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A Tutorial on Net Benefit Regression for

Real-World Cost-Effectiveness Analysis
Using Censored Data from Randomized or

Observational Studies

Shuai Chen , Heejung Bang, and Jeffrey S. Hoch

Given the increasing popularity of person-level cost-effectiveness analysis using ‘‘real-world’’ data, there is a clear
need to understand and use methods for observational data. When the cost-effectiveness data are subject to censor-
ing, ignoring censoring is especially error prone for heavily censored data. We summarize best practice and provide a
hands-on example of applying the net benefit regression framework for cost-effectiveness analysis, which works for
both observational and randomized studies with possibly censored data. Many existing methods are special cases
within this framework. We provide step-by-step guidance, user-friendly R programs, and examples to illustrate 1) fit-
ting net benefit regressions for possibly censored cost-effectiveness data; 2) implementing doubly robust methods
combining net benefit regressions and propensity scores, which may increase the chances to obtain consistent esti-
mates in observational studies; 3) constructing cost-effectiveness acceptability curves; and 4) interpreting the results.
The methods in this tutorial are easy to use and lead to more reliable and robust results using typical administrative
data, thus providing an attractive option for real-world cost-effectiveness analysis using possibly censored observa-
tional data sets.

Highlights

� We illustrate the steps involved in carrying out cost-effectiveness analysis using net benefit regressions with
possibly censored demo data by providing step-by-step guidance and code applied to a data set.

� We demonstrate the importance of these new methods by illustrating how naı̈ve methods for handling
censoring can lead to biased cost-effectiveness results.

Keywords

censoring, cost-effectiveness analysis, net benefit regression, non-randomized study, observational data, propensity
scores

Date received: March 6, 2023; accepted: January 10, 2024

Background

Clinical studies often encounter challenges associated
with right censoring. For instance, at the date of data
capture, some patients may have dropped out, been lost
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to follow-up, or not experienced the event of interest. In
such cases, the last date of follow-up is referred to as the
censoring time. Patients who are still alive at the time of
data capture have costs and survival information avail-
able only until their last follow-up times, but their true
total costs and full survival time until death are
unknown. A recent study of statistical methods used in
trial-based economic evaluations found that 15% of
methodological studies reviewed described approaches
for person-level cost-effectiveness analysis (CEA) with
censored data.1 The study concluded with a recommen-
dation against naı̈ve methods such as, ‘‘(1) Simply ignor-
ing the fact that data are censored, and hence assuming
that all patients in the study experience the event of
interest, and (2) Treating the data as being complete, and
hence simply omitting censored cases from the analyses.’’
All but 1 methodological study in the review was pub-
lished more than a decade ago.1 This is surprising given
the increasing popularity of person-level CEA using
‘‘real-world’’ data; there is a clear need to understand
and use methods for censored data in both randomized
and observational studies.

While economic decision analytic models (e.g., Mar-
kov models) are commonly used to inform funding deci-
sion negotiations in many countries and agencies, the
analysis of person-level data (e.g., from a data set with
cost and effectiveness information from each patient) is
also an important research activity, with many such stud-
ies published each year. Cost-effectiveness data sets can
be assembled from randomized controlled trials, prag-
matic studies, or administrative data sources (e.g., sur-
veillance, epidemiology, and end results linked to
Medicare administrative and claims data [SEER-Medi-
care]). These types of data sets, with person-level infor-
mation on cost and health outcome, are valuable because
they allow researchers to estimate the additional gain
from new treatments in actual patients and place the esti-
mate in context with the observed incremental costs.

However, these sources often contain observational, cen-
sored data requiring special care to adjust for the non-
randomized, incomplete nature of the correlated cost
and effect data. Without accounting for the unique char-
acteristics of the data, the CEA can provide a flawed
assessment of the incremental costs associated with the
incremental health outcomes, yielding biased estimates
and inaccurate uncertainty assessments. However, there
exist methods from statistical CEA that can address the
challenges inherent in real-world data. Next, we summar-
ize best practice and provide a hands-on example.

