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Abstract

Self-Healing Robust and Fair Neural Networks via Optimal Control

by

Zhuotong Chen

This dissertation investigates the challenges of improving the robustness and fairness of deep

neural networks through the lens of optimal control theory. Deep neural networks, despite their

extensive application across various engineering fields, are vulnerable to imperceptible perturba-

tions and often exhibit biased performance towards underrepresented demographic populations.

The first part of this dissertation presents a novel self-healing framework designed to improve

the robustness of deep neural networks against unforeseen perturbations. This framework is

realized by a novel closed-loop control approach grounded in optimal control theory, which

adaptively generates control signals to identify and correct potential errors in the state trajec-

tory of perturbed input data during inference. The second part of this dissertation introduces

a PID control framework that generalizes the closed-loop method with additional integral and

derivative controllers. We derive an analytical solution for fast online inference, making our

control framework applicable to large-scale models. The third part of this dissertation addresses

the fairness issue in machine learning within dynamic environments, where undesired model bi-

ases against minority users could lead to significant user churn, thereby diminishing the training

data for model tuning in subsequent time steps. This negative feedback loop can further exacer-

bate demographic disparity. To address this, we introduce the concept of asymptotic fairness to

maintain consistent model performance across all demographic groups and propose an optimal

control solution to achieve this goal.
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Chapter 1

Motivation

1.1 Trustworthy Machine Learning

As machine learning technology gets applied to actual products and solutions, new chal-

lenges have emerged. Models unexpectedly fail to generalize to small changes in the distribution;

some models are found to utilize sensitive features that could treat certain demographic user

groups unfairly; models tend to be confident on novel data they have never seen, or models can-

not communicate the rationale behind their decisions effectively with the end users like medical

staff to maximize the human-machine synergies. Collectively, we face a trustworthiness issue

with the current machine learning technology. A summary of machine learning trustworthy

issues is demonstrated in Figure 1.1. Below we discuss these issues and their importance.

Robustness. Robustness in machine learning is a measure of a model’s ability to maintain

performance when exposed to variations, noise, and adversarial attacks. More specifically,

when imperceptible perturbations are applied to input data, the performance of state-of-the-

art machine learning models drops to surprisingly low levels, often falling significantly below

their expected accuracy rates [1, 2]. Machine learning robustness is crucial for ensuring that

models perform reliably across diverse and unforeseen conditions. In real-world applications,

robust models are essential for maintaining high accuracy and safety standards. For instance,

in healthcare, robust machine learning models are vital for accurate diagnoses and treatment

recommendations across different medical institutions, thus ensuring patient safety. Similarly,
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(a) (b)

Figure 1.1: (a): Various trustworthy issues in machine learning. (b): Algorithm-level and
hardware-level trustworthy issues in machine learning.

autonomous vehicles rely on robust models to navigate safely in varied and unpredictable envi-

ronments. The robustness issue is crucial as it significantly impacts both market viability and

governmental policies [3]. Governments worldwide are recognizing these risks; initiatives such

as the European Union’s AI Act aim to establish stringent regulations ensuring AI reliability

and safety [4].

Fairness. The machine learning fairness problem is essential to prevent biases from influenc-

ing decisions in machine learning. For instance, in hiring processes, if not designed with fairness

in mind, these models might favor certain demographics over others, perpetuating inequality [5].

Similarly, in predictive policing, biased models could disproportionately target specific commu-

nities, amplifying social disparities. Machine learning fairness issues significantly impact the

market by affecting consumer trust, brand reputation, and exposing companies to legal and

financial risks, while also offering opportunities for ethical differentiation and investment at-

traction [6]. To address these challenges, governments are implementing regulatory frameworks,

developing guidelines and standards, funding research, fostering public-private partnerships,

raising public awareness, and establishing ethics committees and oversight bodies.

2



Privacy. Machine learning privacy issues primarily arise from the collection, use, and sharing

of vast amounts of personal data required to train and refine models [7]. The privacy issues

are critical due to the sensitivity of the data involved, regulatory compliance requirements,

and the impact on user trust and adoption. The market is increasingly valuing privacy, with

financial repercussions for data breaches and a growing demand for privacy-enhancing technolo-

gies [8]. Government initiatives worldwide, through legislation like GDPR and CCPA, funding

for privacy-preserving research, and public education campaigns, are driving the adoption of

privacy measures [9].

Explainability. Explainability in machine learning refers to the ability to interpret the de-

cisions made by machine learning models, ensuring transparency, accountability, and trust in

their outputs [10]. In marketing, explainability helps businesses understand and justify the

decisions made by ML models, enhancing transparency and fostering consumer trust. For gov-

ernment initiatives, explainability is crucial for accountability in applications such as criminal

justice, healthcare, and public policy [11].

Hardware security. Hardware security in machine learning is essential to protect physical

components from attacks, such as fault injections. This issue is critical because vulnerabilities in

hardware can undermine the performance of entire machine learning system, despite algorithms

being implemented. The marketing impact of hardware security breaches can result in substan-

tial financial losses and damaged reputations. Companies that emphasize secure hardware gain

a competitive edge. Government initiatives, including the EU Cybersecurity Act, highlight the

importance of secure hardware in protecting national security and critical infrastructure. These

initiatives provide funding and regulatory frameworks to enhance hardware security, reflecting

its crucial role in maintaining consumer trust and complying with regulatory standards [12].

Hardware failure. Hardware failure in machine learning is a significant issue that impacts

the reliability of models. Key issues include processing variations in hardware like ASICs, which
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arise from manufacturing inconsistencies, leading to discrepancies in computation accuracy. An-

other issue is the mismatch in model parameters due to the precision limitations of deployment

hardware, which can degrade model performance. Hardware aging further exacerbates these

problems. In photonic components, thermal sensitivity issues can cause significant deviations

in computations due to the delicate nature of photonic elements. Addressing these hardware

failures is crucial for ensuring the trustworthiness of machine learning systems, especially in

critical applications where reliability and robustness are paramount [13].

In the next Sections, we discuss more details about robustness and fairness issues, which

are the focus on this dissertation.

1.2 Robustness of Deep Neural Networks

Due to the increasing data and computing power, deep neural networks have achieved

state-of-the-art performance in many applications such as computer vision and natural lan-

guage processing. However, many deep neural networks are vulnerable to various malicious

perturbations due to their black-box nature: a small (even imperceptible) perturbation of in-

put data may lead to completely wrong predictions [14, 15]. This has been a major concern

in some safety-critical applications such as autonomous driving [16] and medical image analy-

sis [17]. In the following, we discuss various sources that cause robustness issues and solutions

for improving model robustness.

1.2.1 Various Sources Causing Robustness Issues

Robustness issues in machine learning learning arise from various sources. These issues can

be categorized into data-related, model-related, and hardware deployment robustness issues.

Data-related robustness issues include adversarial attack [1], out-of-distribution data [18], data

corruption [18]. Model-related robustness issue refers to perturbations in model parameters [19].

Hardware deployment related-robustness are critical, especially when implementing models on

specialized hardware like ASIC chips [20]. In the following, we discus each of these three

4



(a) Adversarial attack (b) Out-of-distribution data

(c) Data corruption (d) Quantization

Figure 1.2: (a): Adversarial attack [1] causing a panda image to be misclassified as a gibbon.
(b): Out-of-distribution data illustrated by a sketch of a banana [21]. (c): Data corruption
exemplified by the application of motion blur and snow effects. (d): Quantization from FP32
to INT8.

robustness issue categories in details.

Data-related robustness issues.

• Adversarial attack [22,23]. Let F denote a deep neural network, x be a natural input

data and y be its label. An adversarial attack searches for a perturbed counterpart x̃

such that the well-trained deep neural network misclassifies x̃ as a wrong label instead of

y .

y ̸= arg maxF (x̃,θ), s.t. ∥x̃− x∥ ≤ ϵ,

Where ∥·∥ denotes a norm (e.g., ∥·∥2 measures the Euclidean distance between the original

input x and the perturbed input x̃) and ϵ is the perturbation budget, a deep neural

network is considered ϵ-robust with respect to x̃ if no valid perturbation x̃ can be found.

An example of adversarial attack is shown in Figure 1.2 (a) where a panda image is

misclassified as a gibbon when small noise is applied.
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• Out-of-distribution data [18]. Out-of-distribution robustness refers to the ability of

a machine learning model to perform well on data that is different from the data it was

trained on. This is crucial because real-world applications often encounter scenarios where

the input data distribution shifts or changes from the training distribution [24]. Machine

learning models are typically trained on a specific dataset that represents a particular

distribution of data. This dataset might not capture all possible variations that could

occur in the real world. When the model is deployed, it might encounter data that has

different characteristics compared to the training data. This out-of-distribution data can

arise due to various reasons, such as changes in the environment, different population

characteristics, or unexpected events. An example of out-of-distribution data is shown in

Figure 1.2 (b) with a sketch of a banana.

• Data corruption [25]. Data corruption in machine learning refers to the introduction

of errors, noise, or unintended alterations in the dataset, which can significantly impact

the model performance and reliability. This corruption can occur during data collection,

storage, or preprocessing stages. Data corruption undermines the ability of model to gen-

eralize and make accurate predictions, leading to potentially harmful decisions, especially

in critical applications like healthcare, finance, and autonomous systems. An example

of data corruption is shown in Figure 1.2 (c) where motion blue and snow condition are

applied to an image of bird.

Model-related robustness issues.

• Model parameter error [26]. Model parameter error in machine learning refers to the

inaccuracies and uncertainties that arise from the limitations of numerical precision in

computational processes. In deep learning, models often involve complex mathematical

operations and large-scale data processing, which require high precision to ensure accurate

results. However, due to hardware constraints and finite memory, these operations are

typically performed with limited precision, leading to rounding errors and approximation
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inaccuracies. These precision errors can accumulate and propagate through the layers of a

neural network, potentially resulting in significant deviations from expected outputs [27].

Precision error undermines the robustness of models, particularly in critical applications

where even small inaccuracies can lead to incorrect predictions or decisions. An example

of precision error caused by quantization is shown in Figure 1.2 (d).

• Parameter perturbation attacks [19]. Parameter perturbation in the robustness

of deep learning involves intentionally altering the parameters (weights and biases) of

a neural network. This technique helps evaluate how small or significant modifications

in the model’s parameters affect its performance, particularly when exposed to out-of-

distribution data or adversarial attacks.

Hardware failure and uncertainty.

• Process Variation in ASIC Deployment [28]. Application-Specific Integrated Cir-

cuits (ASICs) are custom chips designed for specific tasks, including machine learning

inference. During the manufacturing process, slight variations can occur due to differ-

ences in temperature, pressure, and material quality, among other factors. These process

variations can lead to discrepancies in the physical properties of the transistors and other

components on the chip, which in turn can cause deviations in the expected model pa-

rameter values.

• Hardware Aging [29]. Over time, hardware components degrade due to various factors

such as material fatigue. This degradation can affect the performance and reliability of

the machine learning models deployed on these devices. Aging can cause changes in the

electrical characteristics of the components, leading to drift in the parameter values and

reduced accuracy of computations.

• Sensitivity with respect to external factors [30]. This is a common issue in analog

AI hardware such as photonic AI accelerators. Photonic AI hardware offers significant
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advantages in terms of speed and energy efficiency for machine learning tasks. However,

these devices are highly sensitive to external conditions such as temperature fluctuations,

mechanical vibrations, and manufacturing imperfections. This sensitivity can introduce

noise into the parameters of the ML model, leading to inaccuracies.

1.2.2 Robustness Improvement in Deep Learning

Numerous methods have been proposed to improve the robustness of machine learning mod-

els, which can be categorized into two types: training-based defenses that focus on improving

the model itself, and data-based defenses that leverage the underlying data information.

Training-based defense. A leading example of training-based defense is adversarial training

[23], which employs robust optimization techniques and has proven effective against all forms

of adversarial attacks [31].

min
θ

E(x,y)∼D

[
max

∥x̃−x∥≤ϵ
L(F (x̃;θ), y)

]
,

where θ are model parameters, D is the data distribution, and L is the loss function (e.g.,

cross-entropy loss) that measure the discrepancy between model prediction and truth label.

Nonetheless, training-based defenses presents several key challenges. (1) training-based defenses

may incur significant computational costs in large-scale deployments [32]. The computational

demand is substantial [33], as finding adversarial examples in the discrete domain of natural

language processing often requires addressing a combinatorial optimization problem [34], which

becomes exponentially more complex as the problem size increases. (2) Improving adversar-

ial robustness might inadvertently impair the model’s performance on regular, unperturbed

datasets [35]. (3) Adversarial training is less effective against unforeseen adversarial perturba-

tions [36].
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Data-based defense. On the other hand, data-based defenses are introduced as alternatives

to training-based defenses in part to alleviate some of the aforementioned issues [37,38]. Data-

based defenses aim to enhance model robustness by leveraging inherent data properties. These

methods typically involve detecting or filtering out perturbed data, thus maintaining model

performance. The idea is that since perturbed data are generated from clean data by adding

imperceptible perturbations, it is possible to decontaminate them by searching for more prob-

able data within a small distance of the original ones. However, the mechanisms underpinning

these methods are not fully understood, they have not been able to achieve state-of-the-art

performance [31].

1.3 Fairness of Deep Neural Networks

Ensuring the fairness of deep neural networks is critical to avoid reinforcing or exacerbat-

ing existing biases in society. Fairness problem is especially important in sensitive domains

like education, finance, and healthcare, where decisions significantly impact individuals [39].

In education, fair algorithms ensure that all students, regardless of their background, have

equal access to opportunities and are not discriminated against based on race, gender, or so-

cioeconomic status. This promotes diversity and equity, fostering a more inclusive educational

environment. In finance, fairness ensures equal access to financial services, preventing economic

disparities and helping institutions comply with regulatory standards. Unfair financial algo-

rithms can deny loans to minority groups, perpetuating cycles of poverty and limiting economic

mobility. In healthcare, fairness ensures accurate and equitable diagnoses and treatments for all

patients, reducing health disparities and fulfilling ethical responsibilities [40]. Biases in health-

care algorithms can lead to unequal treatment, worsening health outcomes for minority groups.

Addressing challenges such as biased training data, lack of algorithmic transparency, and the

need for fairness-aware algorithms is crucial [41].

9



1.3.1 Various Definitions of Fairness

The fairness property can be defined differently, which leads to different results. We in-

troduce three popular fairness definitions, including demographic parity, equalized odds and

individual fairness, and discuss their advantages and drawbacks.

Demographic parity. Demographic Parity [42] requires the decision-making process to be

independent of a protected attribute such as race, gender, or age. This means that the prob-

ability of a positive outcome (e.g., receiving a loan or being hired) should be the same across

different groups defined by the protected attribute. This ensures that members of different

groups have equal chances of receiving the positive outcome. However, it is important to note

that achieving demographic parity does not necessarily mean the classifier is fair in all contexts,

as it might ignore differences in base rates (the true proportion of positive outcomes) between

groups. For instance, if one group has a naturally higher incidence of the positive outcome,

enforcing demographic parity might lead to either an unfair burden on the model or unequal

treatment in practice.

Equalized odds. Equalized Odds [43] is a fairness criterion that ensures a classifier’s per-

formance is equally accurate for all groups defined by a protected attribute. Specifically, it

requires that both the true positive rate and false positive rate are equal across these groups.

This means that, for example, the probability of correctly identifying a positive instance (true

positive rate) and the probability of incorrectly identifying a negative instance as positive (false

positive rate) must be the same regardless of the group. Equalized Odds helps prevent biased

decision-making that could disproportionately benefit or harm specific groups, but it can be

challenging to achieve in practice, especially when base rates differ between groups.

Individual fairness. Individual Fairness [44] is a principle that emphasizes treating similar

individuals similarly. This concept is rooted in the idea that fairness should not only be assessed

at the group level but also at the individual level. This ensures that two individuals who are

10



Table 1.1: Various Fairness Definitions and Explanations

Definition Explanation

Demographic Parity [42] It requires the decision-making process to be independent of
a protected attribute

Equalized Odds [43] It is a fairness criterion that ensures a classifier’s perfor-
mance is equally accurate for all groups defined by a pro-
tected attribute

Individual Fairness [44] This is a principle that emphasizes treating similar individ-
uals similarly

Equal Opportunity [43] The true positive rate should be the same across groups

Counterfactual [42] Counterfactual fairness is concerned with ensuring that de-
cisions would be the same in a counterfactual world where
the individual belonged to a different demographic group.

Causal Fairness [45] Causal fairness deals with the causal relationships between
variables to ensure fairness.

Procedural Fairness [46] Procedural fairness focuses on the fairness of the processes
leading to outcomes rather than the outcomes themselves.

alike in relevant aspects (e.g., qualifications for a job or risk profile for a loan) receive similar

treatment from the model. Individual Fairness requires a careful definition of the similarity

metric, which can be context-specific and may involve subjective judgment.

Other fairness definitions. There are many other fairness definitions [41], such as Equal

Opportunity [43], Counterfactual fairness [42], Causal Fairness [45], Procedural Fairness [46].

Table 1.1 summarizes all fairness definitions.

1.3.2 Existing Solutions of Machine Learning Fairness

Fair representation learning. Fair representation learning aims to create representations

of data that remove or mitigate the influence of sensitive attributes, such as race or gender, to

ensure that downstream models do not propagate bias [47]. One common approach is to use

adversarial training [23], where a neural network is trained to produce representations that are

useful for the primary task (e.g., classification) but uninformative about the sensitive attribute.

This is achieved by including an adversary that tries to predict the sensitive attribute from
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the representation, and the main model is trained to minimize the primary task loss while

maximizing the adversary’s loss. This method helps in reducing discriminatory outcomes in

machine learning models by ensuring that the learned representations are fair and unbiased

with respect to the sensitive attributes.

Fairness constrained training. Applying fairness constraint is a method that requires a

model’s predictions to be independent of sensitive attributes given the true outcome [43]. In

other words, for a binary classification problem, the false positive rate and false negative rate

should be equal across different groups defined by the sensitive attribute. This can be achieved

through post-processing techniques, where the output probabilities of a classifier are adjusted

to ensure equalized odds. Alternatively, constraints can be incorporated into the training

process to directly optimize for equalized odds. This method aims to ensure that individuals

from different demographic groups are treated equally by the model, reducing disparities in

prediction errors.

1.4 Thesis Contributions

1.4.1 Self-Healing Methods to Improve AI Robustness

Research gap for existing robustness study Predominantly, existing robustness improve-

ment methods are rooted in the foundation of adversarial training to overcome the effects of

specific adversarial perturbations. This is achieved by adjusting either the entire set of model

parameters or a significant portion thereof [48]. Despite its effectiveness, this approach raises

three critical concerns. Firstly, adjusting model parameters using adversarial examples requires

substantial computational resources [33]. Secondly, there exists a potential trade-off where

improved adversarial robustness may lead to compromised performance on standard, natural

datasets [35]. Thirdly, and more problematically, adversarial training is less effective against

unforeseen adversarial perturbations [36]. This limitation becomes particularly noticeable when

deploying models in practice, where anticipating the potential adversarial attacks in advance is
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nearly impossible.

Thesis contribution on improving model robustness. To address these challenges, we

explore a self-healing process inspired by the mechanisms of a robust biological immune system.

Figuratively speaking, self-healing properties can be attributed to systems or processes that

inherently or intentionally correct any disturbances.

• We propose a self-healing process to autonomously rectify or alleviate undesirable issues.

We examine this concept as a cost-effective strategy to enhance the robustness of deep

neural networks against various perturbations. On many experiments, the proposed

method can consistently improve the robustness of the pre-trained models against various

perturbations.

• The self-healing robust neural network framework is computationally prohibitive for large-

scale deep neural networks, such as large language models. We revisit the self-healing

robust neural network framework and derive a fast closed-form solution. This advance-

ment makes the self-healing framework applicable for use with large language models that

have more than 1 billion parameters.

1.4.2 Optimal Control to Improve Long-Term Model Fairness

Research gap for existing fairness study. Existing methods on addressing machine learn-

ing fairness problem have focused on a static setting where the data distribution does not change

over time. However, practical machine learning models are often deployed in a non-stationary

environment [49]. Specifically, the distribution of training data evolves with time, and the

deployed model needs to be adjusted accordingly. The adjusted model will influence users’

participation and future training data in turn. Consider a scenario wherein a deployed model

is continuously fine-tuned based on the majority’s input. Minority users may find that their

interactions with the machine learning model are unsatisfying. As a result, these minority users

tend to not engage with the model. The deployed model, which is already under-representing
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them, gets even less data from minority users, leading to even worse services to this group [50].

Existing works have applied static fairness constraint at each time step to ensure fair treatment

across all demographic groups [51]. However, this can inadvertently introduce undesirable long-

term effect [49]. Alternatively, reinforcement learning methods have been applied to optimize

fairness metric over a long-term horizon [52, 53]. Due to the complex non-stationary environ-

ment, these methods require significant computations for exploring the optimal model and often

lead to suboptimal solution.

Thesis contribution on improving model fairness. With considerations of the interplay

between a machine learning model and users’ participation, we propose a model-based optimal

control method to engage users from all demographic groups over a long time horizon. The

optimal control formulation accounts for long-term planning, therefore it can achieve asymptotic

fairness in a non-stationary setting. The proposed optimal control method initially biases the

machine learning model towards the minority group to attract more users, and control the

long-term behavior of the machine learning model.
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Chapter 2

Background

This chapter provides background information on ordinary differential equations and optimal

control theory, which are essential building blocks for this dissertation.

