within the 
ipsilateral hemisphere, there remains considerable debate about what this signal represents. 
Previous studies have centered on the question of whether ipsilateral representations overlap or 
are independent of contralateral representations, leading to mixed results. Consistent with the 
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overlap hypothesis, neural activity for the contralateral and ipsilateral limb movements show 
several similarities, including shared target tuning preferences and the ability to cross predict 
kinematic features from a model trained on the opposite arm (Bundy, Szrama, Pahwa & Leuthardt, 
2018; Cisek, Crammond & Kalaska, 2003; Steinberg et al., 2002, Willett et al., 2020). Consistent 
with the independence hypothesis, intracortical recordings in monkeys have revealed that the 
lower dimensional representations of the two arms lie in orthogonal subspaces (Ames, 
Churchland, 2019; Heming, Cross, Takei, Cook & Scott, 2019).  These hypotheses are not mutually 
exclusive: For example, the degree of overlap or independence may depend on the gesture type 
(e.g., overlapping representations for grasping but not arm movement, Downey et a., 2020), or 
brain region (e.g., premotor cortex displays stronger preservation of tuning preferences across the 
two arms than primary motor cortex, Cisek, Crammond & Kalaska, 2003).  

One factor that has received little attention in this literature is the recording hemisphere. This is 
surprising given the marked asymmetries between the two hemispheres in terms of praxis 
(Corballis, Badzakova-Trajkov & Häberling, 2012; Rothi, Ochipa & Heilman, 1997). Tracing back to 
the early 20th century, marked hemispheric asymmetries have been defined by the behavioral 
deficits observed following unilateral brain injury (Schaefer, Haaland & Sainburg, 2007; Liepmann 
1908, cited in Renzi, & Lucchelli, 1988). Apraxia, an impairment in the production of coordinated, 
meaningful movement in the absence of muscle recruitment deficits, is much more common after 
left compared to right hemisphere insult (Haaland, Harrington & Knight, 2000; Renzi, & Lucchelli, 
1988). Moreover, left hemisphere stroke will frequently result in apraxic symptoms for gestures 
produced with either hand, as well as impairments in action comprehension (Renzi, & Lucchelli, 
1988). Hemispheric asymmetries are also evident in neuroimaging activation patterns in healthy 
participants, with the left hemisphere having stronger activation during ipsilateral movement than 
the right hemisphere, especially with increasing task difficulty (Chettouf et al., 2020, Verstynen et 
al. 2005; Verstynen and Ivry 2011; Schäfer et al, 2007). These patterns raise the possibility that the 
ipsilateral cortical representation differs between the left and right hemispheres.  

In the present study, we use intracranial recordings from the cortical surface (ECoG) to examine 
the degree of cortical overlap for ipsilateral and contralateral upper limb movement in the left and 
the right hemisphere. The data were collected from six patients, three with left hemisphere 
implants and three with right hemisphere implants, while they engaged in an instructed-delay 
reaching task. We focus on predicting the temporal dynamics of high frequency activity (HFA; 70-
200Hz), a surrogate for infragranular single-unit activity and supragranular dendritic potentials, 
(Leszczynski et al., 2020) which tracks local activation of the cortex (Muthukumaraswamy, 2010). 
Going beyond previous studies that use decoding models which combine multiple neural features 
from multiple electrodes to predict kinematics, we employed an encoding model which uses 
kinematic features to predict neural activity for each electrode, allowing us to retain the high 
spatial and temporal resolution of the ECoG signal. This approach allows us to create high-
resolution topographic maps depicting encoding strength on the surface of the cortex for 
movements produced with the contralateral and ipsilateral arm. This is preferable to projecting 
the weights obtained from decoding models since these models have difficulty disambiguating 
between informative and uninformative electrodes (Kriegeskorte & Douglas, 2019). Moreover, our 
approach provides a way to map kinematics to neural activity in a time-resolved manner (rather 
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than as single weights), allowing us to identify time ranges of representational overlap and 
divergence across the two arms for each electrode.  

1.3 Method 

Participants. Intracranial recordings were obtained from six patients (2 female; 5 right-handed) 
implanted with subdural grids as part of their treatment for intractable epilepsy. Data were 
recorded at three hospitals: University of California, Irvine (UCI) Medical Center (n = 2), 
University of California, San Francisco (UCSF) Medical Center (n = 2) and California Pacific 
Medical Center (CPMC), San Francisco (n = 2). Electrode placement was solely determined based 
on clinical considerations and all procedures were approved by the institutional review boards at 
the hospitals, as well as the University of California, Berkeley. All patients provided informed 
consent prior to participating in the study. 

Behavioral task. Patients performed an instructed-delay reaching task while sitting upright in 
their hospital bed. The patient rested their arms on a horizontal platform (71 cm x 20 cm) that 
was placed over a standard hospital overbed table. The platform contained two custom-made 
buttons, each connected to a microswitch. At the far end of the platform (13 cm from the 
buttons, approximately 55 cm from the patient’s eyes), a touchscreen monitor was attached, 
oriented vertically.  Visual targets could appear at one of six locations, four for each arm (Figure 
1.1a). The two central locations were used as targets for reaches with either arm; the two 
eccentric targets varied depending on the arm used. Stimulus presentation was controlled with 
Matlab 2016a. A photodiode sensor was placed on the monitor to precisely track target 
presentation times. The analog signals from the photodiode and the two microswitches were fed 
into the ECoG recording system and were digitized into the same data file as the ECoG data with 
identical sampling frequency.  

Testing of the contralateral and ipsilateral arms (relative to the ECoG electrodes) was conducted 
in separate experimental blocks that were counterbalanced. To start each trial, the patient 
placed their left and right index fingers on two custom buttons to depress the microswitches 
(this indicated they were in the correct position and ready to start the trial). If both 
microswitches remained depressed for 500 ms, a fixation stimulus was presented in the middle 
of the screen for 750 ms, followed by the target, a circle (1.25 cm diameter) which appeared in 
one of the four locations. Another hold period of 900 ms followed in which the participant was 
instructed to prepare the required movement while the target remained on the screen. If the 
microswitch was actuated during this hold period, an error message appeared on the screen and 
the program would advance to the next trial. If the start position was maintained, a compound 
imperative stimulus was presented at the end of the hold period. This consisted of an auditory 
tone and an increase in the size of the target (2.5 cm diameter). The participant was instructed 
that this was the signal to initiate and complete a continuous out-and-back movement, 
attempting to touch the screen at the target location before returning back to the platform. The 
target disappeared when the touchscreen was contacted.  The imperative was withheld on 5% of 
the trials (‘catch’ trials) to ensure that the participant only responded after the onset of the 
imperative. 
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Once back at the home position, the screen displayed the word ‘HIT’ or ‘MISS’ for 750 ms to 
indicate if the touch had occurred within the target zone. The target zone included the 2.5 
diameter circle as well as a 1cm buffer around the target. After the feedback interval, the screen 
was blank for 250 ms before the reappearance of the fixation stimulus, signaling the start of the 
next trial. The patients were informed to release either of the buttons at any time they wished to 
take a break. 

Each block consisted of 40 trials (10/target), all performed with a single limb. Blocks alternated 
between contra- and ipsilateral arms (relative to the ECoG electrodes), with the order 
counterbalanced across patients. Each block took approximately 5-6 minutes to complete.  All 
patients completed at least two blocks with each per arm (Table 1).  

Movement analysis and trajectory reconstruction. We used two methods to analyze the 
movements. For the first method, we recorded key events defined by the release of the 
microswitch at the start position, time and location of contact with the touchscreen, and return 
time to the home position, defined by the time at which they depressed the home position 
microswitch. For the second method, we used the Leap Motion 3-d movement analysis system 
(Weichert, et al., 2013) to record continuous hand position and the full movement trajectory 
(sampling rate = 60 Hz). Although the Leap system is a lightweight video-based tracking device 
that is highly mobile, the unpredictable environment of the ICU led to erratic recordings from 
the Leap system. For example, patients frequently had intravenous lines in one or both hands 
which obstructed the visibility of the hand and interfered with the ability of the Leap system to 
track the hand using their built-in hand model. This resulted in lost samples and therefore 
satisfactory kinematic data was obtained from only a subset of conditions collected from 
patients using the Leap system.  

Given the limitations with the Leap data, we opted to use a simple algorithm to reconstruct the 
time-resolved hand trajectory in each trial, estimating it from the event-based data obtained 
with the first method. We used a beta distribution to estimate the velocity profile of the forward 
and return reach based on reach times and the travel distance (sampling rate = 100 Hz). We 
opted to use a beta distribution because this best matched the velocity profiles of the data 
obtained with the Leap system. 

For conditions that had clean kinematic traces (no lost samples) from the Leap system, we 
compared the estimated kinematic profiles with those obtained with the Leap system. There was 
a high correlation between the two data sets (r = .98 for position in the Z dimension; r = .93 for 
velocity in the Z dimension). We note that our method of estimating the trajectories results in a 
smoothed version of the movement, one lacking any secondary or corrective movements that 
are sometimes observed when reaching to a visual target (Suway & Schwartz, 2019). We believe 
this is still a reasonable estimation given the high correlation with the continuous Leap data, and 
the fact that participants had ample time to prepare the movements and were instructed and 
observed to make ballistic movements by the experimenter who was present for all recording 
sessions (CMM).  
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Electrode Localization. Grid and strip electrode spacing was 1 cm in four patients and 4 mm in 
the two other patients. The electrode locations were visualized on a three-dimensional 
reconstruction of the patient’s cortical surface using a custom script that takes the post-
operative computer tomography (CT) scan and co-registers it to the pre-operative structural 
magnetic resonance (MR) scan (Stolk et al., 2018). 

Neural data acquisition and preprocessing. Intracranial EEG data and peripheral data 
(photodiode and microswitch traces) were acquired using a Nihon Kohden recording system at 
UCI (128 channel, 5000 Hz digitization) and CPMC (128 channel, 1000 Hz digitization rate), and 
two Tucker Davis Technologies recording systems at UCSF (128 channel, 3052 Hz digitization 
rate).  

Offline preprocessing included the following steps. First, if the patient’s data was not sampled at 
1000 Hz (UCI and UCSF recording sites), the signal from each electrode was low-pass filtered at 
500 Hz using a Butterworth filter as an anti-aliasing measure before down-sampling to 1000 Hz. 
Electrodes were referenced using a common average reference. Each electrode was notch-
filtered at 60, 120 and 180 Hz to remove line noise. The signals were then visually inspected and 
electrodes with sustained excessive noise were excluded from further analyses. The signals were 
also inspected by a neurologist (RTK) for epileptic activity and other artifacts. Electrodes that had 
pathological seizure activity were also excluded from the main analyses. Out of 752 electrodes, 
82 were removed due to excessive noise and 5 were removed due to epileptic activity, resulting 
in a final data set of 665 electrodes. Catch trials and unsuccessful reaches were not included in 
the analyses.  

From the cleaned data set, we extracted the HFA instantaneous amplitude using a Hilbert 
transform. To account for the 1/f power drop in the spectrum, we divided the broadband signal 
into five narrower bands that logarithmically increased from 70 to 200 Hz (i.e., 70-86, 86-107, 
107-131, 131-162, 162-200 Hz), and applied a band-pass filter within each of these ranges. We 
then took the absolute value of the Hilbert transform within each band-pass, performed a z-
score transformation, and averaged the five values. Z-scoring was performed after concatenating 
all the blocks for each patient, ensuring that we did not obscure possible amplitude differences 
across the two arms. As a final step, the data were down-sampled to 100 Hz to reduce 
computational load (e.g., number of parameters in the encoding model, see below).  HFA 
amplitude fluctuations (envelope; are evident at lower frequencies (Canolty et al., 2006; Pei et 
al., 2011). 

Feature selection. Four estimated kinematic features were used to predict HFA (Figure 1B left). 
The first two features were position and speed in the Z dimension. This dimension captures 
variability related to movement that is relatively independent of target location (i.e., along the 
axis between the patient and touchscreen). The second pair of features were spherical angles 
that define the specific target locations (Figure 1A right). Features were selected to reduce 
collinearity and redundancy in the encoding model. Because we include time lags for each 
kinematic feature, derivatives can emerge from the linear model (e.g., velocity and acceleration 
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can be created from position); thus, velocity and acceleration were not included as additional 
features. Speed is a non-linear transformation of position and is added as a separate feature.  

Kinematic encoding model. The estimated kinematic features were used to predict the HFA for 
each electrode (Fig 1.1F). We created a 4 x 400 feature matrix by generating a time series for 
each feature by time-lagging the values of the selected feature relative to the neural data, with 
lags extending from 2 s before movement onset to 2 s after movement onset (sampling rate at 
100 Hz). This wide range of lags serves two purposes. First, it provides a way to compensate for 
the anticipated asynchrony between neural data and movement kinematics. Second, it allowed 
us to evaluate HFA activity during the instructed delay (beginning ~1.5 s before movement 
onset) period as well as during movement. HFA at each time point [HFA(t)] was modeled as a 
weighted linear combination of the kinematic features at different time-lags, resulting in a set of 
beta weights, b1 …, b400 per kinematic feature. To make the beta weights scale-free, the 
kinematic features and neural HFA were z-scored before being fit by the model. 

Model fitting. Regularized (ridge) regression (Hoerl and Kennard, 1970) was used to estimate the 
weights that map each kinematic feature (X) to the HFA signal (y) for each electrode, with   being 
the regularization hyperparameter: 

β" = $X&X + λI*+,X&Y 

For within-arm model fitting, the total dataset consisted of all clean, successful trials performed 
with either the ipsilateral or contralateral arm (each arm was fit separately). Nested five-fold 
cross-validation was used to select the regularization hyperparameter on inner test sets 
(validation sets) and assess prediction performance on separate, outer test sets. At the outer 
level, the data was partitioned into five mutually exclusive estimation and test sets. For each test 
set, the remaining data served as the estimation set. For each outer fold, we further partitioned 
our estimation set into five mutually exclusive inner folds to train the model (80% of estimation 
set) and predict neural responses across a range of regularization values on the validation set 
(20% of estimation set). For each inner fold, the regularization parameter value was selected 
that produced the best prediction as measured by the linear correlation of the predicted and 
actual HFA. The average of the selected regularization parameters across the five inner folds was 
computed and used to calculate the prediction of the HFA on the outer test set. This procedure 
was done at the outer level five times. Our primary measure is held-out prediction performance 
(R2), which we quantified as the squared linear correlation between the model prediction and 
the actual HFA time series, averaged across the five mutually exclusive test sets.  

To be considered as predictive, we established a criterion that an electrode must account for at 
least 5% of the variability in the HFA signal (R2 > .05) for either ipsilateral or contralateral reaches 
(Downey et a., 2020). Electrodes not meeting this criterion were not included in subsequent 
analyses. 

For across-arm model fitting, the same procedure was used except the test set was partitioned 
from the total dataset of the other arm. We partitioned the data in this manner (80% estimation, 
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20% test) to make the fitting procedure for the across-arm model comparable to that employed 
in the within-arm model.  

Tuning modulation and similarity across arms. Modulation depth of target tuning was calculated 
as the standard deviation of the mean HFA predictions for each of the four target locations: 

MD = ∑
12,

3 (x1 − x1)8

n
 

To assess similarity in tuning across the two arms, we computed, for each electrode, the SSE 
(sum of squared errors) for average HFA predictions to the same target between the 
contralateral and ipsilateral arms.  

