
UNIVERSITY OF CALIFORNIA
RIVERSIDE

Reverse Engineering User Behaviors From Network Traffic

A Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

by

Guowu Xie

June 2013

Dissertation Committee:

Professor Michalis Faloutsos, Co-Chairperson
Professor Harsha V. Madhyastha, Co-Chairperson
Professor Mart Molle
Professor Iulian Neamtiu



Copyright by
Guowu Xie

2013



The Dissertation of Guowu Xie is approved:

Committee Co-Chairperson

Committee Co-Chairperson

University of California, Riverside



Acknowledgments

I thank my committee, without whose help, I would not have been here.

iv



To my parents.

v



ABSTRACT OF THE DISSERTATION

Reverse Engineering User Behaviors From Network Traffic

by

Guowu Xie

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, June 2013
Professor Michalis Faloutsos, Co-Chairperson

Professor Harsha V. Madhyastha, Co-Chairperson

In today’s world, more and more people are managing every aspect of their lives

over the Internet. As a result, the study of Internet traffic, which is undergoing constant

evolution as new technologies emerge, has attracted much attention from the research com-

munity. In this dissertation, we present a three-pronged approach to help ISPs and network

administrators: a) gain insight about the applications that generate traffic in their networks,

b) understand the Web browsing behaviors of their users, and c) detect in a timely fashion

when external malicious entities seek to compromise their websites.

The first component of our approach is SubFlow, a Machine Learning-based tool

that classifies traffic flows into classes of applications that generate them, for example P2P or

Web. The key novelty of SubFlow is its ability to learn the characteristics of the traffic from

each application class in isolation while traditional approaches simply try to assign flows to

predefined categories. This allows SubFlow to exhibit very high classification accuracy even

when new applications emerge.
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The second component is ReSurf, a tool to reconstruct users’ web-surfing activities

from Web traffic. ReSurf enables the separation of users’ intentional web-browsing (such as

the click user makes) from the traffic automatically generated when the website is rendered.

ReSurf, then, can be an effective method to study the browsing behaviors of users and gain

insights into the evolution of modern Web traffic, which accounts for about 80% of Internet

traffic.

The last component of our approach is Scanner Hunter, an algorithm to detect

HTTP Scanners, external entities that selectively probe websites for vulnerabilities that

may be exploited in subsequent intrusion attempts. Our algorithm is developed in response

to the fact that HTTP scanners have not received much attention despite the high risk and

danger they pose. Scanner Hunter utilizes a novel combination of graph-mining approaches

to expose the community structure of scanners. Using Scanner Hunter, we conduct the first

extensive study of scanners in the wild during a half-year period, which we also provide

novel insight on this little-studied emerging phenomenon.
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Chapter 1

Introduction

The Internet has become an essential part of everyone’s daily life and been widely

used for online entertainment, shopping, socializing, content sharing and many other pur-

poses. As a result, the global Internet traffic volume averaged at 32,990 Petabytes per month

in 2012 and is expected to grow at a rate of 28% every year [7]. Because solving the challenge

of understanding network traffic at this immense scale is important to network operators

and administrators, this topic has attracted much effort from both industrial and academic

communities.

1.1 Scope and Motivation of Study

Identifying the applications behind Internet traffic is one of the topics that gener-

ates much interest from network operators. For example, accurate identification of network

traffic allows Internet Service Providers (ISPs) to determine separate QoS for different types

of applications such as voice/video and peer-to-peer (P2P) while it is important for admin-
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istrators of enterprise networks to know what applications their users are using or which

types of applications are dominating the network traffic. Furthermore, understanding the

origin of the traffic in a network enables its protection and constitutes the very first step in

building network intelligence.

In recent years, web browsers have been used increasingly as the interface to more

and more online services. As a direct result, HTTP has become the most widely used

protocol and contributes up to 80% of the total traffic on some networks [70]. Given that

“HTTP is the new IP in the Web 2.0 world”, traffic analysis methods need to adapt to

this new reality. One implication of these trends is the limited applicability of traditional

traffic analysis and characterization tools [62, 111] in morden network traffic. Given the

dominance of HTTP traffic, knowing that a network flow is generated by an HTTP-based

application conveys little information with regards to the usage of websites/services and web

users behaviors. It is therefore important for network operators to have a tool that goes

beyond the HTTP class label and provides additional information about the HTTP traffic

in their network.

The popularity of online web services, unfortunately, has also drawn the attention

of miscreants and thus it is vital that network operators deploy tools that can detect ma-

licious behaviors. In this particular area, we have identified through our research a new

kind of threat, HTTP scanning, that has not received enough attention despite the risk it

poses. HTTP scanning is a not very well-known activity that aims to discover the security

weaknesses of websites and can function as a first and exploratory step that may enable

subsequent website infiltrations and ultimately compromise.
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1.2 Overview of our research

Motivated by the reasons disscussed in the previous section, we develop three

network traffic analysis approaches, SubFlow, ReSurf and Scanner Hunter to help ISPs and

network administrators to better understand Internet traffic. Each approach infers network

users’ activities from the network traffic they generate from different perspectives and at

granularities.

SubFlow is a Transport Layer Machine Learning-based traffic classifier. It infers

what application generates network flows from their Transport Layer statistics, e.g. average

packet size and inter-arrival time between packets. It can be useful in answering the questions

like what applications are running in the network and how much traffic is generated by a

given application. As opposed to the way traditional traffic classifiers work, SubFlow learns

to identify application in isolation by leveraging subspace clustering algorithms. For each

application, SubFlow uses a small number of features, which are best for the application of

interest, to classify flows instead of a large number of features, which may be overall good

for all applications.

An HTTP category label provides very limited information about network flows

because the HTTP protocol is responsible for 80% of total Internet traffic. To better un-

derstand HTTP trafic, we develop an approach called ReSurf that can reverse-engineer web

users’ browsing activities from HTTP traffic. Using only the information extracted from

HTTP headers, ReSurf can accurately identify the head HTTP requests and associate auto-

matically triggered HTTP requests with their head HTTP request. ReSurf is arguably the

first HTTP traffic analysis tool that can answer the following important question just from
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observing network traffic: a) which web pages the user intentionally visited, and b) how

much traffic is generated by the visits. Moreover, ReSurf can tell how web users navigate

from one web page to another and how much time they stay on those pages.

In our study, we identify a new security threat, HTTP scanners, which is not well

documented or studied before. In response to the fact that HTTP scanners pose high risk

but have not received attiontions, we develop Scanner Hunter to uncover these malicious

entities by monitoring HTTP traffic. Scanner Hunter first constructs a bipartite graph

to capture the relationship between hosts and the targets they requested but failed, then

exposes the community of HTTP scanners in the bipartite graph by exploiting a graph-

mining algorithm. Our approach accurately detects more than 4000 HTTP scanners every

week from a universiy campus network. With the help of Scanner Hunter, ISPs and network

administrators can learn which hosts are HTTP scanners and what they are looking for.

1.3 Contributions

The thesis makes the following contributions:

(1) We develop three novel traffic analysis tools to better understand network traffic

and network users’ activities by reverse-engineering network traffic. Our approaches, which

combine machine learning and graph mining algrithims, achieve very high accuracy in our

evaluations.

(2) Each tool can profile network traffic from different perspectives and at various

granularities. SubFlow identifies which applications are running and how much traffic they

generate. ReSurf distinguishes the websites users intentionally visited from unintentional
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ones and how much traffic is generated by the former. Scanner Hunter separates HTTP

scanners from legitimate users and what types of resource the malicious entities are looking

for.

(3) The three approaches allow us to conduct an extensive study of real-world

traffic traces in various time spans, from several hours to half a year. The results we obtain

can provide insights on how network traffic have been evolving in recent history.

The thesis with the three techniques that it develops make significant contributions

in understanding, managing and securing Internet traffic and its users.
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Chapter 2

SubFlow: Towards Practical

Flow-Level Traffic Classification

2.1 Introduction

Identifying the flows generated by different applications is of major interest for

network operators. For Internet Service Providers (ISPs), understanding the origins of the

traffic allows them to differentiate the QoS for different types of applications such as voice

and video. Moreover, the knowledge enables them to assert more control on high-bandwidth

and non-interactive applications such as peer-to-peer (P2P). For enterprise networks, it is

very important for administrators to know what is happening on their network, what services

the users are running, or which application is dominating their traffic. Traffic classification

is also important for securing the network. In fact, many traditional protocols are often

used in new attacks, such as the use of IRC as Command and control (C&C) channel for
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botnets. Overall, traffic classification is the first step in building network intelligence.

In this paper, we define an application class (referred to as application throughout

the paper) as an application-level protocol with a distinct documented behavior in terms of

communication exchanges, control packets, etc. With this definition, our application classes

include: SMTP, MSN, BitTorrent, Gnutella, POP3, etc. Interestingly, the definition of

application in traffic classification research is often defined rather loosely and varies between

studies. Some studies resort to higher level classes such as client-server versus peer-to-

peer [120], while others attempt to detect subclasses within a class [100]. What is the

appropriate granularity for defining application classes is a key question, but it does not have

a single answer. The right granularity depends on the intent of the network administrator or

the goal of the study. We believe that our application class granularity provides a sufficiently

detailed starting point for many research questions and practical needs.

Our goal is to develop a practical traffic classification approach, which should be:

(a) easy to use (ideally plug-n-play) and (b) effective in terms of accuracy. To the best of

our knowledge, no such solution exists today. First, most deployed solutions rely heavily on

payload-based or deep packet inspection (DPI) techniques. However, these techniques have

several limitations in that they fail to classify encrypted traffic and raise privacy concerns.

In addition, it is often desirable to classify traffic that is summarized in the form of flow

records or packet headers. Second, port-based classification cannot function when applica-

tions randomize their ports, as they do to day, and cannot detect new applications. Third,

flow-level machine learning (ML) approaches have been proposed as an alternative to the

expensive and cumbersome packet-based methods. These methods use flow-level properties,
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such as packet sizes and timing information, to classify traffic. However, despite significant

research efforts [92, 19, 89], these methods have not made the anticipated impact in the real

world. This motivates us to ask two questions: (Q1) Why are existing flow-level methods

not widely deployed? and (Q2) Can we design a flow-level classifier that is easier to use in

practice?

The contribution of our work is twofold, as it addresses the two questions above:

(a) we study and document the limitations of existing ML solutions, and (b) we propose

a new approach, SubFlow, that operates unlike any previous ML approaches and enables

profiling each application in isolation.

First, we answer the question Q1 by identifying the key limitations of ML ap-

proaches. ML methods require a set of known flows to train/bootstrap the classifier. Typi-

cally, the training data are provided by a DPI classifier. In a nutshell, supervised methods

train a ML algorithm to distinguish flows among a predefined set of applications. This has

two key disadvantages: (a) it is often very hard to know all applications in the network a

priori and train for them; and (b) the classification performance degrades significantly when

new applications emerge. Intuitively, if an algorithm learns to distinguish A from B, it is

very hard to deal with a new class C. Moreover, there is no single feature set which works

well for all applications. Actually, the proper features for classifying applications vary from

one to another. To classify flows from all application, we’d better include all these proper

features but suffers from the “curse of dimensionality”. As we show in §2.2 in more detail,

these challenges can significantly affect the accuracy of existing solutions, both supervised

and semi-supervised.
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In the second part of this chapter, we capitalize on our knowledge from answering

question Q1, and we propose a conceptually different approach, SubFlow. The key novelty

is that our approach learns the intrinsic statistical fingerprint of each application

in isolation. In other words, our method learns to identify class A and then class B in

isolation instead of trying to distinguish A from B. Second, in order to address the curse

of dimensionality, we utilize subspace clustering, which has never been used in the context

of traffic classification before. Using our technique, our classifier extracts the key features

of each application and ignores the features that are not useful. This is a very attractive

property given the fact that one feature can be great for identifying application A, but

be useless in identifying application B. Our approach has the following key advantages,

which effectively address the limitations of previous methods: (a) bootstrapping is easier

and practical, as we demonstrate in the rest of this paper; (b) our approach is robust and

adaptable to change, such as the appearance of new protocols, or the evolving behavior of

existing applications.

We also show the promise of our approach using five traces from different ISPs

captured between 2005 and 2011. These traces are from a geographically and functionally

diverse group of Internet backbone links, which is the setting that causes most difficulties

for application classification solutions [65, 54]. Our key findings and contributions can be

summarized in the following points:

• We investigate, document, and explain the key limitations of previous machine learning

based traffic classification approaches. For example, we show that, by intentionally

excluding BitTorrent (BT) during training, state of the art classifiers tend to report
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BT flows as MSN by mistake, reducing the accuracy for MSN by more than 30% (see

§2.2).

• SubFlow learns to distinguish the traffic of an application with higher than 95% ac-

curacy. Furthermore, the majority of the flows of an application that are missed in

the training phase, are not misclassified to another application, instead reported to be

“Unknown” (see §2.4).

• To highlight the advantages of SubFlow, we apply it in a “plug-n-play” fashion, where

training data are directly derived from popular port numbers. Our classifier was able

to make signatures and classify traffic successfully over a range of applications, both

encrypted and un-encrypted. In fact, on a 2011 trace from a mobile provider, we

identify and create signatures for the Android Marketplace protocol, without having

a known payload signature for this application during training (see §2.4.5).

The rest of this chapter is organized as follows. In §2.2, we give a formal definition of

our problem, highlight the limitations of previous ML methods, and identify the requirements

for a practical solution. In §2.3, we provide the details of SubFlow. In §2.4, we evaluate

SubFlow over different traffic traces and configurations. We review the related work in §4.5

and conclude our work in §2.6.

2.2 Definition and motivation

The task of a flow-level traffic classifier is to identify the applications (e.g., BitTor-

rent, RTSP, HTTP) that generate flows according to statisctical flow-level features, without
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relying on payload content and port number. The application name is defined as the label

or class of the flow. In the paper, we consider flows are uni-directional. One TCP/UDP

session has two uni-directional flows, forward and backward, repsectively. An uni-directional

flow is defined as a five-tuple: {source IP, source port, destination IP, destination port, and

protocol}. It is not rare that observing only one uni-directional flow of TCP/UDP sessions

in the backbone links due to routing asymmetry. SubFlow classifies traffic only based on

uni-directional flows that makes it more general than other approaches which requeire the

features in both directions. Therefore, SubFlow can be deployed in both backbone and

access Internet links.

Statistical flow-level features: Flow-level classifiers utilize statistical features

of a flow to predict the flow’s class. For this work, we have collected a number of key

flow-level features that are also used by others [92, 88]. Specifically, we used the exact size

and the inter-arrival time (IAT) of the first 6 packets of the flow. In addition, we use the

average, max, min, and standard deviation values of packet sizes and IATs over the entire

flow. Intuitively, the exact size of the first packets captures the protocol behaviors during

the initiation of the protocol interaction. The statistics of IAT over entire flow are good

features for classifying the traffic generated by real-time applications such as VoIP or Video.

Many ML algorithms are introduced to traffic classification area but have not

been widely deployed and made the anticipated impact in practice. We attribute this to

two main reasons. First, a traditional multi-class classifier trained without flows from all

possible applications produces unexpected results. Second, the dilema in feature selection.

We explain two reason in detail in what follows.
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In a network, new applications appear from time to time. It is very hard to collect

a complete and representive set of flows for training classifiers all the time. Unfortunately,

a traditional multi-class classifier trained without flows from all possible appli-

cations produces unexpected results. We verified this using a large set of real-world

data and different supervised classifiers proposed in the literature [65], such as K-nearest

neighbors, logistic regression, decision trees, support vector machines (SVM), and Bayesian

Networks. We used the WEKA implementation [116] of the algorithms with their default

parameters as in [65]. Here, we show an example using data from Asia-31, where we try

to classify only five protocols, namely: HTTP, SMTP, EDONKEY, BitTorrent (BT), and

MSN. From the supervised algorithms we used, the Bayesian Networks gave the best results.

For brevity, here we only present results from this algorithm. Our experimental methodology

is the same as in all the experiments in the paper and is explained in detail in §4.2.
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Figure 2.1: The per-protocol precision for a traditional multi-class classifier when BT flows
are included or not in training

Our goal is to compare the performance of the Bayesian Network classifier when:

(a) the flows from all five protocols are included during training, and (b) when the flows

form one or more of the protocols are not used for training. While evaluating the classifier,

we always use all the flows from all five protocols. In Figure 2.1, we compare the percentage

1More details on the specific trace is given in §2.4.
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of correctly classified flows (a.k.a. precision) of HTTP, SMTP, eDonkey, and MSN when

(a) BT is included in training and (b) when BT is not used for training. From the figure,

we see that when the training set consists of all five protocols, the precision approximates

100%. Unfortunately, when the classifier does not take BT into consideration, flows from

other protocols are mistakenly labeled as BT. In fact, 35% of flows labeled as MSN are now

erroneous. We repeated the same experiment excluding protocols other than BT in training

and achieved qualitatively similar results. Moreover, we observed that the more protocols

we exclude in training, the worse the overall precision is.

