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Abstract

Quantification of regional cardiac function is a central goal of cardiology. Multiple methods, 

such as Coherent Point Drift (CPD) and Simultaneous Subdivision Surface Registration (SiSSR), 

have been used to register meshes to the endocardial surface. However, these methods do not 

distinguish between cardiac chambers during registration, and consequently the mesh may “slip” 

across the interface between two structures during contraction, resulting in inaccurate regional 

functional measurements. Here, we present Multilabel-SiSSR (M-SiSSR), a novel method for 

registering a “labeled” cardiac mesh (with each triangle assigned to a cardiac structure). We 

compare our results to the original, label-agnostic version of SiSSR and find both a visual and 

quantitative improvement in tracking of the mitral valve plane.
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1 Introduction

Fully-automated quantification of regional cardiac function is a central goal of cardiology. 

Multiple methods, such as Coherent Point Drift (CPD) [13] and Simultaneous Subdivision 

Surface Registration (SiSSR) [19], have been used to register meshes to the endocardial 

surface of the left ventricle (LV). However, there is increasing interest in quantifying 

function beyond the LV, including the left atrium (LA). Although these methods could 

in principle be extended, naïve application to a multi-chamber mesh does not actually 

incorporate the additional information which the labels provide into the registration. 

Consequently, the mesh may “slip” across the interface between two structures during 

contraction, resulting in inaccurate regional functional measurements. Here, we present 

Multilabel-SiSSR (M-SiSSR), a novel extension of the SiSSR method which may be used to 

register a “labeled” cardiac mesh (where each cell is labeled according to its corresponding 

structure). We compare our results to the original, label-agnostic version of SiSSR, and find 

both a visual and quantitative improvement in tracking of the mitral valve plane.
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2 Methods

2.1 Dataset and Annotation

100 3D+Time CCT scans were collected retrospectively from three institutions as part of 

an IRB-approved study. Segmentation of the first acquired and end systolic (ES) frames 

was performed using ITK-Snap [20,21]. The segmentation was initialized using spheres 

with radius 5 throughout the anatomy of interest, and the segmentation was allowed to 

proceed until the structure was filled. Region competition force and smoothing (curvature) 

force were left at the default values of 1.0 and 0.2, respectively. The left and right inferior 

and superior pulmonary veins (PVs), LA, left atrial appendage (LAA), LV, left ventricular 

outflow tract (LVOT), and ascending aorta (AA) were separately labeled. Planes separating 

adjacent structures were chosen using the ITK-Snap scalpel tool.

2.2 Left Heart Segmentation

The V-Net [10], an extension of the U-Net [14] for 3D segmentation, was chosen 

as the basic network for prediction of a segmentation Sf from an input volume ℐf. 

This architecture consists of a convolutional layer, a batch-normalization layer, and a 

rectified linear unit (ReLU) repeated in sequence. Every second cycle, a max-pooling 

step or an interpolation step is inserted, along the downsampling- and upsampling-paths, 

respectively (four downsampling/upsampling steps total in our implementation). With each 

downsampling and upsampling step, the length of the feature vector was doubled and 

halved, respectively.

Data augmentation consisted of random uniform translation (up to 10% of the image width), 

rotation (up to 15°), and scaling (up to 10%). All networks were trained using five-fold cross 

validation for 96 epochs, and all images from a single patient were partitioned into the same 

cross-validation fold. The learning rate was initialized to 10−3 and decreased by a factor of 

10 every 24 epochs. The loss function was the categorical cross entropy between the output 

of the final softmax layer and the ground truth segmentation. The batch size, initial feature 

map depth, and spacing to which the input images were isotropically resampled were treated 

as hyperparameters.

2.3 Boundary Candidate Selection

The first partition (20 subjects, 40 image volumes) was used for all subsequent experiments. 

Given a segmentation Sf, we calculated the segmentation surface using the Cuberille 

algorithm [5]. In order to appropriately limit the scope of this work, only the immediately 

relevant labels (LA, LV, and LVOT) were retained. The boundary candidates Cf were 

calculated as the centroids of the surface mesh cells.

