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Abstract. Air/sea fluxes of dimethylsulfide (DMS) were
measured by eddy correlation over the Eastern South Pa-
cific Ocean during January 2006. The cruise track extended
from Manzanillo, Mexico, along 110◦ W, to Punta Arenas,
Chile. Bulk air and surface ocean DMS levels were also
measured and gas transfer coefficients (kDMS) were com-
puted. Air and seawater DMS measurements were made us-
ing chemical ionization mass spectrometry (API-CIMS) and
a gas/liquid membrane equilibrator. Mean surface seawa-
ter DMS concentrations were 3.8±2.2 nM and atmospheric
mixing ratios were 340±370 ppt. The air/sea flux of DMS
was uniformly out of the ocean, with an average value of
12±15µmol m−2 d−1. Sea surface concentration and flux
were highest around 15◦ S, in a region influenced by shelf
waters and lowest around 25◦ S, in low chlorophyll gyre
waters. The DMS gas transfer coefficient exhibited a lin-
ear wind speed-dependence over the wind speed range of
1 to 9 m s−1. This relationship is compared with previ-
ously measured estimates ofk from DMS, CO2, and dual
tracer data from the Atlantic and Pacific Ocean, and with the
NOAA/COARE gas transfer model. The model generated
slope ofk vs. wind speed is at the low end of those observed
in previous DMS field studies.

1 Introduction

The physics, chemistry, and biology of the air/sea interface
are not well understood. As a result, estimates of air/sea gas
transfer rates are usually based on simple parameterizations.
Air/sea fluxes (F ) of trace gases are usually described as the

Correspondence to:C. A. Marandino
(cmarandi@uci.edu)

product of a gas transfer coefficient (k) and a difference in
gas partial pressure between the surface ocean and overlying
atmosphere (1C),

F=k1C (1)

The gas transfer coefficient is constrained by field observa-
tions of the evasion of deliberate, inert gases, and the uptake
of 14C by the oceans. The gas transfer coefficient can also
be estimated from micrometeorological flux measurements,
such as eddy covariance, profile, or relaxed eddy accumu-
lation, in conjunction with air/sea concentration measure-
ments. Most parameterizations of the gas transfer coefficient
utilize wind speed as the sole controlling parameter. How-
ever, it is clear that many factors which influence turbulence
near the air/sea interface affect rates of gas transfer. These in-
clude buoyancy effects, surface tension (microlayer effects),
whitecap formation and bubble breaking, and wind/wave in-
teractions (Donelan and Wanninkhof, 2002 and references
therein). Gas exchange models of increasing sophistication
have been developed, based on similarity theory and energy
balance considerations, but these are also highly parameter-
ized, and based on limited observational data (Fairall et al.,
1996a, b, 2000; Hare et al., 2004; Soloviev, 2007; Soloviev
and Schlussel, 1994, 1996).

Oceanic emissions of dimethylsulfide (DMS) are impor-
tant because of their role as a precursor of atmospheric
sulfate aerosol. DMS is also a useful gas for studying
air/sea transfer, because it is produced throughout the surface
oceans, and has an atmospheric lifetime of only a few days.
The resulting air/sea gradient is always from the ocean to the
atmosphere and the resulting flux is superimposed on a low
background atmospheric DMS level (up to hundreds of ppt).
Consequently, DMS fluxes are well suited to measurement
by micrometeorological techniques. Hintsa et al. (2004) and
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Fig. 1. Cruise track for the Knorr06. Solid grey lines are five day
surface air mass back trajectories.

Zemmelink et al. (2004) employed the gradient and relaxed
eddy accumulation techniques to measure DMS fluxes in
coastal waters. Eddy correlation measurements require the
use of a fast response (∼1 s) chemical sensor. Advances in
the development of atmospheric pressure chemical ioniza-
tion mass spectrometry (API-CIMS) have made such mea-
surements feasible for DMS. Eddy correlation has been used
successfully to measure DMS open ocean fluxes in the Pa-
cific and Atlantic Oceans (Huebert et al., 2004; Marandino
et al., 2007; Blomquist et al., 2006).

In this study, eddy correlation measurements of open
ocean air/sea DMS fluxes were made using API-CIMS on
a January 2006 cruise aboard the R/V Knorr in the south-
eastern Pacific Ocean (Knorr06). Atmospheric and surface
seawater bulk DMS levels were also measured and the gas
transfer coefficient was derived. The cruise started in Man-
zanillo, Mexico (19◦ N–104◦ W) on 3 January 2006, headed
southwest and crossed the equator at 110◦ W, then headed
southeast to Punta Arenas, Chile on 25 January 2006 (Fig. 1).
Data are reported for 10 to 24 January 2006, corresponding
with latitudes 0 to 55◦ S. These data are compared to the ex-
isting database of open ocean DMS and CO2 flux measure-
ments from both the Atlantic and Pacific oceans (Blomquist
et al., 2006; Huebert et al., 2004; Marandino et al., 2007;
McGillis et al., 2001, 2004).
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Fig. 2. DMS w frequency weighted cospectra from the morning of
11 January 2006. The solid black line is the cospectrum corrected
for ship motion, solid grey is the motion uncorrected cospectrum,
and the dashed line is the idealized scalar cospectrum from Kaimal
et al. (1972).

