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MODELS FOR OPTIMIZING THE LEARNING PROCESS*

G. J. GROEN arp R. C. ATKINSON

Stanford University

This paper is concerned with showing how certain instructional problems can be
reformulated as problems in the mathematical theory of optimization. A com-
mon instructional paradigm is outlined and a notational system is proposed
which allows the paradigm to be restated as a multistage decision process
with an explicit mathematical learning model embedded within it. The notion
of an optimal stimulus presentation strategy is introduced and some prob-
lems involved in determining such a strategy are discussed. A brief descrip-
tion of dynamic programming is used to illustrate how optimal strategies might

be discovered in practical situations.

Although the experimental work in the field
of programmed instruction has been quite
extensive, it has not yielded much in the way
of unequivocal results. For example, Silber-
man (1962), in a summary of 80 studies
dealing with experimental manipulations of
instructional programs, found that 48 failed
to obtain a significant difference among
treatment comparisons. When significant dif-
ferences were obtained, they seldom agreed
with findings of other studies on the same
problem. The equivocal nature of these re-
sults is symptomatic of a deeper problem that
exists not only in the field of programmed
instruction but in other areas of educational
research,

An instructional program is usually devised
in the hope that it optimizes learning ac-
cording to some suitable criterion. However,
in the absence of a well-defined theory, grave
difficulties exist in interpreting the results of
experiments designed to evaluate the pro-
gram, Usually the only hypothesis tested is
that the program is better than programs
with different characteristics. In the absence
of a theoretical notion of why the program
tested should be optimal, it is almost impos-
sible to formulate alternative hypotheses in
the face of inconclusive or contradictory re-
sults. Another consequence of an atheoretical
approach is that it is difficult to predict the
magnitude of the difference between two
experimental treatments. If the difference is

1 Support for this research was provided by the
National Aeronautics and Space Administration,
Grant No. NGR-05-020-036, and by the Office of
Education, Grant No. OES5-10-050.

small, then it may not turn out to be sig-
nificant when a statistical test is applied.
However, as Lumsdaine (1963) has pointed
out, lack of significance is often interpreted
as negative evidence.

What appears to be missing, then, is a
theory that will predict the conditions under
which an instructional procedure optimizes
learning. A theory of this type has recently
come to be called a theory of instruction. 1t
has been pointed out by several authors
(e.g., articles in Gage, 1963, and Hilgard,
1964), that one of the chief problems in
educational research has been a lack of
theories of instruction. Bruner (1964) has
characterized a theory of instruction as a
theory that sets forth rules concerning the
most efficient way of achieving knowledge
or skill; these rules should be derivable from
a more general view of learning. However,
Bruner made a sharp distinction between a
theory of learning and a theory of instruc-
tion. A theory of learning is concerned with
describing learning. A theory of instruction is
concerned with prescribing how learning can
be improved. Among other things, it pre-
scribes the most effective sequence in which
to present the materials to be learned and
the nature and pacing of reinforcement.

While the notion of a theory of instruc-
tion is relatively new, optimization problems
exist in many other areas and have been
extensively studied in a mathematical fashion.
Within psychology, the most prominent ex-
ample is the work of Cronbach and Gleser
(1965) on the problem of optimal test selec-
tion for personnel decisions. Outside psy-
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chology, optimization problems occupy an
important place in areas as diverse as physics,
electrical engineering, economics, and opera-
tions research. Despite the fact that the
specific problems vary widely from one field
to another, several mathematical techniques
have been developed that can be applied to
a broad variety of optimization problems.
The purpose of this paper is to indicate
how one of these techniques, dynamic pro-
gramming, can be utilized in the development
of theories of instruction. Dynamic program-
ming was developed by Bellman and his
associates (Bellman, 1957, 1961, 1965;
Bellman & Dreyfus, 1962) for the solution
of a class of problems called multistage
decision processes. Broadly speaking, these
are processes in which decisions are made
sequentially, and decisions made early in the
process affect decisions made subsequently.
We will begin by formalizing the notion
of a theory of instruction and indicating how
it can be viewed as a multistage decision
process. This formalization will allow us to
give a precise definition of the optimization
problem that arises. We will then consider
in a general fashion how dynamic program-
ming techniques can be used to solve this
problem. Although we will use some specific
optimization models as illustrations, our main
aim will be to outline some of the obstacles
that stand in the way of the development of
a quantitative theory of instruction and
indicate how they might be overcome.