Main Summary Statistics of Interest in

Statistical Cost-effectiveness

The incremental cost-effectiveness ratio (ICER) is a ratio
of the incremental cost to the incremental effect, and as
a ratio, it has statistical challenges. The incremental net
benefit (INB) is not hampered by these shortcomings
and provides an important alternative. Both are func-
tions of the cost (ci) and clinical effect outcome (ei) for
the new treatment (Trti = 1) and usual care (Trti = 0)
(i= 1, . . . , n for the ith patient). The ICER =DC=DE

and the INB=lDE � DC, where DC and DE are the dif-
ferences in the mean cost and mean effectiveness, respec-
tively, and l is a cost-effectiveness threshold value with
various interpretations,2,3 such as the decision maker’s
unknown willingness-to-pay value for an additional unit
of effectiveness. The INB is also the difference between
the expected net benefits of new treatment and usual
care, where an individual’s net benefit is defined as
nbi = lei � ci.

There are various options for characterizing uncer-
tainty (i.e., variability) in statistical CEA,4 including
Fieller’s theorem, bootstrap, and the cost-effectiveness
acceptability curve (CEAC). The CEAC shows the prob-
ability that the new treatment or intervention is cost-
effective as a function of the unknown cost-effectiveness
threshold value given the data.5,6

Net Benefit Regression with Complete

(Uncensored) Data

A well-established method to analyze a cost-effectiveness
data set in statistical CEA involves net benefit regres-
sion,7–9 which refers to a regression equation with net
benefit (nbi = lei � ci) as the dependent variable and the
treatment indicator variable (Trti) and possibly other
covariates (and potentially their interactions with treat-
ment) as independent variables. The ability to study cost-
effectiveness controlling for other covariates is a major
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strength of placing CEA in a regression framework. The
use of covariate adjustment is essential for observational
studies, since treatment assignment or receipt is likely
related to covariates, leading to potential confounding
issues. In clinical trials, covariates can be used to adjust
for imperfect randomization and to improve efficiency.10

In addition, detecting policy-relevant interactions (e.g.,
treatment by covariate) can help identify important sub-
groups with heterogenous cost-effectiveness through
hypothesis-generating analyses.

The above concepts can be formalized with equations
by including the treatment indicator Trti, Zi =
(Zi1, . . . , Zip)

0 as a vector including p covariates (e.g.,
patient demographics), and possibly Trti 3Zi as the
treatment-covariate interactions. For a given cost-
effectiveness threshold value of l, the model is

nbi =b0 +bTrtTrti +b0ZZi +b0TrtZTrti 3Zi + ei

where ei is the error term without a specified distribution.
Large and statistically significant elements in bTrtZ for an
interaction term point toward important patient sub-
groups, which is helpful for tailoring decision making.
Without censoring, the coefficients can be estimated by
ordinary least squares (OLS) (for a given l), and the
standard error can be estimated by bootstrapping or the
Huber-White robust estimator.11 The CEAC can be con-
structed from net benefit regression,7 reflecting the prob-
ability that bTrt.0 for being cost-effective (in a Bayesian
sense). The influence of skewness on statistical inference
for the net benefit regression method was evaluated in
simulation studies,12 which concluded, ‘‘Apart from the
confidence intervals for treatment effect being a little
conservative (i.e., a little too wide), there appears to be
no real cause for concern, even when cost data are log-
normal and the total sample size is as small as 100.’’

Cost-effectiveness with Censored Data

As noted earlier, studies that capture or record the data
before complete cost and effectiveness data are available
face challenges associated with right censoring, with their
true total costs and full survival time until death possibly
unknown. It is tempting to simplify the analysis by using
simple methods to handle censoring, such as using
complete-case data only (i.e., discarding patients without
complete data) or using all data ignoring censoring sta-
tus (i.e., using the observed data at the last follow-up).
Although there exist rare special situations in which the
ICER and INB could be unbiased with such naı̈ve meth-
ods, in general these simple methods are bias prone.

The relevant impact of censoring is related to how it
affects estimates of DC and DE. Figure 1 shows the sam-
ple averages for observed cost and effect (e.g., survival
time) for treatment options Trt= 0 and Trt= 1 (indi-
cated with ‘‘0’’ or ‘‘1,’’ respectively). By using observed
data ignoring censoring, the naı̈ve observed ICER is the
slope of the dashed line. Censoring means the ‘‘true’’ esti-
mates of expected cost and effect will likely be to the
northeast of the observed estimates because the full cost
(and effect) will almost always be greater (or equal) to
the observed cost (and effect) at the censoring time. The
impact of censoring on the ICER is illustrated by the dif-
ference in slopes between the dashed and the solid con-
necting lines (with the true ICER equaling the slope of
the solid line in Figure 1).

