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Deborah L. Harrington1,4*†
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University of California San Diego, La Jolla, CA, United States, 3 Department of Radiology, University of California San Diego,
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In Parkinson’s disease (PD) functional changes in the brain occur years before significant
cognitive symptoms manifest yet core large-scale networks that maintain cognition and
predict future cognitive decline are poorly understood. The present study investigated
internetwork functional connectivity of visual (VN), anterior and posterior default mode
(aDMN, pDMN), left/right frontoparietal (LFPN, RFPN), and salience (SN) networks in
63 cognitively normal PD (PDCN) and 43 healthy controls who underwent resting-
state functional MRI. The functional relevance of internetwork coupling topologies was
tested by their correlations with baseline cognitive performance in each group and
with 2-year cognitive changes in a PDCN subsample. To disentangle heterogeneity
in neurocognitive functioning, we also studied whether α-synuclein (SNCA) and
microtubule-associated protein tau (MAPT) variants alter internetwork connectivity
and/or accelerate cognitive decline. We found that internetwork connectivity was
largely preserved in PDCN, except for reduced pDMN-RFPN/LFPN couplings, which
correlated with poorer baseline global cognition. Preserved internetwork couplings also
correlated with domain-specific cognition but differently for the two groups. In PDCN,
stronger positive internetwork coupling topologies correlated with better cognition at
baseline, suggesting a compensatory mechanism arising from less effective deployment
of networks that supported cognition in healthy controls. However, stronger positive
internetwork coupling topologies typically predicted greater longitudinal decline in
most cognitive domains, suggesting that they were surrogate markers of neuronal
vulnerability. In this regard, stronger aDMN-SN, LFPN-SN, and/or LFPN-VN connectivity
predicted longitudinal decline in attention, working memory, executive functioning,
and visual cognition, which is a risk factor for dementia. Coupling strengths of
some internetwork topologies were altered by genetic variants. PDCN carriers of
the SNCA risk allele showed amplified anticorrelations between the SN and the
VN/pDMN, which supported cognition in healthy controls, but strengthened pDMN-
RFPN connectivity, which maintained visual memory longitudinally. PDCN carriers of the
MAPT risk allele showed greater longitudinal decline in working memory and increased
VN-LFPN connectivity, which in turn predicted greater decline in visuospatial processing.
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Collectively, the results suggest that cognition is maintained by functional reconfiguration
of large-scale internetwork communications, which are partly altered by genetic risk
factors and predict future domain-specific cognitive progression.

Keywords: Parkinson’s disease, internetwork functional connectivity, cognition, MAPT, SNCA, genetic variants,
resting state fMRI, independent component analyses

INTRODUCTION

Cognitive decline is common in early stages of Parkinson’s
disease (PD), but diversity exists in the domains affected
suggesting that patterns of neurodegeneration differ amongst
people. The pathophysiological underpinnings of cognitive
changes are complex, involving multiple neurotransmitter
systems (Gratwicke et al., 2015) and large-scale brain networks
(Tessitore et al., 2019), which may be vulnerable to genetic
variants that carry different risks for neurocognitive progression
including α-synuclein (SNCA) (Sampedro et al., 2018a; Ramezani
et al., 2021) and microtubule-associated protein tau (MAPT)
(Williams-Gray et al., 2009; Morley et al., 2012; Sampedro et al.,
2018b). Knowledge about the pathophysiology behind cognitive
changes in PD is largely based on people who already show mild
cognitive impairment (MCI). Yet changes in the brain occur
years before cognitive symptoms manifest (Harrington et al.,
2020, 2021). As optimal treatments depend on early detection,
markers of brain dysfunction that predate MCI and foreshadow
the evolution of cognitive decline are sorely needed.

Across neurological disorders, intrinsic functional
connectivity during resting-state fMRI (rsfMRI) is altered
within core large-scale functional networks that can be identified
using independent component analyses (ICA), a data-driven
technique. The default mode network (DMN) is associated
with internally generated cognitive states including memory
retrieval, and was called a task-negative network as activity
is often suppressed during task-evoked fMRI (Di and Biswal,
2014). Task-positive intrinsic networks include the salience
network (SN), which controls attentional capture, internetwork
switching, and inhibition (Uddin, 2015), and the left and right
frontoparietal networks (LFPN, RFPN), which govern working
memory and executive control (Grady et al., 2016). Although
intrinsic connectivity disturbances within these and other
large-scale networks have been studied in cognitively normal PD
(PDCN) (Tessitore et al., 2012; Amboni et al., 2015; Baggio et al.,
2015; Gorges et al., 2015; Peraza et al., 2017; Hou et al., 2021),
findings are mixed likely due to diverse criteria for cognitive
impairment and small samples of some studies.

Less attention has been paid to large-scale internetwork
communications in PDCN, despite their role in integrating and
segregating different processing resources to support cognition
(Bressler and Menon, 2010). In a non-demented PD cohort, SN-
RFPN and DMN-RFPN couplings were, respectively, reduced
and increased relative to controls (Putcha et al., 2015). Visual
network (VN) internetwork couplings were also reduced in
a mixed PDCN/MCI cohort (Hou et al., 2021), in alignment
with visual cognition disturbances in PD (Weil et al., 2016).
However, little is known about potential large-scale internetwork
disturbances in PDCN. Seed-based approaches, which measure

the strength of connectivity between regions of interest, suggest
that FPN regional couplings with DMN, dorsal attention (DAN),
and/or VN regions are altered in PDCN (Baggio et al., 2015;
Klobusiakova et al., 2019), yet normal in a mixed PDCN/MCI
cohort (Campbell et al., 2020). The strength of FPN-DMN and
FPN-VN regional couplings also increased over 1 year in PDCN
and PD-MCI cohorts (Klobusiakova et al., 2019). Altogether,
it appears that aberrant FPN internetwork communications
may be a prominent feature of PD, despite discrepancies in
interacting networks, which could be linked to different analytic
techniques (Koch et al., 2010; Badea et al., 2017). The cognitive
relevance of internetwork couplings, however, has received scant
attention in PDCN.

The present study investigated internetwork intrinsic
functional connectivity in PDCN and healthy adults in core
networks including the DMN, LFPN, RFPN, and SN. As the
DMN is composed of subsystems that capture the heterogeneous
nature of self-generated thoughts (Andrews-Hanna et al., 2014b),
we studied the anterior DMN (aDMN), which supports self-
generated executive, conceptual, and semantic processes relevant
to PD (Harrington et al., 2020, 2021), and the posterior DMN
(pDMN) which supports episodic and autobiographical memory,
and associative or constructive processes. VN internetwork
connectivity was studied as well since disturbances in visual
cognition are a marker of future dementia (Williams-Gray
et al., 2013). The functional relevance of internetwork coupling
topologies was tested by their correlations with baseline
cognitive functioning. We also examined whether internetwork
coupling topologies predicted 2-year changes in cognition in a
PDCN subsample. To unravel heterogeneity in neurocognitive
functioning, we examined whether genetic variants modulated
internetwork connectivity and accelerated cognitive decline. We
predicted that SNCA expression would alter SN internetwork
connectivity owing to accumulation of α-synuclein in the insula
(Christopher et al., 2014). Tau expression was expected to alter
internetwork topologies comprised of frontal and posterior
cortices (FPN, DMN, VN), which are modulated by MAPT
variants (Nombela et al., 2014; Harrington et al., 2021).