2.1 Background on Ordinary Differential Equations

This section introduces some basics of ordinary differential equations. An ordinary differ-

ential equation (ODE) is the equation

ẋt = F (xt), x0 ∈ Rd, (2.1)

where ẋt denotes the time derivative, F : Rd → Rd is a function or vector field and x0 is the

initial condition. This is called a time-homogeneous ODE since the vector field on the right

does not depend explicitly on time t. On the other hand, a time-inhomogeneous ODE is given

by

ẋt = F (xt, t), x0 ∈ Rd. (2.2)

Notice that Equation (2.2) includes Equation (2.1). A solution of an ODE on [0, T ] is a function

x : [0, T ] → Rd with x := {xt : t ∈ [0, T ]} that satisfies Equation (2.2).

The definition of solution requires x to be differentiable on [0, T ]. Equation (2.2) can be
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written as

xt = x0 +

∫ t

0
F (xs, s)ds. (2.3)

2.1.1 Numerical Solutions of ODEs

In general, ODEs do not admit explicit solutions and a solution needs to be computed

numerically. This section presents the simplest possible method, the forward Euler method. In

this method, a solution of the ODE in Equation (2.2) is constructed by discretizing time,

x̂k+1 = x̂k + △tF (x̂k, k), x̂0 = x0, (2.4)

which can be seen as a first-order Taylor expansion of the integral form of the ODE in Equation

(2.3) for small △t. The latter is called the step size. This approximation is expected to get

better as the step size △t becomes small. The following theorem makes this precise.

Theorem 2.1.1 Let F be Lipschitz in x uniformly in t and continuous in t. Let x be a solution

of the ODE defined in Equation (2.2) with initial condition x0 and x̂ be the iterates defined in

Equation (2.4), then for each K > 0, there exists a constant C > 0 such that

max
k≤K

∥x̂k − x(k△t)∥ ≤ C△t.

2.1.2 Connection between ODE and Deep Neural Networks

The intersection of ODEs and deep neural networks has emerged as a significant area of

research, offering new perspectives and methodologies for neural network design and analysis.

Central to this development is the consideration of deep neural networks as discretizations

of dynamical systems. This perspective was notably advanced by the introduction of Neural

Ordinary Differential Equations [54]. Neural ODEs transform the concept of discrete network

layers into a continuous process, interpreting data transformation as the evolution governed by

differential equations. This continuous depth model allows for adaptive computation, enabling
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the network to dynamically determine the number of function evaluations required for a given

input, leading to potential improvements in efficiency and accuracy [55].

Additionally, viewing the training process of deep neural networks through the lens of

ODEs provides valuable insights. The backpropagation algorithm used in training can be

seen as solving an ODE where gradient flow governs the evolution of network parameters [56].

Moreover, the stability and robustness of deep neural networks can be analyzed through the

properties of the underlying ODEs, providing insights into the effects of small perturbations

on network outputs and enhancing adversarial robustness [57]. Integrating ODEs into deep

learning offers a continuous and theoretically grounded framework, paving the way for the

development of more flexible and efficient neural network architectures.

In the following, we discuss the connection between ODE and deep learning using three

examples, namely residual neural network, recurrent neural network, and normalizing flow.

Recall the definition of an ODE and its first-order Taylor expansion (as known as the Euler’s

method) as discussed in Eq. (2.4), these three types of neural networks can be considered as a

democratization of an ODE.

• ResNet as an ODE [54]. A Residual Network (ResNet) can be expressed as:

xn+1 = xn + f(xn, t).

This formulation is strikingly similar to Euler’s method. Here, xn represents the input

at layer n, and f represents the ResNet layer. In the continuous limit (as the number of

layers increases and each layer’s contribution becomes infinitesimally small), this can be

seen as solving an ODE.

• Recurrent Neural Networks as an ODE [58]. Recurrent Neural Networks (RNNs)

process sequences by updating their hidden states at each time step. The hidden state
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update can be written as:

ht+1 = σ(Wtht + Wtxt+1 + b),

where ht is the hidden state at time t. This can be interpreted as a discrete approximation

to the continuous ODE:

dh(t)

dt
= f(h(t),xt).

Here, the function f defines the dynamics of the hidden state.

• Normalizing flows as an ODE [54]. Normalizing flows are a class of generative models

that provide a powerful way to model complex probability distributions. They achieve this

by transforming a simple base distribution (e.g., Gaussian) into a more complex target

distribution through a series of invertible and differentiable mappings. Normalizing flows

can also be viewed through the lens of ODEs and deep learning. The idea is to interpret

the transformations in a flow as the solution to an ODE. This leads to the concept of

continuous normalizing flows (CNFs).

2.2 Background on Optimal Control Theory

The study of optimal control theory originates from the classical theory of the calculus

of variations, beginning with the seminal work of Euler and Lagrange in the 1700s. These

culminated in the so-called Lagrangian mechanics that reformulate Newtonian mechanics in

terms of extremal principles. In a nutshell, the calculus of variations studies optimization over

“curves”, which one can picture as an infinite dimensional extension of traditional optimization

problems. Optimal control theory is a nontrivial extension of the classical theory of calculus

of variations in two main directions: to dynamical and non-smooth settings. This leads to two

interrelated directions: the Pontryagin’s maximum principle and the Hamilton-Jacobi-Bellman

theory.
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2.2.1 The Optimal Control Formulation

Consider the ordinary differential equation

ẋt = F (xt,ut, t), t ∈ [t0, t1], xt0 = x0. (2.5)

Here xt ∈ Rd is the state, u : [t0, t1] → U ⊂ Rm is the control, with U the control set. Let the

following conditions on F hold:

• F (x,u, t) is continuous in t and u for all x.

• F (x,u, t) is continuously differentiable in x for all t and u.

These conditions are sufficient to ensure that the differential equation defined in Equation (2.5)

is well-posed. Let the objective functionals have the following form

J(u) =

∫ t1

t0

L(xt,ut, t)dt + Φ(xt1 , t1), (2.6)

where

• L: Rd × U × R → R is called the running loss.

• Φ: Rd × R → R is called the terminal cost.

The Bolza problem of optimal control is stated as the following objective function,

inf
u

J(u) =

∫ t1

t0

L(xt,ut, t)dt + Φ(xt1 , t1),

s.t. ẋt = F (xt,ut, t), t ∈ [t0, t1], xt0 = x0. (2.7)

The case where Φ = 0 (no terminal cost) is called a Lagrange problem, whereas the case with

L (no running cost) is called a Mayer problem. In optimal control theory, the initial condition

x0 and initial time t0 are often considered to be fixed. However, the terminal time t1 can

either be fixed or it can vary. As with classical optimization problems, the primary object of
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study is optimality conditions. One differentiates between necessary and sufficient conditions

for optimality. The former asks what conditions must any local/global optimum satisfy, and

the latter concerns a condition that is enough to guarantee optimality. The following sections

will investigate each of these aspects.

2.2.2 Pontryagin’s Maximum Principle

This section discusses Pontryagin’s Maximum Principle (PMP) as a necessary condition for

optimality in both continuous and discrete settings.

PMP in continuous setting: Consider the Bolza problem of optimal control defined in

Equation (2.7),

inf
u

J(u) =

∫ t1

t0

L(xt,ut, t)dt + Φ(xt1 , t1),

s.t. ẋt = F (xt,ut, t), t ∈ [t0, t1], xt0 = x0.

To begin with, let the Hamiltonian H : R× Rd × Rd × U → R be defined as

H(t,xt,pt,ut) := p⊤F (xt,ut, t) − L(xt,ut, t), (2.8)

A control u is admissable if ut ∈ U for all t ∈ [t0, t1].

Theorem 2.2.1 Let u∗ be a bounded, measurable and admissible control that optimizes the

objective function defined in (2.7), and x∗ be its corresponding state trajectory. Then, there

exists an absolutely continuous process p = {pt : t ∈ [t0, t1]} such that

ẋt = ∇pH(t,x∗
t ,p

∗
t ,u

∗
t ), x∗

0 = x0, (2.9)

ṗt = −∇xH(t,x∗
t ,p

∗
t ,u

∗
t ), p∗

t1 = −∇xΦ(x∗
t1), (2.10)

H(t,x∗
t ,p

∗
t ,u

∗
t ) ≥ H(t, x∗t ,p

∗
t ,ut), ∀ut ∈ U and a.e. t ∈ [t0, t1]. (2.11)
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The equation (2.9) is called the state equation, and it is simply

ẋt = F (xt,ut, t),

and it describes the evolution of the state under optimal control. The equation (2.10) is called

the co-state equation, with p∗ being the co-state. The role of the co-state equation is to

propagate back the optimality condition and it is the adjoint of the variational equation. The

maximization condition in Equation (2.11) is the heart of the maximum principle. It says

that an optimal control must globally maximize the Hamiltonian. One can regard this as a

nontrivial generalization of the Euler-Lagrange equations to handle strong extrema, as well as

a generalization of the KKT conditions to nonsmooth settings.

PMP in discrete setting: In a discrete setting, the objective function of the optimal control

problem is

inf
u

J(u) =

t1∑
t=t0

L(xt,ut, t) + Φ(xt1 , t1),

s.t. xt+1 = F (xt,ut, t), t ∈ [t0, t1], xt0 = x0, (2.12)

with a discrete dynamic system

xt+1 = F (xt,ut, t), t ∈ [t0, t1], xt0 = x0. (2.13)

Theorem 2.2.2 Let F and Φ be sufficiently smooth in x. Assume further that for each t and

x ∈ Rd, the sets {F (xt,ut, t) : ut ∈ U} and {L(xt,ut, t) : ut ∈ U} are convex. Then, there
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exists co-state processes p∗ = {p∗
t : t = [t0, t1]}, such that following holds for t ∈ [t0, t1]:

xt+1 = ∇pH(t,x∗
t ,p

∗
t ,u

∗
t ), x∗

0 = x0, (2.14)

pt = −∇xH(t,x∗
t ,p

∗
t+1,u

∗
t ), p∗

t1 = −∇xΦ(x∗
t1), (2.15)

H(t,x∗
t ,p

∗
t ,u

∗
t ) ≥ H(t,x∗

t ,p
∗
t ,ut), ∀ut ∈ U and a.e. t ∈ [t0, t1]. (2.16)

2.2.3 Hamilton-Jacobi-Bellman Equations

As a key alternative to the maximum principle, the Hamilton-Jacobi-Bellman Equations

establish necessary and sufficient conditions for optimality for optimal control problems. This

presents another approach to optimal control theory that is important in its own right, as it

depends on the very general idea of dynamic programming.

The dynamic programming principle: Recall the Bolza problem with a fixed end time,

inf
u

J(u) =

∫ t1

t0

L(xt,ut, t)dt + Φ(xt1),

s.t. ẋt = F (xt,ut, t), t ∈ [t0, t1], xt0 = x0. (2.17)

Following the idea of dynamic programming, this problem is embedded in a bigger class of

problems,

V (s, z) := inf
u

∫ t1

s
L(xt,ut, t)dt + Φ(xt1),

s.t. ẋt = F (xt,ut, t), t ∈ [s, t1], xs = z. (2.18)

The function V : [t0, t1]×Rd → R is called the value function, it is the minimum cost attainable

starting from the initial condition z at time s. Observe that V (t0,x0) is the optimal cost of

Equation (2.17).

The dynamic programming principle concerns the value function for the optimal control
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problem.

Theorem 2.2.3 For every s, τ ∈ [t0, t1], s ≤ τ , and z ∈ Rd, the following holds,

V (s, z) = inf
u

[ ∫ τ

s
L(xt,ut, t)dt + V (τ,xτ )

]
,

ẋt = F (xt,ut, t), t ∈ [s, τ ], xs = z. (2.19)

The meaning of the dynamic programming principle is that the optimization problem defin-

ing V (s, z) can be split into two parts:

• Solving the optimization problem on [τ, t1] with the usual running cost L and terminal

cost Φ, but for all initial conditions z′ ∈ Rd. This gives the value function V (τ, ·).

• Solving the optimization problem on [s, τ ] with running loss L and terminal cost V (τ, ·)

given by the step before.

Hamilton-Jacobi-Bellman Equations: This section derives the key result from the dy-

namic programming approach to optimal control problems, which establishes connections with

partial differential equations, in particular the Hamilton-Jacobi equations. The basic motiva-

tion here is to derive an infinitesimal version of the dynamic programming principle. To this

end, from the extensive use of Taylor expansions by assuming that τ = s + △s with △s << 1

in Equation (2.19), giving the infinitesimal dynamic programming principle

V (s, z) = inf
u

[ ∫ s+△s

s
L(xt,ut, t)dt + V (s + △s,xs+△s)

]
,

ẋt = F (xt,ut, t), t ∈ [s, s + △s], xs = z. (2.20)

Applying Taylor’s expansion on the ODE in Equation (2.20),

xs+△s = z +

∫ s+△s

s
F (xt,ut, t)dt = z + F (xt,ut, t)△s + O(△s). (2.21)
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Furthermore, assuming that V is sufficiently regular,

V (s + △s,x(s+△s)) = V (s, z) + ∂sV (s, z)△s + [∇zV (s, z)]⊤F (xt,ut, t)△s + O(△s). (2.22)

Similarly, the running cost can be expanded

∫ s+△s

s
L(xt,ut, t)dt = L(z,ut, t)△s + O(△s). (2.23)

Combining Equations (2.20), (2.22) and (2.23),

V (s, z) = inf
u
{L(z,ut, t)△s+V (s, z)+∂sV (s, z)+[∇zV (s, z)]⊤F (xt,ut, t)△s+O(△s)}. (2.24)

Canceling the term V (s, z) on both sides and taking the limit △s → 0,

∂sV (s, z) + inf
u
{L(z,ut, t) + [∇zV (s, z)]⊤F (xt,ut, t)} = 0. (2.25)

This is known as the Hamilton-Jacobi-Bellman (HJB) equation for the value function. It

remains to specify the boundary conditions. One can quickly observe that at time s = t1,

V (t1, z) = Φ(z).

Theorem 2.2.4 Let V : [t0, t1] × Rd → R be the value function defined by Equation (2.20).

Then V is the unique viscosity solution of the Hamilton-Jacobi-Bellman equation

∂tV (t,x) + inf
u
{L(z,ut, t) + [∇zV (s, z]⊤F (xt,ut, t) = 0}, (t,x) ∈ [t0, t1] × Rd,

V (t1,x) = Φ(x).

2.2.4 Connection between Optimal Control and Deep Neural Networks

The connection between optimal control theory and deep neural networks has become an

intriguing area of research, leading to innovative approaches for training and understanding
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(a) (b)

Figure 2.1: (a): Self-healing process in error detection (b): self-healing process in correction
actions.

neural networks. One significant development in this area is the interpretation of the training

of deep neural networks as a dynamic system governed by differential equations, where the

objective is to find an optimal trajectory that minimizes a loss function. This approach aligns

closely with the principles of optimal control, where the goal is to find a control policy that

drives the system towards a desired state while minimizing a cost function. Techniques from

optimal control, such as the Pontryagin’s Maximum Principle, have been applied to derive

efficient training algorithms for neural networks. These methods provide theoretical guarantees

on convergence and can lead to more stable and robust training procedures [59].

2.3 Background on Self-Healing

2.3.1 Self-Healing from Biology

In this work, we define ”self-healing” as the ability to autonomously detect and correct errors

within a neural network. The idea of self-healing comes from how the human body heals itself

and stays balanced. The human body is equipped with a sophisticated set of mechanisms that

enable it to repair and regenerate tissues, ensuring survival and functionality. These systems

work together through a mix of cells, molecules, and other factors.
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Error detection: Error detection in the human body is a crucial aspect of its self-healing

processes, relying on monitoring mechanisms and specific metrics to identify and quantify in-

juries or infections. For example, as shown in Figure 2.1 (a), when the skin is cut, the body

immediately initiates a response. Platelets detect the breach and form a clot to prevent further

blood loss, acting as the first line of defense. Simultaneously, immune cells such as neutrophils

and macrophages are activated to identify and eliminate pathogens and debris at the injury

site. This detection and response system ensures that the body can quickly address and mit-

igate damage. The body’s ability to monitor for signs of injury or infection and to measure

the severity of these events is vital for initiating the appropriate healing processes. This intri-

cate system of detection and response enables the body to maintain homeostasis and promote

recovery, ensuring overall health and functionality.

Corrective actions: Corrective actions in the human body’s self-healing processes are vital

for repairing and regenerating damaged tissues. Once an injury is detected, the body initiates

a series of coordinated responses to address the damage. For example, as shown in Figure

2.1 (b), in the case of a skin wound, after the initial clot formation and immune response,

the body moves into the proliferation phase. During this phase, fibroblasts are activated to

produce collagen and other extracellular matrix components, creating a scaffold for new tissue.

Concurrently, new blood vessels form through angiogenesis to supply nutrients and oxygen

to the healing area. Epithelial cells migrate across the wound bed to re-establish the skin

barrier. Throughout this process, growth factors and cytokines guide cell behavior, promoting

cell division, migration, and differentiation. Finally, in the remodeling phase, the newly formed

tissue is strengthened and restructured to restore its original function. This series of corrective

actions ensures that the body can effectively repair itself, maintaining its integrity and health.

2.3.2 Self-Healing in Integral Circuit Design

The concept is extensively explored within the Integrated Circuit (IC) design field to amend

faults stemming from nano-scale discrepancies during the fabrication of analog, mixed-signal,
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Figure 2.2: (a) Standard circuit design without self-healing. The result can have significant
yield loss and performance waste; (b) Self-healing circuit with on-chip performance monitor
and control, resulting higher yield and less performance waste.

and digital systems [60, 61, 62, 63, 64, 65, 66, 67]. Such fabrication challenges arise from the

difficulty in precisely managing the geometric and material specifics, leading to performance

degradation or outright failure of numerous circuit chips. To address these issues, two main

strategies are employed: yield optimization and self-healing. Yield optimization [68,69,70, 71],

akin to adversarial training, involves selecting ideal circuit parameters during the design stage

to reduce failure risks based on a defined probability density function of process variations.

Conversely, self-healing aims to correct circuit errors post-design, without prior knowledge

of process variation distributions. Similarly, in developing reliable neural network models,

predicting the nature of perturbations that might occur once deployed is challenging. As such,

employing post-training adjustments presents a viable solution for addressing many potential

errors that adversarial training alone cannot resolve.

Within the scope of self-healing implementations, the application of closed-loop control

systems have demonstrated considerable effectiveness in chip design [60, 61]. This approach is

illustrated in Figure 2.2, where Figure 2.2 (a) depicts a typical circuit that, despite undergoing

yield optimization to enhance its success rate amidst uncertainties, may still encounter yield re-

duction or efficiency loss due to unforeseeable variations in the fabrication process. As depicted

in Figure 2.2 (b), to mitigate these challenges, the integration of either global or local on-chip

sensors is proposed to continuously assess key performance indicators. Additionally, the inclu-

sion of a control circuit on the chip, which adjusts specific parameters such as bias currents,

supply voltages, or variable capacitors, aims to rectify identified errors. Consequently, this
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adjustment ensures that the circuit’s output performance aligns more closely with the desired

region, thereby improving yield and minimizing inefficiency.

2.3.3 Self-Healing in Other Engineering Domains

Besides integral circuits, the concept of self-healing can be applied to many other engineering

domains, including but not limited to

• Materials Science: In materials science, the development of self-healing materials has

revolutionized how we think about durability and longevity [72]. These materials, partic-

ularly polymers and composites, are engineered to autonomously repair damage such as

cracks or fractures, extending their useful life and reducing the need for maintenance. The

mechanisms of self-healing in these materials vary; some involve microcapsules filled with

healing agents that break open when a crack forms, releasing the agent to fill and bond

the crack. Others rely on intrinsic properties of the material itself, such as thermoplastic

polymers that can re-melt and re-bond under heat.

• Self-healing in aerospace engineering: Self-healing polymers used in aerospace engi-

neering are advanced materials designed to autonomously repair damage, such as cracks

or abrasions, without the need for external intervention [73]. These polymers often in-

corporate microcapsules filled with healing agents or are made with reversible chemical

bonds that can break and reform in response to stimuli like heat or light. When damage

occurs, the healing agents are released or the bonds reconnect, effectively restoring the

material’s integrity. This self-repair capability significantly enhances the safety, reliabil-

ity, and longevity of aerospace components, reducing maintenance costs and improving

overall structural performance.

In this work, we seek to extend this concept to the development of a self-healing neural

network, leveraging the principles outlined above.

28



Chapter 3

Self-Healing Robust Neural Networks via
Closed-Loop Control

This chapter investigates the robustness issue of neural networks when imperceptible pertur-

bations are applied to input data. We propose a novel concept inspired by the self-healing

mechanisms of biological immune systems. In psychology, self-healing often refers to the recov-

ery of a patient from a psychological disturbance guided by instinct only. In physiology, the

most well-known self-healing mechanism is probably the human immune system: B cells and T

cells can work together to identify and kill many external attackers (e.g., bacteria) to maintain

the health of the human body [74]. This idea has been applied in semiconductor chip design,

where self-healing integrated circuits can automatically detect and fix the errors caused by im-

perfect nano-scale fabrication, noise, or electromagnetic interference [60,61,62,63,64,65,66,67].