A pictorial explanation for the limitation is presented in Figure 2.2. During training

phase, a machine learning based classifier, such as logistic regression or support vector

machine, would approach the problem of separating flows from protocol A from B. The

classification decision boundaries are shown with a dotted line. It is clear that the boundaries

perform well and can distinguish the two protocols from each other. But when the flows

from a “new protocol” (not included in training phase) appear, the classification performance

degrades because these flows are randomly classified into protocal A or B. We highlight this

observation in the classfication phase.

The other reason is the feature selection dilema in traffic classification.

The good feature set for classifying different protocols varies from one to another. A typical

example is the average packet inter-arrival time (IAT), which is a great feature for identifying

time sensitive applications, such as streaming, but not good in HTTP flows. In steaming,

IAT and its variance will be small for the vast majority of flows, whereas for HTTP IAT varies

from very small to very large, depending on the flow. On one hand, the good features for
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Figure 2.2: Training and testing phases for traditional classification methodologies

each application should be included to accurately classify the flows from these applications.

On the other hand, the more number of features, the less effective ML algorithms will be due

to the curse of dimensionality. That is, the distance functions lose their usefulness in high

dimensional feature space. Simply put, the dilemma is that each application is captured

best by different features, but if we simply use the union of all these features together, the

classification performance degrades along with the number of applications we consider.

To overcome these limitations of traditional approaches, we propose a conceptually

different solution, SubFlow. Here, we highlight the key difference of SubFlow with other

methods. We consider the problem of building a classifier to identify BitTorrent flows. In

Figure 2.3, we show the functional steps of (a) our SubFlow classifier, (b) a two-class (or

multi-class in general) supervised classifier, and (c) a semi-supervised clustering algorithm.

Most important, the input information to SubFlow is significantly different from the tra-

ditional supervised approaches. Our classifier only requires training flows form the target

application in order to build a classifier. In contrast, a two-class classifier (Figure 2.3(b))

requires a significant effort to provide training data from all possible applications in the
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(a) Learning how to classify BitTorrent traffic using SubFlow

(b) Learning how to classify BitTorrent traffic using a traditional two<class 
(or multi<class) supervised classifier

(c) Identifying BitTorrent traffic using a semi<supervised (clustering) classifier

Figure 2.3: The difference between SubFlow and traditional methods

network. As we show in Figure 2.1, if the labeled data are incomplete, due to some missing

applications, the accuracy of the classifier degrades. Using the semi-supervised solution of

Figure 2.3(c) avoids the tedious process of providing labeled flows from all other applica-

tions. However, as we explain next in this section, clustering algorithms suffer from the

curse of dimensionality.
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2.3 Traffic classification using subspace clustering algorithms

In this section, we present our SubFlow classifier. First, we give an overview of how

SubFlow operates in §2.3.1. Then, we explain the details of signature generation module

in §2.3.2 and flow classifier module in §2.3.3. The subspace clustering algorithm and our

implementation are presented in §2.3.4.

2.3.1 Overview of SubFlow
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(a) Signature generator (b) Flow classifier

Figure 2.4: The methodology of SubFlow

Before delving into details, we first present an overview of SubFlow. SubFlow has

two important modules as described in Figure 2.4: (a) signature generation, and (b) flow

classifier. Signature generation module can be seen as a training phase of SubFlow. The

module takes the flows from one application as input and ouput signature(s) which can

characterize the flows generated by the application. To achieve this functionality, subspace

clustering algorithms are employed. Subspace clustering algorithms outputs signatures in
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term of (feature subset, flow subset) pairs. Each application’s signatures will be forwarded

to flow classifier module. Based on these signatures, flow classifier module predicts the

application names (labels) of incoming flows.

2.3.2 Signature generation module

Here we explain the basic operations of signature generation module using subspace

clustering algorithm. The algorithmic details are described in §2.3.4.

Input: A set of flows F that belong to the same application and a full set of features S.

Each flow f ∈F is represented as an |S|-dimensional vector of numerical values.

Output: One or more pairs of flows and subspaces (Fi, Si), such that Fi⊂F and Si⊂S.

Si reports relevant features for the flows in Fi. This essentially projects the initial |S|-

dimensional flows, to an |Si|-dimensional subspace with |Si| ∈ (1...|S|). A feature subspace

may contain more than one cluster comprising of different flows. That is, when Sx = Sy,

Fx ∩ Fy = ∅. Also, a flow f can belong to clusters in different subspaces. That is, f ∈Fx,

f ∈Fy, but Sx %=Sy.

A signature is in fact a set of flows Fi and a corresponding feature space Si returned

by the subspace clustering algorithm. For each signature (Fi, Si), the flows in Fi meet a

given cluster criterion (i.e., they are very close to each other) when projected into the feature

subspace Si.
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2.3.3 Flow classifier module

During classification as described in Figure 2.4, an incoming flow is tested for a

match over all application signatures. Essentially, each signature is a binary classifier that

reports either match or not. Flow classifier module consolidates each binary classifier’s result

and report a final label. We next present the process in more detail.

Testing a signature for a match: When a new flow is tested over a specific

signature (Fi, Si), it is first project to Si and then compared with the flows in Fi. The

distance between flows is calculated using the standard Euclidean distance. The distance

to the closest flow is set to be the distance of the test flow to signature (Fi, Si). If the test

flow is within a predefined radius (r) is reported as a match. Essentially, each signature

is a fixed-radius nearest neighbor classifier with |Si| dimensions and |Fi| points. The fixed

radius guarantees the signatures are specific enough to match the flows of the application

without matching flows of other applications. It is not fair to use the same fixed radius

for all subspaces, since from the Euclidean distance formula d =
√

∑k=|Si|
k=1 (xk − yk)2 we

see that the larger |Si| is, the larger the distance will become, even if the distance of each

individual dimension remains small. We use the basic scaling factor of
√

|Si| to remedy this.

Therefore, if the one dimensional radius we use in our classifier is r it means that the value

becomes ri =
√

|Si| · r for signature i. We refer to the region covered by the radius of all

the points of the signature as its region of interest. We evaluate our algorithm over different

radius (r) values in the next section.

Classifying a flow: Our SubFlow classifier contains a number of binary classi-

fiers. Each binary classifier corresponds to one application signature (Fi, Si). Assume that
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at a specific point in time we have n binary classifiers, X = {x1, x2, ..., xn}. Any new flow

that reaches the SubFlow classifier is processed by each of the n binary classifiers. Each

binary classifier replies with a true or false and the distance (d). Therefore, the outcome

is: (a) an n-dimensional boolean vector L={l1, l2, ..., ln} where the variable li captures the

label given by the binary classifier i, i.e., where li = 1 iff xi labels the flow true, otherwise

li = 0; and (b) an n-dimensional vector D= {d1, d2, ..., dn}, where the variable di captures

the distance of the test flow to signature i. Now, since an application can be associated to

multiple signatures, it may be mapped to more than one binary classifier. To keep track of

the mapping between binary classifiers and applications, we introduce a new vector called

M , where M(i)=App if the binary classifier i is from the application App.

The final decision on whether the flow should be labelled as App or Unknown is

made running the following algorithm that use vectors L, D, and M :

1. Add all i, where L(i) = true, the response set R.

2. If |R|=0, reply as “Unknown” since no binary classifier gave a label for the flow. Else

if |R|=1, reply as M(k), where R = {k} since only one binary classifier labeled the

flow. Else if |R| > 1, reply as M(k), where k∈R and ∀i ∈ R, i %= k, |Sj |< |Sk|. That

is, if more than one classifier labels the flows, the classifier from higher dimensional

signature is chosen because it is more specific.

2.3.4 Details of subspace clustering algorithms

In this subsection, we first give an introduction of subspace clustering algorithms.

Then, we explain what are the requirements for our algorithm. Finally, we go into the basic
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steps of the subspace clustering algorithm we use and present its subtleties.

The problem of subspace clustering is the following: given a set of data points,

find a set of subspaces where data points can be grouped into clusters of high quality. A

naive approach might be to search through all possible subspaces and use cluster validation

techniques to determine whether there are clusters in subspaces. The exhaustive search

for all subspace clusters is intractable [22, 66]. Its complexity is O(2d), where d is the data

dimensionality. Most existing subspace clustering algorithms are based on different heuristics

to identify subspace clusters, while keeping the computational complexity acceptable.

Requirements for the subspace clustering algorithm: Given the challenges

of the subspace clustering problem, we wanted to find an algorithm that: (a) gives results

that are easy to understand, (b) produces meaningful results in a reasonable time given

the high dimensionality of our data. Our subspace algorithm is inspired by the bottom-up

heuristic used by the FIRES algorithm [67], which is a very good match for our task at

hand. Due to space limitations, we present here how our algorithm works and do not report

the exact similarities and differences with FIRES. At a conceptual level, the algorithms

are similar but many procedures in FIRES have been simplified in order to facilitate the

interpretation of output subspace clusters. We refer the interested reader to [67] for more

information about FIRES, and to [93, 91] for a survey and comparison of different subspace

clustering algorithms.

As we mentioned before, the input to our algorithm is a set of flows F that belong

to a single application, over a feature set S. Our subspace clustering algorithm takes the

following basic steps:
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1. A standard clustering algorithm is used to find the so called base clusters in each

dimension s∈S. Essentially, we cluster all the flows in F in each 1D-space s∈S.

2. Base clusters from different dimensions are then merged together to form higher di-

mensional subspaces. In order for base clusters to be merged, we require them to

have a large ratio of common flows. Merging base clusters results in subspaces of

dimensionality d∈(2, ..., |S|).

3. To find the clusters in each subspace, we project all the flow in F to each subspace Si.

Then, we use a standard clustering algorithm to find the clusters in each subspace.

Walking through a toy example: The first two steps of our algorithm are

graphically illustrated in the toy example of Figure 2.5. In the example, we have five flows

and four features. At the first step, we apply clustering at each individual feature. For

the standard clustering algorithm, we can use any algorithm of choice, such as DBSCAN

and k-means. Here we use density based clustering algorithm DBSCAN because it fits our

problem. In Step 2, we highlight the base clusters identified by using a DBSCAN. There are

2 base clusters in Features 1 and 4, two base clusters in Feature 3, and no base clusters in

Feature 2. In our approach, the features that do not have any base clusters as well as that

do not merge their base clusters to form higher dimensional subspaces are not used in the

signatures. This is one of the great benefits of our approach, where we remove features that

do not capture any dominant trend of the application at hand. More details on the example

are explained next.

Additional implementation details: All the features are normalized using
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the standard z-score algorithm, defined as xnorm = (x− µ)/σ, where µ and σ are the mean

and standard deviation of the feature calculated over the training data. During the cluster

merging phase, in order for two bass clusters to be merged at step 2, we required that the

number of common flows between them is at least 50% of the number flows of the smaller of

the two base clusters (we try different ratios and find the results are similar). Finally, it is

often the case that a large cluster, say, C1 has high overlap to two (or more) other clusters,

say, C2 and C3, but the overlap of C2 ∩ C3 is very small. The design choice of FIRES is to

always split the larger base cluster into two smaller disjoint base clusters (C11, C12). In our

implementation, we split a large cluster if and only if the new base clusters are larger than

the average size of all base clusters. We see an example of splitting a base cluster in the toy

example of Figure 2.5. In the example, the overlap is between the base cluster of Feature

1 and two base clusters of Feature 3. The compeering base clusters are the same feature

(Feature 3), but in general, the clusters can belong in different features. As we see in Step

3 of the toy example, the base cluster of Feature 1 is split into two smaller base clusters to

form the subspace of Features 1, 3 and the subspace of Features 1, 3, 4.

In our current implementation, we identify base clusters using DBSCAN [45] as

FIRES. In the evaluation section, we show detailed experiments about how we choose the

parameters of DBSCAN.

2.4 Evaluation

In this section, we evaluate the performance of our approach: (a) we study and

finetune its parameters, (b) we test it across different network traces, and (c) we test its
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Training data for application X

Feature 1 Feature 2 Feature 3 Feature 4
1 0.1 0 0.7 0.5
2 0.1 0.1 0.7 0.2
3 0.1 0.8 0.5 0.1
4 0.1 0.9 0.5 0.1
5 0.9 0.3 0.5 0.4

Step 1: Clustering at each dimension

Feature 1 Feature 2 Feature 3 Feature 4
1 0 1 0 0 7 0.51 0.1 0 0.7 0.5
2 0.1 0.1 0.7 0.2
3 0.1 0.8 0.5 0.1
4 0.1 0.9 0.5 0.1
5 0.9 0.3 0.5 0.4

Step 2: Merge 1D clusters to form subspaces

Feature 1 Feature 2 Feature 3 Feature 4
1 0.1 0 0.7 0.5
2 0.1 0.1 0.7 0.2
3 0.1 0.8 0.5 0.1
4 0.1 0.9 0.5 0.1
5 0.9 0.3 0.5 0.4

subspace: {1,3}

subspace: {1,3,4}

Figure 2.5: Illustration of the extraction of subspaces using the subspace clustering algorithm

ability to detect new applications. To evaluate (c), we emulate the appearance of a new

application’ by intentionally excluding a known application from training (e.g., eDonkey),

and then report what percentage of its flows are labelled as “Unknown”, as it should be.
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2.4.1 Datasets

We use five full packet traces (headers and payload) from different ISPs collected

between 2005 to 2011. The ISPs are distributed across different geographic locations: three

are in Asia, one in South America, and one in North America. We will refer to them them

as Asia-1, Asia-2, Asia-3, SouthA, and NorthA in the paper. Some basic traffic statistics are

presented in Table 4.1. These traces are collected from backbone links connecting client ISPs

to their providers as well as peering links between ISPs. The traces Asia-1, Asia-2, Asia-3,

and SouthA capture residential traffic from the customers of the ISPs as well as transient

traffic. The trace from NorthA is from a cellular service provider and contains traffic from

only mobile devices, such as laptops and smart phones with high speed data plans. Overall,

our data traces are collected from a diverse set of network links, over different time periods,

with different users, applications, and characteristics.

Our classifier works with both TCP and UDP flows. Because the features of the

two layer-4 protocols are different (e.g., TCP flags do not have any meaning in UDP),

we train TCP and UDP applications using different classifiers. In this paper, for brevity,

we report the results using our TCP classifier, which covers a larger set of protocols and

significantly larger portion of flows (> 85%). Using UDP provides qualitatively similar

results and observations. From this study we exclude flows that do not carry any payload,

such as scanning traffic and failed TCP connections.

Extracting the ground truth labels of flows: The ground truth of a flow

refers to its generating application. We extract the ground truth for our experiments, using

a DPI classification techniques similar to those used in [63, 112]. Our traces contain traffic
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Name Collection Date Duration Raw Size Total Flows
SouthA 26/08/2005 10 mins 25G 176k
Asia-1 17/08/2006 40 mins 188G 111k
Asia-2 26/07/2009 6 hours 358G 64k
Asia-3 21/09/2010 30 mins 90G 688k
NorthA 18/03/2011 3 hours 186G 130k

Table 2.1: The details of the five data traces we used

from the following applications: HTTP, SMTP, POP3, MSN, BitTorrent, eDonkey, Gnutella,

Telnet, Samba (SMB), IMAP, XMPP, Yahoo IM, SSH, and FTP. The total number of

unlabeled flows corresponds to 20% of the traffic. Typically, DPI labels a large number

of flows as unknown because of either encrypted payload or incomplete signatures. This

highlights the benefit of our algorithm, where its performance is not affected by the presence

of unknown applications.

2.4.2 Classification evaluation metrics

True positives for an application i (TPi), is the number of flows correctly classified

as i. False positives for i (FPi), is the number of flows from other applications misclassified

as i. False negatives for i (FNi), is the number of flows belonging to i but not classified to

be of application i. Therefore, Totali = TPi + FNi.

Precision for an application i, precision(i) = TPi

TPi+FPi
. Intuitively, this metric

depicts how much confidence we have in the label i given by a traffic classifier.

Recall for an application i, recall(i) = TPi

TPi+FNi
. Recall is also known as detection

rate. It tells the percentage of flows from application i that are detected by a traffic classifier.
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New application (NewApp) detection rate. This metric measures the ability

of a classifier to correctly identify new traffic and report it as being “unknown.” For example,

if the classifier does not have a signature for, say, BitTorrent (BT) the classifier should report

all BT traffic as “unknown.” Since BT was not known to the classifier before, it effectively

represents a new application. Therefore, NewAppi =
Unknowni

Totali
.

Coverage is the number of flows that were actually given a prediction (i.e., not

labeled as “unknown”), divided by the total number of flows in the trace. It is also known

as “completeness.”

Accuracy on covered set is the number of correctly classified flows divided by

the total number of predicted flows. That is, accuracy on covered =
∑

i TPi∑
i(TPi+FPi)

.