MATERIALS AND METHODS

Participants
Participants were 63 PDCN who met the PD United Kingdom
Brain Bank Criteria and 43 age, sex and education matched
healthy controls. Exclusion criteria included neurological
diagnoses other than PD, psychiatric diagnoses, history of
alcohol or substance abuse, metal in the head, positive MRI
findings, use of anticholinergics or cognitive medications, and
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cognitive complaints. PD volunteers with tremors or dyskinesias
that might cause head motion were excluded. Volunteers were
excluded if they met the Movement Disorders Society Level
II criteria for PD-MCI (Litvan et al., 2012). MCI was defined
as > 1.5 standard deviations below the control group mean
on at least two tests in single or different domains and the
absence of cognitive complaints. There were six de novo PD,
five taking dopamine agonist monotherapy, 26 taking levodopa
monotherapy, and 26 taking levodopa combination therapy.
Testing was conducted while on medication to minimize motion
artifact during scanning. The Institutional Review Board at
the VA San Diego Healthcare System approved the study. All
subjects signed written informed consent.

Neuropsychological Assessments
Participants were administered tests of premorbid intelligence
(Wechsler Test of Adult Reading) and the Montreal Cognitive
Assessment (MoCA), a dementia screening tool. Table 1
summaries the comprehensive test battery used to screen for
MCI (Level II criteria), which contained two tests for each
of five domains including 1) attention and working memory
(Color-Word Naming, CWN; Adaptive Digit Ordering, DOT),
executive functioning (Category Switching, SWA; Color-Word
Inhibition, CWINH), visual and verbal memory (California
Verbal Learning Test, CVLT; Brief Visuospatial Memory
Test, BVMT), visual cognition, which measured visuospatial
processing (Judgment of Line Orientation, JLOT) and visual
organization (Hooper Visual Organization Test, HVOT), and
semantic language, which measured confrontation naming
(Boston Naming Test, BNT) and semantic fluency (Category
Fluency, CAT). Approximately 2-years post-baseline testing, the
same test battery was administered to a subsample of 40 PDCN,
but not control participants. For this follow-up visit, alternative
forms of the tests were used.

Table 1 shows that the groups did not differ in demographics,
premorbid intelligence, or MoCA scores. Although some
participants in both groups had scores that were lower than
the traditional cutoff score of 26 for probable MCI, this
cutoff leads to a high percentage of false positives (Weintraub
et al., 2015; Carson et al., 2018; Faust-Socher et al., 2019).
Indeed, many people with lower MoCA scores (22–25) show
normal neuropsychological testing, and people with high
MoCA scores (26–30) can show MCI on neuropsychological
testing (Rosenblum et al., 2020). That said, no participant
with lower MoCA scores exhibited MCI using comprehensive
neuropsychological testing, which is the gold standard. The
PDCN group had significantly lower scores than controls on
verbal and visual memory long delay free recall (CVLT; BVMT)
and both tests of visual cognition (JLOT; HVOT). This indicates
a decline at the group level, but individual participants did not
exhibit cognitive decline indicative of MCI.

Genotyping
Oragene-500 kits1 were used to collect whole saliva samples
(2 mL). TaqMan assays were used to genotype SNCA and MAPT

1https://www.dnagenotek.com

TABLE 1 | Demographic, clinical, and cognitive characteristics.

PD (n = 63) HC (n = 43) p ηp
2

Age (years) 65.4 (6.4) 64.1 (8.5) 0.37 0.01

Education (years) 17.0 (2.1) 17.0 (2.1) 0.88 0.00

Sex (% females) 41.30% 44.20% 0.77

Handedness (% right-handed) 82.50% 88.40% 0.58

Wechsler test of adult reading 44.5 (5.0) 45.6 (3.8) 0.23 0.01

Montreal Cognitive Assessment (MoCA) 26.9 (2.3) 27.6 (2.0) 0.08 0.03

Disease duration (years) 4.6 (3.8)

Levodopa dosage equivalence† 908.1 (654.0)

UPDRS Part III 23.1 (11.3)

Head motion

Maximum rotation (degrees) 0.30 (016) 0.29 (0.19) 0.82 0.00

Maximum translation (mm) 0.58 (0.16) 0.55 (0.16) 0.31 0.01

Mean rotation (degrees) 0.10 (0.06) 0.09 (0.05) 0.25 0.01

Mean translation (mm) 0.22 (0.06) 0.21 (0.06) 0.21 0.02

Genetic variants

SNCArs356219 AA:AG:GG 14:34:15 15:24:4 0.11

MAPTrs242557 GG:GA:AA 30:25:8 13:22:8 0.20

Attention and working memory

Adaptive Digit Ordering (DOT) 6.5 (1.9) 6.6 (2.2) 0.70 0.00

DKEFS Color + Word Naming (CWN) 21.5 (4.4) 21.8 (4.5) 0.70 0.00

Executive functioning (DKEFS)

Category switching (accuracy) (SWA) 13.5 (2.8) 13.3 (3.1) 0.72 0.00

Color-Word Inhibition (CWINH) 59.2 (12.9) 56.2 (11.3) 0.22 0.01

Memory (long delay free recall)

California Verbal Learning Test 2 (CVLT) 9.0 (3.4) 11.3 (3.0) 0.001 0.11

Brief Visuospatial Memory Test-Revised
(BVMT)

8.3 (2.5) 9.9 (1.9) 0.001 0.11

Visual cognition

Judgment of Line Orientation (JLOT) 25.4 (2.9) 26.9 (2.7) 0.008 0.07

Hooper Visual Organization (HVOT) 25.4 (2.3) 26.9 (1.7) 0.001 0.10

Semantic language

Boston Naming (BNT) 57.6 (2.6) 58.3 (1.7) 0.12 0.02

DKEFS Category Fluency (CAT) 43.2 (8.4) 44.2 (9.1) 0.55 0.00

Tabled values are raw score means (standard deviations). Group differences were
tested using ANOVA and Pearson chi-square statistics (sex, handedness, SNCA,
MAPT). UPDRS, Movement Disorder Society Unified Parkinson’s Disease Rating
Scale; DKEFS, Delis Kaplan Executive Function System.
†Levodopa dosage equivalence was calculated using the method of Tomlinson
(Tomlinson et al., 2010). Data are based on 57 participants who were taking
dopaminergic therapy.

polymorphisms relevant to PD (Compta et al., 2011; Nalls et al.,
2011; Zhang et al., 2018). MAPTrs242557 codes the intra-H1
variation in transcriptional activity. The A allele associated with
higher tau transcription levels than the G allele (Compta et al.,
2011; Chen et al., 2017). SNCA rs356219 codes variations in
α-synuclein levels. The G allele is linked to higher transformed
plasma α-synuclein levels (Emelyanov et al., 2018).

