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ABSTRACT

A paleo-data compilation with 492 3'3C and 530 observations provides the opportunity to better sample
the Last Glacial Maximum (LGM) and infer its global properties, such as the mean 3'C of dissolved
inorganic carbon. Here, the paleo-compilation is used to reconstruct a steady-state water-mass distri-
bution for the LGM, that in turn is used to map the data onto a 3D global grid. A global-mean marine 5'3C
value and a self-consistent uncertainty estimate are derived using the framework of state estimation (i.e.,
combining a numerical model and observations). The LGM global-mean 3'*C is estimated to be
0.14%o + 0.20%o at the two standard error level, giving a glacial-to-modern change of 0.32%o + 0.20%o. The
magnitude of the error bar is attributed to the uncertain glacial ocean circulation and the lack of
observational constraints in the Pacific, Indian, and Southern Oceans. To halve the error bar, roughly four
times more observations are needed, although strategic sampling may reduce this number. If dynamical
constraints can be used to better characterize the LGM circulation, the error bar can also be reduced to
0.05 to 0.1%o, emphasizing that knowledge of the circulation is vital to accurately map 3'>C in three

dimensions.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Carbon-13 to carbon-12 ratios (i.e, 3'3C) can chemically
fingerprint different carbon reservoirs, and thus glacial-interglacial
changes in 8'3C of oceanic dissolved inorganic carbon (i.e., 83Cpic)
reflect the carbon partitioning between terrestrial, atmospheric,
and marine reservoirs. Dramatic environmental changes during the
Last Glacial Maximum (LGM, 23,000 to 19,000 years before pre-
sent) altered the terrestrial biosphere, and some of the low isotopic
signature of terrestrial carbon (3'3C = —25%) was transferred to
the glacial ocean, consistent with observations of benthic forami-
niferal 3'3C lower than the modern-day (e.g., Shackleton, 1977;
Curry et al., 1988; Duplessy et al., 1988). The glacial atmosphere
held approximately 170 gigatons (Gt) less carbon (e.g., Monnin
et al., 2001), leaving the ocean as the most readily available
source of compensation for the other two reservoirs. Pollen records
and vegetation models that more directly reflect terrestrial carbon
change yield higher estimates of glacial-to-modern carbon transfer
(e.g., 750—1900 Gt C, Crowley, 1995; Adams and Faure, 1998; Kaplan
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et al,, 2002) than the marine-based estimates (e.g., 330—650 Gt C,
Shackleton, 1977; Curry et al., 1988; Duplessy et al., 1988; Kohler
et al,, 2010), although an inert terrestrial carbon pool may recon-
cile the difference (Ciais et al., 2012). A recent compilation of
benthic Cibicidoides spp. 53C has nearly twice the data points of
previous compilations and coverage of the Atlantic, Pacific, and
Indian Oceans (Peterson et al., 2014), and thus motivates the re-
investigation of the marine-based whole-ocean 8'3C estimates.

Determining the mean value of a spatially-distributed tracer
field reduces to a linear operation in most cases (i.e., an inner vector
product):

N
C=W y+EO=ZWiy,-+EO (1)
i=1

where ¢ is the global mean value of a tracer ¢, w is a vector of
weights with w; for the ith element, T is the vector transpose, y is a
vector containing N observations of y;, and ¢ is a constant included
for full generality. If all observations are assumed to contain equal
information about the global mean and no other information is
available (i.e., ¢y = 0), the optimal weights would all be 1/N, and
Equation (1) reverts to the basic sample mean. This assumption is
invalidated if there are differing noise levels in the measurements.
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The sparse, irregularly-spaced nature of glacial observations also
invalidates this assumption, of course. Originally, paleo-
ceanographers best dealt with this issue by choosing cores from
what was thought to be the most representative oceanic regions
(e.g., Shackleton, 1977). As more data became available, basin-wide
or regional means were computed as a preliminary step before
global averaging (e.g. Curry et al., 1988; Boyle, 1992; Matsumoto
and Lynch-Stieglitz, 1999; Peterson et al., 2014). This multi-step
process naturally leads to non-uniform weights on the observa-
tions in Equation (1).

When the global-mean oceanic 3"3Cpjc is computed as a suc-
cession of sub-averages, the result may be sensitive to the size and
location of the chosen sub-domains, and only by producing 5'>Cpc
maps at higher spatial resolution will this sensitivity be reduced. The
distance between LGM observations, however, is often greater than
the decorrelation lengthscale of oceanic property fields, and thus
the typical method of “objectively” mapping the observations onto a
regular grid (e.g., optimal interpolation or objective mapping,
Bretherton et al., 1976) reverts to a first-guess estimate in many
locations. In other words, large regions of the LGM ocean would be
unconstrained by the data, especially at intermediate depths where
little core coverage is available. Furthermore, the objectively-
mapped estimate will leave local extrema in the estimated tracer
field around the data points. Such features are undesirable because
they are not physically sustainable in equilibrium when diffusion
has sufficient time to act (e.g., for atmospheric momentum, Hide,
1969). It is not clear, however, how equilibrated the glacial ocean
was and whether eddy processes can be accurately modeled as a
diffusive process. Computation of an accurate global mean is chal-
lenging even for modern-day cases, such as sealevel rise (e.g.,
Wunsch et al., 2007). A new method is needed to create a map with
sparse LGM observations that addresses these complications.

Here we suggest that a method originally developed for esti-
mating the oceanic water-mass distribution from sparse observa-
tions (Gebbie, 2014) is also well-suited to make three-dimensional
global maps. Specifically, we combine a tracer transport model
(Section 2.1) with observations (Section 2.2) to produce an LGM
state estimate. Rather than using the assumed statistics of circu-
lation lengthscales, like optimal interpolation, we illustrate that the
circulation itself can be used to make a gridded field (Section 2.3).
The numerical model serves a dual purpose: 1) a means to readily
interpret the sources, sinks, and pathways of tracer, and 2) a ki-
nematic interpolator and extrapolator that allows large-scale in-
formation to be extracted from the observations. Here we extend
the state estimation framework by deriving a self-consistent for-
mula for the global-mean uncertainty (Section 2.4).

This work has two major results: 1) an estimate of the LGM
global-mean 3'3Cpc, and 2) its uncertainty within a explicit set of
assumptions. To connect these results to deglacial climate dy-
namics and the carbon cycle, we reconstruct a global map of LGM
513CD]C and detect a largescale, coherent pattern of LGM-to-modern
changes (Section 3). The glacial-mean 3'3Cpic uncertainty is
partially attributed to the sparsity and measurement error in the
observations, but also due to the difficulty in accurately modeling
the LGM circulation (Section 4). Our results are discussed in the
context of previous observational techniques (Section 5), especially
how the observational weights in the averaging Equation (1) are
modified by the assumed circulation regime. We conclude by
emphasizing the importance of circulation knowledge in the goal of
further reducing the global-mean 3'3Cpjc uncertainty (Section 6).

2. Global LGM state estimate

The global LGM state estimate is produced by combining a ki-
nematic tracer transport model with a global array of benthic

foraminiferal observations of 33C and 3'®0. Global, three-
dimensional gridded distributions are produced for multiple
tracers: 3'>Cpic, seawater 8180 (i.e., 3'80y), potential temperature,
practical salinity, and phosphate. The model, observations, and
state estimation method are detailed next.

