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Retention of Exemplar-Specific Information in Learning of Real-World High-
Dimensional Categories: Evidence from Modeling of Old-New Item Recognition 
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Bloomington, IN 47405 USA 

Brian J. Meagher (bmeagher@indiana.edu) 
Department of Psychological and Brain Sciences, 1101 E. Tenth Street 

Bloomington, IN 47405 USA 
 
 

Abstract 

Participants learned to classify a set of rock images into 
geologically-defined science categories.  We then investigated 
the nature of their category-based memory representations by 
collecting old-new recognition data in a subsequent transfer 
phase.  An exemplar model provided better qualitative 
accounts of the old-new recognition data than did a prototype 
or clustering model.  However, to account for the variability in 
recognition probabilities among the old training items 
themselves, a hybrid-similarity exemplar model was needed 
that took account of distinctive features present in the items.  
The study is among the first to use computational models for 
making detailed quantitative predictions of old-new 
recognition probabilities for individual items embedded in 
complex, high-dimensional similarity spaces.  

Keywords: categorization; old-new recognition; high-
dimensional similarity spaces; computational models 
 

An important question in cognitive science concerns the 
relation between the fundamental cognitive processes of 
categorization and old-new recognition memory.  Although 
some theorists hypothesize that these processes are governed 
by separate representational systems (e.g., Knowlton & 
Squire, 1993), others have proposed single-representation-
system accounts (e.g., Nosofsky, 1988, 1991; Nosofsky et al., 
2011; Nosofsky & Zaki, 1998).   Assuming a single-
representational system, patterns of old-new recognition data 
have the potential to provide important evidence bearing on 
alternative models of categorization.  Whereas various 
models may be difficult to distinguish based on examination 
of categorization data alone, the joint modeling of 
categorization and old-new recognition often provides highly 
diagnostic constraints. 

In past work, Nosofsky (1988, 1991) illustrated an 
exemplar-based approach to the joint modeling of 
categorization and recognition.  According to the exemplar 
model, people represent categories by storing individual 
exemplars of the categories in memory.  Classification 
decisions are based on the summed similarity of a test item to 
the exemplars of a target category relative to its summed 
similarity to contrast categories.  By comparison, old-new 
recognition decisions are based on the absolute summed 
similarity of the test item to all the exemplars of all the 
categories.  This absolute-summed similarity provides a 

measure of global activation or “familiarity”, with greater 
degrees of familiarity leading to higher “old” recognition 
probabilities (e.g., Gillund & Shiffrin, 1984; Osth & Dennis, 
in press).  Because different decision rules are involved (a 
relative- vs. an absolute-summed-similarity rule), the 
exemplar model is able to account in quantitative detail for 
both the categorization and recognition of individual items 
based on their locations in a multidimensional similarity 
space – even when there are dissociations in performance 
across the two tasks (for extensive past illustrations, see, e.g., 
Nosofsky, 1988, 1991, 2017). 

However, past work involving exemplar-based modeling 
of individual-item old-new recognition is limited in at least 
two respects.  First, in previous applications, the domain of 
inquiry involved use of artificial stimuli varying across 
relatively few perceptual dimensions.  In recent work, 
Nosofsky and colleagues have extended the exemplar model 
to account for categorization of real-world, high-dimensional 
stimuli, namely rock types as formalized in the geologic 
sciences (e.g., Nosofsky, Sanders, & McDaniel, 2018a,b; 
Nosofsky, Meagher, & Kumar, 2020, in press).  However, 
there has been no work testing the model on its ability to 
account for old-new recognition of these real-world high-
dimensional stimuli.  One purpose of the present research was 
to begin to fill that gap and test the exemplar model of 
recognition (and other competing models) in this real-world, 
high-dimensional category domain.  A second purpose of the 
present research was to address why some old items are easier 
to recognize than others. Most of the past success of the 
exemplar model in predicting individual-item old-new 
recognition has involved the prediction of false-alarm rates 
associated with novel lures.  In general, as lures become more 
similar to previously experienced target items, their false 
alarm rates increase, a pattern that is captured naturally by the 
exemplar model.  By contrast, for a variety of reasons, there 
has been relatively little work testing the ability of the 
exemplar model to account for differences in hit rates 
associated with the old target items themselves. 