Imaging Protocols
Imaging was conducted on a GE MR750 Discovery 3 Tesla
system equipped with a Nova Medical 32-channel head coil. Head
motion was limited by foam pads inserted between the head
and the coil. High-resolution T1-weighted anatomical images
maximized differentiation of the white and gray matter boundary
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(3D spoiled gradient-recalled at steady state, minimum full TE,
3.5 ms; TR, 2,852 ms; TI, 1,000 ms; 8◦ flip angle; 0.8-mm slices,
acquisition matrix = 512). The rsfMRI images used a high spatial
and temporal resolution multiband accelerated gradient EPI
sequence (slice thickness = 2 mm; TR = 800 ms; TE = 35 ms; flip
angle = 52◦; acquisition matrix = 104; axial slices = 72; multiband
factor = 8; echo spacing = 0.612 ms; band width = 4807.69 Hz/Px),
which has greater sensitivity and specificity than conventional
single-band EPI protocols (Tomasi et al., 2016). Three rsfMRI
runs were acquired, each lasting 5 min and 35 s. The first 12.8 s
were removed to allow magnetization to stabilize to a steady state.
To correct geometric distortions, a pair of gradient EPI sequences
with anterior and posterior reversed gradients (TR = 8,500 ms;
TE = 70.6 ms; isotropic voxels = 2 mm; flip angle = 90◦; echo
spacing = 0.612 ms) were acquired before rsfMRI runs.

Image Preprocessing
Functional images were preprocessed using FSL 6.42 and Analysis
of Functional Imaging 20.0.3 First a field map was computed from
the pair of anterior and posterior reversed gradient sequences.
Then it was applied to rsfMRI data to correct geometric
distortions using FSL TOPUP. Each subject’s distortion corrected
data from three rsfMRI runs were concatenated. Additional
preprocessing included motion correction using FSL MCFLIRT,
high pass temporal filtering, spatial smoothing [6 mm full width
half maximum (FWHM) filter] and registration to T1-weighted
images. Data were transformed to MNI atlas space and carefully
checked for normalization accuracy. Table 1 shows that there
were no group differences in maximum or mean rotation and
translation head movements.

Independent Components Analysis
Preprocessed images were analyzed with MELODIC using a
temporal concatenation spatial ICA approach (Beckmann and
Smith, 2004). For each subject, 25 temporally and spatially
coherent patterns were extracted, clustered at the group level,
and then visually inspected for their correspondence to well-
characterized networks of interest. Spatial cross-correlation was
also performed to cross-validate extracted ICs with resting-
state ICN templates (Smith et al., 2009; Laird et al., 2011). Six
components of interest were chosen including the VN, aDMN,
pDMN, LFPN, RFPN, and SN.

Dual regression analysis was conducted on the six
components. First, each component was used as a mask to
extract a subject and component-specific mean time course,
which describes the temporal dynamics and synchrony of each
component network. The time courses were then fed into a linear
model against individual rsfMRI data to obtain subject-specific
maps of each component (Beckmann et al., 2009; Nickerson et al.,
2017). To validate that each component network was expressed
in both the PD and control groups, voxelwise one sample t-tests
were performed for each group using FSL randomize (5,000
permutations) with familywise error (FWE) correction for
multiple comparisons (p < 0.05) (Nichols and Holmes, 2002).

2http://www.fmrib.ox.ac.uk/fsl/
3https://afni.nimh.nih.gov/

Brain regions with significant p-values in both groups in each
component network were combined to form a mask to test for
group differences in intra-network connectivity (FSL randomize,
5,000 permutations, p < 0.05, FWE corrected).

The main analyses focused on group differences in
internetwork connectivity. To compute the strength of
internetwork functional connectivity, Pearson correlations
were performed between the subject-specific time-courses
of all possible network pairs, which were extracted from
the dual regression analysis for each network. A Fisher
z-transformation was applied to the correlation coefficients
to obtain a standardized z score of internetwork connectivity
for each subject.

Brain Structure
To determine if internetwork couplings in the PD group were
related to brain atrophy, cortical thickness and volume were
analyzed using FreeSurfer 5.3.4 Individual subject’s cortical
folding patterns were inflated, registered to a standard spherical
surface template, and smoothed with 10 mm FWHM Gaussian
kernel to improve the signal-to-noise ratio and reduce local
variations across subjects (Fjell et al., 2009). Tests of group
differences in thickness and volume (age as a nuisance variable)
were conducted across the continuous cortical surface using
the FreeSurfer QDEC application and the false discovery rate
(FDR, q < 0.05) adjustment for multiple comparisons. Group
differences were also tested for subcortical volumes of interest
(bilateral caudate, putamen, and hippocampus), which were
adjusted for total intracranial volume.

Statistical Analyses
In total, 15 internetwork coupling topologies were studied.
Group differences in internetwork connectivity were tested
using independent t-tests with bias-corrected accelerated
bootstrapping (1,000 iterations) to reliability estimate
connectivity distributions. P-values were uncorrected due to the
large number of internetwork pairs and hence, the results should
be cautiously interpreted. For multiple regression analyses,
stepwise models entered sets of internetwork connections
as the predictors of cognitive variables and genetic variants.
First, we analyzed VN internetwork connections with all other
networks (aDMN, pDMN, LFPN, RFPN, SN), as the VN
has been poorly studied in PD despite disturbances in visual
cognition (Weil et al., 2016), which correlate with occipital
thinning (Garcia-Diaz et al., 2018). Second, aDMN internetwork
couplings with other networks (pDMN, LFPN, RFPN, SN)
were analyzed as this subnetwork regulates internally generated
executive and semantic processes, which may interact with
processing in other networks to support of cognition. Third, we
examined pDMN couplings with core task-positive networks
(LFPN, RFPN, SN). Fourth, couplings amongst task-positive
networks were studied (LFPN-RFPN, LFPN-SN, RPFN-SN)
given their roles in attention, working memory, and cognitive
flexibility (Seeley et al., 2007), which are relevant to PD. All
cognitive variables were converted to age adjusted residuals

4http://surfer.nmr.mgh.harvard.edu
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owing to associations of some variables with age, but not
educational level.

For each group, stepwise multiple regressions were performed
to identify internetwork couplings that best predicted cognition
on tests of global cognition (MoCA), attention (CWN) and
working memory (DOT), executive function (SWA, CWINH),
visuospatial cognition (JLOT, HVOT), visual and verbal episodic
memory (BVMT, CVLT), and semantic cognition (BNT, CAT).
Longitudinal changes in cognition were studied in 40 PDCN
participants who were retested 24.5 months post baseline
(SD = 3.2, minimum = 19.9, maximum = 32.8). Longitudinal
changes in age adjusted residuals were calculated using simple
discrepancy scores (score at time 1—score at time 2). FDR
correction was applied to all uncorrected p-values from the
analyses of both baseline and longitudinal changes in cognition.

ANOVAs with bias-corrected accelerated bootstrapping tested
for the effect of gene variants on (1) baseline cognitive variables
for each group and (2) longitudinal changes in cognition in
the PDCN subsample. To test for internetwork connectivity
predictors of gene expression, stepwise multiple regressions
tested for sets of internetwork couplings that predicted SNCA and
MAPT expression (FDR adjusted).

RESULTS

Group Differences in Brain Morphometry
Group differences in cortical thickness and volume were non-
significant. Independent t-tests (bias-corrected, bootstrapped)
also failed to show group differences in left and right putamen,
caudate, and hippocampus volumes (FDR adjusted). Due to
the lack of manifested atrophy in the PDCN group relative
to controls, gray matter was not used as a covariate in
subsequent analyses.