2.1. Model

The model is a statistically steady-state conservation equation
t_)hat is assumed to hold for, C, a general tracer: V- (?C) = Q, where
F is the mass flux and Q is a local source or sink. In the statistical
steady state, any temporal variability that has a net diffusive or
advective effect is represented by the model used here.

In practice, the model equations are discretized on a global, three-
dimensional grid. Here the grid is defined with 4° x 4" horizontal
resolution and 33 vertical levels with enhanced resolution near the
surface. Glacial ocean computations are undertaken on the same grid
as a modern-day reference case, but gridcells shallower than 120 m
modern-day water depth are discarded due to the sealevel drop.
After discretization, the equations are normalized by the sum of all
mass fluxes into the gridcell, ¢; = ZjN:] fij» where f;; is the flux from
gridcell j to i, and there are N neighboring gridcells. Then the tracer
transport equation at gridcell i becomes more similar to a water-
mass mixing model (following Gebbie and Huybers, 2012):

N
> myc—ci =g (2)
=

where mj; is the ratio of the inward flux from j to the total flux
(myj = fij/$i), c; is the tracer concentration in cell i, and g; is the
equilibrium tracer source with units of the tracer concentration
itself (q; = QJ¢;). For conservative tracers, the source and sink
vanishes (Q = 0). These algebraic manipulations lead to a well-
conditioned set of equations that can be solved quickly, but with
the tradeoff that information is lost regarding the absolute rate of
circulation.

The isotope variables, 3'3Cp;c and 5'80,,, require some further
consideration. In particular, the sink of 613CDIC due to reminerali-
zation is assumed to be equal to —0.95%o/(umol/kg) times the
source of remineralized phosphate, which is adjusted relative to the
modern ratio of —1.1%o/(pmol/kg) due to changes in whole-ocean
33Cpic and upper-ocean biological fractionation (e.g., following
Broecker and Maier-Reimer, 1992). Here we model the ratio (delta
value) rather than the individual isotopes which incurs an error
(e.g., Walker, 1991), but it is small because the '®0/°0 ratio in
Vienna Standard Mean Ocean Water (VSMOW) standard is about 1/
500, and the 3C/!2C ratio in the Vienna Pee Dee Belemnite (VPDB)
standard is about 1/90. Furthermore, this error is damped in the
vicinity of observations by the formal data constraints.

For reasons that should become clear below, the state vector, x,
is defined to contain both tracer and circulation information, i.e.,
x’ = [c;m]”, where ¢ is a vector that represents all of the global
three-dimensional tracer distributions and m describes the circu-
lation by concatenating all of the mass-flux ratios, mj; (e.g., Gebbie
and Huybers, 2010). This state vector definition is not unique, but it
provides sufficient information to permit a steady-state tracer
distribution to be computed, and thus is an acceptable definition of
the state. All of the tracer transport equations are combined and
symbolically represented as: #[x] = q + v, where # is a nonlinear
operator due to the multiplication of the tracer concentration and
flow field that encapsulates advective and diffusive processes, and v
is the source deviation from the modern-day first-guess field, q.
The model equation includes surface concentration (i.e., Dirichlet)
boundary conditions for completeness.
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2.2. Observations

A major extension to the work of Gebbie (2014) is the use of the
paleo-data compilation of Peterson et al. (2014) that includes ob-
servations in the Pacific and Indian sectors, rather than the Atlantic-
only data used previously. This compilation contains 376 8'3C and
369 §'80 measurements from benthic foraminifera dated to the Last
Glacial Maximum from 23,000 to 19,000 years before present
(23—19 kyr BP) following a re-derived age model for many cores
(Stern and Lisiecki, 2014). The need for inter-species and inter-
laboratory offsets is reduced by compiling only Cibicidoides spp.
313C data, although there are few data of this type in intermediate
waters. Other data are added (e.g., personal communication, D.W.
Oppo and W. Curry, Marchal and Curry, 2008; Makou et al., 2010;
Hesse et al, 2011), including porewater salinity and 380 data
points (Adkins et al., 2002). The deglacial records indicate a group
of outliers where the LGM-to-Holocene 3'®0 change is less than
0.6%o0 and can be traced to low temporal resolution in the cores.
Therefore we have removed these values from the compilation.
Observations were also culled when the phytodetritus effect was
implicated by the original authors (e.g., Mackensen et al., 2000) and
at locations that fall more than 200 km outside of the model grid.
When combining the Peterson et al. (2014) compilation with the
additional data, we have 492 LGM 3'3C and 492 §'80 data points
that constrain the model simulation (locations are later shown in
Fig. 8).

The collection of observational equations is expressed as one
matrix equation: y = EX + n, where y is a vector of observations, E
predicts the observations from the state, X, and n is the observa-
tional error. We assume that benthic foraminiferal 3'3C refects
d3Cpicle.g., Duplessy et al., 1984) and that the error in this
assumption is normally distributed with a standard deviation of
0.2%o0 (Marchal and Curry, 2008). We check this assumption by
calculating the misfit between the Late Holocene core data and a
projection of the modern-day 8'>Cpjc distribution of Gebbie (2014)
onto the core sites. The standard deviation of the misfit is 0.27%o,
suggesting that 0.2%o is a reasonable value. Systematic errors in this
relationship will be addressed in Section 4.6.

2.3. State estimation method

The solution method is started with prior knowledge of the state
as encapsulated in a first guess, Xo. Here we use modern-day
property distributions, but where §'0,, and practical salinity are
adjusted higher by 1.1%0 and 1.1 on the practical salinity scale,
respectively, to account for glacial sealevel drop. The first-guess
constraint is equivalently written as an equation: X = Xg+u,
where u is a deviation from the first guess that is permitted to be
large (see the weight matrices below). Then, the solution state is
determined by minimizing a cost function that combines the con-
straints from this and the previous two Sections (2.1 and 2.2)

J=u'S lu+n"W 'n+viQ v, (3)

where S,W, and Q are matrices that provide the relative weightings
(see Appendix A for the chosen values relevant for Equation (3)).
The three terms on the right hand side represent the three major
constraints: 1) prior information about the tracer distribution and
circulation, 2) proxy observations, and 3) the tracer transport
model.

The complete solution method for the global 613CDIC distribution
was reported by Gebbie (2014) and includes a number of other
constraints (and, hence, terms in the cost function), such as gravi-
tational stability and the non-negativity of tracer concentrations. To
recap, this weighted, tapered least-squares problem is solved by

transforming Equation (3) into a constrained cost function by
appending Lagrange multiplier terms, and then hand-coding the
adjoint equations that give sensitivity information. It is solved
iteratively using a limited-memory quasi-Newton gradient descent
routine (Nocedal, 1980). After solving for the 3'>Cpc state, we seek a
formula for the global-mean uncertainty that is valid in the
neighborhood of the known solution. The final solution is gravita-
tionally stable and has non-negative tracer distributions, indicating
that the additional cost function terms are not actively constraining
the solution at the final iteration. Thus we simplify the uncertainty
problem by assuming that Equation (3) represents all active con-
straints, and derive an uncertainty formula under such an
assumption next.