In the present research, we conducted an experiment in 
which participants learned to classify a large set of rock 
images into the geologically-defined broad divisions of 
igneous, metamorphic, and sedimentary rocks.  Following a 
classification-learning phase, there was a test phase in which 
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participants classified both the old training items as well as 
new transfer items from the categories.  In addition, 
participants judged whether each test item was old or new.  
Among the new transfer items were a set of photoshopped 
rock images that we constructed to be highly similar to 
specific old items from the training set.  We refer to this set 
of photoshopped images as the “high-similarity-neighbor” 
(HSN) transfer items; and to the training items from which 
they were constructed as the “parent” training items.   

Our main focus in the present article is on the old-new 
recognition data.  Our initial goal was to use the  recognition 
data to obtain converging evidence bearing on the nature of 
the category representations that participants developed for 
learning the classifications.  According to prototype models, 
people learn categories by averaging across the training 
instances of the categories and representing each category in 
terms of its central tendency.  Because the training items, 
standard transfer items, and HSNs all tend to be roughly 
equally distant to the central tendency of their category, the 
prototype model predicts extremely poor ability to make old-
new discriminations among these item types (e.g., Homa et 
al., 2019; Hu and Nosofsky, 2021).  According to clustering 
models (e.g., Anderson, 1991; Love, Medin, & Gureckis, 
2004), people represent individual categories in terms of 
multiple clusters, with each cluster summarized by its own 
prototype.  Items that are highly similar to one another join 
together into merged clusters.  Clustering models can predict 
that old items will be recognized as old with higher 
probability than the standard novel transfer items, because 
they are more likely to strongly activate the specific clusters 
that have been formed during the classification-learning 
phase.  However, as will be seen, they are likely to have 
difficulty in predicting above-chance old-new discrimination 
for the old training items vs. the HSN transfer items:  Because 
those item types are extremely similar to one another, they 
are likely to activate the same clusters to roughly the same 
degree.  Finally, exemplar models have the capability of 
predicting above-chance old-new discrimination ability for 
all three item types:  Because the relation between similarity 
and distance in psychological space is highly nonlinear, the 
exact match between a training item and its exemplar 
representation in memory can lead to a higher overall 
familiarity signal than is yielded by the near-match of an 
HSN transfer item (see Modeling section for details).   

To preview, we will see that the broad qualitative pattern 
of results in our old-new recognition data favors the 
predictions from the exemplar model.   However, we will see 
that even that model fails dramatically to account for the 
extensive variability in old-recognition probabilities 
observed within the class of old-training items themselves.  
We then take steps to extend the model to begin to address 
this challenge.  Although the extended model makes 
movement in the right direction, future research will be 
needed to provide a more satisfactory account of the complete 
set of old-training-item recognition results, a challenge for 
essentially all models in the field (cf., Bainbridge, 2019). 

Method 

Participants 
The participants were 105 Amazon Mechanical Turk 
workers.  We removed from analysis data from 23 
participants who performed at near-chance levels on the 
primary classification task itself, leaving 82 participants.  

Stimuli and Apparatus 
The stimulus set was composed of 480 standard rock images 
described in depth in previous articles (Nosofsky et al., 
2018a,b; Sanders & Nosofsky, 2020), with an additional 60 
photoshopped rock images.  The 480 standard rock images 
consisted of 16 images from each of 30 major subtypes of 
rocks that are commonly taught in introductory geoscience 
classes.   There were 10 subtypes from each of the three broad 
divisions of igneous, metamorphic, and sedimentary rocks.  
Roughly speaking, each subtype can be viewed as a “basic-
level” category in the world of geology; whereas the three 
broad divisions exist at a superordinate level.  For each 
subtype, six randomly chosen items served as training items 
that participants learned to classify during an initial training 
phase.   Four of these six training items were “non-parent” 
training items (a total of 120 non-parent training items) and 
two were “parent” training items (a total of 60 parent training 
items).  The remaining 10 items from each subtype were 
standard transfer items that were presented only during the 
test phase (a total of 300 standard transfer items).   The 60 
photoshopped rock images were constructed to be “high-
similarity neighbor” (HSN) transfer items.  In particular, each 
HSN was highly similar to one of the 60 specific parent-
training rocks, with 2 HSNs per each of the 30 subtype 
categories.  Examples are provided in Figure 1.  See 
Nosofsky et al (in press) for other illustrations of the HSNs 
and for the detailed procedures for constructing them. 
 