As the different ICERs in Figure 1 suggest, ignoring
censoring is often not a good option. For example, if the

Figure 1 Sample averages for cost and effect for treatment
options Trt = 0 (usual care as control) and Trt = 1 (new
treatment), indicated with a ‘‘0’’ or ‘‘1,’’ respectively. By using
observed data ignoring censoring, the naı̈ve observed

incremental cost-effectiveness ratio (ICER) is the slope of the
dashed line. In contrast, the true data (with nothing left out)
produce an ICER shown as the slope of the solid line. The
vertical and horizontal arrows emanating from the observed 0
and 1 connected with the dashed line show that the true
average total cost and effect data may be greater or equal (due
to further including cost and effect after censoring), indicated
by the 0 and 1 points connected by the solid line, whose slope
shows the true ICER. For a purpose of illustration, this figure
used hypothetical data, assuming that the control and new
treatment groups have true average effects of 2.2 and 3.8 and
true average costs of 3,000 and 5,000, respectively. Due to
censoring, high costs before death are not fully observed. We
assume the control and new treatment groups have the average
observed effects of 2 and 3 and average observed costs of 600
and 3,500, respectively.
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rate of cost accumulation increases around death, and
costs at this time are censored, then costs that are unob-
served are both different and important. Because health
care costs tend to rise dramatically prior to death, it is
incorrect to assume the rate of cost accumulation is simi-
lar for the period that is observed (before censoring) and
the period that is not observed (censored).13 Supplemen-
tary Figure S1A demonstrates low coverage probabilities
for 95% confidence intervals due to bias from using naı̈ve
methods (e.g., complete-case data only [CC] and using all
data but ignoring censoring status [AL]), based on simu-
lations performed by Chen and Hoch.8

Potentially Informative Censoring

Statistical methods to address censoring depend on
whether the data are subject to informative or noninfor-
mative censoring. Most common survival analysis
methods (e.g., the Kaplan-Meier method and Cox pro-
portional hazards model) assume censoring is noninfor-
mative (i.e., the survival time is independent of censoring
time). However, costs and effectiveness such as quality-
adjusted life-years (QALYs) are likely to be subject to
informative censoring.14 For example, a healthier patient
will accumulate costs more slowly (with higher quality of
life), with less costs (and higher QALYs) both at the cen-
soring time and at the potential death time, leading to
informative censoring for cost and QALYs.15 Conse-
quently, standard survival analysis techniques are not
valid to analyze costs and QALYs directly on the cost
(or QALY) scale.14,16 According to Lagakos,17 ‘‘when
the amount of censoring is small, very little bias is likely
to result from the use of methods based on noninforma-
tive censoring. However, when informative censoring is
extensive, substantial biases can occur, and so informa-
tive censoring models should be considered.’’

Cost-effectiveness Analysis with Censored

Observational Data

While using administrative data sets can boost sample
size and produce real-world evidence, they are not ran-
domized. For example, Ali et al.18 assessed the cost-
effectiveness of breast-conserving surgery plus hormonal
therapy with or without radiotherapy, using SEER-Med-
icare data, helping to inform the allocation of cancer
care resources optimally by generating real-world evi-
dence about the incremental costs of new treatments in
relation to their better effectiveness. Their results, based
on a real-world data set, suggested that the combination
of radiotherapy and hormonal therapy could be

cost-effective from a US Centers for Medicare and Medi-
caid Services perspective.

Although propensity scores and standard survival
analysis techniques are often used to evaluate survival
using censored observational data, censoring in costs
(and QALYs) are more likely to be informative and
hence standard methods for noninformative censoring
are not recommended. Performing a proper CEA using
statistical methods for valid estimation and inference is
not very commonplace for such nonrandomized cen-
sored data. Various methods for censored CEA14,19–33

have been proposed, providing a good foundation, yet
there is room for improvement (e.g., estimates are not
adjusted for covariates, not efficient, not doubly robust,
and not straightforward to construct a CEAC). This arti-
cle illustrates net benefit regression for censored cost-
effectiveness data from observational studies,8 which
overcomes the aforementioned disadvantages as well as
unifying many methods as special cases (e.g., the meth-
ods work for uncensored data and unadjusted analysis).8

In the following sections, we introduce the methods and
provide step-by-step instructions with R programs to
illustrate 1) running net benefit regressions for censored
cost-effectiveness data, 2) performing doubly robust
methods that combine net benefit regressions and pro-
pensity scores, 3) constructing CEACs, and 4) interpret-
ing the results.