SSE< = ∑
12,

3
({contra1 − ipsi1)}8 

This metric was only calculated for the two central targets, the targets common to both arms 
(the two eccentric target locations varied depending on the arm used). These values were scaled 
from 0 to 1 based on the minimum and maximum values of SSE across all electrodes. SSE 
represents a metric of dissimilarity; To calculate a similarity index (SI), we converted this to a 
measure of similarity by subtracting the scaled SSE values from 1:  

𝑆𝐼 = 1 −
SSE< − min(SSE<)
max(SSE<) − (SSE<)

 

Thus, higher SI represents more similar average predictions.   

Separating instruction and movement phases. The encoding model was run to predict the full 
HFA time course. To compare model prediction performance during different phases of the task, 
the data were epoched into instruction and movement phases, using event markers recorded in 
the analog channel (i.e., cue onset and movement onset). Epochs of the same task phase were 
concatenated together, and prediction performance was operationalized as the square of the 
Pearson correlation between the predicted and actual HFA for each task phase.  

Permutation testing. A permutation-based analysis-of-variance (pbANOVA) was used to assess 
differences in distributions for the different experimental conditions. pbANOVA is preferable for 
experimental designs that involve orthogonal manipulation of fixed factors in which the 
measured variable does not conform to the distributional assumptions necessary for traditional 
parametric ANOVA (Anderson & Braak, 2003). In this analysis, null distributions for the main 
effect of each factor and interaction are created using 10000 surrogate datasets, in each of 
which the data of a random subset of participants is permuted. In each iteration, the surrogate 
data is analyzed using a standard ANOVA and the F value of the relevant effect is registered. The 
effect in the original data is considered significant only if the F value of a standard ANOVA of this 
effect is larger than 95% of the values in the null distribution. For main effects, the permutations 
are conducted such that the raw values of the factor of interest are permuted within the levels 
of the other factor (‘restricted’ permuting). For the interaction effect, the permutations are not 



 
8 

conducted on the raw data but on a dataset that is generated by subtracting the contribution of 
the main effects from the raw data (see, Anderson & Braak, 2003). The resulting dataset 
(‘reduced’ dataset) includes only the interaction terms and their random errors. On this reduced 
dataset the permutations are conducted without being limited to levels of specific factors 
(‘unrestricted’ permutations). 

Calculating distance from dorsal central sulcus. For each patient, 30 discrete (x, y) coordinates 
were manually demarcated along the central sulcus on individual MRI scans. The 30 points were 
then interpolated to create a line traversing the central sulcus for each individual. The dorsal 
aspect of the central sulcus was defined as all points dorsal to the midpoint of the central sulcus. 
We then calculated the absolute distance between each electrode and the closest point on the 
dorsal aspect of the central sulcus (our interpolated line).  

1.4 Results 

Behavior. Patients made continuous reaches to and from the touchscreen, producing roughly, 
bell-shaped velocity profiles for both the outbound and the inbound segments of our estimated 
kinematics (Fig 1.1C,1.1E). Table 1 summarizes the total number of successful trials, along with 
the reaction time and movement time data.  A trial was considered unsuccessful if the reach was 
initiated before the go cue or if contact with the touchscreen was outside the boundary of the 
target. The percentage of unsuccessful trials was low, ranging between 0% to 12.5% across 
individuals. Outbound reaches (platform to touchscreen) were, on average, faster than inbound 
reaches (touchscreen to platform) for the majority of patients.  Note that the reaction time data 
are averaged across left and right arm reaches since there was no consistent difference on this 
measure.   

At a more fine-grained level of spatial accuracy, we calculated the distance from the center of 
each target to the touch location for each trial. On average, the mean distance from the center 
of the 2.5 cm circle was 0.80 cm (SD = 0.10 cm) for right-handed reaches and 0.90 cm (SD = 0.17 
cm) for left-handed reaches (Fig 1.1D). These values did not differ from one another (t = 1.538, p 
= .222).  

Stronger bilateral encoding in the left hemisphere. We examined the extent to which movement 
kinematics were encoded for contralateral and ipsilateral reaches in individual electrodes. To do 
this we fit a kinematic encoding model that maps continuous kinematic features to the HFA 
signal (Fig 1.1F) for the 665 electrodes meeting our inclusion criteria. This procedure was done 
separately for contralateral and ipsilateral reaches. We quantified the cross-validated model fit 
by generating HFA predictions using the kinematic features from held-out trials of the same 
condition and calculating prediction performance as the square of the linear correlation (R2) 
between the predicted and actual HFA signal (Fig 1.2B). 
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Table 1.1. Summary of performance measures for each participant.  

Figure 1.1. Task and model design. A) Task design. Patients performed an instructed-delay 
reaching task, moving to targets that appeared on a touchscreen monitor with either the left or 
right arm. B) Task Schematic. Target position with respect to the start position of the reaching 
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arm can be defined on the basis of three Cartesian coordinates (X, Y, Z) and two spherical angles 
(Theta and Phi). C) Reaching profile, left. Average estimated position and velocity traces for a 
representative series of trials performed with the left arm. D) Reach accuracy. Accuracy was 
quantified as the absolute distance from the center of each target (target diameter = 2.5cm) to 
the touch location for all four targets with the left (blue) and right (grey) arm. E) Reaching 
profile, right. Same as C, but with the right arm. F) Kinematic encoding model. Time lagged 
estimated kinematic features were used to the predict high frequency activity (HFA) for each 
electrode using ridge regression. Four kinematic features were included in the model: Position in 
the Z dimension, speed in the Z dimension and the two spherical angles Phi and Theta. Kinematic 
features were trained on a subset of the HFA data and predictions of HFA activity were evaluated 
with held-out test sets.  

Figure 1.2A displays R2 values for each electrode for the contralateral and ipsilateral condition, 
presented on the individual patient MRIs. Electrodes with high prediction performance were 
primarily located in arm areas of sensorimotor cortex. In line with previous research (Downey et 
a., 2020), a sizeable percentage of the electrodes were able to predict the HFA at or above our 
criterion of R2 > .05 (examples shown in Figure 2B). This degree of prediction was observed not 
only when the data were restricted to contralateral movement (31% of electrodes), but also 
when the data were from ipsilateral movement (25%). A number of electrodes (24%) were 
predictive in both the contralateral and ipsilateral models.  Electrodes that did not meet this 
criterion for either arm are represented as small dots in figure 1.2A and were excluded from 
further analysis, leaving a total of 216 predictive electrodes (32%, 141 = left hemisphere, 75 = 
right hemisphere). 

We next asked whether prediction was stronger for contralateral movement, and whether this 
varied between the two hemispheres. Figure 1.2C compares the predictive performance for each 
electrode for the contralateral and ipsilateral conditions. Values close to the unity line yield 
similar predictions for the conditions; values off the unity line indicate that encoding is stronger 
for one arm compared to the other. To compare prediction performance at the group level, 
distributions were created by taking the difference between the R2 values for the contralateral 
and ipsilateral conditions for each electrode (Figure 1.2C, upper right corner of each scatterplot). 
As can be seen, there is a pronounced contralateral bias for both hemispheres (one sample t-test 
against zero: left = 0.024, p left < .001, right = 0.115, pright < .001). Importantly, the contralateral bias 
was attenuated in the left hemisphere compared to the right hemisphere (permutation test, p < 
.001), indicating stronger bilateral encoding in the left hemisphere. In addition to the 
hemisphere effect, we also found that the contralateral bias becomes weaker the further the 
electrodes are from putative primary motor cortex in both hemispheres (rleft = -0.48, pleft < .001, 
rright = -0.45, pright < .001).    
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Figure 1.2. Stronger bilateral encoding in left hemisphere. Held-out prediction performance (R2) 
was computed for each electrode during contralateral reaches (C) and ipsilateral reaches (I). R2 

was calculated as the squared linear correlation between the actual HFA and the predictions 
based on the model. A) Prediction performance maps for individual patients. Performance of 
each electrode, shown at the idiosyncratic electrode location for each participant (location based 
on clinical criteria). Electrodes that did not account for at least .05% of the variance (R2 <.05) in 
either the contralateral or ipsilateral condition are shown as smaller dots. B) Model predictions. 
Representative time series of the actual HFA and model-based predictions for three electrodes 
during contralateral and ipsilateral reaches. C) Summary across patients. Scatter plot displaying 
R2 values separately for patients with electrodes in either the left (upper) or right (lower) 
hemisphere. R2 for contralateral predictions are plotted against R2 for ipsilateral predictions. 
Electrodes close to the unity line encode both arms equally whereas electrodes off the unity line 
indicate stronger encoding of one arm. Points above the unity line indicate stronger encoding of 
the contralateral arm.  These differences are summarized in the frequency histograms in the 
upper right of each panel. The histogram shows less of a shift in the left hemisphere, a signature 
consistent with stronger bilateral encoding.  *p<0.05, **p<0.01, ***p<0.001, permutation test. 
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Opposing patterns of kinematic encoding for the left and right hemisphere during planning and 
execution. As neural activity unfolds from preparation to movement, the underlying 
computations may change substantially (Elsayed et al., 2016). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3. Opposing encoding patterns for left and right hemisphere across task phase. For all 
predictive electrodes the time series was segmented into instruction and movement epochs. R2 

was then calculated separately for each epoch. A) Example model predictions. Time series of a 
representative electrode with boxes surrounding the instruction (teal) and movement epochs 
(grey). B) Prediction performance during movement and instruction. Comparison of R2 values for 
contralateral and ipsilateral predictions during the instruction epoch (top) and the movement 
epoch (bottom) for patients with electrodes in the left hemisphere (left) or right (right) 
hemisphere. Bilateral encoding was stronger in the left hemisphere, an effect that was especially 
pronounced during the movement phase.   
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To examine if hemispheric asymmetries in encoding depend on task state, we repeated the 
analysis described in the previous section, but now separated the data to test the held-out 
predictions during the instruction and movement phases (Fig 1.3A). We used a mixed design 
permutation test to examine the effect of hemisphere and task phase on our measure of 
contralateral bias (Fig 1.3B).  

As in the previous analysis, the effect of hemisphere was significant, with stronger bilateral 
encoding (i.e., smaller difference score) in the left hemisphere compared to the right 
hemisphere (p < .001). The effect of task phase was not significant, but there was a significant 
interaction between hemisphere and task phase (p < .005): There was a larger difference 
between the two hemispheres during the movement phase compared to the instruction phase. 
Analyzing simple effects within each hemisphere, we found that encoding in the left hemisphere 
was more bilateral during movement compared to instruction (ΔR8 left_move = 0.006, 
∆R8 left_instruction = 0.042, p < .001). In contrast, the opposite pattern was observed in the right 
hemisphere, with encoding being more bilateral during the instruction phase (∆R8right_move = 
0.127, ∆R8right_instruction = 0.103, p < .001). The contralateral bias was most attenuated in the left 
hemisphere during the movement condition, with a mean difference score that was not 
statistically different from zero (pleft_move = .482).  For the left hemisphere instruction phase and 
both phases for the right hemisphere, the contralateral bias was significant (pleft_instruction < .001, 
pright_move < .001, pright_instruction < .001. 

These results suggest that the left and right hemisphere may have different roles in bilateral 
encoding with regard to task phase. In particular, the contralateral bias disappears in the left 
hemisphere during movement indicating that prediction. 

Across arm generalization: More overlap between arms in the left hemisphere. The preceding 
analyses focused on an encoding analysis for within-arm prediction. We next evaluate the 
overlap between the neural representations for contralateral and ipsilateral movement. To this 
end, we examined across-arm prediction performance by training the kinematic encoding model 
with the data from movements produced with one arm and testing prediction performance 
using the data from movements produced with the other arm. 

Figure 1.4A shows the traces for two representative electrodes, one that shows good 
generalization across the two arms and the other that shows poor generalization.  For the 
electrode that shows good generalization (E1), prediction performance for held-out contralateral 
reaches is comparable when the model is trained on data from either the contralateral or 
ipsilateral arm. This suggests that there is overlap between the neural representations for 
reaches performed with either upper limb for this electrode. In contrast, the electrode showing 
poor generalization (E2) showed good prediction for contralateral reaches when trained with 
contralateral data, but poor prediction when trained with ipsilateral data. Here the neural 
representations for the arms do not overlap. Note that E2 showed relatively strong within-arm 
ipsilateral encoding (R2 = .25); thus, the inability of this electrode to generalize across arms is not 
a result of poor encoding of the ipsilateral arm.  Rather, E2 encodes movement produced by 
either arm, but the manner in which they are encoded differs. 
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Figure 1.4. Stronger across-arm generalization in the left hemisphere. Across-arm predictions 
were created by training the model on ipsilateral reaches and using the trained weights to 
predict HFA during contralateral reaches.  (Within-arm predictions generated the same as in Figs 
1.2 and 1.3.) Electrodes close to the unity line have overlapping neural representations across 
the two arms whereas electrodes off the unity line indicate that the two arms are being 
encoding differentially. A) Model Predictions. Predicted and actual HFA for two electrodes 
selected from the distribution of left-hemisphere electrodes during movement, one that 
generalizes well across arms (E1) and one that fails to generalize (E2). Bottom row shows within-
arm performance for ipsilateral trials, demonstrating that the failure to generalize across arms 
does not necessarily indicate poor ipsilateral performance. B) Across-arm generalization across 
patients. R2 for within-arm predictions plotted against R2 for across-arm predictions, with the 
analysis performed separately for the instruction and movement phases. Left hemisphere 
electrodes showed better generalization than right hemisphere electrodes, an effect that was 
magnified in the movement phase.   

Figure 1.4B summarizes the comparison of within-arm prediction (y axis) against across-arm 
prediction (x axis), with the data separated for the instruction and movement phases. In this 
depiction, electrodes close to the unity line have overlapping neural representations during 
contra- and ipsilateral movement, whereas electrodes off the unity line encode the two arms 
differentially. We again used a mixed design permutation test, now applied to the difference 
between within-arm R2 and across-arm R2 for each electrode (Figure 1.4B, upper right corner of 
each scatterplot). Overall, the left hemisphere showed stronger between-arm generalization 
than the right hemisphere (main effect of hemisphere: ∆R8 left = 0.041, ∆R8right = 0.108; p < .001). 
This indicates that the left hemisphere not only has stronger bilateral encoding (Figure 3B) but 
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also has more similar neural representations across the two upper limbs. We also found a main 
effect of task phase, with better across-arm generalization occurring during instruction 
compared to movement (main effect of task phase: ∆R8 instruction = 0.050, ∆R8movement = 0.079; p < 
.001).  

In addition to these main effects, there was also a significant interaction between task phase and 
hemisphere (p < .05). Analyzing simple effects within each task phase, the left hemisphere had 
better across-arm generalization for both the instruction and movement phase (simple effect 
analysis: pinstruct < .001, pmove < .001). In addition, better across-arm generalization was found 
during the instruction phase in both the left and the right hemispheres (simple effect analysis: 
pleft < .001, pright < .001). The significant interaction indicates that while the neural 
representations across arms became more distinct in both hemispheres with the transition from 
instruction to movement, this difference was more pronounced in the right hemisphere. In sum, 
electrodes in the left hemisphere generalize across-arms better during instruction and 
movement compared to the right hemisphere and electrodes in the left hemisphere also change 
less during the transition from instruction to movement compared to the right hemisphere.  

As can be seen in Figure 1.5B, electrodes that generalize well were predominantly found in the 
left hemisphere (white circles). In contrast, electrodes showing poor generalization are observed 
in both hemispheres (magenta circles). Moreover, in both hemispheres, electrodes showing poor 
generalization were clustered near the dorsal portion of the central sulcus, a region 
corresponding to the arm area of motor cortex.  Electrodes showing strong generalization 
(mostly limited to the left hemisphere) tended to be in dorsal and ventral premotor cortices, 
along with a few in dorsal parietal lobe. This pattern was also observed when we analyzed all 
electrodes, rather than restrict the analysis to those showing extreme values. Here we used 
continuous measures, correlating the amount of across-arm generalization with the distance 
(absolute value) from the dorsal aspect of the central sulcus. The correlation was significant in 
the left hemisphere (rleft = 0.463, pleft < .001) but did not reach significance in the right 
hemisphere, although the trend was in the same direction (rright = 0.224, pright = .068). 