2.4. Global-mean uncertainty of the state estimate

Many methods for computing error bars are available, and we
explicitly define what is meant by uncertainty in this work by
following the development of Wunsch (1996). The uncertainty, Pg,
is defined as the expected squared difference between the esti-
mated global mean, ¢, and the true value, € (i.e., P=< (57 E)Z >),
where the brackets indicate the expected value operator. For an
unbiased estimator, the true solution, ¢, may be set equal to the
expected value that would emerge from our estimation method
over many different realizations, (), but here we refrain from such
an interpretation given the highly nonlinear nature of the problem
and the simplified nature of the model. Thus we are restricted to
solving for the expected range of solutions, here defined as the
dispersion of ¢ — <T> or equivalently the covariance of the global
mean, CEE«%— <¢>)>?). The standard error, o, is then defined as
the square root of the solution covariance: o:=,/C. We follow the
convention of Peterson et al. (2014) by quoting twice the standard
error as our estimate of the glacial-mean 513CDIC uncertainty, which
can naturally be interpreted as the 95% confidence interval of a
normally-distributed process.

Before calculating the uncertainty of the global mean, we first
define the global mean explicitly as

t=r'

X, (4)
where r is the appropriately-defined mass-weighting vector (i.e.,
= Mi/ZL1 M; for alli < J where M; is the mass of gridcell i and the
global ocean has J gridcells, and r; = O for all i > J). By construction,
the sum of elements of r is equal to one (||r|[;=1) as is usual in
averaging equations. As three-dimensional fields are modeled for
temperature and salinity, the mass of each gridcell is determined by
the product of the cell volume and the seawater density as calcu-
lated by the international thermodynamic equation of state (IOC,
2010). Although the LGM density field is not well constrained, the
spatial range of density has variations no larger than 5%, and thus
volume (set by the size of the gridcells) dominates the calculation.
Substituting the global-mean Equation (4) into the definition of
the global-mean covariance, the uncertainty of the global mean is
clearly dependent upon the uncertainty over the entire globe:

Cc=1'C,r, (5)

where C; is the full solution covariance. Thus it is necessary to
determine the uncertainty of the three-dimensional tracer distri-
bution to calculate the uncertainty of the global mean. Following
Appendix B, the solution covariance is

C

X

=S T+E'WIE+LIQ L), (6)

where L; is the model linearized about the state, x (i.e,
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Fig. 1. Zonally-averaged, LGM 8'3Cp,c divided into three sections: the Atlantic and Arctic (upper), Indian (middle), and Pacific (lower), with all observations from the particular basin
(colored squares) and 3D gridded field (background colors and contours). The oceans are divided according to Fig. 7 of Gebbie and Huybers (2010). The colored symbols are on the

same color scale as the background field.

L,=0.2/0x];). Equation (6) assumes that the weight matrices are
chosen to be the expected second-moment matrices of the re-
siduals (i.e., Ry = W, Rgq = Q, and Ry, = S, following Wunsch
(1996)), as well as the assumption that our simplified cost func-
tion is valid.

Substitution of Equation (6) into (5) permits the global-mean
uncertainty to be written explicitly in terms of the known input
variables in the problem:

CG=r'ST+E'WE+LIQ 'Ly . (7)

Equation (7) illustrates that the three contributions to the uncer-
tainty come from the three constraints: the first-guess uncertainty
in the state (S°!), the uncertainty related to the observations
(E'W~'E), and the uncertainty related to the imperfect model
(L)T(Q’le). While these three terms have clear contributions to the
uncertainty, they are under the inverse in the equation and thus the
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Fig. 2. Similar to Fig. 1, but for the Atlantic, Indian, and Pacific zonal-average difference in 5'>Cpc between the modern-day and LGM (i.e., Ay [6"3Cpyc] = 613 CH¥c — 6'3CKc).

total uncertainty is not simply a linear combination of the three
parts.

3. LGM 5'3C and deglacial change
3.1. Global-mean §'*C
The glacial-mean §'3C and its uncertainty are calculated by

adapting Equations (4) and (7) for 83 Cpyc. The full solution uncer-
tainty (Equation (6)) is never needed explicitly, thus avoiding the

storage of a 1.8 terabyte matrix (the state has 475,773 elements and
C; has this dimension squared). As r is a column vector, we can
break Equation (7) into two parts, one a matrix-vector product and
one a vector inner product, such that memory usage is minimized.

We find that the LGM mean 3'3Cpc is 513CDICG = 0.14%0+0.20%o (at
the 2¢ uncertainty level). This uncertainty estimate accounts for the
observational sparsity and measurement error, but does not include
errors incurred by the assumed 3'C proxy equation (to be
addressed later in Section 4.6).
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approximately fits the function: oz =2%0/vN where N is the number of observations.
The LGM state estimate is also plotted (circle with an X).
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Fig. 4. Similar to Fig. 3, but the standard error (2¢¢) of the glacial-mean 3'*Cp,c as a
function of how well the circulation is known (in terms of the uncertainty of nondi-
mensional mass-flux ratios, ¢,,,). An uncertainty of ¢, = 1 in the mass-flux ratios
represents zero circulation knowledge. The glacial circulation uncertainty is chosen to
be 0.3 (circle). The function roughly asymptotes to the function, oz=0.3% ¢%;° (dashed
line).

We are motivated by the atmospheric CO, change of
80—100 ppm from the LGM to the pre-industrial era, and thus we
seek to estimate the deglacial marine 3'>C change, here denoted
Anmcl83Cpicl(i-e., modern, “M,” minus glacial, “G”). A modern-day
reference circulation that attempts to reconstruct the pre-
industrial ocean was produced using the same method (Gebbie,
2014) and will be used for comparison here. The GLODAP and CA-
RINA seawater 5'3Cpjc compilation (Schmittner et al., 2013) con-
strained the modern-day distribution, and observations in the
upper 1 km of the water column were downweighted to account for
the Suess effect (e.g., Olsen et al., 2006) and to produce a pre-
industrial gridded 8'Cpjc distribution. The result is a reference

——M
modern-day estimate of 63Cpc = 0.47%0+0.03%.. Uncertainty
due to the Suess effect is not included in this error bar, and is

revisited in more detail in Section 4.3 where we find that it may
increase the uncertainty by approximately 0.05%o.

Under the assumption that the LGM and modern estimates are
independent, the LGM-to-modern difference is

Amc[63Cpic] = 0.32%0+0.20% (at the 20 level after rounding). Our
estimate provides corroborating evidence for both 1) recent data-
based estimates of 0.34%0 + 0.26% (Ciais et al., 2012) and

0.34%o + 0.19%o (Peterson et al., 2014), and 2) a forward circulation
model that reproduced about 100 observations and found a change

of Ay [513cmc = 0.31%00.20%o (Tagliabue et al., 2009). Note that

the data-based estimates were actually glacial-to-Late Holocene
differences (here distinguished by the notation, Apc[d'3Cpic]) that
may reflect a different quantity due to the core information ending
over the last few thousand years of the Holocene. The level of
agreement is surprising, especially considering that our estimate
results from a spatially structured pattern of change, shown next.

3.2. Spatial distribution of LGM 6'3C

The glacial state estimate faithfully reproduces the LGM 3'3C
observations in all ocean basins. When comparing basin-wide
zonally averaged 33Cpic to the foraminiferal observations
(squares versus the background colors in Fig. 1), the spatial pattern
is in broad agreement. Any visual differences are attributable either
to an actual misfit of the data or an artifact of zonal variability (i.e.,
the collapsed third dimension). To eliminate the effect of zonal
variability, the state estimate is projected onto the observational
locations using a linear interpolation or extrapolation from the 8
nearest gridpoints. The resulting 613CDIC distribution fits the ob-
servations with a standard deviation of the misfit of 0.19%o that is
an acceptable fit within the expected uncertainty of 0.2%o in the
data. 50% of the points are fit within 0.02%o, although outliers larger
than +0.6%o exist. While not being the primary variable of interest
here, 3'30 is also fit well, with a standard deviation of 0.22%o that is
approximately equal to its expected value of 0.2%o.