In machine learning, a similar self-healing process could autonomously address and mitigate

issues within the system. We realize this proposal via a closed-loop control method. Signifi-

cantly differing from existing methods, this self-healing process does not depend on perturbation

information; instead, it autonomously identifies and corrects errors within the neural network.

Contribution Summary. The specific contributions of this chapter are summarized below:

• Development of a closed-loop control formulation for post-training self-healing

with margin-based analysis: We introduce a closed-loop control approach aimed at

improving the robustness of neural networks in the post-training stage against a wide
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array of unexpected perturbations. This self-healing approach consists of two main com-

ponents: embedding functions at both input and hidden layers to detect the potential

errors, and a control process to adjust the states to fix or mitigate these errors before

making a prediction. We investigate the working principle of the proposed control loss

function and reveal that it can modify the decision boundary and increase the margin of a

classifier. Based on this, we introduce three types of margins that are of relevance, which

involve an interplay of the ground truth classifier, the trained classifier, and the data

manifold. Armed with this understanding, we build embedding functions that exploit

both model information and data structure.

• Fast numerical solver for the control objective function: Addressing the com-

putational demands of implementing the self-healing neural network through closed-loop

control, we employ Pontryagin’s Maximum Principle and the method of successive ap-

proximations. This numerical solver allows us to handle both deep and wide neural

networks.

• Comprehensive theoretical error analysis: Our work includes a thorough error

analysis of the proposed framework in its broadest scope, considering nonlinear dynamics

alongside nonlinear embedding manifolds. The theoretical setup aligns with our algorithm

implementation without simplification.

• Empirical validation across multiple datasets: We conduct extensive experiments

on two standard and one challenging dataset. These experiments validate the effective-

ness of our closed-loop control approach for self-healing in consistently improving the

robustness of neural networks against diverse perturbations.
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Figure 3.1: The structures of feed-forward neural network (blue) and the proposed closed-loop
control method (red).

3.1 Self-Healing Robust Neural Network via Closed-Loop Con-

trol

We implement post-training self-healing via closed-loop control to achieve better robustness

of neural networks. Figure 3.1 illustrates the proposed control approach. At every layer, an

embedding function Et(·) is used to monitor the performance of a hidden state and generate a

loss. The control signal ut(xt) is computed by optimizing the total loss which is a summation

of all running losses. The generated controls are then applied to adjust the states, such that

possible errors can be eliminated or mitigated before they propagate to the output label. In

the following, we abbreviate the feedback control signal to ut that is generated based on the

state xt.

Remark 3.1.1 It’s important to clarify that the neural network design shown in Figure 3.1 is

not a form of open-loop control. In this framework, x0 represents the neural network’s initial

input conditions, while the excitation input signal is denoted by ut (which is zero during standard

forward propagation). The forward signal path is from ut to internal states xt and then to the

output label y. The path from xt to the embedding function Et(xt) and then to the control signal

ut forms a feedback and closes the whole loop.

Due to the closed-loop structure, the forward propagation of the proposed self-healing neural

network at layer t can be written as xt+1 = Ft(xt,ut,θt), in which the control ut is added to the
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state xt. Compared with standard neural networks, the proposed network needs to compute

the control signals u = {ut}T−1
t=0 during inference by solving an optimal control problem:

min
u

E(x0,y)∼D [J(x0,y,u)] := min
u

E(x0,y)∼D Φ(xT ,y) +

T−1∑
t=0

L(xt,ut, ·),

s.t. xt+1 = Ft(xt,ut,θt), t = 0, · · · , T − 1, (3.1)

where Φ is the terminal loss, and L denotes a running loss that possibly depends on state xt,

control ut and some external functions.

To improve the robustness through self-healing closed-loop control, Section 3.2 discusses

the principles for formulating the control objective function defined in Equation (3.1) to ensure

that the resulting controls can effectively correct errors. Section 3.3 constructs an efficient

solver to solve the control objective function defined in Equation (3.1). Section 3.4 establishes

theoretical performance guarantees for the self-healing neural network.

3.2 Design of Self-Healing via Optimal Control

In Section 3.2.1, we introduce a control objective function aimed at enhancing the self-

healing robustness of neural networks for classification tasks. Following this, Section 3.2.2

illustrates how this control objective function effectively increases the classification margin

around the decision boundary.

3.2.1 Towards Better Robustness: Control Loss via Manifold Projection

In general, the control objective function defined in Equation (3.1) should have two com-

ponents: a terminal loss and a running loss:

• In traditional optimal control, the terminal loss Φ(xT ,y) can be a distance measurement

between the terminal state of the underlying trajectory and some destination set given
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beforehand. In supervised learning, this corresponds to controlling the underlying hidden

states such that the terminal state xT (or some transformation of it) matches the true

label. This is impractical for general machine learning applications since the true label y

is unknown during inference. Therefore, we ignore the terminal loss by setting it as zero.

• When considering a deep neural network as a discretization of a continuous dynamic

system, the state trajectory (all input and hidden states) governed by this continuous

transformation forms a high-dimensional structure embedded in the ambient state space.

The set of state trajectories that leads to ideal model performance, in the discretized anal-

ogy, can be represented as a sequence of embedding manifolds {Mt}T−1
t=0 . The embedding

manifold is defined as Mt = f−1
t (0) for a submersion1 f(·) : Rd → Rd−r, where we assume

that all data samples lie in Rd and there exists a r-dimensional embedding manifold to

encode all data. We can track a trajectory during neural network inference and enforce

it onto the desired manifold Mt to improve model performance. This motivates us to

design the running loss of Equation (3.1) as follows,

L(xt,ut, ft(·)) :=
1

2
· ∥ft(xt + ut)∥22 +

c

2
· ∥ut∥22. (3.2)

The submersion satisfies ∥ft(xt)∥2 = ∥Et(xt)−xt∥2 and it measures the distance between

a state x to the embedding manifold Mt, ft(x) = 0 if x ∈ Mt. This can be understood

based on the “manifold hypothesis” [75], which assumes that real-world high-dimensional

data (represented as vectors in Rd) generally lie in a low-dimensional manifold M ⊂ Rd.

The first term in Equation (3.2) serves as a “performance monitor” in self-healing: it

measures the discrepancy between the state variable xt and the desired manifold Mt.

The regularization term with a hyper-parameter c prevents using large controls,

1a submersion is a differentiable map between differentiable manifolds whose differential is everywhere sur-
jective
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• The performance monitor can be realized by a manifold projection Et(·),

Et(Mt,xt) := arg min
z∈Mt

1

2
∥xt − z∥22. (3.3)

The manifold projection can be considered as a constrained optimization. Given that Mt

is a compact set, the solution of Equation (3.3) always exists. In practice, the manifold

projection is realized as an auto-encoder due to its simplicity and generality. Specifically,

an encoder embeds a state snapshot into a lower-dimensional space, and then a decoder

reconstructs this embedded data back to the ambient state space. The auto-encoder can

be obtained by minimizing the reconstruction loss on a given clean dataset,

E∗
t (Mt, ·) = arg min

Et

1

N

N∑
i=1

CE(xi,T ,yi)︸ ︷︷ ︸
model information

+ ∥Et(Mt,xi,t) − xi,t∥22︸ ︷︷ ︸
data information

, (3.4)

s.t. xi,t+1 = Ft(xi,t,ui,t,θt), ui,t = Et(xi,t) − xi,t,

where CE(·, ·) denotes cross-entropy loss function, θt is the model parameter at the tth

layer. The objective function Equation (3.4) defines an attack-agnostic setting, where

only clean data and model information are accessible to the control system. Furthermore,

we do not attempt to recover the underlying data manifold. Instead, we find a low-

dimensional manifold that is defined by one having a submersion using the encoder-

decoder function, and this estimated low-dimensional manifold approximately contains

the true data manifold. If one is only concerned with approximating the true data

manifold, Equation (3.4) can be modified to only optimize the data information [76].

Considering the zero terminal loss and non-zero running loss, the overall control objective

function for self-healing can be designed as below,

min
u

E(x0,y)∼D

T−1∑
t=0

∥ft(xt + ut)∥22 +
c

2
∥ut∥22,

s.t. xt+1 = Ft(xt,ut,θt), t = 0, · · · , T − 1. (3.5)
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(a) (b) (c) (d)

Figure 3.2: (a): Clean-1 and Clean-2 represent clean data of class 1 and 2, respectively. A.E.-1
and A.E.-2 are their adversarially perturbed counterparts. (b): the reconstruction loss field.
(c): the controlled counterpart. (d): Manifold projection modifies decision boundary.

In neural network inference, the resulting control signals will help to attract the (possibly

perturbed) trajectory towards the embedding manifolds.

3.2.2 A Margin-Based Analysis On the Running Loss

The discussion centers on the efficacy of the running loss as defined in Equation (3.2). To

make the problem more manageable, we examine a specific instance of the control objective

function shown in Equation (3.5). In this case, control is applied directly to the input (setting

T = 1) and the applied control incurs no penalty (c = 0). This approach is applicable to any

t-th layer of analysis, where xt−1 is treated as the input data. In this simplified setting, by

choosing M as the embedding manifold in Rd, the optimal control results in the solution of the

constrained optimization in Equation (3.3).

Manifold projection enlarges decision boundary. For any given input x̃, an optimal

control process solves the constrained optimization defined in Equation (3.3) by reconstructing

the nearest counterpart x ∈ M. This seemingly adaptive control process essentially forms

some deterministic decision boundaries that enlarge the margin of a given classifier. In general,

an accurate classifier can have a small “classifier margin” measured by an ℓp norm, i.e. the

minimal perturbation in Rd required to change the model prediction label. This small margin

can be easily exploited by adversarial attacks, such as PGD [23]. We illustrate these phenomena
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with a numerical example. Figure 3.2 shows a binary classification problem in R2, where blue

and red regions represent the classification predictions (their joint line represents the decision

boundary of the underlying classifier). In Figure 3.2 (a), the given classifier has accuracies of

100% and 0% on clean data and against adversarial examples respectively. Figure 3.2 (b) shows

the reconstruction loss field, computed by ∥(I−P)x∥22, ∀x ∈ R2, where P is the ℓ2 orthogonal

projection onto the 1-d embedding subspace M. The estimated embedding subspace M is

represented as the reconstruction loss being less than 0.1. As expected, clean data samples

are located in the low loss regions, and adversarial examples fall out of M and have larger

reconstruction losses. In Figure 3.2 (c), our control process adjusts adversarially perturbed

data samples towards the embedding subspace M, and the classifier predicts those with 100%

accuracy. Essentially, the manifold projection forces those adjacent out-of-manifold samples to

have the same prediction as the clean data in the manifold, and the margin of the decision

boundary has been increased as shown in Figure 3.2 (d).

In this simplified linear case, the embedding manifold M is the 1-D linear subspace high-

lighted as the darkest blue in Figure 3.2 (b) (c). Specifically, any data point in this subspace

incurs zero reconstruction loss. Therefore, the constrained optimization problem in Equation

(3.3) is the orthogonal projection onto a linear subspace M, The manifold projection reduces

the pre-image of a classifier F (·) from R2 7→ R1. Given a data point x sampled from this linear

subspace, any out-of-manifold data x̃ satisfies ∥Px̃−x∥22 ≤ ∥x̃−x∥22. Consequently, the margin

of F (·) is enlarged.

A margin-based analysis on the manifold projection. Now we formally provide two

definitions for margins related to classification problems. Specifically, we consider a classification

dataset D belonging to the ground-truth manifold M∗, D ⊂ M∗, this enables the formal

definitions of different types of margins.
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• Manifold margin: We define RM as the geodesics

RM(a,b) := inf
γ∈ΓM(a,b),

∫ 1

0

√
⟨ γ′(t), γ′(t)⟩γ(t)dt,

where γ ∈ ΓM(a,b) is a continuously differentiable curve γ : [0, 1] → M such that

γ(0) = a and γ(1) = b. Here, ⟨, ⟩p is the positive definite inner product on the tangent

space TpM at any point p on the manifold M. In other words, the distance RM(a,b)

between two points a and b of M is defined as the length of the shortest path connecting

them. Given a manifold M and classifier F (·), the manifold margin dM(F (·)) is defined

as the shortest distance along M such that an instance of one class transforms to another.

dM(F (·)) :=
1

2
inf

x1,x2∈D
RM(x1,x2), s.t. F (x1) ̸= F (x2). (3.6)

• Euclidean margin: In practice, data perturbations are any perturbations of a small

Euclidean distance (or any equivalent norm). The classifier margin de(F (·)) is the smallest

magnitude of a perturbation in Rd that causes the change of output predictions.

de(F (·)) := inf
x∈D

inf
δ∈Rd

∥δ∥2, s.t. F (x) ̸= F (x + δ). (3.7)

In addition, we introduce the ground-truth margin and manifold projection margin from

the definitions of manifold and Euclidean margins, respectively.

• Ground-truth margin: For the ground-truth manifold M∗ and ground-truth classifier

F ∗(·) (population risk minimizer), the ground-truth margin dM∗(F ∗(·)) [according to

Equation (3.6)] is the largest classification margin.

• Manifold projection margin: The manifold projection Equation (3.3) modifies a clas-

sifier from F (·) to F ◦ E(M, ·). Therefore, its robustness depends on the “manifold
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projection margin” [according to Equation (3.7)] as

de(F ◦ E(·)) := inf
x∈D

inf
δ∈Rd

∥δ∥2, s.t. F (E(x)) ̸= F (E(x + δ)).

A manifold projection essentially constraints the data space Rd into a smaller subset

according to the embedding manifold M ⊂ Rd.

In Rd, a binary linear classifier forms a (d − 1)-dimensional hyperplane that partitions Rd

into two subsets. Let the range of V ∈ Rd×(d−1) be this hyperplane, n̂ as a d-dimensional normal

vector such that VT n̂ = 0. In general, a linear classifier with a random decision boundary can

be defined as setting the normal vector n̂ ∼ N (0, 1dI). In this simplified linear setting, the

following proposition provides a relationship between the Euclidean margin de(F (·)) and the

manifold margin dM(F (·)).

Proposition 3.2.1 Let M ⊂ Rd be a r-dimensional (r ≤ d) linear subspace that contains the

ground-truth manifold M∗, such that M∗ ⊂ M, F (·) a linear classifier with a random decision

boundary, then E
[

de(F (·))
dM(F (·))

]
≤

√
r
d .

The detailed proof is shown in Section 3.7.1. The margin-based analysis explains the design

choice of the running loss in Equation (3.2) that depends on an embedding manifold. Specifi-

cally, using an embedding manifold (a submersion function) to measure the running loss leads

to an increased margin.

A demonstration of margin increase. Figure 3.3 (a) illustrates a binary classification

dataset situated on a one-dimensional manifold, depicted as a green curve (M). With a classifier

denoted as F (·), the shortest distance by which an instance changes from one class to another is

represented by the manifold margin dM(F (·)), where the orange curve represents 2 · dM(F (·)).

As indicated in Figure 3.3 (b), this classifier yields a relatively small Euclidean margin. In

Figure 3.3 (c), class-1 predictions are grouped into subsets A and B, while class-2 predictions

fall into subsets C and D. The manifold projection, E(·), maps subsets A and D onto the upper
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(a): 2 · dM(F (·)) (b): de(F (·)) (c): E(·) (d): de(F ◦ E(·))

Figure 3.3: (a): a binary classification dataset embedded inside of a manifold M. The manifold
margin with a classifier F is shown. (b): the Euclidean margin with a classifier F (·). (c): the
manifold projection and classifier form four partitions, regions A and B are projected onto the
top portion of M, and regions C and D are projected onto the lower portion of M. (d): the
manifold projection margin.

section, and subsets B and C onto the lower section of M. This results in the classifier’s decision

boundary and the manifold projection dividing the R2 space into four distinct segments. For the

combined classifier F ◦E(·), any data points in regions A and D are classified as class-2, whereas

those in regions B and C are classified as class-1. Consequently, Figure 3.3 (d) presents the

decision boundary of F ◦E(·), illustrating a substantial improvement in the manifold projection

margin (highlighted in orange) compared to the Euclidean margin.

3.3 An Optimal Control Solver for Self-Healing

Section 3.3.1 discusses Pontryagin’s Maximum Principle. Following this, Section 3.3.2

presents a more efficient approach aimed at reducing the computational cost incurred during

control generation in the inference process.

3.3.1 Control Solver Based on Pontryagin’s Maximum Principle

The proposed self-healing neural network can be achieved by solving the dynamical pro-

gramming principle [77]. However, this has exponential complexity with respect to the state

dimension. To overcome the computational challenge, we first describe a general solver for the

optimal control problem in Equation (3.1) based on Pontryagin’s Maximum Principle [78].
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To begin with, we define the Hamiltonian H(t,xt,pt+1,θt,ut) as

H(t,xt,pt+1,θt,ut) := pT
t+1 · Ft(xt,ut,θt) − L(xt,ut, ft(·)).

Pontryagin’s maximum principle consists of a two-point boundary value problem,

x∗
t+1 = ∇pH(t,x∗

t ,p
∗
t ,θt,u

∗
t ), (x∗

0,y) ∼ D, (3.8)

p∗
t = ∇xH(t,x∗

t ,p
∗
t+1,θt,u

∗
t ), p∗

T = 0, (3.9)

plus a maximum condition of the Hamiltonian.

H(t,x∗
t ,p

∗
t ,θt,u

∗
t ) ≥ H(t,x∗

t ,p
∗
t ,θt,ut), ∀u ∈ Rd′ and ∀t ∈ T . (3.10)

To obtain a numerical solution, one can consider iterating through the forward dynamic

Equation (3.8) to obtain all states {xt}T−1
t=0 , the backward dynamic Equation (3.9) to compute

the adjoint states {pt}T−1
t=0 , and updating the Hamiltonian Equation (3.10) with current states

and adjoint states via gradient ascent [79]. This iterative process is continued until convergence.

3.3.2 A Fast Implementation of the Closed-Loop Control

Now we discuss the computational overhead caused by the closed-loop control, and propose

an accelerated numerical solver based on the unique condition of optimality in Pontryagin’s

Maximum Principle.

Computational Overhead in Inference. Upon implementing the closed-loop control mod-

ule for inference, the traditional method of forward propagation is modified with iterations over

Hamiltonian dynamics. For each input data, solving the optimal control problems necessi-

tates iterating through both the forward dynamics, as per Equation (3.8), and the backward

adjoint dynamics, according to Equation (3.9). Additionally, it involves the maximization of

the Hamiltonian, as outlined in Equation (3.10), across all layers. This maximization process,
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when repeated n times, leads to an approximate n-fold increase in time complexity compared to

standard inference procedures. The computational overhead prevents deploying the closed-loop

control module in real-world applications.

A Faster Pontryagin’s Maximum Principle Solver. To tackle this challenge, we draw on

the method of successive approximation [80], grounded in the optimal condition derived from

Pontryagin’s Maximum Principle. For any given input data, the state variables and adjoint

states are determined by Equation (3.8) and Equation (3.9), respectively, corresponding to the

current control set {ut}T−1
t=0 . To meet the optimal condition of the objective function as stated

in Equation (3.1), it’s essential to maximize all Hamiltonians as indicated in Equation (3.10).

Rather than iterating all three Hamiltonian dynamics for a single control solution update, an

alternative approach involves locally optimizing the tth Hamiltonian for each t ∈ [0, · · · , T − 1]

using the current state xt and the adjoint state pt+1. This approach allows for multiple updates

of the control solution ut within one full iteration cycle. After obtaining a locally optimal

control ut by maximizing H(t,xt,pt+1,θt,ut) with respect to ut, the adjoint state pt+1 is

backpropagated to pt using the adjoint dynamic in Equation (3.9), followed by maximizing

H(t − 1,xt−1,pt,θt−1,ut−1). In this framework, simulating the Hamiltonian dynamics as per

Equation (3.8), Equation (3.9), and Equation (3.10) n times is broken down into maxItr full

iterations and InnerItr local updates. The number of maxItr can be much lower than n,

as the convergence process is expedited by the locally optimal control solutions derived from

InnerItr updates. Consequently, instead of repeating the complete Hamiltonian dynamics n

times, this enhanced methodology involves iterating maxItr full Hamiltonian dynamics along

with InnerItr local updates. The detailed implementation is presented in Algorithm 1.

3.4 Theoretical Analysis

In this section, we formally establish an error analysis for the closed-loop control framework.

Let xt be a “clean” state originated from an unperturbed data sample x0, and xϵ,t be the
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Algorithm 1 Method of Successive Approximation.