Group Differences in Intra-Network
Connectivity
Figure 1A displays the components of interest from the group
ICA analyses. Supplementary Table 1 lists the main regions
comprising each component. Each of the six components
was significantly expressed in the PDCN and control groups
(one sample t-tests, p < 0.05). Figure 1B displays the results
from between-group voxelwise comparisons of intra-network
connectivity (two sample t-tests; p < 0.05). Only LFPN intra-
network couplings were stronger in PDCN (z = 6.8, SD = 3.7)
than controls (z = 4.7, SD = 2.8) [F(1, 104) = 10.5, p < 0.002,
ηp

2 = 0.09]. In the PDCN group, aberrant LFPN intra-
network coherence (z scores) did not correlate with baseline or
longitudinal changes in cognition.

Group Differences in Internetwork
Connectivity
Independent t-tests (bootstrapped) tested for group differences
in internetwork connectivity. Table 2 shows that internetwork
couplings were stronger in the control than the PDCN group
for the pDMN-LFPN [t(1, 104) = 2.0, p = 0.047, d = 0.40],

FIGURE 1 | Resting-state networks of interest. (A) The left column displays
the spatial maps obtained from independent component analyses of the entire
sample. The right column shows the group level maps derived from the dual
regression analyses. To validate that each of the six component networks
were expressed in both the PD and healthy control groups, voxelwise one
sample t-tests were performed separately for each group using familywise
error (FWE) correction for multiple comparisons (p < 0.05). (B) Significant
group differences in intra-network connectivity of the LFPN (p < 0.05, FWE
corrected). VN, visual network; aDMN, anterior default mode network; pDMN,
posterior default mode network; LFPN, left frontoparietal network; RFPN, right
frontoparietal network; SN, salience network.

pDMN-RFPN [t(1, 104) = 2.41, p = 0.018, d = 0.48], and
at a subthreshold level of significance, the LFPN-RFPN [t(1,
104) = 1.96, p = 0.053, d = 0.39]. Nonetheless, the findings
should be cautiously interpreted as uncorrected p-values did not
survive FDR correction. In the PDCN group, LFPN internetwork
couplings did not correlate with aberrant LFPN intra-network
coherence (z scores).

Internetwork Connectivity Associations
With Baseline Cognition
Figure 2 displays the results from the stepwise multiple
regressions, which tested for sets of internetwork couplings that
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TABLE 2 | Group differences in internetwork functional connectivity.

PDCN (n = 63) Controls (n = 43) p Cohen’s d

Visual network

VN-aDMN −1.9 (3.9) −1.7 (3.8) 0.80 0.05

VN-pDMN 2.8 (4.8) 2.0 (3.3) 0.40 0.17

VN-LFPN −0.5 (4.3) −0.3 (3.7) 0.73 0.07

VN-RFPN 2.4 (3.3) 3.3 (3.1) 0.13 0.30

VN-SN −1.6 (3.4) −1.2 (3.5) 0.59 0.11

Anterior default mode network

aDMN-pDMN 2.4 (3.6) 2.7 (3.8) 0.73 0.07

aDMN-LFPN 2.2 (4.1) 1.4 (3.5) 0.26 0.22

aDMN-RFPN 1.2 (3.4) 1.5 (3.6) 0.74 0.07

aDMN-SN 1.3 (3.4) 0.5 (3.6) 0.27 0.22

Posterior default mode network

pDMN-LFPN 2.0 (4.0) 3.5 (3.1) 0.047 0.40

pDMN-RFPN 1.0 (2.9) 2.4 (3.0) 0.018 0.48

pDMN-SN −3.1 (3.7) −3.0 (3.4) 0.92 0.02

Frontoparietal network

LFPN-RFPN 2.5 (4.5) 4.1 (3.8) 0.053 0.39

LFPN-SN 1.8 (3.2) 0.9 (3.2) 0.14 0.29

RFPN-SN 0.3 (3.4) 0.6 (3.3) 0.67 0.09

Tabled values are Fisher z score means (standard deviations). Group
differences were tested using independent t-tests with bias-corrected accelerated
bootstrapping (1,000 iterations). Nominally significant p-values (bold) were not
significant after FDR correction.
VN, visual network; aDMN, anterior default mode network; pDMN, posterior
default mode network; LFPN, left frontoparietal network; RFPN, right frontoparietal
network; SN, salience network.

best predicted baseline cognitive changes in each group separately
(top) and longitudinal cognitive changes in the PDCN subsample
(bottom). Graphs are shown only for results that survived FDR
correction. Figure 3 (top) provides a circular visualization of the
baseline results.

Global Cognition
In PDCN stronger positive pDMN-LFPN (r = 0.36) and pDMN-
RFPN couplings (rxy.z = 0.28) predicted better MoCA scores [F(2,
58) = 7.2, p < 0.002, q = 0.006, R = 0.45] (one outlier omitted). In
controls stronger positive aDMN-SN couplings predicted better
MoCA scores [F(1, 41) = 6.5, p < 0.015, q = 0.02, R = 0.37].

Attention and Working Memory
In PDCN stronger positive aDMN-pDMN couplings predicted
better attention (CWN) [F(1, 61) = 4.9, p < 0.03, q = 0.045,
R = 0.27], whereas in controls stronger positive VN-SN couplings
predicted better attention [F(1, 41) = 5.6, p < 0.02, q = 0.03,
R = 0.35]. In PDCN stronger positive aDMN-pDMN (r = 0.28)
and aDMN-LFPN (rxy.z = 0.25) couplings predicted better
working memory (DOT) [F(2, 60) = 4.7, p < 0.01, q = 0.019,
R = 0.37], whereas in controls stronger positive VN-SN couplings
predicted better working memory [F(1, 41) = 10.0, p < 0.003,
q = 0.008, R = 0.44].

Executive
Internetwork couplings in PDCN did not predict executive
functioning. In controls stronger positive pDMN-SN

[F(1, 41) = 5.9, p < 0.02, q = 0.03, R = 0.35] and aDMN-LFPN
[F(1, 41) = 8.7, p < 0.005, q = 0.01, R = 0.42] couplings correlated
with poorer category switching accuracy (VFSWA). Stronger
positive pDMN-SN couplings also correlated with poorer
inhibitory control (CWINH) [F(1, 41) = 5.2, p < 0.029, q = 0.04,
R = 0.33].

Episodic Memory
In PDCN stronger positive LFPN-SN couplings predicted better
verbal memory (CVLT) [F(1, 61) = 11.3, p < 0.001, q = 0.002,
R = 0.40]. In controls stronger positive pDMN-SN couplings
predicted poorer verbal [F(1, 41) = 7.4, p < 0.01, q = 0.02,
R = 0.39] and visual memory (BVMT) [F(1, 41) = 5.3, p < 0.026,
q = 0.039, R = 0.34].

Visual Cognition
In PDCN stronger positive VN-RFPN couplings predicted better
visuospatial processing (JLOT) [F(1, 61) = 11.4, p < 0.001,
q = 0.004, R = 0.40]. In controls stronger positive pDMN-LFPN
couplings predicted poorer visual organization (HVOT) [F(1,
41) = 5.0, p < 0.03, q = 0.047, R = 0.33].

Semantic Language
In PDCN stronger positive aDMN-RFPN [F(1, 61) = 7.5,
p < 0.008, q = 0.01, R = 0.33] and RFPN-SN couplings [F(1,
61) = 5.4, p < 0.024, q = 0.037, R = 0.29] predicted poorer
object naming (BNT). Internetwork connectivity did not predict
semantic cognition in controls.

