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Abstract 

Team interaction involves the division of labor and 
coordination of actions between members to achieve a shared 
goal. Although the dynamics of interactions that afford 
effective coordination and performance have been a focus in 
the cognitive science community, less is known about how to 
generate these flexible and adaptable coordination patterns. 
This is important when the goal is to design artificial agents 
that can augment and enhance team coordination as synthetic 
teammates. Although previous research has demonstrated the 
negative impact of model-based agents on the pattern of 
interactions between members using recurrence quantification 
methods, more recent work utilizing deep reinforcement 
learning has demonstrated a promising approach to bootstrap 
the design of agents to team with humans effectively. This 
paper explores the impact of artificial agent design on the 
interaction patterns that are exhibited in human-autonomous 
agent teams and discusses future directions that can facilitate 
the design of human-compatible artificial agents.  

Keywords: human-autonomy teaming (HAT); deep 
reinforcement learning (DRL); interactive team cognition 
(ITC); recurrence quantification analysis (RQA) 

Introduction 

Workplaces in the 21st century are defined by sociotechnical 

systems (Fiore & Wiltshire, 2016) whereby coordination, 

collaboration, and communication is mediated by the use of 

assistive and automated systems to facilitate group 

performance (O’Neill et al., 2020). A more recent research 

endeavor includes the use of artificial systems as autonomous 

agents who contribute meaningfully as a synthetic teammate 

in what is now referred to as human-autonomy teaming 

(HAT) (McNeese et al., 2018). As opposed to assistive and 

automated systems that require human intervention, 

autonomous artificial agents are self-directed in their 

behaviors (O’Neill et al., 2020). 

In the literature, the study of HAT has been a prominent 

focus in military- or emergency-related simulations (O’Neill 

et al., 2020). In these applications, the role of artificial agents 

is to participate actively in a team or group’s functioning. To 

perceive these agents as teammates, they need to embody 

perceptual-motor dynamics that allow for fluid interactions 

with team members (Lorenz et al., 2016). This is especially 

important for situations where the goal for synthetic 

teammates is to either replace humans entirely (Ball et al., 

2010; Demir et al., 2019) or to provide high-fidelity team 

training (Rigoli et al., 2020). 

To understand how to design artificial agents capable of 

teaming with humans, a useful starting point is to understand 

how coordination in human teams is possible. Importantly, 

interpersonal coordination and cooperative (‘joint’) action 

has been well studied in the past three decades (Knoblich et 

al., 2011; Schmidt et al., 1990). This includes research 

exploring the dynamics and self-organized stabilities of 

interpersonal and group coordination (Schmidt & 

Richardson, 2008) and the information-processing 

mechanisms involved in predicting and understanding the 

actions of co-actors (Vesper et al., 2011). These various 

approaches have also begun to investigate the use of artificial 

agents to test model predictions (Dumas et al., 2018; Harry & 

Keller, 2019) and to steer human behavior in collaborative 

contexts (Nalepka et al., 2019). 

Quantifying the Dynamics of Team Interaction 

Within the theoretical umbrella of ‘interactive team 

cognition’ (ITC), team behaviors and decision-making 

processes are understood as activities that emerge from the 
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ongoing interaction of team members within the task context 

(Cooke et al., 2013). The processes that operate at the team 

level can be measured via the pattern of interactions between 

team members, which, in turn, can be used to assess a team’s 

functioning and ability to respond to task perturbations 

(Gorman et al., 2020). 

A popular tool to assess team functioning is via recurrence 

quantification analysis (RQA) methods (Marwan et al., 2007; 

Webber & Zbilut, 1994). As will be expanded upon later, 

RQA is a tool capable of understanding the dynamics of 

disparate systems – such as the interactions between humans 

and artificial agents. In the psychological and cognitive 

sciences, RQA has been applied to understand the interactive 

dynamics of various social systems – for example, 

caregiver/child language dynamics (Dale & Spivey, 2006), 

interpersonal conflict (Paxton & Dale, 2017), and 

collaborative problem-solving (Wiltshire et al., 2018). 

RQA involves the construction of a 2-dimensional 

recurrence plot (RP) which is a visualization tool for 

representing repetitions (or re-occurrences) of a dynamical 

system’s state across time (see Figure 2). In univariate RQA, 

both axes of the plot represent the system’s behavioral time 

series such that values along the main diagonal are recurrent 

due to the plot’s construction and any recurrences away from 

the main diagonal represent repetitions of states at different 

time points. The patterning of recurrent points on RPs allows 

investigators to uncover the underlying properties of a system 

(e.g., the system’s stability). 