Input: Input x0 (possibly perturbed), a trained neural network F (·), embedding functions
{Et(·)}T−1

t=0 , control regularization c, learning rate lr, maxItr, InnerItr.
Output: xT .
Initialize controls {ut}T−1

t=0 with the greedy solution.
for i = 0 to maxItr do

The controlled initial condition:
xi
0 = x0 + ui

0.
for t = 0 to T − 1 do

Controlled forward propagation Equation (3.8):
xi
t+1 = Ft(x

i
t,u

i
t,θt)

end for
The terminal condition of the adjoint state is set to 0:
pi
T = 0

for t = T − 1 to 0 do
for τ = 0 to InnerItr do

Compute Hamiltonian:
H(t,xi

t,p
i
t+1,θt,u

i,τ
t ) = pi

t+1 · Ft(x
i
t,u

i,τ
t ,θt) − L(xi

t,u
i,τ
t , Et(xi

t))
Maximize Hamiltonian with respect to control ut:
ui,τ+1
t = ui,τ

t + lr · ∇uH(t,xi
t,p

i
t+1,θt,u

i,τ
t )

end for
Backward propagation Equation (3.9):
pi
t = pi

t+1 · ∇xF (xi
t,u

i
t,θt) −∇xL(xi

t,u
i
t, Et(xi

t))
end for

end for

perturbed states originating from a possible attacked or corrupted data sample xϵ,0 = x0 + z.

Within our self-healing neural network design, the controlled state is represented as xϵ,t =

xϵ,t +ut. The focus of the theoretical error analysis is to assess ∥xϵ,t−xt∥, which quantifies the

discrepancy between xt and xϵ,t. In Section 3.4.1, we present error estimates within a framework

consisting of a linear dynamical system and a linear embedding function. Meanwhile, Section

3.4.2 focuses on establishing an upper limit for errors that arise from the linear approximation

of a nonlinear dynamical system and embedding manifold. The error estimation in the most

general case is constructed as follows,

∥xϵ,t − xt∥ ≤ Linear control system + Linearization error.
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3.4.1 Error Estimation For The Linear Case

Now we analyze the error of the self-healing neural network for a simplified case with linear

activation functions. We denote θt as the Jacobian matrix of the nonlinear transformation

Ft(·) centered at xt, such that θt = F ′
t(xt). In the linear case, the solution of the running

loss in Equation (3.2) is a projection onto the linear subspace, which admits a closed-form

solution. For a perturbed input, q0 = x0 + z with some perturbation z, we denote {qϵ,t}T−1
t=0 as

sequence of states of the linear system, and {qϵ,t}T−1
t=0 as the states adjusted by the linear control.

The perturbation z ∈ Rd admits a direct sum of two orthogonal components, z = z∥ ⊕ z⊥.

Here z∥ ∈ Tx0M0 is a perturbation within the tangent space, and z⊥ lies in the orthogonal

complement of Tx0M0.

The following theorem provides an upper bound of ∥qϵ,t − xt∥22.

Theorem 3.4.1 For t ≥ 1, we have an error estimation for the linear system

∥qϵ,t − xt∥22 ≤ ∥θt−1 · · ·θ0∥22 ·
(
α2t∥z⊥∥22 + ∥z∥∥22 + γt∥z∥22

(
γtα

2(1 − αt−1)2 + 2(α− αt)
))

.

where γt := max
s≤t

(
1+κ(θs−1 · · ·θ0)2

)
∥I−(θs−1 · · ·θ0)T (θs−1 · · ·θ0)∥2, κ(θ) is condition number

of θ, α = c
1+c , and c represents the control regularization. In particular, the equality

∥qϵ,t − xt∥22 = α2t∥z⊥∥22 + ∥z∥∥22

holds when all θt are orthogonal.

The detailed derivation is presented in Section 3.7.2. The error upper bound is tight since

it becomes the actual error if all the linear transformations are orthogonal matrices. Note that

the above bound from the greedy control solution is a strict upper bound of the optimal control

solution. The greedy solution does not consider the dynamic, and it optimizes each running

loss individually.
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3.4.2 Error Analysis of Nonlinear Networks with Closed-loop Control

Here we provide an error analysis for the self-healing neural network with general nonlinear

activation functions. For a 3-dimensional tensor, e.g. the Hessian F ′′(x), we define the 2-norm

of F ′′(x) as

∥F ′′(x)∥∗ := sup
z ̸=0

∥F ′′(x)i,j,kzjzk∥2
∥z∥22

.

For the nonlinear transformation Ft(·) ∈ C2 at layer t, we assume its Hessian F ′′
t (·) is uniformly

bounded, i.e., supx∈Rd∥F ′′
t (x)∥∗ ≤ βt. Let ft ∈ C2 : Rd → Rd−r be the submersion of the

embedding manifold Mt, we assume its Hessian is uniformly bounded, i.e., supx∈Rd∥f ′′
t (x)∥∗ ≤

σt. We use xt, xϵ,t and xϵ,t to denote the clean states, perturbed states without control and the

states adjusted with closed-loop control, respectively. The initial perturbation z = ϵ · v, where

∥v∥2 = 1 and v = v∥ ⊕ v⊥. Let

• kt = 4σt∥(f ′
t(xt)f

′
t(xt)

T )−1∥2 · (∥f ′
t(xt)∥2 + 2σt),

• δxt = ∥θt−1 · · ·θ0∥22 ·
(
α2t∥v⊥∥22 + ∥v∥∥22 + γt∥v∥22

(
γtα

2(1 − αt−1)2 + 2(α− αt)
))

.

The following theorem provides an error estimation between xϵ,t and xt.

Theorem 3.4.2 If the initial perturbation satisfies

ϵ2 ≤ 1(∑T−1
i=0 δxi(kxi∥θi∥2 + 2βi)

∏T−1
j=i+1(∥θj∥2 + kxj∥θj∥2 + 2βj)

) .

for 1 ≤ t ≤ T , we have the following error bound for the closed-loop controlled system

∥xϵ,t+1 − xt+1∥2

≤ ∥θt · · ·θ0∥2
(
αt+1∥z⊥∥2 + ∥z∥∥2 + ∥z∥2

(
γt+1α(1 − αt) +

√
2γt+1(α− αt+1)

))
+

( t∑
i=0

δxi(kxi∥θi∥2 + 2βi)

t∏
j=i+1

(∥θj∥2 + kxj∥θj∥2 + 2βj)

)
ϵ2.
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The detailed proof is provided in Section 3.7.3, 3.7.4, and 3.7.5. From Theorem 3.4.2, we

have the following intuitions:

• The error estimation has two main components: a linearization error in the order of

O(ϵ2), and the error of O(ϵ) of the linearized system. Specifically, the linearization error

becomes smaller when the activation functions and embedding manifolds behave more

linearly (kt and βt become smaller).

• The closed-loop control minimizes the perturbation components z⊥ within the orthogonal

complements of the tangent spaces. This is consistent with the manifold hypothesis, the

robustness improvement is more significant if the underlying data are embedded in a

lower dimensional manifold (∥z∥∥2 → 0).

• The above error estimation improves as the control regularization c goes to 0 (so α → 0).

It is not the sharpest possible as it relies on a greedily optimal control at each layer. The

globally optimal control defined by the Ricatti equation may achieve a lower loss when

c ̸= 0.

• The error estimation is done via linearizing both the underlying dynamical system and

embedding manifolds. This may result in a loose error bound when the underlying tra-

jectory is diverging due to the non-negligible linearization error. The goal of this error

estimation is to explain the working principle behind the proposed method in the general

nonlinear case, which does not conflict with the linearization error.

Remark 3.4.1 The derivation of the error estimation depends on the assumption that the

ground-truth manifold is given. To account for the approximation from the estimated embedding

manifold that has non-zero reconstruction loss, the error from the imperfect embedding manifold

should propagate in the same way as the linearization error at every layer. Specifically, the

embedding error at tth layer contributes to both the linearization of the dynamical system and

the tangent space approximation of the nonlinear embedding manifold at (t + 1)th layer, then

this error is accumulated towards the terminal state.
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3.5 Numerical Experiments

In this section, we test the performance of the proposed self-healing framework. Specifically,

we show that using only one set of embedding functions can improve the robustness of many pre-

trained models consistently. Section 3.5.1 shows that the proposed method can significantly

improve the robustness of both standard and robustly trained models on CIFAR-10 against

various perturbations. Furthermore, in the same experimental setting, Sections 3.5.2 and 3.5.3

evaluate our method on CIFAR-100 and Tiny-ImageNet datasets, which empirically verifies

the effectiveness and generalizability of the self-healing machinery. Section 3.5.4 provides a

summary of these numerical results. Section 3.5.5 evaluates the proposed control method on

a multi-label classification task. Finally, Section 3.5.6 conducts an ablation study that shows

both intuitive and exploratory justifications for the control method.

3.5.1 Experiments On CIFAR-10 Dataset

We evaluate all controlled models under an “oblivious attack” setting 2. In this setting,

the pre-trained models are fully accessible to an attacker, but the control information is not

released. Meanwhile, the controllers do not know the incoming attack algorithms. We will

show that by using one set of embedding functions, our self-healing method can improve the

robustness of many pre-trained models against a broad class of perturbations. Our experimental

setup is summarized below.

• Baseline models. We showcase that one set of controllers can consistently increase

the robustness of many pre-trained ResNets when those models are trained via standard

training (momentum SGD) and adversarial training (TRADES [82]). Specifically, we

use Pre-activated ResNet-18 (RN-18), -34 (RN-34), -50 (RN-50), wide ResNet-28-8

(WRN-28-8), -34-8 (WRN-34-8) as the testing benchmarks.

2This consideration is general, e.g. [81] has adopted this setting in the previous NIPS competition on defense
against adversarial attacks.
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Table 3.1: CIFAR-10 accuracy measure: baseline model / controlled model

ℓ∞ : ϵ = 8/255, ℓ2 : ϵ = 0.5, ℓ1 : ϵ = 12

Standard models

None AA (ℓ∞) AA (ℓ2) AA (ℓ1)

RN-18 94.71 / 92.81 0. / 63.89 0. / 82.1 0. / 75.75

RN-34 94.91 / 92.84 0. / 64.92 0. / 83.64 0. / 78.05

RN-50 95.08 / 92.81 0. / 64.31 0. / 83.33 0. / 77.15

WRN-28-8 95.41 / 92.63 0. / 75.39 0. / 86.71 0. / 84.5

WRN-34-8 94.05 / 92.77 0. / 64.14 0. / 82.32 0. / 73.54

Robust models (trained with ℓ∞ perturbations)

None AA (ℓ∞) AA (ℓ2) AA (ℓ1)

RN-18 82.39 / 87.51 48.72 / 66.61 58.8 / 79.88 9.86 / 42.85

RN-34 84.45 / 87.93 49.31 / 65.49 57.27 / 78.81 7.21 / 40.74

RN-50 83.99 / 87.57 48.68 / 65.17 57.25 / 78.26 6.83 / 39.44

WRN-28-8 85.09 / 87.66 48.13 / 64.44 54.38 / 77.08 5.38 / 41.78

WRN-34-8 84.95 / 87.14 48.47 / 64.55 54.36 / 77.15 4.67 / 42.65

• Robustness evaluations. We evaluate the performance of all models with clean testing

data (None), and auto-attack (AA) [2] that is measured by ℓ∞, ℓ2 and ℓ1 norms. Auto-

attack that is an ensemble of two gradient-based auto-PGD attacks [2], fast adaptive

boundary attack [83] and a black-box square attack [84].

• Embedding functions. We choose the fully convolutional networks (FCN) [85] as an

input embedding function and a 2-layer auto-encoder as an embedding function for the

hidden states. Specifically, we use one set of embedding functions for all 5 pre-trained

models. The training objective function of the tth embedding function follows Equation

(3.4), where both model and data information are used.

• Pontryagin’s Maximum Principle hyper-parameters setting. We choose 3 outer

iterations and 10 inner iterations with 0.001 as control regularization parameters in Pon-

tryagin’s Maximum Principle solver. As in Algorithm 1, maxIte=3, InnerItr=10, and

c = 0.001.

As shown in Table 3.1, for standard trained baseline models, despite the high accuracy
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of clean data, their robustness against strong auto-attack degrades to 0% accuracy under all

measurements. The self-healing process is attack-agnostic, and it improves the robustness

against all perturbations with negligible degradation on clean data. Specifically, the controlled

models have more than 80% and near 80% accuracies against perturbations measured by ℓ2

and ℓ1 norms respectively.

On adversarially trained baseline models. Since all robust baseline models are pre-trained

with ℓ∞ measured adversarial examples, they show strong robustness against ℓ∞ auto-attack.

Surprisingly, models that trained using ℓ∞ as adversarial training objective preserve strong

robustness against ℓ2 perturbations. However, a ℓ1 measured perturbation can significantly

degrade their robustness. On average, our proposed control method has achieved 20% accu-

racy improvements against ℓ∞ and ℓ2 perturbations, and a near 40% improvement against ℓ1

perturbation. Surprisingly, by applying the proposed control module, all adversarially trained

models have achieved higher accuracy on clean testing data.

3.5.2 Experiments On CIFAR-100 Dataset

In this section, we investigate the effectiveness of self-healing on the more challenging

CIFAR-100 dataset. We summarize our experiment settings below.

• Baseline models. We consider different variants of Wide-ResNet. Specifically, we

use Wide-ResNet-28-10 (WRN-28-10), -34-10 (WRN-34-10), -76-10 (WRN-76-10).

We show that one set of controllers can consistently increase the robustness of all 3

pre-trained models when those models are trained via momentum SGD and adversarial

training (TRADES [82]).

• Other settings. The embedding functions and Pontryagin’s Maximum Principle settings

follow the same.

In Table 3.2, the proposed self-healing framework consistently improves the robustness of

adversarially trained models on the CIFAR-100 dataset. On average, the self-healing models
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Table 3.2: CIFAR-100 accuracy measure: baseline model/self-healing

Standard models

ℓ∞ : ϵ = 8/255, ℓ2 : ϵ = 0.5, ℓ1 : ϵ = 12

None AA (ℓ∞) AA (ℓ2) AA (ℓ1)

WRN-28-10 79.53 / 75.80 0.04 / 11.43 0.06 / 32.70 0.03 / 28.53

WRN-34-10 79.12 / 72.70 0.02 / 13.89 0.03 / 29.78 0.02 / 31.78

WRN-76-10 79.28 / 71.10 0.01 / 19.31 0.03 / 28.96 0.01 / 35.13

Robust models (trained with ℓ∞ perturbations)

None AA (ℓ∞) AA (ℓ2) AA (ℓ1)

WRN-28-10 56.96 / 56.84 24.97 / 30.81 29.54 / 39.18 3.24 / 16.43

WRN-34-10 57.32 / 56.91 25.35 / 31.04 29.68 / 39.64 2.99 / 17.66

WRN-76-10 57.58 / 57.11 24.84 / 29.96 27.81 / 38.05 2.41 / 19.13

have achieved 10% ∼ 20% accuracy improvement with almost no effects on the clean data

performance. Although the improvements are not as significant as in the CIFAR-10 experiment,

this is due to the hardness of constructing embedding manifolds for this more challenging

dataset. Specifically, it is more difficult to distinguish the controlled data point among 100

different classes than 10 classes on a single embedding manifold.

3.5.3 Experiments On Tiny-ImageNet

Finally, we examine the proposed self-healing framework on the Tiny-ImageNet dataset.

Tiny-ImageNet contains 100, 000 and 10, 000 of 64 × 64 sized training and validation images

with 200 different classes. Although over-fitting is more significant in this dataset, we show

that the proposed self-healing framework can consistently improve the robustness of pre-trained

models. The experimental settings are summarized below.

• Baseline models. We consider EfficientNet-b0, EfficientNet-b1 and EfficientNet-

b2 trained via momentum SGD and adversarial training (TRADES [82]) as testing bench-

marks.

• Embedding functions. We choose SegNet [86] as an input embedding function, and a 2-

layer auto-encoder as an embedding function for the hidden states. The training objective

49



Table 3.3: Tiny-ImageNet accuracy measure: baseline model / controlled

ℓ∞ : ϵ = 4/255, ℓ2 : ϵ = 0.8, ℓ1 : ϵ = 10

Standard models

None AA (ℓ∞) AA (ℓ2) AA (ℓ1)

EfficientNet-b0 57.68 / 59.92 0.21 / 46.08 1.73 / 49.86 5.86 / 50.4

EfficientNet-b1 57.99 / 59.72 0.13 / 44.35 1.24 / 48.26 4.43 / 48.86

EfficientNet-b2 58.06 / 59.3 0.25 / 44.33 1.40 / 47.86 4.58 / 48.39

Robust models (trained with ℓ∞ perturbations)

EfficientNet-b0 45.16 / 41.09 22.56 / 30.69 26.86 / 34.57 24.42 / 34.51

EfficientNet-b1 46.29 / 41.18 22.70 / 30.91 26.60 / 34.10 22.30 / 33.67

EfficientNet-b2 45.64 / 41.58 23.26 / 31.42 26.77 / 34.45 21.59 / 34.00

function of the tth embedding function follows Equation (3.4), where both model and data

information are used.

• Pontryagin’s Maximum Principle hyper-parameters setting. The Pontryagin’s

Maximum Principle setting follows the same.

In this task, we aim to validate the practical applicability of the proposed method on

a generally large dataset and deep network architectures. As shown in Table 3.3, on the

challenging Tiny-ImageNet dataset, despite the high accuracy of clean data, as expected, all pre-

trained models result in an extremely poor performance against auto-attacks. The proposed

framework can improve all three pre-trained EfficientNets consistently against auto-attacks.

Specifically, the controlled models have shown 45% ∼ 50% robustness improvements against all

perturbations.

3.5.4 Summary On Numerical Experiments

Figure 3.4 shows the radar plots of accuracy against many perturbations on some chosen

baseline models. Overall, the self-healing via closed-loop control consistently improves the base-

line model performance. Notice that adversarial training can effectively improve the robustness

of baseline models against a certain type of perturbation (e.g. Auto-attack measured in ℓ∞).
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(a): CIFAR-10 (b): CIFAR-100 (c): Tiny-Imagenet

Figure 3.4: (a), (b) and (c) are radar plots that summarize RN-18 in Table 3.1, WRN-76-10 in
Table 3.2, and EfficientNet-b0 in Table 3.3 respectively.

However, those seemingly robust models are extremely vulnerable against other types of per-

turbations (e.g. Auto-attack measured in ℓ1). The proposed method is attack-agnostic and can

consistently improve the robustness of many baseline models against various perturbations.

3.5.5 Experiment On Multi-Label Classification

The robustness issue of multi-label classification is little explored. We consider the PASCAL

Visual Object Detection (VOC) dataset and adopt the standard training protocol where we

consider a union of the VOC 2007 and 2012 training dataset following [87]. For testing, we use

the VOC 2007 test with 4952 test images and 20 classes [88]. We resize the original images to

128 × 128 × 3 for computational efficiency. We use average precision as a measurement for all

models.

We apply the proposed method on EfficientNet-b0, b1 and b2 that are trained via mo-

mentum SGD. For control settings, we choose fully convolutional networks (FCN) [85] as an

input embedding function and a 2-layer auto-encoder as an embedding function for the hidden

states. The Pontryagin’s Maximum Principle hyper-parameter settings are the same as in pre-

vious experiments. We evaluate the performance of all models with clean data (None), project

gradient descent (PGD) measured by ℓ∞ and ℓ2 norms, and an out-of-distribution test (OOD)

where the testing images are transformed by Gaussian blurring. In Table 3.4, despite the high
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Table 3.4: VOC average precision: baseline model / controlled

Standard models, ℓ∞ : ϵ = 8/255, ℓ2 : ϵ = 0.5

None PGD (ℓ∞) PGD (ℓ2) OOD

EfficientNet-b0 0.794 / 0.772 0.181 / 0.245 0.452 / 0.548 0.566 / 0.597

EfficientNet-b1 0.810 / 0.785 0.170 / 0.199 0.478 / 0.558 0.580 / 0.634

EfficientNet-b2 0.796 / 0.786 0.202 / 0.233 0.471 / 0.561 0.602 / 0.630

performance of clean data, those models are extremely vulnerable to adversarial attacks and

out-of-distribution shifts. By equipping the proposed control method, on average, the adver-

sarial robustness of all models has been improved by ∼ 5%, and ∼ 3% on out-of-distribution

shift.

3.5.6 Ablation Study

In this section, we show both intuitive and exploratory justifications for the control method.

Then we empirically validate the margin-based analysis in Section 3.2.2. Finally, we analyze

how the numerical approximation errors affect the controlled model performance.

Intuitive justification of the control method. We provide an intuitive justification of

how a manifold-based recovery is beneficial for robustness. We use the VOC dataset as an

example and build the control algorithm with a fully convolutional network as used in Section

3.5.5. Figure 3.5 (left) shows an image that belongs to the classes of person and dog, and this

clean image is located in both the estimated embedding manifold (red line) and the ground-

truth manifold (blue line). In Figure 3.5 (middle), an adversarial attack drives the clean image

out of the embedding manifold (middle plot). Notice how the adversarial perturbation changes

the texture of the image background as highlighted in the red circle. In Figure 3.5 (right), the

closed-loop control adjusts the perturbed image back to the estimated embedding manifold and

removes the texture perturbation partially. Notice that the controlled image is still different

from the original clean image, as shown by the red and green dots. However, the controlled

52



Figure 3.5: Demonstration of manifold-based control method on VOC input data. Left: a clean
image that belongs to classes person and dog. Middle: a perturbed image that is predicted as
cow. Right: controlled image. The main difference between those three images is highlighted
in the red circle. The red and blue lines represent the estimated embedding manifold and the
ground-truth manifold respectively, and blue, red and green dots show the locations of clean,
perturbed and controlled images respectively.

image from the manifold-based method approaches the clean image compared with its perturbed

counterpart.