The main characteristic of the LGM Atlantic 5'3C distribution is a
depletion of 3'3Cp;c below 2500 m depth (upper panel, Fig. 1) that
conforms with expectations (e.g., Duplessy et al., 1988; Curry and
Oppo, 2005). The North Atlantic is characterized by a mixing zone
from 2 to 4 km depth with a nearly constant vertical gradient from
0.8%o to 0%o. The zonally-averaged South Atlantic, however, does
not have a gradient as sharp as seen in the Brazil Margin data or the
map of Curry and Oppo (2005), but can be explained by observa-
tions of lower 8'3C values in the eastern South Atlantic between 2
and 3 km depth. Of more concern are the undersampled regions,
where this inversion sometimes disagrees with the Gebbie (2014)
inversion. For example, the updated state estimate has a much
higher 8'3Cpjc in the Arctic (1.2%0 compared to 0.6%o). The most
depleted values in the Southern Ocean are about —0.8%o in both
inversions, but should not necessarily be interpreted as a robust
result. The uncertainty of the estimate in these regions without
data will be explicitly addressed in the next section.

The state estimate permits the inference of more d3Cpc struc-
ture in the Pacific and Indian Oceans (middle and lower panels,
Fig. 1) than was previously mapped, due in large part to the larger
data compilation and the smoothing capabilities of the model used
here. The zonally-averaged Pacific picture masks significant zonal
variability, including a deepening of the most depleted western
Pacific 3'3Cpjc from 1.5 km in the modern-day to almost 3 km
during the LGM (e.g., Matsumoto et al., 2002; Herguera et al., 2010).
There are significant differences with previous maps, however,
including a closed region of depleted 3'>Cpjc due to remineraliza-
tion north of 40° N in the North Pacific not seen by Herguera et al.
(2010). The Indian Ocean is reconstructed as a hybrid of the other
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Fig. 5. Similar to Fig. 2, but for the Atlantic, Indian, and Pacific zonal-average difference between 3'>Cp,c in the 1990s and the modern (i.e., pre-industrial) case.

oceans, with low-3'3Cp;c Southern Ocean bottom waters like the
Atlantic, but a lack of high-3'3Cpjc waters at mid-depths like the
Pacific.

The bottom waters of the Southern Ocean have 3'3Cpc differ-
ences approaching 1% between the Ross (0%0) and Weddell
(—0.8%o) Seas that are masked by the zonal averages. These hori-
zontal gradients are partially explained as the projection of the
large vertical 3'3Cp;c gradients into the horizontal by the patchiness
of northern source water incursion into the Southern Ocean. The
inhomogeneities do not appear to reflect any major shift in the

transport of the Antarctic Circumpolar Current, as northern-source
waters continue to spread eastward into the Indian Ocean over a
similar range as the modern day. While major circulation changes
are not implicated, the model reconstructs a greater filling of the
abyss by the Ross Sea rather than the Weddell Sea. Increased glacial
abyssal mixing and a vigorous deep circulation could explain this
feature (Wunsch, 2003; Arbic et al., 2004; Schmittner et al., 2015),
but our current model lacks absolute rate information and cannot
directly test this hypothesis.

Besides the §'3C distribution, the state estimate permits the
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Fig. 6. Atlantic (and Arctic), Indian, and Pacific zonal-average difference of 8'>C between LGM State Estimate 2 and modern-day (i.e., Ayca [613CDIC}

diagnosis of water-mass distributions consistent with the seawater
properties. The inferred LGM Atlantic water-mass geometry is
similar to the previous inversion of Gebbie (2014), where southern
source waters dominate the ocean composition only below 4 km
depth in the North Atlantic. In other words, the southern source
waters contribute 50% or more of the water by mass in that limited
region. Significant deep remineralization (with the addition of '2C
effectively causing a sink of 3'3C) was originally reported in the
deep glacial Atlantic (Gebbie, 2014), but is less pronounced in the
updated state estimate due to the use of a more spatially-coherent

_ s13~M 13 G2
=06"Cpjc — 6> Cic)

3180 dataset (derived from LGM-to-Late Holocene differences). The
estimated LGM Pacific has deeper North Pacific Water (down to
2 km instead of 800 m today, as defined by the 50% concentration
line). Otherwise southern water masses fill the same part of the
Pacific sector.

3.3. Spatial pattern of 6'3C change

The difference of the modern-day and LGM 3'3Cpc permits the
mapping of a global, three dimensional field of Ayg[83Cpic], where
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Fig. 7. Atlantic and Pacific zonal-average difference of 3"*Cp;c between 2 LGM Estimates (A¢c[6'3Cpc] = 63 CSic — 613 C52).

large-scale coherent patterns emerge (Fig. 2). In much of the world
ocean above 1 km depth, 613CDIC decreased over the deglaciation
despite the increase in the global mean. Even the North Pacific,
which was previously found to have little 3'>Cp;c change above
2 km (Matsumoto et al., 2002), is estimated to contain upper ocean
regions with deglacial 8'3C decreases. In general, Ayg[83Cpic] in-
creases with depth and toward the south, with the biggest changes
reserved for the Atlantic sector of the Southern Ocean. From these
maps, it is clear that the competing influence of many different

regions must be included in order to accurately assess the global
mean.

4. Contributions to uncertainty
4.1. Observational sensitivity

Obvious candidates to contribute to the uncertainty include the
sparsity, measurement error, and representativeness of the
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Fig. 8. Optimal observational weights to construct a global mean given the glacial
circulation (LGM State Estimate 1): plan view (top), Atlantic data (middle) and Indo-
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observations. Here we test how the number of sediment core ob-
servations affects the resulting uncertainty by creating hypothetical
cases with a range of observations from 10 to 15,000. For the cases
where the number of observations is less than observed in reality,
we randomly select a subset of the true observations. This
constraint is symbolically written: y = Ex + n, where the variables
with the breve mark have rows deleted from the original E defi-
nition (second term on the right hand side of Equation (7)). The
actual observational values do not matter in this calculation, but
only that the observational term is modified. For hypothetical cases
with more observations than reality, we augment the actual ob-
servations with additional observations taken randomly from the
seafloor, although this is not entirely realistic due to issues with
carbonate preservation, species habitats, and sediment availability.
Five trials are performed with the modified E matrix and the mean

of the trials is reported to help make the results more robust.

The uncertainty decreases with an increasing number of ob-
servations according to an apparent power law (oz=2%0/v'N),
where N is the number of observations (Fig. 3). This function is
consistent with the uncertainty estimate for the actual number of
observations (2¢z = 0.20%. for N = 492). Between N = 500 and
N = 1000, the slope of the power law increases, suggesting that the
additional randomly-distributed data points potentially sample the
ocean more efficiently than the irregularly-clustered 492 data
points that are actually available, and indicating that a strategic
sampling plan (e.g., see Section 4.5) could produce an even greater
reduction in uncertainty. Limitations on the presence of Cibicidoides
calcite on the seafloor would also provide a constraint for a sam-
pling strategy. In tests where the number of observations is
increased past 15,000, the standard error does not decrease below
0.06%o, suggesting that seafloor observations are eventually limited
in their ability to record interior ocean signals due to their location
and the remaining measurement error. In summary, we expect that
the uncertainty on global-mean 3'3Cpjc would be halved with a
fourfold increase in the number of observations.