To examine the dynamics of representational overlap and divergence, we averaged the time-
resolved HFA amplitude across electrodes, restricted to those included in the categorical 
analysis.  Figure 1.5C displays the average time series for contralateral (solid line) and ipsilateral 
(dashed line) predictions for electrodes that generalize well (white) or poorly (magenta). The 
temporal profile of HFA activity is similar for electrodes that generalize well, showing a single 
peak in the movement phase. A cluster-based permutation test identified two periods where the 
HFA amplitude differed for contralateral and ipsilateral reaches, one during instruction and one 
well into the movement period. In contrast, the temporal profiles are radically different for those 
that generalize poorly, primarily because of the weak modulation during ipsilateral reaches.  
Interestingly, these electrodes also showed a double-peaked temporal profile during 
contralateral reaches. Similar multi-phasic activity has been observed in single unit activity in M1 
during reaching (Churchland et al., 2012). 

It is possible that similarity in temporal structure is obscured in the preceding analysis by the 
differences in HFA amplitude for the electrodes that showed poor generalization.  To control for 
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this, we standardized the time series data by dividing each sample by the overall standard 
deviation (Insets: Fig 1.5C). Using the standardized traces, we calculated the linear correlation 
coefficient between the contralateral and ipsilateral traces, separately for instruction and 
movement. As expected, electrodes that generalized well across arms showed strong across-arm 
correlations for both task phases (Inset Fig 1.5C, left). In contrast, for electrodes that generalize 
poorly across arms, the correlation between arms was negative during instruction and then rose 
to a moderate positive correlation during movement (Inset Fig 1.5C, right). Thus, the poor 
generalization of these electrodes is generally due to the temporal divergence of the two arms 
during instruction, where the ipsilateral trace becomes inhibited compared to the contralateral 
trace. Interestingly, although the ipsilateral trace remains inhibited during movement, the 
temporal structure between the two arms re-emerges.   

Figure 1.5. Spatial and temporal relationship of across-arm generalization. A) Generalization 
index. Electrodes were classified as showing good across-arm generalization (white, 
generalization index > .80) or poor across arm generalization (magenta; generalization index < 
.50). B) Spatial distribution of across-arm generalization. Electrodes that generalize well across 
arms (white) were primarily located in dorsal and ventral premotor regions of the left 
hemisphere. Electrodes that generalize poorly (magenta) were clustered around the putative 
arm area of the central sulcus in both the left and right hemispheres. C) Amplitude differences 
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across arms. Average contralateral (solid line) and ipsilateral (dashed line) predictions for 
electrodes that generalize well across arms (left) or generalize poorly (right). Significant clusters 
are represented with a gray line. Inset: Same data but standardized to highlight shape of the 
timeseries independent of absolute amplitude. D) Modulation depth. Depth of tuning was 
calculated during instruction or movement with either the ipsilateral or contralateral hand. 
Greater modulation was found during contralateral reaches and during movement. E) Tuning 
similarity. Across arms tuning similarity was calculated for electrodes that generalize well (white) 
or poorly (magenta). Electrodes that generalize well across arms had significantly more tuning 
similarity than electrodes that did not generalize.  *p<0.05, **p<0.01, ***p<0.001, cluster 
permutation test, Pearson’s correlation.  

Temporal and spatial topography of across-arm generalization. To examine how generalization 
varied across the cortex, we categorized each electrode as showing either good across-arm 
generalization (decrease of up to 20% relative to within-arm performance) or poor across-arm 
generalization (decrease of more than 50%; Fig 5A). We focused on the extremes of the 
generalization distribution based on the assumption that these electrodes were more likely to 
share similar underlying neural profiles. This also allowed us to have similar numbers of 
electrodes in each group.  

Target modulation and tuning similarity across arms. To examine the extent of target modulation 
for the contralateral and ipsilateral arm, we calculated the modulation depth of each electrode 
during the instruction and movement phases. The modulation index reflects the amount of 
variability in the signal captured by target tuning (or target specificity): A modulation index of .1 
means 10% of the variance is captured by the difference between the response to the four 
target locations. The modulation values overall were relatively low (Fig 5D).  However, it should 
be noted that the reaches were all within the fronto-parallel plane which comprise a 
considerably smaller range of movement compared to studies that use a center-out reaching 
task. For both electrode types (showing good or poor across arm generalization), there was a 
main effect of arm, with ipsilateral modulation lower than contralateral modulation (pGeneralize_well 
< .001; pGeneralize_poorly < .005). Both subgroups of electrodes also displayed a main effect of task 
phase, with the depth of modulation greater during the movement phase compared to the 
instruction phase (pGeneralize_well < .001; pGeneralize_poorly < .005). No significant interactions were 
found for either group.   

We also examined the representational overlap between the two arms in terms of their tuning 
profiles. We computed a tuning similarity index, defined as the sum of squared errors for 
average HFA predictions to the same target between the contralateral and ipsilateral arms. A 
similarity index of 1 would correspond to identical tuning preferences for the arms whereas a 
similarity index of 0 would indicate completely disparate tuning preferences. The similarity data 
were analyzed with a mixed design permutation test, including the factors task phase and 
electrode type (good vs. poor generalizers). Electrodes that generalize well across the two arms 
(predominately found in the left hemisphere) showed more overlap of tuning preferences 
compared to electrodes that generalized poorly (main effect of generalizability: p < .001). While 
there was no effect of phase (p = .758), the interaction was significant (p < .005), with electrode 
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types showing more comparable tuning similarity during instruction and tuning similarity 
diverging during movement. Simple effects analysis revealed that for electrodes that generalize 
poorly, tuning similarity was higher during the instruction phase compared to the movement 
phase (p < .001). In contrast, for electrodes that generalize well, tuning similarity was higher 
during movement compared to instruction (p < .001). These analyses demonstrate that a 
number of electrodes in the left hemisphere strongly encode kinematic variables for both arms, 
including similar tuning preferences across the two arms, which was especially pronounced 
during the movement phase. 

1.5 Discussion 

Although the most prominent feature of cortical motor pathways is their contralateral 
organization, unimanual movements are well represented in the ipsilateral hemisphere.  Single-
unit activity and local field potentials obtained from motor cortex in non-human primates 
(Ganguly et al., 2009; Ames & Churchland, 2019), as well as ECoG activity in humans (Bundy, 
Szrama, Pahwa & Leuthardt, 2018; Ganguly et al., 2009, Wisneski et al., 2008) can be decoded to 
predict complex kinematic variables and EMG activity during arm movements of the ipsilateral 
arm. Here we extend this work by building a kinematic encoding model to examine how these 
features are represented in each hemisphere. We opted to build an electrode-wise encoding 
model which opened up new avenues for analysis. Electrode-wise encoding models allow 
prediction of the full time series for each electrode thus retaining the high spatial and temporal 
resolution of the intracranial signal. From these metrics we could compare kinematic encoding 
and across-arm generalization between the two hemispheres as well as the spatial distribution of 
the information-carrying electrodes within each hemisphere. We observed a marked 
hemispheric asymmetry: While contralateral movements were encoded similarly across the two 
hemispheres, ipsilateral encoding was much stronger in the left hemisphere, an effect that was 
especially pronounced during movement execution. In addition, there was greater overlap 
between the representation of contra- and ipsilateral movement in the left hemisphere 
compared to the right hemisphere.  

Hemispheric asymmetry in movement encoding. We observed a striking asymmetry between the 
two hemispheres for ipsilateral movement encoding, with stronger bilateral encoding of the 
upper limbs in the left hemisphere compared to the right hemisphere. The effect size is quite 
substantial (d = 1.34), which exceeds Cohen’s (1988) convention for a large effect (d = .80). We 
studied three patients per hemisphere, with each patient having at least 17 predictive 
electrodes, totaling 141 electrodes in the left hemisphere and 75 in the right hemisphere.  

Given the size of the hemispheric asymmetry effect, it is surprising that this asymmetry has not 
be described in previous reports. This may in part reflect the smaller sample size in these studies. 
For example, in Bundy et al. (2018), three of the four patients had left hemisphere grids, leaving 
a hemisphere analysis dependent on the data from a single right hemisphere patient.  Studies 
with non-human primates tend to ignore hemispheric differences, perhaps because these 
animals do not show consistent patterns of hand-dominance across individuals. One exception 
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here is a study by Cisek, Crammond and Kalaska (2003) who reported no hemispheric differences 
in neural recordings obtained from M1 and PMd during ipsilateral and contralateral arm reaches. 

In addition to examining hemispheric differences in the encoding of unimanual movement, we 
also asked if kinematic features were encoded differently for contra- and ipsilateral movements 
by testing across-arm generalization. We categorized electrodes as showing either good across-
arm generalization (decrease of up to 20% relative to within-arm performance) or poor across-
arm generalization (decrease of more than 50%). This categorization scheme revealed a striking 
anatomical division, with electrodes showing good across-arm generalization clustering in the 
left premotor and parietal cortices and electrodes that generalized poorly clustering in left and 
right M1. Using the same categorization, we further examined the spatial tuning of the 
electrodes. Target tuning in the HFA band was found for both contralateral and ipsilateral 
movement, although ipsilateral tuning was significantly shallower. Interestingly, electrodes that 
generalized well across-arms had similar target tuning for each arm. This suggests that for these 
electrodes, ipsilateral signals are not just encoding generic movement, but encoding movement 
direction in a similar manner to contralateral signals. A similar overlap in tuning has been 
observed in single unit recordings from PMd (Cisek, Crammond & Kalaska, 2003) and can be 
inferred from the across-arm generalization decoding results reported by Bundy et al., (2018). In 
contrast, electrodes that failed to generalize, located primarily in M1 in either left or right 
hemisphere, exhibited disparate tuning for contra- and ipsilateral reaches. 

One limitation of our study is that, because two of the left hemisphere patients had high density 
grid implants, there were fewer right hemisphere electrodes compared to the left hemisphere 
electrodes.  However, all three right hemisphere patients had coverage over dorsal and ventral 
premotor cortices, making it unlikely that the poor across-arm generalization for right 
hemisphere electrodes is due to insufficient coverage. 

Functional implications of hemispheric asymmetries in movement encoding.  By using a delayed 
response task, we were able to segregate activity into an instruction phase during which the 
patient was presented with the target location for the forthcoming movement and a movement 
phase, defined at the onset of the reach. With this design, we found that the encoding model 
could predict neural activity during the instruction phase based on the kinematics of the 
forthcoming reach, evidence that the patients were indeed planning the upcoming movement.  

This task phase analysis also revealed robust asymmetries between the two hemispheres. There 
was a main effect of hemisphere, with the left hemisphere displaying stronger bilateral encoding 
overall compared to the right hemisphere. However, there was also an interaction: In the left 
hemisphere bilateral encoding was stronger during the movement phase whereas in the right 
hemisphere bilateral encoding was stronger during the instruction phase. Surprisingly, in the left 
hemisphere the contralateral bias completely disappeared during the movement phase, with 
both the contra- and ipsilateral arms being encoded to the same extent. Stronger bilateral 
encoding during movement (compared to instruction) is surprising given the spatial distribution 
of electrodes that encode ipsilateral movement were primarily outside of M1, regions typically 
associated more with planning than execution (e.g., premotor cortices, parietal cortex).  
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The asymmetry observed here is in accord with the long-standing recognition of hemispheric 
asymmetries in praxis. Starting with the classic observations of Liepmann at the turn of the 20th 
century on the association of the left hemisphere and apraxia (Liepmann 1908, cited in Renzi, & 
Lucchelli, 1988; see also Schaefer et al., 2007) and continuing with functional imaging studies in 
neurotypical populations, a large body of evidence points to a dominant role for the left 
hemisphere in skilled movement often engaging bi-manual movements (Corballis, Badzakova-
Trajkov & Häberling, 2012; Przybylski & Króliczak, 2017). This asymmetry is most pronounced in 
tasks involving functional object use (Buxbaum et al., 2006), symbolic gestures (Xu, Gannon, 
Emmorey, Smith & Bruan, 2009) and intransitive pantomimes (Bohlhalter et al., 2009). Apraxia, 
following left-hemisphere damage can be manifest in movements produced with either limb 
(Renzi, & Lucchelli, 1988), and are usually associated with lesions that encompass premotor and 
parietal cortices (Haaland, Harrington & Knight, 2000). While this asymmetry may be linked to 
hand dominance (Ochipa, Rothi & Heilman, 1989), functional imagining studies with relatively 
large sample sizes have shown that handedness only influences the strength of the left 
hemisphere bias for skilled movement but does not produce a reversal in left handers 
(Vingerhoets et al., 2012; Verstynen et al., 2005, Chettouf et al., 2020, Vingerhoets et al., 2013). 
Of the six patients tested in the current study, five are right-handed and the remaining patient 
reported being ambidextrous with a slight preference for using the left hand. We note that the 
results from this patient (L3) did not qualitatively differ from the other two left hemisphere 
patients. 

Ipsilateral encoding was most prominent in the premotor and parietal cortex of the left 
hemisphere, overlapping with the neural regions implicated in praxis. However, two features of 
our results do not map on readily to an interpretation that focuses on hemispheric asymmetries 
in praxis. First, our task involved simple reaching movements, whereas praxis generally 
encompasses more complex learned movements associated with tool use or symbolic gestures. 
Second, ipsilateral encoding became more pronounced during movement execution; a priori, 
one might have expected this asymmetry to be more related to gestural intent and thus be more 
prevalent during movement planning.    

An alternative hypothesis is that the ipsilateral activation is reflective of a prominent role of the 
left hemisphere in bimanual coordination. The encoding of ipsilateral arm movement might be a 
form of state representation, a means to keep track of the state of the ipsilateral arm given that 
many actions require the coordinated activity of the two limbs. This hypothesis, derived from the 
current data, is consistent with the increased ipsilateral encoding during the movement phase. 
The need to monitor the state of the other limb should hold for unimanual gestures performed 
with either limb. There is evidence in the neuropsychological literature pointing to a role of the 
left hemisphere in bimanual coordination in neuroimaging (Jäncke et al., 2000; Toyokura, Muro, 
Komiya & Obara, 1999; Maki, Wong, Sugiura, Ozaki & Sadato, 2008) and electrophysiological 
studies (Serrien, Cassidy & Brown, 2003). For example, Schaffer et al., (2020) observed greater 
impairments in bimanual coordination following left hemisphere stroke compared to right 
hemisphere stroke. Interestingly, the impairment was manifest prior to peak velocity, a finding 
interpreted as a disruption in predictive control. It may be that the left hemisphere makes an 



 
21 

asymmetric contribution to inter-limb coordination by tracking or predicting where both limbs 
are in space.  

An important question for future work is to examine how ipsilateral representations in the left 
hemisphere are affected during more complex movements, including those that involve both 
limbs. Using fMRI, Diedrichsen, Wiestler and Krakauer (2013) compared ipsilateral movement 
representations during unimanual and bimanual movements.  Within the primary motor cortex, 
ipsilateral representations could only be discerned during unimanual movement.  However, 
caudal premotor and anterior parietal regions retained similar ipsilateral representation during 
uni- and bimanual movement.  If the left hemisphere tracks both limbs to facilitate bimanual 
coordination, we would predict that ipsilateral representations in premotor cortex are retained 
more strongly in the left hemisphere compared to the right hemisphere when both arms are 
engaged in the task. 