Exploratory justification of the manifold-based control method. Since the proposed

closed-loop control method depends on the “manifold hypothesis” that real-world data generally

lies in a low-dimensional manifold [75], we validate a hypothesis that inaccurate embedding

manifold and poor controlled model performance are correlated.

To see this, we use a r-dimensional linear embedding subspace (generated from principle

component analysis) with a basis V ∈ Rd×r to estimate the ground-truth manifold. The

accuracy of an embedding subspace can be measured by reconstruction loss 1
N

∑N
i=1∥VVtxi −

xi∥. In the linear setting, the accuracy of a linear embedding subspace can be tuned by adjusting

its dimension r. In Figure 3.6, we use linear orthogonal projection as embedding function to

implement the closed-loop control in Algorithm 1. In each plot, we fix the embedding of the

hidden state and tune the dimension of the embedding subspace of input data to show the

behavior of reconstruction loss (red) and accuracy of the controlled model (green).
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Generally, the set of estimated manifolds from a chosen manifold learning setting may not

contain the ground-truth manifold. For instance, with a fixed dimension r, there might not

exist a linear embedding subspace that results in 0 reconstruction loss on the given dataset.

In this case, the ground-truth manifold cannot be correctly estimated by the chosen manifold

learning method. Figure 3.6 (a) shows reconstruction loss versus controlled model performance

with respect to varying dimensions on the CIFAR-100 clean test set. As can be seen, when the

chosen linear embedding subspace has a low dimension and cannot contain the ground-truth

manifold, the prediction accuracy is low due to inaccurate reconstruction.

As the dimension of the linear embedding subspace increases, the reconstruction loss of

the embedding subspace decreases. A linear embedding subspace with 0 reconstruction loss

contains the ground-truth manifold. However, an accurate embedding subspace that contains

the ground-truth manifold may lead to low robustness improvement. To see this, we further

increase the dimension of the linear embedding subspace. Figure 3.6 (b) and (c) show the recon-

struction loss versus controlled model performance on perturbed data. As the dimension further

increases, the robustness improvement reduces significantly. This happens because the pertur-

bation lies within the embedding subspace and the perturbed data cannot be distinguished

from the clean counterpart.

Similar behaviour can be seen in the Tiny-Imagenet dataset as shown in Figure 3.6 (d), (e),

and (f). This supports the correlation between inaccurate embedding manifold and poor model

performance

Empirical validation for the margin-based analysis. The margin-based analysis in Sec-

tion 3.2.2 has shown that the composition of a classifier and a manifold-based embedding

function can increase the Euclidean margin to a manifold margin. Although the analysis is con-

ducted in a simplified case that considers a linear classifier with a random decision boundary,

the implication of this analysis can be empirically demonstrated in more general settings.

Recall Proposition 3.2.1, if the estimated linear embedding subspace M contains the ground-

truth manifold M∗, for a linear classifier with a random decision boundary F (·), we have
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(a): CIFAR-100 Clean (b): CIFAR-100 AA (ℓ∞) (c): CIFAR-100 AA (ℓ2)

(d): T-Imagenet Clean (e): T-Imagenet AA (ℓ∞) (f): T-Imagenet AA (ℓ2)

Figure 3.6: (a) plots reconstruction loss (red y-axis) versus controlled model accuracy (green
y-axis) on CIFAR-100 clean test set. The results on ℓ∞ and ℓ2 auto-attack perturbed data
are shown in (b) and (c) respectively. (d), (e) and (f) conduct the same experiment on Tiny-
Imagenet dataset.

E
[

de(F (·))
dM(F (·))

]
≤

√
r
d . To verify this analysis in more general settings, we choose a linear embed-

ding subspace to embed the input data, and study the model performance and robustness with

respect to varying dimensions of the linear embedding subspace. We randomly sample 20 linear

classifiers to replace a pre-trained ResNet-18 on the CIFAR-10 dataset. The modified model is

Flin◦Ffeature◦VVT , where Flin is a randomly sampled linear classifier, Ffeature is the pre-trained

feature extractor, V ∈ Rd×r is a basis of a r-dimensional linear embedding subspace, VVT is

the orthogonal projection operator. As shown in Figure 3.7 (b) and (c), as the dimension r of

the embedding subspace increases, the model robustness against both ℓ∞ and ℓ2 perturbations

decreases. This validates Proposition 3.2.1 since
√

r
d approaches to 1 as r increases, and the

manifold margin is close to the Euclidean margin, which means the gained robustness decreases.

Furthermore, the margin variation does not significantly affect the model performance on clean

data, as shown in Figure 3.7 (a).
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(a): CIFAR-10 Clean (b): CIFAR-10 AA (ℓ∞) (c): CIFAR-10 AA (ℓ2)

Figure 3.7: (a), (b) and (c) study the performance of a linear classifier with a random decision
boundary on clean, ℓ∞ and ℓ2 auto-attack perturbed data respectively.

3.6 Conclusion

This chapter has improved the robustness of neural networks from a new self-healing per-

spective. By formulating the problem as a closed-loop control problem, we show that it is

possible for a neural network to automatically detect and fix the potential errors caused by

various perturbations and attacks. We have provided a margin-based analysis to explain why

the designed control loss function can improve robustness. Moreover, we have also presented

efficient numerical solvers to mitigate the computational overhead in inference. Our theoretical

analysis has also provided a strict error bound of the neural network trajectory error under data

perturbations. Numerical experiments have shown that this method can significantly increase

the robustness of neural networks under various types of perturbations or attacks that were

unforeseen in the training process.

3.7 Detailed Theoretical Proofs

3.7.1 Manifold Projection On Classifier Margin

Proposition 3.2.1 Let M ⊂ Rd be a r-dimensional (r ≤ d) linear subspace that contains the

ground-truth manifold M∗, such that M∗ ⊂ M, F (·) a linear classifier with a random decision

boundary, then E
[

de(F (·))
dM(F (·))

]
≤

√
r
d .
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Proof: We define the ground-truth manifold as follows,

M∗ = {x : Ax = 0, |cTx| ≥ dmargin},

where A defines a subspace where the ground-truth manifold belongs, c ∈ Rd is a unit vector and

|cTx| ≥ dmargin defines two half-spaces. That is, the ground-truth manifold M∗ consists of two

half-spaces corresponding to the two classes. Let M be an linear subspace M = {x : Ax = 0},

in which case, M∗ ⊂ M. We consider a linear classifier with a random decision boundary.

Let B be a hyperplane that represents the decision boundary of this linear classifier, and n̂ a

d-dimensional normal vector such that n̂TB = 0. A random linear classifier can be represented

by n̂ ∼ N (0, 1dI).

Manifold and Euclidean margins attain the same x∗. In this linear case, the following

shows that the manifold margin dM(F (·)) in Equation (3.6) is equivalent to de(F ◦ E(·)) in

Equation (3.7) where E(·) is the orthogonal projection onto the subspace M. The embedding

manifold M is a linear subspace, the geodesics defined on the manifold are equivalent to the

Euclidean norm,

RM(a,b) := inf
γ∈ΓM(a,b),

∫ 1

0

√
⟨ γ′(t), γ′(t)⟩γ(t)dt,

= ∥a− b∥2,

the manifold margin can be shown as follows,

dM(F (·)) =
1

2
inf

x1,x2∈M∗
RM(x1,x2), s.t. F (x1) ̸= F (x2),

=
1

2
inf

x1,x2∈M∗
∥x1 − x2∥2, s.t. F (x1) ̸= F (x2).
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Furthermore,

de(F ◦ E(·)) = inf
x∈M∗

inf
δ∈Rd

∥δ∥2, s.t. F ◦ E(x) ̸= F ◦ E(x + δ),

= inf
x∈M∗

inf
δ∈Rd

∥δ∥2, s.t. F (x) ̸= F (x + E(δ)),

= inf
x∈M∗

inf
δ∈Rd

inf
δ′=E(δ)

∥δ′∥2, s.t. F (x) ̸= F (x + δ′),

= inf
x∈M∗

inf
δ′∈M

∥δ′∥2, s.t. F (x) ̸= F (x + δ′),

=
1

2
inf

x1,x2∈M∗
∥x1 − x2∥2, s.t. F (x1) ̸= F (x2),

= dM(F (·)).

where the embedding function E(·) is replaced by restricting δ ∈ M.

The Euclidean margin in Equation (3.7) can be shown as follows,

de(F (·)) = inf
x∈M∗

∥xT n̂∥2.

Since E(·) is a linear orthogonal projection, recall that dM(F (·)) = de(F ◦ E(·)),

dM(F (·)) = de(F ◦ E(·)) = inf
x∈M∗

∥xTE(n̂)∥2
∥E(n̂)∥2

= inf
x∈M∗

∥(E(x))T n̂∥2
∥E(n̂)∥2

= inf
x∈M∗

∥xT n̂∥2
∥E(n̂)∥2

,

since x ∈ M∗ ∈ M, the orthogonal projection E(x) = x. Therefore, the manifold margin is the

Euclidean margin divided by a constant scalar ∥E(n̂)∥, dM(F (·)) and de(F (·)) are achieved at

the same optimum x∗.

Relationship between manifold and Euclidean margins. Let V ∈ Rd×r be a orthonor-

mal basis of the r-dimensional embedding subspace. An angle θ between the classifier hyper-

plane and the embedding subspace describes the relationship between de(F (·)) and dM(F (·)),

E
[

sin θ
]

= E
[
de(F (·))
dM(F (·))

]
.
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Denote ω as the angle between n̂ and the embedding subspace, θ = π
2 − ω,

sin θ = cosω = ∥VTn∥.

Moreover, when the linear classifier forms a random decision boundary, we consider its orthog-

onal normal vector n̂ ∼ N (0, 1dI). Therefore, VT n̂ ∼ N (0, 1dV
TV).

E
[
∥VT n̂∥22

]
=

1

d
Tr(VTV) =

r

d
.

Then

E
[
(sin θ)2

]
= E

[
(cosω)2

]
=

r

d
,

and from Jensen’s inequality, (
E
[

sin θ
]
]
)2 ≤ E

[
(sin θ)2

]
.

Therefore,

E
[
de(F (·))
dM(F (·))

]
≤

√
r

d
.

3.7.2 Error Estimation of Linear System

This section derives the error estimation of the closed-loop control framework in linear

cases. Given a sequence of states {xt}T−1
t=0 , such that xt ∈ Mt for all t, we denote θt as the

linearized transformation of the nonlinear transformation Ft(·) centered at xt. We represent

the tth embedding manifold Mt = f−1
t (0), where ft(·) : Rd → Rd−r is a submersion of class

C2. Recall Proposition 3.7.1, the kernel of f ′
t(xt) is equivalent to TxtMt, and the orthogonal

projection onto TxtMt (Equation (3.16)) is

Pt := I− f ′
t(xt)

T (f ′
t(xt)f

′
t(xt)

T )−1f ′
t(xt),
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and the orthogonal projection onto orthogonal complement of TxtMt is

Qt = I−Pt = f ′
t(xt)

T (f ′
t(xt)f

′
t(xt)

T )−1f ′
t(xt).

For simplicity, a orthonormal basis of TxtMt is denoted as Vt ∈ Rd×d, in which case, the

orthogonal projection Pt = VtV
T
t , and Qt = I−VtV

T
t .

We consider a set of tangent spaces {TxtMt}T−1
t=0 , that is, each TxtMt is the tangent space

of Mt at xt. Recall the running loss in Equation (3.2), the linear setting uses projection onto

a tangent space rather than a nonlinear embedding manifold.

J(xt,ut) =
1

2
∥Qt(xt + ut)∥22 +

c

2
∥ut∥22, (3.11)

it measures the magnitude of the controlled state xt +ut within the orthogonal complement of

TxtMt, and the magnitude of applied control ut.

The optimal feedback control under Equation (3.11) is defined as

uP
t (xt) = arg min

ut

J(xt,ut),

it admits an exact solution by setting the gradient of performance index (Equation (3.11)) to

0.

∇uJ(xt,ut) = ∇u

(
1

2
∥Qt(xt + ut)∥22 +

c

2
∥ut∥22

)
,

= QT
t Qtxt + QT

t Qtut + c · ut,

which leads to the exact solution of uP
t (Equation (3.18)) as

uP
t = −(c · I + QT

t Qt)
−1QT

t Qtxt = −Ktxt, (3.12)

where the feedback gain matrix Kt = (c · I + QT
t Qt)

−1QT
t Qt. Thus, the one-step feedback
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control can be represented as uP
t = −Ktxt.

Given a sequence {xt}T−1
t=0 , we denote {qϵ,t}T−1

t=0 as another sequence of states resulted from

the linear system, qϵ,0 = x0 + z, for some perturbation z, and {qϵ,t}T−1
t=0 as the adjusted states

by the linear control,

qϵ,t+1 = θt(qϵ,t + uP
t ),

= θt(I−Kt)qϵ,t.

The difference between the controlled system applied with perturbation at the initial con-

dition and the uncontrolled system without perturbation is as follows,

qϵ,t+1 − xt+1 = θt(qϵ,t + ut − xt),

= θt(qϵ,t −Ktqϵ,t − xt). (3.13)

The control objective is to minimize the state components that lie in the orthogonal complement

of the tangent space. When the data locates on the embedding manifold, xt ∈ Mt, this results

in Qtxt = 0, consequently, its feedback control Ktxt = 0. The state difference of Equation

(3.13) can be further shown by adding a 0 term of (θtKtxt)

qϵ,t+1 − xt+1 = θt(I−Kt)qϵ,t − θtxt + θtKtxt,

= θt(I−Kt)(qϵ,t − xt). (3.14)

In the following, we show a transformation on (I−Kt) based on its definition.

Lemma 3.7.1 For t ≥ 0, we have

I−Kt = α · I + (1 − α) ·Pt,

where Pt := Vr
t (V

r
t )

T , which is the orthogonal projection onto Zt
∥, and α := c

1+c such that
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α ∈ [0, 1].

Proof: Recall that Kt = (c · I + QT
t Qt)

−1QT
t Qt, and Qt = I − Vr

t (V
r
t )

T , Qt can be

diagonalized as following

Qt = Vt



0 0 · · · 0 0

0 0 · · · 0 0

...
...

. . . 0 0

0 0 · · · 1 0

0 0 · · · 0 1


VT

t ,

where the first r diagonal elements have a common value of 0 and the last (d− r) diagonal ele-

ments have a common value of 1. Furthermore, the feedback gain matrix Kt can be diagonalized

as

Kt = Vt



0 0 · · · 0 0

0 0 · · · 0 0

...
...

. . . 0 0

0 0 · · · 1
1+c 0

0 0 · · · 0 1
1+c


VT

t ,

where the last (d−r) diagonal elements have a common value of 1
1+c . The control term (I−Kt)

thus can be represented as

I−Kt = Vt



1 0 · · · 0 0

0 1 · · · 0 0

...
...

. . . 0 0

0 0 · · · c
1+c 0

0 0 · · · 0 c
1+c


VT

t ,

where the first r diagonal elements have common value of 1 and the last (d − r) diagonal
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elements have common value of c
1+c . By denoting the projection of first r columns as Vr

t and

last (d− r) columns as V̂r
t , it can be further shown as

I−Kt = Vr
t (V

r
t )

T +
c

1 + c

(
V̂r

t (V̂
r
t )

T
)
,

= Pt + α
(
I−Pt

)
,

= α · I + (1 − α) ·Pt.

Lemma 3.7.2 Define for t ≥ 0


P0

t := Pt,

P
(s+1)
t := θ−1

t−s−1P
s
tθt−s−1, s = 0, 1, . . . , t− 1,

for 0 ≤ s ≤ t. Then

1. Ps
t is a projection.

2. Ps
t is a projection onto Zt−s

∥ , i.e. range(Ps
t ) = Zt−s

∥ .

Proof:

1. We prove it by induction on s for each t. For s = 0, P0
t = Pt, which is a projection by

its definition. Suppose it is true for s such that Ps
t = Ps

tP
s
t , then for (s + 1),

(Ps+1
t )2 =

(
θ−1
t−s−1P

s
tθt−s−1

)2
,

= θ−1
t−s−1

(
Ps

t

)2
θt−s−1,

= θ−1
t−s−1P

s
tθt−s−1,

= Ps+1
t .
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2. We prove it by induction on s for each t. For s = 0, P0
t = Pt, which is the orthogonal

projection onto Zt
∥. Suppose that it is true for s such that Ps

t is a projection onto Zt−s
∥ ,

then for (s + 1), Ps+1
t = θ−1

t−s−1P
s
tθt−s−1, which implies

range(Ps+1
t ) = range(θ−1

t−s−1P
s
t ),

= {θ−1
t−s−1x : x ∈ Zt−s

∥ },

= Zt−s−1
∥ .

The following Lemma reformulates the state difference equation.

Lemma 3.7.3 Define for 0 ≤ s ≤ t,

Gs
t := α · I + (1 − α)Ps

t .

The state difference equation, qϵ,t+1 − xt+1 = θt(I−Kt)(qϵ,t − xt), can be written as

qϵ,t − xt = (θt−1θt−2 · · ·θ0)(Gt−1
t−1G

t−2
t−2 · · ·G

0
0)(qϵ,0 − x0), t ≥ 1.

Proof: We prove it by induction on t. For t = 1,

qϵ,1 − x1 = θ0(I−K0)(qϵ,0 − x0),

= θ0(α · I + (1 − α) ·P0)(qϵ,0 − x0), Lemma 3.7.1,

= θ0G
0
0(qϵ,0 − x0).
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Recall the definitions of P
(s+1)
t := θ−1

t−s−1P
s
tθt−s−1, and Gs

t := α · I + (1 − α)Ps
t ,

Gs+1
t = α · I + (1 − α) ·P(s+1)

t ,

= α · I + (1 − α) · θ−1
t−s−1P

s
tθt−s−1,

= θ−1
t−s−1

(
α · I + (1 − α) ·Ps

t

)
θt−s−1,

= θ−1
t−s−1G

s
tθt−s−1,

which results in θt−s−1G
(s+1)
t = Gs

tθt−s−1. Suppose that it is true for (qϵ,t − xt),

qϵ,t+1 − xt+1 = θt(I−Kt)(qϵ,t − xt),

= θt(α · I + (1 − α) ·Pt)(qϵ,t − xt), Lemma 3.7.1,

= θtG
0
t (θt−1θt−2 · · ·θ0)(Gt−1

t−1G
t−2
t−2 · · ·G

0
0)(qϵ,0 − x0),

= (θtθt−1)G
1
t (θt−2θt−3 · · ·θ0)(Gt−1

t−1G
t−2
t−2 · · ·G

0
0)(qϵ,0 − x0),

= (θtθt−1 · · ·θ0)(Gt
tG

t−1
t−1 · · ·G

0
0)(qϵ,0 − x0).

Lemma 3.7.4 For t ≥ 1,

G
(t−1)
t−1 G

(t−2)
t−2 · · ·G0

0 = αt · I + (1 − α)

t−1∑
s=0

αsPs
s.

Proof: We prove it by induction on t. Recall the definition of Gs
t := α · I + (1 − α) · Ps

t .

When t = 1,

G0
0 = α · I + (1 − α) ·P0

0.

Suppose that it is true for t such that

G
(t−1)
t−1 G

(t−2)
t−2 · · ·G0

0 = αt · I + (1 − α)
t−1∑
s=0

αsPs
s,
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for (t + 1),

Gt
tG

(t−1)
t−1 · · ·G0

0

= Gt
t(α

t · I + (1 − α)

t−1∑
s=0

αsPs
s),

= (α · I + (1 − α) ·Pt
t)(α

t · I + (1 − α)

t−1∑
s=0

αsPs
s),

= αt+1 · I + αt(1 − α)Pt
t + (1 − α)2

t−1∑
s=0

αs ·Pt
tP

s
s + α(1 − α)

t−1∑
s=0

αs ·Ps
s.

Recall Lemma 3.7.2, range(Pt
t) = range(Ps

s) = Z0
∥ . Since Pt

t and Ps
s are projections onto the

same space, Pt
tP

s
s = Ps

s. Therefore,

Gt
tG

(t−1)
t−1 · · ·G0

0 = αt+1 · I + αt(1 − α) ·Pt
t + (1 − α)

t−1∑
s=0

αs ·Ps
s,

= αt+1 · I + (1 − α)
t∑

s=0

αs ·Ps
s.

Lemma 3.7.5 Let P = VVT be the orthogonal projection onto a subspace D, and θ to be

invertible. Denote by P̂ the orthogonal projection onto θD := {θx : x ∈ D}. Then

∥θ−1P̂θ −P∥2 ≤
(
1 + κ(θ)2

)
· ∥I− θTθ∥2.

Proof:

P̂ = θV
[
(θV)T (θV)

]−1
(θV)T ,

= θV
[
VTθTθV

]−1
VTθT .