Figure 1: Examples of Parent Training Rocks and High-
Similarity-Neighbor Transfer Items 

 

 

Procedure 
The experiment started with a training phase: each of the 180 
total training examples (120 non-parents and 60 parents) was 
shown once per block in a random order across 3 blocks for 
a total of 540 training trials.  On each trial of the training 
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phase, a rock image was presented and the participant 
attempted to classify it into one of the 3 broad categories.  
Immediate feedback was provided on each trial informing the 
participant of the correct category response. Following 
training there was an immediate test phase.  For each of the 
30 subtypes, in addition to the 6 old training examples, 
participants were presented with the 10 novel standard 
transfer items and the 2 HSN transfer items (for a total 180 
old training items, 300 standard transfer items, and 60 HSN 
transfer items).  The 540 test rocks were presented in a 
random order for each participant.   On each trial, participants 
first judged the broad category division to which the rock 
belonged, and then judged whether the rock was “old” (an 
item experienced during the training phase) or “new”.   No 
corrective feedback was provided during the test phase. 

Results 
The mean “old” recognition probabilities for the four main 
item types are reported in Table 1.  A one-way repeated-
measures ANOVA revealed a main effect of item type, F(3, 
243) = 113.3, MSE = 0.009, p < .001.  Pairwise t-tests showed 
that the parent training items were judged “old” with 
significantly higher probability (M=.567) than the HSNs 
(M=.409), t(82) = 9.59, p < .0001; and the HSNs were judged 
“old” with significantly higher probability than the standard 
transfer items (M=.356), t(82) = 6.73, p < .0001. 
 

Table 1: Mean “Old” Recognition Probabilities for the 
Different Item Types. 

 
Model Non-

Parent 
Training 

Parent 
Training 

Standard 
Transfer 

HSN-
Transfer 

Observed 0.575 0.567 0.356 0.409 

Prototype 0.434 0.434 0.434 0.434 

Rational 0.448 0.449 0.424 0.436 

Exemplar 0.556 0.556 0.355 0.454 

Hybrid-Sim 
Exemplar 

0.564 0.574 0.351 0.446 

 
A central question concerns the ability of the alternative 

old-new recognition models to capture these overall 
differences in endorsement probabilities across the item 
types.   Prior to launching into the formal modeling analyses, 
however, we first consider the extent to which the patterns of 
categorization and old-new recognition judgments may be 
related.  One simple hypothesis is that categorization and 
recognition are guided by essentially the same underlying 
cognitive mechanisms and decision rules.  According to such 
an hypothesis, if an observer is highly confident that an item 
belongs to a category then the observer will also have a high 
probability of endorsing the item as “old”.  As a proxy for the 
“categorization confidence” associated with each individual 
item, we use the maximum probability with which each item 

was classified by observers into each of the broad-division 
categories.  For example, if observers classify item i as 
“igneous” with probability near one, then classification 
confidence for that item is high; whereas if observers classify 
the item into each of the three categories with roughly equal 
probability, then classification confidence is low.  In Figure 
2 we plot the “old” recognition probabilities associated with 
each item against this classification-confidence measure.  
The solid points in the scatterplot correspond to the old 
training items; the open circles to the standard transfer items; 
and the asterisks to the HSN transfer items.  It is apparent 
from inspection that the relation between the old-recognition 
probabilities and classification confidence is weak:  the 
correlation between the two measures is only r = .29.  
Nevertheless, we will provide preliminary model-based 
evidence below that classification confidence may have 
provided a significant residual contribution to observers’ old-
new recognition judgments. 
 