An extension of RQA is the use of joint RPs (JRPs) which 

allows for the study of interactions between dynamical 

systems (Marwan et al., 2007), such as between members of 

a team who may have different roles or be of disparate design 

(e.g., human, artificial agent) (Demir et al., 2019). JRPs are 

constructed by combining the RPs of each team member (via 

the Hadamard product). The patterning of recurrences on the 

resultant JRP provides a description of the dynamics of the 

interactions between members of a team. 

A statistic that can be obtained from JRPs is the extent to 

which a team’s interactions follow stable, repeatable patterns. 

This is computed as the proportion of recurrent points that 

form diagonal line structures on the JRP, referred to as 

%Determinism (or %DET). %DET is inversely related to the 

flexibility of interactions between team members, such that 

higher %DET indicates a stable, prescribed pattern of 

interactive behavior while lower %DET indicates flexible 

variation in how team members respond to recurrent states. 

RQA, and the measurement of interaction flexibility, has 

been applied to the study of HAT in a three-person air 

reconnaissance task which consists of a pilot, navigator, and 

photographer (Demir et al., 2019). These experiments 

compared the impact of the pilot being replaced by a 

synthetic teammate on the interaction dynamics and 

performance of these teams. This artificial agent 

implemented the Adaptive, Control of Thought-Rational 

(ACT-R; Anderson, (2007)) cognitive modelling architecture 

and was capable of conversing with team members via a text-

based platform. The results showed that the interaction 

patterns of teams containing the artificial agent were more 

rigid (higher %DET) than all-human teams which resulted in 

poorer performance on the task, as well as behavioral 

passivity. Observations by the researchers indicate that the 

shortcomings of the synthetic teammate were due to its 

architecture – namely, it lacked teamwork skills that 

anticipated the needs of its teammates in a timely manner. 

Human-Aware Artificial Agents 

The challenge of symbolic-based architectures such as the 

ACT-R model is that it lacks the flexibility needed by 

artificial agents to adapt to the natural variability found in 

human teams. The opposing alternative are neural network-

based, model-free methods which train artificial agents to 

develop action patterns based on experience. The most 

promising work in this area has been the design of artificial 

agents using deep, multi-layer neural network architectures 

(Mnih et al., 2015). Embedding the agent within a 

reinforcement learning problem (Sutton & Barto, 2018), 

whereby the agent learns state-action mappings (i.e., policy) 

which maximize a reward function, has had success in 

solving cognitively demanding game-based tasks (Mnih et 

al., 2015; Vinyals et al., 2019). 

The integration of deep neural networks with 

reinforcement learning (referred to as Deep Reinforcement 

Learning, DRL) excel at competitive or agent-only 

cooperative environments, but do not ensure effective 

collaboration when teaming with humans (Carroll et al., 

2019). This is because in competitive settings DRL agents 

can exploit the non-optimal nature of human gameplay by 

behaving optimally. However, optimal action by the artificial 

agent in cooperative settings does not ensure optimal 

behavior at the team level – as it also assumes human users 

will behave similarly. 

To account for the shortcomings of DRL in HAT, Carroll 

et al., (2019) tested whether exposing artificial agents to 

human-like behavior would facilitate the adoption of policies 

that would enable fluid interactions with human players. This 

was tested by varying the underlying model of the agent’s 

partner during training in a two-agent task modeled after the 

popular video game series Overcooked (Ghost Town Games, 

Cambridge, UK; see also Wu et al., (2021) who also used a 

similar task environment). In this task, agents, taking on the 

role of chefs, must coordinate their actions to retrieve onions, 

place them in a stock pot to cook soup, and then retrieve a 

bowl to deliver the soup to the serving station (see Figure 1 

for one of the task configurations used). The task 

environment was cramped so that collisions between players 

were probable, which would lead to inefficiencies in 

coordination. 

Pertinent to this paper, Carroll et al., (2019) trained an 

artificial agent using DRL which was either exposed to a 

similarly-trained agent (the ‘self-play’ condition) or 

alongside a partner which embodied a model trained to 

imitate previously collected human-human gameplay (by 

using behavioral cloning; the ‘human-aware’ condition). 