2 Methods

2.1 Experimental setup

Atmospheric pressure chemical ionization mass spectrome-
try (API-CIMS) was used to measure the air/sea concentra-
tion gradient and eddy correlation flux of DMS. The API-
CIMS instrument and experimental setup have been de-
scribed in detail by Marandino et al. (2007), and are briefly
described here. The API-CIMS instrument was located in
the upper laboratory of the ship. Air from the ship’s bow
mast (approximately 7 m above the sea surface) was drawn
through a 90 mm diameter Teflon filter housing and 55 m of
0.8 cm ID Teflon tubing at approximately 36 L min−1 STP
to the ship’s lab. From that air flow, 1.7 L min−1 STP was
drawn into the API-CIMS ion source through a single tube
Nafion membrane. Three dimensional wind speed, direc-
tion, and ship motion were measured on the bow mast with a
Campbell CSAT-3 sonic anemometer and MotionPak II (Sys-
tron Donner).

Surface seawater DMS from the ship scientific seawater
supply (5 m depth) was analyzed using a Liqui-Cel 2.5×8
membrane equilibrator (Membrana). The equilibrator was
configured such that the seawater passed over the outside
of a bundle of polypropylene tubes. Zero air (Aadco In-
struments) passed through the tubes to be equilibrated with
the seawater and was directed to the API-CIMS. Approxi-
mately 0.30 L min−1 STP of zero air was equilibrated with
3 L min−1 of seawater. The temperature of the seawater in
the equilibrator was monitored constantly using a GE ther-
mistor with a Texas Instruments analog interface/display,
in order to compute the Henry’s Law solubility. The
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Fig. 3. The cruise track superimposed on Modis data. Left panel – SST (◦C). Right panel – chlorophyll (mg m−3). Solid white lines are 5
day surface air mass back trajectories.

equilibrator temperature was approximately 1.5◦C warmer
than sea surface temperature measured using the ship sen-
sors.

An internal trideuterated DMS gas standard (2.24 ppm)
was continuously added to the ambient air and seawater-
equilibrated air streams (9 and 2 mL min−1 STP, respec-
tively). The measurement protocol for the API-CIMS
was 15 min seawater analysis, one hour atmospheric anal-
ysis, then 15 min seawater analysis. During seawater mea-
surements, system blanks were periodically acquired (ev-
ery 1.5 min) by bypassing the equilibrator using a multi-
port Valco valve. More extensive atmospheric and seawater
blanks were measured every 12 h.

During the cruise, API-CIMS sensitivity varied with the
absolute humidity in ambient air and sea surface tempera-
ture, reflecting the impact of water vapor levels on instrument
source ionization chemistry. The API-CIMS atmospheric
measurement and seawater measurement sensitivities ranged
from 5 to 70 cps ppt−1 and 10 to 190 cps ppt−1, respectively.
The greater sensitivity of the seawater sampling system rela-
tive to the atmospheric setup was due to more favorable water
vapor conditions and higher pressure in the API-CIMS ion-
ization region. The flow rate and long sample tubing used to
perform air measurements caused the pressure to be subam-
bient (i.e. 0.7 atm) at the API-CIMS source.

No covariance was observed between vertical wind and the
isotope standard, confirming that water vapor fluctuations did
not impact the flux measurements.

2.2 Data processing and error analysis

The eddy covariance data processing routine has been de-
scribed in detail by Marandino et al. (2007). Fluxes, concen-
tration gradients, andk values were processed in one hour in-
tervals. The data presented here have been corrected for ship
motion, sensor misalignment, and high frequency attenuation
in the sample tubing. After wind corrections, the vertical
wind DMS cospectra looked similar to idealized cospectral
representations of scalar fluxes in the atmospheric boundary
layer from Kaimal et al. (1972) (Fig. 2). The magnitude of
the high frequency attenuation correction was 25.4±15.7%.
Quality control criteria have been applied to identify data
affected by flow distortion, heterogeneity in surface seawa-
ter DMS, and low frequency features in the flux cospec-
trum. The quality control tests resulted in the omission of
62 records out of 97.

The uncertainties in the measured fluxes and concentration
gradients are approximately±25% and±10%, respectively.
The propagated uncertainty in the computed gas transfer co-
efficient is approximately±25%.