Multistage Instructional Models

The type of multistage process of greatest
relevance to the purposes of this paper is the
so-called discrete N-stage process. This proc-
ess is concerned with the behavior of a
system that can be characterized at any given
time as being in State w. This state may be
univariate but is more generally multivariate
and hence is often called a state vector (the
two terms will be used interchangeably). The
state of this system is determined by a set
of decisions. In particular, every time a
decision d (which may also be multivariate)
is made, the state of the system is trans-
formed. The new state is determined by both
d and w and will be denoted by T'(w,d). The
process consists of NV successive stages. At
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each of the first N — 1 stages, a decision d is
made. The last stage is a terminal stage in
which no decision is made. The process can
be viewed as proceeding in the following
fashion: Assume that, at the beginning of
the first stage, the system is in state w;. An
initial decision d; is made. The result is a
new state wy given by the relation:

W = T(W2,d1) .

We are now in the second stage of the proc-
ess, so a second decision ds is made, resulting
in a new state ws determined by the relation

W3 = T(V&,dg) .

The process continues in this way until
finally:

wN = T(wN_l,dN_1) B

If each choice of d determines a unique
new state, T'(w,d), then the process is de-
terministic. It is possible, however, that the
new state is probabilistically related to the
previous state. In this nondeterministic case,
it is also necessary to specify for each Stage i
a probability distribution Pr(ws|wi1,di1).

In a deterministic process, each sequence
of decisions dy,ds, . ..dy1 and states wi, we,
..., wy has associated with it a function that
has been termed the criterion or return func-
tion, This function can be viewed as defining
the utility of the sequence of decisions, The
optimization problem one must solve is to
find a sequence of decisions that maximizes
their criterion function. The optimization
problem for a nondeterministic process is
similar except that the return function is
some suitable type of expectation.

In order to indicate how an instructional
process can be considered as an N-stage
decision process, a fairly general instructional
paradigm will be introduced. This paradigm
is based on the type of process that is
encountered in computer-based instruction
(Atkinson & Hansen, 1967). In instruc-
tion of this type, a computer is pro-
grammed to decide what will be presented to
the student next. The decision procedure,
which is given in diagrammatic form in
Figure 1, is based on the past stimulus-
response history of the student. It should be
noted that this paradigm contains, as special
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cases, all other programmed instructional
techniques currently in vogue. It may also cor-
respond to the behavior of a teacher making
use of a well-defined decision procedure.

It will be assumed that the objective of
the instructional procedure is to teach a set
of concepts and that the instructional system
has available to it a set of stimulus materials
regarding these concepts. A stage of the
process will be defined as being initiated
when a decision is made regarding which
concept is to be presented and terminated
when the history file is updated with the
outcome of the decision. In order to com-
pletely define the instructional system we
need to define:

1. The set S of all possible stimulus
presentations.

2. The set A of all possible responses that
can be made by the student.

3. The set H of histories. An element of
H need not be a complete history of the stu-
dent’s behavior. It may only be a summary.

4, A function 8 of H onto S. This defines
the decision procedure used by the system
to determine the stimulus presentation on the
basis of the history.

5. A function p» of SX A X H onto H,
This function updates the history.

Thus, at the beginning of Stage 4, the history
can be viewed as being in State #;. A decision
is then made to present s, = 8(%,;), a response
a; is made to s; and the state of the system
is updated to k., = w(si,a,%).

In a system such as this, the stimulus set S
is generally predetermined by the objectives
of one’s instructional procedure. For example,
if the objective is to teach a foreign language
vocabulary, then S might consist of a set of
words from the language. The response set A
is, to a great extent, similarly predetermined.
Although there may be some choice regarding
the actual response mode utilized (e.g.,
multiple choice vs. constructed response), this
problem will not be considered here. The
objectives of the instructional procedure also
determine some criterion of optimality. For
example, in our vocabulary example this
might be the student’s performance on a test
given at the end of a learning session. The
optimization problem that is the main concern
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START INSTRUCTIONAL SESSION

INITIALIZE THE STUDENT'S
HISTORY FOR THIS SESSION

J

DETERMINE, ON THE BASIS OF THE CURRENT HISTORY,
WHICH STIMULUS 1S TO BE PRESENTED NEXT

[ PRESENT STIMULUS TO STUDENT 1

l RECORD STUDENT'S RESPONSE 1

UPDATE HISTORY BY ENTERING
THE LAST STIMULUS AND RESPONSE

NO
“—( HAS STAGE N OF THE PROCESS BEEN REACHED ?)

YES

TERMINATE INSTRUCTIONAL SESSION

Fie. 1. Flow diagram for an instructional system.

of this paper is to find a suitable decision
procedure for deciding which stimulus s; to
present at each stage of the process, given
that S, A, and the optimality criterion are
specified in advance. Such a decision pro-
cedure is called a strategy. It is determined
by the set of possible histories H, the de-
cision function 8, and the updating function u.