Methods for Censored Net Benefit Regression:

The Simple Weighted Estimator

Censored net benefit regression8 produces consistent esti-
mates when handling censoring using inverse probability
of censoring weighting.34,35 The simple weighted (SW)
estimator uses total costs (and effectiveness) from
patients with complete follow-up only, with the weights
to represent potential patients that might have been
observed. However, the SW estimator does not use cost/
effectiveness ‘‘history’’ and wastes information from cen-
sored patients (e.g., the observed costs until censoring
are ignored in the analysis).

Methods for Censored Net Benefit Regression:

The Partitioned Estimator

When cost/effectiveness history (e.g., the monthly or
yearly costs and QALYs) is available, the SW estimator
can be improved through partitioning into smaller time
‘‘buckets.’’ For example, if the data are grouped into
yearly data ‘‘buckets,’’ for patients censored after the
kth year, their costs and effectiveness within the first
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k years are complete. Therefore, we can fit censored net
benefit regression for each year separately, using the
yearly cost and effectiveness data. The final partitioned
(PT) regression coefficients estimates are the summation
of coefficients estimates across all years from the yearly
net benefit regressions.8

As such, net benefit regression can be used when car-
rying out CEA with censored data. If only the total
costs and effectiveness are available, the SW estimator
is useful. If the cost and effectiveness history for differ-
ent periods is also available, the PT estimator is gener-
ally more efficient than the SW estimator is. Both the
SW and PT methods are consistent in the statistical
sense, with coverage probabilities that are close to the
nominal level of 95% in simulation (Supplementary
Figure S1B).8

Methods for Observational Data: Propensity

Scores and Doubly Robust Methods

Define the causal average INB as d=E nb(1)
� �

� E(nb(0)),
where nb(1) and nb(0) are an individual’s potential out-
comes of net benefits (one actual and one counterfactual)
if the corresponding treatment Trt were 1 and 0 (e.g., new
treatment v. usual care), respectively. Since an individual
can only receive 1 treatment option, only nb(1) or nb(0) is
observed for each person. In administrative data, treat-
ment assignment is not random, leading potentially to
selection bias, where patient characteristics are associated
with the likelihood of receiving treatment and with the
outcomes.

Both propensity scores and doubly robust methods
are modern causal methods, which are useful for estimat-
ing causal average treatment effects (d in our case).36

Propensity score methods37–39 provide ways to balance
measured covariates across treatment and comparison
groups. The augmented inverse propensity weighted esti-
mator40,41 combines a regression-based estimator and a
propensity score–weighting method (inverse probability
of treatment weighting) and is a ‘‘doubly robust’’ method
in that it requires either the propensity or the outcome
model to be correctly specified, but not necessary both.

Censored Net Benefit Regression with

Observational Data: A Doubly Robust

Estimator

When the net benefit regression (without interaction) is
correctly specified, the causal average INB (d) equals bTrt

in the net benefit regression. However, estimates are
prone to bias if the net benefit regression model is misspe-
cified. Likewise, if the propensity score model is not mod-
eled correctly, bias may also be introduced. To diminish
the possible bias in estimating ‘‘causal average INB’’ due
to misspecified models, the doubly robust method8 com-
bines both censored net benefit regressions and propensity
scores and remains consistent when either the propensity
score model or the net benefit regression model is cor-
rectly specified. This property may increase the chances to
obtain consistent estimates in observational studies, and
it can always obtain consistent estimates in randomized
trials (since the propensity score is known). Table 1

Table 1 Advantages Regarding Statistical Consistency (Asymptotically Unbiasedness) of the Doubly Robust Method Combining
Net Benefit Regression and Propensity Scores in Randomized and Observational Studies

Study Type
Censored
Data

NBR Correctly
Specified

Propensity
Correctly Specified Asymptotically Unbiased Estimate Benefit from

Randomized No Yes N/A No advantage
No N/A Robust for misspecification (NBR)

Yes Yes N/A Adjusting for censoring
No N/A Adjusting for censoring and robust for misspecification (NBR)

Observational No Yes Yes No advantage
No Robust for misspecification (propensity)

No Yes Robust for misspecification (NBR)
No No advantage

Yes Yes Yes Adjusting for censoring
No Adjusting for censoring and robust for misspecification (propensity)

No Yes Adjusting for censoring and robust for misspecification (NBR)
No No advantage

NBR, net benefit regression; N/A, not applicable (since treatment is randomly assigned and propensity score is completely known in randomized

studies, the consistency is guaranteed; note that propensity scores and doubly robust methods could still be used to improve efficiency in

randomized studies).
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summarizes the benefits of using the doubly robust
method in randomized and observational studies,8,24 sup-
porting the contention that the doubly robust method is a
useful tool for CEA, especially for administrative data
with nonrandomized treatment assignment and possibly
censored outcomes.