Internetwork Connectivity Predictors of
Longitudinal Changes in Cognition
Supplementary Table 2 details the demographic and clinical
characteristics of 40 PDCN participants who completed
longitudinal neuropsychological testing. At the follow-up testing,
no patient had a clinical diagnosis of dementia. Only eight
patients (20%) exhibited MCI (> –1.5 SD on two or more
tests), all of whom showed multidomain cognitive impairment.
The number of months between baseline and follow-up testing
did not correlate with longitudinal changes of any cognitive
variable (p > 0.20 to p < 0.96). Paired t-tests (bootstrapped)
showed significantly poorer follow-up performance on the SWA,
CWINH, HVOT, and CAT (Table 3). Subthreshold trends for
longitudinal decline were observed for CWN, JLOT, and DOT.

Stepwise multiple regressions tested for sets of internetwork
couplings that best predicted longitudinal changes in cognition
as measured by age adjusted simple discrepancy scores (score
at time 1—score at time 2). Positive discrepancy scores signify
cognitive decline at the follow-up visit, except for the CWINH
wherein negative discrepancy scores signify cognitive decline at
the follow-up visit. Figure 2 (bottom) shows graphs of significant
results and Figure 3 (bottom) displays a circular visualization
of the findings.

Attention and Working Memory
Stronger positive aDMN-LFPN couplings predicted greater
decline in attention (CWN) [F(1, 38) = 6.8, p < 0.01, q = 0.017,
R = 0.39]. Stronger positive aDMN-SN couplings predicted
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FIGURE 2 | Relationships between cognition and internetwork coupling topologies in PD and healthy control (HC) groups. Scatterplots display the best-fitting linear
regression line (solid line) and 95% conference intervals (dotted lines) for significant correlations between age adjusted cognitive measures (y-axis) and internetwork
connectivity topologies (x-axis). Top four rows show relationships with baseline cognitive functioning. Bottom two rows show relationships with 2-year changes in
cognition, calculated using age-adjusted simple discrepancy scores designated by 1 (score at time 1—score at time 2). Positive discrepancy scores signify cognitive
decline at the follow-up visit, except for the CWINH for which negative discrepancy scores signify cognitive decline. *Predicted values from the regression of
internetwork connectivity onto MoCA scores are plotted for pDMN-LFPN and pDMN-RFPN couplings [6 intercept + (betapDMN-LFPN * pDMN-LFPN
score) + (betapDMN-RFPN * pDMN-RFPN score) = 6–0.33 + (0.08 * pDMN-LFPN score) + (0.10 * pDMN-RFPN score)]. For DOT scores, predicted values are plotted
for aDMN-pDMN and aDMN-LFPN couplings [6 intercept + (betaaDMN-pDMN * aDMN-pDMN score) + (betaaDMN-LFPN * aDMN-LFPN score) = 6–0.34 + (0.09 *
aDMN-pDMN score) + (0.06 * aDMN-LFPN score)]. BNT, Boston Naming Test; BVMT, Brief Visuospatial Memory Test; CVLT, California Verbal Learning Test; CWINH,
Color-Word Inhibition; CWN, Color Word Naming; DOT, Adaptive Digit Ordering; HVOT, Hooper Visual Organization Test; JLOT, Judgment of Line Orientation; MoCA,
Montreal Cognitive Assessment; SWA, Category Switching.
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FIGURE 3 | Circular visualization of internetwork functional coupling topologies as they predict baseline and longitudinal declines in cognition. The top circular
layouts depict the correlations between internetwork coupling topologies and baseline domain-specific cognitive performance in the healthy control and PDCN
groups. Blue lines designate stronger negative (anticorrelated) couplings and red lines designate stronger positive couplings were correlated with better cognition.
The bottom circular layout shows that stronger positive internetwork couplings predict greater longitudinal decline (purple lines) for most cognitive domains, but less
longitudinal decline in visual memory. These neurocognitive relationships are graphed in Figure 2.
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TABLE 3 | Longitudinal changes in cognition in a PDCN subsample.

Visit 1 Visit 2 p d±

Montreal Cognitive Assessment (MoCA) 27.0 (2.5) 26.7 (3.0) 0.43 0.13

Attention and working memory

Adaptive Digit Ordering (DOT) 6.7 (1.9) 6.2 (2.7) 0.12 0.26

DKEFS Color + Word Naming (CWN) 21.9 (4.3) 20.9 (4.4) 0.08 0.29

Executive (DKEFS)

Category switching (accuracy) (SWA) 13.6 (2.9) 11.5 (5.0) 0.009 0.49

Color-Word Inhibition (CWINH) 59.2 (14.2) 64.1 (22.5) 0.04 0.39

Memory (long delay free recall)

California Verbal Learning Test 2 (CVLT) 9.5 (3.3) 8.8 (5.2) 0.26 0.18

Brief Visuospatial Memory Test-Revised
(BVMT)

8.7 (2.5) 8.6 (3.0) 0.84 0.03

Visual cognition

Judgment of Line Orientation (JLOT) 25.4 (2.6) 24.3 (4.5) 0.08 0.31

Hooper Visual Organization HVOT) 25.7 (2.5) 24.2 (3.6) 0.006 0.52

Semantic language

Boston naming (BNT) 57.8 (2.6) 57.9 (3.0) 0.86 0.03

DKEFS Category Fluency (CAT) 43.9 (8.6) 38.8 (9.2) 0.001 0.60

Tabled values are raw score means (standard deviations) from a subsample of 40
PDCN participants. Longitudinal changes between baseline (Visit 1) and follow-up
testing (Visit 2) were analyzed using paired t-tests with bias corrected accelerated
bootstrapping (1,000 iterations). Follow-up testing occurred a mean of 24.5 months
(SD = 3.4) post-baseline testing: Significant p values in bold.
DKEFS, Delis Kaplan Executive Function System.
±Cohen’s d.

greater decline in working memory (DOT) [F(1, 38) = 5.8,
p < 0.02, q = 0.027, R = 0.36].

Executive
Stronger positive aDMN-SN couplings predicted greater decline
in inhibitory control (CWINH) [F(1, 38) = 5.3, p < 0.027,
q = 0.04, R = 0.35].

Episodic Memory
Stronger anticorrelated pDMN-RFPN couplings predicted
greater decline in visual episodic memory (BVMT) [F(1,
38) = 4.2, p < 0.047, q = 0.05, R = 0.32].

Visual Cognition
Stronger positive VN-LFPN [F(1, 38) = 6.0, p < 0.019, q = 025,
R = 0.37] and aDMN-SN couplings [F(1, 38) = 5.7, p < 0.023,
q = 0.035, R = 0.36] predicted greater decline in visuospatial
processing (JLOT). Stronger positive aDMN-SN [F(1, 38) = 5.9,
p < 0.02, q = 0.03, R = 0.37] and LFPN-SN couplings [F(1,
38) = 7.5, p < 0.01, q = 0.015, R = 0.41] predicted greater decline
in visual-organization (HVOT).