For a particular student, the stimulus pre-
sented at a given stage and the response the
student makes to that stimulus can be viewed
as the observable outcome of that stage of
the process. For an N-stage process, the
sequence ($;, &z, $3, @g, ..., Sy-1, Gy—1) 0f out-
comes at each stage can be viewed as the
outcome of the process. The set of all possible
outcomes of an instructional procedure can be
represented as a tree with branch points oc-
curring at each stage for each possible stimu-
lus presentation and each possible response to
a stimulus. An example of such a tree is given
in Figure 2 for the first two stages of a
process with stimulus presentations, s, s’ and
two responses a, @'

The most complete history would contain,
at the beginning of each stage, a complete
account of the outcome of the procedure up
to that stage, Thus, 4 would consist of some
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sequence (S1, 81, S2, @2, + + .« , i1, @i-1). Ideally,
one could then construct a decision function
8 which specified, for each possible outcome,
the appropriate stimulus presentation s;. How-
ever, two problems emerge. The first is that
the number of outcomes increases rapidly as
a function of the number of stages. For ex-
ample, at the tenth stage of a process such as
that outlined in Figure 2, we would have 4*°
outcomes. The specification of a unique de-
cision for each outcome would clearly be a
prohibitively lengthy procedure. As a result,
any practical procedure must classify the
possible outcomes in such a way as to reduce
the size of the history space. Apart from the
problem of the large number of possible out-
comes, one is also faced with the problem
that many procedures do not store as much
information as others. For example, in a
linear program in which all students are run
in lockstep, it is not possible to make use of
information regarding the student’s responses.

In general, instructional systems may be
classified into two types: those that make
use of the student’s response history in their
stage-by-stage decisions, and those that do
not, The resulting strategies may be termed
response insensitive and response semsitive. A
response insensitive strategy can be specified
by a sequence of stimulus presentations
(51,82, ..,85-1). A response sensitive strat-
egy can be represented by a subtree of the
tree of possible outcomes. An example is
given in Figure 2. There are two chief reasons

STAGE
|

AN
NN

s s

T A‘M A A

R

Fic. 2. Tree diagram for the first two stages of a
process with two stimuli s and ', and two responses
a and a'. (The dotted lines enclose the subtree gener-
ated by a possible response sensitive strategy.)

G. J. GROEN AND R. C. ATKINSON

for making this distinction. The first is
that response insensitive strategies are less
complicated to derive. The second is that
response insensitive strategies can be com-
pletely specified in advance and s6 do not
require a system capable of branching during
an actual instructional session.

While this broad classification will be
useful in the ensuing discussion, it is impor-
tant to note that several types of history
spaces are possible within each class of strat-
egy. Even if the physical constraints of the
system are such that only response insensitive
strategies can be considered, it is possible
to define many ways of “counting” stimulus
presentations, The most obvious way is to
define the history at Stage ¢ as the number
of times each stimulus has been presented.
A more complicated procedure (which might
be important in cases where stimuli were
easily forgotten) would be to also count for
each stimulus the number of other items that
had been presented since its most recent
presentation,

The discussion up to this point has been
concerned mainly with the canonical repre-
sentation of an instructional system, and a
deliberate effort has been made to avoid theo-
retical assumptions. While this leads to some
insight into the nature of the optimization
problem involved, the multistage process can-
not be sufficiently well-defined to yield a
solution to the optimization problem without
imposing theoretical assumptions, It will be
recalled that, in order to define a multistage
process, it is necessary to spec1fy a trans-
formation w,, = T(wi,di) given the state and
decision at Stage 4. In order to optimize the
process, it is also necessary to be able to state
at each stage the effect of a decision upon
the criterion function, The simplest criterion
function to use is one which depends only
on the final state of the system. This function
will be called the terminal return function
and denoted ¢(wy). An intuitive interpreta-
tion of ¢ (wx) is the score on a final test.

If the transformation T were deterministic,
then the sequence of optimum decisions could
be determined by enumerating in a tree dia-
gram all possible outcomes and computing
¢ (wy) for each path, A path that maximized
¢ (wy) would yield a sequence of decisions
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corresponding to appropriate nodes of the
tree. If T were nondeterministic, then a
strategy o would yield a tree. Each tree
would define a probability distribution over
the w and thus an expected terminal return

E(e(wy)|o) = W;EW o(wn)P(wyle) [1]

could be computed for each strategy o. In
either case, this process of simple enumera-
tion of the possible branches of a tree is
impossible in any practical situation since
too many alternative paths exist, even for a
reasonably small N. The problem of develop-
ing a feasible computational procedure will
be discussed in the next section. The problem
of immediate concern is the most satisfactory
way of defining the state space W and the
transformations T'(ws,d;).