Figure 2: Correlation Between Categorization “Confidence” 

and Old-Recognition Judgments 
 

 

Testing the Formal Models of Individual-Item 
Old-New Recognition 

In this section we test different members of the class of 
global-activation models on their ability to account for the 
individual-item old-new recognition data. We start by testing 
baseline versions of prototype, clustering, and exemplar 
models.   All three classes of models make reference to a 
high-dimensional MDS solution for the rock images derived 
from extensive similarity-scaling and dimension-ratings 
studies reported in previous articles (Nosofsky, Sanders, 
Meagher, & Douglas, 2018, 2020; Sanders & Nosofsky, 
2020).  We emphasize that beyond accounting in quantitative 
detail for the similarity-ratings data, the dimensions derived 
from this previous MDS scaling work all had natural 
psychological interpretations. 

For all three classes of models, each item i is presumed to 
give rise to a global activation of memory, or “familiarity”, 
denoted Fi.  The probability that item i is judged to be “old” 
is then given by P(Old|i) =  Fi

γ / (Fi
γ + k), where γ is a power-

transform response-scaling parameter and k is a response-
criterion parameter.  The models differ only in terms of how 
the global-activation Fi is computed. 
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According to the prototype model, each category is 
represented in terms of the central tendency of each category 
distribution, computed by averaging across the values of the 
training items along each of the MDS dimensions.  Let xim 
denote the value of item i on dimension m, and let PJm denote 
the value of the prototype of category J on dimension m.  The 
Euclidean distance of item i to prototype J is given by  
diJ = [ ∑|xim-PJm|2 ]1/2; and the similarity of item i to Prototype 
J is given by siJ  = exp(-κ∙diJ), where κ is an overall sensitivity 
parameter for translating distance to similarity (Shepard, 
1987).  The familiarity of item i is then computed by 
summing the similarity of i to the three prototypes, Fi = ∑ siJ. 
The prototype model uses three free parameters:  γ, k, and κ. 

The exemplar model is similar to the prototype model, 
except that instead of summing the similarity of item i to 
category prototypes, one sums the similarity of item i to each 
of the individual training exemplars.  The distance of item i 
to exemplar j is given by dij =  [  ∑|xim- xjm|2 ]1/2; the similarity 
of item i to exemplar j is given by sij  = exp(-κ∙dij); and the 
familiarity for exemplar i is given by Fi = ∑ sij. The exemplar 
model uses the same free parameters as the prototype model: 
γ, k, and κ.  

Our representative from the class of clustering models is 
Anderson’s (1991) rational model.  Our implementation of 
the rational model follows closely the presentation provided 
by Anderson (1991, pp. 411-414), but a detailed listing of the 
equations would exceed the length limits of this article.   As 
described in our introduction, the general idea is that the 
training exemplars are grouped into clusters during the 
category-training phase, and each cluster is summarized in 
terms of its own prototype and standard deviations along the 
component dimensions. There are two free parameters that 
govern which clusters are formed: a coupling parameter c, 
and a category-label salience parameter α.  When c is set at a 
high value, the model tends to group many stimuli together 
into large clusters, and vice-versa when c is set at a low value.  
At time of test, one computes the probability that a test item 
i belongs to each of the clusters J, pclus(J|i), as well as the 
probability that it belongs to a “new” cluster that has not yet 
been formed, pclus(new|i).  Our measure of “familiarity” for 
the rational  model is found by summing the probability that 
item i belongs to each of the old clusters, Fi = ∑ pclus(J|i).   
The baseline version of the rational model uses four free 
parameters:  γ, k, c and α.  We should clarify several aspects 
of our fitting of the rational model.  First, the clusters that are 
formed if the goal is to learn to categorize may be different 
from those that are formed if the goal is to recognize.  
However, to provide the model with flexibility, we searched 
for the free parameters in the model that optimized its fits to 
the old-new recognition data without the constraint of 
categorization.  Second, the clusters formed by the rational 
model will vary depending on the precise sequence of stimuli 
with which it is trained.  Therefore, fitting the model requires 
use of computer simulation.  In the present case, for any given 
set of candidate parameter values, our fits were based on 
averages computed across 10,000 simulations, with a 
different random training sequence used in each simulation. 

