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Abstract

Dynamic Pricing as an Online Decision-Making Problem

by

Jianyu Xu

The intersection of pricing and machine learning has gained considerable attention in

recent years, positioning pricing strategy as a decision-making problem for the sellers

who are tasked with setting prices in real-time and learning optimal prices through

observed demands. This thesis explores dynamic pricing within the framework of on-

line decision-making, where sequential decisions are informed by continuously evolving

observations.

We contribute novel technical approaches to dynamic pricing through the study of two

main aspects:

I Feature-Based Dynamic Pricing. In Part I, we address the challenge of pricing

highly differentiated products, each characterized by specific features.Assuming

linear and noisy customer valuations with binary decision outcomes, we explore

settings with known, unknown, and heteroscedastic noise distributions. We propose

algorithms for each scenario, providing rigorous analysis of their regret guarantees.

Our findings illustrate that the difficulty of solving feature-based dynamic pricing is

contingent on the seller’s knowledge of noise distributions.

II Dynamic Pricing under Constraints. In Part II, we examine constraints that

affect pricing strategies in modern markets, focusing on fairness and inventory limits.
viii



We firstly introduce two fairness notions and develop a randomized pricing mechanism

that accommodates multiple fairness constraints simultaneously, achieving optimal

regret and fairness outcomes. In the other project, we tackle pricing under inventory

constraints, addressing challenges posed by censored demands to achieve optimal

regrets.

Our algorithmic solutions are rigorously evaluated through the metric of information-

theoretic regret bounds. The practical relevance of our methodologies is further validated

by comprehensive empirical studies using simulated data. The combination of theoretical

and practical justifications demonstrates the robustness and applicability of our approaches

across various dynamic pricing scenarios.
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Chapter 1

Introduction

Dynamic pricing is a strategy where prices are flexibly adjusted in response to market

demand and other variables. In the ever-evolving landscape of E-commerce and online

markets, it plays a pivotal role in enhancing the profitability and market responsiveness

of firms. Having been studied since Cournot [1897], dynamic pricing is formulated

as a complex decision-making problem that intertwines elements of machine learning,

operations research, and computer science.

In this thesis, we investigate dynamic pricing as an online decision-making problem,

exploring both its theoretical underpinnings and practical applications to develop strategies

that optimize pricing decisions in real-time, maximizing profit while accommodating the

inherent characteristics and constraints of online markets.

1



Introduction Chapter 1

1.1 Dynamic Pricing Problems

Dynamic pricing involves a scenario where a seller proposes prices and observes the

realized demands from customers over time. The primary aim is to estimate the demand

curve effectively – understanding how customer demand varies with changes in price.

Correspondingly, an accurate estimation of the demand curve allows the seller to adjust

prices wisely to maximize profitability. This setting induces continual interactions between

price proposals and demand observations, necessitating dynamic decision-making strategies

on the seller’s side based on immediate customer responses. Therefore, the challenge lies in

determining the most effective pricing strategy that not only approaches the optimal price

asymptotically but also minimizes the costs associated with the adaptation process.

1.2 Online Decision-Making Problems

The framework of online decision-making is particularly apt for addressing problems where

decisions are made sequentially and where the feedback of these decisions inform future

actions. In this context, a player takes an action at each time and receives a corresponding

action-dependent reward from the environment. This iterative process involves estimating

the potential rewards of various actions and selecting the optimal action (or the optimal

action-taking policy) based on these estimates. The complexity of online decision-making

is further accentuated by the diversity of problem models it encompasses, including but

not limited to multi-armed bandits [MAB, Lai and Robbins, 1985], contextual bandits

[CB, Langford and Zhang, 2007], online convex optimization [OCO, Hazan, 2016],

Markov decision processes [MDP, Puterman, 1990], and Reinforcement learning [RL,

Kaelbling et al., 1996], each presenting unique challenges and solutions.

2



Introduction Chapter 1

1.3 Bridging Dynamic Pricing with Online Decision-

Making

This thesis posits that dynamic pricing can be effectively modeled and analyzed within

the framework of online decision-making. The synthesis of these domains is beneficial for

several reasons:

1. Natural alignment in problem setting. The inherent structure of dynamic

pricing problems can be formulated as online decision-making, which involves

sequential actions and real-time feedback.

2. Applicability of performance metric. The concept of regret, a performance

metric prevalent in online decision-making, is readily applicable to dynamic pricing,

as it provides a measure for evaluating the efficacy of pricing strategies by comparing

the cumulative rewards against a benchmark of optimal actions/policies.

3. Algorithmic and analytic solutions. Online decision-making has spawned a

wealth of algorithms that can potentially be adapted for dynamic pricing. Existing

literature also offers a rich toolkit for analyzing the quantitative performance of

decision-making algorithms from theoretical and practical aspects.

However, despite these synergies, existing methods from the domain of online decision-

making are not directly transferrable to dynamic pricing due to unique characteristics such

as continuous decision spaces, partial observations, and constraints. These distinctions

necessitate the development of specialized algorithms that can handle the specificities of

dynamic pricing while striving to minimize regret.

This dissertation aims to bridge this gap by developing novel algorithms that incorporate

3



Introduction Chapter 1

advanced methodologies in online decision-making studies with the nuanced structures

of dynamic pricing. We endeavor to contribute to the field by constructing a theoretical

foundation for dynamic pricing, developing algorithms that address its unique challenges,

and demonstrating their information-theoretic performance through quantitative analysis.

It not only enhances the understandings of dynamic pricing within statistical and compu-

tational frameworks, but also provides concrete algorithms that can be implemented in

real-world scenarios.

1.4 Organization of Dissertation

This thesis will be organized into two parts, each containing a few chapters and pre-

senting a sequence of concrete research works. Each chapter represents a previously

published/submitted paper and has self-concordant introduction, conclusion, and analy-

sis.

1.4.1 Feature-based Dynamic Pricing

Consider the following pricing problem: At each time t = 1, 2, . . . , T , a feature vector xt

describing the current sales session is revealed by the nature. After observing xt, the seller

proposes a price pt, while the buyer generates a valuation yt but keeps it in secret. The

demand is a binary decision of purchase, i.e. 1t := 1[pt ≤ yt], based on the comparison

between price and valuation.

In Part I, we study this problem under a variety of modeling assumptions. We firstly

consider a linear valuation model where yt is a linear noisy mapping from xt. Chapter 2

considers the case when the noise distribution is known to the seller, and Chapter 3

4



Introduction Chapter 1

focuses on the problem when the noise distribution is agnostic. Moreover, Chapter 4

generalizes the linear valuation model by allowing a feature-dependent noise variance.

In chapters listed above, we propose algorithms that achieve sub-linear regrets. We

also prove information-theoretic regret lower bounds as indicators of optimality. At the

end of Part I, we will conclude our results and discuss on the contemporary and future

development of feature-based dynamic pricing studies.

1.4.2 Dynamic Pricing under Constraints

In real-world scenarios, the proposed prices and realized demands are always restricted

under certain constraints. One example lies in customers’ concerns on pricing fairness, i.e.

how different are the prices for me versus for other customers. This requires the prices

across different customer groups are *similar* under certain metrics. Another example

originates from a limited inventory quantity: What if the potential demand exceeds the

inventory we currently have in storage?

In Part II, we study dynamic pricing problem under these two types of constraints. On

the one hand, Chapter 5 introduces the concepts of procedural and substantive fairness

for pricing, and proposes an algorithm that achieves optimal regret and unfairness

rates simultaneously. On the other hand, Chapter 6 introduces a pricing problem with

inventory-censored demand and proposes an optimal algorithm.

5



Part I

Feature-Based Dynamic Pricing

6



Overview

In this part, we study the problem of feature-based dynamic pricing, which describes a

scenario where the seller is selling a variety of items on the fly. At each time period, the

nature may introduce a new product, unfamiliar to the seller, yet similar in features to

previously sold items. Leveraging historical sales data, the seller progressively refines

their pricing strategy based on these features.

We generally define our problem setting as follows: For each time period t = 1, 2, . . . , T ,

a feature vector xt ∈ Rd, which characterizes an item and its associated sales context, is

disclosed to both the customer and the seller. Upon reviewing xt, the customer internally

assesses a secret valuation yt, while the seller simultaneously proposes a price pt. The

customer then decides whether to purchase the item based on a comparison of pt and yt.

The seller, not having access to yt, only observes the customer’s binary purchase decision,

represented as 1t := 1[pt ≤ yt].

This model was initially proposed and studied in Cohen et al. [2020], which posited a

linear valuation framework with negligible or no noise interference. Later Javanmard

and Nazerzadeh [2019] investigated a more general linear noisy valuation model and

addressed the sparsity of feature vectors. A stream of subsequent works (including ours)

have further developed this topic from various perspectives, which we will discuss in more

7



detail throughout Part I.

In the following chapters, we will introduce three of our works that contributes to this

problem employing a (generalized) linear noise valuation model. Specifically, we investigate

the following three aspects.

1. In Chapter 2, we focus on the linear noisy valuation model yt = x⊤
t θ∗ + Nt where

θ∗ is an unknown parameter and Nt is an i.i.d. noise with a known distribution.

We propose two algorithms, EMLP and ONSP, that achieve the O(d log T ) optimal

regret for stochastic and adversarial {xt} sequences respectively.

2. In Chapter 3, we continue with the same valuation model but assume Nt is drawn

from an unknown noise distribution. We propose a D2-EXP4 algorithm, which

achieves a regret of O(T 3/4) without any specific assumptions about the noise

distribution beyond boundedness. On the other hand, we show the problem hardness

by proving a Ω̃(T 2/3) regret lower bound.

3. In Chapter 4, we expand the valuation model to account for heteroscedasticity,

acknowledging that the variances of customers’ valuations towards different items can

vary significantly and are not necessarily proportional to the valuations themselves.

Therefore, we model this effect by incorporating a contextual multiplier on the

original linear model, such that yt = 1
x⊤

t η∗ · (x⊤
t θ∗ + Nt). Under this model, we

propose a PwP algorithm that achieves Õ(
√

dT ) optimal regret.

A overview of regret rates under all comparable assumptions (i.e. the linear noisy valuation

model and those closely related) is summarized and illustrated in Figure 1.1. Each

chapter will provide comprehensive details, including motivations, model formulations,

assumptions, algorithmic strategies, analyses, experiments, and discussions.

8



Figure 1.1: The regret rates in existing works (until July 2024) on the feature-based

dynamic pricing problem. The x-axis represents the assumptions on the valuation noise

distribution, and the y-axis represents the regret rates. Blue circles and yellow triangles

represent the algorithmic upper bound and information-theoretic lower bound, respectively.

A matching circle-and-triangle means a closed gap, indicating both of them are optimal.

9



Chapter 2

Logarithmic Regret: When Noise

Distribution is Known

As outlined in the overview, we study a feature-based dynamic pricing where each

customer’s valuation is a linear and noisy mapping from the revealed features, and

the customer’s demand is binary that depends on the comparison between price and

evaluation. In this chapter, we focus on scenarios where the seller possesses precise

knowledge of the noise distribution affecting customers’ valuations. We provide two

algorithms (EMLP and ONSP) for stochastic and adversarial feature settings, respectively,

and prove the optimal O(d log T ) regret bounds for both. In comparison, the best

existing results are O
(
min

{
1

λ2
min

log T,
√

T
})

and O(T 2/3) respectively, with λmin being

the smallest eigenvalue of E[xxT ] that could be arbitrarily close to 0. We also prove

an Ω(
√

T ) information-theoretic lower bound for a slightly more general setting, which

demonstrates that “knowing-the-demand-curve” leads to an exponential improvement in

feature-based dynamic pricing.

10



Logarithmic Regret: When Noise Distribution is Known Chapter 2

2.1 Introduction

The problem of pricing — to find a high-and-acceptable price — has been studied since

Cournot [1897]. In order to locate the optimal price that maximizes the revenue, a firm

may adjust their prices of products frequently, which inspires the dynamic pricing problem.

Existing works [Kleinberg and Leighton, 2003, Broder and Rusmevichientong, 2012, Chen

and Farias, 2013, Besbes and Zeevi, 2015] primarily focus on pricing a single product,

which usually will not work well in another setting when thousands of new products

are being listed every day with no prior experience in selling them. Therefore, we seek

methods that approach an acceptable-and-profitable price with only observations on this

single product and some historical selling records of other products.

In this chapter, we consider a “feature-based dynamic pricing” problem, which was studied

by Amin et al. [2014], Cohen et al. [2020], Javanmard and Nazerzadeh [2019]. In this

problem setting, a sales session (product, customer and other environmental variables)

is described by a feature vector, and the customer’s expected valuation is modeled as a

linear function of this feature vector.

Feature-based dynamic pricing. For t = 1, 2, ..., T :

1. A feature vector xt ∈ Rd is revealed that describes a sales session (product, customer

and context).

2. The customer valuates the product as wt = x⊤
t θ∗ + Nt.

3. The seller proposes a price pt > 0 concurrently (according to xt and historical sales

records).

4. The transaction is successful if pt ≤ wt, i.e., the seller gets a reward (payment) of

rt = pt · 1(pt ≤ wt).

Here T is unknown to the seller (and thus can go to infinity), xt’s can be either stochastic
11



Logarithmic Regret: When Noise Distribution is Known Chapter 2

(e.g., each sales session is drawn i.i.d.) or adversarial (e.g., the sessions arrive in a strategic

sequence), θ∗ ∈ Rd is a fixed parameter for all time periods, Nt is a zero-mean noise,

and 1t = 1(pt ≤ wt) is an indicator that equals 1 if pt ≤ wt and 0 otherwise. In this

online-fashioned setting, we only see and sell one product at each time. Also, the feedback

is Boolean Censored, which means we can only observe 1t instead of knowing wt directly.

The best pricing policy for this problem is the one that maximizes the expected reward,

and the regret of a pricing policy is accordingly defined as the difference of expected

rewards between this selected policy and the best policy.

Summary of Results. Our contributions are threefold.

1. When xt’s are independently and identically distributed (i.i.d.) from an unknown

distribution, we propose an “Epoch-based Max-Likelihood Pricing (EMLP)” algo-

rithm that guarantees a regret bound at O(d log T ). The design of EMLP is similar

to that of the RMLP algorithm in Javanmard and Nazerzadeh [2019], but our new

analysis improves their regret bound at O(
√

T ) when E[xx⊤] is near singular.

2. When xt’s are adversarial, we propose an “Online-Newton-Step Pricing (ONSP)”

algorithm that achieves O(d log T ) regret on constant-level noises for the first time,

which exponentially improves the best existing result of O(T 2/3) [Cohen et al.,

2020].1

3. Our methods that achieve logarithmic regret require knowing the exact distribution

of Nt in advance, as is also assumed in Javanmard and Nazerzadeh [2019]. We prove

an Ω(
√

T ) lower bound on the regret if Nt ∼ N (0, σ2) where σ is unknown, even

with θ∗ given and xt fixed for all t.
1Previous works [Cohen et al., 2020, Krishnamurthy et al., 2021] did achieve polylog regrets, but only

for negligible noise with σ = O( 1
T log T ).

12
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The O(log T ) regret of EMLP and ONSP meets the information-theoretical lower bound

[Theorem 5, Javanmard and Nazerzadeh, 2019]. In fact, the bound is optimal even when

wt is revealed to the learner [Mourtada, 2019]. From the perspective of characterizing

the hardness of dynamic pricing problems, we generalize the classical results on “The

Value of Knowing a Demand Curve” [Kleinberg and Leighton, 2003] by further dividing

the random-valuation class with an exponential separation of: (1) O(log T ) regret for

knowing the demand curve exactly (even with adversarial features), and (2) Ω(
√

T ) regret

for almost knowing the demand curves (up to a one-parameter parametric family).

2.2 Related Works

In this section, we discuss our results relative to existing works on feature-based dynamic

pricing, and highlight the connections and differences to the related settings of contextual

bandits and contextual search.

Feature-based Dynamic Pricing. There is a growing body of work on dynamic pricing

with linear features [Amin et al., 2014, Qiang and Bayati, 2016, Cohen et al., 2020,

Javanmard and Nazerzadeh, 2019]. Table 2.1 summarizes the differences in the settings

and results2. Among these work, our paper directly builds upon [Cohen et al., 2020]

and [Javanmard and Nazerzadeh, 2019], as we share the same setting of online feature

vectors, linear and noisy valuations and Boolean-censored feedback. Relative to the

results in [Javanmard and Nazerzadeh, 2019], we obtain O(d log T ) regret under weaker

assumptions on the sequence of input features — in both distribution-free stochastic

feature setting and the adversarial feature setting. It is to be noted that [Javanmard

and Nazerzadeh, 2019] also covers the sparse high-dimensional setting, and handles a
2We only concern the dependence on T since there are various different assumptions on d.

13
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Table 2.1: Related Works and Regret Bounds w.r.t. T

Algorithm Work Regret (upper) bound Feature Noise

LEAP [Amin et al., 2014] Õ(T 2
3 ) i.i.d. Noise-free

EllipsoidPricing [Cohen et al., 2020] O(log T ) adversarial Noise-free

EllipsoidEXP4 [Cohen et al., 2020] Õ(T 2
3 ) adversarial Sub-Gaussian

PricingSearch [Leme and Schneider, 2018] O(log log(T )) adversarial Noise-free

RMLP [Javanmard and Nazerzadeh, 2019]
O(log T/C2

min)†

i.i.d. Log-concave, distribution-known
O(
√

T )

RMLP-2 [Javanmard and Nazerzadeh, 2019] O(
√

T ) i.i.d. Known parametric family of log-

concave.

ShallowPricing [Cohen et al., 2020]
O(poly(log T )) adversarial Sub-Gaussian, known σ = O( 1

T log T
)

CorPV [Krishnamurthy et al., 2021]

Algorithm 2 (MSPP) [Liu et al., 2021] O(log log(T )) adversarial Noise-free

EMLP This paper O(log T ) i.i.d. Strictly log-concave, distribution-

known

ONSP This paper O(log T ) adversarial Strictly log-concave, distribution-

known
† Cmin is the restricted eigenvalue condition. It reduces to the smallest eigenvalue of E[xx⊤] in the

low-dimensional case we consider.

slightly broader class of demand curves. Relative to [Cohen et al., 2020], in which the

adversarial feature-based dynamic pricing was first studied, our algorithm ONSP enjoys

the optimal O(d log T ) regret when the noise-level is a constant. In comparison, Cohen

et al. [2020] reduces the problem to contextual bandits and applies the (computationally

inefficient) “EXP-4” algorithm [Auer et al., 2002b] to achieve a Õ(T 2/3) regret. The

“bisection” style-algorithm in both Cohen et al. [2020] and Krishnamurthy et al. [2021]

could achieve Õ(poly(d)poly log(T )) regrets but requires a small-variance subgaussian

noise satisfying σ = O( 1
T log T

).

Lower Bounds. Most existing works focus on the lower regret bounds of non-feature-

based models. Kleinberg and Leighton [2003] divides the problem setting as fixed, random,

and adversarial valuations, and then proves each a Θ(log log T ), Θ(
√

T ), and Θ(T 2/3)

14
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regret, respectively. Broder and Rusmevichientong [2012] further proves a Θ(
√

T ) regret

in general parametric valuation models. In comparison, we generalize the methods of

Broder and Rusmevichientong [2012] to our feature-based setting and further narrow

it down to a linear-feature Gaussian-noisy model. As a complement to Kleinberg and

Leighton [2003], we further separate the exponential regret gap between: (1) O(log T ) of

the hardest (adversarial feature) totally-parametric model, and (2) Ω(
√

T ) of the simplest

(fixed known expectation) unknown-σ Gaussian model.

Contextual Bandits. For readers familiar with the online learning literature, our

problem can be reduced to a contextual bandits problem [Langford and Zhang, 2007,

Agarwal et al., 2014] by discretizing the prices. But this reduction only results in O(T 2/3)

regret, as it does not capture the special structure of the feedback: an accepted price

indicates the acceptance of all lower prices, and vise versa. Moreover, when comparing to

linear bandits [Chu et al., 2011], it is the valuation instead of the expected reward that

we assume to be linear.

Contextual Search. Feature-based dynamic pricing is also related to the contextual

search problem [Lobel et al., 2018, Leme and Schneider, 2018, Liu et al., 2021, Krishna-

murthy et al., 2021], which often involves learning from Boolean feedbacks, sometimes

with a “pricing loss” and “noisy” feedback. These shared jargons make this problem

appearing very similar to our problem. However, except for the noiseless cases [Lobel

et al., 2018, Leme and Schneider, 2018], contextual search algorithms, even with “pricing

losses” and “Noisy Boolean feedback” [e.g., Liu et al., 2021], do not imply meaningful

regret bounds in our problem setup due to several subtle but important differences in the

problem settings. Specifically, the noisy-boolean feedback model of [Liu et al., 2021] is

about randomly toggling the “purchase decision” determined by the noiseless valuation

x⊤θ∗ with probability 0.5 − ϵ. This is incompatible to our problem setting where the
15
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purchasing decision is determined by a noisy valuation x⊤θ∗ + Noise. Ultimately, in the

setting of [Liu et al., 2021], the optimal policy alway plays x⊤θ∗, but our problem is harder

in that we need to exploit the noise and the optimal price could be very different from

x⊤θ∗. 3 Krishnamurthy et al. [2021] also discussed this issue explicitly and considered the

more natural noisy Boolean feedback model studied in this paper. Their result, similar to

Cohen et al. [2020], only achieves a logarithmic regret when the noise on the valuation is

vanishing in an Õ(1/T ) rate.

2.3 Problem Setup

Symbols and Notations. Now we introduce the mathematical symbols and notations

involved in the following pages. The game consists of T rounds. xt ∈ Rd, pt ∈ R+ and

Nt ∈ R denote the feature vector, the proposed price and the noise respectively at round

t = 1, 2, ..., T .4 We denote the product ut := x⊤
t θ∗ as an expected valuation. At each

round, we receive a payoff (reward) rt = pt · 1t, where the binary variable 1t indicates

whether the price is accepted or not, i.e., 1t = 1(pt ≤ wt). As we may estimate θ∗ in

our algorithms, we denote θ̂t as an estimator of θ∗, which we will formally define in the

algorithms. Furthermore, we denote some functions that are related to noise distribution:

F (ω) and f(ω) denote the cumulative distribution function (CDF) and probability density

function (PDF) sequentially. We know that F ′(ω) = f(ω) if we assume differentiability.

To concisely denote all data observed up to round τ (i.e., feature, price and payoff of all

past rounds), we define hist(τ) = {(xt, pt,1t) for t = 1, 2, ..., τ}. hist(τ) represents the

transcript of all observed random variables before round (τ + 1).
3As an explicit example, suppose the valuation x⊤θ∗ = 0, then the optimal price must be > 0 in order

to avoid zero return.
4In an epoch-design situation, a subscript (k, t) indicates round t of epoch k.
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We define

lt(θ) := −1t · log
(
1− F (pt − x⊤

t θ)
)
− (1− 1t) log

(
F (pt − x⊤

t θ)
)

(2.1)

as a negative log-likelihood function at round t. Also, we define an expected log-likelihood

function Lt(θ):

Lt(θ) := ENt [lt(θ)|xt] (2.2)

Notice that we will later define an L̂k(θ) which is, however, not an expectation.

Definitions of Key Quantities. We firstly define an expected reward function g(p, u).

g(p, u) := E[rt|pt = p, x⊤
t θ∗ = u] = p · P [p ≤ x⊤

t θ∗ + Nt] = p · (1− F (p− u)). (2.3)

This indicates that if the expected valuation is u and the proposed price is p, then the

(conditionally) expected reward is g(p, u). Now we formally define the regret of a policy

(algorithm) A as is promised in Section 2.1.

Definition 2.3.1 (Regret). Let A : Rd ×
(
Rd,R, {0, 1}

)t−1
→ R be a policy of pricing,

i.e. A(xt, hist(t− 1)) = pt. The regret of A is defined as follows.

RegA =
T∑

t=1
max

p
g(p, x⊤

t θ∗)− g(A(xt, hist(t− 1)), x⊤
t θ∗). (2.4)

Here hist(t− 1) is the historical records until (t− 1)th round.

Summary of Assumptions. We specify the problem settings by proposing three

assumptions.

Assumption 2.3.2 (Known, bounded, strictly log-concave distribution). The noise Nt

is independently and identically sampled from a distribution whose CDF is F . Assume

that F ∈ C2 is strictly increasing and that F and (1− F ) are strictly log-concave. Also

assume that f and f ′ are bounded, and denote Bf := supω∈R f(ω), Bf ′ := supω∈R |f ′(ω)|

as two constants.
17
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Assumption 2.3.3 (Bounded convex parameter space). The true parameter θ∗ ∈ H,

where H ⊆ {θ : ||θ||2 ≤ B1} is a bounded convex set and B1 is a constant. Assume H is

known to us (but θ∗ is not).

Assumption 2.3.4 (Bounded feature space). Assume xt ∈ D ⊆ {x : ||x||2 ≤ B2},

∀t = 1, 2, . . . , T . Also, 0 ≤ x⊤θ ≤ B, ∀x ∈ D, ∀θ ∈ H, where B = B1 ·B2 is a constant.

Assumption 2.3.3 and Assumption 2.3.4 are mild as we can choose B1 and B2 large enough.

In Section 2.4.1, we may add further complement to Assumption 2.3.4 to form a stochastic

setting. Assumption 2.3.2 is stronger since we might not know the exact CDF in practice,

but it is still acceptable from an information-theoretic perspective. There are at least

three reasons that lead to this assumption: Primarily, this is necessary if we hope to

achieve an O(log(T )) regret. We will prove in Section 2.5.3 that an Ω(
√

T ) is unavoidable

if we cannot know one parameter exactly. Moreover, the pioneering work of Javanmard

and Nazerzadeh [2019] also assumes a known noise distribution with log-concave CDF,

and many common distributions are actually strictly log-concave, such as Gaussian and

logistic.5 Besides, although we did not present a method to precisely estimate σ in this

chapter, it is a reasonable algorithm to replace with a plug-in estimator estimated using

historical offline data. As we have shown, not knowing σ requires O(
√

T ) regret in general,

but the lower bound does not rule out the plug-in approach achieving a smaller regret for

interesting subclasses of problems in practice.

Finally, we state a lemma and define an argmax function helpful for our algorithm

design.

Lemma 2.3.5 (Uniqueness). For any u ≥ 0, there exists a unique p∗ ≥ 0 such that
5In fact, F and (1 − F ) are both log-concave if its PDF is log-concave, according to Prekopa’s

Inequality.
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Algorithm 1 Epoch-based max-likelihood

pricing (EMLP)
Input: Convex and bounded set H

Observe x1, randomly choose p1 and get

r1.

Solve θ̂1 = arg minθ∈H l1(θ);

for k = 1 to ⌊log2 T ⌋+ 1 do

Set τk = 2k−1;

for t = 1 to τk do

Observe xk,t;

Set price pk,t = J(x⊤
k,tθ̂k);

Receive rk,t = pkt · 1t;

end for

Solve: θ̂k+1 = arg minθ∈H L̂k(θ), where

L̂k(θ) = 1
τk

∑τk
t=1 lk,t(θ).

end for

Algorithm 2 Online Newton Step Pricing

(ONSP)
Input: Convex and bounded set H, θ1,

parameter γ, ϵ > 0

Set A0 = ϵ · Id;

for t = 1 to T do

Observe xt;

Set price pt = J(x⊤
t θt);

Receive rt = pt · 1t;

Set surrogate loss function lt(θ);

Calculate ∇t = ∇lt(θ);

Rank-1 update: At = At−1 +∇t∇⊤
t ;

Newton step: θ̂t+1 = θt − 1
γ
A−1

t ∇t;

Projection: θt+1 = ∏At
H (θ̂t+1).

end for

g(p∗, u) = maxp∈R g(p, u). Thus, we can define a greedily pricing function that maximizes

the expected reward:

J(u) := arg max
p

g(p, u) (2.5)

Please see the proof of Lemma 2.3.5 in Section 2.9.1.

2.4 Algorithms

In this section, we propose two dynamic pricing algorithms: EMLP and ONSP, for

stochastic and adversarial features respectively.
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2.4.1 Pricing with Distribution-Free Stochastic Features

Assumption 2.4.1 (Stochastic features). Assume xt ∼ D ⊆ D are independently

identically distributed (i.i.d.) from an unknown distribution, for any t = 1, 2, . . . , T .

The first algorithm, Epoch-based Max-Likelihood Pricing (EMLP) algorithm, is suitable

for a stochastic setting defined by Assumption 2.4.1. EMLP proceeds in epochs with each

stage doubling the length of the previous epoch. At the end of each epoch, we consolidate

the observed data and solve a maximum likelihood estimation problem to learn θ. A max

likelihood estimator (MLE) obtained by minimizing L̂k(θ) := 1
τk

∑τk
t=1 lk,t(θ), which is then

used in the next epoch as if it is the true parameter vector. In the equation, k, τk denotes

the index and length of epoch k. The estimator is computed using data in hist(k), which

denotes the transcript for epoch 1 ∼ k. The pseudo-code of EMLP is summarized in

Algorithm 1. In the remainder of this section, we discuss the computational efficiency

and prove the upper regret bound of O(d log T ).

Computational Efficiency. The calculations in EMLP are straightforward except

for arg min L̂k(θ) and J(u). As g(p, u) is proved unimodal in Lemma 2.3.5, we may

efficiently calculate J(u) by binary search. We will prove that lk,t is exp-concave (and

thus also convex). Therefore, we may apply any off-the-shelf tools for solving convex

optimization.

MLE and Probit Regression. A closer inspection reveals that this log-likelihood

function corresponds to a probit [Aldrich et al., 1984] or a logit model [Wright, 1995] for

Gaussian or logistic noises. See Section 2.7.4.

Affine Invariance. Both optimization problems involved depend only on x⊤θ, so if

we add any affine transformation to x into x̃ = Ax, the agent can instead learn a new

parameter of θ̃∗ = (A⊤)−1θ∗ and achieve the same ut = x⊤
t θ∗. Also, the regret bound
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is not affected as the upper bound B over x⊤θ does not change 6. Therefore, it is only

natural that the regret bound does not depend on the distribution x, nor the condition

numbers of E[xx⊤] (i.e., the ratio of λmax/λmin).

2.4.2 Pricing with Adversarial Features

In this part, we propose an “Online Newton Step Pricing (ONSP)” algorithm that deals

with adversarial {xt} series and guarantees O(d log T ) regret. The pseudo-code of ONSP

is shown as Algorithm 2. In each round, it uses the likelihood function as a surrogate

loss and applies “Online Newton Step”(ONS) method to update θ̂. In the next round,

it adopts the updated θ̂ and sets a price greedily. In the remainder of this section, we

discuss some properties of ONSP and prove the regret bound.

The calculations of ONSP are straightforward. The time complexity of calculating the

matrix inverse A−1
t is O(d3), which is fair as d is small. In high-dimensional cases, we

may use Woodbury matrix identity7 to reduce it to O(d2) as we could get A−1 directly

from the latest round.

2.5 Regret Analysis

In this section, we mainly prove the logarithmic regret bounds of EMLP and ONSP

corresponding to stochastic and adversarial settings, respectively. Besides, we also prove

an Ω(
√

T ) regret bound on fully parametric F with one parameter unknown.
6Here A is assumed invertible, otherwise the mapping from x̃t to ut does not necessarily exist.
7(A + xx⊤)−1 = A−1 − 1

1+x⊤A−1x
A−1x(A−1x)⊤.
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2.5.1 O(d log T ) Regret of EMLP

In this part, we present the regret analysis of Algorithm 1. First of all, we propose the

following theorem as our main result on EMLP.

Theorem 2.5.1 (Overall regret). With Assumption 2.3.2, Assumption 2.3.3, Assump-

tion 2.3.4 and Assumption 2.4.1, the expected regret of EMLP can be bounded by:

E[RegEMLP] ≤ 2Csdlog T , (2.6)

where Cs is a constant that depends only on F (ω) and is independent to D.

The proof of Theorem 2.5.1 is sophisticated. For the sake of clarity, we next present an

inequality system as a roadmap toward the proof. After this, we formally illustrate each

line of it with lemmas.

Since EMLP proposes J(x⊤
k,tθ̂k) in every round of epoch k, we may denote the per-round

regret as Regt(θ̂k), where:

Regt(θ) := g(J(x⊤
t θ∗), x⊤

t θ∗)− g(J(x⊤
t θ), x⊤

t θ∗). (2.7)

Therefore, it is sufficient to prove the following Theorem:

Theorem 2.5.2 (Expected per-round regret). For the per-round regret defined in Eq. (2.7),

we have:

E[Regk,t(θ̂k)] ≤ Cs ·
d

τk

.

The proof roadmap of Theorem 2.5.2 can be written as the following inequalities.

E[Regk,t(θ̂k)] ≤C · E[(θ̂k − θ∗)⊤xk,tx
⊤
k,t(θ̂k − θ∗)] ≤ 2C

Cdown
E[L̂k(θ̂k)− L̂k(θ∗)]

≤2C · Cexp

C2
down

d

τk

.

(2.8)

We explain Eq. (2.8) in details. The first inequality comes from the following Lemma 2.5.3.
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Lemma 2.5.3 (Quadratic regret bound). We have:

Regt(θ) ≤ C · (θ − θ∗)⊤xtx
⊤
t (θ − θ∗),∀θ ∈ H,∀xt ∈ D. (2.9)

Here C = 2Bf + (B + J(0)) ·Bf ′ .

The intuition is that function g(J(u), u) is 2nd-order-smooth at (J(u∗), u∗). A detailed

proof of Lemma 2.5.3 is in Section 2.9.2. Note that C is highly dependent on the

distribution F . After this, we propose Lemma 2.5.4 that contributes to the second

inequality of Eq. (2.8).

Lemma 2.5.4 (Quadratic likelihood bound). For the expected likelihood function Lt(θ)

defined in Eq. (2.2), we have:

Lt(θ)− Lt(θ∗) ≥ 1
2Cdown(θ − θ∗)⊤xtx

⊤
t (θ − θ∗),∀θ ∈ H,∀x ∈ D, (2.10)

where Cdown := inf
ω∈[−B,B+J(0)]

min
{

d2 log(1− F (ω))
dω2 ,

d2 log(F (ω))
dω2

}
> 0. (2.11)

Proof. Since the true parameter always maximizes the expected likelihood function

[Murphy, 2012], by Taylor Expansion we have ∇L(θ∗) = 0, and hence Lt(θ)− Lt(θ∗) =
1
2(θ− θ∗)⊤∇2Lt(θ̃)(θ− θ∗) for some θ̃ = αθ∗ + (1− α)θ. Therefore, we only need to prove

the following lemma:

Lemma 2.5.5 (Strong convexity and Exponential Concavity). Suppose lt(θ) is the negative

log-likelihood function in epoch k at time t. For any θ ∈ H, xt ∼ D, we have:

∇2lt(θ) ⪰ Cdownxtx
⊤
t ⪰

Cdown

Cexp
∇lt(θ)∇lt(θ)⊤ ⪰ 0, (2.12)

where Cexp := sup
ω∈[−B,B+J(0)]

max
{

f(ω)2

F (ω)2 ,
f(ω)2

(1− F (ω))2

}
< +∞. (2.13)
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Proof of Lemma 2.5.5 is in Section 2.9.2. With this lemma, we see that Lemma 2.5.4

holds.

With Lemma 2.5.3 and Lemma 2.5.4, we can immediately get the following Lemma 2.5.6.

Lemma 2.5.6 (Surrogate Regret). The relationship between Reg(θ) and likelihood function

can be shown as follows:

Regt(θ) ≤ 2 · C
Cdown

(Lt(θ)− Lt(θ∗)) , (2.14)

∀θ ∈ H,∀x ∈ D, where C and Cdown are defined in Lemma 2.5.3 and Lemma 2.5.4

respectively.

Lemma 2.5.6 enables us to choose the negative log-likelihood function as a surrogate loss.

This is not only an important insight of EMLP regret analysis, but also the foundation of

ONSP design.

The last inequality of Eq. (2.8) comes from this lemma:

Lemma 2.5.7 (Per-epoch surrogate regret bound). Denoting θ̂k as the estimator coming

from epoch (k − 1) and being used in epoch k, we have:

Eh[L̂k(θ̂k)− L̂k(θ∗)] ≤ Cexp

Cdown
· d

τk + 1 . (2.15)

Here Cexp is defined in Eq. (2.13), and Eh[·] = E[·|hist(k − 1)].

Proof of Lemma 2.5.7 is partly derived from the work Koren and Levy [2015], and here we

give a proof sketch without specific derivations. A detailed proof lies in Section 2.9.2.

Proof sketch of Lemma 2.5.7. We list the four main points that contribute to the

proof:
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• Notice that lk,t(θ) is strongly convex w.r.t. a seminorm xk,tx
⊤
k,t, we know L̂k(θ) is

also strongly convex w.r.t. ∑τk
t=1 xk,tx

⊤
k,t.

• For two strongly convex functions g1 and g2, we can upper bound the distance

between their arg-minimals (scaled by some norm || · ||) with the dual norm of

∇(g1 − g2).

• Since a seminorm has no dual norm, we apply two methods to convert it into a

norm: (1) separation of parameters and likelihood functions with a “leave-one-out”

method (to separately take expectations), and (2) separation of the spinning space

and the null space.

• As the dual data-dependent norm offsets the sum of xx⊤ to a constant, Lemma 2.5.7

holds.

We have so far proved Eq. (2.8) after proving Lemma 2.5.3, Lemma 2.5.4, Lemma 2.5.7.

Therefore, Theorem 2.5.2 holds.

2.5.2 O(d log T ) Regret of ONSP

Here we present the regret analysis of Algorithm 2 (ONSP). Firstly, we state the main

theorem.

Theorem 2.5.8. With Assumption 2.3.2, Assumption 2.3.3, Assumption 2.3.4, the regret

of Algorithm 2 (ONSP) satisfies:

RegONSP ≤ Ca · d log T, (2.16)

where Ca is a function only dependent on F .
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Proof. Proof of Theorem 2.5.8 here is more concise than Section 2.5.1, because the

important Lemma 2.5.5 and Lemma 2.5.6 have been proved there. From Lemma 2.5.6,

we have:

g(J(u∗
t ), u∗

t )− g(J(ut), u∗
t ) ≤

2 · C
Cdown

· ENt [lt(θt)− lt(θ∗)]. (2.17)

With Eq. (2.17), we may reduce the regret of likelihood functions as a surrogate regret of

pricing. From Lemma 2.5.5 we see that the log-likelihood function is Cdown
Cexp

-exponentially

concave8. This enables an application of Online Newton Step method to achieve a

logarithmic regret. Therefore, by citing from the Online Convex Optimization [Hazan,

2016], we have the following Lemma.

Lemma 2.5.9 (Online Newton Step). With parameters γ = 1
2 min{ 1

4GD
, α} and ϵ = 1

γ2D2 ,

and T > 4 guarantees:

sup
{xt}

{
T∑

t=1
lt(θt)−min

θ∈H

T∑
t=1

lt(θ)
}
≤ 5

( 1
α

+ GD
)

d log T.

Here α = Cdown
Cexp

, D = 2 ·B1 and G =
√

Cexp ·B2.

With Eq. (2.17) and Lemma 2.5.9, we have:

Reg =
T∑

t=1

(
g(J(u∗

t ), u∗
t )− EN1,N2,...,Nt−1 [g(J(ut), u∗

t )]
)
≤ 2 · C

Cdown
· 5
( 1

α
+ GD

)
d log T.

(2.18)

Therefore, we have proved Theorem 2.5.8.

2.5.3 Lower Bound for Unknown Distribution

In this part, we evaluate Assumption 2.3.2 and prove that an Ω(
√

T ) lower regret bound

is unavoidable with even a slight relaxation: a Gaussian noise with unknown σ. Our proof
8A function f(µ) is α-exponentially concave iff ∇2f(µ) ⪰ α∇f(µ)∇f(µ)⊤.
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is inspired by Broder and Rusmevichientong [2012] Theorem 3.1, while our lower bound

relies on more specific assumptions (and thus applies to more general cases).

We firstly state Assumption 2.5.10 covering this part, and then state Theorem 2.5.11 as a

lower bound:

Assumption 2.5.10. The noise Nt ∼ N (0, σ2) independently, where 0 < σ ≤ 1 is fixed

and unknown.

Theorem 2.5.11 (Lower bound with unknown σ). Under Assumption 2.3.3, Assump-

tion 2.3.4, Assumption 2.4.1 and Assumption 2.5.10, for any policy (algorithm) Ψ :

Rd ×
(
Rd,R, {0, 1}

)t−1
→ R+ and any T > 2, there exists a Gaussian parameter σ ∈ R+,

a distribution D of features and a fixed parameter θ∗, such that: RegΨ ≥ 1
24000 ·

√
T .

Remark: Here we assume xt to be i.i.d., which also implies the applicability on adver-

sarial features. However, the minimax regret of the stochastic feature setting is Θ(
√

T )

[Javanmard and Nazerzadeh, 2019], while existing results have not yet closed the gap in

adversarial feature settings.

Proof sketch of Theorem 2.5.11. Here we assume a fixed valuation, i.e. u∗ = x⊤
t θ∗,∀t =

1, 2, . . .. Equivalently, we assume a fixed feature. The main idea of proof is similar to that

in Broder and Rusmevichientong [2012]: we assume σ1 = 1, σ2 = 1− T − 1
4 , and we prove

that: (1) it is costly for an algorithm to perform well in both cases if the σ’s are different

by a lot, and (2) it is costly for an algorithm to distinguish the two cases if σ’s are close

enough to each other. We put the detailed proof in Section 2.9.3.

27



Logarithmic Regret: When Noise Distribution is Known Chapter 2

28 210 212 214 216

round

2 4

2 2

20

22

24

26

re
gr

et
/lo

g(
t)

EMLP
ONSP
EXP-4
EXP-4 Linear fit, slope=0.699

(a) Stochastic feature

28 210 212 214 216

round

2 3

2 1

21

23

25

27

29

re
gr

et
/lo

g(
t)

EMLP
ONSP
EXP-4
EMLP Linear fit, slope=0.912
EXP-4 Linear fit, slope=0.724
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Figure 2.1: The regret of EMLP, ONSP and EXP-4 on simulated examples (we only conduct

EXP-4 up to T = 212 due to its exponential time consuming), with Figure a for stochastic

features and Figure b for adversarial ones. The plots are in log-log scales with all regrets divided

by a log(t) factor to show the convergence. For EXP-4, we discretize the parameter space with

T − 1
3 -size grids, which would incur an Õ(T

2
3 ) regret according to Cohen et al. [2020]. We also

plot linear fits for some regret curves, where a slope-α line indicates an O(T α) regret. Besides,

we draw error bars and bands with 0.95 coverage using Wald’s test. The two diagrams reveal

that (i) logarithmic regrets of EMLP and ONSP in the stochastic setting, (ii) a nearly-linear

regret of EMLP in the adversarial setting, and (iii) O(T
2
3 ) regrets of EXP-4 in both settings.

2.6 Numerical Result

In this section, we conduct numerical experiments to validate EMLP and ONSP. In

comparison with the existing work, we implement a discretized EXP-4 [Auer et al., 2002b]

algorithm for pricing, as is introduced in Cohen et al. [2020] (in a slightly different setting).

We will test these three algorithms in both stochastic and adversarial settings.

Basically, we assume d = 2, B1 = B2 = B = 1 and Nt ∼ N (0, σ2) with σ = 0.25. In both

settings, we conduct EMLP and ONSP for T = 216 rounds. For ONSP, we empirically
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select γ and ϵ that accelerates the convergence, instead of using the values specified in

Lemma 2.5.9. Since EXP-4 consumes exponential time and requires the knowledge of T

in advance to discretize the policy and valuation spaces, we execute EXP-4 for a series of

T = 2k, k = 1, 2, . . . , 12. We repeat every experiment 5 times for each setting and then

take an average.

Stochastic Setting. We implement and test EMLP, ONSP and EXP-4 with stochastic

{xt}’s. The numerical results are shown in Figure 2.1a on a log-log diagram, with the

regrets divided by log(t). It shows log(t)-convergences on EMLP and ONSP, while EXP-4

is in a tα rate with α ≈ 0.699.

Adversarial Setting. We implement the three algorithms and test them with an

adversarial {xt}’s: for the k-th epoch, i.e. t = 2k−1, 2k−1 + 1, . . . , 2k− 1, we let xt = [1, 0]⊤

if k ≡ 1( mod 2) and xt = [0, 1]⊤ if k ≡ 0( mod 2). The numerical results are shown in

Figure 2.1b on a log-log diagram, with the regrets divided by log(t). The log-log plots of

ONSP and EXP-4 are almost the same as those in Figure 2.1a. However, EMLP shows an

almost linear (tα rate with α ≈ 0.912) regret in this adversarial setting. This is because

the adversarial series only trains one dimension of θ in each epoch, while the other is

arbitrarily initialized and does not necessarily converge. However, in the next epoch, the

incorrect dimension is exploited. Therefore, a linear regret originates.

2.7 Discussion

Here we discuss more related works, regret dependence on other parameters, problem

modeling, algorithm design, and potential extensions of future works.
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2.7.1 More Related Works

Here we will briefly review the history and recent studies that are related to our work. For

the historical introductions, we mainly refer to den Boer [2015] as a survey. For bandit

approaches, we will review some works that apply bandit algorithms to settle pricing

problems. For the structural models, we will introduce different modules based on the

review in Chan et al. [2009]. Based on the existing works, we might have a better view of

our problem setting and methodology.

History of Pricing It was the work of Cournot [1897] in 1897 that firstly applied

mathematics to analyze the relationship between prices and demands. In that work, the

price was denoted as p and the demand was defined as a demand function F (p). Therefore,

the revenue could be written as pF (p). This was a straightforward interpretation of the

general pricing problem, and the key to solving it was estimations of F (p) regarding

different products. Later in 1938, the work Schultz et al. [1938] proposed price-demand

measurements on exclusive kinds of products. It is worth mentioning that these problems

are “static pricing” ones, because F is totally determined by price p and we only need to

insist on the optimal one to maximize our profits.

However, the static settings were qualified by the following two observations: on the

one hand, a demand function may not only depends on the static value of p, but also

be affected by the trend of p’s changing [Evans, 1924, Mazumdar et al., 2005]; on the

other hand, even if F (p) is static, p itself might change over time according to other

factors such as inventory level [Kincaid and Darling, 1963]. As a result, it is necessary to

consider dynamics in both demand and price, which leads to a “dynamic pricing” problem

setting.
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Dynamic Pricing as Bandits As is said in Section 2.2, the pricing problem can be

viewed as a stochastic contextual bandits problem [see, e.g., Langford and Zhang, 2007,

Agarwal et al., 2014]. Even though we may not know the form of the demand function, we

can definitely see feedback of demands, i.e. how many products are sold out, which enables

us to learn a better decision-making policy. Therefore, it can be studied in a bandit

module. If the demand function is totally agnostic, i.e. the evaluations (the highest prices

that customers would accept) come at random or even at adversary over time, then it can

be modeled as a Multi-arm bandit (MAB) problem [Whittle, 1980] exactly. In our paper,

instead, we focus on selling different products with a great variety of features. This can

be characterized as a Contextual bandit (CB) problem [Auer et al., 2002b, Langford and

Zhang, 2007]. The work Cohen et al. [2020], which applies the “EXP-4” algorithm from

Auer et al. [2002b], also mentions that “the arms represent prices and the payoffs from the

different arms are correlated since the measures of demand evaluated at different price

points are correlated random variables”. A variety of existing works, including Kleinberg

and Leighton [2003], Araman and Caldentey [2009], Chen and Farias [2013], Keskin and

Zeevi [2014], Besbes and Zeevi [2015], has been approaching the demand function from a

perspective of from either parameterized or non-parameterized bandits.

However, our problem setting is different from a contextual bandits setting in at least

two perspectives: feedback and regret. The pricing problem has a specially structured

feedback between full information and bandits setting. Specifically, rt > 0 implies that

all policies producing p < pt will end up receiving r′
t = p, and rt = 0 implies that all

policies producing p > pt will end up receiving r′
t = 0. However, the missing patterns

are confounded with the rewards. Therefore it is non-trivial to leverage this structure to

improve the importance sampling approach underlying the algorithm of Agarwal et al.

[2014]. We instead consider the natural analog to the linear contextual bandits setting
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[Chu et al., 2011]9 and demonstrate that in this case an exponential improvement in

the regret is possible using the additional information from the censored feedback. As

for regret, while in contextual bandits it refers to a comparison with the optimal policy,

it is here referring to a comparison with the optimal action. In other words, though

our approaches (both in EMLP and in ONSP) are finding the true parameter θ∗, the

regret is defined as the “revenue gap” between the optimal price and our proposed prices.

These are actually equivalent in our fully-parametric setting (where we assume a linear-

valuation-known-noise model), but will differ a lot in partially parametric and totally

agnostic settings.

2.7.2 Regret Dependence on Other Parameters

While a totally agnostic model guarantees the most generality, a structural model would

help us better understand the mechanism behind the observation of prices and demands.

The key to a structural pricing model is the behavior of agents in the market, including

customers and/or firms. In other words, the behavior of each side can be described as a

decision model. From the perspective of demand (customers), the work Kadiyali et al.

[1996] adopts a linear model on laundry detergents market, Iyengar et al. [2007] and

Lambrecht et al. [2007] study three-part-tariff pricing problems on wireless and internet

services with mixed logit models. Besanko et al. assumed an aggregate logit model on

customers in works Besanko et al. [1998] and Besanko et al. [2003] in order to study the

competitive behavior of manufacturers in ketchup market. Meanwhile, the supply side is

usually assumed to be more strategic, such as Bertrand-Nash behaviors [Kadiyali et al.,

1996, Besanko et al., 1998, Draganska and Jain, 2006]. For more details, please see Chan

et al. [2009].
9But do notice that our expected reward above is not linear, even if the valuation function is.
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Coefficients of the regret bounds. The exact regret bounds of both EMLP and

ONSP contain a constant Cexp
Cdown

that highly depends on the noise CDF F and could be

large. A detailed analysis later in this subsection shows that Cexp
Cdown

is exponentially large

w.r.t. B
σ

(see Eq. (2.20) and Lemma 2.7.1) for Gaussian noise N (0, σ2), which implies that

a smaller noise variance would lead to a (much) larger regret bound. This is very counter-

intuitive as a larger noise usually leads to a more sophisticated situation, but similar

phenomenons also occur in existing algorithms that are suitable for constant-variance

noise, such as RMLP in Javanmard and Nazerzadeh [2019] and OORMLP in Wang et al.

[2020]. In fact, it is because a (constantly) large noise would help explore the unknown

parameter θ∗ and smoothen the expected regret. In this work, this can be addressed

by increasing T since we mainly concern the asymptotic regrets as T → ∞ with fixed

noise distributions. However, we admit that it is indeed a nontrivial issue for finite T

and small σ situations. There exists a “ShallowPricing” method in Cohen et al. [2020]

that can deal with a very-small-variance noise setting (when σ = Õ( 1
T

)) and achieve a

logarithmic regret. Specifically, its regret bound would decrease as the noise variance σ

decreases (but would still not reach O(log log T ) as the noise vanishes). We might also

apply this method as a preprocess to cut the parameter domain and decrease B
σ

within

logarithmic trials (see Cohen et al. [2020] Thm. 3), but it is still open whether a log(T )

regret is achievable when σ = Θ(T −α) for α ∈ (0, 1).