Using a kinematic encoding model, we observed a striking hemispheric asymmetry, with the left 
hemisphere more strongly encoding the ipsilateral arm than the right hemisphere, a finding that 
was apparent during preparation and amplified during movement. This asymmetry was primarily 
driven by electrodes positioned over premotor and parietal cortices, with strong contralateral 
encoding for electrodes positioned over sensorimotor cortex. One possible interpretation of our 
results is that these networks monitor the state of each arm, a prerequisite for most skilled 
actions. 
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Chapter 2 

Stronger Ipsilateral Encoding in the Subthalamic Region Compared to 
Sensorimotor Cortex 

 
 

2.1 Abstract 
 
Movements of either the contralateral or ipsilateral arm produce changes in neural activity in the 
sensorimotor cortex as well as the subthalamic region in the basal ganglia. We analyze neural 
recordings from patients with a deep brain stimulation lead targeting the subthalamic nucleus as 
well as a cortical strip while they made repetitive hand opening and closing movements with one 
hand (contralateral or ipsilateral) or both hands. We fit the continuous EMG recorded during the 
task to the neural activity using a cross-validated encoding model. We find that during both 
unimanual and bimanual movements electrodes in the subthalamic region encode both hands 
equally well whereas in the sensorimotor cortex there was a strong contralateral bias. In 
addition, we found that electrodes in the subthalamic region generalize across arms better than 
the sensorimotor cortex and appear to be more sensitive to context (i.e., whether the other arm 
is engaged in the task or not).  
 
 
2.2 Introduction  
 
In concert with the thalamus, the basal ganglia and frontal lobe control voluntary limb 
movement (DeLong, 1979; Alexander, DeLong & Strick, 1986). Somatomotor regions in the basal 
ganglia receive inputs from several areas of the cerebral cortex including primary motor cortex 
(M1), supplementary motor area (SMA), and premotor cortex (PM; Alexander & Crutcher, 1990). 
After the information is processed in the basal ganglia it returns back to the aforementioned 
motor cortices via the thalamus (Parent & Hazrati 1995; Middleton & Strick, 2000). In patients 
with Parkinson’s disease (PD) cell death in the substantia nigra (inferior portion of the basal 
ganglia) results in disruptions of this cortio-basal ganglia motor loop leading to motor symptoms 
such as tremor, rigidity and bradykinesia (Dauer & Przedborski, 2003). Deep brain stimulation 
(DBS) of the subthalamic nucleus (STN) or globus pallidus (GP) has revolutionized treatment for 
patients with PD and provided a tool for scientists to further understand PD and basic motor 
control (Kumar et al., 1998).  
 
Movement difficulties are accompanied by exaggerated beta (15-30 Hz) oscillations in the STN 
(Kühn et al., 2005, Little & Brown 2014). Overly synchronized beta oscillations are thought to be 
a result of chronic dopamine depletion, as these oscillations and motor symptoms are reduced 
by dopaminergic therapies (Weinberger et al., 2006) and in animal models dopamine loss leads 
to excessively synchronized beta oscillations (Mallet et al., 2008). More recently, network 
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dynamics have been considered between the STN and the cortex. In the primary motor cortex of 
PD patients, the amplitude of high frequency activity couples with the phase of the beta rhythm 
in the STN, and this coupling becomes more exaggerated as Parkinsonian motor symptoms 
increase and can be alleviated with DBS (De Hemptinne, 2015).  
 
The basal ganglia have been primarily implicated in inhibiting or changing motor plans (Mink, 
1996), but more recent studies suggest it may also contribute to the control of on-going 
movements (Yttri & Dudman, 2016). In PD patients, neuronal activity in the STN is associated 
with upper limb movements (Abosch, Hutchison, Saint-Cyr, Dostrovsky & Lozano, 2002; 
Rodriguez-Oroz et al., 2001) and neural activity and local field potentials (LFP) in the STN have 
been used to decode grip force (Patil, Carmena, Nicolelis & Turner, 2004; Tan et al., 2016). 
Although these studies focus primarily on the contralateral arm relative to the DBS lead, bilateral 
changes in the oscillatory activity in the STN are observed during unimanual movements of 
either hand (Alegre et al., 2005). In addition, phase coherence between the left and right STN 
increases in the alpha range during unimanual movements, suggesting that although there is no 
direct anatomical connections between bilateral STN there are physiological connections (Darvas 
& Hebb, 2014). In accord with these findings, after unilateral implantation of STN DBS, 
improvement on the Unified Parkinson’s Disease Rating Scale (UPDRS) was observed for both 
contralateral and ipsilateral movements, although as expected, the contralateral benefit was 
larger (Walker, Watts, Guthrie, Wang & Guthrie, 2009). 
 
In the present study, we examine how continuous contralateral and ipsilateral movements are 
encoded in the STN and sensorimotor cortex from data obtained intraoperatively during DBS 
surgery. The data were collected from 13 patients, each with a directional DBS lead and a ECoG 
strip over sensorimotor cortex while they produced repetitive voluntary hand movements with 
either the hand contralateral or ipsilateral to the implanted electrodes or both hands 
simultaneously. In order to retain the high spatial and temporal resolution of the neural signals, 
we opted to use an encoding model which uses EMG activity during the task to predict neural 
activity for each electrode. For our electrode-wise encoding model we focus on predicting the 
local motor potential, which has been shown previously to correlate with hand movements 
(Schalk et al., 2007; Flint, Eric, Jordan, Miller & Slutzky 2013). We utilize this approach to better 
understand differences in encoding between the sensorimotor cortex and STN region during 
unimanual and bimanual movements. In addition, we examine representational overlap in 
encoding across hands and across unimanual and bimanual movements by training the model on 
one condition and attempting to predict neural activity in another condition.  
 
2.3 Method 
 
Patients. Intracranial recordings were collected from 13 patients (4 women; 59.27 years old). 
Patients were recruited from University of Alabama at Birmingham (UAB) medical center as part 
of two different studies. The study was comprised of a randomized, double-blind crossover study 
of directional versus circular STN DSB for moderately advanced Parkinson’s disease. Consensus 
inclusion/exclusion criteria for recruitment, screening, enrollment, and DBS surgery was strictly 



 
24 

followed. All procedures were approved by the institutional review boards at UAB, and all 
patients provided informed consent prior to participating in the study. 
 
ECoG strip and lead location. Before DBS surgery the pre-op 3T PRISMA brain MR images are co-
registered with the intra-op O-arm 2 CT images and standard frame-based stereotaxy is used to 
target the STN.  A temporary 6 contact Ad-Tech ECoG strip is passed over the “hand knob” of 
ipsilateral sensorimotor cortex, in the manner pioneered by Starr (De Hemptinne et al., 2013; De 
Hemptinne et al., 2015; Crowell et al., 2012).  We then use frame-based stereotaxy, multipass 
single unit microelectrode recordings, macrostimulation, and intraoperative O-arm 2 CT imaging 
to select an appropriate trajectory for the permanent location of the DBS lead. We placed the 
Boston Scientific lead at a defined electrophysiological depth, such that the two middle rows 
(with the directional contacts) are equidistant from the dorsal STN border, based upon the single 
unit recording profile within that trajectory. For the DBS probe, the upper directional row 
(contacts 5, 6, and 7) is just dorsal to STN in zona incerta / anterior thalamus, and the lower 
directional row (contacts 2, 3, and 4) are within the dorsolateral sensorimotor STN (Figure 2.2A). 
 
Behavioral Task. A motor behavior battery was collected intraoperatively, measuring simple, 
repetitive voluntary movements from the Unified Parkinson’s Disease Rating scale (UPDRS) in a 
blocked design. Along with contralateral hand (relative to implanted electrodes) opening-closing 
which is part of the UPDRS, two additional movements were collected 1) ipsilateral hand 
opening-closing and 2) bimanual hand opening-closing. The primary motion during this 
movement is at the metacarpophalangeal and proximal interphalangeal joints. All patients 
completed at least 2 blocks consisting of 10 seconds of continuous movement for each 
condition. Participants received verbal instructions for each task just prior to execution, and they 
performed movements repeatedly in a block following the verbal commands “ready, set, go” for 
10 seconds until they hear the word “stop.” Surface electromyography (EMG) from the bilateral 
hands or arms [either the first dorsal interosseous (FDI) muscle, flexor carpi radialis (FCR) muscle, 
or both] was recorded during the movements.  
 
Data acquisition and preprocessing. DBS surgeries were conducted awake and “off” 
dopaminergic medications. Electrophysiological signals were recorded from a BrainVision 
ActiChamps acquisition system, sampled at 25 kHz without digital filters. We simultaneously 
recorded (1) LFPs from the DBS probe; (2) LFPs from the 6 ECoG contacts over primary 
sensorimotor cortex; and (3) surface EMG from the hand/arm. 
 
Digital preprocessing included the following steps. First, all neural data were low-pass filtered at 
500 Hz with a fourth-order Butterworth filter as an anti-aliasing measure before downsampling 
to 1000 Hz. Next, neural data were high-pass filtered at 0.5 Hz with a third-order Butterworth 
filter to remove slow drifts in the data. We then re-referenced the signal from each electrode 
using a common average reference montage within each neural area (sensorimotor cortex and 
STN region) separately. Electrodes were then notch-filtered at 60, 120 and 180 Hz to remove line 
noise from electronic devices powered by outlets in the operating room. Lastly, the neural 
signals were low-pass filtered at 10 Hz to extract the local motor potential (LMP) which has been 
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shown to correlate with hand movements and hold substantial information about movement 
direction (Schalk et al., 2007; Flint, Eric, Jordan, Miller & Slutzky 2013).  
 
Similar to the neural data, all EMG signals were first low-pass filtered at 500 Hz as an anti-aliasing 
measure before downsampling to 1000 Hz. Next, each EMG channel was z-scored, high-pass 
filtered at 50 Hz, and full-wave rectified (Flint, Ethier, Oby, Miller & Slutzky, 2012). Last, EMG 
data were low-pass filtered at 10 Hz to obtain an envelope of the movements. All filters were 
fourth-order, non-causal Butterworth filters. The EMG data were then visually inspected and 
portions with excessive noise were excluded from further analyses. For unimanual conditions, if 
the other hand was moving, we did not include the block in the encoding model. 
 
Encoding model. The processed EMG signal of a single arm was used as the sole feature in the 
model used to predict the LMP for each electrode. This feature is time-lagged with lags 
extending from 500 ms before movement onset to 500 ms after movement onset (sampling rate 
at 1000 Hz). This wide range of lags provides a way to compensate for the anticipated 
asynchrony between neural data and movement. LMP at each time point [LMP(t)] was modeled 
as a weighted linear combination of the hand EMG at different time-lags, resulting in a set of 
beta weights, b1 …, b1000. To make the beta weights scale-free, the EMG features are z-scored 
and neural LMPs are normalized using the common average reference of their respective brain 
regions before being fit by the model. 
 

Model fitting. Regularized (ridge) regression (Hoerl and Kennard, 1970) was used to estimate the 
weights that map EMG to the corresponding LMP signal for each electrode.  

	
β" = $X&X + λ I*+,X&Y 

For within-arm model fitting, the total dataset consisted of all clean, successful movements 
performed with either the ipsilateral arm, contralateral arm or both (each condition was fit 
separately). Nested five-fold cross-validation was used to select the regularization 
hyperparameter on inner test sets (validation sets) and assess prediction performance on 
separate, outer test sets. At the outer level, the data was partitioned into five mutually exclusive 
estimation and test sets. For each test set, the rest of the data acted as the estimation set. For 
each outer fold, we further partitioned our estimation set into five mutually exclusive inner folds 
to train the model (80% of estimation set) and predict neural responses across a range of 
regularization values on the validation set (20% of estimation set). For each inner fold, the 
regularization parameter value was selected that produced the best prediction as measured by 
the linear correlation of the predicted and actual LMP. The average of the selected regularization 
parameters across the five inner folds was computed and used to calculate the prediction of the 
LMP on the outer test set. This procedure was done at the outer level five times. Our primary 
measure is held-out prediction performance (R2), which we quantified as the squared linear 
correlation between the model prediction and the actual LMP time series, averaged across the 
five mutually exclusive test sets. 
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To be considered as predictive, we established a criterion that an electrode must account for at 
least 1% of the variability in the LMP signal (R2 > .01) for either ipsilateral or contralateral 
reaches (previous papers report electrodes with R2 > .005 as predictive; Downey et a., 2020). 
Electrodes not meeting this criterion were not included in subsequent analyses. 
 
For across-arm model fitting, the same procedure was used except the test set was partitioned 
from the total dataset of the other arm. For across-condition model fitting, the same procedure 
was used except the test set was partitioned from the total dataset of the bimanual condition of 
the same arm. We partitioned the data in this manner (80% estimation, 20% test) to make the 
fitting procedure for the across-arm and across-condition models comparable to that employed 
in the within-arm model. 

 

2.4 Results 
 
Comparing predictive electrodes across brain regions. We examined the extent that muscle 
activity was encoded for contralateral and ipsilateral hand movements in individual electrodes 
over sensorimotor cortex (SMC) and within the STN region (STN). To do this we fit an encoding 
model that maps continuous electromyographic activity to the LMP signal for 182 electrodes 
(SMC = 78, STN = 104). This procedure was done separately for contralateral and ipsilateral 
movements using either the contralateral EMG or the ipsilateral EMG as features in the model. 
We quantified the cross-validated model fit by generating LMP predictions using the EMG signal 
from held-out trials of the same condition and calculating prediction performance as the square 
of the linear correlation (R2) between the predicted and actual LMP signal.  Electrodes were 
considered predictive (i.e., encoding muscle activity) if they could account for at least 1% of the 
neural variance (r > .10; R2 > .01) in held-out test sets during contralateral or ipsilateral 
movements. Because significance depends on sample size and we are predicting the time series 
across tens of thousands of samples we can observe significance at very low correlations, hence 
we decided to use a criterion based on effect size (R2) which is less affected by the length of the 
held-out test set. This means that although we may see significant correlations below a R2 of .01, 
we choose to only consider electrodes predictive if they can predict at least 1% of the neural 
variance. 
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Figure 2.1. A. Behavioral task. Patient’s engaged in hand opening and closing with either the 
hand contralateral, ipsilateral or with both hands. B. Electrode-wise encoding model. A cross-
validated encoding model was used to predict the local motor potential (LMP) for each electrode 
over sensorimotor cortex and in the STN region from EMG of either the contralateral or 
ipsilateral hand.  
 
Figure 2.2 summarizes the percentage of predictive electrodes across the SMC and STN areas for 
the unimanual and bimanual task conditions. Electrodes were categorized as being predictive of 
‘Both’ hands if the threshold was met for both models using either the contralateral or ipsilateral 
EMG as features, as predictive of ‘Contra only’ if the electrode was predictive using contralateral 
EMG as features but not ipsilateral EMG, as predictive of ‘Ipsi only’ if the electrode was 
predictive using the ipsilateral EMG as features but not the contralateral EMG and was predictive 
of ‘None’ if it was not predictive for either model. Contrasting brain areas (SMC and STN) across 
unimanual movements we see a larger percentage of electrodes solely encoding contralateral 
compared to ipsilateral movements in the SMC, whereas in the STN the number of electrodes 
solely encoding either hand is more balanced. Although there are differences across areas and 
task conditions, we find a substantial percentage of electrodes encode ipsilateral movements 
across all four combinations of brain region and task condition as the percentage of electrodes 
that encode ‘Both’ hands never drops below 27% and the percentage of electrodes that encode 
‘Ipsi only’ never drops below 7% totaling 34% of the electrodes that encode ipsilateral 
movement to at least some extent. Similarly, that percentage never drops below 47% for 
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contralateral movements across the four combinations. Contrasting unimanual and bimanual 
movements across brain region we see that moving from the unimanual to the bimanual 
condition the percentage of electrodes that encode both hands increases. Interestingly, the 
increase in electrodes that encode ‘Both’ seems to primarily come from the category ‘Contra 
only’ in the SMC case, but to come primarily from ‘Ipsi only’ category in the STN case. Currently, 
these categories only describe whether there is some level of encoding, but not the extent to 
that encoding, we delve into the extent of encoding in the following sections.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.2. Predictive electrodes across conditions and brain regions. Electrodes were 
categorized as being predictive of neural activity (R2 > .01) using only the contralateral EMG 
(Contra only), only the ipsilateral EMG (Ipsi only), both the contralateral or the ipsilateral EMG 
(Both) or neither EMGs across the unimanual and bimanual conditions in the SMC and the STN. 
 