Data

To illustrate the methods, we simulated a cost-
effectiveness data set mimicking administrative data
including 2,000 hypothetical patients with cardiovascular
disease, motivated by a real cardiovascular study. The
data-generation process is similar to the simulation sce-
nario in Chen and Hoch8 with these main differences: 1)
more covariates are involved (increase from 1 to 3 cov-
ariates) and 2) in addition to using life-years as effective-
ness, QALYs are also generated based on a heart failure
event (i.e., a patient’s quality of life tends to be lower
after heart failure). More details of the data generation
are provided in the Supplementary Materials. For this
simulated data set, we know the true (uncensored and
counterfactual potential) means based on statistical the-
ory (Supplementary Table S1) and thus the true INBs,
which allows us to evaluate the performance of the dif-
ferent methods.

The first few rows of the data are shown in Table 2.
The survival variable is the follow-up time (in years) since
the enrollment into the study. The dead variable is mor-
tality indicator with ‘‘1’’ for the occurrence of death (i.e.,
complete data) and ‘‘0’’ indicating censoring (i.e., time
until death is unknown but was known to be alive at the
time indicated by survival). The Trt variable indicates the
new treatment group (Trt = 1) versus the usual care
comparison group (Trt = 0). Patients who are younger,
with left bundle branch block (LBBB) conduction distur-
bance are more likely to receive the new treatment than
the comparison. The Age65, LBBB, and Female variables
are binary baseline covariates, with ‘‘1’’ for age � 65 y,
LBBB, and female, respectively, and ‘‘0’’ otherwise. U-
shaped costs (high initial and terminal costs) were gener-
ated and grouped into yearly observed cost summary

variables called cost.1, cost.2, and all the way up to
cost.15 (in $1,000s). In our example, the new treatment
has higher initial costs for performing the treatment but
lower annual costs subsequently. We used life-years
(LYs) and QALYs as outcome measures of effectiveness
and grouped QALYs into 15 annual summary variables
as well. The patient health-related quality-of-life (QOL)
was simulated in each of the yearly intervals, ranging
from 1 for good health to 0 at death, and each yearly
QALY was calculated as the integration of QOL within
that year (see Supplementary Figure S3 for more illustra-
tion). When the variables cost.1 to cost.15 (and QALY.1
to QALY.15) are summed, they provide the total
observed costs (and QALYs) over 15 y, named tot.cost
(and tot.QALY), respectively.

In this data set, costs and QALY data were collected
up to 15 y; however, the longest follow-up time was
slightly less than 15 y. Therefore, a smaller time limit
should be chosen (e.g., 10 y), and time-restricted mean
survival time/QALY/costs42,43 are used (more details in
the following section). A consequence of applying such a
restriction is that a patient alive at 10 y is considered as
having complete data. This leads to a censoring rate of
49% within the 10-y horizon in this data set.

Steps Involved in Performing Net Benefit

Regression Methods for Censored

Observational Data

The theory behind censored net benefit regression and
the doubly robust method have been described else-
where.8,9 Here, we focus on the steps involved in per-
forming net benefit regression methods for an
administrative cost-effectiveness data set. R programs
are provided for the main steps, and more examples and
technical details are available in the Supplementary
Materials.

Step 1: Preparation

Load required package. The first line loads the NetBen
Reg package to perform net benefit regression. Before

Table 2 First 3 Rows of the Simulated Dataa

ID Survival Dead Trt Age65 y LBBB Female cost.1 . cost.15 tot.cost QALY.1 . QALY.15 tot.QALY

1 4.10 0 0 0 0 1 6.272 . 0 9.585 0.63 . 0 2.43
2 3.52 0 1 0 1 1 15.375 . 0 15.773 0.52 . 0 2.21
3 3.78 1 1 0 0 0 13.669 . 0 37.328 0.55 . 0 2.40

aCosts are in $1,000s, and survival and quality-adjusted life years (QALYs) are in years.
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using this package, the NetBenReg package needs to be
installed in R (see Supplementary Materials for details to
install this package in R).