Furthermore, the difference between the oblique projection and the orthogonal projection can
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be bounded by the following

∥θ−1P̂θ −P∥2 = ∥V
[
VTθTθV

]−1
VTθTθ −VVT ∥2,

≤ ∥V
[
VTθTθV

]−1
VTθTθ −VVTθTθ∥2 + ∥VVTθTθ −VVT ∥2,

≤ ∥V
(
[VTθTθV]−1 − I

)
VT ∥2 · ∥θTθ∥2 + ∥θTθ − I∥2,

≤ ∥[VTθTθV]−1∥2 · ∥I−VTθTθV∥2 · ∥θTθ∥2 + ∥θTθ − I∥2,

≤ ∥[VTθTθV]−1∥2 · ∥I− θTθ∥2 · ∥θTθ∥2 + ∥θTθ − I∥2,

=
(
λmin(VTθTθV)

)−1 · ∥I− θTθ∥2 · ∥θTθ∥2 + ∥θTθ − I∥2,

=
(

inf
∥x∥2=1

xTVTθTθVx
)−1 · ∥I− θTθ∥2 · ∥θTθ∥2 + ∥θTθ − I∥2,

≤
(

inf
∥x′∥2=1

(x′)TθTθx′)−1 · ∥I− θTθ∥2 · ∥θTθ∥2 + ∥θTθ − I∥2,

=
(
λmin(θTθ)

)−1 · ∥I− θTθ∥2 · ∥θTθ∥2 + ∥θTθ − I∥2,

= ∥(θTθ)−1∥2 · ∥I− θTθ∥2 · ∥θTθ∥2 + ∥θTθ − I∥2,

=
(
1 + κ(θ)2

)
· ∥I− θTθ∥2.

Corollary 3.7.1 Let t ≥ 1. Then for each s = 0, 1, · · · , t, we have

∥Ps
s −P0∥2 ≤

(
1 + κ(θs)

2
)
· ∥I− θ

T
s θs∥2,

where

• θs := θs−1 · · ·θ0, s ≥ 1,

• θs := I, s = 0.

The following theorem provides an error estimation for the linear dynamic system with linear

controls.
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Theorem 3.4.1 For t ≥ 1, we have an error estimation for the linear system

∥qϵ,t − xt∥22 ≤ ∥θt−1 · · ·θ0∥22 ·
(
α2t∥z⊥∥22 + ∥z∥∥22 + γt∥z∥22

(
γtα

2(1 − αt−1)2 + 2(α− αt)
))

.

where γt := max
s≤t

(
1+κ(θs−1 · · ·θ0)2

)
∥I−(θs−1 · · ·θ0)T (θs−1 · · ·θ0)∥2, κ(θ) is condition number

of θ, α = c
1+c , and c represents the control regularization. In particular, the equality

∥qϵ,t − xt∥22 = α2t∥z⊥∥22 + ∥z∥∥22

holds when all θt are orthogonal.

Proof: The input perturbation z = qϵ,0−x0 can be written as z = z∥ + ·z⊥, where z∥ ∈ Z∥

and z⊥ ∈ Z⊥, where z∥ and z⊥ are vectors such that

• z∥ · z⊥ = 0 almost surely.

• z∥, z⊥ have uncorrelated components.

Recall Lemma 3.7.3,

∥qϵ,t − xt∥22 = ∥(θt−1θt−2 · · ·θ0)(Gt−1
t−1 · · ·G

0
0)z∥22,

≤ ∥θt−1θt−2 · · ·θ0∥22 · ∥(Gt−1
t−1 · · ·G

0
0)z∥22, (3.15)

For the term ∥(Gt−1
t−1G

t−2
t−2 · · ·G0

0)z∥22, recall Lemma 3.7.4,

∥(Gt−1
t−1 · · ·G

0
0)z∥22 = ∥

(
αt · I + (1 − α)

t−1∑
s=0

αs ·Ps
s

)
z∥22,

= ∥αtz + (1 − α)

t−1∑
s=0

αsP0z + (1 − α)

t−1∑
s=0

αs(Ps
s −P0)z∥22,

= ∥αtz + (1 − αt)z∥ + (1 − α)
t−1∑
s=0

αs(Ps
s −P0)z∥22,
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in the above, P0 is an orthogonal projection on t = 0 (input data space), therefore, P0z = z∥.

Furthermore, when s = 0, Ps
s −P0 = 0. Thus,

∥(Gt−1
t−1 · · ·G

0
0)z∥22

= α2t∥z∥22 + (1 − αt)2∥z∥∥22 + (1 − α)2
t−1∑
s,q=1

αsαqzT (Ps
s −P0)

T (Pq
q −P0)z

+ 2αt(1 − αt)∥z∥∥22 + 2αt(1 − α)
t−1∑
s=1

αszT (Ps
s −P0)z

+ 2(1 − αt)(1 − α)
t−1∑
s=1

αs(z∥)T (Ps
s −P0)z,

= α2t∥z⊥∥22 +
(
α2t + 2αt(1 − αt) + (1 − αt)2

)
∥z∥∥22

+ (1 − α)2
t−1∑
s,q=1

αsαqzT (Ps
s −P0)

T (Pq
q −P0)z + 2αt(1 − α)

t−1∑
s=1

αszT (Ps
s −P0)z

+ 2(1 − αt)(1 − α)
t−1∑
s=1

αs(z∥)T (Ps
s −P0)z,

= α2t∥z⊥∥22 + ∥z∥∥22 + (1 − α)2
t−1∑
s,q=1

αsαqzT (Ps
s −P0)

T (Pq
q −P0)z

+ 2αt(1 − α)

t−1∑
s=1

αszT (Ps
s −P0)z + 2(1 − αt)(1 − α)

t−1∑
s=1

αs(z∥)T (Ps
s −P0)z.

Using Corollary 3.7.1, we have

•

zT (Ps
s −P0)z ≤ ∥z∥22 · ∥Ps

s −P0∥,

≤ γt∥z∥22.
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•

zT (Ps
s −P0)

T (Pq
q −P0)z ≤ ∥z∥22 · ∥Ps

s −P0∥ · ∥Pq
q −P0∥,

≤ γ2t ∥z∥22.

•

(z∥)T (Ps
s −P0)z ≤ γt∥z∥∥2 · ∥z∥2,

≤ γt∥z∥22.

Thus, we have

∥(Gt−1
t−1 · · ·G

0
0)z∥22 ≤ α2t∥z⊥∥22 + ∥z∥∥22 + α2(1 − αt−1)2γ2t ∥z∥22 + 2αt+1(1 − αt−1)γt∥z∥22

+ 2α(1 − αt)(1 − αt−1)γt∥z∥22,

= α2t∥z⊥∥22 + ∥z∥∥22 + γt∥z∥22
(
γtα

2(1 − αt−1)2 + 2(α− αt)
)
.

Recall the error estimation in Equation (3.15),

∥qϵ,t − xt∥22 ≤ ∥θt−1θt−2 · · ·θ0∥22 · ∥(Gt−1
t−1 · · ·G

0
0)z∥22,

≤ ∥θt−1 · · ·θ0∥22 ·
(
α2t∥z⊥∥22 + ∥z∥∥22 + γt∥z∥22

(
γtα

2(1 − αt−1)2 + 2(α− αt)
))

.

In the specific case, when all θt are orthogonal,

γt : = max
s≤t

(
1 + κ(θs)

2
)
∥I− θ

T
s θs∥2

= 0.
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Thus,

∥qϵ,t − xt∥22 = α2t∥z⊥∥22 + ∥z∥∥22.

3.7.3 Analysis On Nonlinear Manifold Projection

Definition for the tangent space TxM based on the submersion f(·).

Proposition 3.7.1 Let M ⊂ Rd be an r-dimensional smooth manifold and x ∈ M. Given a

submersion f(·) : Rd → Rd−r of class C1, such that M = f−1(0). Then the tangent space at

any x ∈ M is the kernel of the linear map f ′(x), i.e., TxM = Kerf ′(x).

Proof: For any x ∈ M and v ∈ TxM, suppose that there is an open interval J ∈ R

such that 0 ∈ J , and a smooth curve γ : J → M such that γ(0) = x, γ′(0) = v. Since

f(x) = 0, ∀x ∈ M, and γ(λ) ∈ M, ∀λ ∈ J ,

f ◦ γ(λ) = 0, λ ∈ J .

Therefore, f ◦ γ(λ) is a constant map for all λ ∈ J ,

0 = (f ◦ γ)′(0) = f ′(γ(0))γ′(0) = f ′(x)v,

since v ∈ TxM is arbitrarily chosen from TxM, f ′(x)v = 0, ∀v ∈ TxM. Therefore, TxM ∈

kerf ′(x) (the kernel of linear map f ′(x)).

Recall that f : Rd → Rd−r is a submersion, its differential f ′(x) is a surjective linear map

with constant rank for all x ∈ M.

dim(kerf ′(x)) = dim(Rr) − rank(f ′(x)) = d− (d− r) = r.
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Since TxM ∈ kerf ′(x) and dim(TxM) = dim(kerf ′(x)), TxM = kerf ′(x).

Definitions for the control solutions of running loss. Given a smooth manifold M,

we can attach to every point x ∈ M a tangent space TxM. Proposition 3.7.1 has shown the

equivalence between the kernel of f ′(x) and the tangent space TxM. Therefore, f ′(x) consists

a basis of the complement of the tangent space TxM. For simplicity, we assume the submersion

to be normalized such that the columns of f ′(x) consist of a orthonormal basis. In this case,

the orthogonal projection onto TxM can be defined as following,

Px := I− f ′(x)T f ′(x). (3.16)

In general cases, when f ′(x) does not consist of an orthonormal basis, the orthogonal projection

in Equation (3.16) can be defined by adding a scaling factor as following,

Px := I− f ′(x)T (f ′(x)f ′(x)T )−1f ′(x).

The orthogonal projection onto the orthogonal complement of TxM is defined as follows,

Qx := I−Px = f ′(x)T f ′(x).

Recall that a general embedding manifold is defined by a submersion, such that M =

f−1(0). In the linear case, an embedding manifold is considered as a linear sub-space. This

linear sub-space can be defined by a submersion M = (f ′(x))−10 = f ′(x)T0, in which case, the

submersion is a linear operator f ′(x). In this linear case, we denote uP
x (xϵ) as the minimizer

of running loss L(xϵ,u, E(·)) in Equation (3.2),

uP
x (xϵ) = arg min

u∈Rd

1

2
· ∥f ′(x)(xϵ + u)∥22 +

c

2
· ∥u∥22. (3.17)
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Notice (xϵ +uP
x (xϵ)) = Px(xϵ) when the regularization c = 0, uP

x (xϵ) admits an exact solution

uP
x (xϵ) = −(c · I + Qx)−1Qxxϵ = −(c · I + f ′(x)T f ′(x))−1f ′(x)T f ′(x)xϵ. (3.18)

In the nonlinear case, let M ⊂ Rd be an embedding manifold such that M = f−1(0), for

a submersion f(·) of class C2, a constant σ be a uniform upper bound on the Hessian of f(·),

such that supx∈Rd∥f ′′(x)∥∗ ≤ σ. For simplicity, we assume a normalized submersion f(·) to be

where f ′(x) is a orthonormal basis for the orthogonal complement of tangent space at x ∈ M.

In this case, we denote uM(xϵ) as the minimizer of the running loss L(xϵ,u, E(·)) in Equation

(3.2),

uM(xϵ) = arg min
u∈Rd

1

2
· ∥f(xϵ + u)∥22 +

c

2
· ∥u∥22. (3.19)

In general, when the submersion is not normalized, we can always normalize it by replacing

f(x) as f ′(x)T (f ′(x)f ′(x)T )−1f(x), where f ′(x)T (f ′(x)f ′(x)T )−1 is a scaling factor.

Error bound for linear and nonlinear control solutions. For a 3-dimensional tensor,

e.g. the Hessian f ′′(x), we define the 2-norm of f ′′(x) as

∥f ′′(x)∥∗ := sup
z ̸=0

∥f ′′(x)i,j,kzjzk∥2
∥z∥22

.

The following proposition shows an error bound between uM(xϵ) and uP
x (xϵ).

Proposition 3.7.2 Consider a data point xϵ = x + ϵ · v, where x ∈ M, ∥v∥2 = 1 and ϵ

sufficiently small 0 ≤ ϵ ≤ 1. The difference between the regularized manifold projection uM(xϵ)

and the regularized tangent space projection uP
x (xϵ) is upper bounded as following,

∥uM(xϵ) − uP
x (xϵ)∥2 ≤ 4ϵ2σ(1 + 2σ).

Proof: Recall the definition of regularized manifold projection in Equation (3.19), the

optimal solution uM(xϵ) admits a exact solution by setting the gradient of Equation (3.19) to
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0,

∇u

(
1

2
· ∥f(xϵ + u)∥22 +

c

2
· ∥u∥22

)
=

(
f ′(x + ϵv + u)

)T(
f(x + ϵv + u)

)
+ c · u. (3.20)

The control u is in the same order as the perturbation magnitude ϵ, we parametrize u = ϵ · µ.

By applying Taylor series expansion centered at ϵ = 0, and f(x) = 0 since x ∈ M,

(
f ′(x + ϵv + ϵµ)

)T(
f(x + ϵv + ϵµ)

)
+ c · ϵ · µ

=

(
f ′(x) + ϵ

(
f ′′(xµ)i,j,k(v + µ)k

))T(
ϵf ′(x)(v + µ) + ϵ2

(
f ′′(xµ)i,j,k(v + µ)j(v + µ)k

))
+ c · ϵ · µ,

since µ is a variable dependent on u, the Hessian of f(·) is a function that depends on µ. There

exists a xµ satisfying the following,

f(x + ϵv + ϵµ) = f(x) + ϵf ′(x)(v + µ) + f ′′(xµ)i,j,k(v + µ)j(v + µ)k.

Furthermore, recall that u = ϵ · µ,

(
f ′(x) +

(
f ′′(xµ)i,j,k(ϵv + u)k

))T(
f ′(x)(ϵv + u) +

(
f ′′(xµ)i,j,k(ϵv + u)j(ϵv + u)k

))
+ c · u,

= f ′(x)T f ′(x)(ϵv + u) + c · u + f ′(x)T
(
f ′′(xµ)i,j,k(ϵv + u)j(ϵv + u)k

)
+

((
f ′′(xµ)i,j,k(ϵv + u)k

))T(
f ′(x)(ϵv + u) +

(
f ′′(xµ)i,j,k(ϵv + u)j(ϵv + u)k

))
.

Setting the above to 0 results in an implicit solution for uM(xϵ),

uM(xϵ) = −
(
f ′(x)T f ′(x) + cI

)−1(
ϵf ′(x)T f ′(x)v + E1 + E2

)
,
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where

E1 = f ′(x)T
(
f ′′(xµ)i,j,k(ϵv + uM(xϵ))j(ϵv + uM(xϵ))k

)
,

E2 =
(
f ′′(xµ)i,j,k(ϵv + u)k

)T(
f ′(x)(ϵv + u) + f ′′(xµ)i,j,k(ϵv + u)j(ϵv + u)k

)
.

Note that uM(xϵ) is an implicit solution since E1 and E2 both depend on the solution u.

Recall the definition of uP
x (xϵ) in Equation (3.18),

uP
x (xϵ) = −(c · I + Qx)−1Qxxϵ,

= −(c · I + Qx)−1Qx(x + ϵ · v),

= −ϵ

(
c · I + f ′(x)T f ′(x)

)−1

f ′(x)T f ′(x)v,

the difference between uM(xϵ) and uP
x (xϵ),

∥uM(xϵ) − uP
x (xϵ)∥2 ≤ ∥

(
f ′(x)T f ′(x) + c · I

)−1∥2 · ∥E1 + E2∥2.

Let us simplify the above inequality.

• For any non-negative c,

∥
(
f ′(x)T f ′(x) + c · I

)−1∥2 = ∥
(
f ′(x)T f ′(x) + c · I

)−1∥2 ≤ 1.

• Recall the gradient of the running loss (Equation (3.20)),

(
f ′(x+ϵv+ϵµ)

)T(
f(x+ϵv+ϵµ)

)
+c ·ϵ ·µ =

(
f ′(x+ϵv+u)

)T(
f ′(p)(ϵv+u)

)
+c ·u,

where p = αx + (1 − α)(x + ϵv + uM) for α ∈ [0, 1] such that

f(x + ϵv + ϵµ) = f(x) + ϵ · f ′(p)(ϵv + ϵµ).
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Setting the gradient of running loss to 0 results in the optimal solution uM(xϵ),

uM(xϵ) = −
((

f ′(x + ϵv + u)
)T

f ′(p) + cI

)−1((
f ′(x + ϵv + u)

)T
f ′(p)

)
(ϵv).

Since f ′(·) contains orthonormal basis, the solution ∥uM(xϵ)∥ can be upper bounded by

the follows,

∥uM(xϵ)∥ ≤
∥∥((f ′(x + ϵv + u)

)T
f ′(p) + cI

)−1∥∥
2
·
∥∥((f ′(x + ϵv + u)

)T
f ′(p)

)∥∥
2
(ϵ),

≤
∥∥(f ′(x + ϵv + u)

)T
f ′(p)

∥∥2
2
· (ϵ),

≤ ∥f ′(x + ϵv + u)T ∥22 · ∥f ′(p)∥22 · (ϵ),

≤ ϵ. (3.21)

• From above,

∥ϵv + uM(xϵ)∥22 = ∥ϵv∥22 + 2∥ϵv∥2 · ∥uM(xϵ)∥2 + ∥uM(xϵ)∥22 ≤ 4ϵ2,

∥ϵv + uM(xϵ)∥32 ≤ 8ϵ3.

• Recall the f ′(x) is a orthnormal basis, ∥f ′(x)∥2 ≤ 1, the error terms can be bounded as

follows,

∥E1∥2 = ∥f ′(x)T
(
f ′′(xµ)i,j,k(ϵv + uM(xϵ))j(ϵv + uM(xϵ))k

)
∥2,

≤ ∥ϵv + uM(xϵ)∥22 · ∥f ′′(xµ)∥∗ · ∥f ′(x)T ∥2,

≤ 4ϵ2.
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∥E2∥2 =
∥∥∥(f ′′(xµ)i,j,k(ϵv + u)k

)T(
f ′(x)(ϵv + u) + f ′′(xµ)i,j,k(ϵv + u)j(ϵv + u)k

)∥∥∥
2

≤ ∥ϵv + uM(xϵ)∥22 · ∥f ′′(xµ)∥∗ · ∥f ′(x)∥2 + ∥ϵv + uM(xϵ)∥32 · ∥f ′′(xµ)∥2∗,

≤ 4ϵ2σ + 8ϵ3σ2.

Therefore, for sufficiently small ϵ, such that ϵ ≤ 1, the difference

∥uM(xϵ) − uP
x (xϵ)∥2 ≤ ∥E1∥2 + ∥E2∥2 ≤ 4ϵ2σ(1 + 2σ).

The above proposition shows that the error between solutions of running loss with tangent space

and nonlinear manifold is of order O(ϵ2), this result will serve to derive the error estimation in

the nonlinear case.

3.7.4 Analysis On Linearization Error

This section derives an O(ϵ2) error from linearizing the nonlinear system Ft(xt) and non-

linear embedding function Et(xt). We represent the tth embedding manifold Mt = f−1
t (0),

where ft(·) : Rd → Rd−r is a submersion of class C2. Recall the definition of the 2-norm of a

3-dimensional tensor,

∥f ′′(x)∥∗ := sup
z ̸=0

∥f ′′(x)i,j,kzjzk∥2
∥z∥22

,

we consider a uniform upper bound on the submersion supx∈Rd∥f ′′
t (x)∥∗ ≤ σt, and a uniform

upper bound on the nonlinear transformation supx∈Rd∥F ′′
t (x)∥∗ ≤ βt.

Recall the definition of control in linear case. Recall Proposition 3.7.1, the kernel of

f ′
t(xt) is equivalent to TxtMt. When the submersion ft(·) is normalized where the columns of

f ′
t(xt) consist of a orthonormal basis, the orthogonal projection onto TxtMt (Equation (3.16))

is

Pxt := I− f ′
t(xt)

T f ′
t(xt),
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and the orthogonal projection onto orthogonal complement of TxtMt is Qxt = I−Pxt . In this

linear case, the running loss in Equation (3.2) L(xt,ut, Et(·)) is defined as

L(xϵ,ut, Et(·)) =
1

2
∥f ′

t(xt)(xϵ + ut)∥22 +
c

2
∥ut∥22.

Its optimal solution uP
xt

(xϵ) (Equation (3.18)) is

uP
xt

(xϵ) = −(c · I + f ′
t(xt)

T f ′
t(xt))

−1f ′
t(xt)

T f ′
t(xt)xϵ = −Kxtxϵ, (3.22)

where the feedback gain matrix Kxt = (c · I + f ′
t(xt)

T f ′
t(xt))

−1f ′
t(xt)

T f ′
t(xt).

Definition of linearized system. For the nonlinear transformation Ft(·), the optimal solu-

tion is uMt(xϵ,t) of running loss in Equation (3.2) equipped with an embedding manifold Mt

is defined in Equation (3.19). Controlled nonlinear dynamics is

xϵ,t+1 = Ft(xϵ,t + uMt(xϵ,t)).

By definition in the running loss of Equation (3.19), uMt(xt) = 0 when xt ∈ Mt. Therefore,

we denote a sequence {xt}T−1
t=0 as the unperturbed states such that

xt+1 = Ft(xt), xt ∈ Mt, ∀t = 0, 1, ..., T − 1.