4.2. Circulation dependence

A second major contributor to uncertainty is the circulation field
because knowledge of the flow paths permits extrapolation over
the large distances between paleo-data. In our steady-state sce-
nario, the mass fluxes are expressed as dimensionless mass flux
ratios, m, that are bounded by 0 and 1 (recall the discussion of the
model in Section 2.1). Here we calculate how the global-mean
standard error depends upon the assumed uncertainty in the cir-
culation. All input variables are kept constant in Equation (7) except
the part of the S~! matrix corresponding to the circulation is
adjusted. For hypothetical cases where the circulation is known as
well or better than the modern-day (o, < 0.05), the resulting global
mean uncertainty is small (0.03%o), but it cannot be further reduced
due to the observational characteristics (Fig. 4). This limit is lower
than previously estimated (e.g., 0.26%o, Ciais et al., 2012), and might
result from the improved reconstruction ability of the state esti-
mate. For circulation uncertainties greater than 0.05, the standard
error increases from 0.05%o to 0.6%o with increasing circulation
uncertainty, and follows an approximate exponential relation (i.e.,
oz~0.6%0 ¢%;2). The prior estimate of circulation uncertainty, o, is
a difficult quantity to estimate, and here we have suggested that a
reasonable value is 0.3. The reported error of global-mean 513Cmc is
sensitive to this choice, however, as is shown in Fig. 4. The sensitive
dependence originates from the use of the circulation to interpolate
and extrapolate over the data-void regions of the globe.

4.3. Regional analysis

A more traditional means of analysis is to break the ocean into
subdomains to quantify the geographic contributions to global-
mean uncertainty. Here, regional means are calculated by taking
subdomains of the global domain and recalculating the mass-
weighting vector, r, in Equation (7). Specifically, the elements of r
that correspond to locations outside the region of interest are set to
zero, and the vector is renormalized such that the elements sum to
one. Here we select 13 regions of interest in order to compare to the
recent work of Peterson et al. (2014).

The primary geographic contributors to global-mean uncer-
tainty are the Surface and North Atlantic regions (2¢z>0.6%0 in
Table 1). This result does not straightforwardly proceed from a
consideration of the number of observations in any given region.
For example, both the Surface and Deep regions have less than 10
observations, yet the Deep region has much more moderate
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uncertainty (0.23%o versus 0.70%o in the Surface). Waters that enter
the Deep region must pass through observations at shallower
depths, and are therefore somewhat constrained by the tracer
transport model and observations. The uncertainty in the North
Atlantic occurs despite over 200 LGM observations in those regions,
and results from the nearly-unobserved §3Cpic values in the
Nordic, Mediterranean, and Caribbean Seas. The center of the North
Atlantic, on the other hand, has some of the lowest estimated er-
rors, but this is lost by our choice of regional boundaries.

Up to this point, we have emphasized the agreement of our
global-mean estimate with previous studies, and generally
speaking, our regional results are also consistent with previous
regional estimates (e.g., Oliver et al., 2010; Peterson et al., 2014).In a
detailed investigation of the Deep (>5 km) region, however, our
model reconstructs a 0.49%0 change, suggesting that the 0.74%o
estimate of Peterson et al. (2014) is an overestimate owing to the
extrapolation by their assumed linearly-varying vertical structure.
In the Surface region, there are similarities between the estimates

(here: Apg[63Cpic] = 0.07%0+£0.71%0, Peterson et al. (2014):

A6 Cpic] = 0.02%0+0.40%0), but our more sophisticated recon-
struction technique yields larger uncertainty, suggesting that their
ad-hoc error bar is an underestimate.

Our large Surface region error bars indicate that the best place to
isolate a reservoir from benthic foraminiferal detection is not the
bottom ocean, but instead the upper thermocline waters that pri-
marily recirculate in the subtropics and tropics. This result points to
the need to compile planktonic 3'3Cpc records (e.g., Broecker and
McGee, 2013) so that they can be used in concert with benthic
records. In this regard we note that there is convincing evidence
indicating the 8'3C of planktonic foraminifera shells vary with
seawater carbonate ion concentration (Spero et al., 1997; Russell
and Spero, 2000; Peeters et al., 2002). Although this effect has
not been identified in benthic foraminifera, its pervasive presence
among many species of planktonic foraminifera suggests that deep
water carbonate ion variations between the modern and glacial
could shift benthic foraminifera shell 3'3C away from a 1:1 rela-
tionship with 8'3Cpjc and contribute to uncertainties in these
modeled reconstructions (see Section 4.6).

4.4. 683C Suess effect

The model fits the observations to an acceptable level in almost

Table 1

all regions, as evidenced by the standard deviation of the modern
and glacial model-data misfits, oy and o, being less than or equal
to 0.2%o. One exception is the modern-day surface (ap = 0.36%o0)
which may be symptomatic of seasonal variations not captured by
the steady-state model. The model-data misfit also has a strong
mean offset in the modern-day surface ocean (up; = 0.21%o), where
the state estimate has more positive 3'>Cpjc values than the GLO-
DAP/CARINA observations. This upper ocean effect has conse-
quences for the global statistics, as the modern-day state estimate
is on average 0.09%o more enriched in 513C[>1c than the observations
over the entire world ocean. The sign of the misfit is consistent with
the observations being contaminated by anthropogenically-derived
BBCDIC-

Although the state estimation methodology appears able to
filter the Suess effect by downweighting 8'3Cpjc datapoints in the
upper ocean (i.e., expecting larger errors for these points, recall
Section 3.1), we still need to consider whether the implied
magnitude of the effect is plausible. To quantify the effect of this
downweighting, we additionally invert a case that represents the
1990s where all modern-day d3Cpc observations are weighted
equally. The data is still well-fit for the 1990s case (o = 0.11%o), but

the mean 8'Cpyc is shifted to 613CDICM = 0.41%o: 0.06%o less than
our original modern-day (pre-industrial) estimate. The spatial
pattern of the difference (Fig. 5) shows similarities to the expected
Suess effect, such as enhanced uptake and negative values in the
North Atlantic deep water formation sites and the subtropical
gyres. Features in the deep Pacific are unlikely to be from the Suess
effect, but more likely reflect changes in how the data is extrapo-
lated into data-sparse regions. The estimated LGM-to-modern
33Cpjc change directly depends upon the handling of the Suess
effect, and here the accounting for the contaminated 8'>Cpjc values

(by downweighting) leads to an Ayg[6'3Cpjc] value that is 0.06%o
higher than would otherwise have been estimated.