Dependence on B and Noise Variance Here we use a concrete example to analyze

the coefficients of regret bounds. Again, we assume that Nt ∼ N (0, σ2). Notice that

both Cs and Ca have a component of Cexp
Cdown

. In order to analyze Cexp
Cdown

, we define a hazard

function denoted as λ(ω) with ω ∈ R:
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λ(ω) := φ1(ω)
1− Φ1(ω) = φ1(−ω)

Φ1(−ω) , (2.19)

where Φ1 and φ1 are the CDF and PDF of standard Gaussian distribution. The concept of

hazard function comes from the area of survival analysis. From Eq. (2.11) and Eq. (2.13),

we plug in Equation Eq. (2.19) and get:

Cdown ≥ inf
ω∈[− B

σ
, B

σ
]

{ 1
σ2 λ(−ω)2 + ω · λ(−ω)

}

Cexp ≤ sup
ω∈[− B

σ
, B

σ
]

{ 1
σ2 λ(−ω)2

}
.

(2.20)

In Lemma 2.7.1, we will prove that λ(ω) is exponentially small as ω → +∞, and is

asymptotically close to −ω as ω → −∞. Therefore, Cdown is exponentially small and

Cexp is quadratically large with respect to B/σ. Although we assume that B and σ are

constant, we should be alert that the scale of B/σ can be very large as σ goes to zero,

i.e. as the noise is “insignificant”. In practice (especially when T is finite), this may

cause extremely large regret at the beginning. A “Shallow Pricing” method introduced

by Cohen et al. [2020] (as well as other domain-cutting methods in contextual searching)

may serve as a good pre-process as it frequently conducts bisections to cut the feasible

region of θ∗ with high probability. According to Theorem 3 in Cohen et al. [2020], their

Shallow Pricing algorithm will bisect the parameter set for at most logarithmic times to

ensure that B
σ

has been small enough (i.e. upper-bounded by O(poly log(T ))). However,

this does not necessarily means that we can use a O(log T )-time pre-process to achieve

the same effect, since they run the algorithm throughout the session while we only take it

as a pre-process. Intuitively, at least under the adversarial feature assumption, we cannot

totally rely on a few features occurring at the beginning (as they might be misleading)

to cut the parameter set once and for all. A mixture approach of Shallow Pricing and
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EMLP/ONSP might work, as the algorithm can detect whether current B
σ

is larger than

a threshold of bisection. However, this requires new regret analysis as the operations

parameter domain are changing over time. Therefore, we claim in Section 2.7 that the

regret bound is still open if σ = Θ(T −α) for α ∈ (0, 1).

Lemma 2.7.1 (Properties of λ(ω)). For λ(ω) := φ1(ω)
1−Φ1(ω) , we have:

1,
d

dω
λ(ω) > 0.

2, lim
ω→−∞

ωkλ(ω) = 0, ∀k > 0.

3, lim
ω→+∞

λ(ω)− ω = 0.

4, lim
ω→+∞

ω (λ(ω)− ω) = 1.

The detailed proof of Lemma 2.7.1 is in Section 2.9.4.

2.7.3 Problem Modeling

Noise Distributions In this chapter, we have made four assumptions on the noise

distribution: strict log-concavity, 2nd − order smooth, known, and i.i.d.. Here we explain

each of them specifically.

• The assumption of knowing the exact F is critical to the regret bound: If we have

this knowledge, then we achieve O(log T ) even with adversarial features; otherwise,

an Ω(
√

T ) regret is unavoidable even with stochastic features.

• The strictly log-concave distribution family includes Gaussian and logistic distri-

butions as two common noises. In comparison, Javanmard and Nazerzadeh [2019]

assumes log-concavity that further covers Laplacian, exponential and uniform dis-

tributions. Javanmard and Nazerzadeh [2019] also considers the cases when (1)
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the noise distribution is unknown but log-concave, and (2) the noise distribution

is zero-mean and bounded by support of [−δ, δ]. For case (1), they propose an

algorithm with regret O(
√

T ) and meanwhile prove the same lower bound. For case

(2), they propose an algorithm with linear regret.

• The assumption that F is 2nd−order smooth is also assumed by Javanmard and

Nazerzadeh [2019] by taking derivatives f ′(p) and applying its upper bound in the

proof. Therefore, we are still unaware of the regret bound if the noise distribution

is discrete, where a lower bound of Ω(
√

T ) can be directly applied from Kleinberg

and Leighton [2003].

• We even assume that the noise is identically distributed. However, the noise would

vary among different people. The same problem happens on the parameter θ∗:

can we assume different people sharing the same evaluation parameter? We may

interpret it in the following two ways, but there are still flaws: (1) the “customer”

can be the public, i.e. their performance is quite stable in general; or (2) the

customer can be the same one over the whole time series. However, the former

explanation cannot match the assumption that we just sell one product at each

time, and the latter one would definitely undermine the independent assumption

of the noise: people would do “human learning” and might gradually reduce their

noise of making decisions. To this extent, it is closer to the fact if we assume noises

as martingales. This assumption has been stated in Qiang and Bayati [2016].

Linear Valuations on Features There exist many products whose prices are not

linearly dependent on features. One famous instance is a diamond: a kilogram of diamond

powder is very cheap because it can be produced artificially, but a single 5-carat (or 1
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gram) diamond might cost more than $100,000. This is because of an intrinsic non-linear

property of diamond: large ones are rare and cannot be (at least easily) compound

from smaller ones. Another example lies in electricity pricing [Joskow and Wolfram,

2012], where the more you consume, the higher unit price you suffer. On the contrary,

commodities tend to be cheaper than retail prices. These are both consequences of

marginal costs: a large volume consuming of electricity may cause extra maintenance

and increase the cost, and a large amount of purchasing would release the storage and

thus reduce their costs. In a word, our problem setting might not be suitable for those

large-enough features, and thus an upper bound of x⊤θ becomes a necessity.

2.7.4 Algorithm Design

Probit and Logistic Regressions A probit/logit model is described as follows: a

Boolean random variable Y satisfies the following probabilistic distribution: P[Y =

1|X] = F (X⊤β), where X ∈ R is a random vector, β ∈ R is a parameter, and F is the

cumulative distribution function (CDF) of a (standard) Gaussian/logistic distribution. In

our problem, we may treat 1t as Y , [xt
⊤, pt]⊤ as X and [θ∗⊤,−1]⊤ as β, which exactly fits

this model if we assume the noise as Gaussian or logistic. Therefore, θ̂k = arg minθ L̂k(θ)

can be solved via the highly efficient implementation of generalized linear models, e.g.,

GLMnet, rather than resorting to generic tools for convex programming. As a heuristic,

we could leverage the vast body of statistical work on probit or logit models and adopt a

fully Bayesian approach that jointly estimates θ and hyper-parameters of F . This would

make the algorithm more practical by eliminating the need to choose the hyper-parameters

when running this algorithm.
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Advantages of EMLP over ONSP. For the stochastic setting, we specifically propose

EMLP even though ONSP also works. This is because EMLP only “switch” the pricing

policy θ̂ for log T times. This makes it appealing in many applications (especially for

brick-and-mortar sales) where the number of policy updates is a bottleneck. In fact, the

iterations within one epoch can be carried out entirely in parallel.

Ex Ante v.s. Ex Post Regrets In this chapter, we considered the ex ante regret

Regea = ∑T
t=1 maxθ E[pθ

t ·1(pθ
t ≤ wt)]−E[pt ·1(pt ≤ wt)], where pθ

t = J(x⊤
t θ) is the greedy

price with parameter θ and wt = x⊤
t θ∗ + Nt is the realized random valuation. The ex post

definition of the cumulative regret, i.e., Regep = maxθ
∑T

t=1 pθ
t1(pθ

t ≤ wt)− pt1(pt ≤ wt)

makes sense, too. Note that we can decompose E [Regep] = Regea +E[maxθ
∑T

t=1 pθ
t1(pθ

t ≤

wt)−
∑T

t=1 pθ∗
t 1(pθ∗

t ≤ wt)]. While it might be the case that the second term is Ω(
√

dT ) as

the reviewer pointed out, it is a constant independent of the algorithm. For this reason, we

believe using Regea is without loss of generality, and it reveals more nuanced performance

differences of different algorithms.

For an ex post dynamic regret, i.e., Regd = ∑T
t=1 wt−pt ·1(pt ≤ wt), it is argued in Cohen

et al. [2020] that any policy must suffer an expected regret of Ω(T ) (even if θ∗ is known).

We may also present a good example lies in Nt ∼ N (0, 1), x⊤
t θ∗ =

√
π
2 where the optimal

price is
√

π
2 as well but the probability of acceptance is only 1/2, and this leads to a

constant per-step regret of 1
2

√
π
2 .

2.7.5 Potential Extensions

Agnostic Dynamic Pricing: Explorations versus Exploitation At the moment,

the proposed algorithm relies on the assumption of a linear valuation function. It will be
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interesting to investigate the settings of model-misspecified cases and the full agnostic

settings. The key would be to exploit the structural feedback in model-free policy-

evaluation methods such as importance sampling. The main reason why we do not explore

lies in the noisy model: essentially we are implicitly exploring a higher (permitted) price

using the naturally occurring noise in the data. In comparison, there is another problem

setting named “adversarial irrationality” where some of the customers will valuate the

product adaptively and adversarially10. Existing work Krishnamurthy et al. [2021] adopts

this setting and shows a linear regret dependence on the number of irrational customers,

but they consider a different loss function (See Related Works Section).

Ethic Issues A field of study lies in “personalized dynamic pricing” [Aydin and Ziya,

2009, Chen and Gallego, 2021], where a firm makes use of information of individual

customers and sets a unique price for each of them. This has been frequently applied in

airline pricing [Krämer et al., 2018]. However, this causes first-order pricing discrimination.

Even though this “discrimination” is not necessarily immoral, it must be embarrassing if

we are witted proposing the same product with different prices towards different customers.

For example, if we know the coming customer is rich enough and is not as sensitive towards

a price (e.g., he/she has a variance larger than other customers), then we are probably

raising the price without being too risky. Or if the customer is used to purchase goods

from ours, then he or she might have a higher expectation on our products (e.g., he/she

has a θ = aθ∗, a > 1), and we might take advantage and propose a higher price than others.

These cases would not happen in an auction-based situation (such as a live sale), but

might frequently happen in a more secret place such as a customized travel plan.
10An adaptive adversary may take actions adversarially in respond to the environmental changes. In

comparison, what we allow for the “adversarial features” is actually chosen by an oblivious adversary
before the interactions start.
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2.8 Conclusion

In this chapter, we studied the problem of online feature-based dynamic pricing with

a noisy linear valuation in both stochastic and adversarial settings. We proposed a

max-likelihood-estimate-based algorithm (EMLP) for stochastic features and an online-

Newton-step-based algorithm (ONSP) for adversarial features. Both of them enjoy a

regret guarantee of O(d log T ), which also attains the information-theoretic limit up to a

constant factor. Compared with existing works, EMLP gets rid of strong assumptions

on the distribution of the feature vectors in the stochastic setting, and ONSP improves

the regret bound exponentially from O(T 2/3) to O(log T ) in the adversarial setting. We

also showed that knowing the noise distribution (or the demand curve) is required to

obtain logarithmic regret, where we prove a lower bound of Ω(
√

T ) on the regret for

the case when the noise is knowingly Gaussian but with an unknown σ. In addition, we

conducted numerical experiments to empirically validate the scaling of our algorithms.

Finally, we discussed the regret dependence on the noise variance, and proposed a subtle

open problem for further study.

2.9 Proof Details

2.9.1 Proof of Lemma 2.3.5

Proof. Since p∗ = argmax g(p, u), we have:

∂g(p, u)
∂p

|p=p∗ = 0⇔1− F (p∗ − u)− p∗ · f(p∗ − u) = 0

⇔1− F (p∗ − u)
f(p∗ − u) − (p∗ − u) = u
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Define φ(ω) = 1−F (ω)
f(ω) − ω, and we take derivatives:

φ′(ω) = −f 2(ω)− (1− F (ω))f ′(w)
f 2(w) − 1 = d2 log(1− F (ω))

dω2 · (1− F (ω))2

(f(ω))2 − 1 < −1,

where the last equality comes from the strict log-concavity of (1 − F (ω)). Therefore,

φ(ω) is decreasing and φ(+∞) = −∞. Also, notice φ(−∞) = +∞, we know that for any

u ∈ R, there exists an ω such that φ(ω) = u. For u ≥ 0, we know that g(p, u) ≥ 0 for

p ≥ 0 and g(p, u) < 0 for p < 0. Therefore, p∗ ≥ 0 if u ≥ 0.

2.9.2 Proofs in Section 2.5.1

Proof of Lemma 2.5.3

Proof. We denote φ(ω) = 1−F (ω)
f(ω) − ω as in Section 2.9.1. According to Eq. (2.5), we have:

∂g(p, u)
∂p

|p=J(u) = 0 ⇒ φ(J(u)− u) = u

⇒J(u) = u + φ−1(u) ⇒ J ′(u) = 1 + 1
φ′(φ−1(u)) .

(2.21)

The last line of Eq. (2.21) is due to the Implicit Function Derivatives Principle. From

the result in Section 2.9.1, we know that φ′(ω) < −1,∀ω ∈ R. Therefore, we have

J ′(u) ∈ (0, 1), u ∈ R, and hence 0 ≥ J(u) < u + J(0) for u ≥ 0. Since u ∈ [0, B], we may

assume that p ∈ [0, B + J(0)] without losing generality. In the following part, we will

frequently use this range.
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Denote u := x⊤
t θ, u∗ = x⊤

t θ∗. According to Eq. (2.7), we know that:

Regt(θ) = g(J(u∗), u∗)− g(J(u), u∗)

= −∂g(p, u∗)
∂p

|p=J(u∗)(J(u∗ − J(u))) + 1
2

(
−∂2g(p, u∗)

∂p2 |p=p̃

)
(J(u∗)− J(u))2

≤ 0 + 1
2 max

p̃∈[0,B+J(0)]

(
−∂2g(p, u∗)

∂p2 |p=p̃

)
· (J(u∗)− J(u))2

= 1
2 max

p̃∈[0,B+J(0)]
(2f(p̃− u∗) + p̃ · f ′(p̃− u∗)) · (J(u∗)− J(u))2

≤ 1
2(2Bf + (B + J(0)) ·Bf ′)(J(u∗)− J(u))2

≤ 1
2(2Bf + (B + J(0)) ·Bf ′)(u∗ − u)2

= 1
2(2Bf + (B + J(0)) ·Bf ′)(θ∗ − θ)⊤xtx

⊤
t (θ∗ − θ).

Here the first line is from the definition of g and Reg(θ), the second line is due to

Taylor’s Expansion, the third line is from the fact that J(u∗) maximizes g(p, u∗) with

respect to p, the fourth line is by calculus, the fifth line is from the assumption that

0 < f(ω) ≤ Bf , |f ′(ω)| ≤ Bf ′ and p ∈ [0, B + J(0)], the sixth line is because of

J ′(u) ∈ (0, 1),∀u ∈ R, and the seventh line is from the definition of u and u∗.

Proof of Lemma 2.5.5

Proof. We take derivatives of lt(θ), and we get:

42



Logarithmic Regret: When Noise Distribution is Known Chapter 2

lt(θ) =1t

(
− log(1− F (pt − x⊤

t θ))
)

+ (1− 1t)
(
− log(F (pt − x⊤

t θ))
)

∇lt(θ) =1t

(
− f(pt − x⊤

t θ)
1− F (pt − x⊤

t θ)

)
· xt + (1− 1t)

(
f(pt − x⊤

t θ)
F (pt − x⊤

t θ)

)
· xt

∇2lt(θ) =1t ·
f(pt − x⊤

t θ)2 + f ′(pt − x⊤
t θ) · (1− F (pt − x⊤

t θ))
(1− F (pt − x⊤

t θ))2 · xtx
⊤
t

+ (1− 1t) ·
f(pt − x⊤

t θ)2 − f ′(pt − x⊤
t θ)F (pt − x⊤

t θ)
F (pt − x⊤

t θ)2 · xtx
⊤
t

=1t ·
−d2 log(1− F (ω))

dω2 |ω=pt−x⊤
t θ · xtx

⊤
t + (1− 1t)

−d2 log(F (ω))
dω2 |ω=pt−x⊤

t θ · xtx
⊤
t

⪰ inf
ω∈[−B,B+J(0)]

min
{

d2 log(1− F (ω))
dω2 ,

d2 log(F (ω))
dω2

}

=Cdownxtx
⊤
t ,

(2.22)

which directly proves the first inequality. For the second inequality, just notice that

∇lt(θ)∇lt(θ)⊤ =1t

(
f(pt − x⊤

t θ)
1− F (pt − x⊤

t θ)

)2

xtx
⊤
t + (1− 1t)

(
f(pt − x⊤

t θ)
F (pt − x⊤

t θ)

)2

xtx
⊤
t

⪯ sup
ω∈[−B,B+J(0)]

max{
(

f(ω)
F (ω)

)2

,

(
f(ω)

1− F (ω)

)2

}xtx
⊤
t

=Cexpxtx
⊤
t .

(2.23)

The only thing to point out is that f(ω)
F (ω) and f(ω)

1−F (ω) are all continuous for ω ∈ [−B, B+J(0)],

as F (ω) is strictly increasing and thus 0 < F (ω) < 1, ω ∈ R.

Proof of Lemma 2.5.7

Proof. In the following part, we consider a situation that an epoch of n ≥ 2 rounds of

pricing is conducted, generating lj(θ) as negative likelihood functions, j = 1, 2, . . . , n.

Define a “leave-one-out”negative log-likelihood function

L̃i(θ) = 1
n

n∑
j=1,j ̸=i

lj(θ),
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and let

θ̃i := arg min
θ

L̃i(θ).

Based on this definition, we know that θ̃i is independent to li(θ) given historical data,

and that θ̃i are identically distributed for all i = 1, 2, 3, . . . , n.

In the following part, we will firstly propose and proof the following inequality:

1
n

n∑
i=1

(li(θ̃i)− li(θ̂)) ≤ Cexp

Cdown

d

n
= O(d

n
), (2.24)

where θ̂ is the short-hand notation of θ̂k as we do not specify the epoch k in this part.

We now cite a lemma from Koren and Levy [2015]:

Lemma 2.9.1. Let g1, g2 be 2 convex function defined over a closed and convex domain

K ⊆ Rd, and let x1 = arg minx∈K g1(x) and x2 = arg minx∈K g2(x). Assume g2 is locally

δ-strongly-convex at x1 with respect to a norm || · ||. Then, for h = g2 − g1 we have

||x2 − x1|| ≤
2
δ
||∇h(x1)||∗.

Here || · ||∗ denotes a dual norm.

The following is a proof of this lemma.

Proof. (of Lemma 2.9.1) According to convexity of g2, we have:

g2(x1) ≥ g2(x2) +∇g2(x2)⊤(x1 − x2). (2.25)

According to strong convexity of g2 at x1, we have:

g2(x2) ≥ g2(x1) +∇g2(x1)⊤(x2 − x1) + δ

2 ||x2 − x1||2. (2.26)
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Add Eq. (2.25) and Eq. (2.26), and we have:

g2(x1) + g2(x2) ≥ g2(x2) + g2(x1) + (∇g2(x1)−∇g2(x2))⊤(x2 − x1) + δ

2 ||x2 − x1||2

⇔ (∇g2(x1)−∇g2(x2))⊤(x1 − x2) ≥
δ

2 ||x1 − x2||2

⇔ (∇g1(x1) +∇h(x1)−∇g2(x2))⊤(x1 − x2) ≥
δ

2 ||x1 − x2||2

⇔ ∇h(x1)⊤(x1 − x2) ≥
δ

2 ||x1 − x2||2

⇒ ||∇h(x1)||∗||x1 − x2|| ≥
δ

2 ||x1 − x2||2

⇒ ||∇h(x1)||∗ ≥
δ

2 ||x1 − x2||.
(2.27)

The first step is trivial. The second step is a sequence of g2 = g1 + h. The third step is

derived by the following 2 first-order optimality conditions: ∇g1(x1)⊤(x1 − x2) ≤ 0, and

∇g2(x2)⊤(x2 − x1) ≤ 0. The fourth step is derived from Holder’s Inequality:

||∇h(x1)||∗||x1 − x2|| ≥ ∇h(x1)⊤(x1 − x2).

Therefore, the lemma holds.

In the following part, we will set up a strongly convex function of g2. Denote H =∑n
t=1 xtx

⊤
t . From Lemma 2.5.5, we know that

∇2L̂(θ) ⪰ Cdown
1
n

H.

Here L̂(θ) is the short-hand notation of L̂k(θ) as we do not specify k in this part. Since

we do not know if H is invertible, i.e. if a norm can be induced by H, we cannot let

g2(θ) = L̂(θ). Instead, we change the variable as follows:

We first apply singular value decomposition to H, i.e. H = UΣU⊤, where U ∈

Rd×r, U⊤U = Ir, Σ = diag{λ1, λ2, . . . , λr} ≻ 0. After that, we introduce a new variable

η := U⊤θ. Therefore, we have θ = Uη + V ϵ, where V ∈ Rd×(d−r), V ⊤V = Id−r, V ⊤U = 0
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is the standard orthogonal bases of the null space of U , and ϵ ∈ R(d−r). Similarly, we

define η̃i = U⊤θ̃i and η̂ = U⊤θ̂. According to these, we define the following functions:

fi(η) := li(θ) = li(Uη + V ϵ)

F̃i(η) := L̃i(θ) = L̃i(Uη + V ϵ)

F̂ (η) := L̂(θ) = L̂(Uη + V ϵ).

(2.28)

Now we prove that F̂ (η) is locally-strongly-convex. Similar to the proof of Lemma 2.5.5,

we have:

∇2F̂ (η) = 1
n

n∑
i=1
∇2fi(η)

= 1
n

n∑
i=1

∂2li
∂(x⊤

i θ)2 (∂x⊤
i (Uη + V ϵ)

∂η
)(∂x⊤

i (Uη + V ϵ)
∂η

)⊤

= 1
n

n∑
i=1

∂2li
∂(x⊤

i θ)2 (U⊤xi)(U⊤xi)⊤

⪰ 1
n

n∑
i=1

CdownU⊤xix
⊤
i U

= 1
n

CdownU⊤(
n∑

i=1
xix

⊤
i )U⊤

= 1
n

CdownU⊤HU = 1
n

CdownU⊤UΣU⊤U = 1
n

CdownΣ ≻ 0

(2.29)

That is to say, F̂ (η) is locally Cdown

n
-strongly convex w.r.t Σ at η. Similarly, we can

verify that F̃i(η) is convex (not necessarily strongly convex). Therefore, according to

Lemma 2.9.1, let g1(η) = F̃i(η), g2(η) = F̂ (η), and then x1 = η̃i = U⊤θ̃i, x2 = η̂ = U⊤θ̂.

Therefore, we have:

||η̂ − η̃i||Σ ≤
1

Cdown

||∇fi(η̃i)||∗Σ. (2.30)

Now let us go back to the proof of the theorem:

li(θ̃i)− li(θ̂) =fi(η̃i)− fi(η̂) ≤
↑

convexity

∇fi(η̃i)⊤(η̃i − η̂) ≤
↑

Holder inequality

||∇fi(η̃i)||∗Σ||η̃i − η̂||Σ

≤
↑

Lemma 2.9.1

1
Cdown

(||∇fi(η̃i)||∗Σ)2.

(2.31)
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Given that, we have
n∑

i=1
li(θ̃i)− li(θ̂) ≤ 1

Cdown

n∑
i=1
||∇fi(η̃i)||∗Σ)2

≤ 1
Cdown

n∑
i=1

( p

Φ
)2

maxx⊤
i UΣ−1U⊤xi

= Cexp

Cdown

tr(UΣ−1U⊤
n∑

i=1
xix

⊤
i )

= Cexp

Cdown

tr(UΣ−1U⊤H)

= Cexp

Cdown

tr(Ir) = Cexp

Cdown

r ≤ Cexp

Cdown

d.

(2.32)

Thus Eq. (2.24) is proved. After that, we have:

Eh[L(θ̃n)]− L(θ∗) =Eh[L(θ̃n)]− Eh[L̂(θ∗)]

≤Eh[L(θ̃n)]− Eh[L̂(θ̂)]

= 1
n

n∑
i=1

Eh[li(θ̃i)− li(θ̂)] ≤ Cexp

Cdown

· d

n

Thus we has proved that Eh[L(θ̃n)] − L(θ∗) ≤ Cexp
Cdown

· d
n
. Notice that θ̃n is generated

by optimizing the leave-one-out likelihood function L̃n(θ) = ∑n−1
j=1 lj(θ), which does not

contain ln(θ), and that the expected likelihood function L(θ) does not depend on any

specific result occurring in this round. That is to say, every term of this inequality is not

related to the last round (xn, pn,1n) at all. In other words, this inequality is still valid if

we only conduct this epoch from round 1 to (n− 1).

Now let n = τ + 1, and then we know that θ̃τ+1 = θ̂. Therefore, the theorem holds.

2.9.3 Proof of Lower bound in Section 2.5.3

Proof. We assume a fixed u∗ such that x⊤θ∗ = u∗,∀x ∈ D. In other words, we are

considering a non-context setting. Therefore, we can define a policy as Ψ : {0, 1}t →
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R+, t = 1, 2, . . . that does not observe xt at all. Before the proof begins, we firstly define a

few notations: We denote Φσ(ω) and φσ(ω) as the CDF and PDF of Gaussian distribution

N (0, σ2), and the corresponding Jσ(u) = arg maxp p(1−Φσ(p−u)) as the pricing function.

Since we have proved that J ′(u) ∈ (0, 1) for u ∈ R in Section 2.9.2, we have the following

lemma:

Lemma 2.9.2. u − Jσ(u) monotonically increases as u ∈ (0, +∞),∀σ > 0. Also, we

know that Jσ(0) > 0,∀σ > 0.

Now consider the following cases: σ1 = 1, σ2 = 1−f(T ), where limT →∞ f(T ) = 0, f ′(T ) <

0, 0 < f(T ) < 1
2 . We will later determine the explicit form of f(T ).

Suppose u∗ satisfies Jσ1(u∗) = u∗. Solve it and get u∗ =
√

π
2 . Therefore, we have

u ∈ (0, u∗) ⇔ J1(u) > u, and u ∈ (u∗, +∞) ⇔ J1(u) < u. As a result, we have the

following lemma.

Lemma 2.9.3. For any σ ∈ (1
2 , 1), we have Jσ(u∗) ∈ (0, u∗).

Proof. We have:

Jσ(u) = arg max
p

pΦσ(u− p) = arg max
p

pΦ1(
u− p

σ
) = arg max

ω= p
σ

σωΦ1(
u

σ
− ω)

=σ arg max
ω

Φ1(
u

σ
− ω) = σJ1(

u

σ
).

When σ ∈ (1
2 , 1), we know u∗

σ
> u∗. Since J1(u∗) = u∗ and that u ∈ (u∗, +∞)⇔ J1(u) < u,

we have u∗

σ
> J1(u∗

σ
). Hence u∗ > σJ1(u∗

σ
) = Jσ(u∗).
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Therefore, without losing generality, we assume that for the problem parameterized by σ2,

the price p ∈ (0, u∗). To be specific, suppose p∗(σ) = Jσ(u∗). Define Ψt+1 : [0, 1]t → (0, u∗)

as any policy that proposes a price at time t + 1. Define Ψ = {Ψ1, Ψ2, . . . , ΨT −1, ΨT}.

Define the sequence of price as P = {p1, p2, . . . , pT −1, pT}, and the sequence of decisions

as 1 = {11,12, . . . ,1T −1,1T}. Denote P t = {p1, p2, . . . , pt, }.

Define the probability (also the likelihood if we change u∗ to other parameter u):

QP,σ
T (1) =

T∏
t=1

Φσ(u∗ − pt)1tΦσ(pt − u∗)1−1t . (2.33)

Define a random variable Yt ∈ {0, 1}t, Yt ∼ QP t,σ
t and one possible assignment

yt = {11,12, . . . ,1t−1,1t} . For any price p and any parameter σ, define the expected

reward function as r(p, σ) := pΦσ(u∗ − p). Based on this, we can further define the

expected regret Regret(σ, T, Ψ):

Regret(σ, T, Ψ) = E[
T∑

t=1
r(Jσ(u∗), σ)− r(Ψt(yt−1), σ)] (2.34)

Now we have the following properties:

Lemma 2.9.4. We have the following properties:

1. r(p∗(σ), σ)− r(p, σ) ≥ 1
60(p∗(σ)− p)2;

2. |p∗(σ)− u∗| ≥ 2
5 |1− σ|;

3. |Φσ(u∗ − p)− Φ1(u∗ − p)| ≤ |u∗ − p| · |σ − 1|.

49



Logarithmic Regret: When Noise Distribution is Known Chapter 2

Proof. 1. We have:

∂r(p, σ)
∂p

|p=p∗(σ) = 0∂2r(p, σ)
∂p2 = 1

σ2 (p2 − u∗p− 2σ2)φσ(u∗ − p)

Since p ∈ (0, u∗), we have (p2 − u∗p − 2σ2) < −2σ2. Also, since σ ∈ (1/2, 1), we

have φσ(u∗ − p) > 1√
2π
· e− (u∗)2

2·(1/2)2 = 1√
2πeπ > 0.017. Therefore, we have

∂2r(p, σ)
∂p2 < −2 ∗ 0.017 < − 1

30

As a result, we have:

r(p∗(σ), σ)− r(p, σ) = −(p∗(σ)− p)∂r(p, σ)
∂p

|p=p∗(σ) −
1
2(p∗(σ)− p)2 ∂2r(p, σ)

∂p2 |p=p̃

= 0− 1
2(p∗(σ)− p)2 ∂2r(p, σ)

∂p2 |p=p̃

≥ 1
2 ·

1
30(p∗(σ)− p)2.

(2.35)

2. According to the proof of Lemma 2.9.2, we know that:

p∗(σ) = σJ1(
u∗

σ
)

For u ∈ (u∗, +∞), J1(u) < u. According to Lemma 2.9.2, we have:

J ′
1(u) = 1 + 1

J1(u)(J1(u)− u)− 2 > 1 + 1
0− 2 = 1

2 .

Also, for u ∈ (u∗, u∗

σ
), we have:

J ′
1(u) = 1− 1

2 + J1(u)(u− J1(u)) ≤↑
0<J1(u)<u

1− 1
2 + u(u− 0) ≤↑

u< u∗
σ

< u∗
2

1− 1
2 + (u∗

2 )2 <
3
5 .

Therefore, we have:

J1(u∗)− Jσ(u∗) = J1(u∗)− σJ1(
u∗

σ
) = J1(u∗)(1− σ)− σ(J1(

u∗

σ
)− J1(u∗))

> u∗(1− σ)− σ · 35(u∗

σ
− u∗) >

2
5(1− σ).
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3. This is because:

|Φσ(u∗ − p)− Φ1(u∗ − p)| = |Φσ(u∗ − p)− Φσ(σ(u∗ − p))|

≤ max |φσ| · |(u∗ − p)− σ(u∗ − p)|

≤ (1− σ)|u∗ − p|.

In the following part, we will propose two theorems, which balance the cost of learning

and that of uncertainty. This part is mostly similar to [BR12] Section 3, but we adopt a

different family of demand curves here.

Theorem 2.9.5 (Learning is costly). Let σ ∈ (1/2, 1) and pt ∈ (0, u∗), and we have:

K(QP,1; QP,σ) < 9900(1− σ)2Regret(1, T, Ψ). (2.36)

Here pt = Ψ(yt−1), t = 1, 2, . . . , T .

Proof. First of all, we cite the following lemma that would facilitate the proof.

Lemma 2.9.6 (Corollary 3.1 in Taneja and Kumar, 2004). Suppose B1 and B2 are

distributions of Bernoulli random variables with parameters q1 and q2, respectively, with

q1, q2 ∈ (0, 1). Then,

K(B1; B2) ≤
(q1 − q2)2

q2(1− q2)
.

According to the definition of KL-divergence, we have:

K(QP,1
T ; QP,σ

T ) =
T∑

s=1
K(QP s,1

s ; QP s,σ
s |Ys−1).
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For each term of the RHS, we have:

K(QP s,1
s , QP s,σ

s |Ys−1)

=
∑

ys∈{0,1}s

QP s,1
s (ys) log

(
QP s,1

s (1s|ys−1)
QP s,σ

s (1s|ys−1)

)

=
↑

split ys as ys−1 and inds

∑
ys−1∈{0,1}s−1

QP s−1,1
s−1 (ys−1) ·

∑
1s∈{0,1}

QP s,1
s (1s|ys−1) log

(
QP s,1

s (1s|ys−1)
QP s,σ

s (1s|ys−1)

)

=
∑

ys−1∈{0,1}s−1

QP s−1,1
s−1 (ys−1)K

(
QP s,1

s (·|ys−1), QP s,σ
s (·|ys−1)

)

≤
↑

Lemma 2.9.6

∑
ys−1∈{0,1}s−1

QP s−1,1
s−1 (ys−1)

(Φ1(u∗ − ps)− Φσ(u∗ − ps))2

Φσ(u∗ − ps)(1− Φσ(u∗ − ps))

= 1
Φσ(u∗ − ps)(1− Φσ(u∗ − ps))

∑
ys−1∈{0,1}s−1

QP s−1,1
s−1 (ys−1)(Φ1(u∗ − ps)− Φσ(u∗ − ps))2

≤
↑

(∗∗)

165 ·
∑

ys−1∈{0,1}s−1

QP s−1,1
s−1 (ys−1)(Φ1(u∗ − ps)− Φσ(u∗ − ps))2

≤
↑

Lemma 2.9.4 Property 3

165 ·
∑

ys−1∈{0,1}s−1

QP s−1,1
s−1 (ys−1)(u∗ − ps)2(1− σ)2

= 165(1− σ)2EYs−1 [(u∗ − ps)2].

Here inequality (**) above is proved as follows: since ps ∈ (0, u∗) as is assumed, we have:

1
2 < Φσ(u∗ − ps) <Φσ(u∗) = σ · Φ1(

u∗

σ
) ≤ 1 · Φ1(

√
π
2

1
2

) ≤ 0.9939 .

As a result, we have 1
Φσ(u∗−ps)(1−Φσ(u∗−ps)) ≤

1
0.9939×0.0061 = 164.7988 ≤ 165. Therefore, by

summing up all s, we have:

K(QP,1
T ; QP,σ

T ) =
T∑

s=1
K(QP s,1

s ; QP s,σ
s |Ys−1)

≤ 165(1− σ)2
T∑

s=1
EYs−1 [(u∗ − ps)2]

≤
↑

Lemma 2.9.4 Property 1

165× 60 · (1− σ)2
T∑

s=1
(r(u∗, 1)− r(ps, 1))

=
↑

definition of regret and ps=Ψ(ys−1).

9900(1− σ)2Regret(1, T, Ψ),
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which concludes the proof.

Theorem 2.9.7 (Uncertainty is costly). Let σ ≤ 1− T − 1
4 , and we have:

Regret(1, T, Ψ) + Regret(σ, T, Ψ) ≥ 1
24000 ·

√
T · e−K(QP,1;QP,σ). (2.37)

Here pt = Ψ(yt−1), t = 1, 2, . . . , T .

Proof. First of all, we cite a lemma that would facilitate our proof:

Lemma 2.9.8. Let Q0 and Q1 be two probability distributions on a finite space Y; with

Q0(y), Q1(y) > 0,∀y ∈ Y. Then for any function F : Y → {0, 1},

Q0{F = 1}+ Q1{J = 0} ≥ 1
2e−K(Q0;Q1),

where K(Q0; Q1) denotes the KL-divergence of Q0 and Q1.

Define two intervals of prices:

C1 = {p : |u∗| ≤ 1
10T

1
4
} and C2 = {p : |Jσ(u∗)− p| ≤ 1

10T
1
4
}

Note that C1 and C2 are disjoint, since |u∗ − Jσ(u∗)| ≥ 2
5 |1 − σ| = 2

5T 1/2 according

to Lemma 2.9.4 Property 2. Also, for p ∈ (0, u∗)\C2, the regret is large according to

Lemma 2.9.4 Property 1, because:

r(p∗(σ), σ)− r(p, σ) ≥ 1
60(p− p∗(σ))2 ≥ 1

6000T
1
2
.

53



Logarithmic Regret: When Noise Distribution is Known Chapter 2

Then, we have:

Regret(1, T, Ψ) + Regret(σ, T, Ψ)

≥
T −1∑
t=1

E1[r(u∗, 1)− r(pt+1, 1)] + Eσ[r(Jσ(u∗), σ)− r(pt+1, σ)]

≥ 1
6000
√

T

T −1∑
t=1

P1[pt+1 /∈ C1] + Pσ[pt+1 /∈ {C2}]

≥
↑

Suppose Ft+1=1[pt+1∈C2]

1
6000
√

T

T −1∑
t=1

P1[Ft+1 = 1] + Pσ[Ft+1 = 0]

≥
↑

Lemma 2.9.8

1
6000
√

T

T −1∑
t=1

1
2e−K(QP t,1

t ;QP t,σ
t )

≥
↑

K(QP t,1
t ;QP t,σ

t ) not decreasing

1
6000
√

T

T − 1
2 e−K(QP,1

T ;QP,σ
T )

≥ 1
24000

√
Te−K(QP,1

T ;QP,σ
T ).

According to Theorem 2.9.5 and Theorem 2.9.7, we can then prove Theorem 2.5.11. Let

σ = 1− T − 1
4

2 (Regret(1, T, Ψ) + Regret(σ, T, Ψ))

≥Regret(1, T, Ψ) + (Regret(1, T, Ψ) + Regret(σ, T, Ψ))

≥ 1
9900T −1/2K(QP,1; QP,σ) + 1

24000 ·
√

T · e−K(QP,1;QP,σ)

≥ 1
24000

√
T
(
K(QP,1; QP,σ) + e−K(QP,1;QP,σ)

)
≥
↑

T he fact ex≥x+1,∀x∈R

1
24000

√
T .

Thus Theorem 2.5.11 is proved valid.

2.9.4 Proof of Lemma 2.7.1

Proof. We prove Lemma 2.7.1 sequentially:
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1. We have:
λ′(ω) =φ2

1(−ω)− p′
1(−ω)Φ1(−ω)

Φ1(−ω)2

=φ2
1(−ω)− ωφ1(−ω)Φ1(−ω)

Φ1(−ω)2

=φ1(−ω) (φ1(−ω)− ωΦ1(−ω))
Φ1(−ω)2 .

(2.38)

Therefore, it is equivalent to prove that φ1(−ω)− ωΦ1(−ω) > 0.

Suppose f(ω) = φ1(ω) + ωΦ1(ω). We now take its derivatives as follows:

f ′(ω) = (−ω)φ1(ω) + Φ1(ω) + ω · φ1(ω) = Φ1(ω) > 0 (2.39)

Therefore, we know that f(ω) monotonically increases in R. Additionally, since we

have:

lim
ω→−∞

f(ω) = lim
ω→−∞

φ1(ω) + lim
ω→−∞

ωΦ1(ω) = 0 + lim
ω→−∞

1
σ2 ·

Φ1(ω)
1/ω

= lim
ω→−∞

· φ1(ω)
−1/ω2 = lim

ω→−∞
·
(
− 1√

2π
· ω2

exp{ω2

2 }

)
= 0

(2.40)

Therefore, we know that f(ω) > 0, ∀ω ∈ R, and as a result, λ′(ω) > 0.

2. We have:

lim
ω→−∞

ωkλ(ω) = lim
ω→−∞

ωk φ1(−ω)
Φ1(−ω) =

lim
ω→−∞

ωkφ1(−ω)
lim

ω→−∞
Φ1(−ω) = 0

1 = 0. (2.41)

3. It is sufficient to prove that

lim
ω→+∞

λ(ω)− ω = 0.

Actually, we have:

lim
ω→+∞

λ(ω)− ω = lim
ω→+∞

φ1(−ω)− ωΦ1(−ω)
Φ1(−ω) = lim

ω→−∞

φ1(ω) + ωΦ1(ω)
Φ1(ω)

=
↑

L’Hospital’s rule

lim
ω→−∞

(−ω)φ1(ω) + Φ1(ω) + ωφ1(ω)
φ1(ω) = lim

ω→−∞

Φ1(ω)
φ1(ω) = 0

(2.42)
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4. This is because

lim
ω→+∞

ω(λ(ω)− ω) = lim
ω→−∞

−ωφ1(ω)− ω2Φ1(ω)
Φ1(ω)

=
↑

L’Hospital’s rule

lim
ω→−∞

−φ1(ω)− ω(−ω)φ1(ω)− ω2φ1(ω)− 2ω · Φ1(ω)
φ1(ω)

=− 1− 2 lim
ω→−∞

ωΦ1(ω)
φ1(ω) = −1 + 2 lim

ω→+∞

1
λ(ω)

ω

= −1 + 2 = 1.

(2.43)

Thus the lemma holds.
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Chapter 3

Towards Agnostic Feature-Based

Dynamic Pricing

Prior research in feature-based dynamic pricing usually relies on assumptions of either

noiseless linear valuation or precisely-known noise distribution, which limits the applica-

bility of those algorithms in practice when these assumptions are hard to verify. In this

chapter, we explore two more agnostic models to address this limitation:

a Linear Policy (LP) problem: We aim to compete with the best linear pricing

policy while making no assumptions on the data. We show a Θ̃(d 1
3 T

2
3 ) minimax

regret up to logarithmic factors.

b Linear Valuation (LV) problem: Customers’ valuations are modeled as a linear

function plus an unknown, assumption-free i.i.d. noise. We present an algorithm

that achieves an Õ(T 3
4 ) regret. We also improve the existing lower bound from

Ω(T 3
5 ) to Ω̃(T 2

3 ).
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These results demonstrate that no-regret learning is possible for feature-based dynamic

pricing under weak assumptions, but also reveal a disappointing fact that the seemingly

richer pricing feedback is not significantly more useful than the bandit feedback in regret

reduction.

3.1 Introduction

In a dynamic pricing process, a seller presents prices for the products and adjusts these

prices according to customers’ feedback (i.e., whether they decide to buy or not) to

maximize the revenue. Existing works on the single-product pricing problem [Kleinberg

and Leighton, 2003, Wang et al., 2021b] assume that customers make decisions only

according to the comparisons between prices and their own (random) valuations, and the

goal is to find out a best fixed price that maximizes the (expected) revenue. In general, the

single-product pricing problem has been well studied under a variety of assumptions.

However, these methods are not applicable when there are thousands of highly differenti-

ated products with no experience in selling them. This motivates the idea of “contextual

pricing” [Cohen et al., 2020, Mao et al., 2018, Javanmard and Nazerzadeh, 2019, Liu et al.,

2021], where each sale session is described by a context that also affects the valuation and

pricing.

Contextual pricing. For t = 1, 2, ..., T :

1. A context xt ∈ Rd is revealed that describes a sales session (product, customer and context).

2. The customer valuates the product as yt using xt.

3. The seller proposes a price vt > 0 concurrently (according to xt and historical sales records).

4. The transaction is successful if vt ≤ yt, i.e., the seller gets a reward rt = vt · 1(vt ≤ yt).
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Here T is the time horizon known to the seller in advance1, xt’s can be either stochastic

(i.e., each xt is independently and identically distributed) or adversarial (i.e., the sequence

{xt}T
t=1 are arbitrarily chosen and fixed by nature before t = 0), and 1t := 1(vt ≤ yt) is

an indicator that equals 1 if vt ≤ yt and 0 otherwise. In this chapter, we consider two

distinct problem setups that make use of the feature vector xt.

(a) Linear Policy (LP): (xt, yt)’s are selected by nature (or an oblivious adversary)

arbitrarily, and the learning goal is to compete with the optimal linear prices

v∗
t = x⊤

t β∗ where β∗ maximizes the cumulative reward in the hindsight.

(b) Linear Valuation (LV): assume valuations are linear + noise, i.e., yt = x⊤
t θ∗ + Nt,

where θ∗ ∈ Rd is a fixed vector and Nt is a market noise, drawn i.i.d. from a fixed

unknown distribution D. The learning goal is to compete with the globally optimal

price v∗
t = argmaxv v · Pr[v ≤ yt|xt] with no restrictions on the pricing policy.

These two problem setups — although quite similar at a glance — are intrinsically

different. The LP problem makes no assumptions on the xt → yt mapping, i.e., agnos-

tic learning. Customers’ valuations are not necessarily linear (and can be determinis-

tic/noisy/stochastic/adversarial), but the seller competes with the optimal policy in a

constrained family. In contrast, the LV problem makes mild modeling assumptions about

the distribution of yt given xt while keeping the policy class unrestricted. In other words,

LP is modeling our strategy while LV is modeling the nature. We adopt regret as a metric

of algorithmic performance: For the LP problem, we compare its (expected) reward with

that of the optimal fixed β∗ in hindsight (i.e., an ex post regret); For the LV problem, we

compare its (expected) reward with the largest expected reward condition on θ∗ and D

(i.e., an ex ante regret). We will clarify the difference between LP and LV in Section 3.7
1Here we assume T known for simplicity of notations. In fact, if T is unknown, then we may apply a

“doubling epoch” trick as Javanmard and Nazerzadeh [2019] and the regret bounds are the same.
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Table 3.1: Summary of existing regret bounds and our results

Problem Linear Valuation (LV) Linear Policy

(LP)Noise Assumption No Noise Known, Log-concave Parametric Agnostic, Bounded

Upper Bound O(d log log T ) O(d log T ) Õ(d
√

T ) Õ(T 3
4 + d

1
2 T

5
8 ) Our Work Õ(d 1

3 T
2
3 ) Our Work

Lower Bound Ω(d log log T ) Ω(d log T ) Ω(d
√

T ) Ω̃(T 2
3 ) Our Work Ω̃(d 1

3 T
2
3 ) Our Work

with more details and examples. We emphasize that in both settings, the distributions

of the valuation are unknown and non-parametric, and we are interested in designing

no-regret algorithms and characterizing the complexity.

Summary of Results. Our contributions are threefold.

1. For the LP problem with adversarial xt’s, we present an algorithm “Linear-EXP4”

that achieves Õ(d 1
3 T

2
3 ) regret.

2. For the LV problem with adversarial xt’s, we present an algorithm “D2-EXP4” that

achieves Õ(T 3
4 + d

1
2 T

5
8 ).

3. We present an Ω̃(d 1
3 T

2
3 ) regret lower bound for LP problem and an Ω̃(T 2

3 ) for LV

problem (even with stochastic xt’s, known θ∗ and Lipschitz valuation distribution).

The results indicate “Linear-EXP4” optimal up to logarithmic factors.

To the best of our knowledge, we are the first to study the LP problem and the version of

the LV problem with no assumption on the noise. Comparing to the existing literature

on this problem [Cohen et al., 2020, Javanmard and Nazerzadeh, 2019], our model makes

fewer assumptions. Our results for LP is information-theoretically optimal, and our results

in LV improve over the best known upper and lower bounds (from Õ(T 2
3 ∨(1−α)) on i.i.d.

xt’s with an indeterministic α and Ω(T 3
5 ) in Luo et al. [2021]).

Technical Novelty. We make use of the half-Lipschitz nature in pricing problems: the
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probability of a price to be accepted will not decrease as the price decreases. This has

been used in Kleinberg and Leighton [2003] and Cohen et al. [2020]. However, they

directly applied this property in discretizing the action and policy spaces, which would

lead to a linear regret in our LV problem setting. In our algorithm D2-EXP4, we settle

this issue by also discretizing the noise distribution space and include these discretized

CDF’s as part of policy candidates. We also carefully adopt a conservative “markdown”2

on the discretized output price to ensure a large-enough probability of acceptance. In this

way, we get rid of all assumption on the noise distribution (even the basic Lipschitzness

assumed by Luo et al. [2021]) while achieving a sub-linear regret. This discretization

method, along with the price markdown, can be easily transferred to any pricing problem

settings with unknown i.i.d. noise. For the lower bound proof, we adapt the nested

intervals and bump functions introduced by Kleinberg [2004] for continuum bandits to

our pricing problem models, and extend the Ω(T 2
3 ) regret lower bound on non-continuous

demand functions [Kleinberg and Leighton, 2003] to Lipschitz ones.

3.2 Related Works

In this section, we discuss how our work relates to the existing literature on (either

contextual or non-contextual) pricing, bandits, and contextual search.

Non-Contextual Dynamic Pricing. Dynamic pricing was extensively studied under

the single-product (non-contextual) setting [Kleinberg and Leighton, 2003, Besbes and

Zeevi, 2009, 2012, Wang et al., 2014, Besbes and Zeevi, 2015, Chen et al., 2019b, Wang

et al., 2021b]. The crux of pricing is to learn the demand curve (i.e., the noise distribution
2A price markdown is defined as a reduction on the selling price.
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in our LP problem) from Boolean-censored feedback. Wang et al. [2021b] concludes

existing results and characterizes the impact of different assumptions on the demand curve

on the minimax regret. The problem of contextual dynamic pricing is more challenging

mainly because we need to learn the valuation parameter θ∗ and the noise distribution

jointly. Knowing one would imply a learning algorithm for another [Javanmard and

Nazerzadeh, 2019, Luo et al., 2021], but learning both together makes the problem highly

nontrivial.

Contextual Dynamic Pricing. There is a growing body of recent works focusing on

the LV model of the contextual dynamic pricing problem [Cohen et al., 2020, Javanmard

and Nazerzadeh, 2019, Xu and Wang, 2021, Luo et al., 2021, Fan et al., 2021], but most

of them make strong assumptions about the noise. Table 3.1 lists the best existing results

under these assumptions. Besides these works, Cohen et al. [2020] also achieved an

O(d log T ) regret when the variance of the Sub-Gaussian noise is extremely small, i.e.,

Õ(1/T ). It is worth mentioning that our “Linear-EXP4” shares the same discretization

factor with “ShallowPricing” algorithm in Cohen et al. [2020], but ours solves a different

problem. The closest works to ours are the recent Luo et al. [2021] and Fan et al. [2021]

that study the LV problem under only smoothness and log-concavity assumptions. In Luo

et al. [2021], they develop a UCB-style algorithm that achieves Õ(T 2
3 ∨(1−α)) regret for

noises with 2nd-order smooth and log-concave CDF’s, assuming the existence of a good-

enough estimator that might approach θ∗ with O(T −α) error only with the logged data.

However, such an estimator was neither described nor trivial to construct with α > 0. In

Fan et al. [2021], they present a two-phase algorithm, with an exploration phase followed

by an exploitation phase, and achieves Õ((Td)
2m+1
4m−1 ) regret for noises with mth-order

smooth (m ≥ 2) and “well-behaved”3 CDF’s. In comparison, our “D2-EXP4” algorithm
3A property defined similarly as log-concavity.
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achieves an Õ(T 3
4 ) regret with no distributional assumptions such as Lipschitzness or

smoothness.

Bandits A multi-armed bandit (MAB) is an online learning model where one can

only observe the feedback of the selected action at each time. Both LP and LV can

be reduced to contextual bandits [Langford and Zhang, 2007, Agarwal et al., 2014] as

long as the policies and prices are finite. In this work, we make use of an “EXP-4”

algorithm [Auer et al., 2002b] in a new way: By carefully discretizing the parameter space

and distribution functions, we enable EXP-4 agents to find out near-optimal policies

among infinite continuum policy spaces. There exists another family of bandit problem:

continuum-armed bandit (CAB) [Agrawal, 1995, Kleinberg, 2004, Auer et al., 2007],

where the action space is continuum and the reward function is Lipschitz. We adapt the

(bump functions, nested intervals) structures in Kleinberg [2004] to our lower bound proof.