Following training, human participants teamed with either 
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the self-play or human-aware agent. Participants who 

interacted with the human-aware agent could cook and serve 

more bowls of onion soup compared to those working with 

the self-play agent. Additionally, participants teaming with 

the human-aware agent also performed better than 

participants who teamed with another human in certain 

environments. This suggests that the ‘human-aware’ agent 

can select actions that enhances HAT. 

Current Study 

Carroll et al., (2019) speculated from qualitative observations 

that the human-aware agent was more adaptive to participants 

than the self-play agent. This study sought to quantify the 

dynamics which enabled more effective teaming between 

participants and the human-aware agent. The current study 

compared the different approaches to train artificial agents 

using DRL and investigated their effect on the interaction 

dynamics with human participants. In this way, this study 

sought to integrate the recent advances in DRL within the 

theoretical work of ITC and the recent research in quantifying 

the interaction dynamics during HAT (Cooke et al., 2013; 

Demir et al., 2019). 

In this study, participants were recruited to work alongside 

the self-play and human-aware agents in a modified version 

of the Overcooked task developed by Carroll et al., (2019). 

Participants were tasked to complete multiple rounds with the 

agents with trials lasting two minutes. For both the participant 

and the artificial agent, RPs were constructed for each 

player’s behavior across time. Resultant JRPs and the amount 

of interaction flexibility (quantified by %DET) was assessed 

at the team level. The hypothesis was that the increased 

performance observed in human-‘human aware’ agent teams 

was due to increased flexibility in the interactions between 

players (lower %DET) compared to participants teaming 

with the self-play agent. Additionally, consistent with theory 

(Demir et al., 2019), variation in interaction flexibility was 

expected to predict team performance. 

Method 

Participants 

Forty-three participants took part in this experiment (31 

Female), with participant age ranging from 18 to 36 years (M 

= 20.51, SD = 4.76). All participants were first-year 

Psychology undergraduate students who completed this 

experiment in exchange for course credit. The experiment 

took place online and required participants to have a 

keyboard and stable internet connection. The study was 

approved by the Macquarie University Institutional Review 

Board. 

Materials and Design 

The ‘Onion Soup’ Game. Participants completed a virtual 

cooking task designed by Carroll et al., (2019) and modeled 

after the popular video game series Overcooked (Ghost Town 

Games, Cambridge, UK). 

The environment was a modified version of the 

coordination ring level developed by Carroll et al., (2019) 

(see Figure 1). Participants controlled the green-hat ‘chef’ 

avatar, while the artificial agent controlled the blue-hat chef. 

The avatars could move UP, DOWN, LEFT, or RIGHT, 

using the directional arrow keys, along the tan-colored 

kitchen floor which surrounded a centrally located countertop 

space where objects can be placed. Objects could be picked 

up and placed by orienting the avatar towards the object and 

pressing the SPACEBAR. Interactable objects included 

onions (bottom left of Figure 1) and bowls (left of Figure 1). 

Human and artificial agent actions were processed at 4 Hz. 

The goal of the game was for players to cook and serve as 

many bowls of onion soup as possible within 120 s (a total of 

480 states). Players received a point for every soup that was 

served. This was done by placing three onions inside one of 

two stock pots (pictured top right in Figure 1), waiting for 

them to cook for 5 s, then bringing a bowl to the pot to 

retrieve the soup, and then placing the bowl of onion soup at 

the serving station (the grey square at bottom of Figure 1). In 

case a player wished to discard an item, the perimeter of the 

environment contained ten ‘rubbish bins’ for which items 

could be disposed. 

 

Artificial Agents. Two artificial agents were tested in this 

experiment. Both agents were originally developed in the 

study by Carroll et al., (2019) and were controlled by a deep 

neural network trained using proximal policy optimization 

(PPO). Reinforcement learning was used to reward the agents 

for every bowl of soup that was served. Thus, the agents were 

incentivized to develop control policies that maximized the 

number of bowls of onion soup that can be served. 

The agents differed in their exposed training environment. 

The self-play agent worked alongside a similar agent and the 

two together were trained to develop a control policy which 

maximizes the number of bowls of soup to be served. The 

human-aware agent worked alongside an agent embodying a 

human model of task behavior. This human model was 

 
Figure 1: Illustration of task environment. The 

environment was modified from Carroll et al., (2019) to 

include the addition of rubbish bins around the perimeter for 

participants and agents to dispose of unwanted items. 
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developed using behavioral cloning, a form of imitation 

learning, which trains a policy to mimic the decisions of a 

training data set. In this way, the artificial agent trained to 

develop a control policy which maximizes reward while 

accounting for the decision-making of the human model. See 

Carroll et al., (2019) for more details. 