Genetic Associations With Internetwork
Connectivity and Cognitive Decline
Stepwise multiple regression analyses tested for sets of
internetwork couplings that predicted SNCA and MAPT
variants, separately for each group. Figure 4 graphs the
significant results (FDR corrected). SNCA was not related
to internetwork connectivity in healthy controls. In PDCN,
stronger anticorrelated VN-SN couplings were observed in
homozygous G carriers (high α-synuclein activity) than A
carriers [F(1, 61) = 8.4, p < 0.005, q = 0.04, R = 0.35]. SNCA

FIGURE 4 | SNCA and MAPTrs242557 mediation of internetwork coupling
topologies and longitudinal change in working memory. SNCA expression
altered connectivity strength in the PDCN group only but was not associated
with baseline or longitudinal changes in cognition. MAPT variants altered
connectivity strength of different internetwork topologies in the PDCN and
healthy control (HC) groups. Moreover, only PDCN A homozygotes exhibited
longitudinal decline in working memory (DOT 1) as measured by age adjusted
simple discrepancy scores (score at time 1—score at time 2) wherein positive
scores signify cognitive decline. Means and standard error bars are plotted.

expression also was predicted by pDMN-SN (r = –0.36) and
pDMN-RFPN (rxy.z = 0.30) couplings [F(2, 60) = 7.9, p < 0.001,
q = 0.01, R = 0.46]. Here, pDMN-SN anticorrelations were
stronger in homozygous G than A carriers, whereas stronger
positive pDMN-RFPN couplings were observed in homozygous
G relative to A carriers. MAPT was related to internetwork
connectivity in both groups. In PDCN stronger positive VN-
LFPN couplings were observed in homozygote A carriers (high
tau activity) than G carriers [F(1, 61) = 4.2, p < 0.004, q = 0.02,
R = 0.26]. In controls stronger anticorrelated VN-aDMN
couplings were found in G homozygotes (lower tau activity) than
A carriers [F(1, 41) = 8.6, p < 0.005, q = 0.03, R = 0.42].

ANOVAs tested for genetic associations with (1) age adjusted
cognitive measures at baseline in each group and (2) longitudinal
changes (age adjusted simple discrepancy scores) in the PDCN
subsample. Carriers of different SNCA or MAPT allele types
did not differ demographically (age, educational level, gender)
in either group or in clinical characteristics (disease duration,
levodopa dosage equivalence). SNCA and MAPT variants were
not associated with baseline cognitive measures in either group or
longitudinal cognitive changes in the PDCN subsample, with one
exception. Figure 4 shows that MAPT homozygous A carriers
exhibited working memory (DOT) decline at follow-up testing,
whereas working memory was preserved in G carriers [F(2,
37) = 4.9, p < 0.01, q = 0.05, ηp

2 = 0.21].

DISCUSSION

Internetwork connectivity was largely preserved in PDCN, except
for reduced pDMN-RFPN/LFPN couplings, which correlated
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with poorer baseline global cognition. This finding may reflect a
weakened role of the FPN in regulating flexible interactions with
the DMN to integrate processing resources (Spreng et al., 2010)
needed to achieve diverse demands of global cognition tests.
Preserved internetwork interactions in PDCN also correlated
with cognition, but in a different manner for each group. In
PDCN, stronger positive internetwork coupling topologies were
beneficial for most, but not all, cognitive functions at baseline.
This dominant neurocognitive pattern was compatible with a
compensatory mechanism that may arise owing to less effective
integration between other networks that normally support
cognition. Indeed, different internetwork coupling topologies
correlated with cognition in healthy controls. Notably, stronger
positive internetwork coupling topologies also predicted greater
2-year longitudinal declines in most cognitive domains in
PDCN, suggesting they may signify neurodegeneration and
portend future neurocognitive progression (Cabeza et al., 2018).
Heterogeneity in internetwork connectivity strength was also
related to genetic variants. Higher α-synuclein was associated
with reduced SN-VN/pDMN interactions and amplified RFPN-
pDMN couplings, which longitudinally preserved visual memory
in PDCN. In contrast, higher tau expression accelerated
longitudinal working memory decline and increased VN-
LFPN connectivity, which in turn predicted greater decline in
visuospatial processing, a risk factor for PD dementia (Williams-
Gray et al., 2013). These results could not be attributed to brain
atrophy, which did not differ between groups, nor aberrant
LFPN intra-network coherence, which did not correlate with
internetwork connectivity.

Distinct Internetwork Topologies Predict
Baseline Cognition in Cognitively Normal
PD and Controls
Cognition is supported through integration and segregation
(anticorrelated) of processing resources from large-scale
networks (Spreng et al., 2010), which are regulated by the
FPN and SN (Sridharan et al., 2008; Grady et al., 2016). In
our study both groups showed positive pDMN-LFPN/RFPN
couplings, albeit significantly reduced in PDCN. However,
stronger pDMN-FPN couplings were beneficial for MoCA
performance only in PDCN, in agreement with favorable effects
of cooperative DMN-FPN communications on diverse cognitive
processes (Fornito et al., 2012; Utevsky et al., 2014; Marek and
Dosenbach, 2018). Cooperative FPN communications with
the pDMN, which is associated with episodic memory and
interrelated associative or constructive processes (Hassabis and
Maguire, 2007; Andrews-Hanna et al., 2014a), may support
MoCA performances especially on tests related to posterior
cortical functions (e.g., visuoconstruction, memory encoding
and recollection). In controls, however, positive aDMN-SN
interactions benefitted MoCA performance. The aDMN consists
of prefrontal and anterior temporal cortices that regulate
executive, and conceptual/semantic processes (Wood and
Grafman, 2003; Andrews-Hanna et al., 2014b), whereas the
SN governs attention capture, internetwork switching, and
inhibition. Thus, aDMN-SN communications are well suited to

foster multidomain cognitive control (Sridharan et al., 2008).
This coupling topology was not deployed in PDCN, possibly
owing to emerging SN pathology (Christopher et al., 2015).
Thus, global cognition in PDCN appears to be maintained via
functional reconfiguration of internetwork communications,
driven by pathological changes that cause shifts in processing
load to other networks.

This conclusion aligns with our finding that internetwork
connectivity correlated with domain-specific cognition
differently in each group. We discovered that stronger aDMN-
pDMN and aDMN-pDMN/LFPN couplings in PDCN were,
respectively, favorable for attention (CWN) and working
memory (DOT). The CWN test is a speeded test that requires
selective attention to colors or words, whereas the DOT engages
executive functions, as digit strings of increasing length must
be mentally reorganized into their ascending order for recall.
Both tests may benefit from stronger aDMN-pDMN connectivity
owing to overlapping endogenous control and mnemonic
processes, whereas favorable influences of strengthened aDMN-
LFPN connectivity on the DOT aligns with LFPN control of
executive components of working memory. By comparison, in
healthy controls better attention and working memory both
correlated with stronger VN-SN connectivity. The SN is known
to drive switching between the DMN and FPN (Goulden et al.,
2014). By inference, our finding may suggest that healthy adults
deploy the SN to enlist VN resources to support visual attention
and memory. VN-SN communications may not be effectively
deployed in PDCN, perhaps owing to declining visual cognition
(Weil et al., 2016), which we observed in our study, and/or
emerging pathology that renders the anterior insula and anterior
cingulate cortex vulnerable (Christopher et al., 2014).