This adaptation is non-trivial since (1) their reward functions is not suitable for pricing

problems, and (2) their feedback is not Boolean-censored.

Our results on the LP problem reveal that a reduction to contextual bandits is “tight”

in regret bounds. A similar situation also occurs in Kleinberg and Leighton [2003] on

non-contextual pricing. These results indicate a pricing feedback is not substantially richer

than a bandit feedback in information theory, which is surprising as a pricing feedback

indicates the potential feedback of a “halfspace” rather than a single point. However,

does this imply we cannot get any extra information from a pricing feedback? Notice that

we are matching a no-Lipschitz upper bound with a Lipschitz lower bound! In fact, a

revenue curve is naturally “half Lipschitz”, which helps us get rid of this assumption. We

will discuss this property in Section 3.4.2.
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Contextual search Contextual pricing is cohesively related to contextual search prob-

lems [Leme and Schneider, 2018, Lobel et al., 2018, Liu et al., 2021, Krishnamurthy et al.,

2021] where they also learn from Boolean feedback and usually assume linear contexts.

However, they are facing slightly different settings: Leme and Schneider [2018], Lobel et al.

[2018] are noiseless and could achieve an optimal O(log log T ) regret; Liu et al. [2021]

allows noises directly on customers’ decisions instead of the valuations in our setting;

Krishnamurthy et al. [2021] allows only small-variance valuation noises that is similar to

Cohen et al. [2020].

3.3 Problem Setup

Symbols and Notations. Now we introduce the mathematical symbols and notations

involved in the following pages. The game consists of T rounds. xt, β∗, θ∗ ∈ Rd
+, yt, Nt ∈

R, vt ∈ R+
4, where d ∈ Z+. At each round, we receive a payoff (reward) rt = vt · 1t where

1t := 1(vt ≤ yt) indicates the acceptance of vt, i.e., 1t = 1 if vt ≤ yt and 0 otherwise. For

LP problem, we denote FLP (v|x) as a demand function, i.e. the probability of price v

being accepted given feature x. Therefore, FLP (v|x) is non-increasing with respect to

v, for any x ∈ Rd. For LV problem, we specifically denote ut = x⊤
t θ∗ as the noiseless

valuation (or expected valuation for zero-mean noises), and denote F as its CDF. Finally,

we define h(v, x) = v · FLP (v|x) as an expected revenue function of price v given feature x

in an LP problem, and g(v, u, F ) := v · (1− F (v − u)) as an expected revenue function of

price v given any noiseless valuation u and noise distribution F in an LV problem.

We may use discretization methods in the following sections. Here we adopt the notation
4We do not assume yt ≥ 0 since some customer would not buy anything despite the price.
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in Cohen et al. [2020] by denoting

⌊x⌋γ := ⌊x
γ
⌋ · γ, ⌈x⌉γ := ⌈x

γ
⌉ · γ. (3.1)

as the γ-lower/upper rounding of x, which discretize x as its nearest smaller/larger integer

multiples of γ. Similarly, for θ ∈ Rd, we may define ⌊θ⌋γ := [⌊θ1⌋γ, ⌊θ2⌋γ, . . . , ⌊θd⌋γ]⊤

and ⌈θ⌉γ := [⌈θ1⌉γ, ⌈θ2⌉γ, . . . , ⌈θd⌉γ]⊤. Based on this, we define a counting set Nγ,a :={
0, 1, 2, . . . , ⌊ a

γ
⌋
}
.

Regret Definitions. Next we define the regrets in both problems.

Definition 3.3.1 (Regret in LP). We define RegLP as the regret of the Linear Policy

pricing problem.

RegLP := max
β

T∑
t=1

h(x⊤
t β, xt)− h(vt, xt). (3.2)

Definition 3.3.2 (Regret in LV). We define RegLV as the regret of the Linear Noisy

Valuation problem.

RegLV :=
T∑

t=1
max

v
g(v, ut, F )− g(vt, ut, F ). (3.3)

Again, we aim at competing with the best fixed β∗ = argmaxβ

∑T
t=1 h(x⊤

t β, xt) in an LP

problem, and with the global best pricing policy (maximizing expected revenue at every

t) in an LV problem.

Summary of Assumptions We specify the problems by the following assumptions:
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Assumption 3.3.3 (bounded features and parameters). Without losing generality, we

assume that xt, β∗, θ∗ ∈ Rd
+, ∥xt∥2 ≤ B, ∥β∗∥2 ≤ 1, ∥θ∗∥2 ≤ 1, where B ∈ Z+ is a constant

known to us in advance.

Assumption 3.3.4 (decreasing demand in LP). In LP problem, assume that FLP (v|x) is

non-increasing for any v ≥ 0, x ∈ Rd
+.

Assumption 3.3.5 (bounded noise). In LV problem, assume that Nt ∈ [−1, 1] that is

i.i.d. sampled from a fixed unknown distribution D.

These assumptions are mild and common for algorithm design. Based on these assumptions

above, we only have to consider prices in [0, B] for LP problems and [0, B + 1] for LV

problems. Besides, we assume that T ≥ d4 for a simplicity of comparing among different

terms in regret bounds. In Section 3.5.2, we will introduce more assumptions to the

distribution functions to demonstrate that our lower bounds hold even if those assumptions

are made.

3.4 Algorithm

In this section, we propose two algorithms, Linear-EXP4 and D2-EXP4, for LP and LV

problems respectively. Both of them are based on the EXP-4 algorithm [Auer et al.,

2002b] along with discretized policy sets. First of all, we define these policy sets:

Definition 3.4.1 (parameter set). For any small 0 < ∆ < 1, we define a parameter set

Ω∆,d ⊂ Rd:

Ω∆,d :=
{
∥θ∥2 ≤ 1, θ = [n1∆, n2∆, . . . , nd∆]⊤, n1, n2, . . . , nd ∈ N∆,1

}
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Definition 3.4.2 (CDF set). For any small 0 < γ < 1, we define a Cumulative Distribution

Function (CDF) set Fγ:

Fγ :=



F :R→ [0, 1] non decreasing ,

F (v) = 0 when v < −1,

F (v) = 1 when v > 1,

F (v)
γ
∈ Nγ,1 when ± v

γ
∈ Nγ,1,

F (v) = F (⌊v⌋γ) + 1
γ

(F (⌊v⌋γ + γ)− F (⌊v⌋γ))(v − ⌊v⌋γ) otherwise



.

Definition 3.4.1 is straightforward as we use ∆d-grids to discretize the [0, 1]d space.

Definition 3.4.2 actually represents such a family of CDF: the random variable is defined

on [−1, 1], and its CDF equals some integer multiple of γ when v (or −v) itself is an integer

multiple of γ; for those v in between these grids, CDF connects the two endpoints as linear.

In a word, each CDF in Fγ is a piecewise linear function with every integer-multiple-γ

points valuating some integer-multiple-γ as well. From the definitions above, we know

that |Ω∆,d| = O
(
( 1

∆
)d
)
. Also, we have |Fγ| =

( 3
γ
1
γ

)
= O(2

3
γ ) according to a “balls into bins”

model in combinatorial counting: At each point ±i
γ

(for i ∈ [ 2
γ
]) the CDF can increase by

j · γ, with j being a non-negative integer, and the summation of all increases is 1 (i.e., 1
γ

of γ increments).

Finally we introduce the EXP-4 algorithm [Auer et al., 2002b] for adversarial contextual

bandits. With a finite action set A and policy set Π, the EXP-4 agent has a regret

guarantee at O(
√

T |A| log |Π|) in T rounds (comparing with the optimal policy in Π).

The following is a simplified version of EXP-4 that illustrates its mechanism. For a more

detailed introduction, please directly refer to Auer et al. [2002b].
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EXP-4.

Input: Policy set Π, Action set A.

Initialize each policy i with weight wi;

for t = 1 to T do

Set probability pj(t) for each action j according to weights of all policies;

Get at by Thompson sampling the action set A according to current probability

{pj(t)};

Receive a reward rt;

Construct an Inverse Propensity Scoring (IPS) estimator r̂i(t) for the reward of each

action i.

Update weights wi’s according to r̂i(t).

end for

3.4.1 Linear-EXP4 for LP

Here we present our “Linear-EXP4” algorithm for the linear policy pricing problem. It

takes Ω∆,d as the policy set and plug it into EXP-4 algorithm, which is straightforward

but significant in reducing the regret. The pseudo-code of Linear-EXP4 is summarized as

Algorithm 3.
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Algorithm 3 Linear-EXP4
Input: Parameter set Ω∆,d, Action set Aγ = {0, γ, 2γ, . . . , ⌊B⌋γ}, parameters ∆, γ.

Set policy set ΠLP
∆,γ = {πβ(x) = ⌊x⊤β⌋γ, β ∈ Ω∆,d}

Initialize an EXP-4 agent ELP with ΠLP
∆,γ, Aγ;

for t = 1 to T do

ELP observe xt;

ELP choose an action (price) vt;

Receive feedback rt = vt · 1t and feed it into ELP ;

end for

Here the EXP-4 agent ELP would approach the best policy π∗ in ΠLP
∆,γ within a reasonable

regret. Therefore, we have to carefully choose ∆ and θ such that the regrets of both ELP

and π∗ are well bounded.

3.4.2 Discrete-Distribution-EXP4 for LV

Here we present our “Discrete-Distribution-EXP-4” algorithm, or D2-EXP4 for the linear
noisy valuation pricing problem. Though it originates EXP-4 as well as Linear-EXP4
above, the reduction is not as straightforward. In fact, the policy set is defined as
follows:

ΠLV
∆,γ =

{
π|π(x; θ̂, F̂ ) = max{⌊x⊤θ̂⌋γ − (B + 1)γ + ⌊w∗(x)⌋γ , 0},

where w∗(x) = argmax
w

g(u + w, x⊤θ̂, F̂ ), θ̂ ∈ Ω∆,d, F̂ ∈ Fγ

}
.

(3.4)

For each policy in ΠLV
∆,γ, it firstly takes a θ̂ from Ω∆,d and a F̂ from Fγ, and then

generate an “optimal incremental price” w∗(x) greedily as if they are the true parameter

θ∗ and the true noise distribution F . Finally, the policy take an action (price) that

is the summation of γ-lower roundings of û = x⊤θ̂ and w∗(x) to fit in the action set

Aγ := {0, γ, 2γ, . . . , ⌊B + 1⌋γ}, and minus a (B + 1)γ amount. We know that |ΠLV
∆,γ| =
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|Ω∆,d| · |Fγ| = O(( 1
∆

)d ·2
3
γ ). We present the psuedo-code of D2-EXP4 as Algorithm 4.

Algorithm 4 Discrete-Distribution-EXP-4(D2-EXP4)
Input: Policy set ΠLV

∆,γ, Action set Aγ = {0, γ, 2γ, . . . , ⌊B + 1⌋γ}, parameters ∆, γ.

Initialize an EXP-4 agent ELV with ΠLV
∆,γ, Aγ;

for t = 1 to T do

ELV observe xt;

ELV select an action(price) vt;

Receive feedback rt = vt · 1t and feed it into ELV ;

end for

D2-EXP4 is straightforward that it takes the γ-rounding of a greedy price, except the

(B + 1)γ price markdown. This is because we want a conservative price, and the (B + 1)γ

markdown is to compensate the “exaggerate” ⌈θ⌉γ parameter we adopt in ΠLV
∆,γ . We will

include more details in Section 3.4.2 below and in Section 3.5.1.

Adversarial Features and Agnostic Distributions Notice that both algorithms are

suitable for adversarial xt series, which is a property of EXP-4. It is worth mentioning

that our Linear-EXP4 makes no assumptions on the distribution of yt given xt, and that

D2-EXP4 assumes no pre-knowledge or technical assumptions on the noise distribution

(despite that noises are bounded).

Conservative Pricing Strategy Both of our algorithms adopt a conservative strategy

while pricing: In Linear-EXP4, a good-enough linear policy is the γ-lower rounding of

parameter β∗; in D2-EXP4, we even define each policy by proposing a “greedy-and-safe”

price which takes a (B + 1)γ-markdown on the output of the optimal greedy pricing
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policy. This is because of the “half-Lipschitz” nature of a demand curve: decreasing the

price would at least maintain the chance of being accepted. Since we do not make any

Lipschitz or smoothness assumptions on the distributions, these discretizations might

marginally increase the price and cause drastic change of the expected revenue. In order

to avoid this, it is always better to decrease the proposed price by an acceptable small

amount as it guarantees the probability of acceptance.

Computational Efficiency Our algorithms require exponential computations w.r.t.

dimension d since the EXP-4 agent requires exponential time to evaluate each policy in

the policy set. An “optimization oracle”-efficient contextual bandit algorithm in Agarwal

et al. [2014] can be used in place of EXP-4 to achieve a near-optimal regret (up to

logarithmic factors), but it requires the input features xt to be drawn from an unknown

fixed distribution.

3.5 Regret Analysis

In this section, we analyze our Linear-EXP4 and D2-EXP4 algorithm and prove their

Õ(d 1
3 T

2
3 ) and O(T 3

4 ) regret bounds, respectively. Also, we present a scenario where a

lower bound construction with Ω̃(T 2
3 ) regret fits for both LP and LV problems, even

under stronger assumptions including stochastic xt’s, Lipschitz distribution functions and

unimodal demand curves.
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3.5.1 Upper Bounds

Here we propose the following theorem as a regret bound of Linear-EXP4. This only

requires the assumption that features xt’s and (potential) optimal parameter β∗ is bounded

by L2-norm, without making any specifications on the feature-valuation mapping.

Theorem 3.5.1 (Regret of Linear-EXP4). In any LP problem, with Assumption 3.3.3, the

expected regret of Linear-EXP4 does not exceed O(d 1
3 T

2
3 log dT ) by setting ∆ = T − 1

3 d− 1
6

and γ = T − 1
3 d

1
3 .

Proof. We denote β̃∗ = ⌊β∗⌋∆ and β̂∗ := argmaxβ∈Ω∆,d

∑T
t=1 E[h(πβ(xt), xt)]. Now we

decompose the regret of LP problem as follows:

E[RegLP ]

=
T∑

t=1
E[h(x⊤

t β∗, xt)− h(vt, xt)]

=
T∑

t=1
E[h(x⊤

t β∗, xt)− h(πβ̃∗(xt), xt)] + E[h(πβ̃∗ , xt)− h(πβ̂∗(xt), xt)] + E[h(πβ̂∗(xt), xt)− h(vt, xt)]

≤
T∑

t=1
(x⊤

t β∗ − x⊤
t β̃∗)FLP (x⊤

t β∗|xt) + E[h(πβ̃∗ , xt)− h(πβ̂∗(xt), xt)] + E[h(πβ̂∗(xt), xt)− h(vt, xt)]

≤
T∑

t=1
B ·∆

√
d + 0 +

√
T · 1

γ
· log ( 1

∆
)d

=O(d 1
3 T

2
3 log dT ).

(3.5)

Here the third row is because πβ̃∗(xt) = ⌊x⊤
t β̃∗⌋γ ≤ x⊤

t β̃∗ ≤ x⊤
t β∗ since xt, β ∈ Rd

+ (and

thus FLP (x⊤
t β∗) ≤ FLP (x⊤

t β̃∗)); The fourth row is because (x⊤
t β∗− x⊤

t β̃∗) ≤ ∥xt∥2 · ∥β∗−

β̃∗∥ ≤ B ·∆
√

d, the optimality definition of β̂∗ and the regret bound of EXP-4 from Auer

et al. [2002b]; The last row is got by plugging in the value of ∆ and γ.

The proof of Theorem 3.5.1 is straightforward based on the existing O(
√

T |A| log |Π|)

bound of EXP-4. We only have to bound the error of the optimal policy in Π∆,γ. Now

72



Towards Agnostic Feature-Based Dynamic Pricing Chapter 3

we present our result on D2-EXP4:

Theorem 3.5.2 (Regret of D2-EXP4). For any LV problem, with Assumption 3.3.3

Assumption 3.3.4, Assumption 3.3.5, our algorithm D2-EXP4 guarantees a regret no more

than O(T 3
4 + T

2
3 d

1
2 log dT ) as we set ∆ = T − 1

4 d− 1
2 and γ = T − 1

4 .

The proof of Theorem 3.5.2 is more sophisticated than that of Theorem 3.5.1, but they

shares similar structures: we figure out one specific policy in ΠLV
∆,γ that is close to the

optimal policy of the LV problem. The main idea of this proof is to find out a tuple

of (θ̂, F̂ ) that approaches the true parameter and distribution, and to verify that the

policy built on this approaching tuple is reliable only within small tractable error. The

highlight is that we do not assume any Lipschitzness on the distribution, which is quite

different from existing approximation methods. In fact, it is the natural property of pricing

problems that enables this: for two prices v1 ≥ v2, the probability of v2 being accepted is

greater (or equal) than that of v1, and thus (v1 − v2) ≥ g(v1, u, F )− g(v2, u, F ). We may

call it a Half-Lipschitz property since it only upper bounds the increasing rates.

Here we show a proof sketch of Theorem 3.5.2, and leave the bulk to Section 3.9.1.

Proof Sketch. For any specific LV problem with linear parameter θ∗ and noise CDF F ,

we define θ̂∗ := ⌈θ∗⌉∆ and F̂ :

F̂ (x) =⌊F (x)⌋γ when x = i · γ for i ∈ Z, and linearly connecting F̂ (iγ) with F̂ (i + 1γ)

when x ∈ (iγ, (i + 1)γ).
(3.6)

Our goal is to prove that π(x; θ̂∗, F̂ ) performs well enough. We may furthermore define a

few amounts:
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(i) û = x⊤θ̂∗;

(ii) w∗(u) = argmaxw g(u + w, u, F );

(iii) ŵ∗(u) = argmaxw g(u + w, u, F );

(iv) ŵ(û) = argmaxw g(û + w, û, F̂ ).

Therefore, the price our algorithm proposed for feature x is v̂(x) = ⌊û⌋γ−(B+1)γ+⌊ŵ(û)⌋γ ,

and our goal is to prove that g(v̂, u, F ) ≥ g(u + w∗(u), u, F )− C · γ for some constant C.

Since γ = T − 1
4 , this would upper bounds the optimality error up to O(T · γ) = O(T 3

4 ).

In fact, we have the following properties:

(i) θ̂∗ = ⌈θ∗⌉∆ (by definition);

(ii) ∥θ∗∥2 ≤ ∥θ̂∗∥2 ≤ ∥θ∗∥2 + ∆
√

d = ∥θ∗∥2 + γ;

(iii) u− γ ≤ û− γ ≤ ⌊û⌋γ ≤ û ≤ u + Bγ;

(iv) F̂ (iγ) ≤ F (iγ) ≤ F̂ (iγ) + γ.

According to these properties, we may derive:

g(⌊û⌋γ − (B + 1)γ + ⌊ŵ(û)⌋γ, u, F )

≥(u + ⌊ŵ(û)⌋γ)(1− F (⌊ŵ(û)⌋γ))− (B + 2)γ

≥(u + ⌊ŵ(û)⌋γ)(1− F̂ (ŵ(û)))− (2B + 3)γ

≥g(û + ŵ(û), û, F̂ )− (3B + 4)γ

≥g(u + ŵ∗(u), u, F̂ )− (3B + 4)γ

≥g(u + w∗(u), u, F )− (3B + 5)γ.

The derivation of each step is shown in Section 3.9.1. With this policy-realizability

error being bounded by (3B + 5)γ = O(T 3
4 ) and the original regret of the EXP-4 agent
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being O(
√

TK log N) = Õ(T 3
4 + d

1
2 T

5
8 ), we may finally get a Õ(T 3

4 + d
1
2 T

5
8 ) upper regret

bound.

3.5.2 Lower Bounds

In this part, we present an Ω̃(T 2
3 d

1
3 ) and an Ω̃(T 2

3 ) regret lower bounds that hold for LP

and LV problems respectively. We will firstly claim a lower bound for non-contextual

pricing problem, and then generalize the result to LP and LV.

Theorem 3.5.3 (Lower bound for non-contextual pricing). For a non-contextual pricing

problem where the valuation yt’s are generated independently and identically from a fixed

unknown distribution satisfying (1) the CDF F (y) is Lipschitz and (2) the revenue curve

g(v, F ) = y · (1− F (v)) is unimodal (i.e., non-decreasing on (0, v0) and non-increasing

on (v0, +∞) for some v0), NO algorithm can achieve O(T 2
3 −δ) for any δ > 0.

The detailed proof of Theorem 3.5.3 is in Section 3.9.2, and in the main pages we briefly

demonstrate the constructions of the subproblem family where we achieve this lower

bound.

Here we take the idea of Kleinberg [2004] where they make use of bump functions and

nested intervals to ensure Lipschitz continuity and unimodality, sequentially. Since

that their model is not capturing a revenue curve and that their feedback is numerical

instead of Boolean, we have to adjust their design to satisfy the pricing setting. On

the one hand, the probability of a price to be accepted, i.e., the rate E[r(v)]
v

, is non-

increasing as the prices increases, which is not guaranteed for that of a reward function

of a continuum bandit (if we treat v as an action). In this proof, we adopt a series of

transformations to convert the “bump function tower” into a revenue curve while keeping
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all monotonically-increasing/decreasing intervals unchanged. On the other hand, we

still use the KL-divergence to distinguish among distributions, but in a different way.

As for Boolean feedback, we only need to calculate the KL-divergence of two Bernoulli

random variables, which can be upper bounded by a quadratic term of their probabilistic

difference.

Figure 3.1: Structure of our lower bound function family. The left figure shows how we

use bump functions to construct a reward function f(v). Each bump function locates at

[ak, bk] with a length wk = 3−k!. Notice that the middle one-third of each bump is a plain

divided into small intervals of length wk+1, and we might randomly choose one to build

up the (k + 1)th bump. However, the rate f(v)
v

that indicates the probability of v to be

accepted is not necessarily non-increasing, and therefore f(v) cannot capture a revenue

function for pricing. The right figure shows an ideal revenue curve D(v) which equals v

for v ∈ [0, b] and equals b + (1− b)(1− 1
f(v)+1) for v ∈ (b, 1]. The slopes indicate that D(v)

v

is actually non-increasing. We draw the figures with exaggeration to show the hierarchical

structures better.

The constructions of bump-based revenue curves are illustrated in Figure 3.1. Firstly,

we define a nested-interval series [0, 1] = [a0, b0] ⊃ [a1, b1] ⊃ . . . ⊃ [ak, bk] ⊃ . . ., where

bk = ak +wk, wk = 3−k!. We let ak be chosen from the discrete set {ak−1 + wk−1
3 + i ·wk, i =

0, 1, 2, . . . , wk−1
3wk
}. Secondly, we construct Lipschitz bump functions in each [ak, bk] interval,
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the middle one-third of which is a plain line Thirdly, we add all these bump function up,

which forms a “tower” with its peak randomly generated by the series of tightening intervals

{[ak, bk]}. Finally, it is transformed into a revenue curve after a series of operations.

If we treat this randomly-generated function a uniformly-distrbuted family of functions,

then we can further prove our lower bound: On the one hand, we prove that the feedback

cannot accurately locate where the “peak of the tower” is, from the perspective of

information theory. In fact, any algorithm would have a constant chance of missing the

peak. On the other hand, the cost of missing a peak can be lower bounded, and thus the

expected regret is as well lower bounded by their product.

With this theorem holds, we can soon get the following two corollaries:

Corollary 3.5.4 (Lower bound of LP problem). The regret lower bound for LP problems

is Ω̃(d 1
3 T

2
3 ), even with stochastic features and distributional properties same as those in

Theorem 3.5.3.

Proof. Here we construct the following LP problem: let xt = [0, . . . , 0, 1, 0, . . . , 0]⊤ with

only the ith
t element being 1, where it is chosen from {1, 2, . . . , d} uniformly at random

for each t = 1, 2, ..., T . As a result, the problem is split into d-subproblems with each

of them a non-feature pricing problem in T
d

rounds in expectation (since the demand

function FLP (y|x) can be totally different and independent for different x’s). According

to Theorem 3.5.3, the lower bound for this problem is Ω̃(d · (T
d
) 2

3 ) = Ω̃(d 1
3 T

2
3 ).

Corollary 3.5.5 (Lower bound of LV problem). The regret lower bound for LV prob-

lems is Ω̃(T 2
3 ), even with stochastic features and noise-distributional properties stated in

Theorem 3.5.3.
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It is worth mentioning that the noise distribution is itself an (inversed) demand function

on (v − u), i.e., it is non-increasing as (v − u) gets larger. Based on this insight, the

derivation of Corollary 3.5.5 is straightforward: any non-feature pricing problem with

bounded i.i.d. yt’s can be reduced to an LV problem up to constant coefficients. In fact,

suppose yt ∈ [a, b], 0 ≤ a < b in a non-feature pricing problem, and then we might define

an LV problem by setting d = 1, θ∗ = a+b
b−a

and xt = 1,∀t ∈ Z+ since now x⊤
t θ∗ +Nt ∈ [a, b].

As long as the definition of LV problem does not specify the distributional properties

(besides being bounded), the distribution family in the proof of Theorem 3.5.3 can be

reduced to an LV problem as well. In this way, the Ω̃(T 2
3 ) lower bounds are applicable to

LV problems.

3.6 Numerical Experiments

In this section, we conduct numerical experiments to show the validity of Linear-EXP4.

We assume d = 2, B = 1 as basic parameters, and assume a Gaussian noisy valuation

model i.e., yt = ut + Nt where Nt ∼ N (0, 1
16) independently for all t. For the convenience

of comparing with a fixed optimal linear policy β∗, we let ut = J−1(x⊤
t β∗) for each t,

where J(u) = argmaxv g(v, u, 1− ΦN (0, 1
16 )) is a greedy pricing function defined in Xu and

Wang [2021]5. In other words, the linear price v∗
t = x⊤

t β∗ always maximizes the expected

reward for any t, and we may calculate the empirical ex ante regret (i.e., comparing

the empirical performance with the maximizer of expected regret at each round) by

comparing vt · 1(vt ≤ yt) with x⊤
t β∗ · 1(x⊤

t β∗ ≤ yt). According to Hoeffding’s Inequality,

the ex post regret that we adopt for the LP problem is only Õ(
√

T ) different from the

empirical ex ante regret. Given that the regret rate of Linear-EXP4 is Θ̃(T 2
3 ), we may

ignore this difference and only show the ex ante regret in our experiments. Since the
5They also show the existence of J−1(v) by showing that J ′(u) ∈ (0, 1).
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Figure 3.2: Regrets of Linear-EXP4 on simulated examples. The plot is on log-log scales

to show the regret rate: a slope of α indicates an O(T α) regret. Besides, we draw error

bars with 0.95 coverage. Notice that the slope of its linear fit is 0.667, which matches the

Õ(T 2
3 ) regret rate in theory.

EXP-4 learner requires pre-knowledge on T and is not an any-time algorithm (i.e., the

cumulative regret is meaningful only at t = T ), we execute Linear-EXP4 for a series of

T = ⌊2 k
3 ⌋ for k = 27, 28, . . . , 48. We repeat every experiment 20 times for each setting

and then take an average. The results are shown in Figure 3.2

We were unable to conduct numerical experiments on D2-EXP4 due to the exponential

time complexity of the EXP-4 learner along with the 2T
1
4 -size policy set. We provide the

code of D2-EXP4 in our supplementary materials.
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3.7 Discussion

In this section, we discuss potential extensions of this work and our conjectures on the

regret of LV problems.

From Linear to Non-Linear Both LP and LV problems are based on a linear principle

of feature-price/valuation relationships, which is not reasonable in many real-world

situations (for example, the price of a diamond). Based on our specifications on LP and

LV problems, we may similarly define two corresponding problems: (1) We make no

assumptions on the xt → yt mapping, but compare with the optimal policy in a parametric

non-linear model space. (2) We directly assume that the xt → yt is a parametric non-linear

function adding some unknown (and non-parametric) noise, and compare with the optimal

price. We may slightly modify our Linear-EXP4 and D2-EXP4 to deal with these two

problems by just replacing the linear discretized policy set with another non-linear one.

However, we should be careful about any discretization involved: the γ-roundings of

non-linear policy parameters do not necessarily lead to a slightly lower price (maybe

either higher or much lower). Like what we designed in D2-EXP4, we still have to ensure

the parametric optimal policy itself performs within a [−O(γ), 0] range from the global

optimal policy.

The Minimax Regret(s) of LV Existing works on solving LV have achieved various

regret bounds with different assumptions. This is quite different from the linear regression

problem where noise distributions do not significantly affect the result. To the best

of our knowledge, we are the first to get rid of all assumptions (despite bounded-noise
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assumption 6). However, we did not close the regret gap in this setting. This problem

is similar to a non-feature pricing problem as we adopt the same lower bound proof in

this work, but the situations are entirely different: In non-feature pricing, we aim at

a fixed optimal price, and we only have to know the valuation distribution around the

optimal price. However, in an LV problem, we have to approach the exact linear valuation

adding an optimal increment for each feature, and the optimal increments are not fixed

for different valuations. As a result, we have to know the whole noise distribution. This

drastically increases the hardness of LV, and we conjecture LV with a Θ(T α) regret where

α > 2
3 .

Dependence on Noise Scale R In this work we assume the noise Nt ∈ [−1, 1]. Based

on this assumption, we construct a discrete noise CDF family Fγ whose size is
( 3

γ
1
γ

)
. When

it changes to Nt ∈ [−R, R] for larger R, the number of discrete CDF is
( 2R+1

γ
1
γ

)
≤ (2R+1

γ
)

1
γ .

Also, this would increase the upper bound of prices from (B + 1) to (B + R), which would

increase the number of actions by R
γ

. Recall that the regret of EXP-4 is O(
√

KT log N)

where K is the number of actions and N is the number of policies (i.e., # discrete θ times

# discrete CDF). Therefore, the dependence on R is O(
√

R log R).

Differences between LP and LV As we stated in Section 3.1, LP models our strategy

while LV modes the nature. Also, a good (no-regret) LP algorithm approaches the best

linear policy in total while a good LV algorithm approaches the global optimal price at

each round. When we adopt a LP problem model, we indeed have very little information

about the market valuation other than obvious features of the product to sell. In this

situation, a linear pricing policy is tractable and transparent to the customers, but it
6If the noise is neither bounded nor parametrized, then any finite-time algorithm will suffer a linear

regret when the noise is very large and prices are always being accepted.
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is not guaranteed to present or approach the best price. When we adopt a LV problem

model, it is assumed that we have already known all features of the selling session (not

limited to the product itself), and the fluctuation caused by the market is independent to

the product. Therefore, we may learn from the feature-pricing-feedback data over the

time and estimate the noise distribution, which would help approaching the best price

combining with a greedy policy. Here is a concrete example regarding vehicle owners,

dealers and buyers that illustrates the difference between LP and LV:

1. In Session 1, suppose we are the owner and would like to sell our used car to a

buyer/dealer. A 3rd-party evaluator will evaluate your car based on a few (but

not all) factors, e.g., mileage, duration, condition and accident records, and then

subtract a certain amount from the selling price of an identical new car. This

amount is usually linearly or near-linearly dependent on these factors listed above.

Remember that this selling price is proposed by we owners. In other words, we

are the seller in this session, and the buyer/dealer would respond by accepting or

declining the price we propose. Here we adopt a linear pricing policy because we do

not have full information of the selling session, and therefore customers’ valuation

model is indeed unclear to us.

2. In Session 2, suppose we are the dealer and would like to sell a used car to a

buyer. Car dealers usually have sufficient information on the vehicle and the market

supply-demand relationship. At least, we know clearly about which features are

related to customers’ valuations. Therefore, it is reasonable for usr to assume a

parametric noisy valuation model (possibly a LV model) on their customers, and we

would optimize these parameters based on historical selling records. With the model

being well-learned, we may approach the global optimal price every time. That we

directly make assumptions on customers’ valuation model is reasonable since we
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dealers have sufficient information, but this could still be risky if the features we

can observe are limited.

The Hardness of Pricing versus Bandits The generic feature-based dynamic pricing

problem can be reduced to a contextual bandit problem with continuum action and infinite

policy spaces, despite some literature that assumes a different acceptance/declination

reward scope (see Bartók et al. [2014]). Therefore, the gap between a dynamic pricing

problem and an ordinary (discrete-action and finite-policy) contextual bandit problem

can be observed from three perspectives. Firstly, the pricing feedback contains more

information than a bandit feedback: if vt is accepted, then any v ≤ vt would have been

accepted if it were proposed. We call this a “half-space information”. Secondly, a discrete

action space might not contain the optimal or any near-optimal price that matches the

minimax regret: the revenue curve can vary drastically with respect to the price (e.g.,

consider a noise whose pdf is a rescaled Weierstrass function). Thirdly, a finite policy space

might not contain the global optimal or any near-optimal policy, either. This is possible

even for a parametric policy space where the parameter space is infinite. Therefore,

we cannot directly adopt the regret bounds of contextual bandits onto feature-based

dynamic pricing problems unless there exists a rigorous reduction. However, we notice

that the three perspectives above are pointing at different directions: the “half-space

information” makes pricing easier than bandits, while the other two discretization issues

makes it harder. In fact, we might partially offset the “continuum action” issue with

the “half-space information” just like what we did in this paper: the revenue curve is

actually “half Lipschitz” that g(v1, u, F ) − g(v2, u, F ) ≤ v1 − v2 if v1 ≥ v2. This helps

our algorithms get rid of the Lipschitz assumption. However, this is not rich enough to

substantially reduce the regret as we still use bandit algorithms to achieve a minimax
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rate in an LP problem, where the lower bound holds even for Lipschitz revenue curve.

Therefore, a very important question occurs to us: what else could a pricing feedback

provide other than the “half Lipschitz”? Technically speaking, does a pricing feedback

contain high-order information of the revenue curve? Besides, remember that we still

do not have a unified approach toward a finite near-optimal policy set. In this work,

we discretize the noise distribution by 1
γ

grids, which indeed increases the regret bound.

For more sophisticated feature-valuation mapping (e.g., a non-linear valuation model)

that is hard to parameterize, maybe it is not suitable to just apply naive discretization

methods. As a result, pricing problem is at least as hard as bandits, and it is still unclear

whether the minimax regret of agnostic contextual pricing is obtained by contextual

bandit methods.

Social Impacts In this work, we mainly focus on an online-fashion pricing problem

where only one product is sold to one customer at each round (time spot). Therefore, it

is not likely to commit a pricing discrimination according to its rigorous definition (since

the price fluctuation over time should not be treated as discrimination). However, there

exist chances that our algorithm could be misused. Notice that each item is characterized

by a feature vector xt, which might be used to capture more information, e.g., customers’

behaviors. On the one hand, it is indeed a price discrimination if we propose differently-

generated prices to customers with different personal features even at different time point

as long as the market has not changed substantially. On the other hand, this would

lead to a potential leakage of personal privacy. It is usually forbidden to collect and use

personal information for commercial use, but the sellers would at least know what the

customers have bought and how much they have paid. Even though the feature xt can be

encoded with cryptographic techniques such that it is still suitable for learning (e.g., a
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“fully-homomorphic encryption”, or FHE), at least the proposed prices are informative

and might reveal the customer’s behaviors. Indeed, auctions are a method to avoid any

pricing discrimination, but it is not practical in most of the situations happening in our

daily life.

3.8 Conclusion

In this chapter, we have studied two agnostic feature-based dynamic pricing problems: a

linear pricing policy (LP) problem with no assumptions on feature-valuation mappings,

and a linear noisy valuation (LV) problem with agnostic noise distributions. For the LP

problem, we have presented a Linear-EXP4 algorithm whose Õ(T 2
3 d

1
3 ) regret matches the

Ω̃(T 2
3 d

1
3 ) lower bound up to logarithmic factors. For the LV problem, we have proposed

an Õ(T 3
4 )-regret algorithm D2-EXP4 along with an Ω̃(T 2

3 ) lower bound proof even with

stochastic, Lipschitz and unimodal assumptions, and both of them substantially improve

existing results from O(T 2
3 ∪(1−α)) (with smoothness assumptions and indeterministic α)

and Ω(T 3
5 ) respectively. Both Linear-EXP4 and D2-EXP4 allow adversarial features. Be-

sides, we have discussed the prospective generalization of our results and the development

of future research in feature-based dynamic pricing.

3.9 Proofs

Here we present the proof details of Theorem 3.5.2 and Theorem 3.5.3.
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3.9.1 Proof of Regret of D2-EXP4: Theorem 3.5.2

Proof. For any specific LV problem that is defined with linear parameter θ∗ and noise

CDF F , we define another parameter θ̂∗ := ⌈θ∗⌉∆ and another CDF functions F̂ :

F̂ (x) =⌊F (x)⌋γ when x = i · γ for i ∈ Z, and linearly connecting

F̂ (iγ) with F̂ (i + 1γ) when x ∈ (iγ, (i + 1)γ).

Notice that F̂ ∈ Fγ, θ̂∗ ∈ Ω∆,d, and our goal is to prove that π(x; θ̂∗, F̂ ) is good enough to

mach the regret. With these two definitions, we might furthermore define a few amounts:

û = x⊤θ̂∗, w∗(u) = argmaxw g(u + w, u, F ), ŵ∗(u) = argmaxw g(u + w, u, F ), ŵ(û) =

argmaxw g(û+w, û, F̂ ). Therefore, the price our algorithm proposed for feature x is v̂(x) =

⌊û⌋γ−(B+1)γ+⌊ŵ(û)⌋γ , and our goal is to prove that g(v̂, u, F ) ≥ g(u+w∗(u), u, F )−C ·γ

for some constant C. Since θ̂∗ := ⌈θ∗⌉∆, we have ∥θ∗∥2 ≤ ∥θ̂∗∥2 ≤ ∥θ∗∥2+∆
√

d = ∥θ∗∥2+γ

and thus u− γ ≤ û− γ ≤ ⌊û⌋γ ≤ û ≤ u + Bγ. Based on this, we may get rid of ⌊û⌋γ as

follows:

g(⌊û⌋γ − (B + 1)γ + ⌊ŵ(û)⌋γ , u, F )

=(⌊û⌋γ − (B + 1)γ + ⌊ŵ(û)⌋γ) · (1− F (⌊û⌋γ − (B + 1)γ + ⌊ŵ(û)⌋γ − u))

≥(⌊û⌋γ + ⌊ŵ(û)⌋γ) · (1− F (⌊û⌋γ − (u + (B + 1)γ) + ⌊ŵ(û)⌋γ))− (B + 1)γ

≥(u + ⌊ŵ(û)⌋γ)(1− F (⌊ŵ(û)⌋γ))− (B + 2)γ.

Now we target at ⌊ŵ(û)⌋γ that occurs in both of the price term and the probability term,

and we will get rid of it by two steps. Since F̂ (iγ) ≤ F (iγ) ≤ F̂ (iγ) + γ, we have the first
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step like:
(u + ⌊ŵ(û)⌋γ)(1− F (⌊ŵ(û)⌋γ))

≥(u + ⌊ŵ(û)⌋γ)(1− F̂ (⌊ŵ(û)⌋γ)− γ)

≥(u + ⌊ŵ(û)⌋γ)(1− F̂ (⌊ŵ(û)⌋γ))− (B + 1)γ

≥(u + ⌊ŵ(û)⌋γ)(1− F̂ (ŵ(û)))− (B + 1)γ.

Here the second inequality comes from the (B + 1) natural bound of any price. Again, we

apply u ≥ û−Bγ and get the second step:

(u + ⌊ŵ(û)⌋γ)(1− F̂ (ŵ(û)))

≥(û−Bγ + ŵ(û)− γ)(1− F̂ (ŵ(û)))

≥(û + ŵ(û))(1− F̂ (ŵ(û)))− (B + 1)γ

=g(û + ŵ(û), û, F̂ )− (B + 1)γ.

Now, there are only ·̂’s instead of γ−roundings, and we will get rid of those ·̂’s within

some C · γ errors. According to the definition of ŵ(û) that it optimizes g(û + w, û, F̂ ), we

further have:
g(û + ŵ(û), û, F̂ )

≥g(û + ŵ∗(u), û, F̂ )

=(û + ŵ∗(u))(1− F̂ (ŵ∗(u)))

≥(u + ŵ∗(u))(1− F̂ (ŵ∗(u)))

=g(u + ŵ∗(u), u, F̂ )
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Finally, according to the definition of ŵ∗(u) that it optimizes g(u + w, u, F̂ ), we have:

g(u + ŵ∗(u), u, F̂ )

≥g(u + ⌊w∗(u)⌋γ, u, F̂ )

=(u + ⌊w∗(u)⌋γ)(1− F̂ (⌊w∗(u)⌋γ))

≥(u + ⌊w∗(u)⌋γ)(1− F (⌊w∗(u)⌋γ))

≥(u + w∗(u)− γ)(1− F (w∗(u)))

≥g(u + w∗(u), u, F )− γ.

Here the fourth line is again due to F̂ (iγ) ≤ F (iγ) ≤ F̂ (iγ) + γ and the non-decreasing

property of F . We make a tricky use of ⌊·⌋γ as a “ladder” helping us climb between F

and F̂ , and the ladders only emerge on those iγ places as i ∈ Z. Therefore, we have

g(v̂, u, F ) ≥ g(u + w∗(u), u, F )− (3B + 5) · γ. Since γ = T − 1
4 , this would upper bounds

the optimality error up to O(T · γ) = O(T 3
4 ). Also, the EXP-4 agent would cause a regret

of O(
√

T |A| log ΠLV
∆,γ) = O(

√
T
γ2 + T d log dT

γ
) = O(T 3

4 + T
5
8 d

1
2 log dT ). This completes the

proof.

3.9.2 Proof of Lower Bound: Theorem 3.5.3

Before the proof begins, we make some necessary definitions. First of all, define a bump

function as following:
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Definition 3.9.1 (Bump function). For v ∈ R+, we define

B(v) =



0 v ∈ (−∞, 0] ∪ [1, +∞)

exp{ 1
(3v−1)2−1} v ∈ (0, 1/3)

1 v ∈ [1/3, 2/3]

exp{ 1
(3v−2)2−1} v ∈ (2/3, 1)

0 v ∈ [1, +∞)

as a basic bump function. Then we define a rescaled bump function:

B[a,b](v) = B(v − a

b− a
).

Here we present a lemma on the Lipschitzness of B(v):

Lemma 3.9.2 (Lipschitz continuity of B(v)). B(v) is 6-Lipschitz, i.e., |B′(v)| ≤ 6. Also,

|B′
[a,b](v)| = | 1

b−a
B′(v−a

b−a
)| ≤ 6

b−a
.

Proof. According to Definition 3.9.1, we have:

B′(v) =



0 v ∈ (−∞, 0]

− 1
((3v−1)2−1)2 · 6(3v − 1) exp{ 1

(3v−1)2−1} v ∈ (0, 1/3)

0 v ∈ [1/3, 2/3]

− 1
((3v−2)2−1)2 · 6(3v − 2) exp{ 1

(3v−2)2−1} v ∈ (2/3, 1)

0 v ∈ [1, +∞)

Now we propose a lemma:

Lemma 3.9.3. For t > 1, we have t2

et ≤ 1.

In fact, for both 1 < t ≤
√

e and t ≥ 2, the inequality is trivial. For t ∈ (
√

e, 2), we have

ln(et) > ln(e
√

e) =
√

e · 1 > 1.6 > 2× 0.7 > 2 ln 2 > 2 ln t = ln(t2).
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Now we denote t1 = − 1
(3v−1)2−1 , t2 = − 1

(3v−2)2−1 , and we know that t1 > 1 for v ∈ (0, 1
3)

and t2 > 1 for v ∈ (2
3 , 1)

B′(v) =



0 v ∈ (−∞, 0]

−t2
1 · 6(3v − 1) exp{−t1} v ∈ (0, 1/3)

0 v ∈ [1/3, 2/3]

−t2
2 · 6(3v − 2) exp{−t2} v ∈ (2/3, 1)

0 v ∈ [1, +∞)

Given the lemma above, we can immediately see that −6 ≤ B′(v) ≤ 6. This ends the

proof of Lemma 3.9.2.

Secondly, we define a series of intervals [0, 1] = [a0, b0] ⊃ [a1, b1] ⊃ . . . ⊃ [ak, bk] ⊃ . . .,

where bk = ak + wk, wk = 3−k!. Notice that wk shrinks even faster than exponential

series. Now we describe how to choose [ak, bk] from [ak−1, bk−1]: We divide the range

[ak−1 + wk−1
3 , bk−1 + wk−1

3 ] into Qk = wk−1
3wk

sub-intervals of the same length wk, and then

we pick one of these sub-intervals uniformly at random and denote it as [ak, bk]. It is

trivial to see that [a1, b1] = [1
3 , 2

3 ], [a2, b2] = [4
9 , 5

9 ].

Thirdly, we define a function:

f(v) := Cf ·
∞∑

k=0
wk ·B[ak,bk](v), (3.7)

where Cf > 0 is a constant which we will determine later. There are a few properties of

f(v) shown in the following lemma:

Lemma 3.9.4. Define f(v) as Eq. (3.7), and we have:

1. There exists a unique v∗ ∈ [0, 1] such that f(v∗) = maxv∈[0,1] f(v). In specific,

v∗ = ⋒∞
k=1[ak, bk].
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2. f(v) is unimodal.

3. For any v ∈ [0, 1], there exists at most one k, such that B′
[ak,bk](v) ̸= 0.

4. f(v) ≤ 3
2Cf .

Proof. To prove 1, we first see that v∗ ∈ [ak, bk], k = 1, 2, . . .. Notice that limk→∞ ak

exists (since {ak}∞
k=0 is increasing and upper bounded) and that limk→∞(bk − ak) =

limk→∞ 3−k! = 0. Therefore, ⋒∞
k=1[ak, bk] is a unique real number within [1

3 , 2
3 ].

To prove 2, notice that every B[ak,bk](v) is non-decreasing in [0, v∗] and non-increasing in

[v∗, 1].

To prove 3, consider the case when B′
[ak,bk](v) ̸= 0, and we know that: (1)v ∈ [ak, bk] ⊂

[ak−1 + wk−1
3 , bk−1 − wk−1

3 ] ⊂ [ak−2 + wk−2
3 , bk−2 − wk−2

3 ] ⊂ . . . ⊂ [a0 + w0
3 , b0 − w0

3 ] = [1
3 , 2

3 ].

Since B′
[aj ,bj ](v) = 0, v ∈ [aj + wj

3 , bj − wj

3 ], we know that B′
[aj ,bj ](v) = 0, j = 0, 1, . . . , k− 1.

(2) v /∈ [ak+1, bk+1] ⊃ [ak+2, bk+2] ⊃ . . ., and we know that B′
[ai,bi](v) = 0, i = k+1, k+2, . . ..

To prove 4, just notice that B(v) ≤ 1 and thus f(v) ≤ Cf ·
∑∞

k=0 3−k! ≤ Cf ·
∑∞

k=0 3−k! =
3
2Cf .

According to Lemma 3.9.4 Property 3, we have:

|f ′(v)| ≤ Cf max
v∈[ak,bk],k=1,2,...

|wk ·B′
[ak,bk](v)|

= Cf max
v∈[ak,bk],k=1,2,...

|wk ·B′( v − ak

bk − ak

) · 1
wk

|

≤ Cf max
y
|B′(y)|

≤ 6Cf

.
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This holds for any v ∈ [0, v∗) ∪ (v∗, 1]. Now we define another function G(v)7:

G(v) = 1− 1
f(v) + 1 , v ∈ [0, 1]. (3.8)

According to Lemma 3.9.4 that reveals the properties of f(v), we have a similar lemma

on G(v):

Lemma 3.9.5. Define G(v) as Eq. (3.8), and we have the following properties:

1. G(0) = 0, G(1) = 0, 0 < G(v) < 1forv ∈ (0, 1).

2. G(v) is unimodal in [0, 1].

3. G′(v) = f ′(v)
(f(v)+1)2 ⇒ |G′(v)| ≤ 6Cf .

The proof of Lemma 3.9.5 is trivial.

Notice that G(v) is not necessarily a revenue curve, since G(v)
v

is not necessarily decreasing

(and thus not a “survival function”). However, we can construct a revenue curve D(v) :

[0, 1]→ [0, 1] via an affine transformation:

D(v) =


v v ∈ [0, b]

b + (1− b)G(v−b
1−b

) v ∈ (b, 1].
(3.9)

Here b = 6Cf +1
2 ∈ (0, 1), and therefore Cf < 1

6 . An illustration of the transformation from

f(v) (the upper figure) to D(v) (the lower figure) is shown in Figure 1. The monotonicity

in each interval is not changed, while the rate of E[r(v)]
v

is non-increasing after these

transformations. As is mentioned above, the homothetic transformation with center (1, 1)

ensures a non-increasing property of D(v)
v

. Here we denote d(v) := D(v)
v

. To show that
7Here G stands for “gain”, which is different from the revenue curve to be introduced later.
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D(v) is a revenue curve, we expand the definition of d(v) to R as follows:

d(v) =


1 v ∈ (−∞, 0]
D(v)

v
v ∈ (0, 1)

0 v ∈ [1, +∞).

(3.10)

Now we claim that there exists a random variable Y > 0 such that d(v) = P[Y ≥ v]. To

show this, it is sufficient to prove the following lemma:

Lemma 3.9.6. For d(v) defined in Eq. (3.10), we have the following properties:

1. d(v) is non-increasing on R.

2. d(v) is continuous at v = 0, i.e. d(0) = limv→0+ d(v) = 1.

3. d(v) ≥ 0, v ∈ [0, 1].

Proof. According to Eq. (3.9) and Eq. (3.10), we have:

d(v) =


1 v ∈ (−∞, b]
b
v

+ 1−b
v
·G(v−b

1−b
) v ∈ (b, 1)

0 v ∈ [1, +∞).

Therefore, we take the derivatives of d(v) and get:

∂d(v)
v

=


o v ∈ (−∞, 0) ∪ (0, b)

− b−v·G′( v−b
1−b

)+(1−b)G( v−b
1−b

)
v2 v ∈ (b, 1)

0 v ∈ (1, +∞).
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Notice that
b− v ·G′(v − b

1− b
) ≥ b− |v| · |G′(v − b

1− b
)|

≥ b− 1 · 6Cf

= 6Cf + 1
2 − 6Cf

= 1− 6Cf

2
> 0.

The last inequality comes from the fact that Cf < 1
6 . Therefore, d′(v) is non-positive

in (−∞, 0) ∪ (0, b) ∪ (b, 1) ∪ (1, +∞). Also, d(v) is continuous at v = 0, v = b and

limv→1− = b > 0 = limv→1+ , we know that d(v) is always non-increasing on R.

Notice that there is a bijection between each {[ak, bk]}∞
k=0 series and each f(v), and

correspondingly each G(v), D(v) and d(v). Still, a bijection lies between each d(v) and

the distribution P[Y ≥ v] of the customers’ valuation. Therefore, we will take d(v) to

represent this distribution.

With all preparations done above, we are now able to prove Theorem 3.5.3. Specifically, we

will proof the theorem on an infinite series of n1, n2, . . ., where nk = ⌈ 1
k
(wk−1

w3
k

)⌉. Consider

the possible Qk = wk−1
3wk

choices of [ak, bk], and denote these intervals as Ij, j = 1, 2, . . . , Qk.