2.4 Mesh Model Generation

Next we derived a template mesh T from the mid systolic segmentation SMS; the mid 

systolic phase was chosen so as to minimize the required displacement of the model during 

registration. The Cuberille algorithm was again used to derive an initial triangle mesh, and 

each cell was associated with the label of the adjacent foreground structure. Our application 
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requires that the extracted surface be a water-tight 2D manifold, and so the Cuberille 

algorithm was preferred over the ubiquitous Marching Cubes algorithm [9] due to the latter’s 

well-known topological inconsistencies [4,11,12]. The resulting mesh was then decimated to 

a target number of cells using successive edge contraction. Two strategies were compared: 

midpoint decimation (in which the contracted edge is placed at the geometric mean of the 

two vertices) and Lindstrom-Turk decimation (in which the new vertex is placed so as to 

preserve the volume of the original model, [7]).

We found that naïve application of either method to a multi-label mesh resulted in distorted 

boundaries between structures and poor approximation of the initial mesh. To mitigate this 

effect, edge contraction was handled differently depending on the relationship between the 

candidate edge and the label boundaries, according to the following rules:

• “Interior” edges (both vertices surrounded by cells of the same label) and 

“boundary” edges (flanked by cells of differing labels) were contracted as usual, 

using the respective decimation technique.

• “Hanging” edges (one vertex lying on a structure boundary, the other surrounded 

by cells entirely of the same label) were contracted to the boundary vertex.

• “Bridging” edges (flanked by cells of the same label, but both vertices lying on 

structure boundaries) were not candidates for contraction.

2.5 Subdivision Surface Evaluation

Following the notation given in [19], let X ∈ ℝ3 × (C × F) be the matrix of control point 

coordinates defining the sequence of template meshes Tf, where C is the number of control 

points and F is the number of cardiac phases. Displacements from the elements of X serve as 

the 3 × C × F parameters of the optimization. This control point matrix defines F triangular 

Loop subdivision surfaces, which we use to model the endocardial and endovascular surface. 

The position of a point u ∈ ℝ3 on the surface of Tf may be calculated in terms of the matrix 

X, the frame f, the patch index i, and a set of parametric coordinates t = (r, s), which are 

local to a given patch. We define such a function χ:t, Xf, i ℝ3 as follows:

χ t, Xf, i = Xf, i PkAAn − 1 ⊤ b (t) . (1)

Here n is the number of required subdivisions, A is the extended subdivision matrix, A is the 

bigger subdivision matrix, Pk is the picking matrix, b is the column of basis functions, and t
is a tuple representing the transformed patch coordinates. We refer the reader to [16,19] for 

precise definitions of these matrices.

2.6 Multilabel SiSSR (M-SiSSR)

Registration of the sequence of template meshes T to the boundary candidates C was 

performed using Levenberg-Marquardt least squares optimization. In the SiSSR algorithm, 

the primary residuals Ecf were the Cartesian components of the distance between the points 
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sampled from the surface of Tf and the nearest point in the corresponding boundary 

candidate mesh Cf:

Ecf = ∑
f, i, t

uf, i, t − ϕ uf, i, t
2 . (2)

Here, ϕ:ℝ3 ℝ3 is the function which computes the nearest point in the boundary candidate 

mesh, and is represented internally as a vector of Kd trees. In M-SiSSR, we propose a 

modified cost function Ecf (relying on a modified function ϕ:ℝ3 ℝ3), which represents 

the nearest point of the same label in the corresponding boundary candidate mesh. Internally, 

this is represented as a vector of vectors of Kd trees (one for each label and cardiac phase).

Some amount of regularization is necessary to encourage biologically plausible surfaces 

and control point trajectories in time. In this work, we consider thin plate energy Etp
(which encourages surface smoothness in the second derivative), acceleration Eac (which 

encourages smooth control point trajectories in time), and edge length Eel (which provides 

tension and discourages “foldover” artifacts), as defined in [19].

The overall loss is formulated as follows:

E = min αcfEcf + αtpEtp + αacEac + αelEel

Here the coefficients αcf, αtp, αac, and αel are scaling factors, which were treated as 

hyperparameters (defined as in [19]).

2.7 Implementation

The CNN segmentation architecture was implemented in Python 3.6.8 using the Keras 

2.3.1 interface to Tensorflow 1.15.0 [1] in an Ubuntu 18.04 Docker container. Models were 

trained on Amazon Web Services p2.xlarge instances with a single NVIDIA K80 GPU with 

12GB memory. Mesh visualization was performed using VTK [15]; mesh decimation was 

performed using CGAL [18]; mesh registration was implemented using the Ceres Solver [2]; 

and the remaining mesh processing was performed using ITK [6].