2.3 Ancillary data

Chlorophyll concentrations and sea surface temperatures
(SST) were obtained from MODIS AQUA (Fig. 3). Both
products were the monthly average from January 2006 at
4 km resolution. A time series of chlorophyll along the cruise
track was extracted from the MODIS data as 4–9 point aver-
ages. Significant wave height was obtained from TOPEX
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using the Aviso algorithm for 1 day periods at 1◦
×3◦ res-

olution and extracted in the same manner as the MODIS
data. Significant wave heights during the Knorr06 cruise
were between 1.5 and 2.5 m. Five-day mean satellite-derived
surface currents were obtained from OSCAR. Currents were
<0.3 ms−1 over most of the cruise track. Between 0 and 8◦ S
currents were easterly, between 0.5 and 0.7 ms−1. Waves and
currents were neglected in the discussion of the gas transfer
coefficient and were not used in any model runs.

Atmospheric boundary layer stability was calculated from
shipboard data, and compared with the TOGA-COARE hf-
bulktc routine (Fairall et al., 1996b) with good agreement.
Surface air mass back trajectories (5 day, isentropic) were
calculated using the Hysplit model. The NOAA-COARE
model (Fairall et al., 2000) was used to calculate gas transfer
coefficients. The model is based on the COARE algorithm
and computes the gas transfer coefficient using turbulent and
diffusive mechanisms.

3 Results and discussion

3.1 Knorr 06 cruise observations

The Knorr06 cruise traversed three broad oceanographic
regions: equatorial upwelling, S. Pacific gyre, and subpo-
lar waters (Fig. 4). The upwelling region was character-
ized by high chlorophyll levels and sea surface tempera-
tures around 25◦C. The water temperatures in the gyre region
were similar to the upwelling region, but chlorophyll levels
were much lower. Subpolar waters ranged from 10 to 20◦C
with chlorophyll levels similar to those in the equatorial up-
welling region. During the last 3 days of the cruise, the ship
skirted high productivity coastal waters off Chile containing
the highest levels of chlorophyll over the entire cruise track.
Air mass back trajectories indicate southeasterly flow dur-
ing passage through equatorial and gyre waters, and westerly
flow over the subpolar waters. Elevated wind speeds were
encountered on DOY 21 to 22 and 24, associated with the
intersection of the cruise track with westerly low pressure
systems. Atmospheric boundary layer stability was neutral
(z/L∼0) in the upwelling and subpolar front regions and un-
stable (z/L<0) in the gyre region. The instability in the gyre
region is most likely related to an increase in the air/sea tem-
perature difference in that region.

Seawater DMS levels in the equatorial upwelling region
ranged from 0 to 7 nM. Consistently low DMS levels were
observed in gyre waters, ranging from 0 to 4 nM. The tran-
sitional regions into and out of the gyre were characterized
by local maxima in DMS of 7 to 8 nM. The DMS levels
in the subpolar front waters ranged from 0 to 22 nM, with
the highest levels over the entire cruise track observed at
45◦ S (DOY 22). These measurements seem to be in good
agreement with the limited seawater values presented in Hue-
bert et al. (2004) for the region between the equator and
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Fig. 4. Time series of shipboard data. From top:(a)– Cruise track
latitude (solid) and longitude (dashed),(b) – DMS atmospheric
mixing ratio, (c) – DMS oceanic concentration,(d) – DMS air/sea
flux, in which closed circle represent the highest quality data used to
computek and plus signs are other fluxes discussed in text,(e)– Sea
surface temperature (solid black), horizontal wind speed (solid dark
grey), and chlorophyll concentration (solid light grey). The vertical
dashed lines indicate the upwelling, gyre, and subpolar front regions
of the cruise. Grey closed circles indicate outlier points discussed
in text.

10◦ S (Huebert et al. (2004)’s data was measured between
7.5◦ N–7.5◦ S). There is remarkable similarity between the
data from this study and earlier DMS measurements by Bates
and Quinn (1997) in February and March 1989 between the
equator and 45◦ S, along 110◦ W (Fig. 5). Both the mea-
sured levels and latitudinal trends were nearly exact matches
between the two cruises, despite the nearly 20 year gap be-
tween measurements. The DMS levels from this study dif-
fered from the Bates and Quinn (1997) data when the cruise
tracks were separated by more than 15 degrees longitude.

To the best of our knowledge, these data are the only pub-
lished seawater DMS measurements made using a Liqui-
Cel membrane equilibrator. Marandino et al. (2007) used
a single-tube (1/8′′ OD) porous Teflon membrane in con-
junction with a chemical ionization mass spectrometer to
measure seawater DMS in the central and North Pacific.
Huebert et al. (2004) used purge and trap GC/MS. The
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tions from Knorr06 (closed circles) and Bates and Quinn (1997)
(BQ97, open circles). The map inset depicts the cruise track from
Knorr 06 (black line) and that from BQ97 (grey line).