If [ak, bk] = Ij, then we denote the corresponding f(v), G(v), D(v), d(v) functions as

fj(v), Gj(v), Dj(v) and dj(v) sequentially. Meanwhile, if we do not make any choice

of [ak, bk], and then we just have a finite series of intervals [0, 1] = [a0, b0] ⊃ [a1, b1] ⊃

[a2, b2] ⊃ . . . ⊃ [ak−1, bk−1], and then we can define a f0(v) = Cf ·
∑k−1

j=0 wj ·B[aj ,bj ](v), and

can also define corresponding G0(v), D0(v), d0(v) based on f0(v).

Now, consider the pricing feedbacks in total n rounds (where we denote nk as n for

simplicity). Define a feedback vector rn ∈ {0, 1}n, denoting the outcome of a deterministic
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policy interacting with the revenue curve. We claim that for t = 1, 2, . . . , n, a vector rt is

sufficient for any deterministic policy to generate a price vt+1, because ri is a prefix of rj

when i ≤ j. For any policy π, denote the probability of rn’s occurence as Pj(rn) under

the distribution dj , or P0(rn) under the distribution d0. Denote the series of prices that π

has generated as {vt}, t = 1, 2, . . . , n, and we may assume vt ≥ b without losing generality

(as 0 ≤ v < b is always suboptimal). Then, for any function h : {0, 1}n → [0, M ], we

have:
EPj

[h(rn)]− EP0 [h(rn)]

=
∑
rn

h(rn) · (Pj[rn]− P0[rn])

≤
∑

rn:Pj [rn]≥P0[rn]
h(rn)(Pj[rn]− P0[rn])

≤M ·
∑

rn:Pj [rn]≥P0[rn]
h(rn)(Pj[rn]− P0[rn])

=M

2 ∥Pj − P0∥1

≤M

2
√

2 ln 2 ·KL(P0||Pj).

The last line comes from Lemma 11.6.1 in Cover & Thomas, Elements of Information

Theory, where KL stands for the KL-divergence. Since

KL(P0(rn)||Pj(rn)) =
n∑

t=1
KL(P0[rt|rt−1]||Pj[rt|rt−1])

=
t∑

t=1
P0(

vt − b

1− b
/∈ Ij) · 0 + P0(

vt − b

1− b
∈ Ij) ·KL(D0(vt)

vt

||Dj(vt)
vt

).

The first equality comes from the chain rule of decomposing a KL-divergence. The second

equality is becausert is a Bernoulli random variable that satisfies Ber(D0(vt)
vt

) under P0,

or Ber(Dj(vt)
vt

) under Pj. Denote µt := vt−b
1−b

for simplicity. Notice that if vt ∈ Ij, then we
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have:
Dj(vt)

vt

− D0(vt)
vt

= (1− b) ·Gj(µt)
vt

− (1− b) ·G0(µt)
vt

= 1− b

vt

(Gj(µt)−G0(µt))

= 1− b

vt

( 1
f0(µt) + 1 −

1
fj(µt) + 1

)
= 1− b

vt

fj(µt)− f0(µt)
(f0(µt) + 1)(fj(µt) + 1)

= 1− b

vt

Cf
∑∞

i=k wi ·B[ai,bi](µt)
(f0(µt) + 1)(fj(µt) + 1)

≤ 1− b

b
· Cf · 2wk

1× 1

≤ 1 · 2Cfwk

≤ wk

3
Here the third last inequality comes from vt ≥ b, f0(v) ≥ 0, fj(v) ≥ 0, and the fact

that
∞∑

i=k

wiB[ai,bi](µt) ≤
∞∑

i=k

3−i! · 1 ≤ 3−k!
∞∑

i=0
3−i ≤ 2

3 · 3
−k! < 2wk.

The second last inequality comes from b = 6Cf +1
2 ≥ 1

2 . The lastest inequality comes from

the fact that 6Cf < 1.

Now we propose a lemma:

Lemma 3.9.7. For Bernoulli distributions Ber(p) and Ber(p + ϵ) with 1
2 ≤ p ≤ p + ϵ ≤

1
2 + C, we have

KL(p||p + ϵ) ≤ 1
ln 2

4
1− 4C2 ϵ2.
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Proof.

KL(p||p + ϵ) = p log( p

p + ϵ
) + (1− p)log( 1− p

1− p− ϵ
)

= 1
ln 2 · (p(− ln(1 + ϵ

p
)) + (1− p) ln(1 + ϵ

1− p− ϵ
))

≤ 1
ln 2 · (p(− ϵ

p + ϵ
) + (1− p) ϵ

1− p− ϵ
)

= 1
ln 2 ·

ϵ2

(p + ϵ)(1− p− ϵ)

≤ 1
ln 2 ·

ϵ2

(1
2 + C)(1

2 − C)

≤ 1
ln 2 ·

1
1
4 − C2 ϵ2.

Here the third line comes from the fact that v
1+v
≤ ln v ≤ v.

Let us come back to the proof of the theorem. Since D0(vt)
vt
≥ b ≥ 1

2 , and the fact that

Dj(vt)
vt

≤
Dj(b + 1−b

3 )
b + 1−b

3

= 3 ·
b + (1− b)(1−Gj(1

3))
1 + 2b

= 3 ·
b + (1− b) fj( 1

3 )
fj( 1

3 )+1

1 + 2b

= 3 ·
b + (1− b) Cf

Cf +1

1 + 2b
.

The first inequality is because D(v)
v

is non-increasing and the fact that vt ≥ b + 1−b
3 if

vt ∈ [ak, bk], k ≥ 1. The last equality comes from the fact that fj(1
3) = Cf . Now we

specify the constants: let Cf = 1
60 , b = 6Cf +1

2 = 11
20 . Plug in these constant values and we

get:
Dj(vt)

vt

≤ 340
427 <

5
6 .

According to Lemma 3.9.7, we have:

KL(D0(vt)
vt

||Dj(vt)
vt

) ≤ 1
ln 2 ·

4
1− 4 · (5

6 −
1
2)2 · (

wk

3 )2 = 1
ln 2 ·

36
5 ·

w2
k

9 = 1
ln 2 ·

4w2
k

5 .
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. Recall that
KL(P0(rn)||Pj(rn))

=
t∑

t=1
P0(

vt − b

1− b
∈ Ij) ·KL(D0(vt)

vt

||Dj(vt)
vt

)

≤ 1
ln 2 ·

4
5w2

k ·
n∑

t=1
P0[µt ∈ Ij].

Therefore, we have:
EPj

[h(rn)]− EP0 [h(rn)]

≤M

2

√√√√2 ln 2 · 1
ln 2 ·

4
5w2

k ·
n∑

t=1
P0[µt ∈ Ij]

≤4M · wk

5 ·

√√√√ n∑
t=1

P0[µt ∈ Ij].

Now , let h(rn) be Nj = |{t|µt ∈ Ij, t = 1, 2, . . . , nk}|, and we know that M = nk. Since

nk = ⌈ 1
k

wk−1
w3

k
⌉, we conduct the pricing for nk times and have:

EPj
[Nj]− EP0 [Nj] ≤

4M · wk

5 ·

√√√√ n∑
t=1

P0[µt ∈ Ij] = 4M · wk

5 ·
√
EP0 [Nj].

Sum over j = 1, 2, . . . , Qk of the inequality above, and we take an average to get:

1
Qk

·
Qk∑
j=1

EPj
[Nj] ≤

1
Qk

Qk∑
j=1

EP0 [Nj] + 1
Qk

4
5nk · wk

Qk∑
j=1

√
EP0 [N ]

= 1
Qk

· nk + 1
Qk

4
5nk · wk

Qk∑
j=1

√
EP0 [Nj]

≤ nk

Qk

+ 4
5

nk

Qk

· wk ·

√√√√√Qk ·
Qk∑
j=1

EP0 [Nj]

= nk

Qk

+ 4
5

nk

Qk

· wk ·
√

Qknk

≤ 3
k
· 45

3
k

1
w2

k

√√√√ 3
k2 ·

w2
k−1
w4

k

= 3
k

1
w2

k

+ 4
√

3
5
√

k

1
k

wk−1

w3
k

≤ 0.9 · nk, for k ≥ 3.

(3.11)
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In Eq. (3.11), the first line comes from the summation; the second (and the fourth)

line is because ∑Qk
j=1 EP0 [Nj] = EP0 [

∑Qk
j=1 Nj] = nk; the third line is an application of

Cauchy-Schwartz’s Inequality; the fifth line is derived by plugging in Qk = wk−1
3wk

, nk ≤
1
k
· wk−1

w3
k

, wk = 3−k!; the last line is just calculations. Therefore, under distribution dj,

the policy π is expected to choose an vt /∈ Ij for at least 0.1nk times, which will bring

a regret 0.1nk · Cj · wk = 1
600nk · wk = 1

k
· w

1
k

−2
k . Since nk = 1

k
· w

1
k

−3
k , we know that

Regret = Ω((nk) 2
3 − 1

3k ) up to logarithmic factors. Therefore, we claim that for any δ > 0,

no policy can achieve o(n
2
3 −δ

k ) for sufficiently large k.

This ends the proof of Theorem 3.5.3.
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Chapter 4

Pricing with Contextual Elasticity

and Heteroscedastic Valuation

Price elasticity indicates how customers’ demand responds to price changes for a specific

product. However, our previous model that employ a linear noisy valuation with i.i.d.

noise fails to capture the variability in elasticity across different products. This chapter

introduces an advanced approach to modeling customer demand by integrating feature-

based price elasticity, represented equivalently as a valuation with heteroscedastic noise.

To solve the problem, we propose a computationally efficient algorithm called "Pricing

with Perturbation (PwP)", which enjoys an O(
√

dT log T ) regret while allowing arbitrary

adversarial input context sequences. We also prove a matching lower bound at Ω(
√

dT )

to show the optimality regarding d and T (up to log T factors). Our results shed light

on the relationship between contextual elasticity and heteroscedastic valuation, offering

valuable insights for developing effective and practical pricing strategies.
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4.1 Introduction

Contextual pricing, a.k.a., Feature-based dynamic pricing, considers the problem of setting

prices for a sequence of highly specialized or individualized products. With the growth of

e-commerce and the increasing popularity of online retailers as well as customers, there

has been a growing interest in this area [see, e.g., Amin et al., 2014, Qiang and Bayati,

2016, Javanmard and Nazerzadeh, 2019, Shah et al., 2019, Cohen et al., 2020, Xu and

Wang, 2021, Bu et al., 2022].

Formulated as a learning problem, the seller has no prior knowledge of ideal prices but

is expected to learn on the fly by exploring different prices and adjusting their pricing

strategy after collecting every demand feedback from customers. Different from non-

contextual dynamic pricing [Kleinberg and Leighton, 2003] where identical products are

sold repeatedly, a contextual pricing agent is expected to generalize from one product

to another in order to successfully price a previously-unseen product. A formal problem

setup is described below:

Contextual pricing. For t = 1, 2, ..., T :

1. A product occurs, described by a context xt ∈ Rd.

2. The seller (we) proposes a price pt ≥ 0.

3. The customer reveals a demand 0 ≤ Dt ≤ 1.

4. The seller gets a reward rt = pt ·Dt.

Here T is the time horizon, and the (random) demand Dt is drawn from a distribution

determined by context (or feature) xt and price pt. The sequence of contexts {xt} can

be either independently and identically distributed (iids) or chosen arbitrarily by an

adversary. The seller’s goal is to minimize the cumulative regret against the sequence of
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optimal prices.

Existing works on contextual pricing usually assumes linearity on the demand, but they

fall into two camps. On the one hand, the "linear demand" camp [Qiang and Bayati, 2016,

Ban and Keskin, 2021, Bu et al., 2022] assumes the demand Dt as a (generalized) linear

model. A typical model is Dt = λ(αpt + xT
t β) + ϵt. Here α < 0 is a parameter closely

related to the price elasticity. We will rigorously define a price elasticity in Section 4.8.1

according to Parkin et al. [2002], where we also show that α is the coefficient of elasticity.

Besides of α, other parameters like β ∈ Rd captures the base demand of products with

feature xt, ϵt is a zero-mean demand noise, and λ is a known monotonically increasing

link function. With this model, we have a noisy observation on the expected demand,

which is reasonable as the same product is offered many times in period t. On the other

hand, the "linear valuation" camp [Cohen et al., 2020, Javanmard and Nazerzadeh, 2019,

Xu and Wang, 2021] models a buyer’s valuation yt as linear and assumes a binary demand

Dt = 1[pt ≤ yt]. All three works listed above assume a linear-and-noisy model with

yt = x⊤
t θ∗ + Nt, where θ∗ ∈ Rd is an unknown linear parameter that captures common

valuations and Nt is an idiosyncratic noise assumed to be iid.

Interestingly, the seemingly different modeling principles are closely connected to each

other. In the "linear valuation" camp, notice that a customer’s probability of "buying" a

product equals E[Dt], which is further given by

E[Dt|p] = P[yt ≥ p] := S(p− x⊤
t θ∗),

where S is the survival function of Nt (i.e. S(w) = 1−CDF(w) for w ∈ R). This recovers

a typical linear demand model by taking λ(w) = S(−w) with α = −1 and β = θ∗. In
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other words, the distribution of Nt completely characterizes the demand function λ(·)

and vice versa.

However, the "linear demand" camp is not satisfied with a fixed α = −1, while the "linear

valuation" camp are skeptical about an observable demand Dt even with zero-mean iid

noise. One common limitation to both models is that neither captures how feature xt

affects the price elasticity.

Our model. To address this issue, we propose a natural model that unifies the perspectives

of both groups. Also, we resolve the common limitation by modeling heteroscedasticity,

where we assume that the elasticity coefficient α is linearly dependent on feature xt. This

contextual modeling originates from the fact that different products have different price

elasticities [Anderson et al., 1997].

In specific, we assume:

Dt ∼ Ber(S(x⊤
t η∗ · pt − x⊤

t θ∗)), (4.1)

which adopts a generalized linear demand model (GLM) and a Boolean-censored feedback

simultaneously. From the perspective of valuation model, it is equivalent to assume

Dt = 1[pt ≤ yt], where yt = 1
x⊤

t η∗ · (x
⊤
t θ∗ + Nt) and CDFNt(w) = 1− S(w). (4.2)

Although Eq. (4.1) seems more natural than Eq. (4.2), they are equivalent to each other

(with reasonable assumptions on S). Notice that the random valuation yt is heteroscedastic,

which means its variance is not the same constant across a variety of xt’s. We provide a

detailed interpretation of this linear fractional valuation model in appendix.
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4.1.1 Contributions.

Our main results are twofold.

1. We propose a new demand model that assumes a feature-dependent price elasticity on

every product. Equivalently, we model the heteroscedasticity on customers’ valuations

among different products. This model unifies the “linear demand” and “linear valuation”

camps.

2. We propose a “Pricing with Perturbation (PwP)” algorithm that achieves O(
√

dT log T )

regret on this model, which is optimal up to log T factors. This regret upper bound

holds for both i.i.d. and adversarial {xt} sequences.

4.1.2 Technical Novelty

To the best of our knowledge, we are the first to study a contextual pricing problem with

heteroscedastic valuation and Boolean-censored feedback. Some existing works, including

Javanmard and Nazerzadeh [2019], Miao et al. [2019], Ban and Keskin [2021], Wang

et al. [2021a], focus on related topics and achieve theoretical guarantees. However, their

methodologies are not applicable to our settings due to substantial obstacles, which we

propose novel techniques to overcome.

Randomized surrogate regret. Xu and Wang [2021] solves the problem with x⊤
t η∗ = 1,

by taking the negative log-likelihood as a surrogate regret and running an optimization

oracle that achieves a fast rate (i.e. an O(log T ) regret). However, the log-likelihood is

no longer a surrogate regret in our setting, since it is not "convex enough" and therefore

cannot provide sufficient (Fisher) information. In this work, we overcome this challenge by

constructing a randomized surrogate loss function, whose expectation is "strongly convex"

104



Pricing with Contextual Elasticity and Heteroscedastic Valuation Chapter 4

enough to upper bound the regret.

OCO for adversarial inputs. Javanmard and Nazerzadeh [2019] and Ban and Keskin

[2021] study the problem with unknown or heterogeneous noise variances (i.e. elasticity

coefficients), but their techniques highly rely on the distribution of the feature distributions.

As a result, their algorithm could be easily attacked by an adversarial {xt} series. In our

work, we settle this issue by conducting an online convex optimization (OCO) scheme

while updating parameters. Instead of estimating from the history that requires sufficient

randomness in the inputs, our algorithm can still work well for adversarial inputs.

In addition, our algorithm has more advanced properties such as computational efficiency

and information-theoretical optimality. For more highlights of our algorithm, please refer

to Section 4.4.1.

4.2 Related Works

Here we present a review of the pertinent literature on contextual pricing and heteroscedas-

ticity in machine learning, aiming to position our work within the context of related

studies. For more related works on non-contextual pricing, contextual pricing, contextual

searching and contextual bandits, please refer to Wang et al. [2021b], Xu and Wang [2021],

Krishnamurthy et al. [2021] and Zhou [2015] respectively.

Contextual Pricing. As we mentioned in Section 4.1.2, there are a large number of

recent works on contextual dynamic pricing problems, and we refer to Ban and Keskin

[2021] as a detailed introduction. On the one hand, Qiang and Bayati [2016], Nambiar

et al. [2019], Miao et al. [2019], Wang et al. [2021a], Ban and Keskin [2021], Bu et al.
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[2022] assume a (generalized) linear demand model with noise, i.e. E[Dt] = g(αpt− β⊤xt).

Among those papers, Miao et al. [2019] worksl with a fixed α while we assume α as context-

dependent. Wang et al. [2021a] and Ban and Keskin [2021] are the closest to our problem

setting, which consist of a generalized linear demand model and noisy observations. On

the one hand, Ban and Keskin [2021] assumes independent add-on noises (while we allow

binary martingale observations). With the development of a least-square estimator, they

present an algorithm that achieves Õ(s
√

T ) regret (with s being the sparsity factor).

On the other hand, Wang et al. [2021a] further gets rid of the independence among

noises and allow them to be idiosyncratic. They proposes a UCB-based algorithm with

Õ(d
√

T ) regret and another Thompson-Sampling-based algorithm with Õ(d 3
2
√

T ) regret,

both of which are sub-optimal in d. Moreover, all works mentioned above assume the

context sequence {xt} to be i.i.d., whereas we consider it "too good to be true" and

work towards an algorithm adaptive to adversarial input sequences. On the other hand,

Golrezaei et al. [2019], Shah et al. [2019], Cohen et al. [2020], Javanmard and Nazerzadeh

[2019], Xu and Wang [2021], Fan et al. [2021], Goyal and Perivier [2021], Luo et al. [2022]

adopts the linear valuation model yt = x⊤
t θ∗ + Nt, which is a special case of our model as

x⊤
t η∗ = 1. Specifically, both Javanmard and Nazerzadeh [2019] and Xu and Wang [2021]

achieve an O(d log T ) regret with Nt drawn from a known distribution with x⊤
t η∗ = −1.

Javanmard and Nazerzadeh [2019] also studies the setting when x⊤
t η∗ is fixed but unknown

and achieves O(d
√

T ) regret for stochastic {xt} sequences. In comparison, we achieve

O(
√

dT log T ) on a more general problem and get rid of those assumptions. For a more

detailed discussion, please refer to Section 4.2.

Heteroscedasticity. Since the valuation noise is scaled by a 1
x⊤

t η∗ coefficient, the

valuation is heteroscedastic, referring to a situation where the variance is not the same
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Known α Unknown fixed α Heteroscedastic α = x⊤
t η∗

Features
Stochastic

& Adversarial
Stochastic Adversarial Stochastic Adversarial

Upper

Bound

d log T

[XW21]

d
√

T

[JN19]

?⇒
√

dT

Our Work

s
√

T (independent

noises) [BK21]

d
√

T (idiosyncratic

noises) [WTL21]

?⇒
√

dT

Our Work

Lower

Bound

d log T

[BR12]

√
T

[JN19]

√
T ⇒

√
dT

Our Work

Table 4.1: Existing related literature and results on regret bounds, with Õ(·) dropped.

Note that each adversarial setting covers the stochastic setting under the same assumptions.

Here [XW21] stands for Xu and Wang [2021], [JN19] for Javanmard and Nazerzadeh

[2019], [BR12] for Broder and Rusmevichientong [2012], [BK21] for Ban and Keskin [2021],

and [WTL21] for Wang et al. [2021a].

constant across all observations. Heteroscedasticity may lead to bias estimates or loss of

sample information. There are several existing methods handling this problem, including

weighted least squares method [Cunia, 1964], White’s test [White, 1980] and Breusch-

Pagan test [Breusch and Pagan, 1979]. Furthermore, Anava and Mannor [2016] and

Chaudhuri et al. [2017] study online learning problems with heteroscedastic variances and

provide regret bounds. For a formal and detailed introduction, we refer the audience to

the textbook of Kaufman [2013].
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4.3 Problem Setup

4.3.1 Notations

To formulate the problem, we firstly introduce necessary notations and symbols used in

the following sections. The sales session contains T rounds with T known to the seller

in advance1. At each time t = 1, 2, . . . , T , a product with feature xt ∈ Rd occurs and we

propose a price pt ≥ 0. Then the nature draws a demand Dt ∼ Ber(S(x⊤
t η∗ · pt − x⊤

t θ∗)),

where θ∗, η∗ ∈ Rd are fixed unknown linear parameters and the link function S : R→ [0, 1]

is non-increasing. By the end of time t, we receive a reward rt = pt ·Dt.

Equivalently, this customer has a valuation yt = x⊤
t θ∗+Nt

x⊤
t η∗ with noise Nt ∈ R, and then

make a decision 1t = 1[pt ≤ yt] = Dt after seeing the price pt. Similarly, we receive

a reward rt = pt · 1t. Assume Nt ∼ DF is independently and identically distributed

(i.i.d.), with cumulative distribution function (CDF) F = 1 − S. Denote s := S ′ and

f := F ′.

4.3.2 Definitions

Here we define some key quantities. Firstly, we define an expected reward function.

Definition 4.3.1 (expected reward function). Define

r(u, β, p) := E[rt|x⊤
t θ∗ = u, x⊤

t η∗ = β, pt = p] = p · S(β · p− u) (4.3)

as the expected reward function.

Given this, we further define a greedy price function as the argmax of r(u, β, p) over

p.
1Here we assume T known for simplicity. For unknown T , we may apply a “doubling epoch” trick as

Javanmard and Nazerzadeh [2019] without affecting the regret rate.
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Definition 4.3.2 (greedy price function). Define J(u, β) as a greedy price function, i.e.

the price that maximizes the expected reward given u = x⊤
t θ∗ and β = x⊤

t η∗.

J(u, β) = argmax
p∈R

r(u, β, p) = argmax
p∈R

p · S(β · p− u) (4.4)

Notice that

J(u, β) = argmax
p

p · S(βp− u) = 1
β
· argmax

βp
βp · S(βp− u) = 1

β
J(u, 1). (4.5)

According to Xu and Wang [2021, Section B.1], we have the following properties.

Lemma 4.3.3. Denote φ(w) := −S(w)
s(w) −w = 1−F (w)

f(w) −w, and we have J(u, β) = u+φ−1(u)
β

.

Also, for u ≥ 0 and β > 0, we have ∂J(u,β)
∂u

∈ (0, 1).

Then we define a negative log-likelihood function of parameter hypothesis (θ, η) given the

results at time t.

Definition 4.3.4 (log-likelihood functions). Denote ℓt(θ, η) as the negative log-likelihood

at time t, and define Lt(θ, η) as their summations:

−ℓt(θ, η) =1t · log S(xt⊤η · pt − x⊤
t θ) + (1− 1t) · log(1− S(x⊤

t η · pt − x⊤
t θ)).

Lt(θ, η) =
t∑

τ=1
ℓt.

(4.6)

Finally, we define a round-t expected regret and a cumulative expected regret.

Definition 4.3.5 (regrets). Define

Regt(pt) := r(x⊤
t θ∗, x⊤

t η∗, J(x⊤
t θ∗, x⊤

t η∗))− r(x⊤
t θ∗, x⊤

t η∗, pt) (4.7)

as the expected regret at round t, conditioning on price pt. Also, define the cumulative

regret as Regret = ∑T
t=1 Regt(pt).
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4.3.3 Assumptions

We establish three technical assumptions to make our analysis and presentation clearer.

Firstly, we assume that all feature and parameter vectors are bounded within a unit ball

in Euclidean norm. This assumption is without loss of generality as it only rescales the

problem.

Assumption 4.3.6 (bounded feature and parameter spaces). Assume features xt ∈ Hx

and parameters θ ∈ Hθ, η ∈ Hη. Denote Ud
p := {x ∈ Rd, ∥x∥p ≤ 1} as an Lp-norm unit

ball in Rd. Assume all Hx,Hθ,Hη ∈ Ud
p . Also, assume x⊤θ > 0,∀x ∈ Hx, θ ∈ Hθ and

x⊤η > Cβ > 0,∀x ∈ Hx, η ∈ Hη for some constant Cβ ∈ (0, 1).

The positiveness of elasticity coefficient x⊤η > 0 comes from the Law of Demand [Gale,

1955, Hildenbrand, 1983], stating that the quantity purchased varies inversely with price.

This is derived from the Law of Diminishing Marginal Utilities and has been widely

accepted [Marshall, 2009]. We will show the necessity of assuming an elasticity lower

bound Cβ in Section 4.6. In specific, we claim that any algorithm will suffer a regret

of Ω( 1
Cβ

). For the simplicity of notation, we denote [θ; η] := [θ⊤, η⊤]⊤ ∈ R2d as the

combination of d-dimension column vectors θ and η. Since we know that x⊤
t θ ∈ [0, 1]

and x⊤
t η ∈ [Cβ, 1], we have J(x⊤

t θ, x⊤
t η) ∈ [J(0, 1), J(1, Cβ)]. Later we will show that

the price perturbation is no more than J(0,1)
10 . Therefore, we may have the following

assumption.

Assumption 4.3.7 (bounded prices). For any price pt at each time t = 1, 2, . . . , T , we

require pt ∈ [c1, c2], where c1 = J(0,1)
2 and c2 = 2J(1, Cβ).

Similar to Javanmard and Nazerzadeh [2019] and Xu and Wang [2021], we also assume a

log-concavity on the noise CDF.
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Assumption 4.3.8 (log-concavity). Every Dt is independently sampled according to

Eq. (4.1), with S(ω) ∈ [0, 1] and s(ω) = S ′(ω) > 0,∀ω ∈ R. Equivalently, the valuation

noise Nt ∼ DF is independently and identically distributed (i.i.d.), with CDF F = 1− S.

Assume that S ∈ C2, and S and (1− S) are strictly log-concave.

4.4 Main Results

To solve the contextual pricing problem with featurized elasticity, we propose our “Pricing

with Perturbation (PwP)” algorithm. In the following, we firstly describe the algorithm

and highlight its properties, then analyze (and bound) its cumulative regret, and finally

prove a regret lower bound to show its optimality.

4.4.1 Algorithm

The pseudocode of PwP is displayed as Algorithm 5, which calls an ONS oracle (Algo-

rithm 6).

At each time t, it inherits parameters θt and ηt from (t− 1) and takes in a context vector

xt. By trusting in θt and ηt, it calculates a greedy price p̂t and outputs a perturbed version

pt = p̂t + ∆t. After seeing customer’s decision 1t, PwP calls an “Online Newton Step

(ONS)” oracle (see Algorithm 6) to update the parameters as θt+1 and ηt+1 for future

use.

Highlights

We highlight the achievements of the PwP algorithm in the following three aspects.
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Algorithm 5 Pricing with Perturbation (PwP)
1: Input: parameter spaces Hθ, Hη, link function S, time horizon T , dimension d

2: Initialization:parameters θ1 ∈ Hθ, η1 ∈ Hη, price perturbation ∆, cumulative

likelihood L0 = 0, matrix A0 = ϵ · I2d and parameter ϵ, γ

3: for t = 1, 2, . . . , T do

4: Observe xt;

5: Calculate greedy price p̂t = J(x⊤
t θt, x⊤

t ηt)

6: Sample ∆t = ∆ with Pr = 0.5 and ∆t = −∆ with Pr = 0.5;

7: Propose price pt = p̂t + ∆t;

8: Receive the customer’s decision 1t;

9: Construct negative log-likelihood ℓt(θ, η) and Lt(θ, η) as eq. (4.6);

10: Update parameters:

[θt+1; ηt+1]← ONS([θt; ηt])

11: end for

In this pricing problem. As we mentioned in Section 4.1.2, the key to solving this

contextual elasticity (or heteroscedastic valuation) pricing problem is to construct a

surrogate loss function. Xu and Wang [2021] adopts negative log-likelihood in their

setting, which does not work for ours since it is not "convex" enough. In our PwP

algorithm, we overcome this challenge by introducing a perturbation ∆ on the proposed

greedy price. This idea originates from the observation that the variance of pt contributes

positively to the "convexity" of the expected log-likelihood, which helps "re-build" the

upper-bound inequality.

In online optimization. PwP perturbs the greedy action (price) it should have taken.

This idea is similar to a "Following the Perturbed Leader (FTPL)" algorithm [Hutter et al.,

2005] that minimizes the summation of the empirical risk and a random loss function
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Algorithm 6 Online Newton Step (ONS)
1: Input: current parameter [θt, ηt], likelihood ℓt(θ, η), matrix At, parameter γ,

parameter spaces Hθ and Hη.

2: Calculate ∇t = ∇ℓt(θ, η);

3: Rank-1 update: At = At−1 +∇t∇⊤
t ;

4: Newton step: [θ̂t+1; η̂t+1] = [θ̂t; η̂t]− 1
γ
A−1

t ∇t;

5: Projection: [θt+1; ηt+1] = ΠAt
Hθ×Hη

([θ̂t+1; η̂t+1]);

serving as a perturbation. However, this might lead to extra computational cost as the

random perturbation is not necessarily smooth and therefore hard to optimize. In our

work, PwP introduces a possible way to overcome this obstacle: Instead of perturbing the

objective function, we may directly perturb the action to explore its neighborhood. Our

regret analysis and results indicate the optimality of this method and imply a potentially

wide application.

In information theory. We show the following fact in the regret analysis of PwP: By

adding ∆ perturbation on pt, we may lose O(∆2) in reward but will gain O(∆2) · I in

Fisher information (i.e. the expected Hessian of negative log-likelihood function) in return.

By Cramer-Rao Bound, this leads to O( 1
∆2 ) estimation error. In this way, we quantify

the information (observing from exploration) on the scale of reward, which shares the

same idea with the Upper Confidence Bound [Lai and Robbins, 1985] method that always

maximizes the summation of empirical reward and information-traded reward.

Besides, PwP is computationally efficient as it only calls the ONS oracle for once. As

for the ONS oracle, it updates an A−1
t = (At−1 +∇t∇⊤

t )−1 at each time t, which is with

O(d2) time complexity according to the following Woodbury matrix identity
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(A + xx⊤)−1 = A−1 − 1
1 + x⊤A−1x

A−1x(A−1x)⊤. (4.8)

4.4.2 Regret Upper Bound

Now we analyze the regret of PwP and propose an upper bound up to constant coeffi-

cients.

Theorem 4.4.1. Under Assumption 4.3.6, Assumption 4.3.7 and Assumption 4.3.8, by

taking ∆ = min
{(

d log T
T

) 1
4 , J(0,1)

10 , 1
10

}
, the algorithm PwP guarantees an expected regret

at O(
√

dT log T ).

In the following, we prove Theorem 4.4.1 by stating a thread of key lemmas. We leave

the detailed proof of those lemmas to Section 4.8.

Proof. The proof overview can be displayed as the following roadmap of inequalities:

E[Regret] =
T∑

t=1
Regt(pt) ≤E

[
T∑

t=1
O
(
(x⊤

t (θt − θ∗))2 + (x⊤
t (ηt − η∗))2 + ∆2

)]

≤O

(∑T
t=1 E [ℓt(θt, ηt)− ℓt(θ∗, η∗)]

∆2 + T ·∆2
)

≤O

(
d log T

∆2 + T ·∆2
)

= O(
√

dT log T ).

(4.9)

Here the first inequality is by the smoothness of regret function (see Lemma 4.4.2), the

second inequality is by a special “strong convexity” of ℓt(θ, η) that contributes to the

surrogate loss (see Lemma 4.4.3), the third inequality is by Online Newton Step (see

Lemma 4.4.4), and the last equality is by the value of ∆. A rigorous version of Eq. (4.9)

can be found in Section 4.8.4.

We firstly show the smoothness of Regt(pt):
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Lemma 4.4.2 (regret smoothness). Denote p∗
t := J(x⊤

t θ∗, x⊤
t η∗). There exists constants

Cr > 0 and CJ > 0 such that

Regt(pt) ≤ Cr · (pt − p∗
t )2 ≤ Cr · 2

(
CJ ·

[
(x⊤

t (θt − θ∗))2 + (x⊤
t (ηt − η∗))2

]
+ ∆2

)
. (4.10)

While the first inequality of Eq. (4.10) is from the smoothness, and the second inequality

is by the Lipschitzness of function J(u, β). Please refer to Section 4.8.2 for proof details.

We then show the reason why the log-likelihood function can still be a surrogate loss with

carefully randomized pt.

Lemma 4.4.3 (surrogate expected regret). There exists a constant Cl > 0 such that

∀θ ∈ Hθ, η ∈ Hη, we have

E[ℓt(θ, η)− ℓt(θ∗, η∗)|θt, ηt]

≥Cl∆
2

10 [(θ − θ∗)⊤, (η − η∗)⊤]

 xtx
⊤
t 0

0 xtx
⊤
t


 θ − θ∗

η − η∗


=Cl ·∆2

10

[(
x⊤

t (θ − θ∗)
)2

+
(
x⊤

t (η − η∗)
)2
]

.

(4.11)

This is the most important lemma in this chapter. We show a proof sketch here and defer

the detailed proof to Section 4.8.3.

Proof sketch of Lemma 4.4.3. We show that there exist constants Cl > 0, Cp > 0 such

that

1. ∇2ℓt(θ, η) ⪰ Cl ·

 xtx
⊤
t −pt · xtx

⊤
t

−pt · xtx
⊤
t p2

t · xtx
⊤
t

, and

2. E

 xtx
⊤
t −pt · xtx

⊤
t

−pt · xtx
⊤
t p2

t · xtx
⊤
t

|θt, ηt

 ⪰ Cp∆2

 xtx
⊤
t 0

0 xtx
⊤
t

.
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The first property above relies on the exp-concavity of ℓt. Notice that the second property

does not hold without the E notation, as the left hand side is a (a− b)2 form while the

right hand side is in a (a2 + b2) form. In general, there exist no constant c > 0 such that

(a− b)2 ≥ c(a2 + b2). However, due to the randomness of pt, we have

E[p2
t |p̂t] = E[pt|p̂t]2 + ∆2. (4.12)

In this way, the conditional expectation of the left hand side turns to (a− b)2 + λ · b2 and

we have

(a− b)2 + λb2 = ( 1√
1 + λ

2

· a−
√

1 + λ

2 · b)
2 + (1− 1

1 + λ
2

)a2 + λ

2 b2 ≥
λ
2

1 + λ
2
· (a2 + b2).

(4.13)

Similarly, we upper bound

 xtx
⊤
t 0

0 xtx
⊤
t

 with E[∇2ℓt(θ, η)|θt, ηt] up to a Cp ·∆2 coeffi-

cient.

With those two properties above, along with a property of likelihood function that

E[∇ℓt(θ∗, η∗)] = 0, we can prove Lemma 4.4.3 by taking a Taylor expansion of ℓt at

[θ∗; η∗].

Finally, we cite a theorem from Hazan [2016] as our Lemma 4.4.4 that reveals the surrogate

regret rate on negative log-likelihood functions.

Lemma 4.4.4. With parameters G = supθ∈Hθ,η∈Hη
∥∇lt(θ, η)∥2, D = sup ∥[θ1; η1] −

[θ2; θ2]∥ ≤ 2, α = Ce, γ = 1
2 min{ 1

4GD
, α} and ϵ = 1

γ2D2 and T > 4, Keep running

Algorithm 6 for t = 1, 2, . . . , T guarantees:

sup
{xt}

{
T∑

t=1
ℓt(θt, ηt)− min

θ∈Hθ,η∈Hη

T∑
t=1

ℓt(θ, η)
}
≤ 5( 1

α
+ GD)d log T. (4.14)

With all these lemma above, we have proved every line of Eq. (4.9).
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4.4.3 Lower Bounds

We claim that PwP is near-optimal in information theory, by proposing a matching regret

lower bound in Theorem 4.4.5. We present the proof with valuation model to match with

existing results.

Theorem 4.4.5. Consider the contextual pricing problem setting with Bernoulli demand

model given in Eq. (4.1). With all assumptions in Section 4.3 hold, any pricing algorithm

has to suffer a Ω(
√

dT ) worst-case expected regret for T ≥ 2d2(1 + log d), with T the time

horizon and d the dimension of context.

Proof Sketch. We defer the proof details to Section 4.8.5. The main idea is to reduce d

numbers of 1-dimension problems to this problem setting. In fact, we may consider the

following problem setting:

1. Construct set X = {ei := [0, . . . , 0, 1, 0, . . . , 0]⊤ ∈ Rd with only ith place being 1,

i = 1, 2, . . . , d}.

2. Let θ∗ = [u1
σ1

, u2
σ2

, u3
σ3

, . . . , ud

σd
]⊤, η∗ = [ 1

σ1
, 1

σ2
, 1

σ3
, . . . , 1

σd
]⊤, and therefore we have

e⊤
i θ∗+Nt

e⊤
i η∗ = ui + σi ·Nt.

3. At each time t = 1, 2, . . . , T , sample xt ∼ X independently and uniformly at random.

In this way, we divide the whole time series T into d separated sub-problems, where the

Sub-Problem i has a valuation model yt(i) = ui + σi · Nt, for i = 1, 2, . . . , d. Let Nt ∼

N (0, 1), t = 1, 2, . . . , T , and yt(i) ∼ N (ui, σ2
i ) are independent Gaussian random variables.

For each Sub-Problem i, it has a time horizon T
2d

with high probability. According to

Xu and Wang [2021, Theorem 12] (originated from Broder and Rusmevichientong [2012,

Theorem 3.1]), the regret lower bound of each sub-problem is Ω(
√

T
d
). Therefore, the
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(a) Stochastic {xt}’s
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(b) Adversarial {xt}’s

Figure 4.1: The regret of PwP algorithm and a modified RMLP-2 algorithm on simulation data

(generated according to Eq. (4.1)), plotted in log-log scales to indicate the regret dependence on

T . Figure 4.1a and Figure 4.1b are for stochastic and adversarial {xt} sequences respectively.

We also plot linear fits for those regret curves, where a slope-α line indicates an O(T α) regret.

The error bands are drawn with 0.95 coverage using Wald’s test. From the figures, we know

that PwP performs closely to its O(
√

T log T ) regret regardless of the types of input context

sequences, whereas RMLP-2 fails in the attack of adversarial input.

total regret lower bound is Ω(d ·
√

T
d
) = Ω(

√
Td).

4.5 Numerical Experiments

Here we conduct numerical experiments to validate the low-regret performance of our

algorithm PwP. We primarily validate the regret rate of our proposed PwP algorithm in

well-modeled environments, and then test its adaptivity in homoscedastic and misspecified

settings respectively.
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4.5.1 Well-assumed Setting

Since we are the first to study this heteroscadestic valuation model, we do not have

a baseline algorithm working for exactly the same problem. However, we can modify

the RMLP-2 algorithm in Javanmard and Nazerzadeh [2019] by only replacing their

max-likelihood estimator (MLE) for θ∗ with a new MLE for both θ∗ and η∗. This modified

version of RMLP-2 does not have a regret guarantee in the current setting, but it still

works as a baseline to compare with.

We test PwP and the modified RMLP-2 on the demand model assumed in Eq. (4.1)

with both stochastic and adversarial {xt} sequences, respectively. Basically, we assume

T = 216 d = 2, Nt ∼ N (0, σ2) with σ = 0.5, and we repeatedly run each algorithm for 20

times in each experiment setting. In order to show the regret dependence w.r.t. T , we

plot all cumulative regret curves in log-log plots, where an α slope indicates an O(T α)

dependence.

Stochastic {xt}. We implement and test PwP and RMLP-2 on stochastic {xt}’s, where

xt are iid sampled from N (µx, Σx) (for µx = [10, 10, . . . , 10]⊤ and some randomly sampled

Σx) and then normalized s.t. ∥xt∥2 ≤ 1. The numerical results are shown in Figure 4.1a.

Numerical results show that both algorithms achieve ∼ O(T 0.56) regrets, which is close to

the theoretic regret rate at O(
√

T log T ).

Adversarial {xt}. Here we design an adversarial {xt} sequence to attack both al-

gorithms. Since RMLP-2 divides the whole time horizon T into epochs with length

k = 1, 2, 3, . . . sequentially and then does pure exploration at the beginning of each epoch,

we may directly attack those pure-exploration rounds in the following way: (1) In each
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pure-exploration round (i.e. when t = 1, 3, 6, . . . , k(k+1)
2 , . . .), let the context be xt = [1, 0]⊤;

(2) In any other round, let the context be xt = [0, 1]⊤. In this way, the RMLP-2 algorithm

will never learn θ∗[2] and η∗[2] since the inputs of pure-exploration rounds do not contain

this information. Under this oblivious adversarial context sequence, we implement PwP

and RMLP-2 and compare their performance. The results are shown in Figure 4.1b,

indicating that PwP can still guarantee O(T 0.513) regret (close to O(
√

T log T )) while

RMLP-2 runs into a linear regret.

As a high-level interpretation, the performance difference is because PwP adopts a

"distributed" exploration at every time t while RMLP-2 makes it more "concentrated".

Although both PwP and RMLP-2 take the same amount of exploration that optimally

balance the reward loss and the information gain (and that is why they both perform

well in stochastic inputs), randomly distributed exploration would save the algorithm

from being "attacked" by oblivious adversary. In fact, this phenomenon is analog to

ϵ-Greedy versus Exploration-first algorithms in multi-armed bandits. We will discuss

more in Section 4.6.

In the following subsections, we also conduct experiments to show the robustness, where

the true demand (or valuation) distribution is not necessarily assumed as Eq. (4.1) or

Eq. (4.2). The numerical results are presented in Section 4.5.2 and Section 4.5.3.

4.5.2 Model Adaptivity

In this section, we show that it is necessary to model the heteroscedasticity. In specific,

we compare PwP with the original RMLP-2 algorithm from Javanmard and Nazerzadeh

[2019] that ignores heteroscedasticity in a heteroscedastic environment. We conduct both

experiments for T = 214 rounds and repeat them for 10 epochs. The numerical results are
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Figure 4.2: Regrets of PwP versus the original homoscedastic RMLP-2 algorithm. In

this log-log diagram, a O(T α) regret curve is shown as a straight line with slope α. From

the figure, we notice that PwP is optimal while RMLP-2 is sub-optimal, indicating the

necessity of modeling homoscedasticity to achieve optimal regrets.

displayed in the lower figure, plotted in log-log diagrams. From the figure, we notice that

the regret of RMLP-2 is much larger than PwP. Also, the slope of regrets of RMLP-2 is

0.681 >> 0.5, indicating that it does not guarantee a O(
√

T ) regret. In comparison, PwP

still performs well as it achieves a ∼ O(T 0.536) regret. This indicates that the algorithmic

adaptivity of PwP to both homoscedastic and heteroscedastic environments is highly

non-trivial, and a failure of capturing it would result in a substantial sub-optimality.

4.5.3 Model Misspecification

In Section 4.5, we compare the cumulative regrets of our PwP algorithm with the (modified)

RMLP-2 on the linear demand model (as Eq. (4.1) or equivalently, the linear fractional

valuation model as Eq. (4.2)). In this section, we consider a model-misspecific setting,
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Figure 4.3: Regrets of misspecified PwP with expanded contexts, in comparison with

a baseline RMLP-2 knowing the correct model. The results show that PwP still have

a sub-linear regret in a certain period of time with context expansions, indicating that

our linear demand model as Eq. (4.1) can be generalized to a linear valuation model as

Eq. (4.15) in practice.

where customer’s true valuation is given by the following equation

yt = x⊤
t θ∗ + x⊤

t η∗ ·Nt (4.15)

and the demand Dt = 1t = 1[pt ≤ yt]. As a result, Eq. (4.15) captures a linear valuation

model with heteroscedastic valuation.

Now, we design an experiment to show the generalizability of both our PwP algorithm

and our demand model as Eq. (4.1). In specific, we run the PwP algorithm that still

models a customer’s valuation as ỹt = x⊤
t θ̃∗+Ñt

x̃⊤
t η̃∗ , where x̃t ∈ Rq is an expanded version of

the original context xt (i.e. x̃t = π(xt) for some fixed expanding policy π) and θ̃∗, η̃∗ ∈ Rq

are some fixed parameters2. Therefore, PwP is trying to learn those misspecified θ̃∗ and

η̃∗ although there does not exist such an underground truth.
2We may assume q ≥ d without loss of generality.
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We are curious whether the expansion of context (from xt to x̃t) would leverage the hardness

of model misspecification. For x = [x1, x2, . . . , xd]⊤, denote xn := [xn
1 , xn

2 , . . . , xn
d ]⊤. Then

for any context x ∈ Rd, we specify each context-expanding policy as follows:

π(x; x0, a) := [x; (x− x0)a1 ; (x− x0)a2 ; . . . ; (x− x0)am ]⊤ ∈ R(m+1)d. (4.16)

The policy π in Eq. (4.16) is a polynomial expansion of x with index list a = [a1, a2, . . . , am] ∈

Zm, where x0 ∈ Rd is a fixed start point of this expansion.

Now we consider the baseline to compare with. We claim that it is very challenging to

solve the contextual pricing problem with customers’ valuations being Eq. (4.15) with

theoretic regret guarantees (although the Ω(
√

T ) lower bound given by Javanmard and

Nazerzadeh [2019] still holds), and there are no existing algorithms targeting at this

problem setting. However, there are still some straightforward algorithms that might

approach it: For example, a max-likelihood estimate (MLE) of θ∗ and η∗. In fact, we

may still reuse the framework of RMLP-2 by replacing its MLE oracle according to the

distribution given by Eq. (4.15). In the following, we will compare the performances

of

1. PwP algorithm with the misspecified linear demand model as Eq. (4.1), with

expanded context {xt}’s, and

2. RMLP-2 algorithm on the correct linear valuation model asEq. (4.15), with original

context {xt}’s.

We implement PwP and RMLP-2 on stochastic {xt} sequences (since RMLP-2 has already

failed in the adversarial setting) and get numerical results shown as Figure 4.3. Here we

choose x0 = [0.5, 0.5]⊤ and a = [0, 1]. For a model-misspecified online-learning algorithm,

there generally exists an O(ϵ ·T ) term in the regret rate, where ϵ is a parameter measuring
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the distance between the global optimal policy and the best proper policy (i.e. the best

policy in the hypothesis set). However, our numerical results imply that PwP may still

achieve a sub-linear regret within a certain time horizon T , whereas the baseline RMLP-2

that takes the correct model has a much worse regret. It is worth mentioning that PwP

may still run into Ω(T ) regret as T gets sufficiently large, due to model misspecification.

These results imply that

1. Our linear demand model Eq. (4.1) can be generalized to a linear valuation model

as Eq. (4.15) in practice.

2. Our PwP algorithm can still perform well in model-misspecification settings, and

even better than a baseline MLE algorithm with a correct model in a certain period

of time.

For the first phenomenon that our demand model can be generalized with context

expansion tricks, we may understand it as a Taylor expansion (and we take a linear

approximation) at x0 = [0.5, 0.5]⊤. For the second phenomenon that PwP outperforms

RMLP-2, it might be caused by the non-convexity of the log-likelihood function of the

valuation model specified in Eq. (4.15). As a result, while RMLP-2 is solving a non-convex

MLE and getting estimates far from the true parameters, PwP instead works on an

online convex optimization problem within a larger space (which probably contain the

underground truth) due to context expansions. Unfortunately, we do not have a rigorous

analysis of those two phenomenons.

4.6 Discussion

Here we discuss the motivations, justifications, limitations and extentions of our work.
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Necessity of lower-bounding x⊤
t η∗ from 0. As we state in Assumption 4.3.6, the

price elasticity coefficient x⊤
t η∗ is lower bounded by a constant Cβ > 0. On the one

hand, this is necessary since we cannot have an upper bound on the optimal price

without this assumption. On the other hand, according to Eq. (4.3), we know that

r(u, β, p) = r(u, 1, β · p) · 1
β
, which indicates that the reward is rescaled by 1

β
. As a result,

the regret should be proportional to 1
Cβ

. Although a larger (i.e. closer to 0) elasticity

would lead to a more smooth demand curve, this actually reduce the information we

could gather from customers’ feedback and slow down the learning process. We look

forward to future researches getting rid of this assumption and achieve more adaptive

regret rates.

Assumption on lower-bounding elasticity as Cβ > 0. Here we claim that the regret

lower bound should have an Ω( 1
Cβ

) dependence on Cβ. We prove this by contradiction.

Without loss of generality, assume Cβ ∈ (0, 1). In specific, we construct a counter example

to show it is impossible to have an O(C−1+α
β ) regret for any α > 0:

Firstly, let β = Cβ. Suppose there exists an algorithm A that proposes a series of

prices {pt}T
t=1 which achieve O(C−1+α

β ) regret in any pricing problem instance under our

assumptions.

Now, we consider another specific problem setting where β = 1 while all other quanti-

ties θ∗, η∗, {xt}T
t=1 stay unchanged. Notice that the reward function has the following

property:

r(u, β, p) = p · S(βp− u) = 1
β
· (βp) · S(βp− u) = 1

β
· r(u, 1, βp) (4.17)

Therefore, we construct another algorithm A∗ which proposes Cβ · pt at t = 1, 2, . . . , T .
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According to the O(C−1+α
β ) regret bound ofA, we know thatA∗ will suffer Cβ ·O(C−1+α

β ) =

O(Cα
β ) regret. Let Cβ → 0+ and observe the regret of A∗ on the latter problem setting

(where β = 1). On the one hand, this is a fixed problem setting with information-theoretic

lower regret bound at Ω(log T ). On the other hand, the regret will be bounded by

limCβ→0+ O(Cα
β ) = 0. They are contradictory to each other. Given this, we know that

there does not exist such an α > 0 such that there exists an algorithm that can achieve

O(C−1+α
β ). As a result, it is necessary to lower bound the elasticities by Cβ from 0.

Adversarial attacks. Our PwP algorithm achieves near-optimal regret even for ad-

versarial context sequences, while the baseline (modified) RMLP-2 algorithm fails in an

oblivious adversary and suffer a linear regret. This is mainly caused by the fact that RMLP-

2 takes a pure-exploration step at a fixed time series, i.e. t = 1, 1 + 2, 1 + 2 + 3, . . . , k(k+1)
2 .

This issue might be leveraged by randomizing the position of pure-exploration steps:

In each Epoch k = 1, 2, . . ., it may firstly sample one out of all k rounds in this epoch

uniformly at random, and then propose a totally random price at this specific round.

However, RMLP-2 still requires E[xx⊤] ⪰ c · Id even with this trick.

Nonstationarity in Pricing Although our PwP algorithm is applicable on heteroscedas-

tic valuations, we still benchmark with an optimal fixed pricing policy that knows η∗ and

θ∗ in advance. In reality, customers’ valuations and elasticities might fluctuate according

to the market environment, causing θ∗
t and η∗ different over t ∈ [T ]. Existing works

including Leme et al. [2021] and Baby et al. [2022] study similar settings but assume

i.i.d. noises. It is worth to further investigate the setting when heteroscedasticity and

nonstationarity occur simultaneously.
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Regret lower bounds for fixed unknown noise distributions. We claim a Ω(
√

dT )

regret lower bound in Theorem 4.4.5 with customers’ demand model being Eq. (4.1).