2.4.3 Experimental methodology

For evaluating our classifier, we split each trace into two parts. we use a fraction of

the flows for training and the other disjoint fraction for testing. For training the classifier, we

consider applications with more than 1,000 flows. We believe the number is small enough for

collecting training data and large enough for extracting good signatures. The applications

which have no enough flows (<1,000) are not included in training data, but included for

testing the classifier. In what follows, we repeat all experiments ten times and just report

the average values over all runs since the variations in different runs is very small (< 1%).

In all our experiments, we generate signatures for uni-directional flows. This allows us to

extract different signatures from the client to server interaction, as well as from the server

to the client. When we compare our classification predictions with the ground truth, we
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look at the labels we gave for both directions of the flow. If one direction was found to

be unknown, we give it the label of its reverse direction if it exists. If the labels from two

directions are different, we report the flow as unknown.

Evaluating the new application (NewApp) detection rate: With these

experiments we aim to evaluate the accuracy of our classifier in detecting novel traffic. That

is, when we classify the traffic of an application that we did not include in training, we want

its traffic to be reported as unknown. We use the following methodology. We exclude from

training one application at a time. Then, we observe how the classifier reports the flows of

the “hidden” application (i.e., the NewApp rate for that application). We summarize this

behavior by averaging the NewAppi over all the applications i in the trace.

2.4.4 Evaluating SubFlow

We evaluate the performance of our algorithm under different configurations. This

allows us to understand the trade-offs and how to select the proper configuration given the

task at hand. We used one trace to explore the different configurations and then finalize

these parameters for all the other traces in all our experiments. In the following experiments

we show that our basic configuration gives high classification performance on all five traces.

Using different configurations

Our subspace algorithm uses DBSCAN to generate the base clusters (see §2.3). The

DBSCAN algorithm has two parameters, the distance (ε) and minimum points (minPts) [45].

Since we already have ε to denote the maximum allowed distance between flows, we also
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assign the radius r of the region of interest to have the same value. Therefore, in all

our experiments r = ε. In addition, our classifier allows us to control its precisions by

excluding signature of low dimensionality. Intuitively, using only one or two features to make

a signature, increasing the probability of matching flows from other applications. We refer to

the minimum allowed dimension of a signature as minDim. In the following experiments we

study the overall accuracy of our classifier by varying ε, minPts, and minDim. We use the

Asia-3 trace to study these parameters and to select a good configuration for our classifier.

We then apply the same configuration to the remaining four traces.

In Figure 2.6 we show the accuracy, coverage, and average NewApp detection rate

when we vary the minimum dimension of used signatures (minDim) for the Asia-3 trace.

For this experiment we used minPts=10 and ε=10−4. We study the sensitivity to these

two parameters next. In Figure 2.6, we see that SubFlow achieves high accuracy on the

covered set, irrespective of the minDim value. As we expect, the coverage decreases the

stricter we want our signatures to be, but it gives good results, with above 80% predictions,

even when we use minDim of four. In this figure, we also observe a very interesting dynamic

between coverage, accuracy, and NewApp rate. The more specific the signatures (i.e., the

larger minDims is), the higher the performance will be in classifying known applications

(Accuracy) as well as identifying previously unknown traffic (NewApp). We use minDim=

4 in the remaining of the paper that gives great Accuracy and NewApp rate, and good

Coverage.

In Figure 2.7 we show the accuracy, coverage and NewApp rate when varying

the parameter ε from 1 · 10−6 to 5 · 10−4. As explained in §2.3.4, all features are Z-score
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Figure 2.6: The accuracy, coverage and average NewApp rate using different minDims
thresholds

normalized, which typically brings them in a range between -1 and 1. As we see from

Figure 2.7, SubFlow achieves very high accuracy, coverage, and NewApp detection rate using

very small distances between flows (ε). We attribute this to the good features being selected

by the subspace clustering algorithm. When all features are relevant for an application, it

allows the euclidian distance between flows to be very small. The coverage starts to decrease

if we go below 5 · 10−5, which is a remarkably tight bound. We chose our default value to

be ε = 1 · 10−4. As we show next, this value gives good results in all our traces. Finally, as

we expected, for high values of ε > 10 · 10−4, the region of interest (see r in §2.3.1) becomes

very large. This means that flows that are not very close to each other will start to be mixed

together, which results in less accurate signatures.

We observed qualitatively similar results and observation with varying the minPts

parameter as with ε so we exclude the figure for brevity. We observed values in the range

of 5 to 20 minPts to give high Coverage, Accuracy, and NewApp rate. For the remaining

of the paper, we use the following as our default configuration: minPts=10, ε=10−4,

and minDim=4.

We show the overall performance of SubFlow over all five traces using the default
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Figure 2.7: The accuracy, coverage and NewApp detection rate using different ε in Asia-3
trace

configuration in Figure 2.8. Event though we choose our parameters using the Asia-3 trace,

we see from the figure that the performance is very good over all five traces. Specifically,

we see that SubFlow achieves high accuracy (> 98%), high NewApp rate (> 97%), and

good coverage (> 75%) over traces with a diverse traffic composition. The high NewApp

rate shows that our method can successfully report traffic from applications not included in

training as unknown in all traces.
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Figure 2.8: The overall accuracy and coverage and NewApp rate for all five traces using the
default configuration

2.4.5 Applying SubFlow in practice

The main advantage of SubFlow. With SubFlow, classifier training becomes

an easier process. Training a classifier to learn a target application, say, BitTorrent (BT),

only requires flows from BT. We no longer need to have training data from the other appli-
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cations in the network. This is a great advantage of SubFlow and this is what we highlight

in this section.

As we show next, it is often easy to identify a dominant port of an application.

We can therefore collect traffic from those ports and generate a signature for different appli-

cations. In fact, this allows us to extract flow-level signatures for applications that we did

not have payload information to begin with. Such examples, include encrypted traffic on

ports: 995 (POP3S), 443 (HTTPS), and 993 (IMAP4S). Here we make the basic assump-

tion that many applications run on a set of default (well-known) ports. We observed this

to be true for traditional applications, such as HTTP, SMTP, etc. We acknowledge that for

applications that do not have a dominant port, we will not be able to extract a signature in

this way. However, even for P2P applications, it is common for some clients to use default

port numbers. In fact, using this simple approach we were able to identify a large number

of traffic from EDONKEY and BT. It is important to note here that using ports to extract

flow level signatures, is not the same as using port numbers to classify traffic. In fact, if we

only use ports to classify BT and EDONKEY traffic in the SouthA trace, we would only

get ∼10% recall. Using SubFlow in the SouthA trace, if we train on the dominant port of

EDONKEY and apply on the traffic we can actually achieve 75% recall for EDONKEY!

Deploying SubFlow in a plug-n-play fashion. When we learn signatures for

a port, we include all the traffic on that port. This includes the flows from which we have

a label given by our DPI classifier, as well as those reported as unknown. This makes our

evaluation similar to what the classifier will have to deal in practice. For all the flows for

which we have DPI labels, we use them as ground truth to evaluate our plug-n-play approach.
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For all the flows when we do not have a DPI label (i.e., encrypted traffic) we use the port

numbers as ground truth (see Figure 2.10). In more detail, we use 2,000 flows for training

and then apply the signature on the entire trace, which also includes the remaining flows

from the dominant port. We then look closely to see if our signatures match the remaining

flows on the port. In what follows, we will refer to the port numbers using the well-known

application names on those ports. We believe the process of mapping well-known ports to

applications is not hard. Moreover, network administrators can automate this process by

using information from the Web, similar with what is described in [112].
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Figure 2.9: DPI-based ground truth in the NorthA trace
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Figure 2.10: Port-based ground truth in the NorthA trace

In Figures 2.9 and 2.10, we summarize the results for the most popular ports of

the NorthA trace. We observe that the precision of these signatures is very high for all

applications. As we see, SubFlow successfully classifies BitTorrent, even though
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more than 80% of its traffic uses a random port number. With the help of SubFlow

by simply looking at the BT traffic on port 6881, we were able to identify 70% of its traffic,

with 99% precision. The fact that some legacy applications, such SMTP, have lower recall

in this trace is due to the fact that some SMTP flows use an alternative port, other than

its default at number 25. Those flows appear to have some differences compared to the

SMTP flows on port 25, which explains why our classifier was not able to successfully create

a signature for them. More interesting is the fact that our method extracts signatures for

encrypted traffic on these two popular e-mail ports for IMAPS and POP3S. As we see from

Figure 2.10 the signatures extracted from these ports have high precision and recall (> 95%).

With SubFlow we identify new applications and automatically extract

flow-level signatures. It is worth mentioning that our method with plug-n-play operation

successfully detect a new application in the NorthA trace, which our DPI classifier cannot

label. After looking into these flows, we found they are generated by smart-phones accessing

the Android marketplace. Our method was able to extract a signature for this applications

and classify its traffic with 98.1% precision and 95.8% recall, as we see in Figure 2.10.

2.4.6 Discussion and comparison

The advantage of only needing positive samples. By design, SubFlow can

profile an application relying only on its positive samples. By contrast, a two-class classifier

(see Figure 2.3) will also need negative samples to extract a signature. For example, it can

start observing positive samples for BitTorrent from the well know BitTorrent port (6881),

as we do in SubFlow. However, unlike SubFlow , the two-class classifier will also need
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negative samples from each and every of the remaining applications. Recalling the example

in Figure 2.1, even if one application is left out (not included in the negatives), it degrades

the accuracy for the classes we want to detect. Moreover, we cannot use all the flows that

are not on port 6881 as the negatives for two reasons: (a) most of the BitTorrent traffic

will not be on port 6881, which means that the “negative" samples will erroneously include

BitTorrent, which will confuse the classifier, and (b) new applications may appear. This

example illustrates that using SubFlow provides significant advantages.

Comparison with other methods. In our preliminary comparisons, multi-class

or two-class classifiers perform well (even better than SubFlow), when the training data for

positive and negative samples are well defined and known a priory. However, as we see in

Figure 2.1, these classifiers do not perform well in the presence of unknown traffic. Given that

in all the traces, up to 30% of the flows are unknown, it is a challenge to precisely evaluate

accuracy of these methods in a practical setting, where we cannot ignore the unknown traffic.

2.5 Related work

Over the last years, there have been many paper presenting different machine

learning algorithms for solving the traffic classification problem. We refer the interested

reader to a survey [92] that covers the majority of poplar techniques. In what follows, we

present the most representative supervised and semi-unsupervised ML methods proposed in

the literature.

Supervised ML algorithms include naive Bayes classifier [89, 23], nearest neigh-

bours [115], decision trees [94], logistic regression [35], neural network and support vector
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machines [65, 75]. Features are selected manually [23] or using supervised feature reduc-

tion algorithms like Correlation-Based Filter in [89], and regression techniques [35]. Such

supervised feature selection techniques inherit the same limitations as supervised learning

algorithms in handling new applications. Bonfiglio et al. [23] propose the combination use

of naive Bayes and Chi-square classifiers to detect encrypted and obfuscated Skype flows.

The method in [23] operates at the payload and not at the flow-level.

Semi-supervised algorithms explored in traffic classification include AutoClass,

Expectation Maximization (EM), K-means, DBSCAN and more [39, 122, 84, 19]. Semi-

supervised algorithms group flows into different clusters according to statistical information

without a priori information about traffic mix. As we explained, uncovering clusters in high

dimensional data is challenging because of the curse of dimensionality.

Besides machine learning based solutions, there are some approaches based on the

behavior of endhosts. BLINC [63, 120] classifies flows based on the behavior of their hosts.

The label granularity from some of these approaches [120] are coarser than ours. In addition,

host-based approaches, such as BLINC [63] do not perform well at the backbone [65]. All

the traces we used here are from backbone networks and SubFlow performed very well.

In [54], the proposed algorithm identifies traffic from known applications that try to evade

detection. The algorithm uses a graph-based solutions and does not report unknown traffic.

It therefore suffers from the same limitation as the other supervised approaches. Finally, the

novel solution proposed in [112] utilizes information from Internet to profile IP addresses.

As reported in [112], this approach gives very small recall for P2P applications. We believe

that the small number or reported P2P flows from [112] can be used for training SubFlow
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and ultimately perform better by working together and we will pursue this in the future.

Subspace clustering and one-class classification: The FIRES [67] algo-

rithm is one of the many existing subspace clustering techniques. such as, SUBCLU [57],

FIRES [67], INSCY [13]. At the same time, the problem of building a classifier using only

positive samples is not new in the data mining community. The problem is often refer to as

one-class classification, or novelty detection [49, 99, 109, 74]. We believe that how we define

the traffic classification problem here, will open the way for new research efforts to investi-

gate the effectiveness of different, subspace clustering and one-class classifiers in addressing

the problem.

2.6 Conclusion

The goal of this work is to develop an application classifier that would be relevant

in practice. As our first contribution, we identify the factors that limit the practicality of

the majority of the existing methods, especially focusing on Machine Learning techniques.

For example, we see that the introduction of BitTorrent without prior training, decreases

the accuracy of detecting MSN traffic by more than 30%. The second limiting factor is the

curse of dimensionality. Simply put, the dilemma is that each application is captured best

by different features, but if we use all these features together in a single feature space, they

are too many, and the classification performance degrades.

As our second contribution, we propose SubFlow, a different approach to applica-

tion classification leveraging the powerful subspace clustering technique. The key novelty is

that our approach learns the intrinsic statistical fingerprint of each application in isolation,
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which deviates from typical classification approaches. We show that SubFlow has a lot of

promise. We stress-test the capabilities of our approach in a series of experiments with five

different backbone traces. SubFlow performs very well with minimal manual intervention:

it identifies traffic of an application with very high accuracy, on average higher than 95%,

and can detect new applications successfully.
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Chapter 3

ReSurf: Reconstructing Web-Surfing

Activity From Network Traffic

3.1 Introduction

HTTP is the new IP in the Web 2.0 world, and traffic analysis methods need to

adapt to this new reality. First, web browsers are being widely used as the interface to a

large number of services and applications, such as Email, gaming, file sharing, and video

streaming. Second, today HTTP is the most widely used protocol, contributing up to 80%

of the traffic on some networks [70]. One implication of these trends is the limited relevance

and applicability of traditional traffic analysis and characterization tools [62, 111]. Assigning

flows to an HTTP category today conveys very limited information with regard to the usage

of websites/services and web users behaviors.

Given the above trends, it is increasingly important for network administrators to
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monitor and characterize web traffic for operational and security purposes. First, under-

standing traffic is important for managing and provisioning one’s network. Second, such

capabilities are important for security, since more and more modern malware spreads via

websites and botnet command & control channels utilize HTTP. Overall, the more infor-

mation administrators have about the traffic, the more effectively they can manage the

network, identify anomalies and prevent attacks. At the same time, extracting information

from network traffic is needed by regulators who aim to protect the rights of the consumers

and allow a healthy competition between content providers and between ISPs. In addition,

analyzing web traffic is important for researchers who want to study modern websites and

their evolution [53, 25].

The overarching problem we address in this paper is the following. Given web traffic

collected at a network link, we want to be able to look “under the hood" and reconstruct the

user behaviors. Here is a list of motivating questions: (a) What websites (e.g., google.com,

cnn.com) are explicitly requested by a user as opposed to being accessed automatically by

his browser in the background? (b) How much traffic is generated by each request? and (c)

What are the typical web surfing user patterns and the typical referral relationships across

websites? We want to answer these questions starting from raw network traffic, such as a

tcpdump trace, or web-proxy records.

Making the problem more specific, we can identify two sub-tasks: (a) group to-

gether HTTP requests generated by a single user request, such as a click, and associate

them with the primary website requested by the user; and (b) reconstruct the click-through

stream, i.e., the referral relationship between user requests, to identify whether a user’s re-
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Figure 3.1: An example of a click-through stream with three user requests

quest to a website is from a hyperlink clicked on an earlier website or from within the same

website. Figure 3.1 illustrates the above concepts. Understanding web traffic at both the

user request and click-through levels provides insights into the user’s web-surfing activity.

The problem of understanding web-surfing activity from network traffic has been

studied before in [102, 53, 18], but not to the extent we do here. Schneider et al. [102] focus

on reconstructing the browsing activity in social networking websites by using specialized

features. The primary goal of those studies is to understand user behaviors in social net-

working websites and not to provide a generic methodology for reconstructing web-surfing

activity from different sites. Closest to our work is the StreamStructure methodology pro-

posed in [53], which utilizes the web analytics beacons generated by tracking services. By

relying on tracking services, their approach can identify websites that do send beacons, which

on average decreases the coverage by 40% (see Figure 3.5). We extensively compare ReSurf

with StreamStructure in Section 3.3 and discuss related work in more detail in Section 3.5.

In this paper, we make two main contributions:

(A) ReSurf: reconstructing web-surfing activity. We develop a systematic

method to reconstruct user requests and their relationship in click-through streams. First,

we create a graph that represents the referral relationships between HTTP requests. Second,
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we identify the HTTP requests that are generated explicitly by the user, such as clicking on

a link or typing a URL in a browser’s address bar. Finally, we reconstruct the user request

by grouping “subordinate" HTTP requests that are generated due to other requests, such

as the acquisition of a video, an image or a web advertisement.