library(NetBenReg)

Load data. The next line loads the data set CEdata.

data(CEdata)

Choose time limit. Due to censoring, the right tail of the
distribution of survival time cannot be estimated reliably,
leading to unstable estimation of the mean survival/
QALY/costs.44 For instance, if all patients are followed
for up to 10 y, the cost after 10 y is not observed, and
thus, estimating mean costs after that time is not reliable.
Consequently, researchers often turn to the time-
restricted mean survival time/QALY/costs.42,43 For
example, we can measure survival/QALY/costs saved
within a time horizon of L years, where L is chosen such
that a ‘‘reasonable’’ number of subjects are still being
observed at that time (e.g., choose L as the upper quar-
tile of the follow-up times). This means that we are inter-
ested in outcomes accumulated until death or up to L
years, whichever occurs first. Although our data set pro-
vides the costs observed up to 15 y, the longest follow-up
time is 14.99 y, meaning that no patients were observed at

the end of 15 y. Therefore, a smaller time limit L (e.g.,
10 y with sufficient data using an intuitive cutoff) could be
chosen, and patients alive at 10 y have complete data. This
time limit is required for both SW and PT methods.
Patients censored within L years are still considered as cen-
sored within this time horizon, which can be handled by
the SW and PT methods appropriately. In the Supplemen-
tary Materials, we provide examples showing error or
warning messages in R when we choose too large an L.

Choose cost-effectiveness threshold values. To perform
net benefit regression, we need to choose a few cost-
effectiveness threshold values denoted by l. A sequence
of l values from 0 to multiple times of the ICER is a
good start. We can first fit covariate-adjusted regressions
using the SW method to estimate a covariate-adjusted
ICER ($2,680/QALY, see step 2). Based on this, we can
create a cost-effectiveness threshold sequence of $ 0,
$500, $1,000, . . ., $6,000 for 1 additional QALY:

lambda=seq(0,6,0.5)

This line generates lambda as a sequence from 0 to 6
(in $1,000s), with 0.5 as the increment of the sequence
(this creates a range from $ 0 to $6,000 jumping by $500
increments).

Step 2: Fitting Censored Net Benefit Regressions

We can fit a covariate-adjusted net benefit regression using the SW method with QALY as effectiveness:

fit1\-NetBenReg(Followup=CEdata$survival, #follow-up time
delta=CEdata$dead, #1=complete,0=censor
group=CEdata$Trt, #1=treatment, 0=comparison
Cost=CEdata[,8:22], #a matrix of cost history
Eff=CEdata[,24:38], #a matrix of effectiveness history
Part.times=1:15, #end timepoints of intervals
Method=’SW’, #use Simple Weighted method
Z=CEdata[,5:7], #adjust covariates in regressions
Eff.only=TRUE, #also fit effect-only regression
Cost.only=TRUE, #also fit cost-only regression
lambda=lambda, #cost-effectiveness threshold
L=10) #time limit

Print(fit1)
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The first line clarifies that the variable survival in the
data set CEdata (described in ‘‘Data’’ section) denotes
the follow-up time for each patient. The next line del-
ta=CEdata$dead indicates if an individual was com-
plete (1) or censored (0) after the survival time stopped
being recorded. The line group=CEdata$Trt clarifies
if the individual received new treatment (1) or usual care
(0). Below that are the lines Cost=CEdata[,8:22]
and Eff=CEdata[,24:38] clarifying the 15 columns
for yearly cost and effect data. The line Part.
times=1:15 specifies the end time point as 1, 2, . . .,
15, meaning that the intervals are [0, 1], (1, 2], . . ., (14,
15] years for each grouped cost and effectiveness vari-
able. The option Method=’SW’ requests the SW
method. We can also fit the same model using the PT
method with Method=’PT’. Covariates, introduced
through Z=CEdata[,5:7], consist of a data frame of
the variables Age65, LBBB, and Female stored in col-
umns 5, 6, and 7 of CEdata. As a special case, the
option Z can be removed if no covariates are desired for
adjustment (e.g., in randomized studies). The options
Eff.only=TRUE and Cost.only=TRUE additionally
fit the regressions with effect and cost as dependent vari-
ables, respectively. The final 2 lines lambda=lambda
and L=10 refer to the cost-effectiveness threshold and
the time horizon of L years described above.