At first sight, it would seem that w; could
be defined as the history at Stage i and
T(w,d,) as the history updating rule. How-
ever, while this might be feasible in cases
where the history space is either specified in
advance or subject to major constraints, it
has the severe disadvantage that it neces-
sitates an ad hoc choice of histories and,
without the addition of theoretical assump-
tions, it is impossible to compare the ef-
fectiveness of different histories. Even if the
history space is predetermined, such as might
be the case in a simple linear program where
all a history can do is “count” the occur-
rences of each stimulus item, it is neces-
sary to make some theoretical assumption
regarding the precise form of ¢(wy).

One way to avoid problems such as this is
to introduce theoretical assumptions regard-
ing the learning process explicitly in the form
of a mathematical model. In the context of
an N-stage process, a learning model con-
sists of: (&) a set of learning states Y; (0) a
usually nondeterministic response rule which
gives (for each state of learning) the proba-
bility of a correct response to a given stimu-
lus; and (¢) an updating rule which pro-
vides a means of determining the new learn-
ing state (or distribution of states) that re-
sults from the presentation of a stimulus, the
response the student makes, and the rein-
forcement he receives. At the beginning of
Stage i of the process, the student’s state is
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denoted by y:. After Stimulus s; is presented,
the student makes a response @, the proba-
bility of which is determined by s; and .
The learning state of the student then
changes to yiy1 = T(y,5). Models of this
type have been found to provide satisfactory
descriptions for a variety of learning phe-
nomena in areas such as paired-associate
learning and concept formation. Detailed ac-
counts of these models and their fit to em-
pirical phenomena are to be found in Atkin-
son, Bower, and Crothers (1965), Atkinson
and Estes (1963), and Sternberg (1963).

In the example of the learning of a list of
vocabulary items, the two simplest models
that might provide an adequate description
of the student’s learning process are the
single-operator linear model (Bush & Stern-
berg, 1959) and the one-element model
(Bower, 1961; Estes, 1960). In the single-
operator linear model, the set Y is the
closed unit interval [0,1]. The states are
values of response probabilities. Although
these probabilities can be estimated from
group data, they are unobservable when indi-
vidual subjects are considered. If, for a par-
ticular stimulus j, g;’ is the probability of
an error at the start of Stage ¢ and that item
is presented, then the new state (i.e., the
response probability) is given by

gt = ag? O <aXl). [2]

If g, is the error probability at the begin-
ning of the first stage, then it is easily shown

that
[31]

where #;? is the number of times Item ; has
been presented and reinforced prior to Stage
i. The response rule is simply that if a sub-
ject is in state ¢, with respect to a stimulus
and that stimulus is presented, then he makes
an error with probability g;. This model has
two important properties. The first is that,
although the response rule is nondetermin-
istic, the state transformation that occurs as
the result of an item presentation is determin-
istic. The second is that the model is response
insensitive since the same transformation is
applied to the state whether a correct or in-
correct response occurs. The only information
that can be used to predict the state is the
number of times an item has been presented.

qz(J) = ql(j)a"i(”
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In the one-element model, an item can be
in one of two states: a learned state L and
an unlearned state L. If an item is in State L,
it is always responded to correctly. If it is in
State L, it is responded to correctly with
probability g. The rule giving the state trans-
formation is nondeterministic. If an item is
in State L at the beginning of a stage and is
presented, then it changes its state to L with
probability ¢ (where ¢ remains constant
throughout the procedure). Unlike the linear
model, the one-element model is response
sensitive. If an error is made in response to
an item then that item was in State L at the
time that the response was made. To see
how this fact influences the response proba-
bility, it is convenient to introduce the fol-
lowing random variable:

1, if an error occurs on the nth
presentation of Item j

0 =
Xa® 0, 1if a success occurs on the nth
presentation of Item j

Then

PrX,®=1)=(1-g0—o, [4]
but
Pr(X,@ = 1| X, 1@ = 1)

=(1-gpl—=0o. [5]

In contrast, for the single-operator linear model

Pr(X,@ = 1) = Pr(X,? = 1| Xp = 1)

[6]
Although these two models cannot be ex-
pected to provide the same optimization

— ql(j)a‘n—l.

ST/IxGE
5
STAGE (.30,.90)
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4
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scheme in general, they are equivalent when
only response-insensitive strategies are con-
sidered. This is due to the fact that if ¢
is set equal to 1 — ¢ and ¢’ to 1 — g then
identical expressions for Pr(x,?” = 1) result
for both models.