(B) Extensive measurements and validation. Our experiments with real

data traces and our validation with both real and synthesized data provide the following

highlights: (i) ReSurf can reconstruct web-surfing accurately. We show that our approach

can identify and reconstruct user requests with more than 95% precision and 91% recall on

all our traces, while we highlights the limitations of the state-of-the-art methods that rely

on web analytics beacons [53]; (ii) Web users are continuously being exposed to advertising

and tracking services. We observed in our traces that 50-60% of user requests (i.g., clicks)

trigger an interaction to a tracking or advertising service. In fact, we observed that the

chance of a user triggering such as service after just three user requests is close to 90%;

(iii) Click-through streams are surprisingly “shallow", as the median number of websites in

a click-through stream is one or two, and only 5% of the click-through streams have more

than three websites.

This chapter is structured as follows: In Section 3.2, we present the problem,

provide the necessary background, and describe our data sets. In Section 3.3, we explain

ReSurf, and evaluate its classification performance. The observations extracted from data

traces are presented in Section 3.4. Finally, we discuss related work in Section 3.5.
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3.2 Terminology, problem definition, and datasets

We present the necessary background, previous work, and the web traffic traces

used in our study.

Terminology: We use the term user request (UR) to describe a single user

action, such as clicking on a hyperlink, visiting a page from one’s bookmarks, or submitting

a web-form, which includes a search engine query. Figure 3.1 depicts three user requests

represented by big gray boxes: one to Google homepage, a Google query, and one to CNN,

via clicking a hyperlink returned by the query. A user request generates one main HTTP

request, which we refer to as the head HTTP request indicated by the colored octagons

in the figure, and it usually accesses an HTML or XML file. In practice, the head HTTP

request will often generate more HTTP requests that acquire different web-objects, such

as images, videos, or javascripts. We call these subsequent requests embedded HTTP

requests, which happen without the user explicitly requesting them. In the example, we

indicate these requests as white boxes (i.e. google.com/logos.png). Note that embedded

HTTP requests can obtain objects from different websites, such as ad servers and content

distribution networks (CDNs). We use the term primary website to indicate the website

requested by the head HTTP request, which also represents the website that the user intends

to visit.

A click-through stream (CTS) is a series of consecutive user requests, where the

later user requests in the stream are follow-ups of the earlier user requests ones. Figure 3.1

shows an example of a click-through stream with three user requests, as we discussed above.

The Google query, which is the second user request, would not have been possible without
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the user having visited Google first, in the first user request. Subsequently, the third user

request is generated by the user’s clicking on the returned results of the Google query.

Problem definition: Given web traffic collected at a network link (think HTTP

packet headers), we want to reconstruct the web-surfing behavior. We want to identify head

HTTP requests, and correctly group their associated embedded requests. Simply put, in

our example in Figure 3.1, we want to identify the “grey boxes". Once we do this correctly,

we can identify which websites users visit explicitly and how much traffic is generated by

each visit.

When analyzing web traffic, we have to work with information available in the

HTTP requests and responses. In Figure 3.2 we give an example of only three HTTP

requests generated by a visit to cnn.com. Following the above terminology, the first HTTP

request is the head request to the primary webpage (i.e., cnn.com) and the other two are

embedded HTTP requests. For each HTTP request, the domain name of the web server is

located in the Host field of the HTTP header. Even though all three requests are triggered

by the visit to cnn.com, in this example, only one has www.cnn.com as the host name. From

this example, we see that by looking at HTTP headers in isolation, it is hard to track which

visits they originated from.

An important piece of information is the referrer field in an HTTP header (vis-

ible in Figure 3.2). This field shows which previous HTTP request triggered the current

HTTP request. Moving back to the graph of Figure 3.1, in “user request 1” the request for

google.com/logo.png has google.com in its referrer field. In the same example, when a user

visits cnn.com by clicking a link in the Google search results, the referrer field of the resulting
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HTTP request indicates the Google search result page as the origin. In Section 3.3, we show

how we can carefully combine the HTTP requests as a graph and use it to identify head

HTTP requests.

Challenges: Correctly attributing individual HTTP requests to a user request

and to the primary website is quite complex. First, when looking at HTTP transactions

in isolation, it is hard to know which website the user intentionally visits. In our traces, if

we use the host field in HTTP headers to identify the primary website, it results in only

20-40% accuracy. We can see this from Figure 3.2 where only one of the three requests has

the intended website (www.cnn.com) as the host name. Second, users often browse multiple

websites at the same time, which causes flows and HTTP requests to intermingle. Modern

web pages are fairly complex [25]; rendering a single page may generate tens of HTTP

requests towards different web servers. In Figure 3.1, for clarity, we keep only a subset of

web objects. In reality, even within few minutes the size of the referrer graph reaches several

hundreds of nodes. In our traces, the median size of the referrer graph over a ten minute

interval is 200 nodes for an IP address. Third, many websites, such as CDNs, web-ad servers,

and web analytics services are used by many websites and shared across several services.

Data sets: The web traffic traces used in our study are summarized in Table 4.1.

Our traces cover several thousands of millions HTTP requests over long periods of time.

They include an ISP link trace, two university traces of different sizes, a mobile traffic trace

and a synthesized trace in a control enviroment. We collected traces in both controlled and

uncontrolled environments, which allows us to both examine user browsing activities in the

wild as well as verify the correctness of our methodology. The users in our traces are also
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Figure 3.2: A simplified example of HTTP request headers issued by a browser during a
visit to cnn.com.

diverse: researchers in a university lab, residential ADSL users, students and academic staff

from a large university campus, as well as mobile device (smartphone and tablet) users.

This allows us to compare the browsing patterns between different users. Details regarding

the exact locations and the names of the providers for all our traces are intentionally kept

anonymized due to privacy concerns.

We use the same traffic collection methodology for all the traces and capture all

the IP packets on TCP ports 80, 8000 and 8080 in both directions. More details can be

found below.

LAB: We collected this traffic trace from a research lab in a university in the

US. In the lab, there are about 15 graduate students and 20 laptops/desktops. The collec-

tion duration spanned six non-consecutive months over the period of December 2010 until

September 2011.

ISP-1: The trace was collected from an edge link of a European residential ISP.

We were given access to only the first five packets of each unidirectional TCP flow.

MOB: We collected this trace from from a 3G/4G mobile service provider in the

US. The vast majority of the traffic is generated by the mobile devices, such as smart-phones

and tablets.

CAM: The CAM trace was collected from a university campus in China, con-
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taining the browsing activities of about 28.2K users. Our monitor device sits on the edge

gateway connecting the campus to the public Internet. All download and upload traffic from

the whole campus goes through the monitor point. Due to the amount of traffic, we did

not store raw IP packets, instead logged all important HTTP header fields for all HTTP

transactions. Specifically, the fields includes: timestamp of each request, client/server IPs,

URL, referrer, content-type, content-length, HTTP response code and user-agents. To pre-

serve privacy, client IPs are anonymized. We applied our method to several different days

of traffic. The trends extracted from different days of traffic are very similar. So we only

show the results for one weekday in the paper.

SYN: The trace was generated in a controlled environment for the purpose of

evaluating ReSurf. We generated the traffic by replaying nine volunteers’ Google Chrome

browsing history. We first extracted the timestamp, referrer and URL field of each visit from

their browsing history. Then, to establish the ground truth, we replayed each visit using

the following procedure. We instructed Google Chrome to open each URL in isolation. At

the same time, we collected all the traffic on TCP port 80, 443, 8000 and 8080 using a

packet capturing software (tcpdump). After 60 seconds, we closed the browser and saved

the captured HTTP traffic to an individual file. To emulate how the traffic would be if it

came directly from the user’s surfing activity, we carefully adjusted the time stamps and

referrer fields of HTTP traffic according to Chrome’s browsing history. After replaying all

visits, we merge all these individual files to form a complete traffic trace. Since each visit

was collected and stored separately, we effectivity have the ground truth for each HTTP

request in the trace.
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Name CAM LAB ISP-1 MOB SYN
Starting date Mar 9 2012 Oct 3 2010 Aug 25 2011 Jan 7 2011 Aug 11 2011

Duration 2 mon 6 mon 24 h 3 h 1 mon
# of HTTP transactions 19B 1.2 M 1.7 M 22.9 M 186K

# of Clients (IPs) 28.2K 21 359 3,521 9
Ground truth available No No No No Yes

Payload HTTP header Full Full Full Full

Users
Students & staff Graduate students Residential Smartphone/tablet

-
in an university in a CS lab users users in 3G networks

Table 3.1: An overview of the web traffic traces used in our study.

3.3 The ReSurf approach

Here, we present the ReSurf methodology, evaluate and compare it with existing

solutions. Finally, we discuss the practical issues and limitations of our method.

A. The ReSurf Methodology. The goal of ReSurf is to group HTTP requests

into user requests (see definition in Section 3.2). Our approach works in two steps. First,

we identify the head HTTP requests by using different features from each HTTP request.

These features include: the size of the web-object, the type of the object, the timing between

successive requests, and others. Second, we use the referral relationships (see definition in

Section 3.2) to assign all the embedded HTTP requests to their corresponding head request.

We explain the methodology step by step below.

Step 1. We form the HTTP referrer graph. We represent the HTTP requests

from the same client IP address as a referrer graph. ReSurf builds such a graph for each

IP address over a period of time (e.g., every ten minutes). An example of such a graph is

shown in Figure 3.1, with the exception that we don’t know which HTTP requests are in

which user requests (i.e. shown as grey boxes), until we use our method. We provide a very

high level description of this graph creation. For generating the graph, we use the referer
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field from each HTTP request to identify the previous request that triggered the request

to the current website (as indicated by the host field). We generate a directed graph that

captures these referral relationships and we enrich it with edge weights that represent the

time difference between the two requests. Figure 3.1 shows an example of the HTTP referrer

graph of a user accessing google.com and cnn.com. The nodes in the HTTP referrer graph

are web-objects annotated with their complete URL. The directed edges capture the referral

relationship between nodes where a directed edge from A to B means A is B’s referrer.

In practice, the construction of the referrer graph hides many subtleties. First,

character case, URL encoding and the presence or absence of trailing slashes are very com-

mon in HTTP headers. For the ease of string matching between referrer and URL, we unify

character case, unquote URL encoding and strip all trailing slashes. Second, HTTP redirec-

tion (HTTP status code 302) complicates the construction of the referrer graph. We remove

302 HTTP redirections by combining the endpoints of the HTTP redirection in referrer

graph into a new super node. Third, some web objects may have empty referrers. From

our experiments, we learn there are two major reasons for such cases. (a) A Flash player

plugin in Firefox has a well-known bug that does not append the referrer while requesting

flash objects. (b) For some objects whose URL are dynamically generated by javascripts,

the referrer fields in their HTTP requests are empty. Parsing the javascript file can prove

useful for identifying the referrer, but only if payload is available. Without using payload,

there are two possible solutions for handling these HTTP requests with empty referrer. The

conservative one is to simply label them as unknown. The aggressive one is to attach these

to their closest HTTP requests. In this paper, we use the conservative strategy and opt for
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precision.

Step 2. We identify all the head HTTP request candidates. ReSurf selects

head request candidates according to the following rules:

(a) The candidate should be an HTML/XML object.

(b) Since most modern web-pages are fairly complex, the size of candidates should

be larger than V bytes and candidates also should have at least K embedded objects.

(c) The time gap between candidates and their referrers should be larger than a

threshold T . The reason is that head requests are usually further away from their referrers

in time since they are initiated by users. By contrast, embedded requests are very close to

their referrers because they are automatically initiated by browsers.

Step 3. We finalize the identification of the head requests. We utilize

the referral relationship between the head request candidates. Specifically, a candidate is

classified as a head request if its referrer is also a head request or if it has no referrer.

In the referrer graph, nodes with no referrers have no incoming edges. In Figure 3.1, the

google.com/ in “User Request 1” is an example of such a node with no referrer. Such nodes

are formed when a user, say, opens a web pages from a browser bookmark or by directly

typing the URL in the browser. If the referrer is not empty, it means the user navigated to

a web page by following the links from a previous web page. This implies that the referrer

of a head request should also be a head request.

Step 4. We assign embedded HTTP requests to head requests. ReSurf

associates embedded HTTP requests to head requests by utilizing the timing information

and referral relationship in the referrer graph. In fact, once we know the head request of a
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user requests, it is easy to attribute the rest of HTTP requests to user requests. For each

HTTP transaction (node), we traverse the referrer graph backwards until we reach a head

request. If an HTTP transaction (node) has more than one incoming edges, we follow the

edge with the smallest time difference (i.e., smaller weight on the edge). In this way, the

path will eventually lead back to the head request that was triggered by the user request.

If a node has no referrer and is not a head request, it is labeled “unknown.”

Below we will show that ReSurf outperforms the current state-of-the-art [53], and

provides high classification precision and recall.

B. Evaluation. We use the standard classification metrics of precision and recall.

Precision is the number of true positives (TP) divided by number of TP and false positives

(FP), P=TP/(TP+FP ). Recall is the number of TP divided by the number of TP and

false negatives, R=TP/(TP+FN). We also use the F1 score which is the harmonic mean

of P and R, specifically, F1 = 2×P×R
P+R .

To evaluate the performance of ReSurf, we ask the following complementary but

slightly different questions.

Q.1: How accurately can ReSurf identify head HTTP requests? We want

to quantify how effectively ReSurf identifies the head requests from a large set of requests.

Given that the number of head requests is usually much less than the total number of

requests, this question allows us to focus only on head requests. For example, if out of 100

requests one is a head and the others are embedded, if a classifiers reports all the requests

as embedded its precision is 99%, but would offer limited utility in solving our problem. For

this reason, we report the P and R on head requests separately.
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Q.2: How accurately can ReSurf classify head and embedded requests?

We want to quantify how effectively our approach classifies each HTTP requests as a head or

an embedded HTTP request. Unlike Q.1, we report results over all HTTP requests and not

only over the head requests. That is, precision represents the number of correctly classified

HTTP requests compared to the total number of HTTP requests classified by our algorithm.

Note that ReSurf may leave some requests unlabeled (a.k.a unknown). Recall expresses the

total number of classified HTTP requests compared to the total number of existing HTTP

requests in the trace.

Q.3: How accurately can ReSurf associate HTTP requests to their cor-

responding user request? This is a more demanding question than the classification for

Q.1 and Q.2: we want to associate each HTTP request with the generating user request.

This is a multi-class classification problem, where each user request is a separate class.

For example, if an embedded HTTP request R is correctly identified as embedded, but

it is associated with the wrong user request, we will consider it a misclassification. The

precision captures the number of correctly classified HTTP requests compared to the to-

tal number of HTTP requests classified. The recall reports the correctly classified HTTP

requests compared by the total number of HTTP requests in the trace.

We use the following values for the parameters in ReSurf: T=0.5 seconds, V =3000

bytes and K=2 embedded objects. We justify this selection later in this section.

A key issue in evaluating any classifier is how to determine the ground truth in the

datasets. To address this challenge, we use two different approaches: (a) using a synthesized

trace SYN, and (b) using the labels from a classifier that is based on web analytics beacons.
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(a) Validation using ground truth from the SYN trace. In SYN trace,

at each point in time we knew exactly which website was being visited, and what requests

were generated by the visits to those websites. Details regarding the generation of the SYN

trace are given in Section 3.2. Figure 3.3 shows the precision, recall and F1 score when we

apply ReSurf on the SYN trace, for all three questions, Q1-Q3. As we see, all metrics are

above 90%, showing that ReSurf can successfully identify the originating website for the

vast majority of HTTP requests. Moreover, we see that the precision of ReSurf is very high,

96% and above, implying high confidence in our classification of requests.
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Figure 3.3: The precision, recall and F1 score in the SYN trace.
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(b) Validation using web analytics beacons as ground truth. For the

CAM, LAB, ISP-1 and MOB traces, we do not have the ground truth. Therefore, we
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evaluate ReSurf based on the predictions given by the StreamStructure [53] method. This

method is based on the observation that many websites use web analytics beacons to track

their web pages and objects. Intuitively, the web analytics beacons report to the analyt-

ics server which page is visited. And this helps us detect which is the head request and

towards which primary website. We consider web analytics beacons from three major ser-

vices: google-analytics.com, pixel.quantserve.com and yieldmanager.com.

Here, we give a more detailed explanation of the beacon method (i.e., StreamStruc-

ture), using the google-analytics beacon as an example. Once the object or web page tracked

by google-analytics is requested, a beacon is generated based on the requested object’s URI

and sent to a google-analytics server in the form of “special” HTTP GET request. Unlike

regular HTTP GET requests, beacons’ URIs encode the URI of the tracked object/page.