3 Results

3.1 CNN Segmentation

The CNN was trained for a range of spatial resolutions and feature map depths. The 

best-performing network for the LA, LV, and LVOT was that with images resampled to 2mm 

isotropic with 32 channels in the initial feature map and trained with a batch size of 4; the 

predictions of this network were used for all subsequent experiments (Table 1).

3.2 Template Mesh Generation

When generating the template mesh, we target a specific number of faces in the decimation 

algorithm. As the number of faces increases, the computational time of the mesh registration 
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as well as the ability to represent fine anatomical detail increases, while the regional 

influence of a particular control point decreases. As expected, Jaccard index increased as 

a function of the target number of faces (Fig. 1) for both midpoint and Lindstrom-Turk 

decimation techniques.

Moreover, in terms of Jaccard index, the Lindstrom-Turk method outper-formed the 

midpoint method for any fixed target number of faces. Note, for example, that even at 

64 faces, the LVOT is preserved in the Lindstrom-Turk model (Fig. 2b), whereas it is 

entirely lost in the midpoint model (Fig. 2h). Note also that for models generated via the 

Lindstrom-Turk method, there was noticable loss of detail around certain features such as 

the cardiac apex below 256 faces, but conversely there was minimal improvement either 

in Jaccard index or in subjective anatomic detail above approximately 256 faces. For 

these reasons, the 256-face Lindstrom-Turk model was chosen as the starting point for 

registration. Representative models are shown in Fig. 2.

As discussed above, naïve application of either midpoint or Lindstrom-Turk decimation 

algorithm to a multi-label mesh without careful preservation of the edge resulted in 

unacceptable distortion of the structure boundary (Fig. 3c). However, modification of the 

decimation procedure to avoid large displacements in the boundary edges resulted in a 

marked visual improvement (Fig. 3a).

3.3 Determining Scaling Factors

The coefficients of the regularization terms were explored in a stepwise fashion (Fig. 

4), using Jaccard index and triangle condition (measures of segmentation accuracy and 

mesh quality, respectively) as outcomes. The goal is to maximize Jaccard index while 

minimizing triangle condition. The coefficients chosen for the final registration algorithm 

were Etp = 10−1, Eac = 10−1, and Eel = 10−0.5.

3.4 Comparison to Label-Agnostic Approach: M-SiSSR vs SiSSR

As a comparison, the registration was run using the same regularization weight, but without 

accounting for the labels (i.e., using the label-agnostic SiSSR algorithm). Representative 

results are shown in Fig. 5. In the meshes registered through using the M-SiSSR method 

(Fig. 5a, 5d), the boundary between the LA and LV tracks that of the boundary candidates 

(Fig. 5b, 5e), excursing downward during systole. By contrast, in the meshes registered 

through using the SiSSR method (Fig. 5c, 5f), the boundary stays stationary, lying below and 

above that of the boundary candidates in the ED and ES frames, respectively.

Additionally, the centroid of the mitral valve annulus (approximated by the geometric 

mean of all points lying on the boundary between the LV and LA) was calculated at end 

diastole and end systole for the boundary candidate meshes, the meshes registered using the 

M-SiSSR method, and those registered using the SiSSR method. The error (as judged by 

the Euclidean distance between the boundary candidate and registered mesh centroids) was 

significantly lower for the M-SiSSR meshes compared to the SiSSR meshes both at end 

diastole (2.5 mm vs 3.9 mm, p < 10−2) and at end systole (2.8 mm vs 5.6 mm, p < 10−7).
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We also calculated SQUEEZ (a metric of regional cardiac function used in CCT, [13]) from 

both the SiSSR and M-SiSSR methods. At left ventricular end systole, we expect there to 

be a sharp transition in SQUEEZ between the contracting LV and the filling LA. And in 

fact we do see such a sharp transition at the mitral valve plane in the M-SiSSR meshes (Fig. 

6a), whereas in the SiSSR method, there is a gradual transition that appears to underestimate 

both LV contraction and LA expansion.

4 Discussion

In this work, we present a fully-automated pipeline in which a CNN is used to segment 

the left heart and connected vasculature from a sequence of CCT volumes; a labeled 

Loop subdivision surface is generated from the mid-systolic frame; and this model surface 

is registered to the CNN segmentations across all phases simultaneously, accounting for 

the label in the registration. The result is a patient-specific model which is topologically 

consistent across all timepoints, and therefore may be used to calculate regional function.