Stronger ipsilateral encoding in the STN region compared to sensorimotor cortex. 
We next focus on predictive electrodes (excluding electrodes that were categorized as ‘None’ in 
the prior analysis) and examine the extend of encoding across electrodes  
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Figure 2.3. A. Electrode locations. Color corresponds to the location of the electrode either on 
the surface of the cortex or the deep directional probe in the STN region. B. Stronger ipsilateral 
encoding in the STN region during unimanual movements. Performance of all predictive 
electrodes, measured as the square of the Pearson correlation (R2), using EMG from either the 
contralateral (Y-axis) or ipsilateral (X-axis) hand during unimanual movements. Overall 
performance did not vary between the two brain regions, but a significant interaction was found 
with electrodes in the STN region performing equally well across hands whereas a strong 
contralateral bias was found in SMC. C. Example traces. Held-out predictions of the LMP time 
series based on EMG recorded from the moving contralateral or ipsilateral hand for one 
exemplar electrode over S1 and one electrode in the dorsal STN.  
 
during unimanual movements within the SMC and STN. Figure 2.3A provides a color map 
depicting the cortical parcellations SMC electrodes were located in and electrode type and 
location of the STN probe. Figure 2.3B compares the predictive performance of each electrode 
for the contralateral (Y-axis) and ipsilateral (X-axis) conditions for electrodes residing on SMC or 
in the STN region. Values close to the unity line yield a similar level of prediction performance for 
the two hands; values off the unity line indicate that encoding is stronger for one hand 
compared to the other. A mixed effects permutation test with fixed factors of Hand, Brain Region 
and a random effect of Patient revealed a significant main effect of Hand (µQR3STU = .070, µ1VW1 = 
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.036, χ8 = 16.960, p < .001) but no effect of Brain Region (µQRTS<Y = .056, µZ&[ = .050, χ8 = .517, p 
> .60). Most importantly, a significant interaction between Hand and Brain Region was also 
found (χ8 = 27.221, p < .001), which indicates that although there was a strong contralateral bias 
in the electrodes over sensorimotor cortex (µQR3STU = .096, µ1VW1 = .017, χ8 = 37.559, p < .001), 
this bias was not found for electrodes in the STN region (µQR3STU = .048, µ1VW1 = .052, χ8 = 0.139 p 
> .70).  
 
This suggests that unimanual movements of either hand are encoded to a similar extent in the 
STN whereas contralateral movements are being encoded more strongly in SMC. In line with this 
result, we see no difference in average prediction performance across the two regions (e.g., SMC 
and STN), which may seem surprising since neurons in the STN have only recently been 
suggested to contribute to ongoing movements. When we examine this effect further, we see 
that for contralateral movements the SMC performs significantly better than STN (µZ\] = .096, 
µZ&[ = .048, χ8 = 15.133 p < .001), but for ipsilateral movements the opposite is true, STN 
performs significantly better than SMC (µZ\] = .017, µZ&[ = .052, χ8 = 20.751 p < .001). Last, we 
computed the difference distributions for SMC and STN (Figure 2b, upper right corner) in order 
to compare the shape of the distributions. We found that the difference distribution for SMC 
was moderately skewed (skewnessZ\] = 0.849) whereas the difference distribution of the STN 
region approximated a normal distribution (skewnessZ&[= 0.287), which follows the SMC being 
more lateralized compared to STN. 
 
The previous results focus on unimanual movement, it is of interest if contralateral and 
ipsilateral encoding changes when both hands are moving. We first compare contralateral and 
ipsilateral encoding in the SMC and STN within the bimanual condition and next examine the 
factors Hand and Brain Region across Task. Figure 2.3A provides the same color maps as 2.2A 
with regard to electrode location in SMC and STN. Figure 2.3B compares the predictive 
performance of each electrode when either the contralateral (Y-axis) or the ipsilateral (X-axis) 
EMG were fit as features during the condition when both hands were moving. Values close to 
the unity line yield a similar level of prediction performance when the EMG of either hand is 
used in the model; values off the unity line indicate that encoding is stronger for one hand 
compared to the other. Similar to the unimanual condition, we fit a mixed effects permutation 
model with fixed factors of Hand, Brain Region and a random effect of Patient. In line with our 
unimanual results we again found a significant main effect of Hand (µQR3STU = .077, µ1VW1 = .041, 
χ8 = 13.356, p < .001) but this time we also found a significant effect of Brain Region (µQRTS<Y = 
.075, µZ&[ = .046, χ8 = 7.781, p < .05). Most importantly, we also found a significant interaction 
between Hand and Brain Region (χ8 = 8.899, p < .01) following a similar pattern we saw in the 
unimanual condition, with a strong contralateral bias in the electrodes over sensorimotor cortex 
(µQR3STU = .108, µ1VW1 = .042, χ8 = 21.359, p < .001) and similar encoding for electrodes in the STN 
region (µQR3STU = .051, µ1VW1 = .040, χ8 = 1.103 p > .30). This suggests that the different  
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Figure 2.4. A. Electrode locations. Color corresponds to the location of the electrode either on 
the surface of the cortex or the deep directional probe in the STN region. B. Stronger ipsilateral 
encoding in the STN region during bimanual movements. Performance of all predictive 
electrodes, measured as the square of the Pearson correlation (R2), using EMG from either the 
contralateral (Y-axis) or ipsilateral (X-axis) hand during bimanual movements. Again, a significant 
interaction was found between hand and brain region with electrodes in the STN region 
performing equally well across hands whereas a strong contralateral bias was found in SMC. C. 
Example traces. Held-out predictions of the LMP time series based on EMG recorded from the 
moving contralateral or ipsilateral hand during bimanual movements for one exemplar electrode 
over M1 and one electrode in Zora Incerta. 
 
patterns of encoding for the contralateral and ipsilateral hands we see in the SMC and STN 
remains even when both hands are moving. One difference we do see across the unimanual and 
bimanual condition is that in the unimanual condition we did not see a difference in Brain Region 
and in the bimanual condition we do see a difference. To properly assess how the factor of Task 
(e.g., unimanual vs. bimanual) affects encoding across Hand and Brain Region we fit another 
mixed effects model with these three factors and a random effect of Patient. We did not find an 
interaction between Task and Hand (χ8 = 0.012 p > .90), but we did find a trending interaction 
between Task and Brain Region (χ8 = 3.162 p < .10) which can be explained through a significant 
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three way interaction between Task, Hand and Brain Region (χ8 = 36.470 p < .001). Analyzing 
simple effects we find that the three way interaction is driven by ipsilateral encoding becoming 
stronger from the unimanual to the bimanual condition in SMC (µa31 = .017, µb1 = .042, χ8 = 
8.526 p < .001), but remaining approximately the same in the STN (µa31 = .051, µb1 = .041, χ8 = 
0.518 p > .40). Contralateral encoding did not change across task condition in either the SMC or 
STN (all χ8’s < 0.751 p > .40). This suggests that although ipsilateral encoding is weaker in the 
SMC compared to the STN, only in the SMC did ipsilateral encoding increase in the bimanual 
condition. This result is also in line with our analysis categorizing predictive electrodes, in the 
SMC 9% of electrodes were solely encoding ipsilateral movements and this slightly increased to 
12% during the bimanual condition, whereas the percentage of electrodes solely encoding 
ipsilateral signals in the STN went down from 29% to 7%.  
 
The preceding analyses focused on an encoding analysis for within-hand prediction, we next 
evaluate the overlap between the neural representations for contralateral and ipsilateral 
movement. To this end, we examined across-hand prediction performance by training the 
encoding model with the data from movements produced with one hand and testing prediction 
performance using the data from movements produced with the other hand. Figure 2.5A again 
depicts the color maps with regard to electrode location in SMC and STN. Figure 2.5B compares 
the predictive performance of each electrode when either the model was trained and tested 
within the same hand (train contralateral, test contralateral; Y-axis) or across hands (train 
contralateral, test ipsilateral; X-axis). Values close to the unity line have more overlapping neural 
representations during contra- and ipsilateral movement, whereas electrodes off the unity line 
encode the two hands differentially. We fit a mixed effects permutation model with fixed factors 
of Hand Generalization, Brain Region and a random effect of Patient. We found a main effect of 
Hand Generalization, with within arm predictions outperforming across arm predictions (µc1Sd13 
= .070, µUQTRWW = .009, χ8 = 72.277 p < .001), and a main effect of Brain Region with SMC 
outperforming STN (µZ\] = .050, µZ&[ = .030, χ8 = 6.45 p < .01). Importantly, we also found a 
significant interaction between Hand Generalization and Brain Region (χ8 = 17.226 p < .001) 
which suggests that although STN had lower encoding overall, STN had relatively better 
generalization between the two hands compared to STM and thus more similar representations 
between the two hands. 
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Figure 2.5. A. Electrode locations. Color corresponds to the location of the electrode either on 
the surface of the cortex or the deep directional probe in the STN region. B. Stronger across-
hand generalization in the STN. Performance of all predictive electrodes, measured as the square 
of the Pearson correlation (R2), using EMG from either the same hand (Y-axis) or training and 
testing across hands (X-axis) during unimanual movements. Overall electrodes in the STN had 
lower predictions, but a significant interaction was also found where electrodes were able to 
generalize across hands better compared to SMC.  
 
We next examine task generalizability, allowing us to examine how contralateral encoding 
changes from unimanual movements to movements simultaneously produced with both hands. 
To do this we examined across-task prediction performance by training the encoding model with 
the data from movements produced with one hand and testing prediction performance when 
both hands were moving. Figure 2.6A again depicts the color maps with regard to electrode 
location in SMC and STN. Figure 2.6B compares the predictive performance of each electrode 
when either the model was trained and tested within the same condition (train unimanual 
contra, test unimanual contra; Y-axis) or across conditions (train unimanual contra, test bimanual 
contra; X-axis).  
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Figure 2.6. A. Electrode locations. Color corresponds to the location of the electrode either on 
the surface of the cortex or the deep directional probe in the STN region. B. STN is more context 
dependent than SMC. Performance of all predictive electrodes, measured as the square of the 
Pearson correlation (R2), using EMG from either the same task (unimanual; Y-axis) or training and 
testing across tasks (unimanual to bimanual; X-axis). No mean shift was found between the SMC 
and STN, but the STN difference distribution was more skewed suggesting more electrodes failed 
to generalize across tasks.  
 
For this analysis, the extra component that is added from the unimanual to the bimanual 
condition is that the ipsilateral hand is also moving (i.e., in both conditions the contralateral hand 
is moving), if there is strong generalizability across conditions (i.e., values close to the unity line) 
this can be interpreted as the neural signal ignoring information about the ipsilateral hand 
moving. Electrodes off the unity line can be interpreted as being more context dependent - that 
is the neural signal changes when the ipsilateral hand is also engaged in the task compared to 
when the contralateral hand is moving in isolation. We fit a mixed effects permutation model 
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with fixed factors of Task Generalization, Brain Region and a random effect of Patient. We found 
effect of Task Generalization, with within task predictions outperforming across task predictions 
(𝜇fghigj = .070, 𝜇klmnoo = .040, 𝜒8 = 14.238 p < .001), and a main effect of Brain Region with SMC 
outperforming STN (𝜇qrs  = .082, 𝜇qtu = .032, 𝜒8 = 33.08 p < .001). We did not find a significant 
interaction between the two factors  (𝜒8 = 0.063 p > .70) which suggests that both areas 
decreased in performance to a similar extent when generalizing across task conditions. Although 
there was not a mean shift in task generalizability, we also examine the shape of the 
distributions and find that SMC is moderately skewed (𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠qrs  = 0.810) whereas the STN 
is severally skewed (𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠qrs  = 1.210), suggesting there are more electrodes in the STN 
that fail to generalize across task and hence are more context dependent.  
 
 
2.5 Discussion  
 
We aimed to compare contralateral and ipsilateral movement encoding during unimanual and 
bimanual hand opening and closing in the SMC and STN region. During both unimanual and 
bimanual movements we found a different pattern of encoding across the two brain regions, 
with the contralateral hand being more strongly encoded than ipsilateral movements in the SMC 
and both hands being encoded equally in the STN. We also found evidence that the STN is better 
able to generalize across hands and may be more context dependent than SMC. One benefit of 
our approach using a movement-based encoding model is that we are using the same features 
(EMG signal) to simultaneously fit electrodes in the SMC and STN, thus enabling us to limit 
confounds such as motor variability, noise because these are exactly matched across the two 
regions.  
 
Overall movement encoding in the SMC and STN. Although the STN has only been implicated in 
the control of on-going movements more recently (Yttri & Dudman, 2016), we did not find a 
difference in the overall level of encoding of unimanual hand movements between the SMC and 
STN. Examining this pattern further we see that electrodes over SMC outperform STN electrodes 
for contralateral movements, whereas the STN outperforms the SMC for ipsilateral movements. 
This result matches our categorical analysis, in the SMC 49% of electrodes encode contralateral 
movements only and only 7% encode ipsilateral movements only, whereas in the STN 20% of 
electrodes encode contralateral movements only and 29% encode ipsilateral movements only. 
This suggests that although the overall level of encoding may be similar across the two regions, 
the STN appears to encode both hands at a moderate level whereas the SMC strongly encodes 
the contralateral hand and more weakly encodes the ipsilateral hand (µZ&[{|}~�� = .048, µZ&[���� = 
.052,µZ\]{|}~�� = .096, µZ\]���� = .017). 
 
Examining bimanual movements, we found a significant difference between SMC and the STN in 
the overall level of encoding. We found that this was primarily driven by a three-way interaction 
between Hand, Brain Region and Task, in which ipsilateral encoding increased from the 
unimanual to the bimanual condition in the SMC, but in the STN the level of ipsilateral encoding 
remained approximately the same. A divergence in the level of encoding between the SMC and 
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STN from unimanual to bimanual movements is also supported by our categorical analysis of 
predictive electrodes. During unimanual movements the percentage of electrodes that do not 
encode either hand in the SMC and STN are 15% and 24% respectively. Moving to the bimanual 
condition, the percentage of electrodes that do not encode either hand shrinks to 5% in the SMC 
and increases to 31% in the STN. This may point to a diverging role of these two brain regions in 
terms of unimanual and bimanual movements. More research would be needed, ideally during 
bimanual movements where the two hands were coordinated, to better understand this 
phenomenon. 
 