Therefore, after some careful parsing of beacon’s URI, we can identify the primary website

of the user request. We refer the reader to [53] for more details about StreamStructure.

As we will discuss later in this section, StreamStructure can be used for only a

fraction of the requests, since only a small percentage of requests use beacons. However,

this set of requests can help us determine the effectiveness of ReSurf providing an additional

ground truth set. To achieve this, we first use beacons to identify as many head requests

as possible. We refer to this set of identified head requests as S. Then, we compare how

well ReSurf performs over the known set S. Figure 3.4 shows the precision, recall and F1

for head detection (Q.1) using beacons as ground truth. We observe that ReSurf achieves

above 96% precision in all traces and 91-98% recall. The results show that our approach

performs consistently well across all the datasets, which are collected in different continents
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and during different time periods. Note that we only use web analytics beacons here to

establish the ground truth, but ReSurf does not use beacon information during its

classification process.

Using web-analytic beacons is not enough. A natural question is why we

don’t just use web analytics beacons exclusively for user request reconstruction. Even though

the use of beacons gives good results for those websites that use them, we discuss one of

identified limitations here. The majority of user requests (∼80%) do not have a

beacon in our data traces. In all our traces, we find that less than 21% of the user

requests that were found by ReSurf have beacons. Given the precision and recall of ReSurf

in the controlled dataset SYN, we are confident that this percentage is reasonably accurate

estimate of requests in the other traces. To further verify this, we used the SYN trace,

for which we have the ground truth, and observe that only 23.9% of them carry a beacon.

In the ALE trace, the ratio of user requests with beacons is roughly 60%. However, note

that ALE does not represent surfing patterns from real-users, and only covers the popular

website homepages as reported by Alexa. To summarize, we observed that beacons can only

successfully identify approximately 21% of the user requests, compared to above 91% we

achieve with ReSurf.

Figure 3.5 shows the recall for detecting head requests in the SYN and ALE traces

using StreamStructure and ReSurf. As we see, with StreamStructure the recall is 22% and

60% for the SYN and ALE traces, respectively. The higher recall in the ALE trace is due to

the higher popularity of web analytics by very popular websites. By contrast, ReSurf works

consistently well in both traces with recall above 92%. Unfortunately, for the CAM, LAB,
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ISP-1 and MOB traces, we cannot repeat the same experiment since we do not have ground

truth. Overall, we observed that ReSurf identifies double the number of head requests in

these traces compared to StreamStructure.

Using StreamStructure and ReSurf on the same trace results in different result. In

Figure 3.6 we plot the distribution of user requests to the top websites for the CAM trace.

We see that the reduced number of identified requests by StreamStructure leads to different

results. For instance, the top website with ReSurf corresponds to 18% of all user requests,

whereas the same value for StreamStructure is 8%.
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trace.

Evaluating ReSurf over a different range of parameters. We examine the

effect of different parameters on the performance of ReSurf. We only show the plots for Q.1
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for brevity; the performance for all questions is qualitatively the same. We use the SYN

trace to set our parameters and then apply them to the rest of the traces.

Figure 3.7 shows the F1 metric for detecting head requests (Q.1) using different

values for the volume V and the out-degree K over the SYN trace. We observe that the

precision increases and the recall decreases as we increase the value of V . Intuitively, large

html/xml files are more likely to be the primary web-site of an actual user request com-

pared to shorter ones. Short html/xml files typically carry advertising related content and

are triggered by embedded requests. At the same time, by further increasing V , we start

considering only very large html/xml files as head requests, which results to lower recall.

As we see from Figure 3.7, the combined behavior or P and R captured by the F1 score,

exhibits good performance for V in the range of 3000 to 5000 bytes. To achieve both good

precision and recall, we choose V =3000. In the same figure, different lines show how the F1

score changes when the out-degree K varies from 1 to 5. We find that the values 2 and 3

gave the best results, with K=2 performing slightly better in the range of parameter V.
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Figure 3.7: The F1 score of detecting head requests (Q.1) with different parameters.

Regarding T , we found that our approach exhibits good performance as long as T
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is less than 1 second and more than 0.1 second. The results are not shown due to space

limitations. In the rest of paper, we use these setting: T=0.5 seconds, V =3000 bytes and

K=2 embedded objects. Finally, our observation interval for generating the referrer graphs

and performing our classification is 10 minutes. We experimented with different intervals

in the range of few seconds up to 30 minutes and we observe better results and faster

computations with windows in the range of 5 to 15 minutes.

C. Discussion. What about encrypted web traffic? ReSurf uses information from

the HTTP header, therefore, if the web traffic is encrypted (e.g., using HTTPS) our approach

cannot classify those flows. However, by analyzing our real-word traces (see Table 4.1), we

observed that the encrypted traffic only amounts for 2% to 8% of the total web traffic.

Unencrypted web traffic is the norm today and we believe it will continue to amount for a

significant portion of the traffic in the future. The analysis of encrypted web traffic remains

an interesting, open problem.

How is ReSurf affected by users behind network address translation (NAT)? Having

users behind NATs is very similar to having users with very high activity. Since referrer

graphs are built per IP, NAT users will appear as one “heavy user” with a complex referrer

graph, for user accesses within the same time windows. There are two cases here: If different

NAT users browse completely different websites, their referrer graphs will not be connected

and ReSurf will distinguish different requests. On the contrary, in the worst case where two

users request the same web page at the same time, ReSurf will combine them as one large

request. However, it will still be able to attribute their traffic to the originating website.

Finally, there may be cases where some embedded requests are “multiplexed” between more
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than one user request and disambiguating is hard; however, we have not observed that to be

a problem in our study. Note that our goal is twofold: i) Group HTTP requests to identify

the initial user requested page, and ii) identify the user click-through stream. Hence, having

users behind NATs does not affect the first goal, while the second is impacted if users follow

the same stream of pages at the same time.

Can ReSurf classify traffic in real-time? We have not applied and tested ReSurf

in real-time classification. From the offline experiments with our current implementation,

ReSurf can classify ten minutes of one thousand users’ HTTP traffic in 5-8 minutes. However,

Step 1 requires the collection of traffic for several minutes before ReSurf can analyze the

referrer graph and classify the requests. Therefore, ReSurf can only classify requests a few

minutes after their creation. As mentioned earlier, off-line analysis of web traffic is useful to

operators that want to understand how their network is being used, as well as for researches

that want to study modern trends and changes in web activity. Real-time classification can

be important to network operators that want to enforce different policies and achieving this

requirement is left as future work.

3.4 Using ReSurf on web traffic

We now use ReSurf to group HTTP requests into user requests and analyze how

users behave in our four web traffic traces. We focus on three main directions:
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3.4.1 The popularity of websites in terms of user requests

As expected, in all our traffic traces we observed that some websites are more

popular than others. Figure 3.8 shows the cumulative share of user requests, bytes, and

flows for the top websites in the CAM trace. We observe that the byte-curve is more

skewed compared to the others, with the traffic to the top website (115.com, an online

file sharing website) accounting for 40% of the total traffic in bytes. The corresponding

cumulative share of flows and user requests for this top site is lower at 16% and 17% respec-
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Figure 3.10: The top website transitions for the CAM trace.

tively. In our traces, we found the flow and user request rankings to be similar; which is also

supported by how close the two curves are together in Figure 3.8. That is, the top websites

in terms of flows are usually the websites that have the most user requests and vice versa.

Intuitively, the more user requests a website receives, the more flows will be generated.

We also observed the traffic volume of a website depends on the content it dis-

tributes. That is, the top websites in terms of bytes usually are multimedia streaming

websites, such as youtube.com, and sites featuring adult-content video. On the other hand,

the top websites in terms of user requests and flows correspond to social networking and

search sites, such as facebook.com, baidu.com, and google.com. To give an example of

how different the byte ranking and user request ranking for different website are, in the

CAM trace 115.com ranks the first in terms of bytes and 16th in terms of user requests. It

covers a remarkable 40% of the byte volume and only 2% of the number of user requests.

Our observations suggest the existence of two categories of websites in terms of the traffic
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they generate: (a) high traffic volume sites, and (b) high flow/user request sites.

3.4.2 The click-through streams and web browsing patterns

In Figure 3.9 we show the distribution of the number of websites traversed in a

single click-through stream (CTS). The definition of CTS is given in Section 3.2. Here we

assume that a CTS ends after an inactivity period of 30 minutes 1. Surprisingly, the vast

majority of CTSs span only up to two different websites. In fact, the percentage of CTSs

with more than three websites is less than 5% in all our traces. These observations suggest

a browsing behavior that is “focused” on a particular task. For example, the user starts

with a particular goal in mind, searches for something on a popular search engine, and stops

when he clicks on the correct link that takes them to that website they are looking for. This

behavior is further supported by the most popular external referrals shown in Figure 3.10.

Our measurements show that “referrer” websites are usually web portals, search engines, and

social networking, while “referred-to” websites are content providers, like news sites, online

video, and information sites (e.g., wikipedia).

Mobile traffic: Finally, we want to highlight that the “focused” browsing is more

prevalent in mobile traffic where we see in Figure 3.9 that 98% of CTSs have a maximum

length of two. We believe this is due the fact that the lower bandwidth available to these

users deters them from initiating long browsing sessions that span over multiple sites.

1We experimented with inactivity periods of 5-60 minutes and we observe similar results.
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3.4.3 The exposure of users to advertising and tracking services

Our goal is to determine the percentage of user requests in our traces that involve:

(i) advertising (ad) services, (ii) tracking services (i.e., web analytics beacons), or (iii) either

an ad or a beacon. We summarize the results of this study in Figure 3.11, where we show

the percentage of user requests to web pages that have at least one ad or trigger at least

one analytic beacon to a tracking site. In order to identify popular ad services we use

the popular keywords and patterns compiled by open source Ad-blocking software [3]. To

identify beacons, we use the approach described earlier in Section 4.3. From Figure 3.11,

we see that 18-36% of all user requests, depending on the trace, involve tracking services,

40-50% of them directly access at least one ad, and 50-60% access either a beacon or an ad.

This suggests that more than half of the user requests (e.g., clicks) in the web traffic involve

some form of advertisement or tracking!

We take this study one step further and try to understand the probability of a

user encountering ads, beacons and either as a function of the number of user requests (e.g.,

clicks) that he makes. For this experiment, we treat each distinct IP address as a single user

and use ReSurf to create a sequence of consecutive user requests for each IP. In the CAM

trace, IT regulations enforce that no NAT is being used, which increases our confidence

about IPs used by a single user at any time. Then, we randomly select X consecutive

user requests from all IPs and caculate the probability of them containing at least one ad,

beacon, and either. We summarize these results for the CAM trace in Figure 3.12. We

see that, the probability of encountering an online ad or beacon after three clicks is close

to 90%! We repeated the same experiment for the other traces and observed very similar
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trends even for our mobile trace. We also want to stress the fact that Figure 3.11 represents

user requests from all users (IPs) grouped together, whereas Figure 3.12 focuses on what

happens to different users.
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Figure 3.12: The probability of encountering at least one beacon, ad, and either in every X
consecutive user requests in the CAM trace.

3.4.4 Inter-page time

Web users in the mobile trace spend 3X more time on pages compared to the

ones on the wireline traces. Click-through streams can be used to estimate how much time

people “stay” on a web page. We define inter-page time as the time difference between

two consecutive user requests in click-through streams. Therefore, the last user request of
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click-through stream does not have inter-page time. Inter-page roughly approximates the

time a user spends on a page. In Figure 3.13, we present the CDF of inter-page time in

different traces. The median of page staying time for wireline traces (CAM, LAB and ISP-1)

and MOB mobile trace are about 14s and 45s, respectively. One possible reason for this

difference is that surfing on smartphones takes much longer because of the more limited

bandwidth in 3G networks. Another contributing reason could be the smaller screen size on

smartphones which necessitates scrolling.
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Figure 3.13: The inter-page time in different traces

3.5 Related work

The recent growth of network services provided over HTTP has been attracting

the interest of the research community. Labovitz et al. [70] brought to light the fact that

most inter-domain traffic is HTTP. Schatzman et al. [100] present a methodology to identify

web-based mail servers, and distinguishing between services, such as Gmail and Yahoo mail.

Erman et al. [42] analyze traffic from residential users and find that a significant part of
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HTTP traffic is generated by hand-held devices and home appliances, while a large fraction

is machine generated (e.g., OS/Anti-virus updates, ads). Li et al. [73] present methods to

identify the type of the object transferred over HTTP (e.g., video, xml, jpeg). The recent

work from Schneider et al. [101] characterize the inconsistencies between observed HTTP

traffic and what is advertised in its HTTP header. Bermudez et al. [18] understand the

tangle between the content, content providers, and content hosts based on DNS traffic. All

this previous work try to understand HTTP traffic from different perspectives, but they do

not focus on the reconstruction of web-surfing at the user request level from HTTP traffic

as we do here.

Regarding the problem of reconstructing web-surfing activity, existing work usually

fall into one of four categories. In the first category, people assumes that any HTTP request

for an HTML object is the head HTTP request of a user request [14]. The second category

of methodologies are based on the timing information of HTTP requests: if the idle time

between two HTTP requests is smaller than a predefined threshold, they belong to the same

user request [81, 108]. Both methods were effective in the early days of the web, but are no

longer due to the complexity of modern WWW. The third category is based on web analytics

beacons. A representative example is StreamStructure in [53]. To understand the evolution

of modern web traffic and web-pages, Ihm et al. proposed a web analytics beacon based

method to detect “primary" web pages requested by users from web proxy server logs. A key

limitation of StreamStructure is its dependence on web analytics beacons, which seem to

form the basis of their reconstruction algorithm without which accuracy drops significantly.

Recall that as high as 80% of user requests may not contain any analytics beacons (see
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Figure 3.5). The last category relies on the patterns in the requested URI. E.g., Schneider

et al. [102] proprosed to reconstruct user requests (user actions) in several online social

networking sites by matching previously compiled patterns with URI. This kind of method

is customized for target websites and hard to be generalized because of various website

architectures.

The click-through streams are also studied in the previous work. To understand

the behavior of searching the Web, Kammenhuber et al. in [59] extract issued search term,

search results returned from Google and the subsequent clicks on results from network

traffic traces. The reconstructed sequences of clicks after the query is used for profiling

users’ prevalent search patterns. Schneider et al. [102] extract click streams within online

social networks from HTTP traffic to characterize the interaction between users and social

network websites. However, both studies characterize user browsing behaviors on a specific

kind of websites. Instead, our study shows user browsing behaviors in general.

Web analytics beacon is pervasive in modern web pages [83]. Krishnamurthy et

al. [69, 68] study the privacy issues arising from the wide use of web analytics beacons in

web pages. Ihm et al. in [53] show web analytics beacon can be used to detect pages and

understand modern traffic.

3.6 Conclusion

Network traffic has been increasingly dominated by web traffic and HTTP protocol

has become the most prevalent means for applications to provide their services. In this paper,

we framed and addressed a relatively novel problem: reconstructing web-surfing behavior
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from web traffic. The problem is far from trivial given the complex and interconnected

websites of today. We made two key contributions. The first is developping a systematic

approach ReSurf which can reconstruct user requests with more than 95% precision and

91% recall. As our second contribution, we showcase interesting results that one can obtain

from raw network traffic using ReSurf. We observed that web users are continuously being

exposed to advertising and tracking services and that in our traces 50-60% of user requests

(think clicks) interacts with tracking or advertising services. Another surprising result is

the “shallowness" of the click-through stream of users accessing websites. The the majority

of streams have the maximum length of two. This behavior suggests a more focused usage

of the web, where users have a specific goal in mind and are less likely to click on links

that take them to irrelevant websites. In conclusion, we believe that ReSurf represents an

enabling capability for ISPs, network administrators, and researchers that want to model

and understand how users surf the web.
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Chapter 4

Scanner Hunter: Understanding

HTTP Scanning Traffic

4.1 Introduction

HTTP scanning is a fascinating and lesser known activity that aims to discover

the security weaknesses of websites and can be seen as a first and exploratory step that may

enable subsequent website infiltration. In HTTP scanning, malicious entities probe a website

for particular resources that are promising for exploits and may be found in very specific

places on the websites. These resources can be files with security-sensitive information and

web interfaces for authorized users such as phpmyadmin.php as shown in Figure 4.1. The

amount of requests sent by scanners is small compared to the traffic the websites received

because they only probe for very specific files, therefore detecting them is a needle-in-the-

haystack problem. At the same time, the risk that scanners pose is high. For an example,
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an intrusion attempt that seems to have been enabled by scanning is carried out by the

hacktivist group NullCrew, which broke into a Department of Homeland Security website

after identifying files that should have been invisible to the general public [32].

/news.asp

HTTP 
Scanner

/register.php

/article.html

/phpmyadmin.php

Web 
Users

Figure 4.1: Visualization of an HTTP scanner among legitimate users.