 

Design and Measures. The study implemented a within-

subjects design whereby participants completed the ‘Onion 

Soup’ game with both the self-play and human-aware agents. 

The order of which artificial agent participants interacted 

with first was counterbalanced. The following measures were 

used for the analyses: 

Game Score. Performance was measured via the number of 

bowls of onion soup that were served during each trial.  

Interaction Flexibility. The pattern of interactions between 

the participant and the artificial agents was assessed by joint 

categorical RQA. For each player on each trial, a RP was 

constructed which plotted the behavioral timeseries of states 

on each axis. Each unique state, consisting of the player’s 

position, orientation and the currently held object (e.g., none, 

onion, bowl, soup), was coded using a unique integer. The 

RPs of both the human participant and artificial agent were 

then combined, using the Hadamard product (see Figure 2). 

A measure of interaction flexibility was then conducted on 

the resultant JRP. Interaction flexibility was measured by 

%Determinism (or %DET), calculated as the percentage of 

recurrent points which fall along diagonal lines (of minimum 

length = 2). Here, lower %DET indicated greater interaction 

flexibility. 

Qualitative Measures of Interaction. Following interaction 

with each artificial agent, participants completed five, Five-

point Likert scale questions to assess their experience with 

their partner. The first question asked How well do you feel 

you worked with your partner? (with response options 

ranging from ‘Very Poorly’ to ‘Very Well’). The remaining 

questions were presented as statements with response options 

ranging from ‘Strongly Disagree’ to ‘Strongly Agree’. The 

statements were: I had to rely on my teammate when 

completing the task, I believe my team was ‘in sync’ on how 

best to complete the task, I performed more tasks than my 

partner (reversed scored), and My partner was stubborn in 

their approach on how to solve the task (reversed scored). 

The responses to these questions were then combined to form 

a composite score for each agent. 

Procedure 

Following task instructions, participants completed two 

practice rounds using the training environments employed in 

Carroll et al., (2019) to familiarize themselves with the 

controls and the steps necessary for serving bowls of onion 

soup. Following the practice, participants completed two 

blocks consisting of three trials with either the self-play or 

human-aware agent. Following the first block, participants 

completed the second block with the other agent. At the end 

of each block, participants also completed the Likert scale 

questions to rate the quality of their partner and of the 

interaction. 

Results 

Prior to analysis, the data was pre-processed to remove trials 

where participants were deemed to not have been engaged in 

the task. Trials were excluded if participants could not serve 

more than two bowls of onion soup in a trial (equating to 1 

soup per minute). This resulted in excluding 16 trials (6.20%) 

which resulted in one participant being removed from 

analysis. The resultant sample contained 42 participants. 

Consistent with the findings by Carroll et al., (2019), 

participants were more successful in completing the task 

when working alongside the human-aware artificial agent (M 

= 10.29 soups served, SD = 1.83) than with the self-play agent 

(M = 7.57 soups served, SD = 1.69), t(41) = 9.14, p < .001, d 

= 1.41. Additionally, participants rated the experience of 

teaming with the human-aware agent better (M = 16.88, SD 

= 3.66) than with the self-play agent (M = 11.24, SD = 3.62), 

t(41) = 7.02, p < .001, d = 1.11. 

Importantly, the interactions between participants and the 

human-aware agent exhibited more flexibility (M = 65.98 

%DET, SD = 8.88) than when working with the self-play 

agent (73.28 %DET, SD = 7.50), t(41) = -6.00, p < .001, d = 

0.93. Increases in interaction flexibility (i.e., lower %DET) 

 
Figure 2. Example construction of joint recurrence plot (JRP). Each axis represents the timeseries of player states. A 

recurrent point is plotted whenever the same state intersects along the plot. The individual RPs are then combined to 

construct the JRP. Interaction flexibility is operationalized as the percentage of recurrent points which fall along diagonal 

lines on the JRP (i.e., the plot’s %Determinism, see Marwan et al., 2007). 
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did correlate with the number of bowls of onion soup served 