Possible applications for adaptive DBS. Unidirectional DBS has been used as a therapeutic device 
to treat Parkinson’s disease for 30 years, yet the majority of DBS technologies are still based on 
constant-amplitude neurostimulation (Lozano et al., 2019). Many patients with an implanted 
DBS device still require medication which means that depending on their medication state, the 
patient may experience bradykinesia in off medication states (just waking up) or stimulation-
induced dyskinesia after taking medication (Lozano et al., 2019). Adaptive stimulation, in which 
stimulation therapy is adjusted in response to electrophysiological biomarkers, has tremendous 
therapeutic potential, and has been recently made possible because of technological 
breakthroughs in the ability of the DBS probe targeting the STN or GPi to be ‘bidirectional’ which 
means it can both sense and stimulate (Gilron et al., 2021; Starr 2018). In order to best select 
which algorithms are best suited for adaptive DBS, it is helpful to understand what information 
the STN region is encoding. Our results suggest that the STN not only encodes the contralateral 
hand, but also the ipsilateral hand at a similar level. It will thus be important for future research 
to determine if the encoding we observe also has clinical relevance. It is possible that optimizing 
the adaptive DBS device based on symptoms based on both sides of the body could outperform 
algorithms that focus solely on the contralateral side. The results of a previous study hint that 
our encoding results may be clinically relevant, they found that unilateral DBS can affect 
symptoms on the ipsilateral side of the body, although to a lesser extent compared to the 
contralateral side (Walker, Watts, Guthrie, Wang & Guthrie, 2009). Further studies could 
examine if the STN also exhibits bilateral encoding of upper arm movements or foot movements 
in addition to the bilateral encoding we observe in hand movements.  
 
Our result that the STN may be more context dependent than SMC may also be worth 
consideration for an adaptive device as the biomarkers for inhibited or slow moments for one 
hand may look different if both hands were engaged with the task. It would be easy to first 
classify movements as unimanual contralateral, unimanual ipsilateral or bimanual and have the 
algorithm operate based on particular biomarkers based on those states. We hope that basic 
research can add to the optimization of adaptive stimulation paradigms to the benefit of patients 
receiving care. 
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Chapter 3 

kTMP: A New Subthreshold, High E-field, Frequency Specific, Non-
Invasive Magnetic Stimulation Device to Modulate Cortical 
Excitability. 
 
3.1 Abstract 
 
We have developed a new non-invasive brain stimulation system, kilohertz transcranial magnetic 
perturbation (kTMP). A prototype kTMP device was constructed that can produce subthreshold 
modulations of neural activity with a cortical E-field magnitude of up to 7.6 V/m at 5 kHz. 
Amplitude modulation of the kilohertz carrier frequency kTMP waveform (AM-kTMP) can be used 
to provide stimulation at beat frequencies corresponding to endogenous neural rhythms (e.g., 
alpha, beta). In preliminary tests, we used TMS protocols to probe changes in corticospinal 
excitability following 10 min of kTMP stimulation. In Experiment 1, we manipulated the frequency 
of the non-modulated kTMP E-field, comparing the effects of a 2 V/m kTMP E-field delivered at 2 
kHz, 3.5 kHz, and 5.0 kHz versus sham stimulation. Motor evoked potentials were significantly 
enhanced following kTMP, for at least 25 minutes, with the effect most marked for the 3.5 kHz 
condition. In Experiment 2, we repeated the sham and 3.5 kHz conditions, and included two AM-
kTMP conditions, one in which the modulation was at 20 Hz and the other in which it was at 140 
Hz. Again, the targeted E-field was fixed at 2 V/m. We replicated the increase in cortical excitability 
for the 3.5 kHz non-modulated condition. Most striking, we observed further enhancement of the 
MEPs in the 20 Hz AM-kTMP condition. Moreover, the only percept associated with kTMP at 2 
V/m is a faint acoustic vibration from the amplifier, one that was easily blocked with standard foam 
earplugs, making kTMP suitable for double-blind experimentation. We conclude that kTMP has 
the potential to produce neural effects that mimic tES (e.g., continuous stimulation with frequency 
specificity) but at much higher E-fields in the brain. 
 

3.2 Introduction 

Non-invasive brain stimulation (NIBS) is a group of methods which perturb brain function by 
coupling an applied electric field (E-field) to the tissue of the brain without the need to introduce 
electrodes into the head or brain. The applied E-field may directly couple to the neuronal 
transmembrane potential or it may indirectly influence the transmembrane potential through 
changes to membrane properties. NIBS can safely manipulate neural excitability in the human 
brain, providing neuroscientists with a powerful tool to advance our understanding of brain 
function and clinicians with novel interventions in the treatment of neurological and psychiatric 
disorders. By altering the state of targeted brain areas and networks, NIBS methods can be used 
to test functional hypotheses, building on the experimental logic that has motivated generations 
of lesion and invasive stimulation studies in humans and other species. Indeed, NIBS interventions 
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are commonly used to disrupt behavior and also enhance performance in a broad range of 
cognitive domains(Cantarero et al., 2015; Conson et al., 2015; Flöel et al., 2008; Galea et al., 2011; 
Giglia et al., 2014; Heimrath et al., 2015; Javadi et al., 2017; Meinzer et al., 2014; Nevler and Ash, 
2015; Reis et al., 2009; Richmond et al., 2014; Roy et al., 2015; Rufener et al., 2016; Wöstmann et 
al., 2018). Evidence that NIBS can promote brain plasticity has prompted clinicians to pursue NIBS 
interventions in the treatment of psychiatric (Fitzgerald 2020) and neurologic disorders (reviewed 
in (Ovadia-Caro et al. 2019; Iglesias 2020; Lefaucheur et al. 2020)).  
 
The E-field induced by NIBS can be categorized as subthreshold or suprathreshold, according to 
the magnitude of the applied E-field. Suprathreshold fields are of sufficient amplitude to elicit 
immediate action potentials in targeted neurons. Subthreshold E-fields are insufficient to directly 
cause action potentials but may alter the state of the targeted neurons (Huang et al. 2017) on time 
scales ranging from immediate entrainment effects to plasticity effects lasting at least minutes. 
Whether interactions are enhanced or diminished depends upon the temporal characteristics of 
the E-field (waveform and duration) and its spatial characteristics such as local amplitude and 
direction (Peterchev et al. 2012).  
 
The NIBS E-field is generated by a current source external to the head. Two broad categories of 
NIBS methods exist: Electrical contact methods (EC) and magnetic induction methods (MI). EC 
methods such as tES (transcranial electric stimulation) establish a cortical E-field via electrodes, 
driven by a current source, in electrical contact with the scalp. In tES, the current is either constant 
as in transcranial direct current stimulation (tDCS) or time-varying as in transcranial alternating 
current stimulation (tACS). MI methods, such as TMS (transcranial magnetic stimulation), establish 
a cortical E-field via a current-carrying coil that is positioned near the scalp, generating a time-
varying magnetic field and consequently an induced cortical E-field.   
 
The E-fields of the EC and MI methods differ in important ways as has been elucidated with the 
spherical head model(Sheltraw et al. 2021). First, the head E-fields of EC and MI NIBS methods 
exist in orthogonal subspaces of the space of all possible head E-fields. Even though the vector E-
field of the EC and MI methods can never be identical they can, however, be similar with respect 
to focality on the cortical surface. Second, for spatiotemporally similar cortical E-fields the ratio of 
EC-to-MI root-mean-square (RMS) scalp E-field increases as the cortical focality increases.  This 
ratio asymptotically reaches a limiting value of approximately 17.8 for typical human head three-
shell models (Sheltraw et al. 2021). Third, in the low frequency “physiologic” range (0-200 Hz) the 
energetic cost for a current source to generate electric fields of appreciable magnitude within the 
brain region are much higher for MI as compared to EC methods (Sheltraw et al. 2021). In the kHz 
frequency range, however, MI methods become energetically practical. Fourth, the E-field 
amplitude of MI methods is linearly proportional to the frequency of the current supplied to the 
induction coil whereas the E-field of EC methods is independent of the frequency of the current 
supplied to the electrodes.  
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Even though the EC- and MI-NIBS methods can have similar focality and amplitude on the cortical 
surface, the scalp E-field amplitude ultimately places much greater restrictions upon the focality 
and amplitude of EC cortical E-fields.  Recent estimates of the EC cortical E-fields in the 
physiological frequency range suggest that the maximum for most human participants is 0.5 V/m 
before scalp sensory stimulation becomes intolerable (Vöröslakos et al., 2018)(Huang et al. 2018).  
Since the RMS cortical E-field for MI can be as much as 17.8 times greater than that of EC methods 
with the same RMS scalp E-field, and since increasing cortical focality increases the scalp E-field 
amplitude for either method (Sheltraw et al. 2021), MI systems are far less burdened by 
constraints imposed by the scalp E-field amplitude. Practically speaking, this also allows for more 
focal MI E-fields compared to EC E-fields since increasing cortical focality increases the scalp E-
field amplitude (Sheltraw et al. 2021). 
 
In addition to the limitations imposed by the properties of the EC and MI E-fields, there may be 
limitations due to the electrodes commonly used in extant EC methods (tDCS and tACS) and coils 
used in extant MI methods (TMS). The electrodes and coils may be limited in number and size and 
this will have practical consequences for the spatial and temporal characteristics of the E-field so 
produced. In addition, the respective current sources of extant methods restrict the types and 
amplitudes of E-field waveforms that can be applied. This is particularly the case for TMS, where 
pulsed E-fields are used. Pulsed E-fields are also used for extant electroconvulsive therapy (an EC 
method) but this method is considered invasive in that the patient or human participant is 
administered general anesthesia and neuromuscular blocking agents as well mechanically 
ventilated while the EC current is applied. The waveform differences of extant tES and TMS 
methods are responsible for differences with respect to time-frequency localization of the 
perturbing E-field. Recall that according to basic Fourier transform properties a waveform which 
is localized in temporal space must, by mathematical necessity, be non-localized in frequency 
space and vice versa. Since extant TMS methods generate brief E-field pulses they are therefore 
broad in frequency space. In contrast, extant tES NIBS methods (this excludes electroconvulsive 
methods) generate waveforms that are broad in temporal space and are therefore localized in 
frequency space. As a result, extant tES methods are well suited to probe frequency-specific 
effects of the applied E-field whereas extant TMS methods are well suited to probe time-specific 
effects.   
 
We have developed an innovative NIBS method, called Kilohertz Transcranial Magnetic 
Perturbation, or kTMP. The kTMP method uses magnetic induction to open a new NIBS 
experimental space characterized by relatively high amplitude cortical E-fields, but with the spatial 
focality of TMS and the frequency localization associated with tES, albeit in the kilohertz range. 
kTMP can be delivered in a continuous mode (Non Modulated kTMP) or in a amplitude modulation 
of the kilohertz carrier frequency (AM-kTMP) can be used to obtain beat frequencies which can 
potentially mimic perturbation in the physiologic frequency range corresponding to endogenous 
neural rhythms (e.g., alpha, beta) (SEE FIG X). In summary the greater E-field amplitudes, 
compared to tES, combined with the capability of kTMP to mimic endogenous frequencies via 
amplitude-modulated waveforms, put kTMP in a potentially transformative exploration of 
subthreshold NIBS. 
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To facilitate efficacy testing, the same TMS coil can be driven sequentially between kTMP and 
standard suprathreshold TMS operation, thus permitting a convenient suprathreshold probe of 
the changes in neuronal excitability induced by kTMP. MEPs elicited with TMS in the M1 motor 
cortex region provide an index of corticospinal excitability and is widely recognized as the gold 
standard for assessing the effects of NIBS induced changes (Nitsche and Paulus 2000, 2001; 
Nitsche et al. 2003; Huang et al. 2005). 
 
The effects of narrow-band kHz E-fields on peripheral nerves and the central nervous system of 
animal models has been studied using EC methods almost exclusively. A particularly good review 
of the robust results that have been achieved has recently been published (for a review see 
Neudorfer et al., 2021). Suprathreshold EC methods have been shown to produce robust electrical 
conduction blocking in peripheral nerves (Bhadra et al. 2018) (Esmaeilpour et al. 2021) and 
targeted deep stimulation of motor cortex through temporal interference effects in mice 
(Grossman et al. 2017). Recent converging evidence suggests that subthreshold kHz fields also play 
an important NIBS role, mainly derived from auditory nerve stimulation studies (for a review see 
Neudorfer et al., 2021). Moreover, tACS at kHz frequencies can induce changes in neural 
excitability approximately equal to those seen with standard, low frequency tES (Chaieb et al. 
2011, 2014). Low frequency magnetic stimulation (LFMS), mimicking the magnetic field 
waveforms used in MRI, is another kHz method producing weak E-fields across the entire brain, 
and has been reported to have mood-altering effects (Rohan et al. 2014; Wang et al. 2018). In 
addition, kHz E-fields, again applied by MRI gradients, have been shown to alter brain glucose 
metabolism in a manner that scales with the field amplitude (Volkow et al. 2010).  
 

In two experiments we investigating the effects of subthreshold kTMP cortical E-fields of 
approximately 2.0 V/m amplitude on the corticospinal excitability of humans. Such amplitudes are 
a 4-fold increase over that obtainable with extant tES methods. In Experiment 1, non-amplitude 
modulated kTMP at three different frequencies (2 kHz, 3.5 kHz and 5 kHz) were compared to a 
sham condition (0.01 V/m, 3.5 kHz). In experiment 2 we set the carrier frequency at 3.5 kHz and 
used amplitude modulation (AM-kTMP) to create beat frequencies of 20 Hz (Feurra et al. 2011, 
2013; Heise et al. 2016) and 140 Hz (Inukai et al. 2016; Dissanayaka et al. 2017). These conditions 
were compared with two non-modulated kTMP conditions at 3.5 kHz and the other 0.01 V/m 
(sham).  To explore the origin of kTMP modulation in detail, we measured MEPs changes pre-post 
kTMP using both Single Pulse and Paired Pulse Protocols (Intracortical inhibition and facilitation).  
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Figure 3.1. Experimental setup and protocol. A. Experimental hardware. The experimental 
hardware consists of five components: The suprathreshold TMS current source, subthreshold 
kTMP current source, a figure-eight Coil (Cool-B65), electromyography (EMG) recorder and 
neuronavigation system (BrainSight). The TMS coil can be driven by either the kTMP unit or a 
commercially available TMS unit thereby ensuring the identical E-field distribution. Each TMS pulse 
was registered in real time in both the EMG system and the neuronavigation system allowing us 
to record MEP amplitude along with the six-dimensional spatial position and orientation of the coil 
with respect to the hotspot. B. Experimental conditions. We tested four kTMP experimental 
conditions in each experiment. In experiment 1 we varied the carrier frequency and in experiment 
2 we varied the beat frequency of the amplitude modulated waveform, holding cortical E-Field 
constant. Sham and non-modulated kTMP at 3.5 kHz were also included in experiment 2 to serve 
as comparison. C. Experimental protocol. At the beginning of each session the participant’s 
hotspot and rMT was found, followed by two pre-TMS blocks, ten minutes of kTMP stimulation 
and three post-TMS blocks. Each block consisted of 90 TMS pulses (30 = signal pulse, 30 = SICI, 30 
= ICF) separated by a 4 or 5 second inter-pulse interval. 
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3.3 Method 
 

Experimental Hardware. The experimental hardware consists of five components: The 
suprathreshold TMS current source, subthreshold kTMP current source, a figure-eight Coil (Cool-
B65), electromyography (EMG) recorder and neuronavigation system (Brainsight Rogue Research 
Inc; Fig. 2A). The TMS coil can be driven by either the kTMP unit or a commercially available TMS 
unit (MagVenture R30 stimulator) thereby ensuring the identical E-field distribution, up to an 
amplitude scaling factor, for the TMS and kTMP.  
 
kTMP device. The kTMP device consists of a TMS coil, a high-amplitude current source and a control 
system. The coil is the same coil as used for the TMS system. This assures that the electric field 
distributions of the TMS and kTMP stimulus are the same up to a multiplicative amplitude factor. 
The control system consists of a personal computer (PC), input/output PCI card, and the built-in 
coil temperature sensor (access to the sensor electronics was modified for our application).  The 
PC controls the PCI card using the MatLab Data Acquisition ToolBox which delivers analog output 
to the amplifier and receives analog input from the temperature sensor. The coil temperature is 
monitored to assure participant safety. Automatic shutdown was set to occur if the temperature 
exceeded 48 degrees Celsius (according to International Electrotechnical Commission standards) 
however it never rose above 32 degrees Celsius during system operation. The PCI card delivers an 
analog voltage signal, which specifies the temporal waveform of the E-field, to the input of the 
amplifier (AE Techron model 7794). The amplifier behaves as a current source which delivers a 
user-specified current amplitude to the TMS coil. The method of Nieminen (Nieminen et al. 2015) 
was used to measure the effective E-field amplitude in a spherical phantom as a standard. The 
current amplitude was selected to achieve a 2.0 V/m E-field amplitude for a given frequency at a 
distance of 14 mm perpendicular to the coil surface, typical of the skin-to-cortex depth in our 
participant group(Lu et al. 2019). The relationship between the current amplitude (I), frequency (f) 
and E-field amplitude (E) at 14 mm was established to be E = 7.875 x 10-6 (Vs/Am) f I (EQ. 1). 
 