Liqui-Cel membrane is a bundle of many, much smaller di-
ameter polypropylene tubes (300 micron OD) which gives it
higher gas transfer efficiency. The concern with this type of
equilibrator is the potential for biofouling, due to the high
surface area of the bundle of tubing. Biofouling could likely
lead to DMS production and an overestimate of ambient lev-
els. On this cruise, there was one indication of spurious DMS
production on DOY 22. The large increase in seawater con-
centration on DOY 22 was not accompanied by a similar in-
crease in atmospheric levels. However, the rapid decline of
the 20 nM DMS pulse and the rapid decrease in DMS levels
between the equatorial and gyre waters are not typical behav-
iors associated with biofouling.

Atmospheric DMS levels generally followed the same
trends as the seawater DMS levels. The lowest levels were in
the gyre region, between 0–0.3 ppb, and highest in the sub-
polar region, between 0.1–1.1 ppb. The atmospheric levels
ranged between 0.45–0.7 pb in the upwelling region. There
were 3 instances when the surface seawater and atmospheric
concentrations did not exhibit similar trends. The first was
DOY 13 to 14, during which time the atmospheric level in-
creased by about a factor of 20 higher than the increase in
seawater DMS (points labeled with grey dots in each graph).
These points were measured in the region influenced by the
coastal upwelling off of Peru. The back trajectories for these
measurements indicated the origin of the air mass over the
coast of Peru. The second instance was DOY 20, where the
atmospheric DMS level increased again without an increase
in surface seawater DMS. This was in the region of westerly
flow with back trajectories indicating air mass origin over
regions with enhanced chlorophyll concentration. This may
indicate that the air levels were influenced by transport. As
mentioned earlier, on DOY 22 there was an increase in sea-
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Fig. 6. Wind speed dependence of computed gas transfer coeffi-
cient normalized to Sc=720. Top panel – best quality 1-hk values
(closed circles) and lower qualityk values (plus signs). The solid
grey lines are a linear fit to the data with 95% confidence bands.
Bottom panel –k values binned in 1 ms−1 intervals. Error bars are
±1 s.e. Gas transfer parameterizations of Wanninkhof (1992; W92
dashed grey line), and Nightingale et al. (2000a; N00, dotted black
line), normalized to Sc=720 are also shown. Grey closed circles
indicate outlier points discussed in text.

water DMS levels without the equivalent increase in atmo-
spheric DMS. In addition to the possibility of biofouling, this
increase could be due to near surface seawater concentration
gradients. This possibility also seems unlikely because the
wind speeds were high enough during this period to cause
increased mixing in the water column. It is also possible
that the patch of increased DMS levels was highly localized
and did not influence the air/sea flux over the footprint of the
measurement.
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Fig. 7. Wind speed dependence of computed gas transfer coeffi-
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3.2 Knorr 06 DMS air/sea fluxes and gas transfer coeffi-
cients

The measured air/sea DMS fluxes on this cruise were
uniformly from sea to air, with a lognormal frequency
distribution (Fig. 4). Average fluxes for the up-
welling, gyre, and subpolar oceanographic regions were
17.6±17.2µmol m−2 d−1 (n=22), 5.74±6.57µmol m−2 d−1

(n=22), and 5.54±2.53µmol m−2 d−1 (n=11), respectively.
Gas transfer coefficients were computed by dividing the ob-
served air/sea fluxes by the air/sea concentration differences.
For comparison to other data, the computed transfer coeffi-
cient values were normalized to a Schmidt number (Sc) of
720 (DMS at 25◦C; Saltzman et al., 1993) based on the sea
surface temperature of the individual measurements, and as-
suming a Sc−1/2 dependence (Watson et al., 1991). These
k720 values ranged between 0.5–11 m d−1 (Fig. 6). There are
three notable outliers in the data with respect to the wind
speed dependence. These data correspond to the anoma-
lously high fluxes measured in the equatorial upwelling re-
gion, on DOY 13 to 14. The mean atmospheric DMS lev-
els were anomalously high during these flux measurements,
compared to the surrounding data. However, seawater DMS
levels were only slightly elevated. There is no evidence for
atypical analytical error associated with these measurements.
The data are shown in Fig. 6 (top), but excluded from the dis-
cussion of the wind speed dependence ofk below. There are
also lower qualityk values shown in the top panel of Fig. 6,
which are not included in the discussion of the wind speed

dependence ofk. These data points either had apparent wind
directions of±60 to 90 from the mast or had 1σ /mean Cw
values greater than 30%, and correspond to the fluxes indi-
cated with plus signs in Fig. 4.

The gas exchange coefficients from Knorr06 exhibit a
positive, roughly linear dependence on wind speed. A lin-
ear regression ofk vs. U , using only the highest quality
data, gave the relationshipk=0.46*U−0.24 (r2=0.59). The
k vs.U relationship is similar to the Wanninkhof (1992) pa-
rameterization at the lower end of the wind speeds encoun-
tered in this cruise (2 to 6 ms−1). However, at wind speeds
higher than 6 ms−1, the data from this study show no evi-
dence of a quadratic relationship to wind speed. The N00
wind speed relationship, which has a lower slope than the
W92 quadratic relationship, is in better agreement with the
Knorr 06 data at all wind speeds.