by teams, both when participants teamed with the human-

aware agent, r(40) = -.81, p < .001, and the self-play agent, 

r(40) = -.70, p < .001 (see Figure 3). The reason for this 

relationship may be due to variation in the number of idle 

states by human-autonomous teams (i.e., states where both 

players did not move) which would impact both the number 

of bowls of soup that can be served (resulting in a lower 

score) as well as the stability of the team’s interactive 

behavior (by maintaining the same states across time, 

resulting in higher %DET). Indeed, when participants 

interacted with the self-play agent, these teams exhibited 

more idleness (M = 28.1% of trial, SD = 7.12) than when 

teaming with the human-aware agent (M = 19.68% of trial, 

SD = 7.46), t(41) = -9.72, p < .001, d = 1.50. 

To determine whether the difference in the flexibility of 

interactions between participants and each artificial agent 

type was above and beyond their differences in the amount of 

idle time, an additional analysis was conducted by 

considering only the transition states within teams. 

Specifically, states whereby neither participant nor the 

artificial agent acted were excluded from the construction of 

the JRP. When this was done, participants teaming with the 

human-aware agent still exhibited more flexible patterns of 

interaction (M = 73.31 %DET, SD = 4.30) than when teaming 

with the self-play agent (M = 79.06 %DET, SD = 3.82).  

In summary, not only do participants perform better when 

teaming with a human-aware agent, but their interactions also 

show greater flexibility than when participants team with a 

self-play agent. 

Discussion 

The study integrated the work of scientists investigating the 

dynamics of team interactions with the recent advances in 

artificial agent design which can be used to augment human 

teams with synthetic teammates. Consistent with previous 

literature applying RQA to study team interactions (Demir et 

al., 2019), the success of the human-aware agent in teaming 

with humans can be attributable to differences in the 

flexibility of interactions between the artificial agent and its 

human partner as compared to an artificial agent not exposed 

to any human models during training. These quantitative 

findings are consistent with the qualitative observations by 

Carroll et al., (2019) as well as with what was reported by 

participants in this study.  

Interaction flexibility is a desirable characteristic of teams 

as it affords adaptability to task perturbations (Demir et al., 

2019). The benefits of joint categorical RQA, applied here, is 

that it can enable real-time measure and monitoring of team 

interactions (Gorman et al., 2020). Thus, systems monitoring 

the interactions between human and artificial agents can be 

used to alert team members or alter the behaviors of artificial 

agents to steer teams towards adaptable modes of behavior. 

However, research is still needed to determine whether 

coordination-based measures are useful signals to guide 

teams generally (Wiltshire et al., 2020). 

Although the purpose of this experiment was to compare 

the effect of two different design approaches to training 

artificial agents on the dynamics of interactions with human 

participants, this experiment is limited in comparing these 

findings to all human teams, which will be the focus of future 

research. The results from Carroll et al., (2019) demonstrate 

that participants working alongside a human-aware agent 

could perform better than human-human teams on certain 

environments. Thus, consistent with the work by Demir et al., 

(2019), who provides evidence of an inverted U-shape 

relationship between interaction flexibility (indexed by 

%DET) and performance, it is predicted that the interaction 

dynamics of novice all-human teams may exhibit greater 

flexibility (at the cost of performance) compared to human-

‘human-aware’ teams which may exhibit a state of interaction 

metastability. If this is indeed the case, exposing artificial 

agents to human models during training may appropriately 

constrain interactions to optimize team performance. 

The human model used to train the human-aware agent 

consisted of previously collected human data. In the absence 

of sufficient amounts of data to generate human models for 

agent training (e.g., behavioral cloning, GAIL), there is an 

opportunity to utilize model-based approaches which 

captures the dynamics of human behavior. In perceptual-

motor tasks in particular, research from the past two decades 

have provided evidence that human movements can be 

decomposed to a set of motor primitives (discrete and 

rhythmic actions) which conform to low-dimensional 

properties of dynamical systems (Ijspeert et al., 2013). 

Embedding such dynamical models in artificial agents have 

been successful in completing cooperative tasks with humans 

as well as erroneously convincing participants that the agent 

was human-controlled (Nalepka et al., 2019). Incorporating 

agents that embody these dynamical models in the absence of 

human data during training, or training artificial agents to 

parameterize such models as part of their control policy, may 

provide new opportunities to facilitate the design of human-

compatible artificial agents. 
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