The UC Berkeley IRB approved the kTMP system as a non-significant risk device to a maximum E-
field to 8 V/m. Given the novelty of the kTMP system, we have worked closely with the IRB and 
Environment, Health & Safety (EH&S) Committee at UC Berkeley from the early stages of project 
development.  
 
TMS device and coil. The TMS unit consists of a passively liquid-cooled TMS coil (MagVenture Cool 
B-65) and capacitive power source (MagVenture MagPro x100 TMS stimulator). The figure eight 
coil has an inner diameter of 35 mm and an outer diameter of 75 mm. Suprathreshold biphasic 
pulses are used to titrate the motor threshold pre and post kTMP application.  
 
EMG device. The Bagnoli-8 EMG System (Delsys Inc.) was integrated with the kTMP-TMS system to 
measure the amplitude of MEPs elicited with single-pulse suprathreshold TMS in assessing the 
efficacy of kTMP. The TMS device sends a signal to the EMG recorder to mark the time of a 
suprathreshold stimulus within the continuously acquired EMG data. 
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Neuronavigation. BrainSight NeuroNavigation system was used to mark the M1 hotspot on each 
participant's scalp. This allowed the experimenter to return to the same position between TMS 
blocks during the application of kTMP. In addition, we have developed a system to read and record 
the six-dimensional spatial and angular position of the coil with respect to the hotspot in real time, 
allowing us to record this information at the time of each TMS pulse. This information was used to 
exclude trials in which the coil was distant from the hotspot or the angle had changed from the 
optimal hotspot orientation.  
 
Participants. 36 colleges student's adults participated in the two experiments (Experiment 1: n =20: 
13 female and 7 male; Experiment 2: n = 16: 10 female and 6 male; 7 were run in both 
experiments). All participants were naive to the purpose of the study and were financially 
compensated, with written consent obtained before the start of the experiment. 
Experimental design and statistical Analysis  
Procedure. To evaluate the kTMP system as a new tool to modulate neuronal excitability, we 
measured the impact of kTMP on corticospinal excitability using suprathreshold TMS stimulation 
over motor cortex. An overview of the experimental protocol is depicted in Figure 3.1C. 
Participants started with an introduction session, where the procedure of the experiment was 
explained and Single Pulse TMS was applied to identify the optimal scalp position over left M1 
(hotspot) for eliciting motor evoked potentials (MEP) in the right index finger.  The hotspot was 
registered in three-dimensional space using a neuro-navigation system (Brainsight, Rogue 
Resolutions Ltd., Cardiff, UK) to ensure consistent coil position throughout and between the 
different sessions. For ease of experimentation, the TMS coil can be driven by either the kTMP 
unit or a commercially available TMS unit without altering its position relative to the head.  
 
After the introduction session, participants were tested over four 2-hour sessions, with an interval 
between sessions of at least of two days. To assay the efficacy of kTMP we measured the change 
in MEP amplitude before and after the active or sham kTMP stimulation conditions. In experiment 
1 participants were unaware of the experimental conditions; In Experiment 2 a double-blind 
procedure was employed in which neither the participant nor experimenter were aware of the 
stimulation condition.  
 
Transcranial magnetic stimulation (TMS). Single-pulse TMS was applied over left hemisphere M1 
to determine the resting motor threshold (rMT) for the first dorsal interosseous muscle (FDI) in 
the right hand, the agonist for abduction movement with the index finger. FDI is relatively easy to 
isolate in all individuals and threshold values are very stable across test sessions (e.g., Carroll et al. 
2001; Kamen 2004; Malcolm et al. 2006). The TMS coil was placed tangentially on the scalp with 
the handle pointing backward and laterally at a 450 angle from the midline. The position was 
adjusted to identify the optimal scalp position over left M1 for eliciting motor evoked potentials 
(MEP) in the right index finger for each session. MEPs were measured by a surface electrode 
attached to the hand to record EMG signals from the right FDI, with a reference electrode over 
right elbow. The EMG signals were amplified and bandpass filtered on-line between 20 and 450 
Hz (Delsys Inc.). The signals were digitized at 2000 Hz for off-line analysis. EMG data were collected 
for 5 seconds on each trial, starting 200 msec before the TMS pulse.   The experimenter visually 
monitored the EMG traces on a separate monitor to ensure that the participant remained relaxed 
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(i.e., negligible EMG background activity in FDI) and to detect the presence or absence of MEPs in 
response to the TMS pulses.  The coil was positioned on the scalp to identify a location that 
produced robust MEPs in a consistent manner. Once identified, this location was marked on 
Brainsight to ensure stability during the threshold procedure and as a reference point for the 
experimental sessions. For the thresholding procedure, the stimulator intensity was initially set to 
30% of maximal stimulator output (MSO).  The intensity was adjusted to determine the rMT, 
defined as the level required to evoke MEPs of at least 50 µV peak-to-peak amplitude in the 
relaxed FDI, on 5 of 10 consecutive trials. 
 
To assay the efficacy of kTMP we measured changes in motor-evoked potentials (MEPs) before 
and after kTMP with single and paired-pulse TMS assays. Each assessment block (two TMS pre-
kTMP and three TMS post-kTMP) included single pulse TMS (SP), and two paired-pulse protocols: 
short intracortical inhibition (SICI), and intracortical facilitation (ICF) where a sub-threshold 
conditioning stimulus (at the 80% of rMT CS) was followed by a testing Stimulus (TS) with an 
interstimulus interval (ISI) of 1ms and 10ms respectively. All three measures have been widely 
used in prior studies designed to evaluate the efficacy of tES and rTMS methods in altering neural 
excitability(Horvath et al. 2015; Chung et al. 2016; Biabani, Aminitehrani, et al. 2018). We collected 
data from 30 trials for each measure per block to ensure reliable results (Chung et al. 2016; 
Goldsworthy et al. 2016; Cavaleri et al. 2017; Biabani, Farrell, et al. 2018). 
 
kTMP stimulation. 
 
Experiment 1. Non amplitude Modulated kTMP. Participants were tested over four sessions, three 
with active kTMP stimulation and one with sham kTMP stimulation (Fig. 3.1B, with the coil always 
positioned to target primary motor cortex. For the active kTMP sessions, we used three different 
frequencies, 2 kHz, 3.5 kHz and 5 kHz, changing the intensity of stimulation to produce a 2 V/m E-
field at the cortical surface. kTMP E-field amplitude adjustments based on scalp-to-cortex distance 
were not made in the experiments. For the sham condition, we used a 3.5 kHz signal but induced 
a 0.01 V/m E-field by setting the intensity to a very low voltage (0.12 V).  
 
Experiment 2. Amplitude Modulation kTMP (AM kTMP). Participants were tested over four 
sessions, three with active kTMP stimulation and one with sham kTMP stimulation conditions (Fig. 
2B). In two of active kTMP conditions we set the carrier frequency at 3.5 kHz and used amplitude 
modulation to create beat frequencies of 20 Hz and 140 Hz.  The 3.5 kHz carrier frequency was 
chosen since our first pilot showed the largest effect at this frequency; we selected beat 
frequencies of 20 Hz and 140 Hz, choosing 20 Hz given the relevance of beta to motor function 
(Feurra et al. 2011, 2013; Heise et al. 2016) and 140 Hz based on literature concerning ripple 
effects at this frequency (Inukai et al. 2016; Dissanayaka et al. 2017). We also included two non-
modulated kTMP conditions with a 3.5 kHz input signal, one set to produce a cortical E-field of 2 
V/m (active) and the other 0.01 V/m (sham).  These two conditions provide a replication of two of 
the key conditions in Experiment 1 with non-modulated and serve as a point of comparison for 
the two AM kTMP conditions. The parameters for the AM conditions were set to produce a 2 V/m 
E-field at the cortical surface, matched to the non-modulated active condition. 
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Stimulation Sensation. Participants wore earplugs during the TMS and kTMP experimental sessions.  
Observations from the research team and the participants in Experiment 1 confirmed that the coil 
did not produce any perceptible scalp sensations during kTMP stimulation. A low-intensity sound 
(pure tone at stimulation frequency) emanating from the amplifier could be heard by the 
researcher during all the active kTMP conditions (although not by the older members of the 
research team who likely have some mid-frequency hearing loss). In Experiment 2 also the 
research team wear earplugs to assure double blinding. Moreover, we administered a short survey 
after the first TMS assessment block (baseline phase) and at the end of the kTMP stimulation to 
obtain ratings (10-point Likert scale, 1 = not at all; 10 = extremely) on comfort and sound 
(Meteyard and Holmes 2018). 
 
Data analysis. All EMG measures were analyzed with custom scripts written in Matlab 2018a. 
Continuous EMG activity was recorded and epoched based on a TTL pulse that was sent from the 
TMS system at the time of each TMS pulse and recorded in the EMG amplifier as an auxiliary  
channel. After the data were epoched the following steps were used to clean the data. 1) Mean 
and standard deviation were calculated for each TMS protocol type (single pulse, ICF, ICI), if a given 
trial had a peak-to-peak MEP amplitude that was two standard deviations above or below the 
mean for that protocol the trial was considered an outlier and not included in further data analysis. 
2) All trials that had a MEP amplitude below .05 mV were not included in further data analysis. 3) 
All trials that recorded the coil more than 3mm (Euclidian distance) from the optimal hotspot or 
had an angular or twist angle 3º from the optimal hotspot were also removed and not included in 
further analyses. For each TMS protocol we recorded 30 trials per block, after our cleaning 
procedure we retained at least 20 out of the 30 trials per block per participant. 
After the data were cleaned, we found the average peak-to-peak amplitude of MEPs per TMS 
protocol for each block. We then transformed the data into a measure of percent change by 
subtracting and then dividing by the average of the pre blocks for each block post kTMP 
stimulation. This provided us with three time points post kTMP stimulation for each participant for 
each condition.   
 
3.4 Results 
 
kTMP Stimulation Sensation.  A low-intensity sound (pure tone at stimulation frequency) 
emanating from the amplifier could be heard by most individuals (although not by the older 
members of the research team who likely have some mid-frequency hearing loss). As such, the 
participants and experimenter wore earplugs during the experimental sessions. Observations from 
the research team and the participants in Experiment 1 indicated that the sound was mostly 
blocked by the earplugs, but as an additional precaution, a recording of the pure tone in the 3.5 
kHz condition was played during all kTMP sessions to minimize the likelihood that participants 
could tell active from sham conditions. The coil did not produce any perceptible scalp sensations 
during kTMP stimulation.  
 
In experiment 2 we administered a short survey at the end of TMS and the kTMP stimulation to 
obtain ratings (7-point Likert scale, 1 = not at all; 7 = extremely) on comfort and sound. With just 
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a few exceptions, the participants’ ratings were 1. Two gave a rating of 2 on “comfort”, indicating 
that it became slightly uncomfortable given the long time they were required to remain still. 
Feedback from the participants confirmed that the coil did not produce any perceptible scalp 
sensations during kTMP stimulation. Although our method for assessing subjective experience in 
this pilot study was relatively crude, the results are very promising that kTMP can be easily 
modified to enable double-blind studies. 
 
 
Changes in cortical excitability. 
 
Non-Modulated kTMP. To assess the effect of non-modulated kTMP stimulation, peak to peak 
amplitude of MEPs elicited with TMS were measured pre- and post-kTMP stimulation. Average 
MEP amplitude for each block post- kTMP was transformed into a measure of percent change 
based on the average of the first two pre-kTMP blocks. Thus, a value of 0% would indicate no 
change in MEP amplitude from pre- to post- stimulation, whereas a value of 100% would indicate 
the MEP amplitude doubled from pre- to post- stimulation. Four conditions were tested including 
sham (frequency = 3.5 kHz, cortical E-field = .01 V/m), and three active conditions (2 kHz, 3.5 kHz 
and 5 kHz, cortical E-field = 2.0 V/m; Fig 2B). Three post stimulation blocks were administered, 
creating three time points post stimulation per participant per condition. Each stimulation block 
consisted of single pulse TMS, and two paired pulse protocols: short intracortical inhibition (SICI), 
and intracortical facilitation (ICF), measures that have been used previously to evaluate the 
efficacy of tES and rTMS (Horvath et al. 2015; Chung et al. 2016; Biabani & Aminitehrani et al. 
2018). Each TMS protocol was analyzed separately. Although our design is within subjects, five of 
the 20 participants only completed three of the four experimental conditions due to technical 
issues with the Brainsight Neuronavigation system (n = 1) or university closures due to the COVID-
19 pandemic (n = 4), creating missing values. To maximize the within subjects design and to 
account for missing data, we opted to use a mixed-effects model with fixed factors of stimulation 
frequency and time post stimulation.  
 
Single Pulse: A mixed-effects model revealed a significant effect of stimulation frequency [𝜒8 
(3) = 10.841, p = 0.013], indicating that non-modulated kTMP affects single pulse MEP amplitude 
(Fig 3A). There was no effect of time post stimulation [𝜒8 (2) = 1.433, p = 0.488] and there was no 
interaction between the two factors [𝜒8 (6) = 8.415, p = 0.209]. Planned comparisons indicate 
that MEPs increased significantly after 3.5 kHz kTMP stimulation compared to sham [ 𝜒8 
(1) = 7.982, p = 0.005] as well as 2 kHz kTMP stimulation compared to sham [𝜒8  (1) = 4.107, 
p = 0.0427; Fig 3A]. In contrast, there was no effect of 5 kHz stimulation compared to sham [𝜒8 
(1) = 3.186, p = 0.074].  
 
SICI: We first tested if our SICI protocol significantly inhibited MEP amplitude compared to single 
pulse. We computed the ratio of SICI MEP amplitude to single pulse MEP amplitude and found the 
average across the first two pre blocks such that each session had one ratio measure. Because we 
only examined pre blocks, we could incorporate sessions across all four conditions. Using these 
values, we found that trials with the SICI protocol had significantly reduced MEP amplitude 
compared to the single pulse protocol [t (70) = -19.571, p < .001; Fig 6A]. We then examined how 



 
47 

the SICI protocol was affected by non-modulated kTMP. This required an extra step such that after 
computing the ratio for the SICI protocol, we then found the percent change from pre to post 
kTMP. For the SICI protocol, a mixed-effect model revealed that there was no effect of stimulation 
frequency [𝜒8 (3) = 1.016, p = 0.797], no effect of time post stimulation [𝜒8 (2) = 3.824, p = 0.148] 
and no interaction between the two factors [𝜒8 (6) = 1.265 p = 0.974; Fig 6A]. 
 