With the introduction of models such as
these, the state space W and the transforma-
tion T can be defined in terms of some
“learning state” of the student. For example,
in the case of the linear model and a list
of m stimulus items, we can define the state
of the student at Stage ¢ as the m-tuple

g= (g®,¢?,...,¢™) (7]

where ¢ denotes the current probability of
making an error to item s; and define
T'(q,5;) as the vector obtained by replacing
g with aq”. This notation is illustrated
in Figure 3. If the behavioral optimization
criterion were a test on the m items admin-
istered immediately after Stage N of the
process, then the return function would be
the expectation of the test score, that is,

m

2 {1 — w9}

=1
where 1 — gy is the probability of a cor-
rect response at the end of the instructional
process. It is not necessary, however, that
W ‘be the actual state space of the model.
It may, instead, be more convenient to define
w; as some function of the parameters of the
model. For example, if the process of learn-
ing a list of simple items can be described

{.60,.90)
S2
(.60,.45)
8 s,
(.30,.48) (.60,.22)
Sy B S, 8 sz

(.08,.90) (.i5,.45) (.15,.45) (.30,.22) (.15,.45) (.30,.22} (.30,.22) (.60, .11)

Fic. 3, Outcome tree of response probabilities for linear model with = .5, 3. = .6, ;. = 9.



MODELS FOR OPTIMIZING THE LEARNING PROCESS

by a one-element model, then w4 can be de-
fined as the n-tuple whose j® element is
either L or L. However, if one is interested
in some criterion that can be expressed in
terms of probabilities of the items being in
State L, then it may be computationally more
convenient to consider w, as an n-tuple whose
7™ element is the probability that stimulus
sy is in State L at the beginning of Stage 3.

It is clear from these examples that a
learning model can impose a severe con-
straint upon the history space in the sense
that information regarding observable out-
comes is rendered redundant. For example,
if ¢1Y is known on a priori grounds (for
each j), then the linear model renders the
entire response history redundant. This is
because the response probability of each item
is completely determined by the number of
times it has been presented. With the one-
element model, the nature of the constraint
on the history is not immediately clear.

In general, the problem of deciding on
an appropriate history, %;, is similar to the
problem of finding an observable statistic
that provides an adequate basis for inferring
the properties of the distribution of states.
A desirable property for such a history would
be for it to summarize all information con-
cerning the state so that no other history
would provide additional information. A
history with this property can be called a
sufficient history. The most appropriate suf-
ficient history to use would be that which
was the most concise.

In the theory of statistical inference, a
statistic with an analogous property is called
a sufficient statistic, Since w; is a function of
the parameters of the model, it would seem
reasonable to expect that if a sufficient sta-
tistic exists for these parameters, then a
sufficient history would be some function of
the sufficient statistic, For a general discus-
sion of the role of sufficient statistics in
reducing the number of paths that must be
considered in trees resulting from processes
similar to those considered here, the reader is
referred to Raiffa and Schlaiffer (1961),

Optimization Techniques

Up to now, the only technique we have
considered that enables us to find an optimal
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strategy is to enumerate every path of the
tree generated by the N-stage process. Al-
though the systematic use of learning models
can serve to reduce the number of paths that
must be considered, much too large a number
of paths still remains in most problems where
a large number of different stimuli are used.
The main success with a direct approach has
been in the case of response insensitive
strategies (Crothers, 1965; Dear, 1964;
Dear & Atkinson, 1962; Suppes, 1964). In
these cases, either the number of stimulus
types is drastically limited or the problem
is of a type where the history can be simpli-
fied on a priori grounds. The techniques used
in these approaches are too closely connected
with the specific problem treated and the
models used for any general discussion of
their merits.

The theory of dynamic programming pro-
vides a set of techniques that reduce the
portion of a tree that must be searched. These
techniques have the merit of being model-
free. Moreover, they provide a computational
algorithm that may be used to discover
optimal strategies by numerical methods in
cases where analytic methods are too compli-
cated. The first application of dynamic pro-
gramming to the design of optimal instruc-
tional systems was due to Smallwood (1962).
Since then, several other investigators have
applied dynamic programming techniques to
instructional problems of various types (Dear,
1964; Karush & Dear, 1966; Matheson,
1964). The results obtained by these investi-
gators are too specific to be reviewed in
detail. The main aim in this section is to
indicate the nature of the techniques and
how they can be applied to instructional
problems.

Broadly speaking, dynamic programming is
a method for finding an optimal strategy by
systematically varying the number of stages
and obtaining an expression which gives the
return for a process with V stages as a func-
tion of the return from a process with ¥ — 1
stages. In order to see how this is done, it is
necessary to impose a restriction on the re-
turn function and define a property of
optimal policies, Following Bellman (1961,
p. 54), a return function is Markovian if,
for any K < N, the effect of the remaining
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N — K stages of the N-stage process upon
the return depends only upon: () the state
of the system at the end of the K* decision,
and (b) whatever subsequent decisions are
made, It is clear that the return function
¢ (wy) possesses this property. Another type
of return function that possesses this property
is one of the form:

g(wy,di) + glwede) + ...
+ g(wy_1,dx-1) + @ (wn).