3.3 Comparison with previous eddy covariance DMS mea-
surements

Three previous studies have reported DMS eddy covariance
fluxes from the open ocean, using measurement techniques
similar to this work. Huebert et al. (2004) measured DMS
fluxes in the Eastern Pacific during November 2003 (H04),
Blomquist et al. (2006) measured DMS fluxes in the Sargasso
Sea in summer 2004 (BIO), and Marandino et al. (2007) mea-
sured DMS fluxes in the western/central equatorial and North
Pacific during May–July 2004 (PHASE I). Figure 7 is a plot
of k vs. wind speed for all of the cruises. There is good agree-
ment between all of the datasets at wind speeds lower than
4 ms−1 and considerable overlap between PHASE I, BIO,
and this work up to 6 ms−1. The data from H04 are slightly
lower than the other studies, particularly in the wind speed
range of 4 to 6 ms−1. At wind speeds higher than 6 ms−1,
the PHASE I gas transfer coefficients are significantly higher
than all of the other datasets and exhibit steeper wind speed
dependence. If it is assumed that all of the relationships pre-
sented are linear, the range of slopes of thekDMS vs.U rela-
tionship is about±28%.

There is some indication of a sea surface temperature
trend in the gas transfer coefficients for the different cruises.
PHASE I in the western/central Pacific was warmest, with
temperatures up to 30◦C, and that cruise exhibits the high-
est gas transfer coefficients. H04 in the wintertime eastern
equatorial Pacific had the lowest sea surface temperatures,
approximately 23◦C, and exhibited the lowest gas transfer
coefficients. The two other cruises had intermediate temper-
atures and gas transfer coefficients. There is no obvious rea-
son why this relationship should occur and further measure-
ments under a wider range of conditions will be needed in
order to validate the trend.

The differences in wind speed-dependence of k among
these studies may reflect real differences in gas exchange in
the different environments sampled, due to variations in mi-
crolayers, boundary layer dynamics, wind wave interactions,
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etc. However, methodological differences cannot be ruled
out entirely. This study and Marandino et al. (2007) em-
ployed a correction to compensate for attenuation of high
frequency DMS fluctuations in inlet tubing. This correc-
tion is based on the assumed similarity in frequency con-
tent of DMS flux and sensible heat flux, as measured on
the bow mast. Because both the Knorr06 and PHASE I
cruise data were treated identically, this correction does not
explain the differences between them. Huebert et al. (2004)
and Blomquist et al. (2006) used shorter lengths of inlet tub-
ing with less attenuation and did not perform the high fre-
quency correction. Huebert et al. (2004) estimated 3–8% loss
at 6 ms−1, based on similarity to water vapor fluxes. There-
fore, this is a small effect at the low wind speeds characteriz-
ing most of the DMS data. However, at higher wind speeds,
the uncorrected data may underestimate the actual flux.

The use of Sc−1/2 to normalize the data from the various
studies may also introduce uncertainty into the comparison
of data sets collected at different sea surface temperatures.
Deliberate tracer experiments by Watson et al. (1992) and
Nightingale et al., (2000b) support a Sc−1/2 dependence of
gas transfer for the wind speeds sampled here. However,
relatively few such studies have been carried out. Asher et
al. (2004) noted that Sc−1/2 did not correctly describe the re-
lationship betweenkheat andkCO2 observed in GASEX-01.
They argued that Sc-dependence may vary based on the con-
ditions, as predicted by surface penetration theory (Harriott,
1962). Variations in Sc-dependence alone are unlikely to ex-
plain the variability between the variouskDMS studies. For
example, a Sc−1.4 dependence would be needed to reconcile
the slopes of the PHASE I and Knorr06 data sets.

3.4 Comparison with previous eddy covariance CO2 mea-
surements

Figure 8 is a comparison of the GASEX 1998 and 2001
(McGillis et al., 2001, 2004) eddy covariance CO2 measure-
ments with the DMS measurements from this study. The
three cruises exhibit clear differences in thek vs.U relation-
ship. As discussed earlier, thek values from Knorr06 have
a linear relationship with wind speed. GASEX-98 appears to
have a cubic dependence on wind speed, with relatively high
k values at 1 and 2 ms−1. GASEX-01 shows almost no de-
pendence on wind speed, at least up to 7 ms−1. The GASEX-
01k values are the highest of all three cruises, GASEX-98 is
lowest, and the data from this study are intermediate. Above
7 ms−1 there is limited data, but good agreement between all
three cruises.