However, this result does not imply a Ω(
√

dT ) regret lower bound for the contextual

pricing problem with customers’ valuation being yt = x⊤
t θ∗ + Nt adopted by Javanmard

and Nazerzadeh [2019], Cohen et al. [2020], Xu and Wang [2021]. This is because our

problem setting is more general than theirs, and our construction of Ω(
√

dT ) regret lower

bounds are substantially beyond the scope of this specific subproblem. So far, the best

existing regret lower bound for the linear noisy model (yt = x⊤
t θ∗ + Nt) is still Ω(

√
T ).

However, we conjecture that this should also be Ω(
√

dT ). The hardness of proving this

lower bound comes from the fact that the noises are iid over time, and it is harder to be

separated into several sub-sequences across d that are independent to each other.

Algorithm and analysis for unknown link function S(·). Unfortunately, our

algorithm is unable to be generalized to the online contextual pricing problem with

linear valuation and unknown noise distribution that has been studied by Fan et al.

[2021]. Indeed, the problem becomes substantially harder when the noise distribution is

unknown to the agent. Existing works usually adopt bandits or bandit-like algorithms to

tackle that problem. For example, Fan et al. [2021] approaches it with a combination of

exploration-first and kernel method (or equivalently, local polynomial), Luo et al. [2021]

uses a UCB-styled algorithm, and Xu and Wang [2022] adopts a discrete EXP-4 algorithm.

However, none of them close the regret gap even under the homoscedastic elasticity

environment as they assumed, and the known lower bound is at least Ω(T 2
3 ), or Ω(T

m+1
2m+1 )

for smooth ones [Wang et al., 2021b]. On the other hand, we study a parametric model,

and it is not quite suitable for a bandit algorithm to achieve optimality in regret. In

a nutshell, these two problems (known vs unknown noise distributions), although seem
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similar to each other, are indeed substantially different.

Linear demand model vs linear valuation model. In this chapter, we adopt a

generalized linear demand model with Boolean feedback, as assumed in Eq. (4.1). As

we have stated in Section 4.5.3, there exists a heteroscedastic linear valuation model as

Eq. (4.15) that also captures a customer’s behavior. However, this linear valuation model

is actually harder to learn, as its log-likelihood function is non-convex. It is still an open

problem to determine the minimax regret of an online contextual pricing problem with a

valuation model like Eq. (4.15).

Ethic issues. Since we study a dynamic pricing problem, we have to consider the social

impacts that our methodologies and results could have. The major concern in pricing is

fairness, which attracts increasing research interests in recent years [Cohen et al., 2021,

2022, Xu et al., 2023, Chen et al., 2023b]. In general, we did not enforce or quantify the

fairness of our algorithm. In fact, we might not guarantee an individual fairness since PwP

proposes random prices, which means even the same input xt’s would lead to different

output prices. Despite the perturbations ∆t we add to the prices, the pricing model (i.e.

the parameters θ∗ and η∗) is updating adaptively over time. This indicates that customers

arriving later would have relatively fairer prices, since the model is evolving drastically

at the beginning rounds and is converging to (local) optimal after a sufficiently long

time period. We claim that our PwP algorithm is still fairer than the baseline RMLP-2

algorithm we compare with, since RMLP-2 takes pure explorations at some specific time.

As a result, those customers who are given a totally random price would have a either

much higher or much lower expected price than those occurring in exploitation rounds.

However, it is still worth mentioning that RMLP-2 satisfies individual fairness within each
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pure-exploitation epoch, since it does not update parameters nor adding noises then.

4.7 Conclusion

In summary, our work focuses on the problem of contextual pricing with highly differenti-

ated products. We propose a contextual elasticity model that unifies the “linear demand”

and “linear valuation” camps and captures the price effect and heteroscedasticity. To solve

this problem, we develop an algorithm PwP, which utilizes Online Newton Step (ONS)

on a surrogate loss function and proposes perturbed prices for exploration. Our analysis

show that it guarantees a O(
√

dT log T ) regret even for adversarial context sequences.

We also provide a matching Ω(
√

dT ) regret lower bound to show its optimality (up to

log T factors). Besides, our numerical experiments also validate the regret bounds of PwP

and its advantage over existing method. We hope our results would shed lights on the

research of contextual pricing as well as online decision-making problems.

4.8 Proofs

Here we show the proof details of the lemmas we have stated in Section 4.4.2. Before

that, let us clarify some terminologies we mentioned in the main paper.

4.8.1 Supplementary Definitions

Firstly, we rigorously define the concept of price elasticity occurring in Section 4.1.

Definition 4.8.1 (Price Elasticity [Parkin et al., 2002]). Suppose D(p) is a demand
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function of price p. Then the price elasticity Ed of demand is defined as

ED := ∆D(p)/D(p)
∆p/p

= ∂D(p)
∂p

· p

D(p) . (4.18)

With this definition, along with our generalized linear demand model given in Eq. (4.1),

the price elasticity for the expected demand S(x⊤
t η∗ · pt − x⊤

t θ∗) is

ED =∂S(x⊤
t η∗ · pt − x⊤

t θ∗)
∂pt

· pt

S(x⊤
t η∗ · pt − x⊤

t θ∗)

=x⊤
t η∗ · s(x⊤

t η∗ · pt − x⊤
t θ∗)

S(x⊤
t η∗ · pt − x⊤

t θ∗) · pt.

(4.19)

Here s(·) = S ′(·). Therefore, despite the effect of the link function and the price pt, the

price elasticity is proportional to the price coefficient x⊤
t η∗. This is why we call x⊤

t η∗ (or

α in the general model D(p) = λ(α · p + xT
t β)) the elasticity coefficient or coefficient of

elasticity in Section 4.1.

4.8.2 Proof of Lemma 4.4.2

Proof. In order to prove Lemma 4.4.2, we show the following lemma that indicates the

Lipschitzness of J(u, β):

Lemma 4.8.2 (Lipschitz of optimal price). There exists a constant CJ > 0 such that

|J(u1, β1)− J(u2, β2)| ≤ CJ · (|u1 − u2|+ |β1 − β2|). (4.20)

With this lemma, we get the second inequality of Eq. (4.10). We will prove this lemma
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later in this subsection. Now, we focus on the first inequality. Notice that

Regt(pt) =r(x⊤
t θ∗, x⊤

t η∗, p∗
t )− r(x⊤

t θ∗, x⊤
t η∗, pt)

≤− ∂r(u, β, p)
∂p

|u=x⊤
t θ∗,β=x⊤

t η∗,p=p∗
t
(p∗

t − pt)

− 1
2 · inf

p∈[c1,c2],β∈[Cβ ,1],u∈[0,1]

∂2r(u, β, p)
∂p2 |u=x⊤

t θ∗,β=x⊤
t η∗,p=p∗

t
(p∗

t − pt)2

=0 + 1
2 · sup

p∈[c1,c2],β∈[Cβ ,1],u∈[0,1]
{|2s(β · p− u) · β + p · s′(β · p− u) · β2|}(p∗

t − pt)2.

(4.21)

Here the first line is by the definition of Regt(pt), the second line is by smoothness, the

third line is by the optimality of p∗
t , and the last line is by calculus. Since |2s(β · p− u) ·

β + p · s′(β · p− u) · β2| is continuous on p ∈ [c1, c2], β ∈ [Cβ, 1], u ∈ [0, 1], we denote this

maximum as 2Cr, which proves the first inequality of Eq. (4.10).

Now we show the proof of Lemma 4.8.2.

Proof of Lemma 4.8.2. Since J(u, β) = u+φ−1(u)
β

where φ(w) = −S(w)
s(w) − w. Notice that

φ′(w) = −
dS(w)

s(w)

dw
− 1 = d2 log(S(w))

dw2 · S(w)2

s(w)2 − 1 < −1 (4.22)

since S(w) is log-concave (as is assumed in Assumption 4.3.8). Given Eq. (4.22), we know

that dφ−1(u)
d(u) = 1

dφ(w)
dw

|w=φ−1(u)
∈ (−1, 0). Therefore, we have:

∂J(u, β)
∂u

=
1 + dφ−1(u)

du

β
∈ (0,

1
Cβ

)

∂J(u, β)
∂β

=
∂ J(u,1)

β

∂β
= −J(u, 1)

β2 ∈ [− c2

Cβ

,−c1].
(4.23)

Therefore, we know that J(u, β) is Lipschitz with respect to u and β respectively. Take

CJ = max{ 1
Cβ

, c2
Cβ
} and we get Eq. (4.20).
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4.8.3 Proof of Lemma 4.4.3

Proof. We firstly show the convexity (and exp-concavity) of ℓt(θ, η) by the following

lemma.

Lemma 4.8.3 (exp-concavity). ℓt(θ, η) is convex and Ce-exp-concave with respect to

[θ; η], where Ce > 0 is a constant dependent on F and Cβ. Equivalently, ∇2ℓt(θ, η) ⪰

Ce ·∇ℓt(θ, η)∇ℓt(θ, η)⊤. Also, we have ∇2ℓt(θ, η) ⪰ Cl ·

 xtx
⊤
t −pt · xtx

⊤
t

−pt · xtx
⊤
t v2

t · xtx
⊤
t

 for some

constant Cl > 0.

The proof of Lemma 4.8.3 is mainly straightforward calculus, and we defer the proof

to the end of this subsection. According to Lemma 4.8.3, we have ∇2ℓt(θ, η) ⪰ Cl · xtx
⊤
t −pt · xtx

⊤
t

−pt · xtx
⊤
t p2

t · xtx
⊤
t

. Therefore, we know that

ℓt(θ, η) ≥ℓt(θ∗, η∗) +∇ℓt(θ∗, η∗)⊤

 θ − θ∗

η − η∗



+ [(θ − θ∗)⊤, (η − η∗)⊤]Cl

 xtx
⊤
t −ptxtx

⊤
t

−ptxtx
⊤
t p2

t xtx
⊤
t


 θ − θ∗

η − η∗


(4.24)

According to the property of likelihood, we have E[∇ℓt(θ∗, η∗)|θt, ηt] = 0 for any θt and ηt.

Combining this with Eq. (4.24), we get

E[ℓt(θ, η)− ℓt(θ∗, η∗)|θt, ηt]

≥Cl[(θ − θ∗)⊤, (η − η∗)⊤]E

 xtx
⊤
t −ptxtx

⊤
t

−ptxtx
⊤
t p2

t xtx
⊤
t

|θt, ηt


 θ − θ∗

η − η∗

 (4.25)

Recall that p̂t = J(x⊤
t θt, x⊤

t ηt) and that pt = p̂t + ∆t. Therefore, we know that the
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conditional expectations E[pt|θt, ηt] = p̂t and E[p2
t |θt, ηt] = p̂2

t + ∆2. Given this, we have

E

 xtx
⊤
t −ptxtx

⊤
t

−ptxtx
⊤
t p2

t xtx
⊤
t

|θt, ηt



=

 xtx
⊤
t −p̂txtx

⊤
t

−p̂txtx
⊤
t (p̂2

t + ∆2)xtx
⊤
t



=

 xt

−p̂txt

 [x⊤
t ,−p̂tx

⊤
t

]
+

 0 0

0 ∆2xtx
⊤
t



=


1√

1+ ∆2
2

· xt

−
√

1 + ∆2

2 p̂t · xt


 1√

1 + ∆2

2

· x⊤
t ,−

√
1 + ∆2

2 p̂t · x⊤
t



+

 (1− 1
1+ ∆2

2
)xtx

⊤
t 0

0 ∆2

2 xtx
⊤
t



(4.26)

Since ∆ = min
{(

d log T
T

) 1
4 , J(0,1)

10 , 1
10

}
, we have 1 − 1

1+ ∆2
2

=
∆2
2

1+ ∆2
2
≥ ∆2

10 . As a result, we

have

E

 xtx
⊤
t −ptxtx

⊤
t

−ptxtx
⊤
t p2

t xtx
⊤
t

|θt, ηt

 ≥ ∆2

10 ·

 xtx
⊤
t 0

0 xtx
⊤
t

 (4.27)

This proves the lemma.

Finally, we show the proof of Lemma 4.8.3.

Proof of Lemma 4.8.3. Recall that ℓt(θ, η) = −1t · log(S(x⊤
t (ptη− θ)))− (1−1t) · log(1−

S(x⊤
t (ptη − θ))). We first calculate the gradient and Hessian of ℓt(θ, η) with respect to

[θ; η]. For notation simplicity, denote wt := x⊤
t (ptη − θ) and

∇ℓt := −
(
1t ·

s(wt)
S(wt)

− (1− 1t) ·
s(wt)

1− S(wt)

)
·

 −xt

pt · xt

 (4.28)
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∇2ℓt =−
(
1t ·

s′(wt)S(wt)− s(wt)2

S(wt)2 + (1− 1t)
−s′(wt)(1− S(wt))− s(wt)2

(1− S(wt))2

)

·

 xtx
⊤
t −pt · xtx

⊤
t

−pt · xtx
⊤
t p2

t · xtx
⊤
t

 .

(4.29)

According to Assumption 4.3.8, we know that S(w) and (1−S(w)) are strictly log-concave,

which indicates

d2 log(1− S(w))
dw2 =−s′(w)(1− S(w))− s(w)2

(1− S(w))2 < 0

d2 log(S(w))
dw2 =s′(w)S(w)− s(w)2

S(w)2 < 0,∀w ∈ R.

(4.30)

Since wt = pt · x⊤
t η − x⊤

t θ where pt ∈ [c1, c2], we know that wt ∈ [−1, c2]. Since d2 log(S(w))
dw2

and d2 log(1−S(w))
dw2 are continuous on [−1, c2], we know that

1t ·
s′(wt)S(wt)− s(wt)2

S(wt)2 + (1− 1t) ·
−s′(wt)(1− S(wt))− s(wt)2

(1− S(wt))2

≤ sup
w∈[−1,c2]

max
{

s′(wt)S(wt)− s(wt)2

S(wt)2 ,
−s′(wt)(1− S(wt))− s(wt)2

(1− S(wt))2

}
< 0.

(4.31)

Denote Cl = − supw∈[−1,c2] max
{

s′(wt)S(wt)−s(wt)2

S(wt)2 , −s′(wt)(1−S(wt))−s(wt)2

(1−S(wt))2

}
> 0, and we know

that

∇2ℓt(θ, η) ⪰ Cl ·

 xtx
⊤
t −pt · xtx

⊤
t

−pt · xtx
⊤
t p2

t · xtx
⊤
t

 . (4.32)

Similarly, we know that s(w)
S(w) and −s(w)

1−S(w) are continuous on [−1, c2]. Therefore, we may

denote CG = supw∈[−1,c2] max
{
| s(w)

S(w) |, |
−s(w)

1−S(w) |
}

> 0 and get

∇ℓt(θ, η)∇ℓt(θ, η)⊤ ⪯ C2
G ·

 −xt

pt · xt

 [−x⊤
t , pt · x⊤

t

]
. (4.33)

134



Pricing with Contextual Elasticity and Heteroscedastic Valuation Chapter 4

Given all these above, we have

∇2ℓt(θ, η) ⪰ Cl ·

 xtx
⊤
t −pt · xtx

⊤
t

−pt · xtx
⊤
t p2

t · xtx
⊤
t



= Cl

C2
G

· C2
G ·

 −xt

pt · xt

 [−x⊤
t , pt · x⊤

t

]

⪰ Cl

C2
G

· ∇ℓt(θ, η)∇ℓt(θ, η)⊤.

(4.34)

Denote Ce := Cl

C2
G

and we prove the lemma.

4.8.4 Proof of Theorem 4.4.1

Proof. With all lemmas above, we have

E[Regret] =E[
T∑

t=1
E[Regt(pt)|θt, ηt]]

≤E[
T∑

t=1
Cr · 2 · CJ · E[(x⊤

t (θt − θ∗))2 + (x⊤
T (ηt − η∗))2|θt, ηt] + T · Cr · 2 ·∆2]

≤E[
T∑

t=1
2CrCJ ·

10
Cl ·∆2 · E[ℓt(θt, ηt)− ℓt(θ∗, η∗)|θt, ηt] + 2CrT∆2]

=20CrCJ

Cl∆2 E[
T∑

t=1
ℓt(θt, ηt)− ℓt(θ∗, η∗)] + 2CrT∆2

=O(d log T

∆2 + ∆2T )

=O(
√

dT log T ).
(4.35)

Here the first line is by the law of total expectation, the second line is by Lemma 4.4.2, the

third line is by Lemma 4.4.3, the fourth line is by equivalent transformation, the fifth line

is by Lemma 4.4.4, and the sixth line is by the fact that ∆ = min
{(

d log T
T

) 1
4 , J(0,1)

10 , 1
10

}
.

This holds the theorem.
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4.8.5 Proof of Theorem 4.4.5

Proof. Denote θ∗ = [θ1, θ2, . . . , θd]⊤ and η∗ = [η1, η2, . . . , ηd]⊤. We firstly construct a

context set X as

X = {ei, i = 1, 2, . . . , d|ei = [0, . . . , 0, 1, 0, . . . , 0]⊤ ∈ Rd, ei[i] = 1, ei[j] ̸= 1,∀j ̸= i}.

(4.36)

Then we sample each xt ∼i.i.d. UX , where UX is a uniform distribution defined on each

element of X (i.e. Pr[xt = ei] = 1
d
,∀i ∈ [d], t ∈ [T ]). Denote it := i if xt = ei. Now we

decompose the indexes set [T ] of series {xt}T
t=1 into d subsets:

Si := {t|xt = ei, t = 1, 2, . . . , T}, i = 1, 2, . . . , d. (4.37)

From the perspective of customers’ valuations, we have yt = e⊤
i θ∗+Nt

e⊤
i η∗ = θit

ηit
+ 1

ηit
·Nt where

Nt is an i.i.d. noise with known distribution. Let Nt ∼i.i.d. N (0, 1) as standard Gaussian

noises. Therefore, each i ∈ [d] determines a sub-problem (denoted as Pi) that only happens

when t ∈ Si and has a fixed valuation distribution, i.e. yt = θi

ηi
+ 1

ηi
·Nt ∼i.i.d. N ( θi

ηi
, 1

η2
i
).

For any t /∈ Si, neither yt nor 1t is dependent on θi or ηi, which enables us to separately

consider each Pi. Denote Ti := |Si|. In the following, we bound the least possible regret

of this sub-problem as Ω(
√

Ti).

Let θi = ui

σi
and ηi = 1

σi
where ui, σi > 0 are unknown parameters to be determined. Given

this, customers’ valuation distribution is yt ∼ N (ui, σ2
i ) for t ∈ Si. According to Theorem

12 of Xu and Wang [2021], let ui =
√

π
2 and σi ∈ {1, 1− T

− 1
4

i }, and any algorithm has to

suffer at least 1
24000 ·

√
Ti regret.
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Then we show that Ti ≥ T
2d

with high probability. Notice that

E[Ti] =E[
T∑

t=1
1[xt = ei]]

=
T∑

t=1
Pr[xt = ei]

=T · 1
d

= T

d
.

(4.38)

According to Hoeffding’s Inequality, we have:

Pr[|
T∑

t=1
1[xt = ei]−

T

d
| ≥ T

2d
] ≤ 2 exp{−2 T 2

4d2 ·
1
T
}

⇒ Pr[Ti ≥
T

2d
] ≤ 2 exp{− T

2d2}.
(4.39)

According to a union bound on the failure probability, with Pr ≥ 1− 2d exp{− T
2d2}, we

have Ti ≥ T
2d

,∀i ∈ [d]. Therefore, the expected regret satisfies

E[Regret] = E[
d∑

i=1
Regret(Pi)]

≥ E[
d∑

i=1

1
24000

√
Ti]

≥ E[
d∑

i=1

1
24000

√
T

2d
· (1− 2d exp{− T

2d2})]

≥ 1
200000 ·

√
Td.

(4.40)

Here the last inequality comes from the assumption that T ≥ 2d2(1 + log d) and therefore

1− 2d exp{− T
2d2} ≥ 1− 2

e
> 1

4 .
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Part II

Dynamic Pricing under Constraints
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Overview

In this part, we study the problem of pricing under constraints which is prevalent in

contemporary markets. Various constraints significantly influence the operations and

decisions of market participants, altering the principles of pricing strategies compared to

those in unconstrained environments.

Unlike Part I, in this part we focus on non-contextual pricing problems. As a result,

the optimal target (i.e. the regret baseline) at each time period t = 1, 2, . . . , T is fixed.

However, the introduction of constraints adds structural complexity to these problems,

which we will address through our research in the upcoming chapters.

Pricing with Fairness Concerns. Customers often comparing with each other about

their price offers on similar purchases. Despite the legality of personalized pricing in retail,

customers are perceptive of unfair treatment in prices. In Chapter 5, we consider two

types of perceived unfairness.

1. Procedural unfairness. This form of unfairness arises when customers receive

significantly different price offers for the same product based on varied characteristics,

backgrounds, or other information. It occurs solely within the pricing process and

can manifest even before any transaction.
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2. Substantive unfairness. This occurs post-transaction, where buyers end up paying

different amounts for the same product based on distinctive demands or budgets. It

is measured among customers who have already decided to purchase the product.

In Chapter 5, we quantitatively define these two concepts under the framework of ran-

domized price. We aim at finding the best price under the constraints of eliminating both

unfairness. Although a fixed-and-indifferent price is always fair enough, we demonstrate

through an example that a randomized pricing approach can potentially yield higher

revenue while satisfying fairness constraints. Based on this observation, we develop

an algorithm that aims at learning the optimal fair (randomized) pricing policy, which

achieves Õ(
√

T ) optimal regret and Õ(
√

T ) optimal unfairness. Moreover, we provide a

trade-off lower bound on regret and unfairness, stating that any algorithm having O(
√

T )

regret must incur at least Ω(
√

T ) in unfairness.

Pricing with Inventory-Censoring Effect. The crux of pricing strategy is to balance

the price with the demand. However, in some scenarios where the seller has a limited

inventory, the realized demand reflected through sales quantity might not represent the

true market desire. Sometimes the seller is able to adjust their inventory level and

co-optimize the price and inventory decision. However, in fixed inventory situations such

as cinema ticket sales, any demand exceeding the number of seats will vanish without

being observed.

In Chapter 6, we investigate a pricing model with a fixed inventory level and unobservable

excess demand. We propose an algorithm that achieves O(
√

T ) regret, and show its

optimality by proving a matching lower bound.
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Chapter 5

Pricing with Fairness Concerns

In this chapter, we study the problem of online dynamic pricing with two types of

fairness constraints: a procedural fairness which requires the proposed prices to be equal in

expectation among different groups, and a substantive fairness which requires the accepted

prices to be equal in expectation among different groups. A policy that is simultaneously

procedural and substantive fair is referred to as doubly fair. We show that a doubly

fair policy must be random to have higher revenue than the best trivial policy that

assigns the same price to different groups. In a two-group setting, we propose an online

learning algorithm for the 2-group pricing problems that achieves Õ(
√

T ) regret, zero

procedural unfairness and Õ(
√

T ) substantive unfairness over T rounds of learning. We

also prove two lower bounds showing that these results on regret and unfairness are both

information-theoretically optimal up to iterated logarithmic factors. To the best of our

knowledge, this is the first dynamic pricing algorithm that learns to price while satisfying

two fairness constraints at the same time.
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5.1 Introduction

Pricing problems have been studied since Cournot [1897]. In a classical pricing problem

setting such as Kleinberg and Leighton [2003], Broder and Rusmevichientong [2012],

Besbes and Zeevi [2015], the seller (referred as “we”) sells identical products in the

following scheme.

Online pricing. For t = 1, 2, . . . , T :

1. The customer valuates the product as yt.

2. The seller proposes a price vt concurrently without knowing yt.

3. The customer makes a decision 1t = 1(vt ≤ yt).

4. The seller receives a reward (revenue) rt = vt · 1t.

Here T is the time horizon known to the seller in advance1, and yt’s are drawn from a

fixed distribution independently. The goal is to approach an optimal price that maximizes

the expected revenue-price function. In order to make this, we should learn gradually

from the binary feedback and improve our knowledge on customers’ valuation distribution

(or so-called “demands” [Kleinberg and Leighton, 2003]).

In recent years, with the development of price discrimination and personalized pricing

strategies, fairness issues on pricing arose social and academic concerns [Kaufmann et al.,

1991, Chapuis, 2012, Richards et al., 2016, Eyster et al., 2021]. Customers are usually not

satisfied with price discrimination, which would in turn undermine both their willing to

purchase and the sellers’ reputation. In the online pricing problem defined above, when we

are selling identical items to customers from different groups (e.g., divided by gender, race,

age, etc.), it can be unfair if we propose a specific optimal price for each group: These
1Here we assume T known for simplicity of notations. In fact, if T is unknown, then we may apply a

“doubling epoch” trick as Javanmard and Nazerzadeh [2019] and the regret bounds are the same.
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optimal prices in different groups are not necessarily the same, and unfairness occurs if

different customers are provided or buying the same item with different prices. Inspired

by the concept of procedural and substantive unconscionability[Elfin, 1988], we define a

procedural unfairness measuring the difference of proposed prices between the two groups,

and a substantive unfairness measuring that of accepted prices between the two groups.

Given these notions, our goal is to approach the optimal pricing policy that maximizes

the expected total revenue with no procedural and substantive unfairness.

The concept of procedural fairness has been well established in Cohen et al. [2022] as

“price fairness”, while the concept of the substantive fairness is new to this paper. In

fact, both procedural and substantive fairness have significant impacts on customers’

experience and social justice. For instance, these notions help prevent the following two

scenarios:

• Perspective buyers who are women found that they are offered consistently higher

average price than men for the same product.

• Women who have bought the product found that they paid a higher average price

than men who have bought the product.

Therefore, a good pricing strategy has to satisfy both procedural and substantive fair-

ness.

However, these constraints are very hard to satisfy even with full knowledge on customers’

demands. If we want to fulfill those two sorts of fairness perfectly by proposing deter-

ministic prices for different groups, the only thing we can do is to trivially set the same

price in all groups and to maximize the weighted average revenue function by adjusting

this uniformly fixed price with existing methods such as Kleinberg and Leighton [2003].
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Consider the following example:

Example 5.1.1. Customers form two disjoint groups, where 30% customers are in Group 1

and the rest 70% are in Group 2.

For each price in {$0.625, $0.7, $1}, cus-

tomers in two groups have different accep-

tance rates:

Acceptance Rate $0.625 $0.7 $1

G1 (30%) 3/5 1/2 1/2

G2 (70%) 4/5 4/5 1/2

The right figure shows the expected revenue

functions of prices in each group, where the

red dashed line is their weighted average by

population.

Price

Expected 
Revenue

$0.625 $0.7 $1

$0.5

k=4/5

k=3/5

k=1/2

Group 1

Group 2

Weighted Average

In Example 5.1.1, the only way to guarantee both fairness constraints is to propose the

same price for both groups, and the optimal price is $1 whose expected revenue is $0 .5

as is shown in the figure.

However, if we instead propose a random price distribution to each group and inspect

those fairness notions in expectation, then there may exist price distributions that satisfy

both fairness constraints and achieve higher expected revenue than any fixed-price strategy.

Here a price distribution is the distribution over the prices for customers, and the exact

price for each customer is sampled from this distribution independently. This random

price sampling process can be implemented by marketing campaigns such as random

discounts or randomly-distributed coupons. Again, we consider Example 5.1.1 and the
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following random policy:

• For customers from G1, propose $0.625 with probability 20
29 and $1 with probability

9
29 .

• For customers from G2, propose $0.7 with probability 25
29 and $1 with probability

4
29 .

Under this policy, the expected proposed price and the expected accepted price in both

groups are $43
58 and $ 8

11 respectively. Furthermore, the expected revenue is $ 74
145 > $0 .5 ,

which means that this random policy performs better than the best fixed-price policy. It

is worth mentioning that this is exactly the optimal random policy in this specific setting,

but the proof of its optimality is highly non-trivial (and we put it in Section 5.8.3 as part

of the proof of Theorem 5.5.4 ).

In this chapter, we consider a two-group setting and we denote a policy as the tuple of

two price distributions over the two groups respectively. Therefore, we can formally define

the optimal policy as follows:

π∗ = argmax
π=(π1,π2)

q · E
v1

t ∼π1,y1
t ∼D1

[v1
t · 1(v1

t ≤ y1
t )] + (1− q) · E

v2
t ∼π2,y2

t ∼D2
[v2

t · 1(v2
t ≤ y2

t )]

s.t. Eπ1 [v1
t ] = Eπ2 [v2

t ]

Eπ1,D1 [v1
t |1(v1

t ≤ y1
t ) = 1] = Eπ2,D2 [v2

t |1(v2
t ≤ y2

t ) = 1]

(5.1)

Here π1, v1
t , y1

t ,D1 and π2, v2
t , y2

t ,D2 are the proposed price distributions, proposed prices,

customer’s valuations and valuation distributions of Group 1 and Group 2 respectively,

and q is the proportion of Group 1 among all customers. From Eq. (5.1), the optimal policy
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under the in-expectation fairness constraints should be random in general2. However,

even we know the exact D1 and D2, it is still a very hard problem to get π∗: Both sides of

the second constraint in Eq. (5.1) are conditional expectations (i.e., fractions of expected

revenue over expected acceptance rate) and is thus not convex ( and also not quasiconvex).

To make it harder, the seller actually has no direct access to customers’ demands D1 and

D2 at the beginning. Therefore, in this chapter we consider a T -round online learning

and pricing setting, where we could learn these demands from those Boolean-censored

feedback (i.e., customers’ decisions) and improve our pricing policy to approach π∗ in

Eq. (5.1).

In order to measure the performance of a specific policy, we define a regret metric that

equals the expected revenue difference between this policy and the optimal policy. We

also quantify the procedural and substantive unfairness that equals the absolute difference

of expected proposed/accepted prices in two groups. We will establish a more detailed

problem setting in Section 5.3.

Summary of Results Our contributions are threefold:

• We design an algorithm, FPA, that achieves an O(
√

Td
3
2 log d log T

ϵ
) cumulative regret

with 0 procedural unfairness and O(
√

Td
3
2 log d log T

ϵ
) substantive unfairness, with

probability at least (1− ϵ). Here d is the total number of prices allowed to be chosen

from. These results indicate that our FPA is asymptotically no-regret and fair as T

gets large.

• We show that the regret of FPA is optimal with respect to T , as it matches Ω(
√

T )

regret lower bound up to log log T factors.
2Notice that a fixed-price policy can also be considered as “random”.
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• We show that the unfairness of FPA is also optimal with respect to T up to log log T

factors, as it has no procedural unfairness and its substantive unfairness matches

the Ω(
√

T ) lower bound for any algorithm achieving an optimal O(
√

T ) regret.

To the best of our knowledge, we are the first to study a pricing problem with multiple

fairness constraints, where the optimal pricing policy is necessary to be random. We also

develop an algorithm that is able to approach the best random pricing policy with high

probability and at the least cost of revenue and fairness.

Technical Novelty. Our algorithm is a “conservative policy-elimination”-based strategy

that runs in epochs with doubling batch sizes as in Auer et al. [2002a]. We cannot directly

apply the action-elimination algorithm for multi-armed bandits as in Cesa-Bianchi et al.

[2013], because the policy space is an infinite set and we cannot afford to try each one

out. The fairness constraints further complicate things. Our solution is to work out

just a few representative policies that are “good-and-exploratory”, which can be used to

evaluate the revenue and fairness of all other policies, then eliminate those that are unfair

or have suboptimal revenue. Since we do not have direct access to the demand function,

the estimated fairness constraints are changing over epochs due to estimation error, it is

non-trivial to keep the target optimal policy inside our “good policy set” during iterations.

We settle this issue by setting the criteria of a “good policy” conservatively.

Our lower bound is new too and it involves techniques that could be of independent

interest to the machine learning theory community. Notice that it is possible to have

a perfectly fair algorithm by trivially proposing the same fixed price for both groups.

It is highly non-trivial to show the unfairness lower bound within the family of regret-

optimal algorithms. We present our result in Section 5.5.3 by establishing two similar
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problem settings that any algorithm cannot distinguish them efficiently and showing that

a mismatch would cause a compatible amount of regret and substantive unfairness.

5.2 Related Works

Here we discuss existing literature on dynamic pricing, and fairness in machine learning,

online learning and pricing. These aspects and works are closely related to this paper.

Dynamic Pricing Single product dynamic pricing problem has been well-studied

through Kleinberg and Leighton [2003], Besbes and Zeevi [2009], Wang et al. [2014], Chen

et al. [2019b], Wang et al. [2021b]. The crux is to learn and approach the optimal of

a revenue curve from Boolean-censored feedback. In specific, Kleinberg and Leighton

[2003] proves Θ(log log T ), Θ(
√

T ) and Θ(T 2
3 ) minimax regret bounds under noise-free,

infinitely smooth and stochastic/adversarial valuation assumptions, sequentially. Wang

et al. [2021b] further shows a Θ(T
K+1

2K+1 ) minimax regret bound for Kth-smooth revenue

functions. In all these works, the decision space is continuous. In our problem setting, we

fix the proposed prices to be chosen in a fixed set of d prices, and show a bandit-style

Ω(
√

dT ) regret lower bound with a similar method to Auer et al. [2002b].

Fairness in Machine Learning Fairness is a long-existing topic that has been exten-

sively studied. In machine learning society, fairness is defined from different perspectives.

On the one hand, the concept of group fairness requires different groups to receive identical

treatment in statistics. In a classification problem, for instance, there are mainly two

different types of group fairness: (1) A “demographic parity” [Dwork et al., 2012] that

requires the outcome of a classifier to be statistically independent to the group information,
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and (2) an “equalized odds” (including “equal opportunity” as a relaxation) [Hardt et al.,

2016] that requires the prediction of a classifier to be conditionally independent to the

group information given the true label. In Agarwal et al. [2018], these probabilistic

constraints are further modified as linear constraints, and therefore the fair classification

problem is reduced to a cost-sensitive classification problem. It is worth mentioning

that Agarwal et al. [2018] allows an ϵk-unfairness due to the learning error and assumes

ϵk = O(n−α) with some α ≤ 1
2 , while we quantify the learning-caused unfairness and

upper and lower bound the cumulative unfairness without pre-assuming its scale.

On the other hand, [Dwork et al., 2012] also proposes the concept of “individual fairness”

(or “Lipschitz property”) where the difference of treatments toward two individuals should

be upper bounded by a distance metric of their intrinsic features, i.e., D(µx, µy) ≤ d(x, y)

where x, y are features and µx, µy are the distributions of actions onto x and y respectively.

The notion “time fairness” is often considered as individual fairness as well. For a more

inclusive review on different definitions of fairness in machine learning, please refer to

Barocas et al. [2017].

Fairness in Online Learning Besides existing works on general machine learning

fairness, there are some works that study online-learning or bandit problems. This is

similar to our setting as we adopt an online pricing process. Among these works, Joseph

et al. [2016] studies multi-armed and contextual bandits with fairness constraints. Their

non-contextual setting is related to our works as our pricing problem can also be treated

as a bandit. Their definition of δ-fairness is defined as comparisons among probabilities

of taking actions, which is similar to our definition on procedural fairness. However,

their fairness definitions are defined from the perspective of arms (i.e. actions): better

actions worth larger probability to take. In comparison, our fairness definitions are more
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on the results: different groups share the same expected prices. Bechavod et al. [2020]

studies an online learning (in specific, an online classification) problem with unknown and

non-parametric constraints on individual fairness at each round. They develop an adaptive

algorithm that guarantees an O(
√

T ) regret as well as an O(
√

T ) cumulative fairness loss.

However, their problem settings are quite different from ours. Primarily, they assume

individual fairness as a constraint, while our fairness definitions are indeed group fairness.

Also, their online classification problem is different from our online pricing problem as

they have full access to the regret function while we even do not have full-information

reward (i.e., which is Boolean-censored). Similarly, their fairness loss is accessible although

the unfair pairs of (τ1, τ2) are not fully accessible, while in our settings we do not know

the S(π; F1, F2) function at all. Besides, we have to satisfy two constraints at one time

and one of them (the substantive fairness) is highly non-convex. Gupta and Kamble

[2021] studies an online learning problem with two different sorts of individual fairness

constraints over time: a "fairness-across-time" (FT) and a "fairness-in-hindsight" (FH).

They show that it is necessary to have a linear regret under FT constraints, and they also

propose a CAFE algorithm that achieves an optimal regret under FH constraints.

Despite the specific properties of fairness constraints, we may also consider the framework

of constraint online learning. Yu et al. [2017] studies an online convex optimization

(OCO) problem with stochastic constraints, which might be applicable to online fair

learning. However, their problem settings and methodologies are largely different from

ours: Firstly, their constraints are assumed convex while our substantive fairness constraint

(i.e., the S(π; F1, F2) function) is highly non-convex. Also, they have a direct access to

the realized objective function f t(xt) at each time while our pricing problem only has a

Boolean-censored feedback. More importantly, Yu et al. [2017] assumes the availability of

unbiased samples on constraint-related variables. In specific, their constraints are roughly
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gk(x) < 0, and by the end of each period t they receive an unbiased sample of gk(xt)

for the xt they have taken. On the contrary, we do not have any unbiased sample of

S(π, F1, F2) at each time, since there is only one customer from one of the two groups.

Therefore, we cannot make use of their results in our problem setting.

Fairness in Pricing There are many recent works contributing to pricing fairness

study [Kaufmann et al., 1991, Frey and Pommerehne, 1993, Chapuis, 2012, Richards

et al., 2016, Priester et al., 2020, Eyster et al., 2021, Yang et al., 2022]. As is stated in

Cohen et al. [2022], in a pricing problem with fairness concerns, the concept of fairness in

existing works is modeled either as a utility or budget that trades-off the revenue or as a

hard constraint that prevent us from taking the best action directly.Cohen et al. [2022]

chooses the second model and defines four different types of fairness in pricing: price

fairness, demand fairness, surplus fairness and no-purchase valuation fairness, each of

which indicates the difference of prices, the acceptance rate, the surplus (i.e., (valuation −

price) if bought and 0 otherwise) and the average valuation of not-purchasing customers

in two groups is bounded, sequentially. They show that it is impossible to achieve any pair

of different fairness notions simultaneously (with deterministic prices). In fact, this can

be satisfied if they allow random pricing policies. Maestre et al. [2018] indeed builds their

fairness definition upon random prices by introducing a “Jain’s Index”, which indicates

the homogeneity of price distributions among different groups (i.e., our procedural fairness

notion). They develop a reinforcement-learning-based algorithm to provide homogeneous

prices, with no theoretic guarantees. Besides, Richards et al. [2016] discusses some fairness

issues regarding personalized pricing from the perspective of econometrics. Eyster et al.

[2021] studies a phenomenon where customers would mistakenly attribute the cost increases

to a time unfairness, and they propose methods to release customer’s feeling of such
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unfairness by adjusting prices correspondingly. Chapuis [2012] looked into two fairness

concerns called price fairness and pricing fairness, which indicates the distributional and

procedural fairness of the pricing process respectively, from the seller’s perspective. In

fact, their price fairness is more likely to be our procedural fairness definition although it

is not in their paper. This is because that we are considering the fairness from customers’

perspective, where their observations on prices serve as a procedure of their decision

process and their decision on whether or not to buy is actually indicating the fairness

of results. There are more interesting works as is listed in Section 5.2, and we refer the

readers to Chen et al. [2021b] where there is a more comprehensive review on pricing and

fairness.

Cohen et al. [2021] and Chen et al. [2021b] study the online-learning-fashion pricing

problem as we do. Cohen et al. [2021] considers both group (price) fairness and individual

(time) fairness, and their algorithm FaPU solves this problem with sublinear regret while

guaranteeing fairness. They further study the pricing problem with demand fairness that

are unknown and needs learning. In this setting, they propose another FaPD algorithm

that achieves the optimal Õ(
√

T ) regret and guarantees the demand fairness “almost

surely”, i.e., upper bounded by δ · T as a budget. Chen et al. [2021b] considers two

different sorts of fairness constraints: (1) Price fairness constraints (as in Cohen et al.

[2022]) are enforced; (2)Price fairness constraints are generally defined (and maybe not

accessible), where they adopt “soft fairness constraints” by adding the fairness violation

to the regret with certain weights. In both cases, they achieve Õ(T 4
5 ) regrets. These

learning-based fairness requirements are quite similar to our problem setting, but in

our setting the fairness constraints are non-convex (while theirs are linear) and are also

optimized to corresponding information-theoretic lower bounds without undermining the

optimal regret.
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5.3 Problem Setup

In this section, we describe the problem setting of online pricing, introduce new fairness

definitions and set the goal of our algorithm design.

Problem Description. We start with the online pricing process. The whole selling

session involves customers from two groups (G1 and G2) and lasts for T rounds. Prices

are only allowed to be chosen from a known and fixed set of d prices: V = {v1, v2, . . . , vd},

where 0 < v1 < v2 < . . . < vd ≤ 1. Denote ∆d = {x ∈ Rd
+, ∥x∥1 = 1} as the probabilistic

simplex. At each time t = 1, 2, . . . , T , we propose a pricing policy π = (π1, π2) consisting

of two probabilistic distributions π1, π2 ∈ ∆d over all d prices. A customer then arrives

with an observable group attribution Ge (e ∈ {1, 2}), and we propose a price by sampling

a ve
t from V according to distribution πe. At the same time, the customer generates a

valuation ye
t in secret, where ye

t is sampled independently and identically from some fixed

unknown distribution De. Afterward, we observe a feedback 1e
t = 1(ve

t ≤ ye
t ) and receive

a reward(revenue) re
t = 1e

t · ve
t .

Key Quantities. Here we define a few quantities and functions that is necessary

to formulate the problem. Denote v := [v1, v2, . . . , vd]⊤, [d] := {1, 2, . . . , d} and 1 :=

[1, 1, . . . , 1]⊤ ∈ Rd for simplicity. Denote Fe(i) := PrDe [ye
t ≥ vi], e = 1, 2, i ∈ [d] as

the probability of price vi being accepted in Ge, and we know that Fe(1) ≥ Fe(2) ≥

. . . ≥ Fe(d). Notice that all Fe(i)’s are unknown to us. Define a matrix Fe :=

diag(Fe(1), Fe(2), . . . , Fe(d)).

As a result, for a customer from Ge (e ∈ {1, 2}), we know that

• The expected proposed price is v⊤πe.
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• The expected reward(revenue) is v⊤Feπ
e.

• The expected acceptance rate is 1⊤Feπ
e.

• The expected accepted price is v⊤Feπe

1⊤Feπe .

Denote the proportion of G1 in all potential customers as q (0 < q < 1) which is fixed and

known to us, and we assume that every customer is chosen from all potential customers

uniformly at random. As a consequence, we can define the expected revenue of a policy

π.

Definition 5.3.1 (Expected Revenue). For any pricing policy π = (π1, π2) ∈ Π, define

its expected revenue (given F1 and F2) as the weighted average of the expected rewards

of G1 and G2.

R(π; F1, F2) := Pr[Customer is from G1] · E[r1
t ] + Pr[Customer is from G2] · E[r2

t ]

=q · v⊤F1π
1 + (1− q) · v⊤F2π

2
(5.2)

Also, we can define the two different unfairness notions based on these results above.

Definition 5.3.2 (Procedural Unfairness). For any pricing policy π ∈ Π, define its

procedural unfairness as the absolute difference between the expected proposed prices of

two groups.

U(π) := |v⊤π1 − v⊤π2| = |v⊤(π1 − π2)|. (5.3)

Procedural unfairness is totally tractable as we have full access to v⊤ and π. Therefore,

we can define a policy family Π := {π = (π1, π2), U(π) = 0} that contains all policies with

no procedural unfairness. Now we define a substantive unfairness as another metric.
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Definition 5.3.3 (Substantive Unfairness). For any pricing policy π ∈ Π, define its

substantive unfairness as the difference between the expected accepted prices of two

groups.

S(π; F1, F2) :=
∣∣∣E[v1|v1 ∼ π1, v1 being accepted ]− E[v2|v2 ∼ π2, v2 being accepted ]

∣∣∣
=
∣∣∣∣∣v⊤F1π

1

1⊤F1π1 −
v⊤F2π

2

1⊤F2π2

∣∣∣∣∣ .
(5.4)

Substantive unfairness is not as tractable as procedural unfairness, as we have no direct

access to the true F1 and F2. Ideally, the optimal policy that we would like to achieve

is:
π∗ = argmax

π=(π1,π2)∈Π

R(π; F1, F2)

s.t. U(π) = 0, S(π; F1, F2) = 0.

(5.5)

The feasibility of this problem is trivial: policies such as π1 = π2 = [0, . . . , 0, 1, 0, . . . , 0]⊤

(i.e., proposing the same fixed price despite the customer’s group attribution) are always

feasible. However, this problem is in general highly non-convex and non-quasi-convex.

Finally, we define a (cumulative) regret that measure the performance of any policy

π:

Definition 5.3.4 (Regret). For any algorithm A, define its cumulative regret as follows:

RegT (A) :=
T∑

t=1
Reg(πt; F1, F2) :=

T∑
t=1

R(π∗; F1, F2)−R(πt; F1, F2). (5.6)

Here πt is the policy proposed by A at time t.

Notice that we define the per-round regret by comparing the performance of πt with the

optimal policy π∗ under constraints. Therefore, Reg(πt; F1, F2) is possible to be negative
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if π ∈ Π but U(πt) > 0 or S(πt; F1, F2) > 0. Similarly, we define a cumulative substantive

unfairness as ST (A) := ∑T
t=1 S(π; F1, F2).

Goal of Algorithm Design Our ultimate goal is to approach π∗ in the performance. In

the online pricing problem setting we adopt, however, we cannot guarantee S(πt; F1, F2) =

0 for all πt we propose at time t = 1, 2, . . . , T since we do not know F1 and F2 in

advance. Instead, we may suffer a gradually vanishing unfairness as we learn F1 and F2

better. Therefore, our goal in this chapter is to design an algorithm that guarantees an

optimal regret while suffering 0 cumulative procedural unfairness and the least cumulative

substantive unfairness.

Technical Assumptions. Here we make some mild assumptions that help our analysis.

Assumption 5.3.5 (Least Probability of Acceptance). There exists a fixed constant

Fmin > 0 such that Fe(d) ≥ Fmin, e = 1, 2.

Assumption 5.3.5 not only ensures the definition of expected accepted price to be sound

(by ruling out these unacceptable prices), but also implies S(π, F1, F2) to be Lipschitz.

Besides, we can always achieve this by reducing vd. We will provide a detailed discussion

in Section 5.6.1.

Assumption 5.3.6 (Number of Possible Prices). We treat d, the number of prices, as an

amount independent from T . Also, we assume d = O(T 1
3 ).

Assumption 5.3.6 is a necessary condition of applying Ω(
√

dT ) regret lower bound, and

here we make it to show the optimality of our algorithm w.r.t. T .
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5.4 Algorithm

In this section, we propose our Fairly Pricing Algorithm (FPA) in Algorithm 1 and then

discuss the techniques we develop and apply to achieve the “no-regret” and “no-unfairness”

goal.

5.4.1 Algorithm Components

Algorithm 7 takes the following inputs: time horizon T , price set V, error probability

ϵ, a universal constant L as the coefficient of the performance-fairness tradeoff on

constraint relaxations (see Lemma 5.8.5), and q as the proportion that G1 takes. In

the “before epochs” stage, we keep proposing the highest price vd for τ0 = O(log T )

rounds to estimate(lower-bound) the least acceptance rate Fmin. We also adopt the

following techniques that serve as components of FPA and contribute to its no-regret and

no-unfairness performance.

Doubling Epochs Despite the “before epochs” stage, we divide the whole time space

into epochs k = 1, 2, . . ., where each epoch k has a length τk = O(
√

T · 2k) that doubles

that of epoch (k−1). Within each epoch k, we run a set of “good-and-exploratory policies”

(to be introduced in Section 5.4.1) with equal shares of τk. At the end of each epoch k, we

update the estimates of F1 and F2, eliminate the sub-optimal policies and update the set

of “good-and-exploratory policies” for the next epoch. Since the estimates of parameters

get better as k increases, a doubling-epoch trick would ensure that we run better policies

in longer epochs and therefore save the regret.
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Algorithm 7 Fairly Pricing Algorithm (FPA)
1: Input: Time horizon T , prices set V, error probability ϵ, proportion q, constant L.

2: Before Epochs: Keep proposing the highest price vd for τ0 = 2 log T log 16
ϵ rounds. Estimate

the average acceptance rates as F̄d(1) and F̄d(2). Take F̂min = 0.5 min{F̄d(1), F̄d(2)}.

3: Initialization: Parameters Cq, ct. Epoch length τk = O(d
√

T · 2k), reward uncertainty

δk,r and unfairness uncertainty δk,s for k = 1, 2, . . . , O(log T ). Candidate policy set Π1 =

Π := {π = (π1, π2), U(π) = 0} and price index set I1
0 = I2

0 = [d].

4: for Epoch k = 1, 2, . . . do

5: Set Ak = ∅, I1
k = I1

k−1 and I2
k = I2

k−1.

6: for Group e = 1, 2 and for price index i ∈ Ie
k−1, do

7: Get π̃k,i,e = argmaxπ∈Πk
πe(i). {Pick up policy maximizing each acceptance rate}

8: If π̃e
k,i,e(i) ≥ 1√

T
, let Ak = Ak ∪ {π̃k,i,e}. Otherwise, remove i from Ie

k.

9: end for

10: Set Mk,e(i) = Nk,e(i) = 0,∀i ∈ [d], e = 1, 2.

11: for each policy π ∈ Ak, do

12: Run π for τk
|Ak| rounds. {Sample random prices at t = 1, 2, . . . , τk

|Ak| repeatedly.}

13: For each time a price vi is proposed in Ge, set Mk,e(i)+ = 1.

14: For each time a price vi is accepted in Ge, set Nk,e(i)+ = 1.

15: end for

16: For e = 1, 2, set F̄k,e(i) = max{Nk,e(i)
Mk,e(i) , F̂min} for i ∈ Ie

k, and F̄k,e(i) = F̂min otherwise.

17: Let F̂k,e = diag(F̄k,e(1), F̄k,e(2), . . . , F̄k,e(d)), e = 1, 2.

18: Solve the following optimization problem and get the empirical optimal policy π̂k,∗.

π̂k,∗ = argmax
π∈Πk

R(π, F̂k,1, F̂k,2), s.t. S(π, F̂k,1, F̂k,2) ≤ δk,s. (5.7)

19: To eliminate largely suboptimal or unfair policies, construct

Πk+1 = {π : π ∈ Πk, S(π, F̂1, F̂2) ≤ δk,s, R(π, F̂1, F̂2) ≥ R(π̂k,∗, F̂1, F̂2)− δk,r − L · δk,s}.

(5.8)

20: end for
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Policy Eliminations At the end of each epoch k, we update the candidate policy set by

eliminating those substantially sub-optimal policies: Firstly, we select an empirical optimal

policy π̂k,∗ that maximizes R(π, F̂k,1, F̂k,2) while guaranteeing S(π, F̂k,1, F̂k,2) ≤ δk,s. After

that, we eliminate those policies that satisfy one of the following two criteria:

• Large unfairness: S(π, F̂k,1, F̂k,2) > δk,s, or

• Large regret: R(π, F̂k,1, F̂K,2) < R(π̂k,∗, F̂k,1, F̂k,2)− δk,r − L · δk,s.