To explore heterogeneous cost-effectiveness and iden-
tify subgroups, we can further include treatment-
covariate interactions. The option interaction= spe-
cifies the names of covariates having interaction
with treatment. For example, the following code adds a
treatment-LBBB interaction (bold in following code):

fit2\-NetBenReg(Followup=CEdata$survival,
delta=CEdata$dead, group=CEdata$Trt,
Cost=CEdata[,8:22], Eff=CEdata[,24:
38], Part.times=1:15, Method=’PT’, Z=
CEdata[,5:7], interaction=c("LBBB"),
Eff.only=TRUE, lambda=lambda, L=10)

Caution. Two naı̈ve methods are also allowed (Meth
od=’CC’ for complete-case only; Method=’AL’ for all
data ignoring censoring). However, they are not recom-
mended for censored data due to bias. Without censor-
ing, the 4 methods (SW, PT, CC, AL) are equivalent to
OLS.

Interpretation. Table 3 summarizes the results. To evalu-
ate different methods, we used several methods to obtain
‘‘true’’ ICERs and INBs: 1) the ‘‘Theory’’ method is
based on the true mean values analytically derived by

statistical theory, leading to the overall ICER of $2,750/
QALY (=$2,713/0.99 QALY) in the whole population;
2) the ‘‘OLS using uncensored data’’ method is based on
the simulated uncensored outcomes (including cost and
effect after censoring time); 3) the ‘‘Using true outcomes’’
method is based on the simulated uncensored potential
outcomes (counterfactuals), leading to an overall ICER
of $2,501/QALY (=$2,585/1.03 QALY). Although the
estimates from the methods (2) and (3) will approach the
mean values from the method (1) when the sample size
approaches infinity, the 3 methods could be slightly dif-
ferent with smaller sample sizes, as in our example. Meth-
ods (2) and (3) might be better ‘‘true’’ values, since our
data set is a censored version of the full uncensored data
set that was used to calculate (2) and (3).

For covariate-adjusted regression without interaction,
the coefficient for the treatment is the adjusted INB. For
example, when the cost-effectiveness threshold is $6,000/
QALY, the estimated covariate-adjusted INB is $3,410
by the PT method. When l = 0, the dependent variable
is 21 3 cost, equivalent to the cost-only regression with
switched signs for the estimated coefficients; for the
effect-only model, the dependent variable = effect (indi-
cated as l = NA in Table 3). Then it is easy to obtain a
covariate-adjusted ICER: for example, the ICER is
$2,680/QALY using the SW method (=$2,550/0.95
QALY as the ratio of the treatment coefficient estimates
in cost-only and effect-only regressions). Comparing the
estimates from covariate-adjusted regressions using the 4
methods to the true values (‘‘OLS using uncensored
data’’ method) in Table 3, it is apparent that estimates of
both naı̈ve methods are far away from the true values,
with the CC method less biased than the AL method in
this example. Both SW and PT methods produce similar
estimates to the true values, but the PT method is gener-
ally more efficient, with 8% to 20% reductions in stan-
dard errors by using cost and QALY history.

The coefficient for the treatment-LBBB interaction is
significantly positive for effect and all cost-effectiveness
threshold l values, indicating that effect as well as cost-
effectiveness are heterogeneous across LBBB status.
LBBB patients achieve significantly higher INBs from
the new treatment as compared with their non-LBBB
counterparts, adjusting for other covariates. The coeffi-
cients for the treatment (main effect) and treatment-
LBBB interaction can be used to calculate adjusted INBs
in LBBB and non-LBBB subgroups, respectively. For
example, when the cost-effectiveness threshold is $6,000/
QALY, the regression adjusted INB is 2$1,610 for the
non-LBBB subgroup and $8,750 (=$10,360–$1,610) for
the LBBB subgroup. This result provides evidence that
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the cost-effectiveness of the new treatment can vary by
LBBB status.

Step 3: Using a Doubly Robust Method to Estimate
Causal Average INB with Observational Data

Propensity scores. The propensity score is the probabil-
ity of receiving the new treatment, which could be esti-
mated by fitting a logistic regression (or other models)
with treatment indicator as the dependent variable and
the potential confounders as explanatory variables. Gen-
erally, if a variable is thought to be related to the out-
come but not the treatment, including it in the propensity
score (for which it is an irrelevant variable) should reduce
bias.45 More practical guidelines about choice of vari-
ables in propensity score models can be found else-
where.45–48