To check whether the magnitude of our Suess effect correction is
reasonable, another inversion is produced where the anthropo-
genic 3'3Cpjc signal is removed from seawater measurements using
the “Fel” simulation of Schmittner et al. (2013). To do so, we first
project the modeled estimate of 1990s anthropogenic 3'3Cp;c onto
the data locations and subtract it from the observations to make a
corrected dataset. Then the state estimate is re-derived by
weighting all data equally. By this method, the mean pre-industrial

Mean 3'>Cp;c with error estimates and statistics for 13 oceanic regions defined by Peterson et al. (2014). The quantities include (from left column to right): global-mean LGM-to-

—_— ——M
modern 3'3C change and 2¢ uncertainty (Ayg [6'>Cpjc]), modern-day mean 3'3Cpc and 20 uncertainty (6'3Cpic ), number of modern-day observations (Ny;), mean modern-day

—=——FGC

model-data misfit (i), standard deviation of modern-day model-data misfit (o), LGM mean 8'3Cpc and 2¢ uncertainty (6'>Cp;c ), number of LGM observations (Ng), mean
LGM model-data misfit (u¢), and standard deviation of LGM model-data misfit (¢¢). Three large-scale regions are included: Global, Deep (everywhere below 5 km depth), and
Surface (everywhere shallower than 500 m). The Atlantic is split into five regions: NW (west of 33" W, north of 0°), NE (east of 33" W, north of 0" ), SW (west of 15" W, 0'—55" S),
SE (eastof 15" W, 0'—55" S), and South Atlantic (east of 22" W, 40" S—55" S). The Pacific is split into two regions: North Pacific (0'—60" N) and South Pacific (0'—66" S). The Indian
Ocean is defined as one region (north of 55° S, 30" E—125" E). The Southern Ocean is split into two parts: Atlantic-Indian (Al) sector (south of 55° S) and the Pacific (P) sector

(south of 66° S). See Fig. 1 of Peterson et al. (2014) for complete boundaries.

—a —a M —5 U
Region A (6" Cpic] 613 Cpic Ny UM oM 613Cpic Ng e oG
Global 032 +0.20 0.47 + 0.03 19,922 0.09 0.27 0.14 + 0.20 492 0.01 0.19
Deep 0.49 + 0.23 0.37 + 0.02 229 0.05 0.21 -0.12 + 0.22 0 — —
Surface 0.07 + 0.71 1.06 + 0.07 8453 0.21 0.36 1.01 + 0.70 6 -0.01 0.05
NW Atlantic 0.16 + 0.67 0.96 + 0.06 321 0.11 0.20 0.80 + 0.67 72 -0.02 0.18
NE Atlantic 0.25 + 0.85 0.99 + 0.25 540 0.10 0.15 0.74 + 0.81 155 0.01 0.22
SW Atlantic 0.41 + 0.31 0.77 + 0.02 836 -0.03 0.14 0.36 + 0.31 45 0.06 0.23
SE Atlantic 0.60 + 0.21 0.72 + 0.05 274 0.00 0.13 0.12 + 0.20 79 0.04 0.23
South Atlantic 0.84 + 040 0.62 + 0.06 23 0.21 0.20 -0.22 + 0.40 23 0.02 0.27
North Pacific 0.13 + 0.27 —0.08 + 0.02 1254 0.03 0.22 -0.21 + 0.27 65 -0.01 0.11
South Pacific 033 +0.33 0.35 + 0.01 4157 0.00 0.15 0.02 + 0.33 36 0.00 0.08
Indian 0.25 + 0.32 0.34 + 0.01 2735 -0.04 0.12 0.09 + 0.32 42 0.02 0.12
Southern (AI) 122 £ 0.85 0.54 + 0.03 648 0.06 0.10 —0.68 + 0.85 0 — —
Southern (P) 0.44 + 0.30 0.45 + 0.02 401 0.01 0.10 0.01 + 0.30 1 0.07 —
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d33Cpic is 6'3Cp;c = 0.49%., not significantly different than our

original estimate of 613CDICM = 0.47%0+0.03%0. Thus, state esti-
mation methods suggest that the mean Suess effect is 0.06%o (from
the previous paragraph) or 0.08%o (this paragraph), both somewhat
smaller than a forward model (Tagliabue and Bopp, 2008) that
found 0.12%. when constrained by the observations of Gruber et al.
(1999). While we believe that our state estimation methodology
has done a reasonable job in assessing the anthropogenic signal, an
uncertainty of perhaps +0.05%o (loosely based on the spread of the
three estimates) still remains in the magnitude of the 3'3C Suess
effect and therefore should be added to the uncertainty of the LGM-
to-modern 3'3Cp;c change.

4.5. Large 6"3C change scenario

In this section, we seek to confirm that the estimated error bars
are plausible, and to visualize where the glacial d33Cpyc field is least
constrained. These issues can be addressed in greater detail by

performing a test to determine whether a large Ayc[6'3Cpc] is
consistent with the observations and a steady-state circulation. To
perform this test, we add an additional “observation” that the
global-mean LGM-to-modern 8'3Cp;c change is just above the up-
per limit as given by the 2¢ error bar: 0.6%o. As in Section 4.1, this
modification is handled by introducing a modified observational
matrix, vector, and weighting: E, y, and W, that enforces the
additional constraint with a small error:

Anmg[6'3Cpic] = 0.6%0+£0.01%0. The nonlinear solution method of
Section 2.3 is then run with these additions and no other changes.

A second LGM state estimate (hereafter, LGM State Estimate 2) is
indeed capable of fitting the data while producing a whole-ocean

change of Apc[6'3Cpic] = 0.59%. (Fig. 6). The spatial pattern of
remaining model-data misfits do not suggest that the phytodetritus
or carbonate ion effect are at play. The implied circulation leads to a
deep (greater than 3 km) northern-southern water-mass interface
in the Atlantic Ocean, similar to that in LGM estimate 1. The stan-
dard deviation of the model-data misfit is actually smaller than that
for LGM estimate 1 (LGM 1: o¢ = 0.19%o, LGM 2: o2 = 0.17%0). The
model-data misfit statistics of LGM State Estimate 2 are consistent
with what is expected from a 2¢ outlier of LGM State Estimate 1;
the estimated mean model-data misfit of ug; = —0.03%o is insig-
nificant at the 5% level, but just so (p = 0.06 for N = 492). The larger
whole-ocean change is due to increased changes in specific regions,
such as the Atlantic sector of the Southern Ocean where
Amcl83Cpic] > 1.4%o. In addition, the unconstrained Arctic Ocean
and Mediterranean Sea have much increased Apc[d'3Cpic] at in-
termediate levels.

The difference in 8'3Cp;c between the two LGM state estimates,
Accl63Cpic] (the difference of two glacial “G” estimates), can be
thought of as the observational null space and illustrates the ocean
regions that are both unconstrained and important for setting the
global mean. The biggest differences occur at the Pacific surface and
the South Indian Ocean (Fig. 7). Surface differences, especially in
the Pacific Ocean, are as large as 1%, and are consistent with the
large error bars previously detailed in Table 1. Should the plank-
tonic 3'3C records that indicate little change between the LGM and
modern-day (e.g., Broecker and McGee, 2013) be representative of
the entire tropics, LGM state estimate 1 (from Sections 3—5) would
be considered more reasonable. Our map of the difference between
the two LGM state estimates emphasizes the regions in which
additional observations would be most useful.

LGM State Estimate 2 may be relevant to more than just
checking the machinery for producing error bars, as there are a

number of reasons to suspect that the LGM-to-modern 513Cmc
change might be larger than the recent marine-based consensus.
For example, the state estimate reverts to modern-day conditions

in the absence of any paleo-data and thus, the Ay[6'3Cpyc] value
from LGM State Estimate 1 could be biased low due to remnant
modern-day constraints pulling the estimate toward no change. A
low estimate may also be due to low temporal resolution in the
cores, as high-resolution cores can have higher Ayc[3">Cpic] values
(A. Mix, personal communication, 2014). Furthermore, if a

Anig[6'3Cpyc] value of 0.6% is possible, then terrestrial-based (e.g.,
Crowley, 1995) and marine-based (e.g., Tagliabue et al., 2009) car-
bon partitioning estimates could be brought into consistency
without the need to invoke an inert terrestrial carbon pool (Ciais
et al.,, 2012).