We fitted the baseline prototype, rational, and exemplar 
models to the individual-item old-new recognition data by 
conducting computer searches for the values of the free 
parameters that minimized the Bayesian Information 
Criterion, BIC = -2ln(L) + Pln(N), where L is the maximum-
likelihood of the data given the model, P is the number of free 
parameters in the model, and N is the number of observations 
in the data set.  The model that minimizes BIC is viewed as 
providing the most parsimonious account of the data.  Using 
multiple random starting configurations, we used the Hooke 
and Jeeves (1961) search algorithm to locate the best-fitting 
parameters.  As will be seen, our conclusions based on BIC 
are corroborated by salient qualitative patterns in our model-
fitting results. 

The BIC fits of the models are reported in Table 2.  As 
auxiliary measures, we also report the correlation between the 
predicted and observed individual-item recognition 
probabilities and the percentage of variance accounted for.  
The summary predictions for the four main item types are 
reported along with the observed data in Table 1.  Scatterplots 
of the observed against predicted old-recognition 
probabilities for the complete set of 540 individual items are 
shown in the panels of Figure 3.  As can be seen, the 
prototype model shows a complete failure to account for the 
old-new recognition data. The rational model accounts for the 
finding that observers judged the training items and HSNs to 
be old with higher probability than the standard transfer 
items, but fails to predict above-chance discrimination 
between the parents and the HSNs. The exemplar model 
accounts for observers’ overall ability to discriminate among 
the three main item types.  However, as can be seen in Figure 
3, the baseline exemplar model shows a complete failure to 
account for the variability in old-recognition probabilities 
within the class of old-training items themselves. 

Conceptually, the main problem for the baseline exemplar 
model is that the match of a test item to its own exemplar 
representation in memory is always equal to one (because the 
continuous distance between an item and its own exemplar 
representation is equal to zero).  In past work, following ideas 

 
Table 2: Fits of the Models to the Individual-Item Old-

New Recognition Data. 
 

Model # Param BIC   r   % Var 

Prototype 3 60,628.0 0.00 -0.1 

Rational 4 60,288.6 0.30 8.9 

Exemplar 3 58,677.9 0.70 49.0 

Hybrid-Sim 
Exemplar 
 

6  58,302.8 0.77 59.1 

Hybrid-Sim   
Exemplar + 
ClassMax 

7   58,090.3 0.80 64.7 
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advanced by Lee and Navarro (2002) and Navarro et al. 
(2003), Nosofsky and Zaki (2003) proposed a hybrid-
similarity exemplar model of old-new recognition that 
combined measures of continuous distance with discrete-
feature matching (Tversky, 1977).  In this model, matches 
between test items and exemplars on highly salient discrete 
features can lead to boosts in the self-match between an item 
and its own exemplar representation, leading to boosts in 
overall familiarity.  As a proxy for the presence of these types 
of discrete features in the present stimulus set, an independent 
group of subjects provided a set of “distinctiveness” ratings, 
in which they judged the extent to which each item possessed 
a highly distinctive feature not present in other items in the 
set.  An example of a rock that received a high distinctive- 
feature rating is shown in Figure 4.  Presumably, observers 
considered the red swirls on the obsidian sample to be highly 
distinctive, as few rocks in the 540-item set had a feature 
resembling these swirls.  

 Let δi denote the mean distinctive-feature rating for item i.  
In brief, in the hybrid-similarity model,  the self-similarity 
between an item i and its own exemplar representation was 
boosted by the factor exp(β1δi); the similarity of an HSN 
transfer item to its parent exemplar was boosted by the factor 
exp(β2δi); and the similarity between item i and any other 
exemplar (i.e.  a pair of items  unlikely to share a highly 
salient and distinctive discrete feature) was reduced by the 
factor exp(-β3δi), where β1, β2, and β3 are freely estimated 
scaling parameters.  The summary fits of the hybrid-
similarity exemplar model are reported in Table 2, with a 
scatterplot of the observed against predicted individual-item 
recognition probabilities shown in Figure 3.  Clearly, the 
model is moving in the right direction for capturing in better 
detail the patterns of individual-item recognition probabilities 
for the class of old training items. 