Internetwork connectivity was not related to executive
functioning in the PDCN group. However, stronger positive
LFPN-SN and VN-RFPN couplings were compensatory,
respectively, predicting better baseline verbal memory and
visuospatial cognition, which exhibited decline in PDCN. In
controls, however, stronger anticorrelated pDMN-SN couplings
predicted better executive functioning (category switching and
inhibition) and verbal/visual memory, consistent with another
study (Putcha et al., 2016). Stronger anticorrelated aDMN-LFPN
couplings also predicted better category switching, whereas
stronger anticorrelated pDMN-LFPN couplings correlated with
better visual organization. Thus, in controls segregation of task-
negative and positive networks was favorable for many cognitive
functions, ostensibly due to reduced competition between
processes that can interfere with performance (Kelly et al., 2008).

While strengthened positive internetwork coupling topologies
in PDCN typically exerted favorable influences on cognition,
an exception was the BNT (confrontation naming), a measure
of semantic recollection that requires generating names of
common and uncommon pictures. Semantic recollection is
highly relevant to PD since early decline in object naming
predicts later dementia (Williams-Gray et al., 2013). We found
that stronger positive aDMN-RFPN and RFPN-SN couplings
in PDCN were detrimental for naming. Outwardly this finding
was unexpected as integration of executive/semantic (aDMN)
and attention (SN) resources with RFPN visual processing
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resources might foster object naming. For the BNT, however,
common object names are automatically retrieved whereas
uncommon object names require attentional control (Hoffman
et al., 2015). One speculation is that communications of the
RFPN with attention and executive/semantic networks may
be amplified in patients who have difficulty finding names
due to failed automatic retrieval of semantic details, which
could be a sign of impoverished representations of semantic
content. This proposal is compatible with a task-activated
fMRI study of semantic recollection (Harrington et al., 2021).
We found that stronger connectivity of a semantic hub and
the caudate with regions comprising the dorsal attention,
executive, and/or language systems correlated with poorer BNT
performance in PDCN. These results suggested the possibility
that patients with poorer naming may allocate more attention
and executive resources to support covert verbal strategic
searches needed to find names that cannot be retrieved
automatically (Harrington et al., 2021).

Internetwork Topologies Predict Future
Cognitive Decline in Cognitively Normal
PD
At 2 years post-baseline, the PDCN subsample showed significant
decline in executive functioning, visual organization, and
semantic fluency, with subthreshold trends for decline in
attention, working memory and visuospatial processing. Greater
cognitive decline for most domains, except visual episodic
memory, was predicted by strengthened positive internetwork
couplings. Thus, strengthened internetwork couplings, even
those exerting compensatory influences on baseline cognition,
foreshadowed future cognitive progression, indicating they
signify neuropathology. This proposal aligns with the positive
correlation between increased cortical connectivity and glucose
consumption (FDG-PET) (Tomasi et al., 2013; Passow et al.,
2015), which indicates a metabolic cost for hyperconnectivity
that may in turn signify neuronal vulnerability. Indeed,
cognitively normal people at genetic risk for Alzheimer’s
initially exhibit hyperactivation in the brain relative to people
not at genetic risk, but activation declines longitudinally
together with the emergence of episodic memory dysfunction
(Rao et al., 2015).

Some internetwork topologies predicted different facets of
cognition at baseline and longitudinally, likely because general
processing resources are shared across domains, some of which
are more vulnerable to cognitive progression (Salthouse, 2017;
Tucker-Drob et al., 2019). For example, stronger positive
aDMN-LFPN and LFPN-SN, respectively, predicted greater
deterioration in attention and visual organization, but better
baseline working memory and visual memory. In most
instances, predictors of longitudinal cognitive decline did not
correlate with baseline cognition. Notably, greater decline
in attention, working memory, executive, visuospatial, and
visual organization functions were predicted by stronger
positive aDMN-SN/LFPN and LFPN-SN couplings. Amplified
internetwork couplings of these networks likely foreshadow
longitudinal cognitive decline across multiple domains, owing

to frontostriatal vulnerabilities driven by dopaminergic loss
and SN pathology (Christopher et al., 2014). Our results
contrast with a seed-based approach in which increased
SN-DMN regional couplings in a PD cohort unscreened
for MCI predicted conversion to dementia 10 years later
(Aracil-Bolanos et al., 2021). While DMN-SN coupling
strength did not correlate with PDCN cognition in our
study, increased pDMN-SN connectivity was maladaptive for
executive functioning and episodic memory in healthy controls,
consistent with these results.

Stronger positive VN-LFPN couplings also predicted greater
decline in visuospatial processing. Interestingly, VN-FPN
connectivity increased over 1 year in a mixed PDCN/PDMCI
cohort, but not healthy controls (Klobusiakova et al., 2019),
and did not correlate with cognition. Our finding indicates
this internetwork coupling topology is an early signature of
high-level visual disturbances in PD (Weil et al., 2016), which is
of keen interest as early visuospatial decline is a risk for MCI and
dementia (Williams-Gray et al., 2013; Hong et al., 2014; Hobson
and Meara, 2015; Garcia-Diaz et al., 2018; Chung et al., 2020;
Ohdake et al., 2020).

The above results sharply contrasted with our finding that
stronger positive pDMN-RFPN couplings predicted preserved
visual episodic memory longitudinally, even though performance
was poorer in PDCN relative to controls at baseline. Thus,
integration of pDMN memory resources with RFPN visual
processing resources appears to maintain visual memory over 2
years. Interestingly, in a PDCN/PDMCI cohort the strength of
DMN-FPN couplings increased over 1 year but did not correlate
with cognition (Klobusiakova et al., 2019). The latter finding
may be due to the short follow-up period, which could minimize
changes. However, our results also demonstrate the importance
of distinguishing between left and right FPN internetwork
couplings as they correlated differently with cognitive tests that
emphasize verbal and visual processes.

α-Synuclein and Microtubule-Associated
Protein Tau Alter Cognition and
Internetwork Connectivity
The SNCA rs356219 polymorphism codes for α-synuclein levels,
with the G risk allele associated with higher transformed plasma
α-synuclein (Mata et al., 2010; Emelyanov et al., 2018), reduced
striatal binding potential (Huertas et al., 2017), and increased
risk for PD (Goris et al., 2007; Trotta et al., 2012; Zhang et al.,
2018). Although SNCA does not predict dementia outcome
over 10 years (Williams-Gray et al., 2013), its association with
cognitive decline is controversial, especially in PDCN. In our
study, SNCA did not mediate baseline or longitudinal changes
in cognition, consistent with some studies (Mata et al., 2014;
Huertas et al., 2017), but not others (Campelo et al., 2017; Luo
et al., 2019). Yet another SNCA risk variant (rs894280) predicted
poorer attention and visuospatial processing (Ramezani et al.,
2021). Correspondingly, higher baseline CSF α-synuclein levels
also predicted faster longitudinal deterioration in visuospatial
working memory and verbal memory (Stewart et al., 2014) and
processing speed (Hall et al., 2015). Our discrepant results may
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be related to studying a PDCN cohort wherein cognition is intact
relative to cohorts not screened for MCI.