4.6. Seawater-to-calcite relationship

Here we revisit our definition of Apg[d"Cpic] and whether it
significantly differs from AHc,[BBCDIC], defined as the LGM-to-Late
Holocene difference. Information regarding Apc[d">Cpic] is more
directly available through the difference of LGM and Late Holocene
core data, as interlaboratory offsets are canceled by the differ-
encing. One tradeoff is that only 365 measurements of a Late Ho-
locene and LGM value from the same core are available even when
the Late Holocene time interval is extended from O to 6 kyr BP.
Using the modern-day circulation to recreate a global 3'3Cpjc field
using the Late Holocene coretop values, we estimate a Late-

Holocene mean value of 613CDICH = 0.55%0+0.20%o that is 0.08%o
higher than the modern-day estimate. The difference directly af-
fects the inferred LGM-to-modern change and is attributable to
Holocene temporal variability (e.g., Oppo et al., 2003) and error in
the seawater-to-calcite calibration, but it is difficult to separate the
two. In particular, a systematic offset in the 3'>C calcite-to-seawater
proxy relationship could occur due to a dependence of calcite 3'>C
on carbonate ion or temperature (e.g., Spero et al., 1997; Hesse et al.,
2014). To determine the size of such an effect, an improved cali-
bration between the Late Holocene 3'3C values and the modern-day
seawater characteristics including 613CDIC, temperature, salinity,

CO%i DIC, and pH should be pursued.

5. Discussion

The discussion aims to put the results of this work into the
context of previous observational methods to estimate LGM-to-
modern §'3Cp;c change.

5.1. Optimal data weights

Given a circulation field, the state estimate formulation permits
the coefficients and constant of Equation (1) to be explicitly
calculated. Following Appendix C, the optimal set of data weights is

PSSR BN ~ -1_
w=WTE(S "+ E'WE+ LQ'L) T, (8)

where the hat represents truncating the variables to the quantities
related to the tracer field. Interestingly, the elements of w need not
sum to one, nor are they necessarily non-negative, as occurs in
linear extrapolation problems. The additional, usually-neglected
constant in Equation (1),
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isrelated to the sampling bias. If all the observations have a value of
zero, the best estimate of the global mean has a value of ¢, indi-
cating that prior information is being used to calculate the global
mean. Thus, the degree to which the observations sample the global
ocean in a biased way is quantified. In the case that no observations
are available, ¢, reverts to the first-guess global mean. The weights
and the constant are optimal in the sense that they solve a tapered,
weighted least squares problem.

The map of observational weights is spatially heterogeneous
with eastern Atlantic points generally having the smallest weights
(Fig. 8). A point in the Indian Ocean is upweighted the most, with
w = 10/N (or 10 times the weight that it would be given in the basic
arithmetic mean). This map generally corresponds to the
upweighting of Pacific data points (due to their relative sparsity)
and downweighting of Atlantic points. Finer detail is also present,
however, such as the upweighting of the few points in the Nordic
Seas, but a downweighting of nearby points that are just south of
the Greenland—Iceland—Scotland ridge. Other details depend on
the flow patterns in the glacial circulation, as observations have
influence both up- and downstream.

5.2. Interpreting data histograms

Important information about Apg[6'3Cpic] is available by
aggregating pointwise estimates of Ayg[8Cpic] in a histogram.
Pointwise values of Ayc[8'3Cpjc] are here inferred by projecting the
modern-day state estimate 8'3Cp;c field onto the core sites by a
linear interpolation of the 8 nearest gridpoints, then comparing
with LGM sediment core values. In our 492 points of Apc[d'>Cpic],
the median is 0.45%0 and the mean is 0.39%o0 (upper left panel
Fig. 9). The mode of the distribution is 0.6%o, which suggests that
Shackleton (1977) was more likely to estimate a number this high
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with a small number of cores. It is not clear from this analysis,
however, whether the mean of the histogram is a good estimate for
the global-mean 33Cpc.

To better interpret such a histogram, consider formulating a
modern-day and LGM equation of the type of Equation (1) and
taking their difference. For a general tracer, we obtain

Apmg(C) = ﬁTAMG (¥) + Amc (W)Y + Apc (©o). (10)

where the Ay operator acts elementwise on each vector and the
double overbar represents the temporal mean of modern-day and
LGM conditions (to distinguish from the single overbar that is a
global spatial average). The mean of the aformentioned histogram
reflects the true global mean in the case that the data weights are
based on the arithmetic mean (w; = 1/N for all i) and that the
second and third terms of Equation (10) vanish. As discussed in the
Introduction, the spatially irregular distribution of observations
makes these conditions improbable, and thus the mean of the
histogram is not usually a good estimate of global-mean change.

When a circulation is available to compute the optimal weights
of Equation (8) and the constant of Equation (9), the mean LGM-to-
modern change can be better estimated. For illustration, consider a
case where it is assumed that the modern-day circulation is
representative of the LGM. Then we can use the calculated modern-
day weights (wy) to better approximate the first term of Equation
(10). These weights shift the mode of the distribution to
Awmcl63Cpic]=0.05%0 and the inferred global-mean decreases from
0.39%o0 to 0.22%o (visualized as a weighted histogram, upper right
panel, Fig. 9). In effect, the observations of smaller change are
upweighted because they are located along modern-day circulation
pathways that influence more of the ocean.

A full interpretation of the pointwise data should also account
for LGM-to-modern circulation change, of course. In particular, we
use both the circulations from LGM State Estimate 1 and 2 (lower
row, Fig. 9). The mean of the histogram is again modified, this time
back toward larger values (0.23%. and 0.28%., respectively). The
two correction terms due to the changing ocean circulation must

Modern Circulation

0 1395 1 1.5 2
AMG(S C) [per mil]

LGM Circulation 2

..... 0.28.per mil .. .

0.)5 1 15 2

Fig. 9. Inference of LGM-to-modern 3'3Cp,c change from pointwise measurements. Upper left: Histogram of the 492 observations of Ayg[8'*Cpc]. Upper right: Histogram modified
by the optimal weights computed for the modern-day circulation. Bottom row: Histogram modified by the optimal weights computed for the glacial circulation (lower left: LGM State
Estimate 1, lower right: LGM State Estimate 2). The inferred Apg[6'3Cpyc](solid lines) results from the mean of the histogram in the top row. In the bottom row, the mean of the
histogram (dashed lines) is corrected by the last two terms in Equation (10) to produce the Ayg[6'Cpc] estimate (solid lines).
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also be considered (terms 2 and 3 of the right hand side of Equation
(10)). For LGM State Estimate 1, the correction is 0.09%o and the

final estimate of Ap[6'3Cpjc] = 0.32%0 is consistent with the re-
sults showcased in Sections 3 and 4. For LGM State Estimate 2, the
correction is even larger: 0.21%o (dominated by term 3: 0.15%o). A

global-mean change of Ap[6'3Cpic] = 0.49%0 is then diagnosed
from Equation (10), smaller than the actual 0.59%., which is
symptomatic of the breakdown of the linear assumption (i.e.,
Equation (B.14)). Unfortunately, the correction terms are poorly
known due to the uncertainty in the LGM circulation. We empha-
size that the correction cannot be determined from the data his-
togram alone.