Given the unperturbed sequence {xt}T−1
t=0 , we denote {θt}T−1

t=0 as the Jacobians of {Ft(·)}T−1
t=0

such that

θt = F ′
t(xt), ∀t = 1, 2, ..., T − 1,

and {TxtMt}T−1
t=0 as the tangent spaces such that TxtMt is the tangent space of Mt at xt ∈ Mt.

When a perturbation z is applied on initial condition, xϵ,0 = x0 + z, the difference between
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the controlled system of perturbed initial condition and {xt}T−1
t=0 is

xϵ,t+1 − xt+1 = Ft(xϵ,t + uMt(xϵ,t)) − Ft(xt).

The linearization of the state difference is defined as following,

xϵ,t+1 − xt+1 = Ft(xϵ,t + uMt(xϵ,t)) − Ft(xt),

= Ft(xt) + θt(xϵ,t + uMt(xϵ,t) − xt)

+
1

2
F ′′
t (p)i,j,k(xϵ,t + uMt(xϵ,t) − xt)j(xϵ,t + uMt(xϵ,t) − xt)k − Ft(xt),

= θt(xϵ,t + uMt(xϵ,t) − uP
xt

(xϵ,t) + uP
xt

(xϵ,t) − xt)

+
1

2
F ′′
t (p)i,j,k(xϵ,t + uMt(xϵ,t) − xt)j(xϵ,t + uMt(xϵ,t) − xt)k,

= θt(xϵ,t + uP
xt

(xϵ,t) − xt) + θt(u
Mt(xϵ,t) − uP

xt
(xϵ,t))

+
1

2
F ′′
t (p)i,j,k(xϵ,t + uMt(xϵ,t) − xt)j(xϵ,t + uMt(xϵ,t) − xt)k,

where p = αxt + (1 − α)(xϵ,t + uMt) for α ∈ [0, 1], F ′′
t (p) is a third-order tensor such that

Ft(xϵ,t + uMt(xϵ,t)) = Ft(xt) + θt(xϵ,t + uMt(xϵ,t) − xt)

+
1

2
F ′′
t (p)i,j,k(xϵ,t + uMt(xϵ,t) − xt)j(xϵ,t + uMt(xϵ,t) − xt)k,

such a p always exists according to the mean-field theorem. Recall the definition of uP
xt

(xϵ,t)

in Equation (3.22), θt(xϵ,t + uP
xt

(xϵ,t) − xt) = θt(I−Kxt)(xϵ,t − xt),

xϵ,t+1 − xt+1 = θt(I−Kxt)(xϵ,t − xt) + θt(u
Mt(xϵ,t) − uP

xt
(xϵ,t))

+
1

2
F ′′
t (p)i,j,k(xϵ,t + uMt(xϵ,t) − xt)j(xϵ,t + uMt(xϵ,t) − xt)k. (3.23)

Definition of linearization error. Given a perturbation z, we define the propagation of

perturbation via the linearized system as θt−1(I − Kxt−1) · · ·θ0(I − Kx0)z. The linearization
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error is defined as following,

et := ∥(xϵ,t − xt) − θt−1(I−Kxt−1)θt−2(I−Kxt−2) · · · ,θ0(I−Kx0)z∥2.

The following proposition formulates a difference inequality for et.

Proposition 3.7.3 For t ≥ 1,

et+1 ≤ ∥θt∥2et + (kt∥θt∥2 + 2βt)e
2
t + (kt∥θt∥2 + 2βt) · δxt · ϵ2,

e1 ≤ (kx0∥θ0∥2 + 2β0) · δx0 · ϵ2,

where

kt = 4σt(1 + 2σt),

δxt = ∥θt−1 · · ·θ0∥22 ·
(
α2t∥v⊥∥22 + ∥v∥∥22 + γt∥v∥22

(
γtα

2(1 − αt−1)2 + 2(α− αt)
))

, t ≥ 1,

δx0 = 1,

α = c
1+c for a control regularization c. γt := max

s≤t

(
1 + κ(θs)

2
)
∥I− θ

T
s θs∥2,

• θt := θt−1 · · ·θ0, t ≥ 1,

• θ0 := I, t = 0.

Proof: we subtract both sides of Equation (3.23) by θt(I−Kxt) · · ·θ0(I−Kx0)z, and recall

the definition of linearization error et,

et+1 ≤ ∥θt(I−Kxt)∥2 ·et+∥θt∥2 ·∥uMt(xϵ,t)−uP
xt

(xϵ,t)∥2+
1

2
∥F ′′

t (p)∥∗ ·∥xϵ,t+uMt(xϵ,t)−xt∥22.

Let us simplify the above inequality.

• The orthogonal projection admits ∥I−Kxt∥2 ≤ 1.
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• Recall Proposition 3.7.2,

∥uMt(xϵ,t) − uP
xt

(xϵ,t)∥2 ≤ 4σt(1 + 2σt) · ∥xϵ,t − xt∥22,

where σt is the uniform upper bound on ∥f ′′
t (x)∥∗. We denote

kt = 4σt(1 + 2σt),

∥uMt(xϵ,t) − uP
xt

(xϵ,t)∥2 ≤ kt · ∥xϵ,t − xt∥22.

• Ft(·) admits a uniform upper bound βt such that supx∈Rd∥F ′′
t (x)∥∗ ≤ βt.

• Recall the inequality in Equation (3.21), ∥uMt(xϵ,t)∥2 ≤ ∥xϵ,t − xt∥2,

∥xϵ,t + uMt(xϵ,t) − xt∥22 ≤ 2 · ∥xϵ,t − xt∥22 + 2 · ∥uMt(xϵ,t)∥22,

≤ 4 · ∥xϵ,t − xt∥22.

.

Therefore,

et+1 ≤ ∥θt∥2et + (kt∥θt∥2 + 2βt) · ∥xϵ,t − xt∥22.

Furthermore,

∥xϵ,t − xt∥22

= ∥xϵ,t − xt − θt−1(I−Kxt−1) · · ·θ0(I−Kx0)z + θt−1(I−Kxt−1) · · ·θ0(I−Kx0)z∥22,

≤ e2t + ∥θt−1(I−Kxt−1) · · ·θ0(I−Kx0)z∥22.

Then, the linearization error can be bounded as follows,

et+1 ≤ ∥θt∥2et + (kt∥θt∥2 + 2βt)e
2
t + (kt∥θt∥2 + 2βt) · ∥θt−1(I−Kxt−1) · · ·θ0(I−Kx0)z∥22.
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We can express the initial perturbation as z = ϵv, where ϵ is perturbation magnitude and

v is a unit vector that represents the perturbation direction. The perturbation direction v

admits a direct sum such that v = v∥ ⊕ v⊥, where v∥ ∈ Tx0M0 and v⊥ lies in the orthogonal

complement of Tx0M0.

Recall Theorem 3.4.1,

∥θt−1(I−Kxt−1)θt−2(I−Kxt−2) · · ·θ0(I−Kx0)z∥22,

≤ ∥θt−1 · · ·θ0∥22 ·
(
α2t∥z⊥∥22 + ∥z∥∥22 + γt∥z∥22

(
γtα

2(1 − αt−1)2 + 2(α− αt)
))

,

≤ ∥θt−1 · · ·θ0∥22 ·
(
α2t∥v⊥∥22 + ∥v∥∥22 + γt∥v∥22

(
γtα

2(1 − αt−1)2 + 2(α− αt)
))

ϵ2,

where α = c
1+c for a control regularization c. γt := max

s≤t

(
1 + κ(θs)

2
)
∥I− θ

T
s θs∥2,

• θt := θt−1 · · ·θ0, t ≥ 1,

• θ0 := I, t = 0.

Let δxt = ∥θt−1 · · ·θ0∥22 ·
(
α2t∥v⊥∥22 + ∥v∥∥22 + γt∥v∥22

(
γtα

2(1 − αt−1)2 + 2(α − αt)
))

for

t ≥ 1, and δx0 = 1, the linearization error et+1 can be upper bounded by

et+1 ≤ ∥θt∥2et + (kt∥θt∥2 + 2βt)e
2
t + (kt∥θt∥2 + 2βt) · δxt · ϵ2.

Since et is defined for t ≥ 1, the following derives a upper bound on e1. When t = 1, recall the
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initial perturbation xϵ,0 − x0 = z,

xϵ,1 − x1

= F0(xϵ,0 + uM
0 (xϵ,0)) − F0(x0),

= θ0(xϵ,0 + uM
x0

(xϵ,0) − x0) +
1

2
F ′′
0 (p)i,j,k(xϵ,0 + uM

x0
(xϵ,0) − x0)j(xϵ,0 + uM

0 − x0)k,

= θ0(z + uM
x0

(xϵ,0)) +
1

2
F ′′
0 (p)i,j,k(z + uM

0 (xϵ,0))j(z + uM
0 (xϵ,0))k,

= θ0(z + uM
0 (xϵ,0) − uP

0 (xϵ,0) + uP
0 (xϵ,0)) +

1

2
F ′′
0 (p)i,j,k(z + uM

0 (xϵ,0))j(z + uM
0 (xϵ,0))k,

= θ0(I−Kx0)z + θ0(u
M
0 (xϵ,0) − uP

0 (xϵ,0)) +
1

2
F ′′
0 (p)i,j,k(z + uM

0 (xϵ,0))j(z + uM
0 (xϵ,0))k.

By following the same procedure as the derivation of et+1,

e1 ≤ (kx0∥θ0∥2 + 2β0) · δx0 · ϵ2.

The following proposition solves the difference inequality of linearization error.

Proposition 3.7.4 If the perturbation satisfies

ϵ2 ≤ 1(∑T−1
i=0 δxi(kxi∥θi∥2 + 2βi)

∏T−1
j=i+1(∥θj∥2 + kxj∥θj∥2 + 2βj)

) .

for t ≤ T , the linearization error can be upper bounded by

et ≤
( t−1∑

i=0

δxi(kxi∥θi∥2 + 2βi)
t−1∏

j=i+1

(∥θj∥2 + kxj∥θj∥2 + 2βj)

)
ϵ2.

Proof: We prove it by induction on t up to some T , such that t ≤ T . We restrict the

magnitude of initial perturbation ∥z∥22 ≤ ϵT for some constant ϵT , such that the error et ≤ 1

for all t ≤ T . The expression of ϵT is derived later.
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When t = 1,

e1 ≤ (kx0∥θ0∥2 + 2β0) · δx0 · ϵ2,

which agrees with Proposition 3.7.3.

Suppose that it is true for some t ≤ T − 1, such that

et ≤
( t−1∑

i=0

δxi(kxi∥θi∥2 + 2βi)

t−1∏
j=i+1

(∥θj∥2 + kxj∥θj∥2 + 2βj)

)
ϵ2.

Then at t + 1, recall Proposition 3.7.3, given that et ≤ 1 for all t ≤ T ,

et+1 ≤ ∥θt∥2et + (kt∥θt∥2 + 2βt)e
2
t + (kt∥θt∥2 + 2βt) · δxt · ϵ2,

≤ (∥θt∥2 + kt∥θt∥2 + 2βt)et + (kt∥θt∥2 + 2βt) · δxt · ϵ2,

≤ (∥θt∥2 + kt∥θt∥2 + 2βt)

( t−1∑
i=0

δxi(kxi∥θi∥2 + 2βi)
t−1∏

j=i+1

(∥θj∥2 + kxj∥θj∥2 + 2βj)

)
ϵ2

+ (kt∥θt∥2 + 2βt) · δxt · ϵ2,

=

( t∑
i=0

δxi(kxi∥θi∥2 + 2βi)
t∏

j=i+1

(∥θj∥2 + kxj∥θj∥2 + 2βj)

)
ϵ2.

We have restricted the initial perturbation ∥z∥22 = ϵ2 ≤ ϵT , for some constant ϵT , such that

et ≤ 1, for all t ≤ T .

For t ≤ T ,

et ≤ eT ,

≤
( T−1∑

i=0

δxi(kxi∥θi∥2 + 2βi)
T−1∏
j=i+1

(∥θj∥2 + kxj∥θj∥2 + 2βj)

)
ϵ2,

≤
( T−1∑

i=0

δxi(kxi∥θi∥2 + 2βi)

T−1∏
j=i+1

(∥θj∥2 + kxj∥θj∥2 + 2βj)

)
ϵT ,

= 1,
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therefore,

ϵT =
1(∑T−1

i=0 δxi(kxi∥θi∥2 + 2βi)
∏T−1

j=i+1(∥θj∥2 + kxj∥θj∥2 + 2βj)

) .

Proposition 3.7.4 provides several intuitions.

• the linearization error is of O(ϵ2) when the data perturbation is small, where ϵ is the

magnitude of the data perturbation.

• the linearization error becomes smaller when the nonlinear transformation Ft(·) behaves

more linearily (βt decreases), and the curvature of embedding manifold is smoother (kt

decreases). Specifically, in the linear case, βt and kt become 0, which results in no

linearization error.

• the linearization becomes smaller when the initial perturbation lies in a lower-dimensional

manifold (δxt decreases).

3.7.5 Error Estimation of Nonlinear System

In this section, we analyze the error ∥xϵ,t − xt∥2 via the following steps:

• Section 3.7.3 considers two solutions of the running loss Equation (3.2) where the projec-

tions are defined based on an embedding manifold and a tangent space respectively. An

O(ϵ2) error estimation is derived for the difference between those two solutions.

• Section 3.7.4 provides an O(ϵ2) solution for the linearization error (defined later).

• Finally, Section 3.7.5 derives an upper bound for the total error ∥xϵ,t − xt∥2.
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Theorem 3.4.2 If the initial perturbation satisfies

ϵ2 ≤ 1(∑T−1
i=0 δxi(kxi∥θi∥2 + 2βi)

∏T−1
j=i+1(∥θj∥2 + kxj∥θj∥2 + 2βj)

) .

for 1 ≤ t ≤ T , we have the following error bound for the closed-loop controlled system

∥xϵ,t+1 − xt+1∥2

≤ ∥θt · · ·θ0∥2
(
αt+1∥z⊥∥2 + ∥z∥∥2 + ∥z∥2

(
γt+1α(1 − αt) +

√
2γt+1(α− αt+1)

))
+

( t∑
i=0

δxi(kxi∥θi∥2 + 2βi)
t∏

j=i+1

(∥θj∥2 + kxj∥θj∥2 + 2βj)

)
ϵ2.

Proof: recall that et+1 = ∥(xϵ,t+1 − xt+1) − θt(I−Kxt) · · ·θ0(I−Kx0)z∥2,

∥xϵ,t+1 − xt+1∥2

= ∥xϵ,t+1 − xt+1 − θt(I−Kxt) · · ·θ0(I−Kx0)z + θt(I−Kxt) · · ·θ0(I−Kx0)z∥2,

≤ ∥θt(I−Kxt) · · ·θ0(I−Kx0)z∥2 + ∥xϵ,t+1 − xt+1 − θt(I−Kxt) · · ·θ0(I−Kx0)z∥2,

= ∥θt(I−Kxt) · · ·θ0(I−Kx0)z∥2 + et+1.

Recall Theorem 3.4.1,

∥θt(I−Kxt) · · ·θ0(I−Kx0)z∥2

≤
(
∥θt+1∥22 ·

(
α2(t+1)∥z⊥∥22 + ∥z∥∥22 + γt+1∥z∥22

(
γt+1α

2(1 − αt)2 + 2(α− αt+1)
))) 1

2

,

≤ ∥θt+1∥2 ·
(
αt+1∥z⊥∥2 + ∥z∥∥2 + ∥z∥2

(
γt+1α(1 − αt) +

√
2γt+1(α− αt+1)

))
,

where θt+1 = θtθt−1 · · ·θ0.
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Recall Proposition 3.7.4 for the linearization error,

et+1 ≤
( t∑

i=0

δxi(kxi∥θi∥ + 2βi)
t∏

j=i+1

(∥θj∥2 + kxj∥θj∥2 + 2βj)

)
ϵ2.

Therefore, for t ≥ 1,

∥xϵ,t+1 − xt+1∥2

≤ ∥θt+1∥2
(
αt+1∥z⊥∥2 + ∥z∥∥2 + ∥z∥2

(
γt+1α(1 − αt) +

√
2γt+1(α− αt+1)

))
+

( t∑
i=0

δxi(kxi∥θi∥2 + 2βi)
t∏

j=i+1

(∥θj∥2 + kxj∥θj∥2 + 2βj)

)
ϵ2.
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Chapter 4

PID Control-Based Self-Healing to Improve
the Robustness of Large Language Models

This chapter presents a PID control-based self-healing framework, generalizing the closed-loop

framework from chapter 3. We consider a pre-trained LLM as a discretization of a continuous

dynamical system, framing LLM robustness as a trajectory optimization problem. This ap-

proach employs PID (Proportional-Integral-Derivative) controllers within the hidden layers of

a pre-trained LLM. These controllers calculate error values as the difference between a desired

reference and the current state. The Proportional controller adjusts significantly in response to

large errors for quick error response. The Integral controller corrects accumulated past errors,

ensuring minor errors are addressed over time. The Derivative controller reacts to the rate of

error change. Together, these controllers manage undesired model behavior by responding to

current, accumulated, and predicted errors, thereby generating control actions.

Contribution Summary. The specific contributions of this chapter are summarized below:

• A novel PID control framework: We introduce a novel PID control framework that

improves the robustness of LLMs during online inference, extending beyond existing

methods focusing mainly on proportional errors. Our framework, incorporating Propor-

tional, Integral, and Derivative controls, achieves computational efficiency comparable to

single control schemes through special controller design.

• Analytic solution for fast inference: We approximate the layer-wise transformations
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(a)

(b)

Figure 4.1: (a): Transformer architecture consists of an encoder and a decoder. (b): The
internal structure of a transformer block which consists of the attention and normalization
layers.

in pre-trained LLMs as linear orthogonal transformations, deriving an analytical PID

control solution. This results in a closed-form expression for optimal control, significantly

speeding up online inference.

• Comprehensive theoretical error analysis: We conduct a detailed error analysis

of the controlled approach, underlining the improved robustness of LLMs via our PID

control solutions. This analysis provides insight into the effectiveness of PID control in

improving the robustness of LLMs in simplified settings.

4.1 Background

4.1.1 Transformer Architecture

The Transformer is a type of deep learning model [89] (shown in Figure 4.1). Since its

introduction, the Transformer has become the foundational architecture for numerous state-of-

the-art NLP models. Unlike previous architectures, such as recurrent neural networks (RNNs)
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and convolutional neural networks (CNNs), the Transformer utilizes a mechanism called self-

attention to process input data.

• Self-Attention Mechanism: The self-attention mechanism is the cornerstone innova-

tion of the Transformer model, enabling it to weigh the significance of different words in a

sentence when processing each word. This mechanism allows the model to capture long-

range dependencies and relationships between words, which is essential for understanding

context.

• Encoder-Decoder Structure: Transformers typically comprise two main components:

an encoder and a decoder. The encoder processes the input text and generates a series

of embeddings (numerical representations of the text). The decoder then takes these

embeddings to produce the output text. The encoder consists of multiple identical layers,

each containing two sub-layers: a multi-head self-attention mechanism and a position-

wise fully connected feed-forward network. Each sub-layer has a residual connection

followed by layer normalization. The decoder also comprises several identical layers, with

each layer including an additional sub-layer for performing multi-head attention over the

encoder’s output. This configuration enables the decoder to focus on relevant parts of

the input sequence while generating the output sequence.

• Positional Encoding: To address the lack of inherent word order in Transformers (in

contrast to RNNs), positional encodings are used to inject information about the position

of each word in the sequence. These encodings are added to the input embeddings, thereby

providing the model with a sense of word order.

4.1.2 Large Language Models

Built upon transformer architectures, large language models (LLMs) are trained on exten-

sive corpora of text data to perform a variety of language-related tasks. These tasks range

from relatively simple functions, such as text completion and sentiment analysis, to more com-
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plex operations, such as machine translation and question answering. The following lists some

applications that LLM can be applied.

• Text Generation: LLMs generate coherent and contextually relevant text, proving

useful in applications such as chatbots, content creation, and storytelling.

• Machine Translation: LLMs achieve high accuracy in translating text from one lan-

guage to another, facilitating cross-language communication.

• Sentiment Analysis: Businesses leverage LLMs to analyze customer reviews and feed-

back, enabling them to gauge sentiment and improve their products and services.

• Question Answering: LLMs can comprehend and answer questions based on extensive

datasets, making them valuable for customer support and information retrieval

• Summarization: LLMs condense lengthy documents into concise summaries, aiding

users in quickly grasping the main points.

• Code Generation: Developers use LLMs to generate code snippets, assist with debug-

ging, and automate repetitive programming tasks.

• Healthcare: In the medical field, LLMs assist in diagnosing diseases, summarizing pa-

tient records, and providing personalized treatment recommendations.

4.1.3 Robustness Issue in Large Language Models

Despite their impressive capabilities, language models exhibit significant vulnerabilities to

adversarial attacks. Adversarial attacks involve the deliberate perturbation of input data to

deceive the model into producing incorrect or unintended outputs.