Here we adopt two subtractors on the regret criteria: δk,r for the estimation error in

R(π) caused by F̂k,e, and L · δk,s for the possible increase of optimal reward by allowing

S(π) ≤ δk,s instead of S(π) = 0. In this way, we can always ensure the optimal policy π∗

(i.e., the solution of Eq. (5.5)) to remain and also guarantee the other remaining policies

perform similarly to π∗.

Good-and-Exploratory Policies Although all remaining policies perform good, not

all of them are suitable of running in consideration of exploration. It is important to

update the estimates of all F1(i) and F2(i) as they are required in the policy elimination.

We solve this issue by keeping a set of good-and-exploratory policies: After eliminating

sub-optimal policies at the end of previous epoch, for each price vi in group Ge we find

out a policy in the remaining policies that maximizes the probability of proposing vi in Ge

at the beginning of current epoch. The larger this probability is, the more times vi can be

chosen in Ge, which would lead to a better estimate of Fe(i). Here we give up to estimate

the acceptance probability of those vi with ≤ 1√
T

to be chosen by the optimal policy π∗,

as it would not affect the elimination process and the performance substantially.
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5.4.2 Computational Cost

Our FPA algorithm is oracle-efficient due to the doubling-epoch design, as we only run

each oracle and update each parameter for O(log T ) times. However, the implementation

of these oracles could be time-consuming: On the one hand, each set Πk contains infinite

policies, and a discretization would lead to exponential computational cost w.r.t. d. On

the other hand, both Eq. (5.7) and Eq. (5.8) are highly non-convex on the constraints

and are hard to solve with off-the-shelf methods.

5.5 Regret and Unfairness Analysis

In this section, we analyze the regret and unfairness of our FPA algorithm. We first

present an Õ(
√

Td
3
2 ) regret upper bound along with an Õ(

√
Td

3
2 ) unfairness upper bound.

Then we show both of them are optimal (w.r.t. T ) up to log log T factors by presenting

matching lower bounds.

5.5.1 Regret Upper Bound

First of all, we propose the following theorem as the main results for our Algorithm 7

(FPA).

Theorem 5.5.1 (Regret and Unfairness). FPA guarantees an O(
√

Td
3
2 log d log T

ϵ
) regret

with no procedural unfairness and an O(
√

Td
3
2 log d log T

ϵ
) substantive unfairness with

probability 1− ϵ.

Proof sketch. We prove this theorem by induction w.r.t. epoch index k. Firstly, we assume

that π∗ ∈ Πk, which naturally holds as k = 1. Meanwhile, we show a high-probability
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bound on the estimation error of each Fe(i) for epoch k, according to concentration inequal-

ities. Given this, we derive the estimation error bound of R(π, F1, F2) and S(π, F1, F2)

for each policy π ∈ Πk in epoch k. After that, we bound the regret and unfairness of each

policy remaining in Πk+1, and therefore bound the regret and unfairness of epoch (k + 1)

with high probability. Finally, we show that optimal fair policy π∗ (defined in Eq. (5.5))

is also in Πk+1, which matches the induction assumption for Epoch (k + 1). By adding up

these performance over epochs, we get the cumulative regret and unfairness respectively.

Please refer to Section 5.8.1 for a detailed proof.

Remark 5.5.2. Our algorithm guarantees O(
√

T log log T ) regret and unfairness simulta-

neously, whose average-over-time match the generic estimation error of O( 1√
T

). It implies

that these fairness constraints do not bring informational obstacles to the learning process.

In fact, these upper bounds are tight up to O(log log T ) factors, which are shown in

Theorem 5.5.3 and Theorem 5.5.4.

5.5.2 Regret Lower Bound

Here we show the regret lower bound of this pricing problem.

Theorem 5.5.3 (Regret lower bound). Assume d ≤ T
1
3 . Given the online two-group fair

pricing problem and the regret definition as Eq. (5.6), any algorithm would at least suffer

an Ω(
√

dT ) regret.

We may prove Theorem 5.5.3 by a reduction to online pricing problem with no fairness

constraints: Given a problem setting where the two groups are identical, i.e. F1(i) =

F2(i),∀i ∈ [d], and let q = 0.5. Notice that any policy satisfying π1 = π2 is fair, and the

optimal policy is to always propose the best fixed price. Therefore, this can be reduced to
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an online identical-product pricing problem, and we present a bandit-style lower bound

proof in Section 5.8.2 inspired by Auer et al. [2002b].

5.5.3 Unfairness Lower Bound with Optimal Revenue

Here we show that any optimal algorithm has to suffer an Ω(
√

T ) substantive unfair-

ness.

Theorem 5.5.4 (Substantive Unfairness Lower Bound). For any constant Cx, there

exists constants Cu > 0 such that any algorithm with an Cx · T
1
2 cumulative regret and

zero procedural unfairness has to suffer an Cu · T
1
2 substantive unfairness.

It is worth mentioning that this result is different from ordinary lower bounds on the

regret, as it also requires the algorithm to be optimal. In general, we propose 2 different

problem settings, and we show the following four facts:

• No algorithm can perform well in both settings.

• Any algorithm cannot distinguish between the two settings very efficiently.

• Not trying to distinguish between them would suffer either a very large regret or a

very large substantive unfairness, and therefore we cannot do this very often.

• Having tried but failed in distinguishing between them would definitely lead to a

large substantive unfairness.

In order to prove this, we make use of Example 5.1.1 presented in Section 5.1. One of

the settings is exactly Example 5.1.1, and the other one is identical to it except these

0.5 probabilities are now (0.5− ζ) in both groups. We get close-form solutions to both
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problem settings and show that they are indistinguishable in information theory. Please

refer to Section 5.8.3 for more details.

5.6 Discussion

Here we primarily discuss some open issues and potential extensions of our results. We

also remark on our problem settings, technique highlights and social impacts.

5.6.1 Extensions on Technical Assumptions.

In this chapter, we assumed the existence of a lower bound Fmin > 0 of the acceptance

rate of all prices for both groups. This assumption is stronger than our expectation, as

the seller would not know the highest price that customers would accept. We assume

this for two reasons: (1) Without assuming Fe(i) > 0, the substantive unfairness function

might be undefined. For instance, if a pricing policy is completely unacceptable in G1

(with no accepted prices) but is acceptable in G2, then is it a fair policy? (2) With a

constantly large probability of acceptance, we can estimate every Fe(i) and bound it away

from 0 and therefore leads to the Lipschitzness of S(π, F̂1, F̂2). However, there might exist

an algorithm that works for Fe(i) > 0 generally and maintains these optimalities as well,

which is an open problem to the future.

5.6.2 Feelings of Fairness in FPA.

In our FPA algorithm, notice that we run each π̃ ∈ Ak for a continuous batch of
τk

|Ak| = Ω(
√

T · 2k), which is long enough for customers to experience the fairness by

comparing their proposed prices and accepted prices with customers from the other
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group.

Relaxation on Substantive Fairness. Our algorithm approached the optimal policy

as the solution of Eq. (5.5) through an online learning framework. This ensures an

asymptotic fairness as T → +∞, but we still cannot guarantee an any-time fair algorithm

precisely. Therefore, it is more practical to consider the following inequality-constraint

optimization problem:

πδ,∗ = argmax
π=(π1,π2)∈Π

R(π; F1, F2) s.t. U(π) = 0, S(π; F1, F2) ≤ δ. (5.9)

Comparing Eq. (5.5) with Eq. (5.9), we know that R(π∗) ≤ R(πδ,∗). According to

Lemma 5.8.5, we further know that R(π∗) ≥ R(πδ,∗)− L · δ. Naturally, the substantive

unfairness definition is now max{0, S(π; F1, F2) − δ}. If we still consider this problem

under the framework of online learning, then two questions arose naturally: What are

the optimal regret rate and (substantive) unfairness rate like? And how can we achieve

them simultaneously? From our results in this chapter, we only know that (1) If δ = 0,

then both rates are Θ(
√

T ), and (2) if δ ≥ 1, then the optimal regret is Θ(
√

T ) and the

optimal unfairness is 0 (as it is reduced to the unconstrained pricing problem). In fact,

for δ = O(
√

1/T ), we may still achieve O(
√

T ) regret and unfairness, but it is not clear

if they are always optimal. For δ >
√

1/T , we conjecture that the optimal regret is still

Θ(
√

T ) and the optimal unfairness could be Θ(1/(
√

Tδ)).

5.6.3 Optimal Policy on the Continuous Space.

We restrict our price choices in a fixed price set V = {v1, v2, . . . , vd} and aims at the

optimal distributions on these vi’s. However, if we are allowed to propose any price

within [0, 1], then the optimal policy could be a tuple of two continuous distributions
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that outperforms any policy restricted on V. Even if we know that customers’ valuations

are all from V, the optimal policy is not necessarily located inside V due to the fairness

constraints. This optimization problem is even harder than Eq. (5.5), and the online-

learning scheme further increases its hardness. Existing methods such as continuous

distribution discretization [Xu and Wang, 2022] might work, but would definitely lead to

an exponential time complexity.

5.6.4 Potential Generalizations of Current Problem Setting.

Currently we make a few technical assumptions that qualify the applications of our

algorithm. In fact, these assumptions are mild and can be released by some tricks: On

the one hand, we can always meet the requirement of Assumption 5.3.5 by reducing vd.

By running a binary-search algorithm for the highest acceptable price (with constant

acceptance probability), we can find the feasible vd within O(log T log T ) rounds (where

log T for binary search and another log T for the concentration of a constant-expectation

random variable, as we did in estimating Fmin). Since O(log T log T ) is much smaller

than O(
√

T ) as the optimal regret and unfairness, this would not harm the regret and

unfairness substantially. On the other hand, we assume the prices to be chosen from

a fixed and finite price set V, which not only restricted our action but might lead to

suboptimality from the perspective of a larger scope. In fact, if we allow the prices to

be selected in the whole [0, 1] range, a pricing policy can be a tuple of two continuous

distributions over [0, 1]. To solve this problem, we may parametrize the distribution and

learn the best parameters. We may also discretize the price space into small grids, i.e.

prices are V = {γ, 2γ, . . . , (d− 1)γ, dγ = 1}, where γ = T −α with some constant α and

d= T α as a consequence. It is intrinsically a specific way of parametrization. According

to the “half-Lipschitz” nature of pricing problem as well as our Lemma 5.8.5 along with
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the Lipschiness of S(π; F1, F2), we know that the per-round discretization error would be

upper bounded by O(T −α). Let the cumulative discretization error O(T
1
− α) balances the

cumulative regret (or substantive unfairness), i.e., O(d 3
2
√

T ) = 0(T 1
2 + 3α

2 ), we can achieve

an upper bound on both the regret at O(T 4
5 ) by letting α = T

1
5 . However, this is not

optimal as we only match the upper and lower bounds w.r.t. T but not to d. Therefore,

it would also be an interesting problem to see the minimax regret/unfairness dependent

w.r.t. d.

Besides of the assumptions we have made, there are other notions regarding our problem

setup that can be generalized. Firstly, we may generalize our problem setting from two

groups to multiple G ≥ 3 groups. Again, the feasible set is not empty as we can always

propose the same fixed price to all groups. However, there is not a directly generalization

of the fairness definition, which we defined as the difference of the expectation of certain

amount between two groups. We might defined it as “pairwise unfairness” by comparing

the same difference among each pair of groups and adding them up, but this is not rational:

Consider the case when the expected proposed/accepted prices in (G − 1) groups are

very high and the last one is very low, and compare this case with another case when the

expected proposed/accepted prices in 1 groups are very high and the other (G− 1) groups

has a very low expected prices. The unfairness in these two cases should be definitely

different, as the first seems more acceptable (i.e., being kind to only the minority versus

being kind to only the majority). However, their “pairwise unfairness” are exactly the

same in these two cases. Therefore, a better notion of procedural/substantive unfairness

should be established for multiple G ≥ 3 groups.

Secondly, we may generalize the modeling on customers from i.i.d. to strategic. For

example, what if a customer tries multiple times until getting the lowest price of the

distribution for this group. This is an adaptive adversary and therefore very hard to deal
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with even in the simplest decision-making process such as bandits.

Thirdly, we may also include more fairness concern. Currently we are considering the

two types of fairness, but we define the cumulative fairness based as the summation

of expected per-round unfairness. This definition does not take into consideration the

changing of policies. For example, if we propose a fair policy at each round, but the

policies over time changes drastically, then it is hard for the customers to feel or experience

such a fairness. In our algorithm design of FPA, we always play the same policy for at

least τk

2d
= Ω(

√
T ) rounds as a batch until the policy changes. This is a long enough

time period for customers to experience fairness since at least a Omega(
√

T ) number of

customers from both groups would come and buy items under the same policy according

to the Law of Large Numbers. However, this would still cause a feeling of unfairness for

the two customers who are arriving almost simultaneously but the policy is just changed

after the first customer buy or decide not to buy. Therefore, there exists necessity for us

to consider the time/individual fairness under this online pricing problem scheme.

5.6.5 Potential Generalization of Techniques

Here we discuss a little bit more on the probable extension of the techniques we developed

in our algorithm design and analysis.

From Two Groups to Multi Groups Our problem setting assumes that there are

two groups of customers in total. We choose to study a two-group setting to simplify the

presentation. In practice, however, it is very common that customers are coming from a

number of groups with different valuations even on the same product. In fact, we believe

it straightforward to extend our methodologies and results to multi-group settings, as
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long as we determine a metric of multi-group unfairness. For instance, if we choose to

define the multi-group unfairness as the summation of pairwise unfairness of all pairs

of groups, we may adjust our algorithm by lengthening each epoch by G/2 times and

keeping everything the same as in this paper. In this way, the upper regret bound would

be Õ(G2
√

Td2/3), which is O(G2) times as we have shown in this paper. Therefore, it is

still optimal w.r.t. T up to iterative-log factors.

A Good-and-exploratory Policy Set Our algorithm FPA maintains and updates

a “good-and-exploratory” policy Ak in each epoch. Each policy in this set performs

close to the optimal policy in both regret and unfairness reductions. A similar idea

in reinforcement learning related research exists in Qiao et al. [2022] where they select

policies that visit each (horizon, state, action) tuple most sufficiently while ensuring that

the policy is low in regret. In fact, if we imagine an “exploratory” policy as the one

that would elevate the most “information” (i.e., that would reduce the most uncertainty),

then the “good-and-exploratory” policy-selection process is equivalent to an “Upper

Confidence Bound” method Lai and Robbins [1985] where we always pull the arm with

the highest upper confidence bound in a multi-armed bandit. The only difference is that:

for traditional exploration-and-exploitation balancing algorithm, we only need to improve

our estimation on the parameters of these optimal or near-optimal policies. However,

in our problem setting, we have to guarantee a uniform error bound, i.e., we have to

improve our estimation on all parameters instead of only those optimal-related ones. This

is because that we have to improve the estimation on constraints as well as on the revenue

function. In our algorithm design, we handle this problem by keeping eliminating a

feasible policy set, which in turn releases the algorithm from estimating those unnecessary

parameters. In a nutshell, our methods can be applied broadly in online-decision-making
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problems.

Unfairness Lower Bound Proof on Optimal Algorithms The main idea of our

proof of the Ω(
√

T ) unfairness lower bound on any algorithm with O(
√

T ) optimal regret

is to construct a trade-off on unfairness and regret between two adjacent problem settings.

We first bound the “bad policies” away from each problem setting, to avoid those policies

that are super fair in both setting but performs poor in both setting as well. Then we

show that policies with small-enough regret and unfairness on one setting should suffer

a large regret on the other. Finally we end the proof by showing that we will definitely

make Θ̃(T ) times of mistakes in expectation, according to information theory. We believe

that this scheme can be used in proving a variety of trading-off lower bounds.

5.6.6 Social Impacts

In this work, we develop methods to prompt the procedural and substantive fairness of

customers from all groups. We believe that our techniques and results would enhance the

unity of people with different gender, race, age, cultural backgrounds, and so on. However,

it is definitely correct that we have to treat differently to different group of people. In

order to ensure the fairness from customers’ perspective, the seller is required to behave

unfairly. Of course we could partly get rid of this issue by leaving the generating process

of a random price to the nature, i.e., we let each customer draw a coupon from a box

randomly. However, this only means that the seller’s pricing process is fair but not leads

to a fair result, as customers’ coupon varies a lot from person to person. This turn out

to be the exact issue named as “pricing and price fairness” proposed in Chapuis [2012]

regarding the fairness of a seller’s behavior. Maybe in the future we could develop an

algorithm that is not only profitable but also ensures the fairness from both the seller and
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the customers’ perspective, which could be a truly “doubly fair” dynamic pricing.

5.7 Conclusion

In this chapter, we studied the online pricing problem with fairness constraints. We

introduced two fairness notions, a procedural fairness and a substantive fairness indicating

the equality of proposed and accepted prices between two different groups respectively. In

order to fulfill these two constraints simultaneously, we adopted random pricing policies

and established the objective function and rewards in expectation. To solve this problem

with unknown demands, we designed a policy-elimination-based algorithm, FPA, that

achieves an Õ(
√

T ) regret within an Õ(
√

T ) unfairness. We showed that our algorithm is

optimal up to log log T factors by proving an Ω(
√

T ) regret lower bound and an Ω(
√

T )

unfairness lower bound for any optimal algorithm with an O(
√

T ) regret.

5.8 Proofs

5.8.1 Proof of Theorem 5.5.1

Proof. First of all, we specify the parameters initialized in Algorithm 7: Let Cq =

3 max{1
q
, 1

1−q
} and ct = max{3,

√
3

F̂min
}. For k = 1, 2, . . ., let τk = 28Cq

3 · d
√

T log(16d log T
ϵ

) ·

2k, δk,r = 4ct log 16d log T
ϵ

d
3
2

√
Cq

τk
, δk,s = 32ct

(F̂min)2 log 16d log T
ϵ

d
3
2

√
Cq

τk
. Now we prove that F̂min ≤

Fmin with high probability. Recall than Cq = 3 max{1
q
, 1

1−q
}. Recall that τ0 = 2 log T log 16

ϵ
.
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According to Hoeffding’s Inequality, we have:

Pr[|F̄1(d)− F1(d)| ≥ F1(d)
2 ] ≤2 exp{−2(F1(d)

2 )2 · 1
Cq

τ0}

⇔ Pr[F1(d)
2 ≤ 3F1(d)

2 ] ≥1− 2 exp{−(F1(d))2 1
Cq

log T log 16
ϵ
}

≥1− ϵ

8 .

(5.10)

Here the last inequality comes from Assumption 5.3.5 that F1(d) ≥ Fmin > 0 and therefore

we have (Fmin)2 1
Cq

log T ≥ 1 with large T . Therefore, we have F1(d)
2 F̄1(d) ≤ 3F1(d)

2

with probability at least 1 − ϵ
8 . Similarly, we have F2(d)

2 F̄2(d) ≤ 3F2(d)
2 with probability

at least 1 − ϵ
8 . Therefore, with Pr ≥ 1 − ϵ

4 , we have F̂min = 1
2 min{F̄1(d), F̄2(d)} ≤

min{3F1(d)
4 , 3F2(d)

4 } = 3
4Fmin < Fmin.

We define some notations that are helpful to our proof. In epoch k, recall that we have:

π̃k,i,e = argmax
π∈Πk

πe(i). (5.11)

For simplicity, for every i ∈ Ie
k, denote ρk,e(i) := π̃e

k,i,e(i) that is the largest probability

of choosing price vi in Ge among all policies in Πk. For those i /∈ Ie
k, we find out

the largest k′ such that i ∈ Ie
k′ and let ρk,e(i) := π̃e

k′,i,e(i). According to the fact that

Π = Π1 ⊃ Π2 ⊃ . . . ⊃ Πk ⊃ Πk+1 ⊃ . . ., we have

πe(i) ≤ ρk,e(i),∀π ∈ Πk; e = 1, 2; i ∈ [d]. (5.12)

Next, we prove the following lemmas together by induction over epoch index k = 1, 2, . . ..

We firstly state that

Lemma 5.8.1. Recall the optimal policy π∗ defined in Eq. (5.5). Before Epoch k, we

have π∗ ∈ Πk with high probability (the failure probability will be totally bounded at the

end of this proof).
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which is natural at k = 1 as Π1 = Π. Now, suppose Lemma 5.8.1 holds for ≤ k, then we

have:

Lemma 5.8.2 (Number of Choosing vi in Ge). For Mk,e(i) and Nk,e(i) defined in

Algorithm 7, for any e = 1, 2; i ∈ Ie
k, with Pr ≥ 1− ϵ

2 log T
we have:

ρk,e(i) · τk

4d · Cq

≤Mk,e(i),

|Nk,e(i)−Mk,e(i) · Fe(i)| ≤ct ·
√

Fe(i) ·Mk,e(i) · log 16d log T

ϵ
.

(5.13)

Here ct = max{3,
√

3
F̂min
}.

Proof of Lemma 5.8.2. For any i ∈ Ie
k, there exists a policy π̃k,i,e running in Epoch k for

at least τk

|Ak| rounds, and. Therefore, we have E[Mk,e(i)] ≥ ρk,e(i) · τk

|Ak| ·min{q, 1− q} ≥

ρk,e(i) · τk

|Ak|·Cq
. According to Bernstein’s Inequality, for any e = 1, 2; i ∈ Ie

k we have:
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Pr[|Mk,e(i)− E[Mk,e(i)]| ≤
E[Mk,e(i)]

2 ]

≥1− 2 exp{−
1
2(E[Mk,e(i)]

2 )2

∑ τk
|Ak|
t=1 ρk,e(i) · 1

Cq
(1− ρk,e(i) · 1

Cq
) + 1

3 · 1 ·
E[Mk,e(i)]

2

}

≥1− 2 exp{−
1
8(E[Mk,e(i)])2

ρk,e(i) · τk

|Ak|Cq
+ 1

6 · E[Mk,e(i)]
}

≥1− 2 exp{−
1
8(E[Mk,e(i)])2

E[Mk,e(i)] + 1
6 · E[Mk,e(i)]

}

=1− 2 exp{− 1
8 · 7

6
E[Mk,e(i)]}

≥1− 2 exp{− 3
28ρk,e(i) ·

τk

|Ak| · Cq

}

=1− 2 exp{− 3
28ρk,e(i) ·

28
3 · d
√

T log(16d log T
ϵ

) · 2k

2d · Cq

}

=1− 2 exp{−ρk,e(i)
√

T · log(16d log T

ϵ
) · d · 2

k

2d
}

≥1− 2 exp{− log(16d log T

ϵ
)}

=1− 2 · ϵ

16d log T

=1− ϵ

8d log T
.

(5.14)

Here the second line is because that
τk∑

t=1
E[(1(choosing vi at time t))2] ≤

τk
|Ak|∑
t=1

E[(1( running π̃k,i,e and choosing vi at time t))]

, the third line is for 1− ρk,e(i) · 1
Cq
≤ 1, the fourth and sixth line are from E[Mk,e(i)] ≥

ρk,e(i)·τk

|Ak|·Cq
, the seventh line is by plugging in τk = 28Cq

3 · d
√

T log(16d log T
ϵ

) · 2k, the eighth line

is equivalent transformation and the ninth line is for ρk,e(i) ≥ 1√
T

according to Line 9 of

Algorithm 7. As a result, with probability at least 1− ϵ
8d log T

, we have

Mk,e(i) ≥
E[Mk,e(i)]

2 ≥ ρk,e(i) · τk

|Ak| · Cq

≥ ρk,e(i) · τk

4dCq

. (5.15)

Now, we analyze Nk,e(i) for i ∈ Ie
k. Again, from Line 15 of Algorithm 7 we know that

Nk,e(i) = ∑Mk,e(i)
t=1 1(vt is accepted in Ge). Therefore, we apply Bernstein’s Inequality and
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get:

Pr[|Nk,e(i)−Mk,e(i) · Fe(i)| ≥ ct ·
√

Mk,e(i) · Fe(i) log 16d log T

ϵ
]

≤2 exp{−
1
2c2

t ·Mk,e(i)Fe(i)(log 16d log T
ϵ

)2

Mk,e(i)Fe(i) log 16d log T
ϵ

(1− Fe(i)) + 1
3 · (ct ·

√
Mk,e(i) · Fe(i) log 16d log T

ϵ
)
}

≤2 exp{−
1
2c2

t log 16d log T
ϵ

1 + ct

3
}

≤ ϵ

8 log T
.

Here the last line is by ct = max{3,
√

3
F̂min
} ≥ 3 and therefore

1
2 c2

t

1+ ct
3
≥ 1. As a result, for

e = 1, 2; i ∈ Ie
k, with Pr ≥ 1− ϵ

8 log T
we have

|Nk,e(i)−Mk,e(i) · Fe(i)| ≤ ct ·
√

Mk,e(i)Fe(i) log 16d log T

ϵ
.

That is to say,

|F̄k,e(i)− Fe(i)| = |max{Nk,e(i)
Mk,e(i)

, F̂min} − Fe(i)|

≤ |Nk,e(i)
Mk,e(i)

|

≤ ct ·

√√√√ Fe(i)
Mk,e(i)

log 16d log T

ϵ

≤ ct log 16d log T

ϵ

√
Fe(i) ·

√√√√ 4dCq

ρk,e(i)τk

.

Here the first line is by definition of F̄k,e, the second line is because F̂min ≤ Fmin ≤ Fe(i),

the third line is by the inequality above and the last line is by Eq. (5.15). Therefore, with

Pr ≥ 1− ϵ
2 log T

, Eq. (5.13) holds for e = 1, 2 and for ∀i ∈ Ie
k.

Given Lemma 5.8.2, we have the following corollary directly:

Corollary 5.8.3 (Estimation Error of F̄k,e(i)). Assume that Lemma 5.8.2 holds. For
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F̄k,e(i) = max{Nk,e(i)
Mk,e(i) , F̂min} defined in Algorithm 7, for any e = 1, 2; i ∈ Ie

k, we have:

|F̄k,e(i)− Fe(i)| ≤ ct · log 16d log T

ϵ

√√√√4dFe(i)Cq

ρk,e(i)τk

. (5.16)

For simplicity, denoteR(π) := R(π, F1, F2), S(π) := S(π, F1, F2), R̂k(π) := R(π, F̄k,1, F̄k,2)

and Ŝk(π) := S(π, F̄k,1, F̄k,2). Based on Corollary 5.8.3, we can bound the estimation

error of R̂k(π) and Ŝk(π) by the following lemma:

Lemma 5.8.4 (Estimation Error of R and S Functions). Given Lemma 5.8.2, we have:

|R(π)− R̂k(π)| ≤δk,r

2 ,

|S(π)− Ŝk(π)| ≤δk,s

2 .

(5.17)

Here δk,r = 4ct log 16d log T
ϵ

d
3
2

√
Cq

τk
and δk,s = 32ct

F̂ 2
min

log 16d log T
ϵ

d
3
2
√

1
τk

as is defined in Theo-

rem 5.5.1.

Proof of Lemma 5.8.4. First of all, we show that for any e = 1, 2; i = 1, 2, . . . , d and for

any π ∈ Πk,

|F̄k,e(i)− Fe(i)| · πe(i) ≤ ct · log 16d log T

ϵ

√
4dCq

τk

. (5.18)

In fact, when i ∈ Ie
k, according to Lemma 5.8.2 we have

|F̄k,e(i)− Fe(i)| · πe(i) ≤|F̄k,e(i)− Fe(i)| · ρk,e(i)

≤ct · log 16d log T

ϵ

√√√√4dFe(i)Cq

ρk,e(i)τk

· ρk,e(i)

≤ct · log 16d log T

ϵ

√
4dCq · (ρk,e(i))

τk

≤ct · log 16d log T

ϵ

√
4dCq

τk

.

(5.19)
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When i /∈ Ie
k, we know that ρk,e(i) ≤ 1√

T
and thus πe(i) ≤ 1√

T
,∀π ∈ Πk according to

Eq. (5.12). Also, since π∗ ∈ Πk by induction, we know that πe
∗ ≤ ρk,e(i) ≤ 1√

T
. Therefore,

we have
|F̄k,e(i)− Fe(i)| · πe(i) ≤|F̄k,e(i)− Fe(i)| · ρk,e(i)

≤|F̄k,e(i)πe(i)− Fe(i)| ·
1√
T

≤1 · 1√
T

≤ct · log 16d log T

ϵ

√
4dCq

τk

.

(5.20)

Here we assume that log 16d log T
ϵ

> 1 without losing of generality (i.e., T is sufficiently large

and ϵ can be arbitrarily close to zero), and the last inequality comes from ct ≥ 3 > 1 and

4d ≥ 1 and τk ≤ T . Combining Eq. (5.19) and Eq. (5.20), we know that Eq. (5.18) holds

for all e = 1, 2; i ∈ [d]. Remember that R(π) = q ·∑d
i=1 F1(i)π1(i)+(1−q)·∑d

j=1 F2(j)π2(j)

and that R̂k(π) = q ·∑d
i=1 F̄k,1(i)π1(i) + (1 − q) ·∑d

j=1 F̂k,2(j)π2(j). Therefore, we may

bound the error between R̂k(π) and R(π). For ∀π ∈ Πk, we have

|R̂k(π)−R(π)| ≤ q ·
d∑

i=1
|F̄k,1(i)− F1(i)| · π1(i) + (1− q) ·

d∑
j=1
|F̄k,2(j)− F2(j)| · π2(i)

≤ q ·
d∑

i=1
ct · log 16d log T

ϵ

√
4dCq

τk

+ (1− q) ·
d∑

j=1
ct · log 16d log T

ϵ

√
4dCq

τk

= ct · log 16d log T

ϵ

√
4dCq

τk

· d

= δk,r

2 .

(5.21)

Similarly, for the error between Ŝk(π) and S(π) as π ∈ Πk, we have:
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|Ŝk(π)− S(π)|

=||v
⊤F̂k,1π

1

1⊤F̂k,1π1
− v⊤F̂k,2π

2

1⊤F̂k,2π2
| − |v

⊤F1π
1

1⊤F1π1 −
v⊤F2π

2

1⊤F2π2 ||

≤|v
⊤F̂k,1π

1

1⊤F̂k,1π1
− v⊤F̂k,2π

2

1⊤F̂k,2π2
− (v⊤F1π

1

1⊤F1π1 −
v⊤F2π

2

1⊤F2π2 )|

≤|v
⊤F̂k,1π

1

1⊤F̂k,1π1
− v⊤F1π

1

1⊤F1π1 |+ |
v⊤F̂k,2π

2

1⊤F̂k,2π2
− v⊤F2π

2

1⊤F2π2 |

=
2∑

e=1
|v

⊤F̂k,eπ
e

1⊤F̂k,eπe
− v⊤Feπ

e

1⊤Feπe
|

=
2∑

e=1
|(v

⊤F̂k,eπ
e)(1⊤Feπ

e)− (v⊤Feπ
e)(1⊤F̂k,eπ

e)
(1⊤F̂k,eπe)(1⊤Feπe)

|

=
2∑

e=1

|(πe)⊤(F̂k,e − Fe)v · (1⊤Feπ
e) + (v⊤Feπ

e)1⊤(Fe − F̂k,e)πe|
|(1⊤F̂k,eπe)| · |(1⊤Feπe)|

≤
2∑

e=1

(1⊤Feπ
e)∑d

i=1 πe(i)(F̄k,e(i)− Fe(i))vi + (v⊤Feπ
e)∑d

j=1 1 · (Fe(j)− F̂k,e(j))πe(j)
|F̂min| · |F̂min|

≤
2∑

e=1

1 ·∑d
i=1 πe(i)|F̄k,e(i)− Fe(i)| · 1 + 1 ·∑d

j=1 1 · |Fe(j)− F̂k,e(j)|πe(j)
(F̂min)2

≤ 1
(F̂min)2

2∑
e=1

(
d∑

i=1
ct · log 16d log T

ϵ

√
4dCq

τk

+
d∑

j=1
ct · log 16d log T

ϵ

√
4dCq

τk

)

= 1
(F̂min)2

· 2d · ct · log 16d log T

ϵ

√
4dCq

τk

≤δk,s

2 .

(5.22)

Since we have Ŝk(π) ≤ δk,s,∀π ∈ Πk+1 by definition in Algorithm 7, we know that for any
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policy π ∈ Πk+1,
S(π) =Ŝk(π) + (S(π)− Ŝk(π))

≤Ŝk(π) + |S(π)− Ŝk(π)|

≤δk,s + δk,s

2
≤2δk,s.

(5.23)

Therefore, any policy remaining in Πk+1 suffers at most 2δk,s unfairness. Now let us

bound the regret of any policy in Πk+1. Here we firstly propose a lemma.

Lemma 5.8.5 (Small Relaxation Gain). Recall that π∗ is the solution to Eq. (5.5). Define

a πδ,∗ as follows.
πδ,∗ = argmax

π∈Π
R(π)

s.t. S(π) ≤ δ.

(5.24)

Then there exists a constant L ∈ R+ such that R(πδ,∗)−R(π∗) ≤ L
2 · δ.

We leave the proof of Lemma 5.8.5 to the end of this section. Given Lemma 5.8.5 and the

previous Lemma 5.8.4, we have:

R̂(π̂k,∗)− R̂(π∗)

=R̂(π̂k,∗)−R(π̂k,∗) + R(π̂k,∗)−R(π2δk,s,∗) + R(π2δk,s
, ∗)−R(π∗) + R(π∗)− R̂(π∗)

≤|R̂(π̂k,∗)−R(π̂k,∗)|+ (R(π̂k,∗)−R(π2δk,s,∗)) + (R(π2δk,s
, ∗)−R(π∗)) + |R(π∗)− R̂(π∗)|

≤δk,r

2 + 0 + L

2 · 2δk,s + δk,r

2
=δk,r + L · δk,s

(5.25)

By definition of Πk+1 at Eq. (5.8), we know that π∗ ∈ Πk+1, which holds Lemma 5.8.1 at

k + 1 and therefore completes the induction. As a result, all Lemma 5.8.1, Lemma 5.8.2,
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Lemma 5.8.4 and Lemma 5.8.5 holds for all k = 1, 2, . . .. As a result, we may calculate

the total regret and substantive unfairness as follows.

For the regret, we may divide the whole time horizon T into three stages:

1. Stage 0: Before epochs where we propose vd for τ0 = 2 log T log 16
ϵ

rounds in either

G1 or G2. The regret for this stage is O(log T log 1
ϵ
).

2. Stage 1: Epoch 1 where we try every price for 2 · τ1
2d

rounds in either G1 or G2. The

regret for this stage is O(τ1) = O(d
√

T log log T
ϵ

).

3. Stage 2: Epoch k = 2, 3, . . .. In each epoch k, every policy π we run satisfies π ∈ Πk.

Therefore, for any π running in Epoch k = 2, 3, . . ., we have

R(π∗)−R(π) =(R(π∗)− R̂k−1(π∗)) + (R̂k−1(π∗)− R̂k−1(π)) + (R̂k−1(π)−R(π))

≤δk−1,r

2 + (δk−1,r + L · δk−1,s) + δk−1,r

2
=2δk−1,r + L · δk−1,s.

(5.26)

The second line is by definition of Πk for k ≥ 2 and by Lemma 5.8.4. Suppose there

are K epochs in total, and then we know that:

T ≥
K∑

k=1
τk = 28Cq

3 · d
√

T · log 16d log T

ϵ
·

K∑
k=1

2k.

Solve the equaltion above and we get K = O(log
√

T

d log d log T
ϵ

) and K ≤ 1
2 log T .

Therefore, the total regret of Stage 2 is

Reg = O(
K∑

k=2
τk · (2δk−1,r + L · δk−1,s)) = O(

√
T · d

3
2 log d log T

ϵ
) (5.27)

Add the regret of all three stages above, we get that the total regret is O(
√

T ·d 3
2 log d log T

ϵ
).

For the unfairness, we derive it similarly in three stages:
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1. Stage 0: Before epochs where we propose vd for τ0 = 2 log T log 16
ϵ

rounds in either

G1 or G2. The unfairness for this stage is 0 as we always propose the same price to

both groups.

2. Stage 1: Epoch 1 where we try every price for 2 · τ1
2d

rounds in either G1 or G2. The

regret for this stage is 0 as well.

3. Stage 2: Epoch k = 2, 3, . . .. In each epoch k, every policy π we run satisfies π ∈ Πk.

Therefore, for any π running in Epoch k = 2, 3, . . ., we have

S(π) =Ŝk−1(π) + (S(π)− Ŝk−1(π))

≤δk−1,s + δk−1,s

2
≤3δk−1,s

2 .

(5.28)

Here the last line is by definition of Πk for k ≥ 2 and by Lemma 5.8.4. Therefore,

the total unfairness of Stage 2 is

Unf ≤
K∑

k=2
τk ·

3δk−1,s

2 = O(
√

T · d
3
2 log d log T

ϵ
). (5.29)

Therefore, the total substantive unfairness of all three stages is O(
√

T · d 3
2 log d log T

ϵ
) as

well.

Finally, we count the probability of failure of all stages. For Stage 0, the failure probability

is Pr0 ≤ ϵ
4 . For each epoch, the failure probability is Prk ≤ ϵ

2 log T
. Since there are K ≤ log T

2

epochs, the total failure probability is Prfailure ≤ Pr0 +K · Prk ≤ ϵ
4 + K · ϵ

2 log T
≤ ϵ

2 < ϵ.

That is to say, Theorem 5.5.1 holds with probability at least Pr ≥ 1− ϵ.

At the end of this subsection, we prove Lemma 5.8.5 as we promised above.
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Proof of Lemma 5.8.5. Denote any policy π ∈ Π as π = (π1, π2). For the simplicity of

notation, we denote the following functions:

(a) Define R1(π1) = v⊤F1π
1;

(b) Define R2(π2) = v⊤F2π
2;

(c) Define S1(π1) = v⊤F1π1

1⊤F1π1 ;

(d) Define S2(π2)− v⊤F2π2

1⊤F2π2 .

For πδ,∗ defined in Eq. (5.9), denote Vs := S1(π1
δ,∗) and z = S2(π2

δ,∗)− Vs. Therefore, we

know that Vs ∈ [v1, 1] (recalling that v1 > 0) and z ∈ [−δ, δ]. According to the optimality

of πδ,∗, we have:

πδ,∗ = argmax
π∈Π,Vs∈[v1,1],z∈[−δ,δ]

qR1(π1) + (1− q)R2(π2)

s.t. S1(π1) = Vs

S2(π2) = Vs + z

(5.30)

. Consider the constraint S2(π2)− Vs ∈ [−δ, δ], we can derive the following relaxation:

S2(π2)− Vs ∈ [−δ, δ]

⇔ −δ ≤ v⊤F2π
2

1⊤F2π2 − Vs ≤ δ

⇒ −δ(1⊤F2π
2) ≤ v⊤F2π

2 − Vs · 1⊤F2π
2 ≤ δ(1⊤F2π

2)

⇒ −δ ≤ v⊤F2π
2 − Vs · 1⊤F2π

2 ≤ δ.

(5.31)

This is because 1⊤F2π
2 ∈ [Fmin, 1] ⊂ (0, 1]. Therefore, we may define θδ = (θ1

δ , θ2
δ) ∈ Π
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such that
θδ := argmax

θ∈Π,r,w∈[v1·Fmin,1]
qR1(θ1) + (1− q)R2(θ2)

s.t. v⊤F1θ
1 =w

·1⊤F1θ
1 = w

Vs

v⊤F2θ
2 =r

−δ ≤ v1 · 1⊤F2θ
2 − r · v1

Vs

≤δ,

(5.32)

for any θ ≥ 0. Here we make use of the fact that Vs ∈ [v1, 1]. Notice that [v1 · Fmin, 1]

contains all possible r’s due to the fact that Fe(i) > Fmin and vi ≥ v1 for any i ∈ [d] and

e ∈ {1, 2}, then we have R2(θ2
δ) ≥ R2(π2

δ,∗) as a relaxation of conditions, which means

that R(θδ) ≥ R(πδ,∗). Consider another policy πstart:

πstart := argmax
π∈Π

qR1(π1) + (1− q)R2(π2)

s.t. S1(π1) =Vs

S2(π2) =Vs.

(5.33)

Therefore, we know that when δ = 0, we have θ0 = πstart exactly. Also, since π∗ can also

be defined as follows:

π∗ = argmax
π∈Π,vs∈[v1,1]

qR1(π1)+(1− q)R2(π2)

s.t. S1(π1) =vs

S2(π2) =vs.

(5.34)

According to the optimality of π∗ over all vs ∈ [v1, 1] while πstart is restricted on a

specific Vs, we have R(π∗) ≥ R(πstart) = R(θ0). Recall that we also have R(θδ) ≥ R(πδ,∗).

Therefore, as long as we show that there exists a constant L such that R(θδ)−R(θ0) ≤ L
2 ·δ,

then it is sufficient to show that R(πδ,∗)−R(π∗) ≤ L
2 · δ.
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Denote

θ̃δ = [(θ1
δ)⊤, w,

w · V1

Vs

, (θ2
δ)⊤, r,

r · v1

Vs

]⊤ ∈ R2d+4. (5.35)

Of course ∥θ̃δ∥1 ≤ 1 + w + w
Vs

+ 1 + r + r
Vs
≤ 4 + 2 2

v1
. Denote the domain of θ̃δ as D(δ).

Therefore, we know that for any θ ∈ D(δ), we have

θ ⪰ 0

[1⊤
d , 0, 0, . . . , 0]θ = 1

[0, . . . , 0, 0, 0,1⊤
d , 0, 0]θ = 1

[0, . . . , 0, 1, 0, . . . , 0]θ ≤ 1 (for 1 in the (d + 1)th place)

[0, . . . , 0, 1, 0, . . . , 0]θ ≤ 1 (for 1 in the (d + 2)th place)

[0, . . . , 0, 1, 0]θ ≤ 1

[0, . . . , 0, 0, 1]θ ≤ 1

(5.36)

Denote D̃(δ) as the space of all θ satisfying Eq. (5.36), and we know that D̃(δ) ⊇ D(δ)

and D̃(δ) is a bounded, close and convex set with only linear boundaries. Also, denote

the following fixed parameters:

a := [q · (v⊤F1), 0, 0, (1− q) · (v⊤F2), 0, 0] ∈ R2d+4

b1 := [v⊤F1,−1, 0, 0, . . . , 0] ∈ R2d+4

b2 := [v11
⊤F1, 0,−1, 0, 0, . . . , 0] ∈ R2d+4

g := [0, . . . , 0, 0, 0, v⊤F2,−1, 0] ∈ R2d+4

d := [0, . . . , 0, 0, 0, v1 · 1⊤F2, 0,−1] ∈ R2d+4.

(5.37)

Again, these parameters are all constants under the same problem setting. Given these

parameters, for the definition of θδ in Eq. (5.32), we may transform that definition into
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the following one equivalently:

θ̃δ := argmax
θ∈D̃(δ)

a⊤θ

s.t. b⊤
1 θ =0

b⊤
2 θ =0

g⊤θ =0

d⊤θ ∈[−δ, δ].

(5.38)

Since D̃(δ) ⊇ D(δ), we know that a⊤θ̃δ ≥ R(θδ). Denote

D̃abg(δ) := {θ|θ ∈ D̃(δ), b⊤
1 θ = 0, b⊤

2 θ = 0, g⊤θ = 0},

and we know that D̃abg(δ) is also a bounded close and convex set with only linear

boundaries. Therefore, Eq. (5.38) is equivalent to the following definition:

θ̃δ := argmax
θ∈D̃abg(δ)

a⊤θ

s.t. d⊤θ ∈ [−δ, δ].
(5.39)

Now we present the following lemma.

Lemma 5.8.6 (Bounded Shifting). Given any space Q ⊂ Rn that is bounded, close and

convex with only linear boundaries, consider the following subset Q0 := {x ∈ Q, d⊤x =

0} ≠ ∅. Then there exists a constant CL such that for any z ∈ R, Qz := {x ∈ Q, d⊤x = z}

and any θz ∈ Qz, there always exists a θ0 ∈ Q0 such that ∥θz − θ0∥2 ≤ CL · |z|.

Proof of Lemma 5.8.6. Without loss of generality, we assume that z > 0. Denote Q+ =

Q ∩ {x : d⊤x ≥ 0}. Because Q is bounded, close and convex with only linear boundaries,

the number of vertex of Q+ must be finite. The vertex set of Q+ can be decomposed as

V = V0 + V1, where V0 denotes the vertex such that d⊤x = 0 while V1 denotes the vertex

184



Pricing with Fairness Concerns Chapter 5

such that d⊤x > 0. In addition, Q0 = Q+ ∩ {x : d⊤x = 0} is the cross section while we

define B = {x : d⊤x = 0}.

For each point x ∈ Q0, we define βx to be min{The intersection angle between B and −→xv,

v ∈ V1}. Due to the fact that βx is continuous upon x, βx > 0 and the domain Q0 is

bounded and close, there exists a βmin > 0 such that βx ≥ βmin, ∀x ∈ Q0. Then we

construct a corresponding cone Conex for each x ∈ Q0 such that Conex = {v : d⊤v ≥

0, and the intersection angle between B and −→xv ≥ βmin}.

Since Q+ is bounded, close and convex with only linear boundaries, for any point

θz ∈ Qz, there exits v1, v2, · · · , vk and a1, a2, · · · , ak such that vi ∈ V, ai ≥ 0,∀i ∈ [k]

and ∑k
i=1 ai = 1 and it holds that θz = ∑k

i=1 aivi. Then according to our construction

of the cones, for each selected vertex vi, there exists a cone Coneti
such that ti ∈ Q0

and vi ∈ Coneti
. We claim that Cone∑k

i=1 aiti
= {∑k

i=1 aifi : fi ∈ Coneti
}. Therefore, it

holds that θz = ∑k
i=1 aivi ∈ Cone∑k

i=1 aiti
. Consider this θ0 = ∑k

i=1 aiti, because Q0 is

convex, we have θ0 ∈ Q0. In addition, ∥θ0 − θz∥2 ≤ |z|
∥d∥2·sin(βmin) , which means by choosing

CL = 1
∥d∥2·sin(βmin) , the proof is complete.

Denote zδ := θ̃δ and we know that |zδ| ≤ δ. In order to apply Lemma 5.8.6, we have to

ensure that D̃abg(0) ̸= ∅. In fact, notice that θ̃0 ∈ D̃abg ∩ {d⊤ = 0}. With Lemma 5.8.6,

there exists a θ̂0 ∈ D̃abg(0) such that ∥θ̃δ − θ̂0∥2 ≤ L
2 |z| ≤

L
2 δ. As a result, we have:

a⊤θ̃δ − a⊤θ̂0 ≤ ∥a∥2 · ∥θ̃δ − θ̂0∥2

≤ ∥a∥1 · CL · δ

≤ (q · v⊤F11 + (1− q) · v⊤F21) · CL · δ

:= Ca · CL · δ.

(5.40)

By definition of θ̃δ, we know that θ̃0 maximizes a⊤θ in D̃abg(0), which means that
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a⊤θ̃0 ≥ a⊤θ̂0. As a result, we have:

R(θδ)−R(θ0) =a⊤θ̃δ − a⊤θ̃0

≤a⊤θ̃δ − a⊤θ̂0

≤Ca · CL · δ.

(5.41)

Therefore, we have R(πδ,∗)−R(π∗) ≤ R(θδ)−R(πstart) = R(θδ)−R(θ0) ≤ Ca ·CL · δ. Let

L := 2 · Ca · CL and this holds the lemma.

5.8.2 Proof of Theorem 5.5.3

As is stated in Section 5.5.2, we may reduce this fair pricing problem to an ordinary

online pricing problem with no fairness constraints. Therefore, we only need to prove the

following theorem.

Theorem 5.8.7 (Regret Lower Bound). Consider the online pricing problem with T

rounds and d fixed prices in [0, c] for 3 ≤ d ≤ T 1/3 and some constant c > 0. Then any

algorithm has to suffer at least Ω(
√

dT ) regret.

Here we mainly adopt the proof roadmap of Kleinberg and Leighton [2003].

Proof. We let c = 12 without losing generality. Let ϵ =
√

d
T

, l = 1, a0 = 4l, ai =

(1 + ϵ
l
)i · a0, i = 1, 2, . . . , d, then we have: 4l = a0 < a1 < a2 < . . . < ad−1 < ad < 12l.

Define some distributions on the prices {ai}d
i=1:

• P0, with acceptance rates of each price: P0 = [ l
a1

, l
a2

, . . . , l
ad−1

, l
ad

]T , where P0(i) =

Pr[y ≥ ai] = Pr[y > ai−1] = l
ai

< 1
4 .
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• Pj , with acceptance rates of each price: Pj = [ l
a1

, l
a2

, . . . , l
aj−1

, l+ϵ
aj

, l
aj+1

, . . . , l
ad−1

, l
ad

]T ,

where Pj(i) = l
ai

+ ϵ
ai
· 1(i = j) ≤ 1

4 .

In the following part, we propose and prove the following lemma:

Lemma 5.8.8. For any algorithm S, ∃j ∈ {1, 2, . . . , d}, such that RegPj
(S) = Ω(

√
Td).

Proof. Suppose f is a function: {0, 1}T → [0, M ]. Denote r = [11,12, . . . ,1T ]⊤ as a

vector containing the customer’s decisions in sequence. Then for any j = 1, 2, . . . , d we

have:
EPj

[f(r)]− EP0 [f(r)]

=
∑

r
f(r) · (Pj[r]− P0[r])

≤
∑

r:Pj [r]≥P0[r]
f(r)(Pj[r]− P0[r])

≤M ·
∑

r:Pj [r]≥P0[r]
f(r)(Pj[r]− P0[r])

=M

2 ∥Pj − P0∥1.

(5.42)

Here we cite a lemma from Cover and Thomas, Elements of Information theory, Lemma

11.6.1.

Lemma 5.8.9.

KL(P1||P2) ≥
1

2 ln 2∥P1 − P2∥2
1.

Since
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KL(P0(r)||Pj(r))

=
T∑

t=1
KL(P0[rt|rt−1]||Pj[rt|rt−1])

=
t∑

t=1
P0(it ̸= j) · 0 + P0(it = j) ·KL( l

aj

|| l

aj

+ ϵ

aj

).

(5.43)

The first equality comes from the chain rule of decomposing a KL-divergence, and the

second equality is because 1t satisfies a Bernoulli distribution B(1, l
ait

+ ϵ
ait
· 1(it = j)).

Now we propose another lemma:

Lemma 5.8.10. If 1
12 ≤ p ≤ 1

4 , then we have: KL(p, p + ϵ) ≤ 12ϵ2 for sufficiently small

ϵ.

According to this Lemma Lemma 5.8.10, we have:

KL(P0(r)||Pj(r)) ≤
T∑

t=1
P0(it = j) · 12ϵ2

≤
T∑

t=1
P0(it = j) · 12

16l2 ϵ2.

(5.44)

Therefore, we have:
EPj

[f(r)]− EP0 [f(r)]

≤M

2
2 ln 2
·

√
KL(P0(r)||Pj(r))

≤
√

6 ln 2M

4 · (

√√√√ T∑
t=1

P0(it = j)) · ϵ.