Nevertheless, among the remaining limitations of the 
model is that there is still a subset of old items that form a  

Figure 3: Predicted vs. Observed Individual-Item 
Recognition Probabilities. (Solid Squares = Old 

Training, Open Circles = Standard Transfer,  
Asterisks = HSN Transfer) 
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Figure 4: Example of a Rock That Received a High 

Distinctive-Feature Rating 
 

 
 
 
 
“vertical wall” in the scatterplot, suggesting that additional 
factors may be at work in mediating the old-new recognition 
judgments.  We hypothesized that one such factor might be a 
residual influence of the classification judgments that the 
observers made on each trial:  Although not the central driver 
of the old-new judgments (see Figure 2), observers may have 
been somewhat more likely to judge that an item was “old” if 
they had high confidence in its category membership. To 
obtain suggestive evidence bearing on this idea, we extended 
the hybrid-similarity exemplar model by assuming 

 
P(Old|i) =  pmix∙ [Fi

γ / (Fi
γ + k)] + (1-pmix)∙[classmax(i)], 

 
where pmix is a probability-mixing parameter and 
classmax(i) is the “classification confidence” measure 
described earlier.  The summary fits for the mixture model 
are reported in Table 2, with the revised scatterplot shown in 
the bottom panel of Figure 3.  According to the BIC statistic, 
the fits are improved, a result corroborated by visual 
inspection of the scatterplot.  Future work will be needed to 
characterize more precisely the manner in which 
classification confidence may  mediate the old-new 
recognition judgments.   

We should emphasize that these reasonably good 
quantitative accounts of the individual-item old-new 
recognition data -- in this complex, real-world, high-
dimensional domain -- are still being achieved with a 
relatively low-parameter model.  Even better fits are likely to 
result by allowing for differential attention-weighting of the 
component dimensions of the MDS space when observers 
make their categorization and recognition judgments 
(Nosofsky, 1991);  by making allowance for nonlinear 
relations between psychological distinctiveness and the direct 
ratings; and by using improved and more generalizable 
procedures for detecting and measuring the presence of 
highly distinctive and salient discrete features.  The latter 
might be achieved, for example, through use of modern deep-
learning technology for deriving high-dimensional feature 
spaces and measures of distinctiveness (e.g., Bhatia & Atka, 

2022; Bylinski et al., 2015; Singh et al., 2020).  Those 
directions are crucial ones for future research. In addition, 
although a full report goes outside the scope of this article, 
we should note as well that the exemplar model (with its use 
of a relative-similarity decision rule) yielded outstanding 
accounts of the categorization transfer data that we observed 
in our paradigm, replicating past successes reported in other 
recent studies conducted in this domain (Nosofsky et al., 
2018, in press; Sanders & Nosofsky, 2020). 

Finally, we should note that it is not obvious to us how the 
role of matching distinctive features in mediating old-new 
recognition would be handled in natural fashion within the 
framework of prototype and clustering models.  In exemplar 
models, major boosts in similarity occur only when matching 
distinctive features appear in combination with matches 
along the continuous-dimension values that also compose the 
test items and the stored exemplars (see Nosofsky & Zaki, 
2003, for empirical tests and formal modeling). But in 
prototype and clustering models, this form of exemplar-
specific information – the binding of a distinctive feature to a 
specific item – is discarded from the memory representations.   
Thus, it may be difficult to extend prototype and clustering 
models in natural fashion to allow them to account for the 
high variability in old-recognition probabilities associated 
with the old-training items themselves. 

 Conclusion 
The present research provides evidence for the retention of 
exemplar-specific information in learning categories 
composed of large numbers of real-world, high-dimensional 
stimuli.  In addition, it is among the first studies to test formal 
computational models on their ability to predict individual-
item old-new recognition judgments – for complex, real-
world visual objects – based on the locations of the items in 
a high-dimensional similarity space.  Although the baseline 
exemplar model outperformed the prototype and the rational-
clustering models in accounting for overall patterns of 
recognition data among the main item types, it failed to 
account for the extensive variability in recognition 
probabilities seen within the class of old-training items 
themselves.  We hypothesize that individual old items give 
rise to different degrees of “self-match” in contacting their 
own memory representations, and we provided preliminary 
evidence in favor of this hypothesis through use of an 
extended hybrid-similarity exemplar model that made 
reference to an independent set of distinctive-feature ratings 
for the rocks.  However, future research is needed to yield 
improved formalizations of the discrete-feature matching 
component of the model and to identify other factors that lead 
to variability in memory for individual old items. 
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