 
 
 
 
 
 
 
 
 
 

Figure 3.2. Non-Modulated kTMP increases corticospinal excitability. A. Average percent change 
across conditions. Percent change in MEP amplitude from pre to post kTMP stimulation across 
the four experimental conditions. Non-modulated kTMP at 2 kHz and 3.5 kHz was significantly 
different from sham stimulation. B. Time course post kTMP. Time course of MEP percent change 
across the three TMS blocks post stimulation. Time in-between each post TMS block is 
approximately 12 minutes. No main effect of time post stimulation was found.  
 
ICF: Similar to SICI, we first tested if our ICF protocol significantly increased MEP amplitude 
compared to single pulse. We found that trials with the ICF protocol had significantly greater MEP 
amplitude compared to the single pulse protocol [t (70) = 5.141, p < .001; Fig 6B]. We then 
examined how the ICF protocol was affected by non-modulated kTMP using the same method as 
SICI. For the ICF protocol, a mixed-effect model revealed that there was no effect of stimulation 
frequency [𝜒8 (3) = 4.473, p = 0.215], no effect of time post stimulation [𝜒8 (2) = 1.332, p = 0.514] 
and no interaction between the two factors [𝜒8 (6) = 2.009, p = 0.919; Fig 6B]. 
 
Amplitude Modulated kTMP (AM-kTMP): In the next experiment, we aimed to replicate two 
conditions from experiment 1: sham (frequency = 3.5 kHz, amplitude = .01 V/m) and the active 
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condition at 3.5 kHz with a 2 V/m E-field at the cortical surface. In addition, we added two new 
conditions consisting of kTMP with the carrier frequency of 3.5 kHz being amplitude modulated at 
either 20 Hz or 140 Hz using different intensities of stimulation to produce a 2 V/m E-field at the 
cortical surface. Similar to experiment 1, the majority of our participants (n = 13/16) completed all 
4 conditions with a smaller subset (n = 3/16) only completing three of the four conditions due to 
technical issues with the Brainsight Neuronavigation system (n = 1) or university closures due to 
the 2020 pandemic (n = 2). Because of these missing values we again opted to use a mixed-effect 
model with fixed factors of stimulation frequency and time post stimulation. 

 
Figure 3.3. Replication of non-modulated 3.5 kHz kTMP. A. Average percent change for sham and 
3.5 kHz. In experiment 2 we replicated two experimental conditions from experiment 1, the 
sham condition and non-modulated kTMP at 3.5 kHz. We show the results from the two studies 
side by side with each dot representing the average MEP percent change from pre to post for 
each participant. In both studies the 3.5 kHz condition had significantly larger MEP amplitude 
change from pre to post compared to sham. B. Time course post kTMP. Time course of MEP 
percent change across the three TMS blocks post stimulation blocks for both sham and 3.5 kHz 
conditions. No effect of time post stimulation was found in experiment 1 for the 3.5 kHz 
condition but an effect was found in for 3.5 kHz in experiment 2.  
 
Single Pulse: A mixed-effect model revealed a significant effect of stimulation frequency [𝜒8 
(3) = 17.211, p < 0.001], a significant effect of time post stimulation [𝜒8 (2) = 6.255, p = 0.044], but 
there was no interaction between the two factors [ 𝜒8  (6) = 2.402, p = 0.879]. Planned 
comparisons of stimulation frequency indicate that MEPs increased significantly after AM 
modulated kTMP stimulation at 20 Hz [𝜒8  (1) = 13.816, p < 0.001], 140 Hz [𝜒8  (1) = 15.412, 
p < 0.001], and non-modulated 3.5 kHz [𝜒8  (1) = 11.032, p < 0.001] compared to sham. This 
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replicates our finding from Experiment 1 that 3.5 kHz kTMP increases cortical excitability 
compared to sham (Fig 3.4). We also find that both the AM kTMP conditions increase cortical 
excitability compared to sham (Fig 3.5A). In fact, MEP amplitude in the 20 Hz AM condition was 
significantly greater than non-modulated kTMP at 3.5 kHz [𝜒8 (1) = 6.503, p = 0.011], suggesting 
that AM kTMP may have a stronger effect on cortical excitability compared to non-modulated 
kTMP at some AM frequencies. No other differences were found between the other active 
conditions [all 𝜒8’s < 2.146, all p’s > 0.143]. 
 
We also examined the effect of time post stimulation for each condition and found that MEP 
amplitude increased across time for 3.5 kHz [𝜒8  (2) = 16.329, p < .001] and 140 AM [𝜒8 
(2) = 8.763, p = 0.013] whereas no effect was found for sham [𝜒8 (2) = 3.758, p = 0.153] or for 20 
AM [𝜒8 (2) = 1.679, p = 0.432; Fig 3.5B].  

 
 
 
 
 
 
 
 
 

Figure 3.4. Amplitude-Modulated kTMP increases corticospinal excitability. A. Average percent 
change across conditions. Percent change in MEP amplitude from pre to post kTMP stimulation 
across the four experimental conditions. An increase in MEP amplitude was found for all three of 
our experimental conditions compared to sham. In addition, AM-kTMP at 20 Hz increased MEPs 
significantly above that for non-modulated 3.5 kHz, suggesting AM kTMP stimulation at some 
AM frequencies may be more effective than non-modulated kTMP. B. Time course post kTMP. 
Time course of MEP percent change across the three TMS blocks post kTMP stimulation. Time in-
between each post TMS block is approximately 12 minutes. An effect of time post stimulation 
was found with non-modulated 3.5 kHz and AM 140 Hz increasing significantly across time; no 
effect of time was found for sham or AM 20 Hz. 
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Figure 3.5. No effect of non-modulated- or AM-kTMP for paired pulse protocols. A. SICI protocol 
for non-modulated kTMP. A substantial inhibitory effect of our SICI protocol was found compared 
to single pulse, but non-modulated kTMP did not have an effect on the amount of inhibition 
elicited. B. ICF protocol for non-modulated kTMP. A faciliatory effect of our ICF protocol was found 
compared to single pulse, but non-modulated kTMP did not have an effect on the amount of 
faciliatory elicited. C. SICI protocol or AM-kTMP. In experiment 2 we again saw a substantial 
inhibitory effect for the SICI protocol compared to single pulse, but AM-kTMP did not have an 
effect on the amount of inhibition elicited. D. ICF protocol for AM-kTMP. Same as C except for the 
faciliatory protocol.  
 
SICI: We first tested if our SICI protocol significantly inhibited MEP amplitude compared to single 
pulse. We found that trials with the SICI protocol had significantly reduced MEP amplitude 
compared to the single pulse protocol [t (60) = -16.576, p < .001; Fig 6C]. We then examined how 
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the SICI protocol was affected by non-modulated kTMP. This required an extra step such that after 
computing the ratio for the SICI protocol, we then found the percent change from pre to post 
kTMP. For the SICI protocol, a mixed-effect model revealed that there was no effect of stimulation 
frequency [𝜒8 (3) = 1.614, p = 0.656], no effect of time post stimulation [𝜒8 (2) = 0.503, p = 0.778] 
and no interaction between the two factors [𝜒8 (6) = 5.028 p = 0.540; Fig 6C].  
 
ICF: We first tested if our ICF protocol significantly increased MEP amplitude compared to single 
pulse. We found that trials with the ICF protocol had significantly greater MEP amplitude 
compared to the single pulse protocol [t (60) = 2.976, p = .004; Fig 6D]. We then examined how 
the ICF protocol was affected by non-modulated kTMP using the same method as SICI. For the ICF 
protocol, a mixed-effect model revealed that there was no effect of stimulation frequency [𝜒8 
(3) = 4.053, p = 0.256], no effect of time post stimulation [𝜒8  (2) = 0.148, p = 0.929] and no 
interaction between the two factors [𝜒8 (6) = 5.627, p = 0.466; Fig 6D].  
 
3.6 Discussion 
 

kTMP is a new method for subthreshold non-invasive brain stimulation with greater E-field 
amplitudes, compared to tES, and with the capability of mimic endogenous frequencies via 
amplitude-modulated waveforms. Non-modulated kTMP increased corticospinal excitability in a 
frequency specify manner, at 2 kHz and 3.5 kHz frequencies. In experiment 2 we replicated our 
finding that non-modulated kTMP at 3.5 kHz increases corticospinal excitability and also tested 
two amplitude-modulated kTMP conditions at 20 Hz and 140 Hz with a carrier frequency of 3.5 
kHz. We found that both AM-kTMP conditions also increase corticospinal excitability relative to 
sham, and that the 20 Hz AM condition increased MEP amplitude above and beyond the non-
modulated 3.5 kHz effect, suggesting that AM-kTMP may be more effective than non-modulated 
kTMP.  
 
Results have shown a selective influence of kTMP on single pulse but not on intracortical 
excitability measured with Paired Pulse protocols. Single pulse MEP amplitude is a measure of 
cortico-spinal excitability and resemble excitability of intrinsic primary motor cortical neurons. 
Intracortical inhibition and facilitation, which resemble cortico-cortical excitability, depend on 
stimulation of motor cortical afferents (for a review on circuits involved in NIBS see Di Lazzaro et 
al, 2018). kTMP is a magnetic method and so the induced tangential current flows parallel to the 
brain surface activating elements that are aligned horizontally having synapses onto the 
corticospinal neurons, influencing I-waves. Our results seem indicate that the kTMP effect is 
predominant on the early, low threshold, volley I-waves (I1) responsible of MEPs change in Single 
Pulse protocols but not the late I-waves that originate from different sources of inputs to 
corticospinal cells. These reflect projections to corticospinal cells for I1-waves, and a more 
complex circuit composed of both excitatory and inhibitory neurons for the later I-waves.  
 
Although changes in MEPs are the gold standard for evaluating NIBS methods, MEP-based 
measures are quite variable (Campana et al., 2019; Darling et al., 2006; Hashemirad et al., 2017). 
The variability likely has multiple sources, many of which we cannot control (e.g., internal 
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fluctuations in cortical excitability). One source arises from fluctuations in the placement and 
orientation of the TMS coil on the “hotspot”, the location over motor cortex that reliably elicits 
MEPs. The magnitude of coil placement effects will vary across individuals given that the 
stimulation is applied at a fixed electrical current amplitude, without consideration of variables 
that influence the magnitude of the E-field at the level of the cortex.  The magnitude of the cortical 
E-field is inversely related to the distance from the coil, which is placed against the scalp, and this 
distance exhibits considerable variation between individuals (Opitz et al. 2015). The intervening 
tissue is not homogenous, but composed of five primary layers: skin, two layers of cortical skull, 
trabecular skull, and CSF, each with their own conductive properties (Truong et al. 2012) and 
thickness, adding additional sources of individual variation. Similarly, given that a stimulation 
method disproportionately affects certain types of neurons, individual geometric variations in 
those neurons and/or their associated neurotransmitters would influence the efficacy of the 
procedure (Ridding and Ziemann 2010; Stagg et al. 2011).   
 
We now turn to a mechanism for kTMP. There are some concerns in the electrophysiology 
literature about the effectiveness of kHz NIBS E-fields, given that neurons behave as low-pass filters. 
If the concern is that the membrane time constant, equal to the product of the membrane 
resistance and capacitance, is too large to allow high frequency (short time-scale) components of 
the NIBS electric field (the input) to influence the transmembrane potential (the output), passing 
only frequencies below cell-dependent cutoff frequencies. Furthermore, it is assumed that if the 
neuron cannot pass kHz frequencies then it is not possible for such frequencies to have effects 
upon neurons or neuronal networks. This assertion arises from modeling of the neuron as a passive 
electrical system – one in which the membrane resistance is a fixed value throughout the 
dynamical behavior of the system and can consequently be described with the mathematics of 
linear time-invariant (LTI) systems. However, the LTI model has very limited and well circumscribed 
applicability. The LTI passive neuron model holds to good approximation only when the 
transmembrane potential is near its resting value. If the transmembrane potential departs 
significantly from the resting value then the neuron must be modeled as an active electrical system 
which, by virtue of voltage dependent membrane resistance, is described by nonlinear models 
such as those developed by Hodgkin-Huxley (Hodgkin and Huxley 1952). Neudorfer et al., (2021) 
have recently published a detailed review showing robust empirical evidence supporting the use 
of sub- and suprathreshold kHz E-fields in NIBS research, indicating that the dominant effect of 
subthreshold kilohertz-frequency stimulation on neural tissue subthreshold is facilitation.  
Here, we suggest three mechanisms by which subthreshold kHz E-fields, with and without 
amplitude modulation, may potentially influence neuronal behavior: 
 
Effective Time Constant Dynamics. During subthreshold dynamics of the membrane potential the 
sodium ion membrane conductance (the primary determinant of subthreshold dynamics) can 
increase by two orders of magnitude(Hodgkin and Huxley 1952) as it nears threshold, thereby 
effectively decreasing the membrane time constant by the same factor for some interval of time. 
During such intervals, the effective time constant would permit short time-scale (high frequency) 
signals to influence the transmembrane potential. For example, the cutoff frequency for the 
passive membrane of pyramidal cells is approximately 20 Hz (Moradi Chameh et al. 2021). When 
near threshold the effective 3dB cutoff frequency would therefore be approximately 2000 Hz. The 
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passive membrane time constant varies significantly between different neurons and glial cells. Glial 
cells are regulators of neuronal intracellular calcium which plays an important role in ion channel 
conductance and is a potential regulator of plasticity effects.  
 
Frequency Intermodulation. Nonlinear systems produce intermodulation of the input frequencies 
thereby producing output frequencies which are sums and differences of integer multiples of the 
input frequencies. If an amplitude modulated signal, such as the one used in this work, is created 
by the superposition of two kHz signals of difference Δf then intermodulation can produce actual 
frequency components at Δf (along with harmonics) which may be in the physiologic frequency 
range (0-200 Hz). Subthreshold intermodulation effects have been studied in the FitzHugh-
Nagumo neuron (Si et al. 2009) (X demonstrating the significance of intermodulated components 
of the applied field.  
 
Demodulation of Amplitude Modulated Signals. Under suitable conditions an amplitude 
modulated signal may be demodulated to produce the component frequencies of its modulation 
envelope. This may occur when a system displays a rectification step followed by a low-pass filter 
step. Some gap junctions (electrical synapses) of the mammalian brain are current rectifiers 
satisfying the first criteria for demodulation. If the post synaptic membrane is near resting state 
then it will act as a low-pass filter thereby completing the demodulation circuit. Note that when 
the post synaptic membrane is near resting state (membrane conductance low) that the gap 
junction will also provide greatest coupling between the pre- and post-synaptic membranes(Curti 
and O’Brien 2016). Any high frequency amplitude-modulated field which couples to a presynaptic 
transmembrane potential, according to previously mentioned conditions, may then be 
demodulated by the rectifying gap junction and low pass-filtering post synaptic neuron. In the case 
of the present work this demodulation would produce actual neuronal frequencies at the applied 
beat frequency. Those beat frequencies below the cutoff frequency of the post synaptic resting 
membrane would be favored. Since the pyramidal cutoff frequency is approximately 20 Hz for 
pyramidal neurons this may explain the predominance of the 20 Hz beat frequency over the 140 
Hz beat frequency of this work and may suggest future experimental design. It should be noted 
that ubiquitous pyramidal cells of the neocortex, including the sensorimotor cortex, as well as glial 
cells are known to contain gap junctions. 
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