(5.45)

Denote Nj := ∑T
t=1 1(it = j), and hence:

EPj
[f(r)]− EPj

[f(r)] ≤
√

6 ln 2
4 M(

√
EP0 [Nj]) · ϵ. (5.46)

Now let f(r) = Nj, i.e., let function f simulate the algorithm which make choices of it’s

from historical results of {11,12, . . . ,
∫

t−1} (It is straightforward that {i1, i2, . . . , it−1} are

also historical results crucial for deciding it. However, for a deterministic algorithm, it
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can generate i1, i2, . . . , it−1 directly from ∅, {11}, {11,12}, . . . , {11,12, . . . ,1t−2}.) Now,

0 ≤ f(r) ≤ T , which indicates that M = T .. Then it turns out that

EPj
[Nj]− EP0 [Nj] ≤

√
6 ln 2
4 · T · ϵ ·

√
EP0 [Nj]

⇒ 1
d

d∑
j=1

EPj
[Nj] ≤

1
d

d∑
j=1

(EP0 [Nj] +
√

6 ln 2
4 · T · ϵ ·

√
EP0 [Nj])

= T

d
+
√

6 ln 2
4 · T

d
· ϵ ·

d∑
j=1

√
EP) [Nj]

≤ T

d
+
√

6 ln 2
4 · ϵ · T

d
·
√

Td

= T

d
+
√

6 ln 2
4 ·

√
d

T
· T

d
·
√

Td

≤ T

3 + 0.525 · T

≤ 0.9T

(5.47)

Here the second line is an average over all j = 1, 2, . . . , d of the first line, the third line

uses the fact that ∑d
j=1 E[Nj] = T , the fourth line applies a Cauchy-Schwarz Inequality

that Td = (∑d
j=1 EP0 [Nj ])(d · 1) ≥ (∑d

j=1

√
EP0 [Nj])2, the fifth line plugs in the values that

ϵ =
√

d
T

, the sixth line uses the fact that ln 2 < 0.7, and the last line holds for sufficient

large T .

From Equation Eq. (5.47), we know that ∃j ∈ {1, 2, . . . , d} such that EPj
[Nj ] ≤ 0.9T . As

a result, we have:

RegPj
(S) ≥(1− 0.9)T ( l + ϵ

aj

· aj −
l

ait

· ait), ∀it ̸= j

=0.1T (l + ϵ− l)

=0.1Tϵ

=0.1
√

Td.

(5.48)

Therefore, the Ω(
√

Td) regret bound holds.

189



Pricing with Fairness Concerns Chapter 5

5.8.3 Proof of Theorem 5.5.4

Proof. Prior to our technical analysis, we briefly introduce the roadmap of proving the

unfairness lower bound.

(i) We construct two different but very similar problem settings: one is exactly Exam-

ple 5.1.1, the other is identical to Example 5.1.1 except all probabilities of 0.5 are

now changed into (0.5 − ζ), where ζ = C · T − 1
2 +η for some super small constant

C ≥ 0 and some small η ≥ 0. In the following, we may call them the “Problem 0”

(or P0) and the “Problem ζ” (or Pζ) sequentially.

(ii) We derive the close-form solutions to both Problem 0 and Problem ζ, where we

also parameterize the reward function with the expected proposed price Vr and the

proposed accepted price Vs. Of course Problem ζ is more general and we may get

the solutions to Problem 0 by simply let ζ = 0.

(iii) We show that there does not exist any policy π that satisfies both of the following

conditions simultaneously:

• π is within C0 · T − 1
2 +η-suboptimal (w.r.t. regret) and within C0 · T − 1

2 +η-unfair

(w.r.t. fairness) in P0.

• π is within C0 · T − 1
2 +η-suboptimal (w.r.t. regret) and within C0 · T − 1

2 +η-unfair

(w.r.t. fairness) in Pζ.

(iv) We show that any algorithm have to distinguish P0
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According to the roadmap above, we firstly construct the following example as the problem

setting for lower bound proof.

Example 5.8.11. Customers form 2 disjoint groups: Group 1 takes 30% proportion of

customers, and Group 2 takes the rest 70%. In specific,

• In Group 1, 40% customers valuate the item as $0, (10% + ζ) valuate customers it

as $0.625, and (50%− ζ) customers valuate it as $1.

• In Group 2, 20% customers valuate it as $0, (30% + ζ) customers valuate it as $0.7,

and (50%− ζ) customers valuate it as $1.

Here ζ = C · T − 1
2 +η is a small amount, where 0 ≤ C ≤ 10−10. In other words, we have

v⊤ = [5
8 , 7

10 , 1], F1 = diag{0.6, 0.5− ζ, 0.5− ζ}, F2 = diag{0.8, 0.8, 0.5− ζ} and our policy

π = (π1, π2) where π1, π2 ∈ ∆3. Our goal is to approach the following optimal policy

πζ,∗ = argmax
π=(π1,π2)∈Π

R(π; F1, F2)

s.t. U(π) = 0

S(π; F1, F2) = 0.

(5.49)

For any policy π feasible to the constraints in Eq. (5.50), denote its expected accepted

price as Vs (identical in both groups) and its expected proposed price as Vr (identical in

both groups as well). Notice that Vr ≥ Vs ≥ 5
8 , we define α = Vr − Vs as their difference,

and therefore we know that α ≥ 0. Again, we denote R(π, F1, F2) as R(π) without causing

misunderstandings. Here we propose the following lemma regarding Example 5.8.11.

Lemma 5.8.12 (Close-form solution to Example 5.8.11). For the problem setting defined
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in Example 5.8.11, we have:

π1
ζ,∗ =[20− 40ζ

29− 10ζ
, 0,

9 + 30ζ

29− 10ζ
]⊤,

π2
ζ,∗ =[0,

25− 50ζ

29− 10ζ
,

4 + 40ζ

29− 10ζ
]⊤,∀ζ ∈ [0, 10−10].

(5.50)

Besides, for any feasible policy π and its corresponding Vs and α, we have:

R(π) = 71− 30ζ

100 · Vs + (100− 60ζ)− (142− 60ζ)Vs

(8Vs − 5)(1− Vs)25 · Vs · α. (5.51)

Proof of Lemma 5.8.12. For any feasible policy π = (π1, π2), it has to satisfy the following

equations for e = 1, 2: 

1⊤πe = 1

v⊤πe = Vs + α

v⊤Feπ
e

1⊤Feπe
= Vs.

This is equivalent to the following linear equations system

1⊤πe = 1

v⊤πe = Vs + α

(v− Vs · 1)⊤Feπ
e = 0.

(5.52)

This is further equivalent to A1π
1 = [1, Vs + α, 0]⊤ and A2π

2 = [1, Vs + α, 0]⊤ where

A1(Vs, ζ) =


1 1 1
5
8

7
10 1

(5
8 − Vs) · 3

5 ( 7
10 − Vs) · (1

2 − ζ) (1− Vs) · (1
2 − ζ)

 . (5.53)

and

A2(Vs, ζ) =


1 1 1
5
8

7
10 1

(5
8 − Vs) · 4

5 ( 7
10 − Vs) · 4

5 (1− Vs) · (1
2 − ζ)

 . (5.54)
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Here we may omit the parameters (Vs, ζ) without misunderstanding. For Vs = 5
8 , the

only possible policy is to propose the lowest price 5
8 for both groups, and the expected

reward is 0.3× 5
8 ×

3
5 + 0.7× 5

8 ×
4
5 = 0.4625 < 0.5− ζ. Therefore, it is suboptimal as its

expected reward is less than that of a deterministic policy keep proposing 1 as a price

(whose reward is 0.5− ζ). In the following, we only consider the case when Vs > 5
8 . Solve

these linear equation systems and get

π1 =A−1
1 [1, Vs + α, 0]⊤

= 1
3(8Vs − 5)(1 + 10ζ)

120α(1− 2ζ)

−((1 + 10ζ)8Vs + 10(1− 8ζ)) · α− (8(1 + 10ζ)V 2
s − 13(1 + 10ζ)Vs + (1 + 10ζ)5)

10(8(1 + 10ζ)Vs − 2(1 + 28ζ)) · α + (1 + 10ζ)(8Vs − 5)(10Vs − 7)


(5.55)

and

π2 =A−1
2 [1, Vs + α, 0]⊤

= 1
3(1− Vs)(3 + 10ζ)

4(((3 + 10ζ)10Vs − (6 + 100ζ))α− (3 + 10ζ)(10Vs − 7)(Vs − 1))

(−5) · (((3 + 10ζ)8Vs − 80ζ)α + (3 + 10ζ)(8Vs − 5)(Vs − 1))

24α

 .

(5.56)

On the one hand, we can get the explicit form of R(π) w.r.t. Vs and α:

R(π) =q · v⊤F1π
1 + (1− q) · v⊤F2π

2

=71− 30ζ

100 Vs + (100− 60ζ)− (142− 60ζ)Vs

(8Vs − 5)(1− Vs)25 · Vsα.
(5.57)

On the other hand, we have a few constraints to be applied. Since π is a probabilistic
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distribution, we have πe(i) ≥ 0, e = 1, 2; i = 1, 2, 3, which lead to

120α(1− 2ζ) ≥ 0

− ((1 + 10ζ)8Vs + 10(1− 8ζ)) · α− (8(1 + 10ζ)V 2
s − 13(1 + 10ζ)Vs + (1 + 10ζ)5) ≥ 0

10(8(1 + 10ζ)Vs − 2(1 + 28ζ)) · α + (1 + 10ζ)(8Vs − 5)(10Vs − 7) ≥ 0

4(((3 + 10ζ)10Vs − (6 + 100ζ))α− (3 + 10ζ)(10Vs − 7)(Vs − 1)) ≥ 0

(−5) · (((3 + 10ζ)8Vs − 80ζ)α + (3 + 10ζ)(8Vs − 5)(Vs − 1)) ≥ 0

24α ≥ 0.

(5.58)

From Eq. (5.58), we may derive the following upper and lower bounds for α.

(a) The first line and the last line of Eq. (5.58) is naturally satisfied.

(b) From the second line, we have

α ≤ (1 + 10ζ)(8Vs − 5)(1− Vs)
(1 + 10ζ)8Vs + 10(1− 8ζ) := B1. (5.59)

(c) From the third line, we have

α ≥ (1 + 10ζ)(8 · Vs − 5)(7− 10Vs)
(1 + 10ζ)8 · Vs − 2(1 + 28ζ) ·

1
10 := B2. (5.60)

(d) From the fourth line, we have

α ≥ (3 + 10ζ)(10Vs − 7)(1− Vs)
(3 + 10ζ)10Vs − (6 + 100ζ) := B3. (5.61)

(e) From the fifth line, we have

α ≤ (3 + 10ζ)(8Vs − 5)(1− Vs)
(3 + 10ζ)8 · Vs − 80ζ

:= B4. (5.62)
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We get four constraints on α as above, where Eq. (5.59) and Eq. (5.62) are upper bounds,

and Eq. (5.60) and Eq. (5.61) are lower bounds. Compare B1 with B4, we notice that

B1

B4
=

80ζ
3+10ζ

8Vs + 10 · 1−8ζ
1+10ζ

≤ 1. (5.63)

Therefore, Eq. (5.59) is tighter than Eq. (5.62). For the comparison between B2 and B3,

we notice that B2 < 0 < B3 when Vs > 7
10 and B2 ≥ 0 ≥ B3 when Vs ≤ 7

10 .

In the following part, we derive the optimal policy by cases.

(a) When 5
8 < Vs ≤ 50−30ζ

71−30ζ
, we have

R(π) =71− 30ζ

100 Vs + (100− 60ζ)− (142− 60ζ)Vs

(8Vs − 5)(1− Vs)25 · Vsα

≤71− 30ζ

100 Vs + (100− 60ζ)− (142− 60ζ)Vs

(8Vs − 5)(1− Vs)25 · Vs ·B1

=71− 30ζ

100 Vs + (100− 60ζ)− (142− 60ζ)Vs

(8Vs − 5)(1− Vs)25 · (1 + 10ζ)(8Vs − 5)(1− Vs)
(1 + 10ζ)8Vs + 10(1− 8ζ) Vs

=71− 30ζ

100 VS + 100− 142Vs − 60ζ(1− Vs)
25(8Vs + 10 · 1−8ζ

1+10ζ
)

· Vs

=71− 30ζ

100 VS + 100− 142Vs − 60ζ(1− Vs)
25(8Vs + 10)− 450ζ

1+10ζ

· Vs

<
71− 30ζ

100 VS +
100− 142Vs − 60ζ(1− Vs) + 450ζ

1+10ζ

25(8Vs + 10) · Vs

<
71
100Vs + 100.1− 142Vs

25(8Vs + 10) · Vs

=71(8 · Vs + 10) + (100.1− 142 · Vs) · 4
100(8 · Vs + 10) · Vs

= 11104 · Vs

1000(8 · Vs + 10)

≤11104
8000 −

5
4 × 11104

1000(8× 50
71 + 10)

≤0.50019
(5.64)

Here the first inequality (line 2) is by (100− 60ζ)− (142− 60ζ)Vs ≥ 0 as Vs ≤ 50−30ζ
71−30ζ
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and by α ≤ B1, the second inequality (line 6) is by the fact that Vs’s coefficient

is within (0, 1), the third inequality (line 7) is by ζ ≤ 10−10 < 1
4500 , the fourth

inequality (line 10) is by Vs ≤ 50
71 and the last inequality (line 11) is by numerical

computations. We will later show that 0.50019 is not optimal.

(b) When Vs > 50−30ζ
71−30ζ

, we know that Vs > 7
10 as ζ < 1

30 , and B2 < 0 < B3 and also

α ≥ B3 = (3 + 10ζ)(10Vs − 7)(1− Vs)
(3 + 10ζ)10Vs − (6 + 100ζ) .

As a result, we have

R(π) = 71− 30ζ

100 Vs −
(142− 60ζ)Vs − (100− 60ζ)

(8Vs − 5)(1− Vs)25 · Vsα

≤ 71− 30ζ

100 Vs −
(142− 60ζ)Vs − (100− 60ζ)

(8Vs − 5)(1− Vs)25 · Vs ·B3

≤ 71− 30ζ

100 Vs −
(142− 60ζ)Vs − (100− 60ζ)

(8Vs − 5)(1− Vs)25 · Vs ·
(3 + 10ζ)(10Vs − 7)(1− Vs)
(3 + 10ζ)10Vs − (6 + 100ζ)

(5.65)

Also, we can derive an upper bound for Vs as B3 ≤ α ≤ B1.

(3 + 10ζ)(10Vs − 7)(1− Vs)
(3 + 10ζ)10Vs − (6 + 100) ≤

(1 + 10ζ)(8 · Vs − 5)(1− Vs)
(1 + 10ζ)8 · Vs + 10(1− 8ζ)

⇔ Vs ≤
8 + 10ζ

11 + 10ζ
.

(5.66)

Then we solve the maximal of R(π) on 50−30ζ
71−30ζ

≤ Vs ≤ 8+10ζ
11+10ζ

by combining Eq. (5.65).

∂R(π)
∂Vs

=(−3135 + 9870Vs − 7491V 2
s ) + ζ(−46430 + 145660Vs − 114638V 2

s )
20(−5 + 8Vs)2(−3− 50ζ + 15Vs + 50ζVs)2/3

+ ζ2(97900− 315800Vs + 251740V 2
s ) + ζ3(15000− 30000Vs + 15000V 2

s )
20(−5 + 8Vs)2(−3− 50ζ + 15Vs + 50ζVs)2/3

=
−22473(Vs − 1645−6

√
2685

2497 )(Vs − 1645+6
√

2685
2497 )

20(−5 + 8Vs)2(−3− 50ζ + 15Vs + 50ζVs)2

+ (−46430 + 145660Vs − 114638V 2
s )ζ + o(ζ2)

20(−5 + 8Vs)2(−3− 50ζ + 15Vs + 50ζVs)2/3

≥ −22473(Vs − 0.5343)(vs − 0.7833)
20(−5 + 8Vs)2(−3− 50ζ + 15Vs + 50ζVs)2 > 0.

(5.67)
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Here the “≳” inequality is because the coefficient of ζ in any monomial above is

within ±106, which indicates that any monomial containing ζ is within ±0.0001

. The last line is because 7
10 ≤

50−30ζ
71−30ζ

≤ Vs ≤ 8+10ζ
11+10ζ

≤ 3
4 and therefore (Vs −

0.5343)(vs−0.7833) < 0. As a result, we know that R(π) is monotonically increasing

as Vs increases within the range above. Therefore, we have:

R(π) ≤ R(π)|α=B3 ≤ R(π)|α=B3 and Vs= 8+10ζ
11+10ζ

= 37(1− 2ζ)(4 + 5ζ)
10(29− 10ζ) (5.68)

By plugging in Vs = 8+10ζ
11+10ζ

into α = B3 and the close-form feasible solutions of π1

and π2 (i.e., Eq. (5.55) and Eq. (5.56) ), we may get:

α = B3 = 3(1 + 10ζ)(3 + 10ζ)
2(29− 10ζ)(11 + 10ζ)

π1 = [20− 40ζ

29− 10ζ
, 0,

9 + 30ζ

29− 10ζ
]⊤

π2 = [0,
25− 50ζ

29− 10ζ
,

4 + 40ζ

29− 10ζ
]⊤.

(5.69)

Pushing back Eq. (5.69) to Eq. (5.49), we verify that R(π)max = 37(1−2ζ)(4+5ζ)
10(29−10ζ) and

therefore all inequalities in Eq. (5.68) hold as equalities.

Notice that 37(1−2ζ)(4+5ζ)
10(29−10ζ) > 0.50019, and therefore the optimal policy πζ,∗ is what we

derive in Eq. (5.69). This holds the lemma.

With Lemma 5.8.12, we know that π1
ζ,∗ = [20−40ζ

29−10ζ
, 0, 9+30ζ

29−10ζ
]⊤ and π2

ζ,∗ = [0, 25−50ζ
29−10ζ

, 4+40ζ
29−10ζ

]⊤.

We denote V ∗
s,ζ := 8+10ζ

3+10ζ
and α∗

ζ = 3(1+10ζ)(3+10ζ)
2(29−10ζ)(11+10ζ) for future use. We also know that

the optimal policy for Example 5.1.1 (i.e., ζ = 0) is exactly what we proposed, i.e.,

π1
∗ = [20

29 , 0, 9
29 ]⊤ and π2

∗ = [0, 25
29 , 4

29 ]⊤.

Let us go back to the two problems: P0 defined in Example 5.1.1 and Pζ defined in

Example 5.8.11, where we consider the following four conditions:
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• π is within C0 · T − 1
2 +η-suboptimal (w.r.t. regret) in P0 (denoted as Condition A).

• π is within C0 · T − 1
2 +η-suboptimal (w.r.t. regret) in Pζ (denoted as Condition B).

• π is within C0 · T − 1
2 +η-unfair (w.r.t. fairness) in P0 (denoted as Condition C).

• π is within C0 · T − 1
2 +η-unfair (w.r.t. fairness) in Pζ (denoted as Condition D).

According to our proof roadmap, we then prove the following lemma:

Lemma 5.8.13 (No policy fitting in P0 and Pζ). There exist constants C0 > 0 such that

there does not exist any policy π ∈ Π that satisfies all of Condition ABCD (denoting

A ∧B ∧ C ∧D) simultaneously.

Corollary 5.8.14. The space of Π can be divided as the following 3 subspaces:

1. Policies satisfying Condition AC (denoted as Space AC).

2. Policies satisfying Condition BD (denoted as Space BD).

3. Policies satisfying Condition (denoted as Outer Spaces) ĀB̄ ∨ C̄D̄ ∨ ĀD̄ ∨ B̄C̄. and

these three subspaces are pairwise disjoint.

Proof of Lemma 5.8.13. Let C1 = C
W

and C2 = C
W ·L where L > 0 is a constant from

Lemma 5.8.5 and W ≥ 10 to be specified later. Let C0 = min{C1, C2}, and we prove

the lemma by contradiction. Suppose there exists a policy π satisfies the four conditions

above, and then we denote the expected accepted prices in G1 and G2 in Problem ζ are

Vs,ζ and Vs,ζ + βζ sequentially, where βζ ∈ [0, C2T
− 1

2 +η]. Here we assume β ≥ 0 without

losing generality as we will not use the specific property of G1 versus G2. Also, we denote
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αζ as the difference between the expected proposed price in both groups (denoted as Vr,ζ)

and Vs,ζ .

Now, consider a corresponding policy:

π̌ :=


G1 : E[accepted price] = Vs,ζ ,E[proposed price] = Vs,ζ + αζ

G2 : E[accepted price] = Vs,ζ ,E[proposed price] = Vs,ζ + αζ

(5.70)

According to Eq. (5.66), we know that 5
8 ≤ Vs,ζ ≤ V ∗

s,ζ = 8+10ζ
11+10ζ

and R(π̌) ≤ R(πζ,∗).

Therefore, we have:

R(π) ≤ R(π̌) + L · βζ

≤ R(πζ,∗)− min
Vs∈[ 5

8 , 8+10ζ
11+10ζ

]

∂R(π)
∂Vs

· (V ∗
s,ζ − Vs,ζ) + L · βζ

≤ R(πζ,∗)−
1
4 · (V

∗
s,ζ − Vs,ζ) + L · βζ .

(5.71)

Here the first line comes from Lemma 5.8.5, the second line comes from the fact that

f(x1)− f(x2) ≥ minx(f ′(x))(x1− x2) for x1 ≥ x2 and f ′(x) > 0, and the third line comes

from the fact that ∂R(π)
∂Vs
≥ 1

4 for Vs ∈ [0.625, 0.728] as 0.728 > 8+10ζ
11+10ζ

for ζ ≤ 10−10. Also,

since π satisfies a low-regret condition, we have

R(πζ,∗)−R(π) ≤ C1 · T − 1
2 +η.

Combining with Eq. (5.71), we have

1
4(V ∗

s,ζ − Vs,ζ)− L · βζ ≤ C1T
− 1

2 +η

⇒ (V ∗
s,ζ − Vs,ζ) ≤ C1T

− 1
2 +η + L · βζ

≤ (C1 + LC2)T − 1
2 +η.

(5.72)

Notice that this is suitable for any ζ ∈ [0, 10−10], we may have the same result for both

ζ = CT − 1
2 +η and for ζ = 0. We denote ζ0 = 0 and ζ1 = CT − 1

2 +η where C = 10−10.
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Therefore, we have:
(V ∗

s,ζ0 − Vs,ζ0) ≤(C1 + LC2)T − 1
2 +η,

(V ∗
s,ζ1 − Vs,ζ1) ≤(C1 + LC2)T − 1

2 +η.

(5.73)

Now let us bound (α∗
ζ − αζ) for both ζ0 and ζ1. From Eq. (5.59) and Eq. (5.61), we have

B3|Vs=Vs,ζ
≤ αζ ≤ B1|Vs=Vs,ζ

B3|Vs=V ∗
s,ζ

= α∗
ζ = B1|Vs=V ∗

s,ζ

⇒ min
Vs∈[0.7,0.75]

{∂B3

∂Vs

,
∂B1

∂Vs

}(V ∗
s,ζ − Vs,ζ) ≤ (α∗

ζ − αζ) ≤ max
VS∈[0.7,0.75]

{∂B3

∂Vs

,
∂B1

∂Vs

}(V ∗
s,ζ − Vs,ζ)

⇒ 0 ≤ 0.05(V ∗
s,ζ − Vs,ζ) ≤ (α∗

ζ − αζ) ≤ 0.6(V ∗
s,ζ − Vs,ζ).

(5.74)

Therefore, we have:

0 ≤ V ∗
r,ζ − Vr,ζ = V ∗

s,ζ + α∗
ζ − (Vs,ζ + αζ) ≤ (1 + 0.6)(V ∗

s,ζ − Vs,ζ) ≤ 8
5 · (C1 + LC2)T − 1

2 +η.

Therefore, we know that

V ∗
r,ζ0 ≥Vr,ζ0 ≥ V ∗

r,ζ0 −
8
5 · (C1 + LC2)T − 1

2 +η,

V ∗
r,ζ1 ≥Vr,ζ1 ≥ V ∗

r,ζ1 −
8
5 · (C1 + LC2)T − 1

2 +η.

⇒ |Vr,ζ1 − Vr,ζ0| ≥ |V ∗
r,ζ0 − V ∗

r,ζ1 | − (C1 + LC2)T − 1
2 +η.

(5.75)

HOWEVER, we have Vr,ζ1 = Vr,ζ0 since they are the expected proposed price of the

same pricing policy π in P0 and Pζ where the prices sets are all the same! Therefore, we

have |V ∗
r,ζ0 − V ∗

r,ζ1 | − (C1 + LC2)T − 1
2 +η ≤ 0. Since V ∗

r,ζ0 = 43
58 and Vr,ζ1 = 43+10ζ1

58−20ζ1
, we have

|V ∗
r,ζ0−V ∗

r,ζ1| =
360ζ

29(29−10ζ) ≥
C
3 ·T

− 1
2 +η. Since C1 = C

W
≤ 10−11 and C2 = C

W ·L ≤
1
L
×10−11,

we know that |V ∗
r,ζ0 − V ∗

r,ζ1| > (C1 + LC2)T − 1
2 +η, which contradicts to the inequality we

derived. Therefore, the lemma is proved by contradiction.

In the following, we set ζ = ζ1 = CT − 1
2 +η where C = 10−10 as is defined in the proof of

Lemma 5.8.13. Now let us go back to the main stream of proving Theorem 5.5.4. We also
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make it by contradiction. For any given Cx, without loss of generality, we may assume

that Cu ≤ Cx to be specified later. Define x = Cx

log T
, and therefore CxT

1
2 = T

1
2 −x. We

will make use of Example 5.1.1 and Example 5.8.11, and let η > x to be specified later.

Therefore, we have Cu · T
1
2 ≤ Cx · T

1
2 = T

1
2 −x, which means that the contradiction is

a sufficient condition to the following result: Suppose there exists an x > 0 and an

algorithm such that it can always achieve O(T 1
2 +x) regret with zero procedural unfairness

and O(T 1
2 −x) substantive unfairness. According to Corollary 5.8.14, we know that any

policy π ∈ Π are in exact one of those three spaces. In our problem setting, denote the

policy we take at time t = 1, 2, . . . , T as πt. Now we show that: among all policies {πt}T
t=1

we have taken, there are at most O(T 1−η+x) policies in all T policies having been played

belonging to the Outer Space defined in Corollary 5.8.14. In fact, for any policy π in the

Outer Space, we have:

(i) When π ∈ ĀB̄, the policy π will definitely suffer a regret C0 · T − 1
2 +η, no matter

which the problem setting is (i.e., P0 or Pζ). In order to guarantee O(T 1
2 +x) regret,

there are at most N1 = O(T 1−η+x) = o(T ) rounds to play a policy in ĀB̄.

(ii) When π ∈ C̄D̄, the policy π will definitely suffer a substantive unfairness C0 ·T − 1
2 +η,

no matter which the problem setting is (i.e., P0 or Pζ). In order to guarantee

O(T 1
2 −x) regret, there are at most N2 = O(T 1−η−x) = o(T ) rounds to play a policy

in C̄D̄.

(iii) When π ∈ ĀD̄ ∨ B̄C̄, in either P0 or Pζ it suffers something (that could be

either C0 · T − 1
2 +η regret or C0 · T − 1

2 +η unfairness). As we have to guarantee

O(T 1
2 +x) regret and O(T 1

2 −x) substantive unfairness, there are still at most N3 =

O(max{T 1−η+x, T 1−η−x}) = O(T 1−η+x) = o(T ).

Therefore, the number of rounds when we select and play a policy from Space AC or
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Space BD is at least T − o(T ) ≥ T
2 . Notice that if a policy in AC, then it performs well

in P0 but not necessarily in Pζ . Similarly, if a policy in BD, then it performs well in Pζ

but not necessarily in P0. Therefore, two questions emerges:

• How do policies in AC perform in Pζ? and How do policies in BD perform in P0?

Specifically, we only care about the substantive fairness.

• How can we distinguish between Pζ and P0?

Denote F1(ζ) = diag{0.6, 0.5 − ζ, 0.5 − ζ} and F2(ζ) = diag{0.8, 0.8, 0.5 − ζ}. Also,

denote S0(π) := S(π, F1(0), F2(0))|ζ=0 and Sζ(π) := S(π, F1(ζ), F2(ζ)). In the following,

we propose two lemmas that help us prove. The first lemma, Lemma 5.8.15, shows that

failing to distinguish would lead to large substantive unfairness, which answers the first

question above.

Lemma 5.8.15. There exists a constant Cac such that: for any policy π ∈ AC, we have

Sζ(π) > Cac · T − 1
2 +η. There also exists a constant Cbd such that: for any policy π ∈ BD,

we have S0(π) > Cbd · T − 1
2 +η.

Proof of Lemma 5.8.15 . We firstly prove the first half of this lemma, and then demon-

strate the second half (which can be proved in exact the same way.)

First of all, we have the close-form solution to both P0 and Pζ in Eq. (5.50). Therefore,

we have

Sζ(π0,∗) = 12ζ(1− 2ζ)
(11− 6ζ)(11− 10ζ) . (5.76)

Now, consider any policy π ∈ AC. Similar to the Proof of Lemma 5.8.13, we define its

accepted prices in G1 and G2 are Vs,0 and Vs,0 + β where β ∈ [0, C2T
−frac12+η]. We also

denote the expected proposed price in both group as Vr,0 = Vs,0 + α0. Also, define a
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corresponding policy π̌:

π̌ :=


G1 : E[accepted price] = Vs,0,E[proposed price] = Vs,0 + α0

G2 : E[accepted price] = Vs,0,E[proposed price] = Vs,0 + α0.

(5.77)

Notice that π1 = (A1(Vs,0, 0))−1[1, Vr,0, 0]⊤ and π2 = (A2(Vs,0, 0))−1[1, Vr,0, β · 1⊤F2π
2]⊤.

In comparison, we have π̌1 = (A1(Vs,0, 0))−1[1, Vr,0, 0]⊤ and π̌2 = (A2(Vs,0, 0))−1[1, Vr,0, 0]⊤.

Therefore, we have:

π1 = π̌1

∥π2 − π̌2∥1 = ∥(A2(Vs,0, 0))−1([1, Vr,0, β · 1⊤F2π
2]⊤ − [1, Vr,0, 0]⊤)∥1

≤ ∥(A2(Vs,0, 0))−1[0, 0, β]∥1

= ∥(A2(Vs,0, 0))−1
[:,3]∥1 · β

≤ 100β

9(7Vs − 5) .

(5.78)

Also, since Fmin ≤ 1⊤F2π
2 ≤ 1 and ∥v⊤F2∥1 ≤ d always hold, we know that ∥∂Sζ(π)

∂π2 ∥ ≤
d

Fmin
· ∥π2∥1 = d

Fmin
. Since V ∗

s,0 ≈ 8
11 and all Vs,0 we consider are around it (According to

Eq. (5.73)), we may assume that (7Vs − 5) > 1
2 · (

8
11 −

5
7) > 1

200 Therefore, we have:

|Sζ(π̌)− Sζ(π)| ≤ d

Fmin
∥π̌2 − π2∥2

≤ 100dβ

9(7 · Vs − 5)Fmin

≤ 100dC2

9(7 · Vs − 5)Fmin
· T − 1

2 +η

≤ 3000dC2

Fmin
· T − 1

2 +η.

(5.79)

Also, according to the proof of Lemma 5.8.13, we know that |Vs,0−V ∗
s,0| ≤ (C1+LC2)T − 1

2 +η

and |α∗
0 − α0| ≤ 0.6(C1 + LC2)T − 1

2 +η (as ζ = 0). Plugging in Eq. (5.55) and Eq. (5.56),
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we have:

∥π1
0,∗ − π̌1∥1 ≤50 · ((120 + 8 + 10 + 10× (8 + 2))|α∗

0 − α0|+ (13 + 106)|Vs,0 − V ∗
s,0|)

≤1309(C1 + LC2)T − 1
2 +η

∥π2
0,∗ − π̌2∥1 ≤

1
3 · 0.2 · 3((144 + 120 + 24)|α∗

0 − α0|+ (120 + 51 + 120 + 39)|Vs,0 − V ∗
s,0|)

≤350(C1 + LC2)T − 1
2 +η

(5.80)

Therefore, we have:

|Sζ(π0,∗)− Sζ(π̌) ≤ d

Fmin
∥π0,∗ − π̌∥2

= d

Fmin
(∥π1

0,∗ − π̌1∥2 + ∥π2
0,∗ − π̌2∥2)

≤ d

Fmin
(∥π1

0,∗ − π̌1∥1 + ∥π2
0,∗ − π̌2∥1)

≤ d

Fmin
· (1309(C1 + LC2)T − 1

2 +η + 350(C1 + LC2)T − 1
2 +η)

≤ d

Fmin
2000(C1 + LC2)T − 1

2 +η.

(5.81)

Recall that C1 = C
W

and C2 = C
W ...L

. Now, we let W = 106 d
Fmin

. Therefore, we have:

Sζ(π) =Sζ(π)− Sζ(π̌) + Sζ(π̌)− Sζ(π0,∗) + Sζ(π0,∗)

≥Sζ(π0,∗)− |Sζ(π)− Sζ(π̌)| − |Sζ(π̌)− Sζ(π0,∗)|

≥ 12ζ(1− 2ζ)
(11− 2ζ)(11− 6ζ) −

3000dC2

Fmin
· T − 1

2 +η − d

Fmin
2000(C1 + LC2)T − 1

2 +η

≥ 1
20ζ − 5000d(C1 + LC2)

Fmin
· T − 1

2 +η

= 1
20C · T − 1

2 +η − 5000dC

Fmin ·W
· T − 1

2 +η

≥ 1
20C · T − 1

2 +η − 1
200C · T − 1

2 +η

≥ 1
30C · T − 1

2 +η.

(5.82)

Let Cac = 1
30 · C and this lemma holds.

204



Pricing with Fairness Concerns Chapter 5

Define PP0 and PPζ
as the probabilistic distribution of customer’s feedback at each round.

In order to increase the information for distinguishing between two problem settings,

we assume that a customer would always tell us whether or not she accept the price

$1, at each time t = 1, 2, . . . , T . Therefore, both PP0 and PPζ
are binomial distributions

B(T, 0.5) and B(T, 0.5 − ζ). Here we present another lemma, the Lemma 5.8.16, that

indicates the hardness of distinguishing the two settings.

Lemma 5.8.16. Consider the N ≥ T
2 rounds when we play a policy in AC ∨BD. For

any algorithm ϕ, denote ϕt = 1 if πt ∈ AC and ϕt = 0 if πt ∈ BD. Then we have:

max{EP0 [
N∑

t=1
ϕt],EPζ

[
N∑

t=1
(1− ϕt)]} ≥

1
8T · exp(−T 2η). (5.83)

Proof of Lemma 5.8.16 . In fact, we have:

max{EP0 [
N∑

t=1
ϕt],EPζ

[
N∑

t=1
(1− ϕt)]} ≥

EP0 [∑N
t=1 ϕt] + EPζ

[∑N
t=1(1− ϕt)]

2

= N ·
PP0 [ϕt == 1] + PPζ

[ϕt == 0]
2

≥ T

4 · (PP0 [ϕt == 1] + PPζ
[ϕt == 0])

≥ T

8 · exp(−N ·KL(PP0||PPζ
))

≥ T

8 · exp(−N ·KL(Ber(0.5)||Ber(0.5− ζ)))

≥ T

8 · exp(−N · 12ζ2)

= T

8 · exp(−N · 12(C · T − 1
2 +η)2)

≥ T

8 · exp(−12C2T 2η)

≥ T

8 · exp(−T 2η).

(5.84)

Here the first line is for max ≥ average, the second is by definition of ϕt, the third line

is for N ≥ T
2 , the fourth line is from Fano’s Inequality that P0[ϕ == 1] + P1[ϕ == 0] ≥
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1
2 · exp{−N ·KL(P0||P1)} for any distributions P0 and P1, the fifth line is by definition

of P0 and Pζ that they are only different in the customers’ feedback satisfying Ber(0.5)

and Pr = 0.5− ζ for some actions, respectively, the sixth line is from Lemma 5.8.10, the

seventh line is for ζ = C · T − 1
2 +η, the eighth line is for N ≤ T , and the last line is for

12C2 ≤ 1.

With the two lemma above, we know that

• For any algorithm ϕ, we either run at least T
8 ·exp(−T 2η) rounds with some πt ∈ AC

when the problem setting is Pζ , or run at least T
8 · exp(−T 2η) rounds with some

πt ∈ BD when the problem setting is P0, according to Lemma 5.8.16.

• For each round we mismatching the problem setting, we will suffer a min{Cac, Cbd} ·

T − 1
2 +η unfairness, according to Lemma 5.8.15.

Given these two facts, denote Cmin := 1
8 min{Cac, Cbd} and we at least have CminT ·

exp(−T 2η) · T − 1
2 +η unfairness. For x = Cx

log T
with any constant Cx, we let η = 3x

2 = 3Cx

2 log T

and therefore η > x. As a result, we have

CminT · exp(−T 2η) · T − 1
2 +η = Cmin exp(−T 2η + η log T )T 1

2

= Cmin exp(−T 2· Cx
log T + 3Cx

2 log T
· log T )T 1

2

= Cmin exp(− exp(2 · Cx

log T
· log T ) + 3Cx

2 )T 1
2

= Cmin exp(− exp(2Cx) + 3Cx

2 )T 1
2

(5.85)

Let Cu = Cmin exp(− exp(2Cx)+ 3Cx
2 )

2 , and then the result of the equation above contradicts

with the suppose that the unfairness does not exceed Cu · T
1
2 . Therefore, we have proved

the theorem.
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Chapter 6

Pricing with Inventory-Censoring

Effect

Consider an online pricing problem where the potential demand is linearly dependent

on the price proposed by the seller at each time period t = 1, 2, . . . , T . However, a

fixed perishable inventory is imposed at every time t, censoring the potential demand

if it exceeds the inventory level. To address this challenge, we introduce a novel and

efficient pricing algorithm that achieves Õ(
√

T ) regret for a linear noisy demand model.

Furthermore, we show the optimality of our algorithm by deriving a matching Ω(
√

T )

lower bound. Our findings advance the state-of-the-art in online decision-making problems

with censored feedback, offering a theoretically optimal solution that can be broadly

applied.

207



Pricing with Inventory-Censoring Effect Chapter 6

6.1 Introduction

The problem of dynamic pricing, where the seller proposes and adjusts their prices over

time, has been studied since the seminal work of Cournot [1897]. The crux to pricing is to

balance the profit of sales per unit with the quantity of sales. Therefore, it is imperative

for the seller to learn customers’ demand as a function of price (commonly known as the

demand curve) on the fly. However, the demand can often be obfuscated by the observed

quantity of sales, especially when censored by inventory stockouts. Such instances severely

impede the seller from learning the underlying demand distributions, thereby hindering

our pursuit of the optimal price.

Existing literature has devoted considerable effort to the intersection of pricing and

inventory decisions. Such works often consider scenarios with indirectly observable lost

demands [Keskin et al., 2022], recoverable leftover demands Chen et al. [2019a], or

controllable inventory level [Chen et al., 2023a]. However,these assumptions do not always

align with the realities faced in various common business environments. To illustrate, we

present two pertinent examples:

Example 6.1.1 (Theater Tickets). Suppose we are operators of a theater that has recently

undertaken a series of diverse performances, and thus we are commencing ticket sales and

determining ticket prices. If the ticket price is set too high, it may lead to insufficient

attendance, adversely affecting revenue. Conversely, if the ticket price is too low, we stand

to lose potential audience members who wish to attend the performance but are unable

to purchase tickets due to high demand. On the one hand, we are unaware of the exact

number of audience who attempt to purchase tickets but are unsuccessful. On the other

hand, since these are varied performances, there is no guarantee that individuals who

miss out on purchasing tickets for one show will opt to buy tickets for a subsequent one.

208



Pricing with Inventory-Censoring Effect Chapter 6

Additionally, the number of seats in the theater is fixed, precluding our ability to freely

adjust the supply of seating.

Example 6.1.2 (Fruit Retails). Sweetsop (Annona squamosa, or so-called "sugar apple")

is a tropical fruit that is particularly perishable: Ripe sweetsops may only be stored for

2 to 4 days [Crane et al., 2005]. Suppose we are proprietors of a fruit shop. We have

entered into a long-term contract with a nearby farm to supply us with a fixed quantity

of sweetsops every three days during the harvest season. Consequently, we are compelled

to sell the entire stock from the previous delivery before the arrival of the next supply.

Otherwise, the remaining sweetsops will blacken and rot. However, if we exhaust our

inventory ahead of time, customers will turn to other fruit shops to make their purchases

rather than waiting for our next restock.

Products in the two instances above have the following properties,

1. Inventory level is determined by pre-established objective factors, and is fixed for

every individual time period.

2. Products are perishable and salable only within a single time period.

In this chapter, we study a dynamic pricing problem where the products possess these

properties. The problem model is defined as follows. At each time t = 1, 2, . . . , T , we

firstly propose a price pt, and then a price-dependent potential demand occurs as dt.

However, we might have no access to dt as it is censored by a fixed inventory level γ0.

Instead, we observe a censored demand Dt = min{γ0, dt} and receive the revenue rt as a

reward at t. Our goal is to learn and approach the optimal price, thereby maximizing the

cumulative revenue.
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Dynamic pricing with inventory constraint. For t = 1, 2, ..., T :

1. The seller (we) receives γ0 identical products.

2. The seller proposes a price pt ≥ 0.

3. The customers generate an invisible potential demand dt ≥ 0, dependent on pt.

4. The market reveals an inventory-censored demand Dt = min{γ0, dt}.

5. The seller gets a reward rt = pt ·Dt.

6. All unsold products perish before t + 1.

6.1.1 Summary of Contributions

We consider the problem setting displayed above and assume the potential demand

dt = a− bpt + Nt is linear and noisy. Here a, b ∈ R+ are fixed unknown parameters and

Nt is an unknown i.i.d.1 noise with zero mean. Under this premise, the key to deriving the

optimal price is to accurately learn the expected reward function r(p), which is equivalent

to learning the linear parameters [a, b] and the noise distribution. We are confronted by

two principal challenges:

1. The absence of unbiased observations of the potential demand or its derivatives with

respect to p, which prevents us from estimating [a, b] directly.

2. The dependence of the optimal price on the noise distribution, which is assumed to

be unknown and partially censored.

In this paper, we introduce an algorithm that employs innovative techniques to resolve

the aforementioned challenges. On the one hand, we devise a pure-exploration phase that

bypasses the censoring effect and obtains an unbiased estimator of 1
b
. This is founded

1Independently and identically distributed
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on two insights: (1) While the inventory level γ0 is fixed, we can still set a arbitrary

observation thresholds at any γ ≤ γ0 for statistic purposes. (2) When Y is uniform

distributed on a closed interval [L, R] and an independent X lies in the same range,

we have Pr[Y ≥ X] = E[X]−L
R−L

according to the Law of Total Expectation, leading to

an unbiased estimator of E[X] without observing any realized X. On the other hand,

we design a searching method that relies on a biased estimator of the derivatives r′(p),

circumventing the need of learning the noise distribution and constructing an estimator

of r(p). Provided that we find a p̂ such that r̂′(p̂) approximates 0, we may assert the

near-optimality of p̂ with high probability. These methods are not only pivotal to our study

but also hold the potential for broad application in a variety of online decision-making

scenarios with censored feedback.

Our algorithm attains a regret guarantee of Õ(
√

T log T ), which is near-optimal as it

matches the Ω(
√

T ) information-theoretic lower bound up to O(log T ) factors. It is worth

noting that this lower bound is applicable even in scenarios without inventory censoring.

Hence, our findings suggest that the presence of inventory censoring does not substantially

increase the hardness of pricing measured by regret.

6.1.2 Paper Structure

The rest of this paper is organized as follows. We discuss and compare with related works

in Section 6.2, and then describe the problem setting in Section 6.3. Our primary technical

contributions will be displayed in Section 6.4, consisting of algorithmic design, regret anal-

ysis and a lower bound proof. We further discuss the limitations and potential extensions

of our methodologies in Section 6.5, followed by a brief conclusion in Section 6.6.
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6.2 Related Works

There exists a large volume of literature related to the problem we study in this chapter.

Here we discuss them in the following categories.

Data-driven dynamic pricing Dynamic pricing for identical products is a well-

established research area, starting with Kleinberg and Leighton [2003] and continuing

through seminal works by Besbes and Zeevi [2009], Broder and Rusmevichientong [2012],

Wang et al. [2014, 2021b]. The standard approach involves learning a demand curve

from price-sensitive demand arriving in real-time, aiming to approximate the optimal

price. Kleinberg and Leighton [2003] provided algorithms with regret bounds of O(T 2
3 )

and O(
√

T ) for arbitrary and infinitely smooth demand curves, respectively. Wang

et al. [2021b] refined this further, offering an O(T
k+1

2k+1 ) regret for k-times continuously

differentiable demand curves. This line of inquiry is also intricately linked to the multi-

armed bandit problems [Lai and Robbins, 1985, Auer et al., 2002b] and continuum-armed

bandits [Kleinberg, 2004], where each action taken reveals a reward without insight into

the foregone rewards of other actions.

Contextual Pricing A surge of research has delved into feature-based dynamic pricing

[Cohen et al., 2020] or pricing with contexts/covariates [Amin et al., 2014, Miao et al.,

2019, Liu et al., 2021]. These works considered situations where each pricing period

was preceded by a context, influencing both the demand curve and noise distribution.

Specifically, Cohen et al. [2020], Javanmard and Nazerzadeh [2019], Xu and Wang [2021]

explored a linear valuation framework with known distribution noise, leading to binary

customer demand outcomes based on price comparisons to their valuations. Expanding

on this, Golrezaei et al. [2019], Fan et al. [2021], Luo et al. [2021] examined similar
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models but with unknown noise distributions. In another vein, Ban and Keskin [2021]

and Wang et al. [2021a] investigated personalized pricing where demand was modeled as

a generalized linear function sensitive to contextual price elasticity. Many of these works

on valuation-based contextual pricing also assume a censored demand: The seller only

observes a binary feedback determined by a comparison of price with valuation, instead

of observing the valuation directly. However, it was important to differentiate between

the linear (potential) demand model we assumed and their linear valuation models, and

there exists no inclusive relationship.

Pricing with inventory concerns Dynamic pricing problems began to incorporate

inventory constraints with the work of Besbes and Zeevi [2009], which assumed a fixed

initial stock available at the start of the selling period. They introduced near-optimal

algorithms for both parametric and non-parametric demand distributions, operating under

the assumption that the inventory was non-replenishable and non-perishable. Wang et al.

[2014] adopted a comparable framework but allowed for customer arrivals to follow a

Poisson process. In these earlier works, the actual demand is fully disclosed until the

inventory is depleted. Subsequent research allowed inventory replenishment, with the

seller’s decisions encompassing both pricing and restocking at each time interval. Chen

et al. [2019a] proposed a demand model subject to additive/multiplicative noise and

developed a policy that achieved O(
√

T ) regret. More recent studies, such as those by

Chen et al. [2020], Keskin et al. [2022] explored the dynamic pricing of perishable goods

where unsold inventory would expire. However, the uncensored demand is observable as

assumed in both works. Specifically, Chen et al. [2020] allowed recouping backlogged

demand, albeit at a cost, and introduced an algorithm with optimal regret. Keskin et al.

[2022] focused on cases where both fulfilled demand and lost sales were observable.
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Chen et al. [2021a] and their subsequent work, Chen et al. [2023a], are the related works

most closely aligned with our problem settings, where the demand is censored by the

inventory level and any leftover inventory or lost sales disappear at the end of each period.

With the assumption of concave reward functions and the restriction of at most m price

changes, Chen et al. [2021a] proposed MLE-based algorithms that attain a regret of

Õ(T
1

m+1 ) in the well-separated case and Õ(T 1
2 +ϵ) for some ϵ = o(1) as T → ∞ in the

general case. Under similar assumptions (except infinite-order smoothness), Chen et al.

[2023a] designed a trinary-search algorithm based on a reward-difference estimator. With

this algorithm, they not only enhanced the prior result for concave reward functions to

Õ(
√

T ), but also obtained a general Õ(T 2/3) regret for non-concave reward functions. Our

problem model mirrors theirs in the sense that we lack access to both the uncensored

demand and its gradient. However, in their models, sellers have the flexibility to determine

inventory levels, unlike in our case where the inventory is predetermined by nature. An

adversarial selection of the inventory level could impede us from learning the optimal

price in the worst-case scenarios.It is important to note that neither our results nor theirs

are mutually inclusive.

6.3 Problem Setup

We study the following online non-contextual dynamic pricing problem. At each time

step t = 1, 2, . . . , T , the seller (we) proposes a price pt and receives an inventory-censored

demand Dt = min{dt, γ0}. Here dt = a− b · pt + Nt is a potential linear demand, where

a, b are unknown parameters, Nt is a demand noise, and γ0 is a fixed and known inventory

level at every time period t.
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6.3.1 Definitions

Here we define some key quantities that are involved in the algorithm design and analysis.

Firstly, there are different types of demand functions.

Definition 6.3.1 (Demand functions). Denote dt(p) := a − bp + Nt as the potential

demand function, and d(p) := a− bp as the expected potential demand function. Denote

Dt(p) := min{γ0, dt(p)} as the censored demand function.

Moreover, we define some distributional functions of the demand noise Nt.

Definition 6.3.2 (Distributional functions). For Nt as the demand noise, denote F (x) as

its cumulative distribution function (CDF) and f(x) as its probabilistic density function

(PDF), x ∈ R. Also, denote

G(x) :=
∫ x

−∞
F (ω)dω, x ∈ R (6.1)

as the integrated CDF.

We will make more assumptions on the noise distribution later. Finally, we may define

the revenue function and the regret.

Definition 6.3.3 (Revenue function). Denote r(p) as the expected revenue function of

price p, satisfying

r(p) := p · E[Dt|pt = p], p ≥ 0. (6.2)

Definition 6.3.4 (Regret). Denote

Regret :=
T∑

t=1
r(p∗)− r(pt) (6.3)

as the cumulative regret (or regret) of the price sequence {pt}T
t=1.
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6.3.2 Assumptions

We make reasonable and mild assumptions as follows.

Assumption 6.3.5 (Boundedness). Assume 0 < a ≤ amax, 0 < bmin ≤ b ≤ bmax,

Nt ∈ [−c, c] for some known finite constants amax, bmin, bmax, c > 0. Also, we restrict

the proposed price pt at any t = 1, 2, . . . , T satisfies 0 ≤ pt ≤ pmax with a known finite

constant pmax > 0.

Assumption 6.3.6 (Noise Distribution). Each Nt is drawn from an unknown independent

and identical distribution (i.i.d.) with CDF F (x) and PDF f(x), x ∈ R, satisfying

E[Nt] = 0 and f(x) ∈ [0, fmax] for ∀x ∈ [−c, c] with some known finite constant fmax > 0.

Assumption 6.3.7 (Inequalities of Parameters). All parameters and constants satisfy

the following inequalities:

1. a− c > γ0. Demands at pt = 0 must be censored.

2. γ0 > 2c. Inventory level exceeds noise support.

3. a− bpmax − c > 0. Demands must be positive.

4. amax − bminpmax + c < γ0. Demands at pt = pmax must be uncensored.

6.4 Main Results

In this section, we introduce our pricing algorithm and analyze its regret guarantee.

Furthermore, we prove a matching lower bound on a simplified problem setting, demon-

strating the information-theoretic hardness of this problem and the optimality of our

algorithm.
216



Pricing with Inventory-Censoring Effect Chapter 6

6.4.1 Algorithm

We propose an Algorithm 8 that addresses the inventory-censored pricing problem. It is

inspired by a binary search strategy with respect to the derivative of revenue. We show

that the expected revenue function r(p) is unimodal and smooth on price p. Consequently,

there exists a unique optimal price p∗ satisfying r′(p∗) = 0. We deduce that for any price

p1 with r′(p1) > 0, p1 is less than p∗, while any p2 with r′(p2) < 0 exceeds p∗.