A return function of this latter form may be
important when cost as well as final test per-
formance is an important criterion in design-
ing the system. For example, in a computer-
based system, g(wy,d;) might be the cost of
using the computer for the amount of time
required to make Decision d; and present the
appropriate stimulus. Since the expressions
resulting from a function of this form are
somewhat more complicated, we will limit our
attention to return functions of the form
¢ (wy). However, it should be borne in mind
that essentially the same basic procedures can
be used with the more complicated return
function.

If a deterministic decision process has this
Markovian property, then an optimal strategy
will have the property expressed by Bellman
(1961, p. 57) in his optimality principle:
whatever the initial state and the initial
decision are, the remaining decisions consti-
tute an optimal policy with regard to the
state resulting from the first decision. To see
how this principle can be utilized, let fy(w)
denote the return from an N-stage process
with initial state = if an optimal strategy
is used throughout, and let us assume that
T is deterministic and W is discrete. Since
the process is deterministic, the final state is
completely determined by the initial state w
and the sequence of decisions d1, ds, ..., dy
(it should be recalled that no decision takes
place during the last stage). If Dy denotes
an arbitrary sequence of N — 1 successive
decisions (D; being the empty set), then the
final state resulting from % and Dy can be
written as @'(Dy,w). The problem that must
be solved is to find the sequence Dy which
maximizes ¢ [w'(Dy,w)]. If such a sequence
exists, then

G.J. GROEN AND R. C. ATKINSON

[8]

While the solution of such a problem can be
extremely complicated for an arbitrary &, it is
easily shown that for N = 1

fiw) = o). (9]

As a result, if a relation can be found that con-
nects fi(w) with fi_i(w) for each i< N then
fa(w) can be evaluated recursively by evaluat-
ing fi(w) for each i. Suppose that, in an
i-stage process, an initial decision d is made.
Then w is transformed into a new state,
T'(w,d), and the decisions that remain can be
viewed as forming an (¢ — 1)-stage process
with initial state 7'(w,d). The optimality
principle implies that the maximum return
from the last ¢ — 1 stages will be f; 4[ T (w,d)].
Moreover, if D; = (dd,,...,dis) and Dy
= (dz,da,. . -;di--l) then

o[w' (Diw)] = ¢[w'(Diy,T(w,d))]. [10]

Suppose that D,y is the optimal strategy for
the 1 — 1 stage process. Then the right-hand
side of this equation is equal to fia[ T'(,d)].
An optimal choice of d is one which maximizes
this function. As a result, the following basic
recurrence relation holds:

Ja(w) = max fo  [T(w,d)] 2<n< N) [11]

fiw) = o(w). [12]

Equations 11 and 12 relate the optimal
return from an n-stage process with the
optimal return from a process with only
n — 1 stages. Formally, » may be viewed as
indexing a sequence of processes. Thus, the
solution of these equations provides us with
a maximum return function f,(w) for each
process and (also for each process) an initial
decision d which ensures that this maximum
will be attained if optimal decisions are made
thereafter. It is important to note that both
d and f,(w) are functions of w and that w
should, in general, range over all values in
the state space W. In particular, the initial
state and initial decision of a typical member
of the sequence of processes we are consider-
ing should not be confused with the initial
state and initial decisions of the N-stage
process we are trying to optimize. In fact, the
initial decision of the two-stage process corre-

fy(w) = n;ax o[w'(Dy,w)].
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sponds to the last decision dy.; of the N-
stage process; the initial decision of the
three-stage process corresponds to the next-to-
last decision dy-g of the N-stage process,
and so on.

The linear model of Equation 2 with the
state space defined in Equation 7 provides
an example of a deterministic process. The
use of Equations 11 and 12 to find an
optimal strategy for the special case of a
four-stage process with two items is illus-
trated in Table 1. The state at the be-
ginning of Stage ¢ is defined by the vector
(g:V,g,®). The optimization criterion is the
score on a test administered at the end of
the instructional process. Since Item j will
be responded to correctly with probability
1 — gy, the terminal return function for
an N-stage process is 2 — (gx'? + gx®). The
calculation is begun by viewing the fourth
stage as a one-stage process and obtaining
the return for each possible state by means
of Equation 12. The possible states at this
fourth stage are obtained from Figure 3. The
third and fourth stages are then viewed as
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a two-stage process and Equation 11 is used
to determine the return that results from pre-
senting each item for every possible state
that can occur in Stage 3, the previously
computed result for a one-stage process being
used to complete the computations. For each
state, the item with the maximum return
represents the optimal decision to make at
Stage 3. The three-stage process beginning
at Stage 2 is analyzed in the same way, using
the previously computed results for the last
two stages. The result is an optimal decision
at Stage 2 for each possible state, assuming
optimal decisions thereafter. Finally, the pro-
cedure is repeated for the four-stage process
beginning at Stage 1. The optimal strategies
of item presentation that result from this
procedure are given at the bottom of Table 1.