The SiSSR algorithm makes use of data structures and techniques described by Loop [8], 

Stam [16], Cashman [3], and Stebbing [17]. Compared to the first iteration of the SiSSR 

algorithm [19], the present work has a number of notable advantages and improvements. In 

particular, experiments were performed using human subjects rather than canine hearts, and 

the number of subjects included was higher (from 13 cases to 20); the segmentations were 

derived using a neural network, rather than through semi-automated level set segmentation; 

the LA and LVOT were included in the registration, rather than the LV alone; and the 

algorithm was modified to incorporate the identity of the underlying structure into the 

registration.

Although the number of subjects is increased from [19], the absolute number is still small; 

future work should be expanded to include the remaining 80 cases in the dataset. The LV 

myocardium, papillary muscles, and right heart are all of great interest, but are not included 

here; these should all be explored in future work. And although here we demonstrated a 

quantitative improvement in the tracking of the mitral valve compared to the label-agnostic 

SiSSR algorithm in terms of the error between the mitral valve centroids, in future work, 

it would be useful to additionally report an error metric with more immediate clinical 

relevance, such as mitral annular plane systolic excursion (MAPSE).

We hope that this work represents a substantive contribution to the use of subdivision 

surfaces for modeling of cardiac structures, and to the clinically important goal of 

quantifying regional cardiac function from CCT images.
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Fig. 1. Template mesh resolution vs Jaccard Index.
Jaccard index is plotted as a function of the number of faces targeted in the mesh decimation 

algorithm (either Midpoint or Lindstrom-Turk). Note that there is a precipitous decline in 

accuracy below 256 faces, and that the Lindstrom-Turk method outperforms the midpoint 

method at all resolutions.
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Fig. 2. Template mesh resolution.
Representative template meshes T are shown at 64 (b, h), 128 (c, i), 256 (d, j), 512 (e, k), 

and 1024 (f, l) faces. The corresponding boundary candidate mesh C (a, g) is also shown for 

comparison. In this and subsequent figures, the LA is green, the LV is red, and the LVOT is 

blue.
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Fig. 3. Edge preservation.
Template meshes T generated with (a) and without (c) edge preservation. The boundary 

candidates for the mid systolic frame are shown for comparison (b).
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Fig. 4. Hyperparameter search.
(a) Thin plate energy parameter search, with αcf = 1.0. (b) Acceleration parameter search, 

with αcf = 1.0 and αtp = 10−1. (c) Edge length parameter search, with αcf = 1.0, αtp = 10−1, 

and αac = 10−1.
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Fig. 5. Registered meshes.
Registered meshes using label information (a, d) and ignoring label information (c, f), and 

boundary candidates for comparison (b, e). Both ED (top) and ES (bottom) frames are 

shown. The mitral annular plane of the boundary candidate mesh is approximated by a 

dashed yellow line and reproduced over the M-SiSSR and SiSSR meshes. Note that the 

M-SiSSR meshes more closely track the mitral annular plane.
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Fig. 6. SQUEEZ.
Representative meshes registered using (a) and ignoring (b) label information and colored 

according to their SQUEEZ values.
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Table 1.
CNN segmentation performance.

Jaccard index for the LA, LV, and LVOT is reported as a function of image spacing, feature map depth, and 

batch size. The Jaccard index for the best performing network is bolded.

Spacing (mm) Feature Map Depth Batch Size LV LA LVOT

1.0 8 1 71.9 ± 17.3 82.4 ± 12.0 63.6 ± 18.0

1.0 16 1 68.6 ± 21.7 74.7 ± 23.6 53.3 ± 26.7

2.0 8 14 75.3 ± 11.7 75.4 ± 9.8 0.4 ± 0.7

2.0 16 8 78.6 ± 10.0 84.1 ± 7.6 68.1 ± 8.8

2.0 32 4 79.2 ± 11.3 86.1 ± 6.5 70.8 ± 9.7

3.0 8 20 39.6 ± 24.0 42.2 ± 23.8 0.0 ± 0.0

3.0 16 12 68.2 ± 10.4 74.8 ± 6.3 42.9 ± 23.6

3.0 32 6 69.5 ± 9.6 76.1 ± 6.4 59.1 ± 9.4

3.0 64 3 69.6 ± 9.7 76.4 ± 6.4 59.7 ± 10.0
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