Again, there appears to be some relationship between sea
surface temperature andk. Temperature affects gas trans-
fer via bubble breaking, through its effect on solubility and
Schmidt number. At the low to intermediate wind speed con-
ditions of these studies, bubble transfer is not believed to be
a significant component of DMS gas transfer (Woolf, 1997;
Blomquist et al., 2006). However, bubbles may be impor-
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 Fig. 8. Wind speed dependence of computed gas transfer coef-
ficients from this work (solid black circles), the GASEX 1998
(McGillis et al., 2001) cruise (open squares), and the GASEX 2001
(McGillis et al., 2004) cruise (grey closed squares), normalized to
Sc=720. Error bars represent±1 s.e.
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Fig. 9. Comparison betweenk720 for DMS measured in this
study and those measured by various dual tracer experiments. The
Knorr 06 data has been binned by wind speed and error bars are the
standard error of the mean. All the data has been normalized to a
Sc=720.

tant for CO2 at wind speeds as low as 5 ms−1 (Woolf, 1997).
The effect of bubbles may therefore partially explain the dif-
ference betweenk values for the GASEX cruises. How-
ever, the functionality of the wind speed dependence is op-
posite to that found in the DMS data comparison (i.e. the
warmest CO2 data set has little wind speed dependence but
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 Fig. 10. Modeled and measured wind speed dependence of the gas transfer coefficient using the NOAA-COARE model. Left panel –
Knorr 06. The red, green, and blue lines represent modeledk values for the upwelling, gyre, and subpolar regions, respectively. Right panel
– PHASE I cruise. The red, orange, green, and blue lines represent modeledk values for the warm pool, equatorial upwelling, gyre, and
subpolar front regions, respectively. Solid black circles are measuredk values from Knorr06 and open circles are PHASE I measuredk

values. Thek values are not normalized by Schmidt number. Modeledk values include bubble parameterization. Model tunable parameters
were A=1.3 and B=1.0.

the warmest DMS data has the highest wind speed depen-
dence). McGillis et al. (2004) hypothesized that in certain
oceanic regions the diurnal heat budget may be the primary
physical forcing on gas exchange. Diurnal variations in solar
insolation drive stratification and buoyancy effects at the sea
surface, both of which enhance gas exchange. Stratification
due to daytime insolation leads to momentum trapping and
greater turbulence, while nighttime sea surface cooling leads
to greater buoyancy driven gas exchange. This hypothesis
could explain the possible sea surface temperature trend in
k vs.U and the lack of a significant wind speed dependence
in the GASEX 2001 data. However, the western/central Pa-
cific PHASE I cruise was in a region with similar solar in-
solation patterns and the wind speed dependence ofk was
much greater than that of GASEX-01.

3.5 Comparison with dual tracer studies

Figure 9 is a comparison between this data and several dual
tracer studies (SAGE-Ho et al., 2006; N. Sea-Nightingale et
al., 2000b; SOFEX-Wanninkhof et al., 2004; Georges Bank-
Wanninkhof et al., 1993; FSLE-Wanninkhof et al., 1997;
IRONEX-Nightingale et al., 2000a; GASEX-McGillis et al.,
2001). The dual tracerk values are in good agreement with
the DMSk values over the wind speed range measured dur-
ing Knorr 06. It is apparent that the functional form of the
dual tracerk wind speed dependence is also basically linear,
but the low point at 3 ms−1 has a big effect on the fit to the
data. If that point is neglected, thek vs.U slope for the dual
tracers is very similar to that of the DMS values. This is
encouraging because the dual tracer studies were performed
in widely different oceanographic regions from this study.
There is general agreement betweenk values measured us-
ing eddy covariance techniques and dual tracer techniques

andk values for DMS, CO2, and He/SF6. Since He/SF6 are
inert gases, this similarity may indicate that biological and
chemical sources and losses in the sea surface do not affect
the gas transfer coefficient of DMS. There is no indication of
a sea surface temperature trend in the dual tracer gas transfer
coefficients.

3.6 Comparison of DMS measurements with the
NOAA/COARE gas transfermodel

The NOAA/COARE gas transfer model is a parameteriza-
tion that estimates gas transfer coefficients based on mea-
surable bulk parameters, such as wind speed, sea surface
temperature, seawater specific humidity, air temperature and
humidity, downwelling shortwave radiation, net longwave
radiation, and air/sea concentration gradient (Fairall et al.,
2000; Hare et al., 2004). Turbulent wind and buoyancy-
driven transfer in the air and turbulent transfer in the wa-
ter are parameterized using Monin-Obhakov similarity the-
ory, with the TOGA-COARE 3.0 bulk parameterizations of
heat, moisture, and momentum (Fairall et al., 1996b, 2000).
Transport through the interfacial sublayers is governed by
diffusion, dissipation, and buoyancy. In this model, a Saun-
ders coefficient is used to describe the contribution of the
total wind stress acting tangentially at the surface to drive
mixing of the viscous ocean side sublayer (Saunders, 1967;
Fairall et al., 1996b). This coefficient encapsulates contribu-
tions to mixing from both shear and buoyancy. The model
also incorporates gas transfer via bubbles, using a parame-
terization similar to that of Woolf (1997). Bubble transfer is
not important for DMS at the wind speeds discussed here.