6. Conclusion

The LGM-to-modern 8'3Cpc change is explicitly estimated by
first mapping benthic foraminiferal observations onto a global grid,
and then taking a mass-weighted average of the gridded values.
The mapping process, however, requires a method more sophisti-
cated than typical interpolation because of the sparsity of the
dataset and large spatial gaps. Here we demonstrate that an LGM
state estimate derived from a recent compilation of 492 3'3C data
points combined with a tracer transport model can provide a
reasonable globally-gridded field, as well as self-consistent uncer-
tainty estimates. Our updated best estimate of LGM-to-modern
global 8'3Cpjc change is 0.32 + 0.20%o at the 2¢ uncertainty level.
A coherent picture of the LGM '3C distribution emerges that is
consistent with previous Atlantic estimates and fills in the missing
details of the Pacific distribution. Maps of the LGM-to-modern
difference in 3'3C also display coherent spatial patterns, with
largest changes in the Atlantic sector of the Southern Ocean. The
implied glacial marine carbon storage is smaller than many
terrestrial studies suggest (e.g., Crowley 1995), and therefore likely
requires a reconsideration of land-based carbon sources (Ciais et al.
2012) and the factors that influence foraminiferal shells (e.g., Spero
et al. 1997).

While previous investigators have used various sub-domains
and multiple-step averaging techniques to determine how to best
weight pointwise observations to obtain the global mean, here we
show that determination of the optimal data weights requires
knowledge of the ocean circulation. The diagnosed optimal weights
conform to expectation in many ways, such as upweighting data in
regions with sparse coverage. It is very difficult, however, to
determine the global mean change from pointwise histograms of
the local BBCDIC change unless the concomitant circulation change
is also known. Thus, much of the existing uncertainty in LGM-to-
modern 3'3C change is due to the difficulty in determining the
glacial ocean circulation.

Our glacial state estimate points toward future directions to
reduce the considerable remaining global-mean 613Cmc uncer-
tainty. For example, the addition of randomly-distributed hypo-
thetical data would reduce the uncertainty of the global mean as
N-12 where N is the number of observations. Furthermore, the
greatest differences between two LGM estimates that both fit the
data occur in the upper ocean, the Southern Ocean, and various
marginal seas, pointing to regions where additional information
would be most useful. In particular, a compilation of planktonic
records would help reduce the uncertainty in surface regions.
Provided that challenges with interpretation regarding DIC
change and species offsets can be overcome (e.g., Spero et al,,
1997), we expect that strategic sampling can reduce the global-
mean uncertainty at a faster rate than the hypothetical
randomly-sampled case. A two-pronged approach appears best
suited to reduce the global-mean uncertainty: compilation of

information from strategically-placed locations, including plank-
tonic records, and the implementation of a more sophisticated
dynamical model that can better constrain the circulation for
making global maps.
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Appendix A. Input variables

The input variables include the weighting matrices for the
different constraints of Equation (7). The S$~! matrix is chosen to
reflect prior knowledge of the d3Cpc field and mass flux ratios. For
example, the surface 3'3Cpjc is assumed to vary by no more than
2.4%o with lengthscales no smaller than 10° of latitude or longitude
(following the nondiagonal weighting matrix method of Gebbie
et al. (2006)). The mass flux ratios, m, are given a prior uncer-
tainty of 0.3 (relative to their nondimensional range of 0—1), chosen
by the standard deviation of the m entries for the modern-day
circulation. This choice reflects our desire to constrain the glacial
circulation with little subjective prior information, but to require
that the statistics of glacial transport should not fall outside the
range of the modern-day statistics. For the modern-day circulation,
on the other hand, we estimate that the uncertainty of the m values
is about 0.05, based on the differences between various modern
solutions. The W~! matrix assumes that the observational uncer-
tainty is 0.2%o, as discussed in the body of the text. The choice of the
Q! matrix agnostically assumes that the glacial source of remin-
eralized material is the same magnitude as the modern day source
or sink.

Appendix B. Uncertainty derivation
Appendix B.1. Least-squares solution

Section 2.4 defines a cost function,
J = u'S"'u + n"'W'n + v/Q v, that is here written in a more
complete form by substituting the equations for the first-guess
adjustment, the observational constraint, and the model:

J=(x—%0)'S7'(x —Xo) + (Ex —y)'W 1 (Ex - y)
+(7x - 9'Q ' (7[x] - q).

The solution, X, is at the minimum of J and thus satisfies the
stationary assumption:

(B.1)

Jx=2(871(x—%0) + E'W 1 (Ex—y) + LiQ " (#[x| - @)} = 0,
(B.2)

where J,=0//0x];. We define a linearization of model in the
neighborhood of the solution:
2X] = Z[X |+ Ly (X — X') +¢, (B.3)

where ¢ represents the higher-order terms in the expansion. The
solution estimate, X, satisfies
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=" +EW'E+LLQ 'Ly) 1{S 'xo + Wy

+LLQ (g + X — 2X])}, (B.4)

where the higher-order terms become negligible as one approaches
the solution and are dropped from this last equation.

Appendix B.2. Uncertainty of tracer distribution and circulation

Here we seek the expected solution in the hypothetical case that
a perfect first-guess, observations, and tracer source are available
(x5, ¥, and q, respectively). Defining

do =S Ix; + E'Wly* + LLQ 1(q" + Ly X — #[X]), (B.5)
the expected solution is
% = "+EWTE+LIQ 'Ly 'do. (B.6)

The dispersion of X — (X) is equal to the solution covariance of X:

Ce=((X — (X)X — <x>)T), (B.7)
and substitution of Equation (B.6) into (B.7) gives
CG=6"+EWITE+LIQ 'Ly " <(d—do)(d - do)"
> T +E'WIE+LIQ L)
(B.8)

Assuming that errors in the first guess, observations, and model are
uncorrelated (i.e., Rys = 0, Ryg = 0, etc.), the expected value in the
right hand side of (B.8) is

<(d—dp)(d—dg)"> =S 'RuS ' + EEW 'R,;W'E

+LIQ 'RyQ 'Ly (B.9)
Substituting Equation (B.9) into (B.8) and assuming that the weight
matrices are equal to the expected second-moment matrices of the
residuals (i.e., Rpp = W, Rgg = Q, and Ry, = S), we obtain the solution
covariance in terms of the known input variables:
-1 Typ7—1 To-1y -1

CG=C6 +EW E+LQ L) (B.10)
that is used in the main text as Equation (6). The standard error is
here defined as +,/C; of the diagonal elements.

Appendix C. Calculation of the optimal observational weights

In the case that the circulation is known exactly, the cost func-
tion Equation (B.1) can be simplified

J=(c— cO)T§71 (c—co) + (Ec - y) w1 (Ec - y)

+ (Lec — q)TQ ! (Lec — q), (C.1)
where the hat indicates truncation of the E and S matrices to the
parts related to the tracer field. Using the least-squares estimate of
the tracer solution and the following definition of the global mean,
€ =T ¢ where T is also a truncated vector, we obtain a simplified
equation

o el o~ . 1 -
c='(s ]+ETW*‘E+LZQ*1LC) (s "o+ E'Wly
+L{Q 'q).

Comparison of Equation (C.2) to Equation (1) permits the
identification of the optimal data weights:

(C2)

el o~ ~ -1
w=WIE(S "+ EWE+ LQ 'L) T (C3)
and the additional constant
~—1 ~—1 T = PN
o= (s + qTQ”Lc) (s +EWIE+ LZQ*LC) T
(C4)
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