The motivation for our work is the little attention that the problem has received

so far and the ever-increasing importance of website security. First, there is currently no

existing solution for this problem. Second, scanning is a first exploratory step towards

compromising a website. Third, having a clear understanding of scanning behaviors could

help administrators secure their websites and provide assistance during forensics analysis.

Fourth, understanding what scanners are looking for can reveal what are the preferred

vulnerabilities. Finally, understanding the spatiotemporal dynamics of these scanners can

provide insights on ecosystem that enables them.

The main focus of this work is detecting and understanding the behavior of HTTP

scanners. Given web traffic logs, the desired output is a list of IPs that potentially engaged

in HTTP scanning activities. Naturally, the goal is detect all scanners with minimal false
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alarms. This is a challenging problem for the following reasons: (a) scanners usually generate

few requests, (b) it is not easy to distinguish between a scanner and a normal web user, and

(c) the number of scanners is significantly smaller than the number of legitimate users,

leading to a needle in the haystack problem. We substantiate all these claims in later

sections.

Surprisingly, this problem has attracted very little attention from the research

community. In fact, ours is arguably the first work focusing on this problem. At the same

time, we want to make clear that we what we do is different from identifying: (a) web

crawlers, whose goal is to crawl and map out the entire website, (b) network-level scanners

such as IP or port scanners, (c) web application penetration attempts, which is the step

following a scan that successfully discovers security vulnerabilities, and (d) compromised

botnet nodes inside one’s network. In section 4.5, we provide a more in-depth discussion of

earlier work in these areas, and how they differ from the problem at hand.

In this paper, we present Scanner Hunter, arguably the most effective method to

detect HTTP scanners, and study scanners and their behavior over six months. The key

novelty of Scanner Hunter is that it is a graph-based approach that overcomes the needle-in-

the-haystack problem by zeroing on the collective actions of scanners, who search for similar

resources. In addition, we provide an extensive study of HTTP scanning activities over a

six-month period to understand their scanning patters and their spatiotemporal behavior.

We use real web-logs collected from a University campus from March 2012 to September

2012 with over 1.9 billion HTTP requests from 12.8 million external IPs.

Note that, to enable further research in this novel direction, we will share our data,
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appropriately anonymized, for research purposes at the time of publication.

1. Scanner Hunter detects scanners with 96.5% precision. Our approach

identifies malicious communities of IPs in an appropriately constructed bipartite graph that

captures the interactions between two sets of entities: the likely malicious IPs and the

resources1 they have requested. Using a soft co-clustering technique, our approach identifies

groups of IPs and finally uses a labeling step to separate groups that engage in scanning from

those of benign users. The use of clustering techniques on the graph makes the detection

more accurate: scanning behaviors are easier to recognize in a group than in individual IPs,

especially when scanners are often stealthy. As a proof of concept, we conducted experiments

with simple heuristics and standard Machine Learning techniques and observe that they only

achieved 19.1% and 54.3% precision respectively, compared to 96.5% for Scanner Hunter.

Even though a False positive rate of 3-4% may seem high, we want to stress that detecting

scanners from millions of users at such a high precision is not trivial. We will provide more

details about the experiments in Section 4.3.

2. HTTP scanning is widespread: 4,000 scanners per week for a medium-

sized University network. We conducted an extensive study on scanning activities for

a period of six months to understand: (a) their spatial and temporal properties, (b) their

mechanisms and the effort to evade detection, and (c) what they are looking for. We highlight

the most interesting observations.

a. Intensity: Roughly 4,000 unique IPs scan the websites hosted by the University

1A resource in this context is a file of any type and the full path leading to it. For an example,

/phpmyadmin/scripts/inc.php
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every week. At the same time, 80% of the IPs that appear every week have never been seen

before.

b. Spatial distribution: Scanners are diversely placed across the IP space, which

suggests that the IP prefix-based blocking of scanning activities would require a large and

fine-grained filter set.

c. Complacency: Scanners are not concerned about getting caught. For example,

more than one third of the scanners used an unusual User-Agent in their requests and this

User-Agent is mozilla/4.0.

d. Categories of scanners: We identify four major categories of scanners based

on the resources they look for: (i) user registration and login pages, (ii) website management

interfaces, (iii) pages with potential vulnerabilities that may allow activities like remote code

execution, and (iv) compressed web archives such as wwwroot.zip, which are the products

of website backup activities and should not be publicly visible.

The remainder of the chapter is organized as follows. In Section 4.2, we present

background information and the methodology behind Scanner Hunter. In Section 4.3, we

detail our datasets and the experiments we performed on the datasets to evaluate the per-

formance of Scanner Hunter. In Section 4.4, we provide our extensive study of scanners’

behaviors. We provide a brief overview of what work has been done in the general area of

vulnerability scanning and how they differ from our work in Section 4.5. We conclude with

Section 4.6.
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4.2 Methodology

In this section, we first provide some definitions and background and then present

our method, Scanner Hunter.

4.2.1 Definitions and background

An HTTP request is usually either a POST or GET request. A POST request sends

information to the target website (e.g. filling an online form) and a GET request retrieves

information from the website. When a remote web server receives a HTTP request, the server

will process it and return a response along with a response code that indicates whether the

request succeeded.

A failed HTTP request is indicated by response code 40X, where X is a single-

digit number. For instance, the response code 404 indicates that the resource does not exist

and 403 says that the server is refusing to return the requested resource [47]. Here, we refer

to requests that trigger a response with code 40X as failed HTTP requests, and the others,

successful HTTP requests.

A User-Agent is a string contained in the User-Agent field of an HTTP request

that provides some description about the application that generates the request. A typical

value is the name of a web browser.

The resource requested by an HTTP request (example.com/inc/login.php?user=

admin) usually has four separate components: a domain name (example.com), a direc-

tory name (/inc/) that contains the file sought by an HTTP request, the name of the file

(login.php), and a set of parameters (user=admin) that may alter the server’s response.
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We define a Re-Path, which stands for Resource-Path to be the portion of an URL that

contains both the directory path and the name of the file. For example, the Re-Path in the

example is /inc/login.php.

Although we have already defined HTTP scanners, here we want to highlight

some interesting behaviors that we will exploit in detecting them. Note that these behaviors

on their own are not sufficient without the additional techniques of our method, which we

will describe in the next section. Recall that scanners explore a website in a targeted fashion

and their probing is a preparation for a subsequent exploitation. The behavior of scanners

exhibits the following characteristics: 1) they search blindly for resources of interest and

so many of their HTTP requests will fail, and 2) they do not request or even download

embedded objects that could not easily lead to exploits like jpg images.

Benign crawlers are automated programs chiefly used by search engines to index

the Web. They are different from HTTP scanners in that:

• They only follow existing links instead of actively searching for resources that may or

may not exist.

• They state what they are in the User-Agent field (e.g. Googlebot, Yahoo! Slurp, etc).

• The IP of the machine running the crawler program is usually registered by the com-

pany it belongs to. More specifically, the name obtained through a reverse-DNS query

would match what is shown by the User-Agent.

• They would (optionally) request the robots.txt file from the website that contains

instructions as to where they’re allowed to crawl.
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A stealthy crawler is similar to a benign crawler in behavior except that it

customizes its User-Agent field to make it look like their HTTP requests come from a regular

web browser. There already exists work devoted to the detection of stealthy crawlers [55],

and it is not a focus for our work.

4.2.2 Methodology

To identify HTTP scanners, there are four main steps as described in Figure 4.2

in Scanner Hunter methodology. Scanner Hunter executes them as follows.

Web traffic log

Successful 
HTTP

Other
Failed HTTP

Failed HTTP 
by Crawlers

(2) Constructing Bipartite Graph

（3）Clustering Bipartite Graph

（4）Labeling Bipartite Clusters

(1) Preprocessing traffic log

Figure 4.2: The main operations in Scanner Hunter

• Preprocessing : Scanner Hunter processes the web traffic logs to filter out requests

unlikely to be from HTTP scanners.
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• Bipartite graph construction : Scanner Hunter captures the suspicious HTTP re-

quests in a bipartite graph where one set of vertices correspond to IPs and the other

to the Re-Paths they requested.

• Co-clustering : Scanner Hunter uses a soft co-clustering algorithm to group the IPs

into communities where IPs in the same community have similar behaviors.

• Community labeling : Scanner Hunter inspects each community output from previ-

ous step and label each of them as a community of users or scanners.

We now describe the working and rationale of each step in detail. At the end,

we will also explain why each step is necessary for achieving high precision in identifying

scanners.

1. Preprocessing: Given the input in the form of web traffic logs, which may be

collected by passively monitoring HTTP traffic or collected from web server logs (like Apache

log files), Scanner Hunter reads in all HTTP requests from the logs and separate them into

three different categories: successful HTTP requests, failed HTTP requests generated by

web crawlers, and other failed HTTP requests. As their names suggest, the first category

contains only successful HTTP requests, the second failed HTTP requests generated by

known and benign web crawlers, and the third all other failed HTTP requests.

There are several reasons for including this step. First, popular websites receive

an extremely high number of HTTP requests each day and processing all of them would

consume a lot of time and resources. Second, we have seen from manual inspection, that

most scanners are very aggressive in probing for vulnerabilities, and they produce a large
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number of failed requests as we also mentioned earlier.

In addition, we need to filter out failed requests that may come from benign

crawlers, because they may generate them in the process of following all possible links

whether they may be broken or not. Furthermore, the same crawlers may frequently re-

check the web pages they have indexed before even after those same web pages have been

removed. To ensure that Scanner Hunter does not confuse the behaviors of benign crawlers

with those of scanners, we first attempt to detect the presence of well known and benign

web crawlers in the data according to the properties we mentioned in Section 4.2.1. We

consider an IP to be a benign crawler if:

1. The User-Agent fields of its requests indicate that the application that generated the

requests is a benign crawler (Googlebot, Yahoo! Slurp, etc.) and the IP has requested

the file robots.txt.

2. The information collected from reverse-DNS lookup of the IP indicates that the IP

belongs to the organizations that User-Agent claims it is. For example, if an IP

advertises itself as a Googlebot and does indeed come from an IP prefix owned by

Google according to the reverse-DNS lookup, we consider it as a benign web crawler.

2. Bipartite graph construction: In this step, Scanner Hunter constructs a

weighted undirected bipartite graph G = 〈I, P,E〉 where I is the set of IPs that produced

the failed HTTP requests, P the set of Re-Paths that the IPs requested unsuccessfully, and

E the set of edges. An edge e ∈ E between IP i ∈ I and Re-Path p ∈ P if and only if IP

i requested the Re-Path p but failed to access it during the monitoring interval. Figure 4.3
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Figure 4.3: An example of bipartite graph

shows an example of such bipartite graph.

We associate weights to the edges of the graph in order to capture their interactions

in more detail. We consider three approaches for defining edge weights:

(i) Uniform weight for all edges. In this case, the weight of each edge e between IP i and

Re-Path p, w(e), would be 1.

(ii) The weight of the edge e is the number of times that i requested p (request count).

(iii) Same as (ii), but we normalize the weight of each edge connected to p by dividing

its request count by the sum of all request counts of all the edges connected to p.

More precisely, if {e1, e2, ..., ek} are the edges incident to p and {n1, n2, ..., nk} are the

respective request counts, w(ej) =
nj∑
j nj

The intuition behind weight function (iii) is that we want to minimize the impor-

tance of any path p that is too popular by decreasing the weight between p and any IP i that

requested it. This can account for the cases where a popular website becomes unavailable.

Our experiments show that weight functions (i) and (ii) achieved comparable pre-

cision, which is higher than that of (iii). That fact that (iii) did not perform better than
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the other two is surprising and counter-intuitive, but upon further inspection, we noticed

that the probability of a popular website in our data being unavailable is relatively low,

though non-zero. We adopted (i) because of its simplicity. Furthermore, the community

structure, which we discuss below, in the bipartite graph seems sufficient for detection and

the frequency of request does not seem to encode any information.

3. Co-clustering: Given the bipartite graph G generated in the previous step,

Scanner Hunter uses a soft clustering algorithm to partition G into a set of communities

C = {c1, c2, ... cn}. We adapted and used an algorithm inspired by Phantom [64], which

we tailored to our problem. Each community ci is a bipartite subgraph of the original G.

Therefore, ci = 〈Ii, Pi, Ei〉 where Ii is the set of all IPs in ci, Pi the set of all Re-Paths

in ci, and Ei the set of all edges exclusively between Ii and Pi. We expect the output

communities (used interchangeably with bipartite subgraphs from now on) from the soft

clustering algorithm to have the following properties:

• The IPs (Ii) in each community are well-connected to each other through the Re-Paths

(Pi) they requested.

• The soft-clustering approach may put an IP in more than one community because the

IP may request many different Re-Paths.

The input to our adapted co-clustering algorithm is the bipartite graph G, rep-

resented by a weighted adjacency matrix M . In the beginning, the algorithm considers

the graph as a single community that consists of all of the IPs and Re-Paths. For each

community c:
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1. The algorithm leverages a Singular Value Decomposition (SVD) technique to figure

out how to best “cut” c into two child communities ca and cb so that a vertex in ca

will be more strongly connected to the other vertices in ca than with those in cb.

2. The algorithm computes the cohesiveness value of each of the two child communities.

The cohesiveness of a child community indicates how well separated it is from its

sibling.

Given a child community ca and its sibling cb, let γ(ca) and γ(cb) be the cohesiveness

of ca and cb respectively, and they are calculated as follows. If Ec is the set of edges

contained in the initial community c and Eca the set of all edges contained in ca,

γ(ca) =
|Eca |

|Ec|
.

3. Let Tγ be a predefined threshold for the cohesiveness value that dictates when Scanner

Hunter would stop dividing communities. More specifically, if γ(ca) ≥ Tγ and γ(cb) ≥

Tγ , the algorithm will retain both ca and cb and proceed to check if each of them can

be divided further into smaller communities. Otherwise, the community c will not be

divided further.

4. The algorithm stops when there is no community that can be subdivided further.

The curious reader can consult [64, 28] for details.

4. Community labeling: Even legitimate users may form communities in a

bipartite graph because some popular web pages or embedded objects may become unavail-

able by accident. For this reason, in this step, Scanner Hunter inspects each community

individually and employs a heuristic to determine whether the community are of benign
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IPs or HTTP scanners. To this end, we carefully studied the scanners’ activities to find

potentially useful metrics. After many experiments, we narrowed down to two metrics that

gave high precision: average HTTP failure ratio and average embedded objects ra-

tio. The two metrics in combination capture the behavior of the scanners sufficiently for

our algorithm to achieve high precision. Even though legitimate users may produce failed

requests, their failure ratio is usually low. Moreover, scanners tend to not download embed-

ded objects such as images or video and instead focus more on resources like php, asp, and

mdb (database) files, which are more likely to be exploited.

We now define the average failure ratio and average embedded object ratio of a

community c to capture the difference between communities of scanners and legitimate users.

• For IP address i, let Ti is its number of requests, and Fi its number of failed requests.

Its failure ratio, FR(i), is given by: FR(i) = Fi

Ti

• Let Ni be the number of requests that IP i made for non-HTML document type

resources (for example, images, javascript objects, etc.), the embedded-object ratio for

i is: ER(i) = Ni

Ti

• The average failure ratio and the average embedded-object ratio of all IPs in a com-

munity c are respectively:

FR(c) =
1

|c|

∑

i∈c

FR(i), ER(c) =
1

|c|

∑

i∈c

ER(i)

If there exists a community c where FR(c) > TFR and ER(c) < TER, Scanner

Hunter will label c as a community of HTTP scanners. All IPs in these community are

considered as HTTP scanners. This heuristic is successful in excluding communities that
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may be formed by many IPs requesting misplaced resources. We will explain the rationale

behind this heuristic in the following section.

We also would like to stress that both co-clustering and labeling are integral to

the performance of Scanner Hunter because i) inspecting individual IPs and relying on the

IPs’ failed requests alone will generate a high amount of False Positives (which we will show

in Section 4.3 and ii) blindly labeling each community after co-clustering will also lead to

mislabeling benign IPs as scanners, as we have explained in Step 4 of Scanner Hunter.

4.3 Performance and evaluation

Web 
Servers

HTTP 
Scanners

Web 
Users

Monitoring Point

Figure 4.4: The setup of web traffic log collection

In this section, we present: the dataset we used for our study, how we select

the proper values for parameters in Scanner Hunter, and how evaluate the performance of

Scanner Hunter in terms of Precision and the number of detected HTTP scanners.
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4.3.1 Dataset

Our real-world dataset consists of 28 weeks of Web traffic collected from a Uni-

versity campus network. The setup of data collection is shown in Figure 4.4. Our data

collection tool was deployed at the only edge gateway router connecting the University to

the Internet, which all incoming and outgoing Web traffic passes through. Note that we

are only focusing on incoming HTTP requests, e.g. requests towards websites internal to

the University, and their associated responses. For each IP packet on TCP ports 80, 8000,

and 8080 of the University’s servers, the tool performs Deep-Packet Inspection (DPI) to

tell whether it is a HTTP request or response. If so, it logs the following important fields

for each HTTP transaction: timestamp, client IP, server IP, URL, referrer, content-type,

content-length, response code and User-Agent.