Gas transfer coefficients for DMS were computed us-
ing the NOAA/COARE model, for 7 scenarios representing
mean conditions of the various oceanographic regions from
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Table 1. Inputs for each NOAA/COARE model runa .

Model run Ts (◦C) Ta (◦C) qs (g/kg) qa (g/kg) Latitude

PHASE I warm pool region 29.57 28.62 25.82 18.43 8◦ N
PHASE I equatorial region 28.87 28.19 24.79 18.14 3◦ N
PHASE I gyre region 23.25 22.03 17.79 11.62 15◦ N
PHASE I subpolar front region 15.03 13.79 10.54 8.02 45◦ N
Knorr 06 upwelling region 24.41 23.92 18.98 14.36 8◦ S
Knorr 06 gyre region 24.89 23.82 19.54 12.95 22◦ S
Knorr 06 subpolar region 21.99 21.44 16.38 12.71 34◦ S

a All runs were carried out using downwelling solar flux =
141 W m−2, downward IR flux = 419 W m−2, rain rate = 0 mm h−1,
planetary boundary layer depth = 600 m, atmospheric pressure =
1010 mbar, sensor measurement height = 10 m, cool skin switch on
= 1, wave switch off = 0. Wind speed range for each run was 0 to
15 ms−1.

Knorr 06 and the western/central Pacific PHASE I cruise
(Table 1). The NOAA/COARE model exhibits reasonable
agreement with the low wind-speed gas transfer coefficients
(2 to 4 ms−1) from this cruise and the PHASE I cruise.
However, the model underestimates the gas transfer coeffi-
cients and the slope of the observedkDMS vs. U relation-
ship (Fig. 10) at intermediate wind speeds (4 to 8 ms−1).
This result is not sensitive to minor changes in the input
conditions (e.g. air temperature, sea surface temperature), as
shown by the curves in Fig. 10. The slope ofk vs.U in the
NOAA/COARE model is strongly influenced by the param-
eterization of transport through the diffusive sublayer. In the
NOAA/COARE model, flux (F ) is parameterized as follows:

F =
u∗a1C

(ra + rw)
(2)

in which u∗a is the friction velocity in air side units,1C is
the air/sea concentration gradient,ra is the air side resistance
to transfer andrw is the water side resistance to transfer. A
two layer model is used to parameterizerw,

rw =

√
ρw

/
ρa

[
hwS

1/2
cw + ln(zw/δw)/κ

]
(3)

where the term on the left of the plus sign is the diffusive sub-
layer and the term on the right is the turbulent sublayer,ρ is
the density of air and water (subscriptaandw, respectively),
zw is the reference depth of the water,δ is depth of the diffu-
sive sublayer, andκ is the von Karman constant (0.4). Gen-
erally, the diffusive term is an order of magnitude larger than
the turbulent term, indicating that there is more resistance to
flux in the diffusive sublayer than in the turbulent sublayer.
The wind speed dependence of the diffusive sublayer is in-
fluenced by thehw term,

hw =
3

Aφ
(4)

where3 = 13.3 (Soloviev and Schlussel, 1994),A is a tun-
able constant, andφ is an empirical parameterization that in-
corporates the Saunders coefficient (Fairall et al., 1996b) and
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 Fig. 11. The wind speed dependence of the DMS gas transfer coef-
ficient measured in Knorr06 (closed circles) compared to various
NOAA/COARE model runs with different tunable parameterA val-
ues (A=2.0, blue line;A=1.7, green line;A=1.3, red line).

water side buoyancy effects. For the values of buoyancy flux
relevant to these studies,φ approaches an asymptotic value
of 1 at wind speeds greater than about 3 ms−1. At lower wind
speeds,φ has the effect of enhancing gas transfer and “flat-
tening” thek vs.U relationship.

The NOAA/COARE model was successfully used to sim-
ulate thekCO2 vs. U relationship obtained during GASEX-
98, with adjustment ofA and the bubble-exchange scaling
parameterB (Woolf, 1997). Hare et al. (2004) showed that
NOAA/COARE does not simulate the much weaker wind
speed dependence ofkCO2 observed on GASEX-01, and at-
tributed this to the oversimplification of mixed layer dynam-
ics in the model. Blomquist et al. (2006) adjusted of the
tunable parameters of the NOAA/COARE model to simulate
the kDMS data from BIO and H04. They found reasonable
agreement between the modeled and measured values, but
the slope of the wind speed dependence was slightly too low.