With a nondeterministic process, the situa-
tion is considerably more complicated. The
transformation T' is some type of probability
distribution and the final return is a mathe-
matical expectation. While arguments based
on the optimality principle allow one to ob-
tain recursive equations similar in form to

TABLE 1
CALCULATION OF OPTIMAL STRATEGY FOR EXAMPLE OF FIGURE 3 UsiNnGg DyNaMic PROGRAMMING
Final return of
Nl;;n gizgsst%ges Initial State w Initial Decision d N?‘(twéat:;‘te ‘;‘g;g:‘grivc;; Optimal decision
Iva[T(wd)]
1 (.08, .90) 1.02
(.15, .45) 1.40
(.30, .22) 1.48
(.60, .11) 1.29
2 (.15, .90) 1 (.08, .90) 1.02 2
2 (.15, 45) 1.40
(.30, .45) 1 (.15, 45) 1.40 2
2 (.30, .22) 1.48
(.60, .22) 1 (.30, .22) 1.48 1
2 (.60, .11) 1.29
3 (.30, .90) 1 (.15, .90) 1.40 2
2 (.30, 45) 1.48
(.60, .45) 1 (.30, .45) 1.48 lor2
2 (.60, .22) 1.48
4 (.60, .90) 1 (.30, .90) 1.48 lor?
2 (.60, 45) 1.48
Optimal strategies
Stage 1 Stage 2 Stage 3
Item 1 Ttem 2 Item 2
Item 2 - Item 1 Item 2
Item 2 Item 2 Ttem 1
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Equations 11 and 12, both the arguments
used to obtain the equations and the methods
used to solve them can contain many subtle
features. A general review of the problems en-
countered in this type of process was given
by Bellman (1961), and some methods of
solution were discussed by Bellman and
Dreyfus (1962). For the case where the
transformation defines a Markov process with
observable states, Howard (1960) has de-
rived a set of equations together with an
iterative technique of solution which has
quite general applicability. However, in the
case of instructional processes, it has so far
tended to be the case that either the learning
model used has unobservable states or that
the process can be reduced to a more deter-
ministic one (as is the case with the linear
model discussed in the example above).

A response insensitive process can often be
viewed as a deterministic process. This is
not, in general, possible with a response
sensitive process. The only process of this
type that has been extensively analyzed is
that in which a list of stimulus-response items
is to be learned, the return function is the
score on the test administered at the end of
the process, and the learning of each item
is assumed to occur independently and obey
the assumptions of the one-element model. An
attempt to solve this problem by means of a
direct extension of Howard’s techniques to
Markov processes with unobservable states
has been made by Matheson (1964). How-
ever, this approach appears to lead to some-
what cumbersome equations that are impos-
sible to solve in any nontrivial case. A more
promising approach has been devised by
Karush and Dear (1966). As in our example
of the linear model, the states of the process
are defined in terms of the current probabil-
ity that an item is in the conditioned state
and a similar (though somewhat more gen-
eral) return function is assumed. An expres-
sion relating the return from an N —1
stage process to the return from an N-stage
process is then derived. The main complica-
tion in deriving this expression results from
the fact that the outcome tree is more com-
plicated, the subject’s responses having to be
explicitly considered. Karush and Dear pro-
ceeded to derive certain properties of the
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return function and proved that in an N-trial
experiment? with items §1,82, . . ., Sm
(where N > m) and arbitrary initial condi-
tioning probabilities (A A, A™), an
optimal strategy is given by presenting at
any trial an item for which the current con-
ditioning probability is least. In most applica-
tions, the initial probabilities A can be as-
sumed to be zero. In this case, an observable
sufficient history can be defined in terms of a
counting process. An optimal strategy is
initiated by presenting the m items in any
order on the first » trials, and a continua-
tion of this strategy is optimal if and only if
it conforms to the following rules:

1. For every item set the count at O at the
beginning of Trial m + 1.

2. Present an item at a given trial if and
only if its count is Jeast among the counts
for all items at the beginning of the trial.

3. Following a trial, increase the count for
the presented item by 1 if the response was
correct but set it at O if the response was
incorrect.