In Table 4.1, we provide the statistics of the entire dataset, which contains 1.9

billion of HTTP transactions from 12.8 million external IPs to about 1096 different internal

websites. In this paper, we define a website by the two top-level domain names of its host

name. For instance, we count a.c.com and b.c.com as the same website. The websites in

our dataset are hosted by the University and most of them are online forums powered by

Bulletin Board Systems (BBS) and department websites.

We also present a number of weekly averages because we apply Scanner Hunter

on the weekly partitions rather than the full dataset. We will discuss the motivation for

partitioning data into weeks in the next section.

Metrics: We use two metrics to measure Scanner Hunter’s performance: Precision

and the total number of labeled scanners. Given the numbers of True Positive (TP), False
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Metric
HTTP Failed HTTP

Websites
External IPs with Web crawler

requests requests IPs failure(s) IPs
Per week 70.6M 7.5M 1029 929.6K 409.8K 10119

All 1976.8M 210.2M 1096 12.8M 805.6K 57408

Table 4.1: The web traffic traces used in our study

Positive (FP), the Precision rate, which is the fraction of IPs we label as scanners that are

in fact scanners, is calculated as follows: P =
TP

TP + FP
.

Validation. Given that we do not have the ground-truth in our dataset, we use

sampling and manual verification to assess the accuracy of identification. We manually

assess if each IP is an HTTP scanner or not based on all its HTTP transactions during

the monitoring interval. Specifically, we consider its User-Agent, the Re-Paths it asked for,

its failure ratio, its embedded-object ratio, the referrers for each of its requests, and the

HTTP response codes that it received when the requests themselves failed. We are very

conservative in our manual verification and only label those IPs with very obvious scanning

activities as scanners.

To evaluate the precision, we randomly select 300 IPs from labeled scanners by

Scanner Hunter, then manually verify them as described before, and label an IP as a True

Positive, if it clearly exhibited the characteristics of an HTTP scanner. Otherwise, we count

it as a False Positive.

4.3.2 Parameter selection

a. Cohesiveness threshold Tγ : The soft co-clustering algorithm has the cohe-

siveness threshold Tγ as its sole parameter. To recap, the cohesiveness threshold determines
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Figure 4.5: The total number and average size of non-trivial communities with varied
cohesiveness.

when the algorithm should stop subdividing a community. As Figure 4.5 shows, the lower

the value of cohesiveness, the co-clustering algorithm creates more smaller but more strongly

connected non-trivial communities. A non-trivial community is one in which there is more

than one IP and one Re-Path. Essentially, lower cohesiveness value leads to the creation

of communities in which the IPs are more similar in behaviors because they have requested

similar resources.
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Figure 4.6: Precision and the number of IPs labeled as scanners with varied cohesiveness

To determine the right threshold value, we conducted an experiment where we

varied Tγ and tried to assess the performance of Scanner Hunter on the training partion

d. For each value of Tγ shown in Figure 4.6, we can see that when we set the value of Tγ

85



to 0.975, we achieve a good balance between precision and the total number of labeled

scanners. This is the value that we use in the rest of this paper.

b. Embedded and failure ratios: Once we have the communities, Scanner

Hunter performs its labeling step. To recap, given a community ci in the set of all com-

munities C, the community’s failure ratio is FR(ci) and ER(ci) its embedded-object ratio.

Let TFR and TER be thresholds such that if FR(ci) > TFR and ER(ci) < TER, we label c

as a community of HTTP scanners and ci as a community of users otherwise. We will show

below the process that helps us decide the values for TER and TFR.

We first picked one weekly partition of our data as a training dataset, henceforth

referred to as d, and ran Scanner Hunter’s clustering step on d with a cohesiveness value of

0.975. Given the set of communities C = {c1, c2, ..., cn} produced by this step, we represent

each ci as a pair of coordinates (xi, yi) where xi = FR(ci) and yi = ER(ci) and plot the set

C as a heat map as shown in Figure 4.7.
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Figure 4.7: TFR and TER of communities generated by a cohesiveness value of 0.975

Recall that an HTTP scanner tends to have a higher failure ratio and a lower
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embedded-object ratio than a legitimate user because the scanner does not know exactly

where the vulnerable resources reside and does not want to waste bandwidth downloading

objects it does not need. This observation, in turns, implies that the communities located

in the lower right quadrant of the heat map in Figure 4.7 would be the most suspicious.

We begin with the community with highest failure ratio and lowest embedded-

object ratio and set TFR and TER to this community’s values, in essence defining a rectan-

gular area limited by the lines y = TER, x = TFR, x = 1.0, and y = 0. We then manually

inspected each community inside this area to judge whether each IP in that community is an

HTTP scanner before we expanded the area by increasing TER and decreasing TFR. What

we observed in this process is that by setting TER around 0.5 and TFR around 0.5, Scanner

Hunter achieved a reasonable balance between the number of correctly identified scanners

and the number of mislabeled legitimate users. For simplicity’s sake, we set TER = 0.5 and

TFR = 0.5.

We also repeated this process with different values of cohesiveness and came to the

same conclusion each time: with 0.5 and 0.5 as the values for TER and TFR respectively,

Scanner Hunter achieves a high level of accuracy.

4.3.3 False positives

We wanted to further investigate why our approach misclassifies some IPs as HTTP

scanners. Our manual verification process helped in this investigation. 89% of all misclassi-

fied IPs belong to stealthy crawlers masquerading as regular users. Upon manual inspection,

these IPs downloaded very few embedded objects when they crawled a small number of pages,
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some of which happen to be unavailable due to broken links. The resultant high failure ratio

and low embedded-object ratio confused our algorithm.

xyz.com/tmp.php

web page w2

embedded
object

abc.com/index.asp

web page w1

o

Monitoring
Device

User User User

1

2

Figure 4.8: The reason for False Positives

The remaining 11% of the False positives are legitimate users. The reason Scanner

Hunter identifies them as scanners can be summarized in Figure 4.8. Let’s say that there

exists a web page w1 at the URL abc.com/index.html and there is an embedded object

o on w that is hosted by website w2 at the URL xyz.com/tmp.php, where our monitoring

tool is placed. In the case that w1 is very popular and o is suddenly unavailable, all of the

requests intended for o will consequently fail.

Because our monitoring point is at w2, it would appear as if a large number of

users are requesting a non-existing resource because our monitoring tool is not aware of w1.

As a result, Scanner Hunter will group the IPs requesting o into a community in which the
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failure ratio and embedded-object ratio exceed the predefined thresholds. All of the IPs in

this community will then be labeled as HTTP scanners. This is the reason why Scanner

Hunter mislabeled that very small percentage of benign IPs in our dataset.

4.3.4 Measuring the precision

We used one week’s data to establish the values of the three parameters of our

Scanner Hunter, namely cohesiveness threshold Tγ , embedded-object ratio threshold TER,

and failure ratio TFR.

Scanner Hunter detects scanners with 96.5% on average. We assess the

performance of our approach on five other weekly data partitions in Figure 4.9 (top flat red

line). On average, the precision of Scanner Hunter is 96.5%. This is a success, given that

there are nearly one million external IPs in each weekly data partition. We validated these

Precision rates in through sampling and manual inspection, using the same process as in

the training set.

Figure 4.9 (lower jagged blue line) shows the total number of IPs labeled as scanners

by Scanner Hunter for each of the weekly partitions. Note that the sharp drop in identified

scanners on the 8th weekly partition is an artifact of the data collection: for three days out

of seven of the 8th week, there web-records were lost.

4.3.5 Baseline approaches

In this section, we discuss two baseline approaches: simple heuristic and machine-

learning algorithm. Both of these methods develop profiles and compare IPs in isolation, in
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Figure 4.9: Precision of and the total number of detected HTTP scanners in different weeks

contrast to our graph-based approach.

First, the simple heuristic decides if an IP is a scanner only based on its failure

and embedded-object ratios. Second, the machine-learning (ML) approach uses the HTTP

requests of scanners labeled by Scanner Hunter as training data for future classification. Note

that we are not aware of any other method to obtain a large training set. We introduce

both approaches in order to provide some insight into the difficulty of the problem Scanner

Hunter was designed to solve.

Both the simple heuristic and the ML approach perform poorly (19.1%

and 54.3% respectively), roughly half of that of Scanner Hunter. We attribute this to

the use of communities that helps create more robust profiles compared to profiles per IP

address.

1. Simple heuristic: The simple heuristic determines if an IP i is an HTTP

scanner or not based on the two metrics: FR(i) and ER(i). Specifically, if FR(i) > TFR

and ER(i) < TER, then i is labeled as a scanner. Recall that Scanner Hunter determines

whether a community is one of HTTP scanners based on the community’s failure ratio FR

and embedded-object ratio ER. Here we use the same thresholds, that is, TFR = 0.5 and
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TER = 0.5.

For evaluating the simple heuristic, we randomly selected a weekly data partition

Di and applied the heuristic on it. We obtained the Precision rates in the same way that

we described in Section 4.2.

2. Machine-learning algorithms: From the machine leaning software collection

WEKA [116], we selected three commonly used algorithms: Support Vector Machine (SVM),

K-Nearest Neighbors (K = 1, 3, 5), and Decision Trees.

Features. For each algorithm, we consider a total of 15 features: failure ratio,

embedded-object ratio, suspicious referrer ratio, the number of and the ratio of requested

non-existing Re-Path, the maximum, average, and minimum size of connected component

in the referrer graph, the maximum number of consecutive failed HTTP requests, the Inter-

Arrival Time (IAT) between two consecutive failed requests, and the number of retries after

a failure. Using WEKA’s feature elimination capability, we narrowed the set of 15 features

down to a total of 9: failure ratio, embedded-object ratio, suspicious referrer ratio, the ratio

of requested non-existing Re-Paths, the maximum size of connected component in referrer

graph, the maximum number of consecutive failed HTTP requests, the IAT between two

consecutive failed requests, and the number of retries after a failure.

To evaluate the ML algorithms, we picked two consecutive weekly data partitions

Di and Di+1, the former for training and the latter for testing. We first applied Scanner

Hunter on Di to obtain a list of n potential scanners and selected also n IPs determined to

be benign by Scanner Hunter; we call this first set M and the second B. We then used the

HTTP requests produced by each of the IP in both sets to train the ML algorithms, which
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Figure 4.10: The precision of Scanner Hunter and the baseline approaches.

were then used to classify the IPs in the data partition Di+1.

Note that the IPs in set M do not include all the IPs labeled as scanners by Scanner

Hunter in Di. We have to exclude some IPs from Scanner Hunter’s results because the ML

algorithms require that there are enough HTTP requests produced by each IP (in this case,

at least 5) to be effective. Each of the IPs in M then had at least 5 HTTP requests associated

with them.

From our experiments, three ML algorithms achieved comparable performances.

The Decision Tree algorithms (more specifically “Adtree”) in fact produced the highest pre-

cision rate. From this point forward, we will use the generic term “ML learning” algorithm

to refer to Decision Trees in our performance comparisons.

We can see from Figure 4.10 (left) that the precision rates for the simple heuristic

and ML approaches are only 19.1% and 54.3%, respectively. This once again underscores

an important observation we have provided earlier in the paper: that scanners and users
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themselves are diverse in their behaviors suggests that simple approaches that focuses only on

an individual classification target are not sufficient and shows the need for a more advanced,

graph-based solution.

4.3.6 Discussion

Why we partitioned the data into weeks. Since the University that provides

us with data is only a campus of medium size, it is of limited visibility to the outside world.

Although we could have split the data into daily partitions instead, the amount of scanner

traffic each day would be small and therefore there would be limited information available

to the co-clustering algorithm, which is a very important component to Scanner Hunter.

Without enough HTTP requests, there would be more scanners who would be isolated from

one another and fewer communities of them. As a result, even though Scanner Hunter would

still retain very high precision rates, the amount of scanners detected would be much lower.

If a network administrator wants to use Scanner Hunter, we would advise them to

tune the monitoring interval according to the size of their network, as a large enough one

may attract enough requests from scanners to enable a finer-grained partitioning of data.

They should also think more carefully about the trade-off between the need for the early

detection of scanners and the ability to identify more of them.

Scanner Hunter is light-weight. Scanner Hunter consumes the most time in

step 3 in methodology: co-clustering a bipartite graph into communities. However, it takes

no more than 15 minutes for Scanner Hunter to extract the community information for a

week’s worth of data on a 2Ghz, dual core desktop that has only 4GB of RAM. Scanner
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Hunter can achieve this efficiency because the preprocessing step has already filtered out

information unlikely to be related to scanners.

We assume 40X response codes from websites in case of failure for the

operation of Scanner Hunter. Even though the vast majority of websites respond with a

40X code when a request fails for some reason or other, we are aware that there are rare

cases where the websites do not follow the standard practice and would instead return other

response code. In this case, they would return a customized web page containing a message

that states reason why the request failed. Scanner Hunter can still work as expected as

long as there is proper documentations for the inconsistency in response codes. Scanner

Hunter then would take into account this information when it preprocesses the log files.

Furthermore, Scanner Hunter’s community-based approach would still work even without

standard responses from the websites in the rare cases. Because most other websites would

still respond with 40X codes, the failed requests to these websites would be visible in the

log files and Scanner Hunter would still be able to detect the community structure of the

scanners.

4.4 Profiling scanners in the wild

In this section, we present the results of the extensive study we conducted on the

behaviors of HTTP scanners in the wild. Some of the highlights from our study are as

follows: 1) scanners are positioned diversely across IP space and number of unique /24 IP

prefixes are nearly as high as the number of scanner IPs; 2) more than 90% of the returning

scanners look for new resources and at least half of the Re-Paths they requested is new;
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3) they spent little attention on disguising themselves to avoid detection in terms of User-

Agent and referrer fields in the requests; 4) there are four categories of vulnerabilities that

the scanners in our dataset are interested in.

4.4.1 Spatiotemporal properties of scanners

One of the more obvious questions that comes to mind is whether a network admin-

istrator can prevent scanning activities by blocking HTTP requests from certain IP prefixes.

The answer is that such a solution will not be very practical or efficient because of two

conclusions that we made once we have studied more closely the spatial and temporal prop-

erties of scanners: 1) the filter set will have to be large enough to cover all of the diverse

IP prefixes 2) the filters would have short life-span and will be of limited use because most

(80%) HTTP scanners, as we will show, are seen only once and never come back.

The rationale behind conclusion (1) is demonstrated by Figure 4.11, in which we

show the percentage of distinct prefixes that remain each time we remove the least octet

from the IP address. We can see that, for example, the number of distinct /16 IP prefixes

accounts for at least 60% of the total number of original IPs. Furthermore, because HTTP

scanners are as diversely placed across the IP space as users. It follows that an extremely

large and fine-grained filter set would be needed to block the scanners.

The rationale for conclusion (2) can be found in Figure 4.12, the result of the

experiment in which we kept track of each scanner labeled by Scanner Hunter and count

how many daily visits they paid to the monitored websites during one week and during the

entire six-month period. Interesting enough, no more than 20% of the scanners return to the
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Figure 4.11: The number of IP prefix of HTTP scanner IPs and web user IPs
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Figure 4.12: The total different days of scanner IPs show up in the monitoring intervals

websites hosted by the University campus in either periods. In fact, less than 5% of them

came back for a third time. This clearly indicates that no IP prefix-based, static blacklists

can keep up with the scanning activities.

What we would like to know then, given that some (20%) scanners do return to

the same websites, is whether scanners look for the same resources or different ones during

subsequent visits. To find out, we performed an experiment on the entire six-month-long

dataset as follows. Let the set S be scanner IPs that visited the monitored websites more

than twice on different days. For each s ∈ S we calculated the Average Ratio of new resources
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Figure 4.13: The ratio of new resources scanners look for when they come back

that s looks for using the following formula:

AR(s) =
1

n− 1

n
∑

i=2

|Wi \
⋃i−1

j=1Wj|

|Wi|

where

• n is the total number of daily visits that s paid to the monitored websites.

• Wi is the set of Re-Paths sought by s on the ith visit in the dataset.

•
⋃i−1

j=1Wj represents the accumulative set of every resource that s has requested up to

the (i− 1)th visit.

• The (i− 1)th and ith visits do not have to be on consecutive days.