However, constructing an unbiased estimator of the derivative r′(p) is notably challenging

due to the inventory-censored feedback. Our algorithm circumvents this by utilizing

a slightly biased estimator: We initially estimate the parameters a and b through a

pure-exploration phase with adequate time horizon, and then incorporate these plug-in

estimators as basis of the derivative estimations in the following epochs.

Algorithm Design

Our algorithm has three phases:

1. Exploring: In Epoch 0, the seller proposes uniformly random prices in the range

of [0, pmax] and obtains â and b̂ as estimators of a and b, respectively. By the end of

Epoch 0, we assign [u1, v1] = [0, pmax] as the initial range of searching.

2. Searching: In every Epoch k = 1, 2, . . ., we repeatedly propose the price pk = uk=vk

2

for O(
√

T ) times. With the demand feedback, we calculate r̂′
k as an estimator of

r′(pk). If r̂′
k is significantly positive, then we narrow our search to [uk+1, vk+1] =

[uk, pk]; If r̂′
k is significantly negative, then we adapt to [uk+1, vk+1] = [pk, vk]. Repeat

those routines until |r̂′
k| becomes negligible (or until t = T if arrived earlier).
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Algorithm 8 Pricing Algorithm under a Fixed Inventory Constraint
1: Input: Inventory constraint γ0, time horizon T , constants pmax, amax, bmin, bmax, c, fmax,

epoch length τ , parameters CK .
2: Epoch 0 Choose γ1, γ2, γ3 such that amax − bminpmax + c < γ1 < γ2 < γ3 < γ0.
3: for t = 1, 2, . . . , τ do
4: Sample price p0,t from uniform distribution U [0, pmax] and propose it.
5: Receive demand D0,t and signals of ei,t = 1[D0,t ≥ γi], i = 1, 2, 3.
6: end for
7: Let

b̂ =γ2 − γ1

pmax
· 1

1
τ

∑τ
t=1 e1,t − e2,t

â =pmax · b̂ · (
1
τ

τ∑
t=1

e3,t) + γ3

(6.4)

8: Assign u1 = 0, v1 = pmax.
9: for Epoch k = 1, 2, . . . do

10: Let pk = u1+v1
2

11: for t = 1, 2, . . . , τ do
12: Propose price pk,t = pk.
13: Receive demand Dk,t and signal 1k,t = 1[Dk,t < γ0].
14: end for
15: Denote

r̂′
k := 1

τ

τ∑
t=1

Dk,t − pk · b̂ ·
1
τ

τ∑
t=1

1k,t. (6.5)

16: if r̂′
k > 2CK · 1√

τ
then

17: Let [uk+1, vk+1]← [uk, pk].
18: else if r̂′

k < −2CK · 1√
τ

then
19: Let [uk+1, vk+1]← [pk, vk+1].
20: else
21: Let p̂∗ := pk and K := k.
22: Break.
23: end if
24: end for
25: Keep proposing p̂∗ at each time step t until t = T .
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3. Exploiting: Should time permit (i.e., t < T ), we continue to offer the most recent

price pk until the period concludes at t = T .

Algorithm 8 exhibits several advantageous properties. It consumes linear time complexity

and requires only constant extra space. Additionally, it is suitable for processing streaming

data as the constructions of â, b̂, r̂′
k are updated incrementally with each new observation

(including ei,t, Dk, t,1k,t) without the need of revisiting any historical data. A potential

risk of computation might arise on the calculation of b̂, where ∑τ
t=1 e1,t − e2,t can be

0 with a small but nonzero probability. Although this event does not undermine the

high-probability regret guarantee, it might still be harmful to the computational system

for numerical experiments. To mitigate this incident in practice, we may either extend

Epoch 0 until one non-zero e1,t − e2,t = 1 is observed, or restart Epoch 0 at t = τ .

Highlighted Techniques: Uniform Exploration

We incorporate a uniform-exploration phase for estimating a and b in our algorithm,

bypassing the obstacle brought by demand censoring. This approach is supported by the

following insight: When Y is a uniformly distributed random variable within a closed

interval [L, R], and X is another random variable, independent to Y and also distributed

within [L, R], we have:

E[1[Y ≥ X]] = Pr[Y ≥ X] = E[Pr[Y ≥ X|X]] = E[X − L

R− L
] = E[X]− L

R− L
. (6.6)

Here the second step uses the Law of Total Expectation. Eq. (6.6) indicates that we can

derive an unbiased estimator of E[X] through 1[Y ≥ X] even in the absense of any direct

observation of X. Looking back to our algorithm, when pt ∼ U [0, pmax], we have

E[ei,t] = E[1[a− bpt + Nt ≥ γi]] = E[E[Nt ≥ γi − a + bpt|Nt]] = E[Nt − γi + a

bpmax
] = a− γi

bpmax
.

(6.7)
219



Pricing with Inventory-Censoring Effect Chapter 6

The last equality comes from E[Nt] = 0. By deploying different γi at i = 1, 2, 3, we

can estimate a and b through the observations of ei,t, effectively circumventing the

censoring effect. A similar technique has been utilized by Fan et al. [2021] to construct an

unbiased estimator of the valuations instead of the demands as we concern. However, their

application of uniform exploration might be sub-optimal as they adopt an exploration-

then-exploitation design in each epoch. On the contrary, our algorithm uses this uniform

exploration merely as a trigger of further learning. Our tight regret bound indicates that

uniform exploration can still contribute to an optimal algorithm for a broad range of

online learning instances.

6.4.2 Regret Analysis

In this section, we analyze the cumulative regret of our algorithm and show a Õ(
√

T )

regret guarantee with high probability. We leave all of the proof details to Section 6.7,

and here we only display proof sketches. We firstly present our main theorem.

Theorem 6.4.1 (Regret). In Algorithm 8, let γ1 = amax−bminpmax+c+γ0
2 , γ2 = γ1+γ0

2 , γ3 =
γ2+γ0

2 , τ =
√

T , CK = (γ0 + 2bmaxpmax + 2b2
maxpmax
γ2−γ1

) ·
√

1
2 · log 2

ηδ
where η = 1

4
√

T
, it holds

with Pr > 1− δ that

Regret :=
T∑

t=1
r(p∗)− r(pt) = O(

√
T log T

δ
) (6.8)

for sufficiently large T .

Before getting into the proof of Theorem 6.4.1, we propose a lemma regarding the first-

and second-order derivatives of the revenue function r(p).

Lemma 6.4.2 (revenue function). For the expected revenue function r(p) in Eq. (6.2),

220



Pricing with Inventory-Censoring Effect Chapter 6

we have:
r(p) = p(γ0 − c + G(c)−G(γ0 − a + bp))

r′(p) = γ0 − c + G(c)−G(γ0 − a + bp)− bp · F (γ0 − a + bp)

r′′(p) = −2b · F (γ0 − a + bp)− b2p · f(γ0 − a + bp).

(6.9)

Please refer to Section 6.7.1 for a detailed proof of Lemma 6.4.2. With this lemma, we

further notice the following properties of r(p).

Lemma 6.4.3. r(p) has the following properties:

1. There exists p∗ ∈ [0, a
b
] such that r′(p) = 0, and r(p) monotonically increase in [0, p∗]

and decrease in [p∗, a
b
]. Notice that a

b
> pmax according to Assumption 6.3.7.

2. For any p ∈ [0, pmax], denote Cs := 2bmax + b2
maxpmaxfmax, and it holds that

−Cs ≤ r′′(p) ≤ 0. (6.10)

3. There exists finite constants ∆ > 0, C∆ > 0 such that r′′(p) ≤ −C∆,∀p ∈ [p∗ −

∆, p∗ + ∆].

Please refer to Section 6.7.2 for a detailed proof of Lemma 6.4.3, and here we provide a

proof sketch.

Proof sketch of Lemma 6.4.3. 1. From Lemma 6.4.2, we have r′′(p) ≤ 0, which indi-

cates r′(p) is non-increasing on [0, a
b
]. Also, notice that r′(0) > 0 and r′(a

b
) < 0.

Therefore, ∃p∗ ∈ (0, a
b
) such that r′(p∗) = 0. Then we show p∗ is unique with a proof

by contradiction. Given this, we know that r′(p) > 0 for p ∈ (0, p∗) and r′(p) < 0

for p ∈ (p∗, a
b
).
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2. Given 0 ≤ F (x) ≤ 1 and 0 ≤ f(x) ≤ fmax,∀x ∈ R, we have r′′(p) ≥ −2bmax −

b2
maxpmaxfmax = −Cs.

3. Let C∆ = bF (γ0 − a + bp∗) and ∆ = F (γ0−a+bp∗)
2fmaxbmax

> 0, and the inequality holds.

Now we may continue the proof of Theorem 6.4.1. Similarly, we provide a proof sketch

here and defer the details to Section 6.7.4.

Proof sketch of Theorem 6.4.1. We firstly bound the estimation error of â and b̂ respec-

tively. Notice that for any γ ∈ [amax − bminpmax + c, γ0], we have E[1[D0,t ≥ γ]] = a−γ
bpmax

.

Then we have E[e1,t − e2,t] = γ2−γ1
bpmax

and E[e3,t] = a−γ3
bpmax

. According to Hoeffing’s Inequality,

it holds with Pr > 1− 2ηδ that

|1
τ

τ∑
t=1

e1,t − e2,t −
γ2 − γ1

bpmax
| ≤

√
1
2 · log 2

ηδ
· 1√

τ

|1
τ

τ∑
t=1

e3,t −
a− γ3

bpmax
| ≤

√
1
2 · log 2

ηδ
· 1√

τ
.

(6.11)

With Eq. (6.11) we may bound the estimation errors of b̂ and â by

|b̂− b| ≤Cb ·
1√
τ

,

|â− a| ≤Ca ·
1√
τ

,

(6.12)

where Ca = pmax(bmax + (amax+γ3)·b2
max

bmin(γ2−γ1) ·
√

2 log 1
ηδ

and Cb = b2
maxpmax
γ2−γ1

·
√

2 log 2
ηδ

. Now, we

calculate the cumulative regret in Epoch k = 1, 2, . . .. According to Lemma 6.4.3, we

know that

r(p∗)− r(p) ≤ Cs · (p∗ − p)2. (6.13)

Then we propose a lemma implying the estimation error of the derivatives.
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Lemma 6.4.4 (Estimation error of r̂′
k). Denote CK := (γ0 + 2bmaxpmax + 2b2

maxpmax
γ2−γ1

) ·√
1
2 · log 2

ηδ
. With Pr > 1− 2Kηδ, it holds that

|r̂′
k − r′(pk)| ≤ CK ·

1√
τ

, k = 1, 2, . . . , K ≤ T

τ
. (6.14)

We defer the proof of Lemma 6.4.4 to Section 6.7.3, and here we provide a proof sketch.

Proof sketch of Lemma 6.4.4. From Eq. (6.9), we know that r′(pt) has two components:

1. γ0 − c + G(c) − G(γ0 − a + bpt), which equals E[Dt]. According to Hoeffding’s

Inequality, we have |γ0 − c + G(c)−G(γ0 − a + bpk)− 1
τ

∑τ
t=1 Dk,t| = Õ( 1√

τ
).

2. bpt · F (γ0 − a + bpt), which equals bpt · E[1kt ]. According to Hoeffding’s Inequality,

we have |F (γ0 − a + bpk)− 1
τ

∑τ
t=1 1k,t| = Õ( 1√

τ
).

Since we already have |b̂− b| = O( 1√
τ
), it holds that

|r̂′
k − r′(pk)| = |(1

τ

τ∑
t=1

Dk,t − pk · b̂ ·
1
τ

τ∑
t=1

1k,t)

− (γ0 − c + G(c)−G(γ0 − a + bpk)− bpk · F (γ0 − a + bpk))|

= Õ( 1√
τ

).

(6.15)

Here Õ(·) omits the dependence on log(T ) and log δ.

From Lemma 6.4.4, we immediately get to the following corollary.

Corollary 6.4.5 (derivative indicator). With probability Pr > 1− 2Kηδ, r̂′
k > 2CK · 1√

τ

is sufficient for pk ≤ p∗, and r̂′
k < −2CK · 1√

τ
is sufficient for pk ≥ p∗.

Corollary 6.4.5 indicates that our binary searching is correct with high probability.

Therefore, with Pr > 1 − 2K · ηδ it holds that p∗ ∈ [uk, vk],∀k = 1, 2, . . .. Since
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uk − vk = pmax
2k−1 according to the binary search principle, we have:

Regretsearch =
K∑

k=1

τ∑
t=1

r(p∗)− r(pk) ≤
K∑

k=1
τCs(p∗ − pk)2 ≤

K∑
k=1

τCs(
pmax

2k−1 )2 ≤ 4
3Csp

2
maxτ.

(6.16)

Now we upper bound the distance between pK and p∗ if r̂′
k ∈ [−2CK · 1√

τ
, +2CK · 1√

τ
].

According to Lemma 6.4.4, in this case we have

|r′(pk)| ≤ |r̂′
k − r′(pk)|+ |r̂′

k| ≤ CK
1√
τ

+ 2CK
1√
τ

= 3CK
1√
τ

. (6.17)

According to Lemma 6.4.3 Property 3, when p ∈ [p∗ − ∆, p∗ + ∆], we have |r′(p)| =

|r′(p) − r′(p∗)| ≥ C∆|p − p∗|. Also, since r′′(p) ≤ 0, indicating a monotonic decrease of

r′(p), we know that

r′(p) ≥ r′(p∗ −∆) ≥C∆|(p∗ −∆)− p∗| = C∆ ·∆,∀p ∈ [0, p∗ −∆]

r′(p) ≤ r′(p∗ + ∆) ≤− C∆|p∗ − (p∗ + ∆)| = −C∆ ·∆,∀p ∈ [p∗ + ∆, pmax].
(6.18)

From Eq. (6.18), we know that r′(p) ≥ C∆ ·∆ for |p− p∗| ≥ ∆. Therefore, if p ∈ [0, pmax]

such that |r′(p)| < C∆ ·∆, then p ∈ [p∗ −∆, p∗ + ∆]. According to Eq. (6.17), we have

|r′(pk)| ≤ C∆·∆
2 < C∆ · ∆ if r̂′

k ∈ [−2CK · 1√
τ
, +2CK · 1√

τ
]. Since we let p̂∗ = pk when

r̂′
k ∈ [−2CK · 1√

τ
, +2CK · 1√

τ
], we know that p̂∗ ∈ [p∗ −∆, p∗ + ∆] and therefore

|p̂∗ − p∗| ≤ 1
C∆

· |r′(p̂∗)| ≤
3CK · 1√

τ

C∆

= 3CK

C∆

√
τ

. (6.19)

By the time we determine p̂∗, we have already proposed (K + 1)τ prices. As a result,

there are still (T − (K + 1)τ) time steps left, where we keep proposing p̂∗. According to

Eq. (6.13) and Eq. (6.19), the cumulative regret of this period should be:

Regretexploiting =
T −(K+1)τ∑

t=1
r(p∗)− r(p̂∗) ≤

T∑
t=1

Cs(p∗ − p̂∗)2 ≤ TCs
9C2

K

C2
∆

1
τ

= 9CsC
2
K

C2
∆

· T
τ

.

(6.20)
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Finally, the regret of Epoch 0 cannot exceed γ0pmax · τ . Combining with Eq. (6.16) and

Eq. (6.20), we may bound the total regret with Pr > 1− (2K + 2)ηδ as

Regret =Regretexploring + Regretsearching + Regretexploiting

≤γ0pmaxτ + 4
3Csp

2
max · τ + 9CsC

2
K

C2
∆

· T
τ

.

(6.21)

Plug in τ =
√

T and η = 1
4
√

T
= τ

4T
≤ 1

2K+2 , and we get Regret = O(
√

T log T
δ
) with

Probability Pr ≥ 1− 2K+2
4K
· δ ≥ 1− δ.

6.4.3 Lower Bound

"The inventory-censoring effect complicates the estimation of demand curves and the

determination of the optimal price. Also, the demand-censored pricing problem includes a

subproblem where the inventory is sufficient and no censoring actually happens, suggesting

a comparison of their difficulties. However, it is not necessary that demand censoring

leads to a substantial higher regret rate. To demonstrate this, we prove an Ω(
√

T ) regret

lower bound for pricing with uncensored demand. Based on this, we claim the pricing

problem with censored demands is as hard as that without it, measured by the worst-case

minimax regret. Furthermore, the matching of upper-and-lower bounds also affirms the

optimality of our algorithm (up to O(log T ) factors).

Theorem 6.4.6 (Lower Bound). Assume the realized demand Dt = a− bpt + Nt, where

(a, b) are fixed unknown parameters, pt is the price and Nt ∼i.i.d. DN is a zero-mean noise

at each time period t = 1, 2, . . . , T . Denote Hτ := {(pt, Dt)}τ
t=1 as the historical prices and

demands before time periods τ , and denote A := (π1, π2, . . . , πT ) (where πt(Ht−1) = pt is

a pricing policy) as an algorithm. There exists a constant CLB such that for any algorithm
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A, there exists a problem setting ((a, b),DN) such that

inf
A

max
(a,b),DN

E[
T∑

t=1
max

p∗
r(p∗)− r(A(Ht−1))] ≥ CLB ·

√
T . (6.22)

The key to proving this lower bound lies in a construction of two similar problem instances,

whose demand curves intersect at the optimal price of one instance. In this way, a price far

away from the intersection could be very sub-optimal and cause a large regret, but a price

very close to the intersection might provide limited information for distinguishing the two

instances and lead to a large regret as well. We defer the proof details to Section 6.7.5. A

similar high-level idea of proving this lower bound can be found in the work of Broder

and Rusmevichientong [2012].

6.5 Discussions

Here we discuss the limitations, potential extensions and impacts of our work.

6.5.1 Generalization to Unbounded Noises

We assume the noise is bounded in a constant-width range. This assumption streamlines

the pure-exploration phase and facilitates the estimation of the parameters b and a.

While our methods and results can be extended to unbounded O( 1
log T

)-subGaussian

noises by simple truncation, challenges remain for handling generic unbounded noises.

Moreover, the problem can be more sophisticated with dual-censoring, both from above

by inventory–as we have discussed– and from below by 0, especially when considering

unbounded noises.
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6.5.2 Extensions to Adversarial Series of Inventory

Imagine a scenario where the inventory level at each time t is set to a variable γt by

adversary, instead of being a fixed γ0. Our uniform-exploration is still applicable to

estimate a and b. However, the searching and exploiting phases might struggle in this

setting, since the derivatives estimate at one time period is not valid accross all periods

(unless further imposing i.i.d. assumptions on γt). In the face of adversarial {γt}⊤
t=1

sequences, we conjecture an Online Gradient Descent (OGD) method [Biehl and Schwarze,

1995] with epoch-based updates might serve as a possible alternative.

6.5.3 Extensions to Contextual Pricing

In this chapter, we assume a and b are static, which may not hold in many real scenarios.

Example 6.1.1 serves as a good instance, showcasing significant fluctuations in popularity

across different performances. A reasonable extension of our work would be modeling

a and b as contextual parameters. Similar modelings have been adopt by Wang et al.

[2021a] and Ban and Keskin [2021] in the realm of personalized pricing research.

6.5.4 Societal Impacts

Our research primarily addresses a non-contextual pricing model that does not incorporate

personal or group-specific data, thereby adhering to conventional fairness standards

relating to temporal, group, demand, and utility discrepancies as outlined by Cohen et al.

[2022] and Chen et al. [2023b]. However, it is crucial to remain vigilant about the possible

extension of our methodologies to diverse customer groups, which may exhibit different

market noise distributions. Such application could result in varying fulfillment rate across

groups, i.e. the proportion of satisfied demand might be different at the optimal price in
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each group. This raises concern regarding unfairness in fulfillment rate [Spiliotopoulou and

Conte, 2022] particularly on product of significant social and individual importance.

6.6 Conclusions

In this paper, we studied the online dynamic pricing problem with a fixed inventory

constraint imposed on each time period. We introduced an exploring-then-searching

algorithm that is capable of deducing the optimal price from censored demands. Our

algorithm enjoys a regret guarantee of Õ(
√

T log T ), which is (near) optimal as it matches

the Ω(
√

T ) lower bound we proved. To the best of our knowledge, we are the first to

address this fixed-inventory pricing problem, and our results indicate that the associated

type of demand censoring does not substantially increase the hardness of pricing in terms

of minimax regret.
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6.7 Proofs

6.7.1 Proof of Lemma 6.4.2

Proof. For r(p), we have

r(p) = E[pt ·Dt|pt = p]

= p · E[min{γ0, a− bpt + Nt}|pt = p]

= p · E[1[a− bp + Nt ≤ γ0] · (a− bp + Nt) + 1[a− bp + Nt > γ0] · γ0]

= p · E[1[Nt ≤ γ0 − a + bp] · (a− bp + Nt) + 1[Nt > γ0 − a + bp] · γ0]

= p

(∫ γ0−a+bp

−c
(a− bp + x)f(x)dx +

∫ c

γ0−a+bp
γ0f(x)dx

)

= p
(∫ c

−c
(a− bp + x)f(x)dx +

∫ c

γ0−a+bp
(γ0 − (a− bp + x))f(x)dx

)
= p

(
(a− bp) ·

∫ c

−c
f(x)dx +

∫ c

−c
xf(x)dx

+(γ0 − a + bp)
∫ c

γ0−a+bp
f(x)dx−

∫ c

γ0−a+bp
xf(x)dx

)
= p(a− bp) + 0 + p(γ0 − a + bp)(1− F (γ0 − a + bp))− p · (xF (x)−G(x))|cγ0−a+bp

= pγ0 − p(γ0 − a + bp)F (γ0 − a + bp)

− p(c−G(c)− F (γ0 − a + bp) · (γ0 − a + bp) + G(γ0 − a + bp))

= p(γ0 − c + G(c)−G(γ0 − a + bp)).
(6.23)

Here the eighth line comes from
∫ c

−c f(x)dx = F (c) − F (−c) = 1 and
∫ c

−c xf(x)dx =

E[x] = 0. Given the close form of r(p), we may derive those of r′(p) and r′′(p).

6.7.2 Proof of Lemma 6.4.3

Proof. First of all, notice that r′′(p) ≤ 0 holds for any p ≥ 0. Therefore, r′(p) is

monotonically non-increasing on p ∈ [0, a
b
]. Also, F (x) = 0 for x < −c and F (x) = 1
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for x > c. Since we define G(x) =
∫ x

−c F (ω)dω, we know that G(x) is monotonically

non-increasing on x ∈ [−c, c], and that G(c + x) = G(c) + x for x ≥ 0.

1. Notice that
r′(0) =γ0 − c + G(c)−G(γ0 − a)− 0

>γ0 − c + G(c)−G(0)

>0.

The second line is due to γ0 > 2c > c and γ0 < a − c < a according to Assump-

tion 6.3.7, and the third line is due to the monotonicity of G(x). Also, we notice

that
r′(a

b
) =γ0 − c + G(c)−G(γ0)− b · a

b
· F (γ0)

=γ0 − c + G(c)−G(c + (γ0 − c))− a · 1

=γ0 − c + G(c)−G(c)− (γ0 − c)− a

=− a < 0.

Also, we have r′(p) monotonically non-increasing on [0, a
b
]. According to the inter-

mediate value theorem, there should exist a p∗ ∈ (0, a
b
) such that r′(p∗) = 0. Now

we prove that p∗ is unique by contradiction. If there exists 0 < p∗
1 < p∗

2 < a
b

such

that r′(p∗
1) = r′(p∗

2) = 0, we know that r′′(p) = 0,∀p ∈ (p∗
1, p∗

2), which indicates

F (γ0 − a + bp) = 0 and f(γ0 − a + bp) = 0,∀p ∈ (p∗
1, p∗

2). Since F (γ0 − a + bp)

is non-decreasing, we know that F (γ0 − a + bp) = 0,∀p < p∗
2 and therefore

G(γ0−a+bp∗
1) = 0 = F (γ0−a+bp∗

1). Given this, we have r′(p∗
1) = γ0−c+G(c)−0 > 0

(since γ0 > 2c > c according to Assumption 6.3.7), which is contradictory to our

assumption that r′(p∗
1) = 0. Therefore, p∗ such that r′(p∗) = 0 is unique. Due to

the non-increasing property of r′(p), we know that r′(p) > 0 for p ∈ (0, p∗) and

r′(p) < 0 for p ∈ (p∗, a
b
, and therefore r(p) monotonically increases on p ∈ (0, p∗)

and decreases on p ∈ (p∗, a
b
).
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2. Given that 0 ≤ F (x) ≤ 1 and 0 ≤ f(x) ≤ fmax,∀x ∈ R, we have r′′(p) ≥

−2bmax − b2
maxpmaxfmax = −Cs.

3. According to the proof of Property 1, we know that F (γ0 − a + bp∗) > 0, or

otherwise r′(p∗) > 0 leading to contradiction. Denote h(p) = F (γ0 − a + bp), and

for ∆ = F (γ0−a+bp∗)
2fmaxbmax

> 0 we have

F (γ0 − a + b(p∗ −∆)) ≥ F (γ0 − a + bp∗)− fmax · b∆

≥ F (γ0 − a + bp∗)− fmaxbmax ·
F (γ0 − a + bp∗)

2fmaxbmax

= F (γ0 − a + bp∗)
2 .

(6.24)

Let C∆ = bF (γ0 − a + bp∗) > 0, and for any p ∈ [p∗ −∆, p∗ + ∆] we have:

r′′(p) = −2b · F (γ0 − a + bp)− b2p · f(γ0 − a + bp)

≤ −2b · F (γ0 − a + bp)

≤ −2b · F (γ0 − a + b(p−∆))

≤ −2b · F (γ0 − a + bp∗)
2

= −C∆.

(6.25)

6.7.3 Proof of Lemma 6.4.4

Proof. Recall that r̂′
k = 1

τ

∑τ
t=1 Dk,t − pk · b̂ · 1

τ

∑τ
t=1 1k,t. Notice that

E[Dk,t] = r(p)
p

= γ0 − c + G(c)−G(γ0 − a + bp)

E[1k,t] = E[1[a− bp + Nt < γ0]] = F (γ0 − a + bp).
(6.26)
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Also, 0 ≤ Dk,t ≤ γ0 and 0 ≤ 1k,t ≤ 1. According to Hoeffding’s Inequality, with

Pr ≥ 1− ηδ it holds that

|1
τ

τ∑
t=1

Dk,t − (γ0 − c + G(c)−G(γ0 − a + bp))| ≤
√

1
2 · log 2

ηδ
· γ0 ·

1√
τ

. (6.27)

Also, with Pr ≥ 1− ηδ it holds that

|1
τ

τ∑
t=1

1k,t − F (γ0 − a + bpk)| ≤
√

1
2 · log 2

ηδ
· 1√

τ
. (6.28)

Therefore, with Pr ≥ 1− 2Kηδ it holds that

|r̂′
k − r′(pk)| = |(1

τ

τ∑
t=1

Dk,t − pk · b̂ ·
1
τ

τ∑
t=1

1k,t)

− (γ0 − c + G(c)−G(γ0 − a + bpk)− bpk · F (γ0 − a + bpk))|

= |(1
τ

τ∑
t=1

Dk,t − pk · b̂ ·
1
τ

τ∑
t=1

1k,t) + pkb̂F (γ0 − a + bpk)− pkb̂F (γ0 − a + bpk)

− (γ0 − c + G(c)−G(γ0 − a + bp)− bp · F (γ0 − a + bp))|

≤ |1
τ

τ∑
t=1

Dk,t − (γ0 − c + G(c)−G(γ0 − a + bp))|+ pk|b̂− b|F (γ0 − a + bpk)

+ pkb̂ · |1
τ

τ∑
t=1

1k,t − F (γ0 − a + bpk|

≤
√

1
2 · log 2

ηδ
· γ0 ·

1√
τ

+ pmax · Cb ·
1√
τ
· 1 + pmaxb̂ ·

√
1
2 · log 2

ηδ
· 1√

τ

≤
√

1
2 · log 2

ηδ
· γ0 ·

1√
τ

+ pmax ·
b2

maxpmax

γ2 − γ1
·
√

2 log 2
ηδ
· 1√

τ

+ 2pmaxbmax ·
√

1
2 · log 2

ηδ
· 1√

τ

= CK ·
1√
τ

(6.29)

Here the fifth (in)equality relies on b̂ ≤ 2bmax, which is a consequence of |b̂− b| ≤ Cb · 1√
τ

and τ =
√

T ≥
(

Cb

bmax

)2
=
(

bmaxpmax
γ2−γ1

)2
.
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6.7.4 Proof details of Theorem 6.4.1

Proof. We firstly bound the estimation error of â and b̂ respectively. Notice that for any

γ ∈ [amax − bminpmax + c, γ0],

E[1[D0,t ≥ γ]] = ENt [ Pr
pt∼U [0,pmax]

[D0,t ≥ γ|Nt]]

= ENt [ Pr
pt∼U [0,pmax]

[a− bpt + Nt ≥ γ|Nt]]

= ENt [
a + Nt − γ

bpmax
]

= a− γ

bpmax
.

(6.30)

Given this, it holds
E[e1,t − e2,t] =γ2 − γ1

bpmax

E[e3,t] =a− γ3

bpmax

(6.31)

Notice that e1,t ≥ e2,t. According to Hoeffing’s Inequality, it holds with Pr > 1− ηδ that

|1
τ

τ∑
t=1

e1,t − e2,t −
γ2 − γ1

bpmax
| ≤

√
1
2 · log 2

ηδ
· 1√

τ
. (6.32)

According to the definition of b̂ in Eq. (6.4), we have:

|b̂− b| = γ2 − γ1

pmax
· | 1

1
τ

∑τ
t=1 e1,t − e2,t

− bpmax

γ2 − γ1
|

= γ2 − γ1

pmax
·
| 1

τ

∑τ
t=1 e1,t − e2,t − γ2−γ1

bpmax
|

( 1
τ

∑τ
t=1 e1,t − e2,t) · γ2−γ1

bpmax

≤
(γ2 − γ1)

√
1
2 · log 2

ηδ
· 1√

τ

pmax · 1
2 ·

γ2−γ1
bpmax

· γ2−γ1
bpmax

= b2pmax

γ2 − γ1
·
√

2 log 2
ηδ
· 1√

τ

≤ b2
maxpmax

γ2 − γ1
·
√

2 log 2
ηδ
· 1√

τ
.

(6.33)

Here the third row holds if τ ≥ 1
2 · log 2

ηδ
· ( γ2−γ1

2bpmax
)2. Again, according to Hoeffding’s

Inequality, it holds with Pr > 1− ηδ that
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|1
τ

τ∑
t=1

e3,t −
a− γ3

bpmax
| ≤

√
1
2 · log 2

ηδ
· 1√

τ
, (6.34)

and we correspondingly bound the estimation error of â according to its definition in

Eq. (6.4):

|â− a| =|pmax · b̂ · (
1
τ

τ∑
t=1

e3,t) + γ3 − a|

=|pmax · b̂ · (
1
τ

τ∑
t=1

e3,t −
a− γ3

bpmax
+ a− γ3

bpmax
) + γ3 − a|

=|pmax · b̂ · (
1
τ

τ∑
t=1

e3,t −
a− γ3

bpmax
) + b̂− b

b
· (a + γ3)|

≤pmax · b̂ · |
1
τ

τ∑
t=1

e3,t −
a− γ3

bpmax
|+ | b̂− b

b
|(a + γ3)

≤pmax · 2bmax ·
√

1
2 · log 1

ηδ

1√
τ

+ amax + γ3

bmin
· b

2
maxpmax

γ2 − γ1
·
√

2 log 1
ηδ
· 1√

τ

=pmax(bmax + (amax + γ3) · b2
max

bmin(γ2 − γ1)
) ·
√

2 log 1
ηδ
· 1√

τ
.

(6.35)

Here the fourth row holds if τ ≥ 2 log 2
ηδ
·(γ2−γ1

bpmax
)2. Denote Ca = pmax(bmax + (amax+γ3)·b2

max
bmin(γ2−γ1) ) ·√

2 log 1
ηδ

and Cb = b2
maxpmax
γ2−γ1

·
√

2 log 2
ηδ

, and with Pr > 1− 2ηδ we have

|â− a| ≤ Ca ·
1√
τ

, |b̂− b| ≤ Cb ·
1√
τ

.

Now, we consider the cumulative regret in Epoch k = 1, 2, . . .. According to Lemma 6.4.3,

we know that

r(p∗)− r(p) ≤ Cs · (p∗ − p)2. (6.36)

According to Lemma 6.4.4 and Corollary 6.4.5 our binary searching is correct with high

probability. Therefore, with Pr > 1− log T · ηδ it holds that p∗ ∈ [uk, vk],∀k = 1, 2, . . ..
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Notice that uk − vk = pmax
2k−1 . Denote the index of the last epoch is K, and we have:

Regretsearch =
K∑

k=1

τ∑
t=1

r(p∗)− r(pk)

≤
K∑

k=1
τ · Cs · (p∗ − pk)2

≤
K∑

k=1
τ · Cs · (vk − uk)2

=
K∑

k=1
τ · Cs · (

pmax

2k−1 )2

≤4
3Cs · p2

max · τ.

(6.37)

Now we upper bound the distance between pK and p∗ if r̂′
k ∈ [−2CK · 1√

τ
, +2CK · 1√

τ
].

According to Lemma 6.4.4, in this case we have

|r′(pk)| ≤ |r̂′
k − r′(pk)|+ |r̂′

k| ≤ CK ·
1√
τ

+ 2CK ·
1√
τ

= 3CK ·
1√
τ

. (6.38)

According to Lemma 6.4.3 Property 3, when p ∈ [p∗ − ∆, p∗ + ∆], we have |r′(p)| =

|r′(p) − r′(p∗)| ≥ C∆|p − p∗|. Also, since r′′(p) ≤ 0, indicating a monotonic decrease of

r′(p), we know that

r′(p) ≥ r′(p∗ −∆) ≥C∆|(p∗ −∆)− p∗| = C∆ ·∆,∀p ∈ [0, p∗ −∆]

r′(p) ≤ r′(p∗ + ∆) ≤− C∆|p∗ − (p∗ + ∆)| = −C∆ ·∆,∀p ∈ [p∗ + ∆, pmax].
(6.39)

From Eq. (6.39), we know that r′(p) ≥ C∆ ·∆ for |p− p∗| ≥ ∆. Therefore, if p ∈ [0, pmax]

such that |r′(p)| < C∆ ·∆, then p ∈ [p∗−∆, p∗ + ∆]. Notice that τ =
√

T ≥ ( 6CK

C∆·∆)2, and

according to Eq. (6.38) we have |r′(pk)| ≤ C∆·∆
2 < C∆ ·∆ if r̂′

k ∈ [−2CK · 1√
τ
, +2CK · 1√

τ
].

Since we let p̂∗ = pk when r̂′
k ∈ [−2CK · 1√

τ
, +2CK · 1√

τ
], we know that p̂∗ ∈ [p∗−∆, p∗ +∆]
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and therefore
|p̂∗ − p∗| ≤ 1

C∆

· |r′(p̂∗)|

≤
3CK · 1√

τ

C∆

= 3CK

C∆

√
τ

.

(6.40)

By the time we determine p̂∗, we have already proposed (K + 1)τ prices. As a result,

there are still (T − (K + 1)τ) time steps left, where we keep proposing p̂∗. According to

Eq. (6.36) and Eq. (6.40), the cumulative regret of this period should be:

Regretexploiting =
T −(K+1)τ∑

t=1
r(p∗)− r(p̂∗)

≤
T∑

t=1
Cs · (p∗ − p̂∗)2

≤T · Cs ·
9C2

K

C2
∆

· 1
τ

=9CsC
2
K

C2
∆

· T
τ

.

(6.41)

Finally, the regret of Epoch 0 cannot exceed γ0pmax · τ . Combining with Eq. (6.37) and

Eq. (6.41), we may bound the total regret with Pr > 1− (2K + 2)ηδ as

Regret =Regretexploring + Regretsearching + Regretexploiting

≤γ0pmax · τ + 4
3Cs · p2

max · τ + 9CsC
2
K

C2
∆

· T
τ

.

(6.42)

Since τ =
√

T and η = 1
4
√

T
= τ

4T
≤ 1

2K+2 , we have

Regret ≤ γ0pmax · τ + 4
3Cs · p2

max · τ + 9CsC
2
K

C2
∆

· T
τ

≤ γ0pmax
√

T + 4Csp
2
max

3 ·
√

T

+ 9Cs

(bF (γ0 − a + bp))2 ·
(

γ0 + 2bmaxpmax + 2b2
maxpmax

γ2 − γ1

)
· 12 · log 8

√
T

δ
·
√

T

= O(
√

T log T

δ
)

(6.43)
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with Pr ≥ 1− 2K+2
4K
· δ ≥ 1− δ.

6.7.5 Proof of Theorem 6.4.6

Proof. We firstly define a few functions:

1. Denote Reg(p; a, b) := maxp∗ r(p∗)− r(p) = b(p− a
2b

)2 as the regret of price p under

the true parameter (a, b).

2. Denote D(p; a, b) := a−bp+DN as the demand distribution when price p is proposed.

3. Denote QA
τ (a, b) as the joint distribution of demands over time periods t = 1, 2, . . . , τ

by running Algorithm A.

4. Denote Reg((a, b), τ,A) as the cumulative regret over time periods t = 1, 2, . . . , τ

by running Algorithm A.

Now we specify the key quantities of problem setting as follows:

1. Let the noise distribution DN be standard Gaussian distribution N (0, 1).

2. Let (a0, b0) = (2, 1) be the "basic" problem setting. In this setting, the optimal price

p∗
0 = 1.

3. Let (a1, b1) = (2−∆, 1−∆) be the "deviated" problem setting, where ∆ ∈ (0, 1
4) is a

small quantity to be specified later. In this setting, the optimal price p∗
1 = 1+ ∆

2(1−∆) .

Then we propose a lemma:
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Lemma 6.7.1. For any algorithm A and any t ∈ [T ], it holds

KL(QA
t (a0, b0)||QA

t (a1, b1)) ≤
1
2 ·∆

2 ·Reg((a0, b0), t,A). (6.44)

Proof of Lemma 6.7.1. According to Duchi [2007], the KL divergence of two univariate

Gaussian distributions holds

KL(N (µ1, σ2
1)||N (µ2, σ2

2)) = log(σ2

σ1
) + σ2

1 − σ2
2

2σ2
2

+ (µ1 − µ2)2

2σ2
2

. (6.45)

We will frequently apply Eq. (6.45) in the following proof. According to the Chain rule of

KL Divergence, we have:

KL(QA
t (a0, b0)||QA

t (a1, b1)) =
t∑

s=1
KL(QA

s (a0, b0)||QA
s (a1, b1)|Hs−1). (6.46)

Notice that
KL(QA

s (a0, b0)||QA
s (a1, b1)|Hs−1)

=KL(D(πs(Hs−1); a0, b0)||D(πs(Hs−1); a1, b1))

=KL(N (a0 − b0 · πs(Hs−1), 1)||N (a1 − b1 · πs(Hs−1), 1))

=1
2 · ((a0 − b0 · πs(Hs−1))− (a1 − b1 · πs(Hs−1)))2

=1
2((a0 − a1)− (b0 − b1)πs(Hs−1))2

=1
2(∆−∆πs(Hs−1))2

=1
2 ·∆

2(1− πs(Hs−1))2

=∆2

2 (p∗
0 − πs(Hs−1))2

(6.47)

Therefore, we have

KL(QA
t (a0, b0)||QA

t (a1, b1)) =∆2

2 ·
t∑

s=1
(p∗

0 − πs(Hs−1))2

=∆2

2 ·
t∑

s=1
b0(p∗

0 − πs(Hs−1))2

=∆2

2 ·Reg((a0, b0), t,A).

(6.48)
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Now we propose another lemma:

Lemma 6.7.2. We have

Reg((a0, b0), T,A) + Reg((a1, b1), T,A) ≥ ∆2

64 · T · exp{−KL(QA
T (a0, b0)||QA

T (a1, b1))}.

(6.49)

Proof of Lemma 6.7.2. For an algorithmA, denote v := [π1(H0), π2(H1), . . . , πT (HT −1)]⊤ ∈

RT . Also, denote v0 := [ a0
2b0

, a0
2b0

, . . . , a0
2b0

]⊤ ∈ RT and v1 := [ a1
2b1

, a1
2b1

, . . . , a1
2b1

]⊤ ∈ RT . Define

a metric d(x, y) := ∥x− y∥2
2. On the one hand, we have

Reg((a0, b0), T,A) + Reg((a1, b1), T,A) ≥
T∑

t=1
b0(πt(Ht−1)−

a0

2b0
)2 + b1(πt(Ht−1)−

a1

2b1
)2

=b0 · d(v, v0) + b1 · d(v, v1)

≥ max
i∈{0,1}

bi · d(v, vi)

≥ max
i∈{0,1}

1
2 · d(v, vi).

(6.50)

The last inequality comes from ∆ ∈ [0, 1
4 ]. Le Cam’s Theorem [See Le Cam and Yang,

2000] states that

inf
θ̂

sup
P∈{P0,P1}

E[d(θ̂, θ(P)] ≥ S

8 exp{−KL(P0||,P1)}, (6.51)

where S = d(θ(P0), θ(P1)). Therefore, we have

Reg((a0, b0), T,A) + Reg((a1, b1), T,A)

≥1
2 ·

1
8 · d(v0, v1) · exp{−KL(QA

T (a0, b0)||QA
T (a1, b1))}

= 1
16 · T · (

a0

2b0
− a1

2b1
)2 exp{−KL(QA

T (a0, b0)||QA
T (a1, b1))}

= 1
16 · T ( ∆

2(1−∆))2 exp{−KL(QA
T (a0, b0)||QA

T (a1, b1))}

≥ 1
64T∆2 exp{−KL(QA

T (a0, b0)||QA
T (a1, b1))}.

(6.52)
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Combine Lemma 6.7.1 and Lemma 6.7.2 and let ∆ = 1
4 · T

− 1
4 , we have:

2(Reg((a0, b0), T,A) + Reg((a1, b1), T,A))

≥(Reg((a0, b0), T,A) + Reg((a1, b1), T,A)) + Reg((a0, b0), T,A)

≥ 1
64T∆2 exp{−KL(QA

T (a0, b0)||QA
T (a1, b1))}+ 2

∆2 ·KL(QA
T (a0, b0)||QA

T (a1, b1))

= 1
1024 ·

√
T exp−KL(QA

T (a0, b0)||QA
T (a1, b1)) + 32

√
T ·KL(QA

T (a0, b0)||QA
T (a1, b1))

≥ 1
1024 ·

√
T (e−KL(QA

T (a0,b0)||QA
T (a1,b1)) + KL(QA

T (a0, b0)||QA
T (a1, b1)))

≥ 1
1024

√
T .

(6.53)

The last equation comes from the fact that ex ≥ x + 1 for any x ∈ R.
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Chapter 7

Conclusion and Discussion

In this thesis, we have explored a diverse array of topics within the realm of dynamic pricing,

under the framework of online decision-making problems. Our investigation encompasses

two primary areas: Feature-based Dynamic Pricing (Part I) and Pricing under Constraints

(Part II). This final chapter aims to summarize our high-level observations and to propose

several potential directions extended from this thesis toward further research.

7.1 Summary of Observations and Insights

Here we summarize our insights derived from our investigation into dynamic pricing,

which also hold relevance for a broader spectrum of online learning problems.

Log-likelihood function as surrogate loss. The ONSP algorithm introduced in

Chapter 2 employs a (negative) log-likelihood function as a surrogate loss. By running an

online convex optimization algorithm (ONS) on this surrogate loss, we indirectly reduce
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the regret and achieve an optimal rate of O(d log T ). This approach is predicated on two

conditions:

i The regret is smooth with respect to the parameters.

ii The negative log-likelihood function is exp-concave (i.e. strongly convex on empirical

norm E[xx⊤]). This is reflected in its Hessian matrix, or the so-called Fisher

Information matrix, which must dominate E[xx⊤].

The first condition bounds the regret by the squared estimation error, while the second

condition ensures a fast rate on optimizing the log-likelihood. Together, these conditions

validate the use of this surrogate loss. The underlying intuition is that the Fisher

Information encapsulated by the log-likelihood represents the maximum quantity of

information accessible through observation. As long as our observation provides sufficient

information, it become feasible to transit the "signal" (our observation) through our

algorithmic "channel", thereby enabling an effective estimator for minimizing regret.

Half-Lipschitz nature of revenue function. In Chapter 3, we introduce the D2-

EXP4 algorithm that adopts a discretization framework without assuming any continuity.

This design choice is informed by the inherent characteristics of the revenue function:

While an increase in price may lead to abrupt reduction on demand, a decrease in price

typically results in a non-decreasing demand. Consequently, the potential loss from

reducing the price by δ is at most 1 · δ for any single item sold. This observation leads us

to identify the proximal gradient at each point on the revenue curve as residing within the

range of (−∞, 1], a property we denote as Half-Lipschitzness. Leveraging this property

allows for discretizations without the necessity of assuming continuity/Lipschitzness in

dynamic pricing. Instead, we just need to set conservative prices every time a discretized
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approximation is applied.

The hardness of pricing versus bandits. We establish a Ω̃(T 2
3 ) lower bound under

the assumption of Lipschitz demand in Chapter 3. On the one hand, this matches

with the upper bound in Kleinberg [2004], indicating that the hardness of pricing is

comparable to continuous bandits under Lipschitz assumptions. Combining with the

results in Wang et al. [2021b], we know that under mth-order smooth assumption for each

m = 1, 2, . . ., the minimax regret for (non-contextual) dynamic pricing is the same as that

for continuum-armed bandits, which is O(T
m+1

2m+1 ). On the other hand, when the demand

curve lacks Lipschitz continuity, the regret stays as O(T 2
3 ). However, for continuum-armed

bandits with non-continuous or non-Lipschitz reward functions, achieving sublinear regret

is impossible. As a conclusion, the inherent hardness of continuum-armed bandit problem

is at least equivalent to, if not harder than, the dynamic pricing problem.

Perturbation as a regularizer. As previously discussed, two prerequisites enable the

log-likelihood to function effectively as a surrogate loss: (i) Smoothness of the true loss

(regret), and (ii) Exp-concavity of the log-likelihood function. However, Condition (ii) is

not satisfied in the problem setting established in Chapter 4. To address this, we add

a zero-mean perturbation on each proposed price. Given that the Fisher Information is

the covariance matrix of the score function, this perturbation increases the variance and

therefore enhance the Fisher Information. This strategy is analogous to incorporating a

quadratic regularizer into the objective function to increase its convexity. However, in

order to satisfy Condition (i), the ideal regularizer in our problem would be ∥θ∗ − θ̂∥2
2, to

which we have no access, instead of ∥θ̂∥2
2. In conclusion, the perturbation performs as

an indirect regularizer we cannot explicitly construct. We believe that the technique of
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integrating perturbations into decisions holds significant promise for broader applications

in online convex optimization.

Trade-off between revenue and fairness. In addition to analyzing algorithmic

performance in Chapter 5, we establish a trade-off lower bound between regret and

unfairness. Our findings indicate any optimal algorithm that achieves C ·
√

T regret has

to suffer at least f(C) ·
√

T (substantive) unfairness. This relationship introduces a "unit

cost" of pricing fairness quantified as f(C)
C

. This phenomenon primarily stems from the

high non-convexity of the revenue function with respect to pricing policies. On the one

hand, it consumes sufficient sample complexity to learn and approach the optimal fair

policy. On the other hand, the fixed-same price policy that ensures 0-unfairness is much

sub-optimal. The inherent non-convexity of the problem precludes a natural equilibrium

between fairness and profitability. This insight offers a significant contribution to the

fields of machine learning and operations management, highlighting the complex interplay

between economic efficiency and ethical considerations.

Pure-exploration to "see through" censoring. The challenge of inventory censoring,

as modeled in Chapter 6, significantly complicates the estimation of demand curves.

Despite these difficulties, we successfully obtain unbiased estimates for linear parameters

through the use of uniform exploration. This technique was initially introduced by Fan

et al. [2021] and subsequently adopted by Luo et al. [2022], both of whom explored settings

where linear valuations are obscured by binary feedback, as detailed in Chapter 3. By

adapting their uniform exploration approach to a new context, we not only address the

specific challenges posed by inventory censoring but also demonstrate the potential of

this strategy to advance research across a wider range of applications.
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7.2 Future Directions

In the near future, my research will focus on online learning problems with structural

observations. I anticipate that our findings and insights in dynamic pricing will contribute

toward a deeper understanding of the interplay among decisions, information, and rewards

within the broader framework of decision-making.

Here I outline some prospective projects that have been considered and discussed but not

yet thoroughly investigated.

Online Decision-Making with Adversarial Censoring In our work presented in

Chapter 6, we develop an algorithm for dynamic pricing under censored observations.

This scenario arises because the seller cannot control inventory levels, presenting a unique

challenge of non-controllable censoring effects. Therefore, a natural extension of this

project could be dynamic pricing under adversarial inventory constraints. Consider, for

example, a tropical fruit shop where supply is contingent on nearby farm production,

which in turn is influenced by unpredictable natural factors such as temperature, rainfall,

and the growth conditions of trees or crops. In such an adversarial inventory scenario,

where the censoring threshold fluctuated and the optimal price varies over time, our

previous see-through method (i.e. uniform exploration) for parameter estimation is still

viable. However, we can no longer apply the search-based framework as we do in Chapter 6.

Given the dependency of optimal pricing on inventory levels, it is necessary to construct

distributional estimates of potential demands at each proposed price point. We conjecture

that a UCB-styled algorithm would be suitable for this challenge. Notably, as the upper

bound achieved in Chapter 6 matches the lower bound of pricing without censoring,

implying that this censoring does not substantially increase the sample complexity, we
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also conjecture the minimax regret is O(
√

T ) in this adversarial setting.

Market Making with Mutually-Censoring Effect Previously we have discussed

about methodologies to incorporate censored feedback in dynamic pricing, primarily

focus on the demand side of market scenarios while often overlooking supply dynamics

and associated costs. As we look into a two-sided online market such as Uber/Lyft, we

notice there are two prices involved: (i) The amount which a customer pays for a unit

of service, and (ii) The amount which a supplier earns by providing a unit of service.

Based on this mechanism, the market maker, who sets these two prices, profits from

the margin and volume of successful transactions. However, different from traditional

market-making problems where bid (demand) and ask (supply) quantities are publicly

known, in a contemporary online market with the most efficiency, the exceeded demand

or supply might be fulfilled on competitors’ platforms without being observed by the

principle market maker. We can describe this dynamic as follows:

r(pa, pb) := min{D(pa), S(pb)} · (pa − pb).

Here pa, pb are the ask price and bid price, respectively; r(·), D(·), S(·) are the functions

for revenue, demand, supply functions, sequentially. For each unit deal, the market maker

pays pb to the seller and earns pa from the buyer, with min{D(pa), S(pb)} representing

the volume of successful deals, which is the only observation that the market maker

has access to. The market maker’s goal is to learn from this censored observation and

approach the optimal (p∗
a, p∗

b) with least cumulative regret. This problem could be very

challenging as there exist no straightforward assumptions leading to its convexity. We

conjecture that the solution to this problem depends on the strategies developed for

"dynamic pricing under adversarial inventory constraints": By treating each side of the

market individually while treating the other side as an adversarial environment, we are
246



hopeful to approach the optimal (p∗
a, p∗

b) by alternatively updating either side under a

primal-dual framework.
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