Nonetheless, we found for the first time that SNCA mediated
the strength of functional connectivity between large-scale
networks, but only in PDCN. This finding is compatible
with the SNCA risk variant’s role in modifying the effect
of CSF α-synuclein levels on brain structure by accelerating
cortical thinning throughout frontal and posterior cortical
areas (Sampedro et al., 2018a). In our study, homozygous
G carriers showed marked anticorrelated SN-VN and SN-
pDMN couplings relative to A carriers. As these topologies
were associated with cognition only in healthy controls,
our results suggest that the SNCA risk variant amplifies
segregation between the SN and the VN/pDMN, rendering their
deployment less effective for cognition. Thus, accumulation of
α-synuclein pathology (Christopher et al., 2015) may diminish
flexible SN internetwork switching (Goulden et al., 2014),
thereby dampening internetwork communications. Interestingly,
homozygous G carriers also exhibited stronger positive pDMN-
RFPN couplings relative to A carriers. This internetwork
topology was favorable for baseline MoCA scores and predicted
preserved visual episodic memory longitudinally. Still, more
tightly coupled compensatory pDMN-RFPN communications
in GG carriers may occur at a metabolic cost (Tomasi et al.,
2013; Passow et al., 2015), such that over longer periods
of time compensation might diminish as neurodegeneration
increases and cognitive deficits emerge (Reuter-Lorenz and Park,
2014). This prospect aligns with a report of 2-year increases
in CSF α-synuclein levels only in PD patients with longer
disease durations (> 5 years) (Hall et al., 2016). Thus, longer
follow-up periods may be needed to better characterize the
trajectory of neurocognitive progression in carriers of risk and
protective SNCA alleles.

MAPT had independent effects on internetwork
communications and cognitive decline. The MAPT H1
haplotype promotes tau aggregation, which may interact with
α-synuclein in Lewy body formation (Colom-Cadena et al.,
2013). Higher tau transcription in PD appears to accelerate
cognitive decline in early years of PD and is the strongest genetic
marker of dementia conversion (Williams-Gray et al., 2013). In
our study, H1 tau transcription levels had no effect on baseline
cognition, consistent with some studies of the MAPT H1/H2
diplotype (Mata et al., 2014; Paul et al., 2016) but not others
(Morley et al., 2012; Nombela et al., 2014). For the first time, we
found working memory decline was strongly mediated by the
A risk allele, which is associated with higher plasma tau levels
(Chen et al., 2017), whereas working memory was preserved in
G carriers. Correspondingly, tau deposition in older adults is
found in large-scale brain networks including the FPN (Jones
et al., 2017), which supports working memory. We also found
group differences in MAPT-mediated internetwork coupling
topologies. In PDCN, homozygous A carriers exhibited stronger
positive VN-LFPN couplings whereas G carriers showed negative
couplings. Importantly, stronger positive VN-LFPN couplings
predicted greater longitudinal decline in visuospatial processing,
another risk factor for the later MCI and dementia. These
findings partly agree with the effect of the MAPT H1 haplotype

on longitudinal volume loss in de novo PD, largely in the frontal
cortex (Sampedro et al., 2018b), which is an element of the LFPN.
The results are also compatible with reports that MAPT variants
alter activation and functional connectivity of the parietal cortex,
which is an element of both the VN and LFPN. Specifically,
PD carriers of the MAPT H1 haplotype showed reduced left
parietal and bilateral caudate activation relative to non-risk
carriers when performing a mental rotation task (Nombela
et al., 2014). Correspondingly, during a semantic recollection
task PDCN carriers of the MAPT A risk allele showed stronger
left parietal connectivity with the bilateral caudate, which was
unfavorable for cognition, but diminished frontal connectivity
with parietal areas, which supported compensation (Harrington
et al., 2021). Altogether, our finding aligns with the vulnerability
of occipital and frontoparietal cortices to tau deposition (Robakis
et al., 2016; Jones et al., 2017), and implicates increased tau
activity in the acceleration of visuospatial decline. In contrast,
healthy control homozygote A carriers showed stronger positive
VN-aDMN couplings whereas G carriers showed negative
couplings, suggesting that tau deposition in occipital cortex
may also drive aberrant VN internetwork communications
in older adults.

Limitations
Limitations include that testing patients on medication therapy
could mask functional abnormalities and affect performance on
neuropsychological tests. Head motion artifact, however, can
be elevated off medication, which has detrimental influences
especially on low frequency rsfMRI signals. Completion of a
lengthy neuropsychological test battery can also be challenging
for patients after overnight withdrawal from medication
therapy. From a practical standpoint it is also important to
understand brain functioning and cognition in daily life as
influenced by medication therapy. Second, the inclusion of
six de novo PDCN patients increased the heterogeneity within
the cohort, which could add variability to the functional
connectivity measures. Despite this limitation, internetwork
coupling topologies remained sensitive to cognitive and genetic
variables, likely owing in part to the improved temporal
resolution of our multiband fMRI protocol (Tomasi et al., 2016).
Third, neurocognitive correlations were medium in magnitude,
likely owing to the more restricted ranges on behavioral variables
in a PDCN cohort, which may partly relate to the use of
compensatory strategies that maintain cognition (Reuter-Lorenz
and Park, 2014). Fourth, although our sample size was large, the
statistical power for tests of genetic variants would be improved
with larger samples. Even so, medium effect sizes were found for
MAPT and SNCA effects on internetwork connectivity and a very
large effect size was observed for MAPT prediction of working
memory decline. Fifth, although our longitudinal analyses
controlled for aging effects, it would be desirable to collect the
same neuropsychological data longitudinally in elder controls
to better gauge the rate of disease-related cognitive progression.
Lastly, our analyses were constrained to six core large-scale
networks, but other networks should also be considered to fully
characterize internetwork communications that predict domain-
specific cognitive progression.
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CONCLUSION

Our results show that cognition in PDCN is maintained by
functional reconfiguration of internetwork communications,
possibly driven by underlying pathology that causes a shift
in processing resources to other networks. We demonstrated
for the first time that stronger positive internetwork coupling
topologies exerted mainly compensatory influences on baseline
cognition in PDCN, but predicted longitudinal changes in most
cognitive domains, suggesting that they are surrogate markers
of neuronal vulnerability. Strengthened aDMN-SN, LFPN-SN,
and/or LFPN-VN interactions predicted longitudinal decline in
visual cognition, a risk factor for future MCI and dementia,
and declines in attention, executive functioning, and working
memory, which are processes shared across multiple cognitive
domains. Coupling strengths of some internetwork topologies
were altered by genetic variants. The main findings showed that
higher α-synuclein weakened internetwork communications of
the SN that supported cognition in healthy controls, whereas
higher tau increased VN-LFPN connectivity, which in turn
predicted greater longitudinal visuospatial decline, a risk factor
for dementia. Notably, the tau risk variant also accelerated
longitudinal decline in working memory, whereas the protective
allele prevented working memory decline. Still, internetwork
coupling topologies did not predict longitudinal change in
semantic fluency, which was robust in the PDCN group and
is also a risk factor for MCI and dementia (Compta et al.,
2013; Williams-Gray et al., 2013; Hobson and Meara, 2015).
This is likely because our ICA analyses did not expose a
temporal-parietal network, for which key hubs (angular gyrus,
temporal pole) modulate semantic fluency in PDCN (Harrington
et al., 2021). Collectively, these novel findings emphasize the
prognostic value of large-scale internetwork connectivity in
predicting domain-specific cognitive decline and the distinct
modulatory influences of SNCA and MAPT, which partly explain
heterogeneity in neurocognition. Future investigations into the
roles of other genetic variants in neurocognitive functioning
would be of great interest, given the paucity of studies concerning
genetic modifiers of functional connectivity in PDCN.
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