What we discovered from the experiment is shown in Figure 4.13: for more than

90% of the returning scanners, half of what they look for each time is new. This indicates

that the scanners that do come back tend to probe for resources that they did not request

before.
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User-Agent
# of # of

requests scanners
mozilla/4.0 31.2% 860
mozilla/3.0 (compatible; indy library) 14.5% 527
mozilla/4.0 (compatible; msie 6.0; windows nt 5.1; sv1) 6.0% 276
mozilla/4.0 (compatible; msie 6.0; windows nt 5.1; sv1;) 3.8% 429
<empty> 2.5% 132
mozilla/5.0 (windows; u; windows nt 5.1; en-us; rv:1.9.2) gecko/20100115 firefox/3.6 0.8% 73
mozilla/4.0 (compatible; msie 6.0; windows nt 5.1) 0.8% 55
mozilla/5.0 (compatible; msie 9.0; windows nt 6.1; trident/5.0) 0.8% 40
ineturl:/1.0 0.5% 104
mozilla/4.0 (compatible; msie 6.0; windows nt 5.1; sv1; .net clr 2.0.50727) 0.5% 65

61.4% 2561

Table 4.2: The 10 most popular User-Agents in our dataset.

4.4.2 The tools used for HTTP scanning

Not only are we interested in identifying HTTP scanners, we also would like to

know about the existing tools that allow them to carry out the act. As it turns out, the

values of the User-Agent fields in the HTTP requests can give us an insight into the types

of applications the scanners use. To this end, we show Table 4.2, where we listed the top

10 most popular User-Agents used by the scanners identified by Scanner Hunter. Although

most of them are simpler than User-Agent strings produced by major browsers, there are

three of them that deserve the most scrutiny:

• mozilla/4.0: Even though the User-Agent string mentions mozilla, the requests with

this User-Agent string were not generated by the popular Firefox browser.

• <empty>: This simply means that the User-Agent field is empty. By default, none of

the major web browsers generate requests without a value for the User-Agent field.

• ineturl:/1.0: This User-Agent string can be found by a number of HTTP-based

applications that use a specific library. In this case, it may be possible that a number
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of malicious entities used the library to implement their scanning tools.

At the same time, we were also interested in the distribution of number of User-

Agents per scanning IP’s address, as we would like to know what how many applications

a scanner would typically use. From Figure 4.14, we can clearly see that each IP in the

90% of the IPs labeled as scanners by Scanner Hunter produced requests with exactly one

User-Agent string, indicating that they used only one application for their purpose.

There are IPs associated with more than one User-Agent string, as seen in the

same Figure. When we manually looked into the HTTP requests produced by those IPs,

we observed that a) different User-Agents showed up at different times during the day and

b) different User-Agents requested different Re-Paths. Therefore we believed that most of

them were different scanners that happened to fall under the same IPs due to the effect of

Network Address Translation (NAT).

Interestingly, however, there is a reason for us to believe that there were also

scanners that used more than one application at a time. For example, there are four IPs

located inside the Autonomous System number 50543 that are suspicious because:

• Each of the four IPs appeared on multiple blacklists [2].

• Each IP is associated the exact same two User-Agent strings.

• When we looked more deeply into their HTTP requests, we see that their behaviors

are very similar. For example, suspicious IP s1 sent two set of HTTP requests, each

with a different User-Agent string. Moreover, the requests are close in time and the

two User-Agent strings almost always appeared in a specific order.
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Figure 4.14: The number of User-Agent per scanner IP

Given the above facts, we came to the conclusion that there is a strong likelihood

each of those IPs used two applications for malicious purposes: one application to probe for

the existence of vulnerable resources and the other to analyze the resources that the first

application actually discovered. Even more interesting is the fact that the same two User-

Agents could be seen with each of the 4 IPs: xpymep.exe and mozilla /4.0 (compatible;

msie 6.0; windows 98; win 9x 4.90). According to [4], xpymep.exe is the name of a

binary that is considered unsafe to download.

One natural question that can be asked is whether a network administrator can

block scanning activities using the values of the User-Agent fields in the HTTP requests.

The answer is no because of two reasons: 1) the False Positive rate would be high and 2)

even though such a solution may mitigate scanning activities in the short term, it would not

be effective in the long run due to how trivial it is to change the value of the User-Agent

field. After all, scanners leave their User-Agent strings as-is possibly because of the little

attention the problem has received. Once the scanners realize that the User-Agent strings

may be a liability, we believe they would spend more effort on disguising the User-Agent

more carefully.
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4.4.3 The complacency of scanners

We have seen from the previous section that scanners do not spend too much time

disguising their User-Agents, neither do they try to obfuscate the values of their referrer

fields.

Figure 4.15 shows a big difference in terms of referrers between the requests gen-

erated by users and scanners: 90% of the times, the referrer field of a scanner’s request is

empty versus 10% for a user.

Recall that a request usually has nothing for their referrer field when a user types

the URL directly into the URL bar of their browser or clicks on a bookmark. However,

there are many embedded objects on a web page, so the referrer field in every request to an

embedded object will be the URL of the original page. This is the reason why only a small

percentage of legitimate requests have empty referrer fields.

This is not the case with scanners because a) the pages they requested do not exist

most of the times and therefore there were no subsequent requests for embedded objects b)

even if the pages existed, the scanners tend to only request the pages without downloading

the embedded objects. Also noteworthy is the fact that in about 5% of the HTTP requests

generated by scanners, the referrer field and the URL field are identical.

One surprise that came up during our study is that a small percentage of requests

by scanners contain the names of popular search engines in their referrer fields as seen in

Figure 4.15. When we inspected these referrer URLs more closely, we realized that they all

contained search operators [6] like allinurl or allinfile. The search operators, when

coupled with specific keywords that give a clue as to what vulnerabilities the scanners are
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Figure 4.15: The popular referrers of HTTP requests sent by scanners

looking for, form query filters (for example allinurl:admin/wp-login.php) that can be

used to fine-tune the results returned by search engines. The inquisitive readers can visit

[1], a database that documents popular query filters used by hackers to find vulnerable

resources.

We believe the search engines appeared in the referrers of scanners’ requests because

they took advantage of popular search engines to find vulnerable resources more efficiently.

Since the search engines already indexed web pages on the Internet, scanners can use the

search operators to 1) quickly and accurately locate vulnerable resources and 2) avoid the

brute-force scanning of websites, which may take too much time and leave the evidence of

their scanning in the logs.

4.4.4 What scanners look for

In this section, we present our findings regarding the resources that a scanner may

be most interested in because armed with this knowledge, network administrators can gain a

better understanding of the scanners’ motivations and better secure their networks. For this

purpose, we collected all the Re-Paths requested by the IPs labeled as scanners by Scanner
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Group # IPs # Re-Paths File types URL patterns Description

1 913 337
asp(58.3%) reg.asp, user_reg.aspx

User registration and login pages
php (36.7%) bbs/reg.php, login.asp

2 664 1143 asp (91.2%) *member/index_do.php Unclear

3 569 11273 rar/zip/7z (94.7%) *wwwroot.zip Backup files

4 433 9098 php (87.1%) {include | data | plus}/*.php Unclear

5 203 4836 asp (99.8%) wp-{admin | login | comments
| trackback}*.php

wordpress-related vulnerabilities

6 126 689 php (94.7%)
wp-content/*/thumb.php Vulnerabilities that may allow

remote code execution [8]wp-content/*/timthumb.php

7 112 401 php (100.0%) */demo/index.php Demo versions of web services,
which may be more vulnerable than
actual services

8 88 638 asp (88.3%) *admin* Admin-related pages

9 59 123 asp/aspx (87.2%) */{fckeditor | ewebeditor |
htmledit}/*

Some websites allow the change of
their contents through certain editor
interfaces, and it is these interfaces
that the scanners searched for

10 58 139 php (90.6%) *{phpmyadmin | sql}* Control panels for backend
databases

Table 4.3: The top 10 largest group of HTTP scanners and their targets

Hunter for the entire 6-month duration of our full dataset, extract their file types, and

ranked them according to their popularity in Figure 4.16.

We can see that three types of files dominate the list and account for 97% of

the requests: php, asp/aspx, and rar/zip/7z. The most probable explanation would be

that php and asp/aspx scripts are the least secured with respect to access permissions or

more likely to contain exploitable vulnerabilities. The rar/zip/7z are compressed archives

that, in the context of web server management, tend to be files used for backup or storing

outdated data and, if left unsecured, would provide information that could enable future

exploitations.

Because knowing the popular file types scanners look for is not enough to figure

out their purposes for doing the scanning in the first place, we proceed to look more closely

into the rest of the Re-Paths they requested in our data set. To achieve this goal, we merge
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Figure 4.16: The popular file types of resource requested by HTTP scanners

scanner communities into categories based on the similarity in their request Re-Paths. More

precisely, we perform the following actions on each of the communities labeled as scanners

by Scanner Hunter:

1. Extract all Re-Paths from the community and remove all non-alphanumeric characters

from each of the Re-Paths.

2. Convert each processed Re-Path into a set of trigrams. A trigram in this case is any

sequence of three consecutive characters. Once the trigrams have been extracted, the

community is represented by the set of unique trigrams.

Given the set of communities C = {ci}, 1 ≤ i ≤ |C|, let ti be the trigram set

representation for each ci. We then compute the Jaccard similarity measurement between

every possible pair: J(ci, cj) =
|ti∩tj |
|ti∪tj |

. We then:

1. Pick the pair of communities with the largest similarity value and, if this similarity is

more than a threshold TJ , we merge them to form a new community.

2. Calculate the similarity measurement between the new community with all old ones.
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3. Repeat the above two steps until the largest similarity between any two communities

is less than TJ .

We experimented with different values for the Jaccard similarity threshold TJ and

found out TJ = 0.3 works reasonably well. Table 4.3 shows the top 10 biggest groups (out

of 42) that remain once the merging concludes. The first column contains the ranks of the

groups according to the number of unique IPs, the second the number of scanning IPs in

each group, the third the number of unique Re-Paths found in each group, the fourth the

most dominant file types as well as the percentage of the Re-Paths with these file types, the

fifth a brief description for the observed patterns in each group’s Re-Paths, and the final

column some explanations regarding the vulnerabilities the scanners were aiming for.

Note that there may be other grouping schemes that can be used at this stage, but

we adopted this approach because it is simple and the groups it produced are cohesive in

ways that we will soon provide an explanation for.

The following are the key take-aways from our close inspection of the final groups.

1. Individual groups are homogenous in terms of User-Agents and file

types even though we only merged communities based on the trigrams in their Re-Paths.

In fact, for each group, the most dominant User-Agent often accounts for at least 90% of the

scanner IPs and the most popular file type appears in at least 87% of the Re-Paths except

for Group number 1.

This observed homogeneity within groups shows our grouping scheme works well

for the purpose of discovering popular categories of vulnerabilities the scanners are interested

in.
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2. There are four major categories of resources the scanners want to find

on the websites hosted by the University campus. They are as follows.

(i) Public login and registration pages for regular users. Related group(s): 1.

(ii) Control panels exclusive to administrators. For example, web interfaces for

website management and interactions with backend databases. Related group(s): 5, 8, 9,

10.

(iii) Vulnerable pages, which may allow intrusion through remote code execution,

cross-site scripting, or SQL injection. Related group(s): 6.

(iv) Backup files that may contain sensitive information for exploits. Related

group(s): 3.

These categories pose very high risk. If the scanners can successfully exploit them,

they can seriously compromise the security of the websites. For example, the scanners in

Group number 6 were primarily concerned with exploiting a known vulnerability in Word-

press [8] that would allow remote execution of malicious code.

There are some groups whose intents are not obvious to us, for example group

numbers 2, 4, and 7, so we did not list them in any of the above categories.

3. Backup files are a major target of scanners. It is surprising how aggres-

sive (11,273 Re-Paths for 569 IPs) they are in Group number 3 of the table in the way they

tend to have more unique Re-Paths per IP than other groups.

4. Toward a systematic categorization of scanner intents. With the help

of this grouping scheme, we are able to uncover the top 10 major vulnerability categories

from the web traffic of the University campus. This represents another contribution of our
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work. Using Scanner Hunter and the grouping scheme, network administrators would be

well-informed about the most popular vulnerabilities that a scanner would be looking for. In

that case, the administrator would be able to secure the vulnerable resources if they existed

in the network.

4.5 Related work

To the best of our knowledge, there exists no work that provides a solution to

the specific problem of HTTP scanners. The most recent work in an related area is that of

Jacob et. al. [55], who provided an approach to detect stealthy crawlers that, unlike scanners,

perform no malicious acts but may try to collect information from websites whether or not

the owners want them to. In fact, the work of Jacob et. al. is only one among many [110, 78]

that focus on the detection of crawlers.

There exists a different type of scanners that are primarily concerned with perform-

ing network reconnaissance : IP and port-level scanning activities meant to to discover

IPs on remote networks who may be actively listening on ports that, because they are unse-

cured, would allow an attacker to seize control of the machines. Much work, too, have been

done on this topic [72, 11, 107, 33] but it is out of the scope of this paper. A brief review

on network reconnaissance techniques can be found in [15].

Even as there is a lack of focus on the detection of HTTP scanners in the research

community, there is a body of work on developing applications for security professional

to test the security of specific applications [31, 56, 58] and there have been some efforts

invested in the field of detecting covert and malicious web traffic [24]. In the same vein,
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there is existing work in the literature that confirms [86] our observation that because the

behaviors between users themselves are diverse, it is difficult to automatically look at an IP

in isolation and decide whether the IP is engaging in scanning activities.

4.6 Conclusion

In this work, we identify and study the problem of HTTP scanners, which as we

saw, is by far not trivial.

Our main contribution is Scanner Hunter, an effective method to detect HTTP

scanners that achieves a 96.5% detection precision. The key novelty of Scanner Hunter

the use of a graph-based approach that overcomes the needle-in-the-haystack problem by

comparing the group behavior of scanners versus that of legitimate users. The precision

of Scanner Hunter is more than double of that of baseline solutions, while detecting more

scanners at the same time.

As our second contribution, we provide an extensive study of HTTP scanning over

a six-month period to understand: (a) what they are looking for and (b) their spatial and

temporal behaviors. It is clear that the problem is acute, with roughly 4,000 unique IPs

scanning a medium-sized University network every week and 80% new IPs every week.

We provide an initial effort towards inferring the intention and targets of scanning

in a systematic way. We identify four major categories based on the resources scanners look

for: (i) user registration and login pages, (ii) website management interfaces, (iii) pages with

potential vulnerabilities, and (iv) compressed web archives such as wwwroot.zip, which are

the products of website backup activities and should not be publicly visible.
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The ultimate goal of our work is to (a) raise the awareness to this problem and (b)

provide an initial but promising detection technique to mitigate the risk posed by HTTP

scanners.
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Chapter 5

Conclusion

Internet traffic has been undergoing constant evolution as new applications and

technologies emerge. In this dissertation, we introduce three novel network traffic analysis

tools to help ISPs and network administrators better understand the traffic in their networks.

To demonstrate their effectiveness, we reverse-engineer user behaviors from real-world net-

work traffic traces and conduct extensive studies on user behavior patterns.

Our first main contribution is SubFlow, a conceptually different network traffic

classification approach that leverages the power of a subspace clustering technique. The

key novelty is that our approach can learn the intrinsic statistical fingerprint of each ap-

plication’s traffic in isolation and using application specific features, which deviates from

universal features in typical classification approaches. Our approach solves the dilemma

that each application is captured best by specific features, but if we use all these features

together in a single feature space, the classification performance suffers due to “the curse of

dimensionality”. We show that SubFlow has a great deal of potential by applying it on five
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different network traffic traces. SubFlow performs very well with minimal manual interven-

tion: it identifies traffic of an application with very high accuracy, on average higher than

95%, and can detect new applications successfully.

Second, network traffic has been increasingly dominated by web traffic and the

HTTP protocol has become the most prevalent means for applications to provide their

services. However, understanding web traffic only from HTTP headers is far from trivial

given the complex and interconnected websites of today. To address this, we develop a

systematic approach called ReSurf which can reconstruct user requests with more than 95%

precision and 91% recall. We also showcase interesting results that one can obtain from raw

network traffic using ReSurf: (1) web users are continuously being exposed to advertising

and tracking services and that in our traces, 50-60% of user requests (think clicks) interact

with tracking or advertising services; (2) The click-through stream of users accessing websites

are “shallow” in that the majority of streams have a maximum length of two; and (3) The

amount of time that mobile users spend on a website is 300% more than the users on a

wireline connection.

Third, we identify and study the problem of HTTP scanners, which pose serious

danger but have not received enough attention. Our main contribution is Scanner Hunter,

an effective method to detect HTTP scanners that achieves a 96.5% detection precision.

The key novelty of Scanner Hunter is the use of a graph-based approach that overcomes

the needle-in-the-haystack problem by comparing the group behavior of scanners to that of

legitimate users. We also study HTTP scanning over a six-month period to understand: (a)

what they are looking for, (b) their spatial and temporal behaviors, and (c) a systematic way
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of inferring the scanners’ intention and grouping them into four major categories based on

the resources they requested: (i) user registration and login pages, (ii) website management

interfaces, (iii) pages with potential vulnerabilities, and (iv) compressed web archives such

as wwwroot.zip, which are the products of website backup activities and should not be

publicly visible.

In conclusion, we believe that SubFlow, ReSurf and Scanner Hunter enable ISPs,

network administrators and researchers to understand, manage and model Internet traffic

and its users better.
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