Figure 11 illustrates the sensitivity of the model to varia-
tions in theA parameter. The Knorr06 data was reasonably
well simulated withA=1.7. The model overestimateskDMS
at the lowest wind speeds because increasing theA value in-
creases thek values over the entire wind speed range. It is
not possible to achieve similar agreement with the PHASE
I data simply by increasing the value ofA. IncreasingA to
the level needed to match the slope of that data elevatesk at
low wind speeds to unrealistic levels. Matching both the low
wind speedkDMS and the slope ofkDMS vs. U for PHASE
I would require altering the physical parameterization of gas
exchange in the model.
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3.7 Possible influence of near surface gradients onkDMS

The DMS-based gas transfer coefficients presented in this
and other similar studies could be affected by near surface
concentration gradients. The gas transfer coefficients com-
puted in this study are based on seawater DMS measurements
from the ship bow pumping system, with an average depth of
5 m. It is generally assumed that DMS measurements from
bow pumping systems represent the sea surface bulk con-
centration (Kettle et al., 1999 and references therein). The
calculation ofk from the observed flux implicitly assumes
that the near surface (e.g. 0 to 5 m) represents a layer of con-
stant flux, in which DMS is neither produced nor destroyed.
However, very few studies have examined the validity of
this assumption. Near surface gradients can arise from pho-
tochemical loss and biological production/loss (Kieber and
Jiao, 1996). Stratification caused by strong salinity gradients
or solar heating can isolate the surface from waters below,
leading to depletion of DMS.

Most published depth profiles collected with CTDs have
only one or two samples in the upper 5 m (e.g. Dacey et al.,
1998; Wong et al., 2005). Such studies exhibit wide vari-
ability in profile shapes, including uniform profiles, profiles
indicating both surface depletion and enhancement, and pro-
files with alternating sharp positive and negative gradients.
Zemmelink et al. (2005) examined the difference in DMS
levels between 10 cm and 5 m on several different days in
coastal waters off Martha’s Vineyard. They observed deple-
tions of DMS near the surface ranging from 10 to 66%. They
also measured DMSP, DMSO, and bacterial number and de-
duced that the DMS gradient was a result of ventilation since
DMSP and bacteria gradients were nearly uniform. Simul-
taneous flux measurements would allow this inference to be
tested, but such studies have not yet been carried out.

The interpretation of the DMS-based gas transfer coeffi-
cients would also be affected by biological or chemical en-
richment/depletion of DMS in the sea surface microlayer.
There is a very limited basis on which to assess such pro-
cesses because of the difficulty of measuring microlayer gas
concentrations. Both enrichment and depletion have been
observed in various studies, but the applicability of these
measurements to the open ocean are unclear (Matrai et al.,
2008; Yang et al., 1999, 2005a, 2005b, 2008; Zemmelink et
al., 2005a, b).

4 Conclusion

The gas transfer coefficients derived from the Knorr06 tran-
sect in the eastern South Pacific are in reasonable agreement
with three prior open ocean eddy covariance studies of DMS
gas transfer, covering a variety of oceanographic conditions.
kDMS is linear in wind speed over the range covered in these
studies (2 to 8 ms−1). The slopes ofkDMS vs.U relationships

from the four studies vary by about±28%, with the Knorr06
at the low end of the range.

The k vs. U relationship from Knorr06 has a slope in-
termediate between the two very different CO2 eddy covari-
ance data sets from GASEX-98 and GASEX-01 in the North
Atlantic and Eastern tropical Pacific, respectively. None of
the DMS studies exhibit the striking lack of wind speed-
dependence from 3 to 7 ms−1 observed on GASEX-01. That
is surprising, given that both Knorr06 and PHASE I sampled
waters in the eastern, central, and western tropical Pacific
subject to similar strong diurnal forcing of water column sta-
bility and vertical mixing encountered on GASEX-01. The
apparent difference in behavior ofkCO2 andkDMS in tropical
waters remains unexplained, and will probably require more
detailed field measurements to resolve.

The NOAA/COARE gas transfer model under-predicts the
wind speed dependence ofkDMS data from this and previ-
ous DMS field studies. This is particularly striking for the
PHASE I data. As noted by Hare et al. (2004), the model
does not capture the full dynamics of the surface mixed layer,
particularly with respect to daytime stratification and noc-
turnal convective mixing. However, based on the results
of GASEX-01, such processes tend to flatten, rather than
steepen thek vs. U slope (McGillis et al., 2004). It is pos-
sible that the relatively steep slopes of thekDMS vs. U are
an “artifact” of systematic near surface gradients in DMS.
However, if present, such gradients would likely cause diur-
nal variability inkDMS which is not evident in the Knorr06
or PHASE I data sets.

There are many challenges involved in unraveling the
complex physics, chemistry, and perhaps biology of air/sea
gas exchange. Current understanding is observationally lim-
ited, and progress will come from the application of a diverse
set of techniques for probing the air/sea interface. Because
of the many scales of motion involved in turbulent, near sur-
face processes no single tracer can capture the full behavior
of the interface. The DMS eddy covariance measurements to
date represent a coherent dataset with interesting similarities
and differences from other measures of air/sea gas exchange.
Further measurements of this type are needed in order to as-
sess the full range of oceanic conditions and the relationship
between this and other tracers.
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