Implementing the doubly robust method. We can perform
the doubly robust method by further specifying the
option Doubly.Robust=TRUE to request the doubly
robust method and the option PS.Z=CEdata[,5:7] to
include the 3 covariates into the propensity score model
using logistic regression.

fit3\-NetBenReg(Followup=CEdata$survival,
delta=CEdata$dead, group=CEdata$Trt,
Cost=CEdata[,8:22], Eff=CEdata[,24:
38], Part.times=1:15, Method=’PT’, Z=
CEdata[,5:7], interaction=c("LBBB"),
PS.Z=CEdata[,5:7], Doubly.Robust=TRUE,
Eff.only=TRUE, lambda=lambda, L=10)

Caution. We can examine whether there exists extreme
propensity scores close to 0 or 1 (program in the Supple-
mentary Materials), which is important because extreme
propensity scores may lead to huge weights and hence
unstable results. Crump et al.49 suggested a rule of thumb
of thresholds of 0.1 and 0.9 for extreme propensity
scores. By default, the function NetBenReg replaces the
propensity scores smaller than 0.1 by 0.1 (and greater
than 0.9 by 0.9). It also produces warning messages when
there are estimated propensity scores outside [0.1, 0.9].
Supplementary Figure S2 shows that the range of esti-
mated propensity scores are sufficiently overlapping
across treatment groups without extreme values, indicat-
ing that patients in the 2 groups are comparable after
propensity score adjustment.

Interpretation. The doubly robust method estimates cau-
sal average INB, which is causal average treatment

effects on net benefit for the entire population (those
who did and did not receive the new treatment). Table 3
summarizes the estimates from the doubly robust
method, which are close to the true values.

Step 4: Constructing CEAC

For net benefit regression without interaction or the
doubly robust method, the CEAC can be constructed
based on the P value (p) for bbTrt (or d̂ for the doubly
robust method, where d=E nb(1)

� �
� E(nb(0)) is the cau-

sal average INB). With a given cost-effectiveness thresh-
old l value, the vertical axis for the CEAC is p=2 if
bbTrt\0 or 1� p=2 if bbTrt.0 (i.e., 1-sided P value of
bbTrt).

7 For net benefit regressions with interactions, the
cost-effectiveness is heterogeneous, and hence, subgroup-
specific CEACs can be constructed.8 Note that the most
common interpretation of a CEAC is in a Bayesian
framework. Thus, the 1-sided P value can be interpreted
as the ‘‘probability that the intervention is cost-effective’’
due to its equivalence to Bayesian analysis incorporating
a noninformative prior.50 The impact of informative
priors on CEACs has been discussed elsewhere.51

Interpretation. Figure 2 demonstrates 4 CEACs based
on the fitted models (made using the program in the Sup-
plementary Materials), showing the probabilities that the
new treatment is cost-effective compared with the com-
parison group at different cost-effectiveness threshold
values (a sequence of $ 0, $500, . . ., $6,000 chosen in step
1). Among LBBB patients, the probability that the new
treatment is cost-effective is much higher than the prob-
ability among non-LBBB patients, indicating heteroge-
neous cost-effectiveness across LBBB status. This was
foreshadowed by the significant treatment-LBBB inter-
action observed earlier.

Conclusions

Funding negotiations are often informed by research evi-
dence introduced through a health technology assessment
(HTA) process. As the field of HTA begins to embrace
real-world evidence to address well-known limitations in
randomized trials, there will be demand for CEA con-
ducted using person-level administrative data. Even in
the United States, increases in available cost and health
outcome data combined with Medicare’s new capabilities
to consider drug costs as well as their effectiveness sug-
gest that CEA may be a very strategic part of future com-
parative effectiveness research intent on informing health
care funding decisions. In addition, if approvals for new
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drugs continue to outpace the evidence,52 the demand for
real-world evidence about value (i.e., cost and effective-
ness) promises to continue to grow.

Therefore, applying state-of-the-art methods to ana-
lyze censored observational data in a net benefit regres-
sion framework is essential. When cost-effectiveness data
are censored, naı̈ve methods to handle censoring should
be avoided, especially for heavily censored data. The
doubly robust method combines net benefit regressions
and propensity scores in an easy-to-use manner, leading
to more reliable results for observational data with cen-
sored costs or health outcomes. In addition, the methods
can be applied to randomized clinical trials as well. This
provides a strong option for CEA using possibly cen-
sored data from observational and randomized studies.
With the methods illustrated in this article, potential
challenges due to nonrandomized and censored data can
be addressed in a sound manner.
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