Discussion

In this paper we have attempted to achieve
two main goals. The first has been to provide
an explicit statement of the problems of
optimal instruction in the framework of multi-
stage decision theory. The main reason for
introducing a somewhat elaborate notational
system was the need for a clear distinction
between the optimization problem, the learn-
ing process that the student is assumed to
follow, and the method of solving the optimi-
zation problem. The second goal has been
to indicate, using dynamic programming as
an example, how optimization problems can
be solved in practice. Again, it should be
emphasized that dynamic programming is not
the only technique that can be used to
solve optimization problems. Many response-
insensitive problems are solvable by more
simple, though highly specific, techniques.
However, dynamic programming is the only
technique that has so far proved useful in
the derivation of response sensitive strategies.

2 Here the term N-trial experiment refers to an
anticipatory paired-associate procedure which in-
volves N presentations. To each stimulus presenta-

tion, the subject makes a response and then is told
the correct answer for that stimulus.
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In describing dynamic programming, an at-
tempt has been made to emphasize two basic
features: the optimality principle, and the
backward-induction procedure by means of
which an optimal strategy is obtained by
starting, in effect, at the last stage. It should
be noted that these can be used independ-
ently. For example, it is possible to combine
the optimality principle with a forward in-
duction procedure which starts at the first
stage of the process.

In any attempt to apply an optimization
theory in practice, one must ask the ques-
tion; how can it be tested experimentally?
In principle, it is easy to formulate such an
experiment. A number of strategies are
compared—some theoretically optimal, others
theoretically suboptimal. A test is adminis-
tered at the end of the process that is de-
signed to be some observable function of the
final return. However, the only experiment
that has been explicitly designed to test an
optimization theory is that by Dear, Silber-
man, Estavan, and Atkinson (1965), al-
though in the case of response insensitive
theories, it is often possible to find experi-
ments in the psychological literature which
provide indirect support.

The experiment reported by Dear et al, was
concerned with testing the strategy proposed
by Karush and Dear (1966) for the case
outlined in the preceding section. The major
modification of this strategy was to prohibit
repeated presentations of the same item by
forcing separations of several trials between
presentations of individual items.® Each sub-
ject was presented with two sets of paired-
associate items. The first set of items was
presented according to the optimization algo-
rithm, Items in the second set were presented
an equal number of times in a suitable random
order, (It will be recalled that this strategy
is optimal if the linear model is assumed.)
It was found that while the acquisition data
(e.g., rate of learning) tended to favor items
in the first set, no significant difference was
found in posttest scores between items of
the two sets.

8 This modification was necessary because it has
been shown experimentally that if the same item
is presented on immediately successive trials then

the subject’s response is affected by considerations
of short-term memory.
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It follows from the result of this experi-
ment that, even for a simple problem such
as this, an optimization theory is needed that
assumes a more complicated learning model.
At least one reason for this is that, in simple
paired-associate experiments that result in
data which is fitted by the one-element
model, any systematic effects of stimulus-
presentation sequences are usually eliminated
by presenting different subjects with different
random sequences of stimuli, When a specific
strategy is used, it may be the case that
either the assumption of a forgetting process
or of some short-term memory state becomes
important in accounting for the data (Atkin-
son & Shiffrin, 1965).

Unfortunately, the analytic study of the
optimization properties of more complex
models, at least by dynamic programming
techniques, is difficult, The only major
extension of response sensitive models has
been a result of Karush and Dear (19653)
which shows that the optimal strategy for
the one-element model is also optimal if it
is assumed that the probability of a correct
response in the conditioned state L is less
than one. However, there are ways by means
of which good approximations to optimal
strategies might be achieved, even in the case
of extremely complex models. Moreover, in
many practical applications one is not
really critically concerned about solving for
an optimal procedure, but would instead be
willing to use an easily determined procedure
that closely approximates the return of the
optimum procedure. The main means of
achieving a good approximation is by ana-
lyzing the problem numerically, computing
the optimal strategy for a large number of
special cases. A useful general algorithm for
doing this is the backward induction pro-
cedure described in the preceding section.
Table 1 illustrates how this algorithm can
be used to find an optimal strategy for one
particular case. Dear (1964) discussed the
use of this algorithm in other response
insensitive problems.

The chief disadvantage of the backward
induction algorithm is that it can only be
used for optimal strategy problems involving
a fairly small number of stages. Although
its use can eliminate the need to search every
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branch of a tree, the computation time still
increases as a function of the number of pos-
sible final states that can result from a given
initial state. However, a backward induction
solution for even a small number of stages
would provide a locally optimal policy for
a process with a large number of stages,
and this locally optimal strategy might pro-
vide a good approximation to an optimal
strategy. To decide how ‘“good” an ap-
proximation such a strategy provided, its
return could be evaluated and this could be
compared with the returns of alternative
strategies.
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