Challenges of adversarial attacks in natural languages: Textual adversarial attacks

present unique challenges compared to their counterparts in image processing. The discrete

nature of text makes it difficult to introduce perturbations that are truly imperceptible to

91



Figure 4.2: Demonstration of adversarial attack in machine translation. The adversarial attack
modifies fox to f0x by changing the letter o to number 0. Then the LLM is fooled to give wrong
translation.

human observers. Unlike images, where minor pixel-level changes can go unnoticed, alterations

to text can often be easily detected, compromising the stealth of the attack. This inherent

characteristic of textual data necessitates more sophisticated techniques for crafting effective

adversarial examples that can fool language models without being obvious to human readers.

Effects of adversarial perturbations on Large Language Models: To craft an adver-

sarial example, start by selecting a benign or normal text input that would typically be pro-

cessed correctly by the model (shown in Figure 4.2). For instance, consider the non-perturbed

sentence, ”I love the new features in this update! Great job, team!” Next, introduce small,

imperceptible changes to the original input to create the adversarial example. These changes

should be subtle enough to avoid detection by human readers but significant enough to mislead

the model. Common techniques include synonym substitution, character-level changes, and

paraphrasing. For example, the generated adversarial example could be ”I l0ve the new featurs

in this upd8te! Gr8 job, team!” While the original input yields a positive sentiment output,

the adversarial example might produce a negative sentiment output, demonstrating the model’s

vulnerability to such perturbations.

Challenge of PMP-Based Self-Healing in LLMs. Large Language Models are majorly

driven by the volume of data and the number of parameters they are trained upon. Figure 4.3

shows that the sizes of natural language processing models continue to increase exponentially,

following a similar trend to Moore’s law for the number of transistors on a chip. According to
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Figure 4.3: The increasing size of large language models from year 2017 to 2021. Dashed line:
the exponential increase in the model size. Red line: the increasing model size predicted by
Moore’s Law [90].

this “NLP’s Moore’s Law”, the model size is increasing by a factor of 10 year-on-year.

The self-healing robust neural network framework introduced in Chapter 3 relies on the

Pontryagin Maximum Principle (PMP) to determine the optimal control solution. However, im-

plementing PMP requires iterating through Hamiltonian dynamics (akin to forward-backward

propagations) during online inference, which is computationally prohibitive for large-scale deep

neural networks, such as large language models.

In this chapter, we revisit the self-healing robust neural network framework and derive a

fast closed-form solution. This advancement makes the self-healing framework applicable for

use with large language models that have more than 1 billion parameters.
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4.2 The PID Control-Based Self-Healing Framework for Large

Language Models

We consider a pre-trained LLM (typically a composition of transformation blocks) as a

discretization of the continuous dynamical system [91], this allows us to formulate the robustness

issue of LLMs as a trajectory optimization problem. Our approach involves designing PID

(Proportional-Integral-Derivative) controllers at hidden layers of a pre-trained LLM. A PID

controller continuously calculates an error value as the difference between a desired reference

and a measured process variable and applies a correction control signal based on proportional,

integral, and derivative terms. More specifically, let the error value be the difference between a

desired reference and the current state. If the error is large, the output of the P controller will

be proportionately large, thereby making a significant adjustment and helping the controller

respond quickly to errors. The I controller determines the present control output based on

the integration of past errors, which ensures that even small errors are corrected over time.

The D controller generates control signals based on the derivative of the error trend. The

combination of P, I, and D controllers quantifies undesired model behavior from present errors,

past accumulated errors, and future error trends, and generates control signals to correct the

errors. Figure 4.4 illustrates the proposed PID control-based self-healing framework. Given

a T -layer LLM, time-dependent PID controllers (represented as Pt, It, and Dt) generate a

feedback control based on the state xt (to simplify the demonstration, only xt is considered as

the input for both I and D controllers). These feedback controls aim to remove the undesirable

effects caused by input perturbations.

We interpret a pre-trained LLM as a discrete dynamical system,

xt+1 = Ft(xt, πt(xt),θt), ∀t = 0, 1, ..., T − 1, (4.1)

where Ft : Rd × Rd × Θ → Rd represents a transformer block parametrized by some model

parameters θt ∈ Θ, πt : Rd → Rd is a feedback controller that maps the current state xt to
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Figure 4.4: The structures of feed-forward deep neural network (highlighted in blue) and the
proposed PID control method (highlighted in red).

a control action. We aim to construct feedback controllers π := {πt}T−1
t=0 to ensure that the

controlled states (xt +πt(xt)) yield the desired output when perturbations are applied to input

data. This can be formulated as a trajectory optimization problem,

min
π

E(x0,y)∼D [J(x0,y, π)] := min
π

E(x0,y)∼D

[
Φ(xT , y) +

T−1∑
t=0

L({xs}ts=0, πt, ft)

]
, s.t. Equation (4.1)

(4.2)

where initial states and labels (x0, y) are sampled from the underlying data distribution D. The

terminal loss Φ(xT , y) evaluates the discrepancy between the terminal state and a pre-defined

destination set. In machine learning applications, this measures the consistency between the

terminal state xT (or its transformation) with the true label. However, this is not feasible in

general machine learning applications as the true label y remains unknown during inference.

More specifically, during online inference, given an initial condition x0, its label y cannot be

accessed to optimize the states since this quantity is unknown. Consequently, the terminal

loss is negated by setting it to zero. In these cases, the optimal controllers {πt}T−1
t=0 minimize

the cumulative running losses L({xs}ts=0, πt, ft), which assess the state trajectory and control

using certain measurement function ft. In Section 4.2.1, we construct the running loss, which

forms a crucial part of the objective function defined in Equation (4.2). This objective function

needs to be solved for each initial state during online inference, which presents a challenge to

computational efficiency. To address this, the subsequent Section 4.2.2 presents a more effi-

cient algorithm for computing the objective function under specific assumptions. Furthermore,
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Section 4.2.3 presents a comprehensive theoretical error analysis for the proposed algorithm.

Lastly, Section 4.2.4 provides additional details on the implementation of constructing PID

controls.

4.2.1 PID Control Design via Embedding Manifolds

In analyzing an LLM through the lens of discrete dynamical systems, we observe that its

state trajectory, governed by the composition of transformations, forms a lower-dimensional

structure embedded in the ambient state space, also known as the “manifold hypothesis” [75].

This can be conceptualized as a sequence of embedding manifolds. We consider a r-dimensional

smooth manifold embedded in Rd as {x : f(x) = 0}, where f : Rd → R(d−r) is a surjective

mapping that can be used to measure the distance between a state xt to the embedding manifold,

for instance, ∥f(x)∥ = 0 if x belongs to the embedding manifold, and ∥f(x)∥ > 0 if x is outside

the embedding manifold.

At each time step t (e.g. the tth layer), we construct three embedding manifolds with three

distinct surjective functions fP
t : Rd → R(d−r), f I

t : Rd → R(d−r), and fD
t : Rd → R(d−r), that

represent the embedding manifolds of the state, the integration of past states, and the derivative

of the state, respectively. In a discrete setting, integration is equivalent to the summation of

past states, and the derivative can be estimated as the subtraction between two consequential

states. Given these embedding functions, we propose the following running loss to evaluate the

controlled state at time step t,

L({xs}ts=0, πt, (f
P
t , f I

t , f
D
t )) :=

1

2
∥fP

t (xt + πt(xt))∥22+
1

2
∥f I

t (xt + πt(xt) +
t−1∑
s=0

xs)∥22

+
1

2
∥fD

t (xt + πt(xt) − xt−1)∥22 +
ct
2
∥πt(xt)∥22, (4.3)

where the layer-dependent regularization term ct prevents using large controls. The running loss

consists of three components, each assessing the error in the controlled state through distinct

embedding functions: proportional, integration, and derivative. In this construction of running
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loss, the optimal controller results in a controlled state xt + πt(xt) which is expected to closely

align with the state embedding manifold, evaluated by fP
t . Additionally, the controller must

ensure that past controlled states remain close to the integration embedding manifold of the

state, as evaluated by f I
t , and the state’s derivative should similarly align closely with the

manifold of the state’s derivative embedding, as quantified by fD
t .

The objective function defined in Equation (4.2) and the associated running loss detailed

in Equation (4.3) can be solved via the dynamical programming principle [77]. However, this

method faces exponential complexity in terms of the dimension of the state. To overcome this

’curse of dimensionality’, we can reinterpret the optimal control problem through Pontryagin’s

Maximum Principle and approximate it using the method of successive approximation [79].

This iterative algorithm is discussed in Section 3.3 from Chapter 3. It requires forward and

backward propagation through a pre-trained deep neural network over several iterations during

online inference, which is generally infeasible for large-scale LLMs. In the subsequent section,

we construct an analytic solution with certain relaxation assumptions.

4.2.2 An Analytic Solution for Fast Inference

We develop an analytic solution for solving the objective function in Equation (4.2), under

certain assumptions. These assumptions are summarized in the following,

• Assumption 1: Both embedding manifold and layer-wise transformation are linear. In

this case, the layer-wise transformation, denoted as Ft(·), is linearized through a matrix

θt ∈ Rd×d. A smooth embedding manifold is represented by a linear embedding subspace.

This linear embedding subspace is defined by a set of basis vectors, which are captured by

the column space of a matrix V ∈ Rd×r, corresponding to an r-dimensional embedding

subspace.

• Assumption 2: Both embedding manifold and layer-wise transformation are orthogonal.

In this case, layer-wise transformations are represented by orthogonal matrices, satisfying

θ⊤
t θt = θtθ

⊤
t = I. Additionally, the basis vectors VP

t , VI
t , and VD

t are considered to be
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mutually orthogonal,

(VP
t )⊤VI

t = 0, (VP
t )⊤VD

t = 0, (VI
t )⊤VD

t = 0.

With these assumptions, the computational cost of the resulting control algorithm is comparable

to that of conducting forward propagation using the original model.

An analytic solution under Assumption 1. In the special linear case, for the linear

embedding subspaces linked to the state, state integration, and state derivative, we define the

basis as VP
t , VI

t , and VD
t , respectively. Consequently, the embedding manifolds, represented

by the surjective functions fP
t , f I

t , and fD
t , are orthogonal projections QP

t , QI
t , and QD

t , where

QP
t = I−VP

t (VP
t )⊤, QI

t = I−VI
t (VI

t )⊤, QD
t = I−VD

t (VD
t )⊤.

The following proposition solves the objective function defined in Equation (4.2) under

linearity assumptions.

Proposition 4.2.1 Consider the following objective function,

min
π

E(x0,y)∼D [J(x0, y, π)] := min
π

E(x0,y)∼D

[
Φ(xT , y) +

T−1∑
t=0

L({xs}ts=0, πt, (Q
P
t ,Q

I
t ,Q

D
t ))

]
,

s.t. xt+1 = θt(xt + πt(xt)). (4.4)

the optimal value function, parametrized as V (xt) = x⊤
t Ptxt, satisfies the Riccati equation:

Pt =
1

2
Qt+θ⊤

t Pt+1θt−
1

2
(Qt+2θ⊤

t Pt+1θt)
⊤(Qt+2θ⊤

t Pt+1θt+ctI)
−1(Qt+2θ⊤

t Pt+1θt). (4.5)

The optimal control solution is given by

πt(xt) = −(Qt + c · I + 2θ⊤
t Pt+1θt)

−1(Qt + 2θ⊤
t Pt+1θt)xt, (4.6)
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where Qt = QP
t + QI

t + QD
t .

We provide an outline of the proof, with a detailed derivation available in Section 4.5.1. The

optimal value function V (xt) of the optimal control problem defined in Equation (4.6) satisfies

the Bellman optimality equation,

V (xt) = L({xs}ts=0, πt, (Q
P
t ,Q

I
t ,Q

D
t )) + V (xt+1),

xt+1 = θt(xt + πt(xt)).

In the linear case, the optimal value function is parametrized by a quadratic function, expressed

as V (xt) = x⊤
t Ptxt. By setting the derivative dV (xt)

dπt(xt)
to zero, we arrive at the optimal con-

trol solution, as detailed in Equation (4.6). Furthermore, the Riccati equation emerges from

substituting this optimal control solution into the Bellman optimality equation.

Remark 4.2.1 As derived in Equation (4.6), using a combination of P, I, and D controllers

incurs the same computational cost as using a single type of control scheme. This is due to

the linearity of the process, where the orthogonal projections onto the state embedding, state

integration embedding, and state derivative embeddings can be effectively merged. This results

in a projection onto the intersecting space of the three linear embedding subspaces.

Starting with a pre-trained LLM, the layer-wise transformations can be linearized to form

a linear dynamical system. From this, the parameters of the optimal value function Pt are

computed using the discrete dynamical system outlined in Equation (4.5). Subsequently, the

optimal feedback control solution πt(xt) is constructed from Equation (4.6). Although this

method is feasible, the linearization of a series of transformer layers poses its own set of com-

plexities. Moving forward, we propose an analytic solution that does not rely on linearizing the

base model, under additional orthogonality assumptions.

An analytic solution under Assumption 2. We further consider the scenario where both

embedding manifold and layer-wise transformation are orthogonal. As a result, the linear
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combination of orthogonal projections, represented as Qt = QP
t +QI

t +QD
t , forms an orthogonal

projection itself. With these conditions in place, we can then establish an analytic formulation

for the optimal control solution, as detailed in the following proposition.

Proposition 4.2.2 When the layer-wise transformations are represented as orthogonal matri-

ces, and the basis of state embedding, state integration embedding, and state derivative embed-

dings are mutually orthogonal, the optimal feedback control, denoted as πt(xt), can be represented

as follows:

πt(xt) = −Vt



0 0 · · · 0 0

0 0 · · · 0 0

...
...

. . . 0 0

0 0 · · · 1 − c
1+λt+1+c 0

0 0 · · · 0 1 − c
1+λt+1+c


V⊤

t xt,

where the parameter λt is governed by a backward difference equation λt = c(1+λt+1)
1+λt+1+c , with the

terminal condition specified as λT = 0.

A brief overview of the proof is presented here, while a more detailed derivation can be

found in Section 4.5.1. The condition for the embedding subspaces to be orthogonal guarantees

that the linear combination represented by Qt = QP
t +QI

t +QD
t forms an orthogonal projection.

Moreover, the orthogonality in layer-wise transformations simplifies the Riccati equation. This

simplification leads to a recursive approach to formulating control regularization.

For c = 0, λt = 0 for all t, the optimal feedback control aligns with the orthogonal projec-

tion on the orthogonal complement of the linear subspace. Conversely, with c > 0, the solution

generates a time-dependent regularization in control across layers. The analytic solution as-

sumes linear orthogonal matrices as network transformation blocks. In the case of non-linear

transformations, its Jacobian matrix can be decomposed into an orthogonal matrix and an

upper triangular matrix. The analytic solution aims to control the orthogonal transformation

components.
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4.2.3 Theoretical Error Analysis

Under both assumptions 1 and 2 defined in Section 4.2.2, the controlled dynamics, under

some perturbations, are formulated as follows:

xt+1 = θt(xt + πt(xt)), x0 = xt + z,

where z represents an arbitrary perturbation decomposable into two mutually orthogonal com-

ponents: z∥, aligning within the data embedding subspace, and z⊥, orthogonal to the data

manifold. We propose a theorem to quantify the error as ∥xt − xt∥22.

Theorem 4.2.1 For any time step t ≥ 1, assuming that each θt is an orthogonal matrix, we

have the following error computation:

∥xt − xt∥22 =
t−1∏
s=0

α2
s · ∥z⊥∥22 + ∥z∥∥22,

where αt is a time-varying parameter defined in relation to the control regularization c, and λt

are auxiliary variables, as follows:

αt =
c

1 + λt+1 + c
, λT = 0, λT−1 =

c

1 + c
, λt =

c(1 + λt+1)

1 + c + λt+1
.

The detailed derivation is provided in Section 4.5.2. This computation rigorously demon-

strates that perturbations, specifically those spanning the orthogonal complement denoted by

z⊥, exhibit a decay phenomenon during the process of forward propagation. Furthermore, in

scenarios where control parameters are subject to regularization constraints, when c > 0, our

analysis reveals nuanced insights. We establish that the optimal control solution, which is de-

rived by considering the intricate interplay among different transformation layers, adheres to

these constraints while optimizing performance, which captures the complex dynamics between

layers.
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Algorithm 2 Tucker Decomposition.

Input: An I-way tensor X .
Output: Core tensor G, orthogonal basis V1, V2, · · · , VI .
for i = 1 to I do

Xi = matricize (X , i), // Matricize the tensor along the ith mode.
Ui, Si, Vi = SVD (Xi), // Perform singular value decomposition on the reshaped tensor.

end for
G = X , // Initialize the tensor core with the I-way tensor X .
for i = 1 to I do

G = G ×i V
i, // Multiply the core tensor by the ith orthogonal basis.

end for

4.2.4 Additional Details for Constructing PID Control

Here, we provide details on implementing the proposed PID control method. We begin

with constructing the linear embedding basis VP
t , VI

t , and VD
t from training dataset. In

NLP tasks, the hidden states are generally represented as 2-dimensional matrix (sequence of

embedding vectors), Xt ∈ Rl×d, where l denotes the temporal length. Given N data sampled

from the data distribution D (N training data), we can concatenate the hidden states as a

3-way tensor Xt ∈ RN×l×d, and apply Tucker decomposition [92] (known as high-order singular

value decomposition) to generate linear embedding basis along all tensor modes.

Tucker Decomposition is an extension of the traditional singular value decomposition to

higher-order tensors. Mathematically, Tucker decomposition represents a I-way tensor as X ≈

G ×1 V
(1) ×2 V

(2) ×3 · · · ×I V(I), where G is the core tensor, which governs the interaction

between different modes, Vi are orthogonal bases corresponding to the principal components

in each tensor mode, ×i is the tensor product along the ith mode. An implementation of

Tucker decomposition is detailed in Algorithm 2. Along each of the I modes, the concatenated

high-dimensional states X are reshaped along the ith dimension, which is used to compute

the orthogonal basis from singular value decomposition. The core tensor G is computed by

multiplying the states X with each of the I basis along each mode. The low-rank reconstruction

of concatenated states X can be obtained by G ×1 V
1 ×2 V

2 ×3 · · · ×I V
I .

Given a pre-trained LLM (naively trained or robustly trained), we collect the concatenated
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states from training data, which results in a set of 3-way tensors {Xt}T−1
t=0 . Then Tucker

decomposition is applied at every Xt (refer Algorithm 2). Extending this to integral and

derivative controls is straightforward, as one can substitute the concatenated states X by

either the summation of past states X =
∑t

s=0Xs or the subtraction of two consequential

states X = Xt − Xt−1. Using the linear embedding bases VP
t , VI

t , and VD
t obtained from

Tucker decomposition, the construction of the feedback controller is achieved by adhering to

the methodology outlined in Proposition 4.2.2.

4.3 Numerical Experiments

In this section, we first discuss experimental setup in Section 4.3.1. In Sections 4.3.2 and

4.3.3, we assess the performance of the proposed PID control framework against various base-

line methods across multiple NLP tasks. Subsequently, in Section 4.3.4, an ablation study is

conducted, providing exploratory justification for the proposed approach.

4.3.1 Experimental Setup

Evaluation methods: We consider both adversarial attack algorithms (e.g. A2T, PSO,

TextBugger, TextFooler), applied on the SNLI [93], MNLI datasets [94] and adversarial datasets

(e.g. ANLI) to evaluate the robustness of the proposed PID control and baselines.

• A2T (Attacking to Training [95]) utilizes a cost-effective gradient-based technique to

rank the significance of words. This approach encompasses the iterative replacement of

each word with synonyms sourced from counterfitted word embeddings.

• PSO [96] exploits a population of interacting individuals to iteratively search for the

optimal solution in the specific space.

• TextBugger [97] finds important words by computing the Jacobian matrix of the model

and then chooses an optimal perturbation from the generated perturbations.
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• TextFooler [98] is the state-of-the-art word-level adversarial attack method to generate

adversarial examples. This technique identifies the important words for the target model

and subsequently prioritizes their replacement with the most semantically similar and

grammatically correct words. This process continues until there is a discernible shift in

the model’s prediction.

• Adversarial NLI (ANLI) [99] is a large-scale NLI benchmark, This dataset was curated

through an iterative process that incorporates both human and model inputs in an adver-

sarial loop, targeting specific models for attack. The ANLI dataset is particularly potent

as an adversarial tool, demonstrating a significant capability to diminish the accuracy of

pre-trained models.

Baseline methods: This study examines two baseline methods focused on adversarial train-

ing. The Naive adversarial training (AT), as proposed by [95], employs the A2T attack for

its adversarial training process. FreeLB, introduced by [100], implements adversarial train-

ing in language models during the fine-tuning stage, aiming to enhance both generalization

and robustness. It is noteworthy that the PID control method, in contrast to these adversar-

ial training-based approaches, offers a distinct perspective on enhancing model robustness. It

can be applied to models that have undergone adversarial training to further improve their

robustness.

We fine-tune four baseline models using Lora [48], namely distilbert (Disbert) [101], BERT-

large (Bert) [102], RoBERTaBase (Roberta) and RoBERTaLarge (RobertaL) [103].

PID control implementation details: Using a pre-trained model (e.g., Bert), we select

training data that this model can accurately predict. Next, we simulate forward propagation

using the pre-trained model on this specific set of training data, which generates a collection

of 3-dimensional tensors, denoted as {Xt}T−1
t=0 . Following this, we employ Algorithm 2 on each

tensor to determine the basis for a linear embedding subspace. The dimension of this subspace is

chosen based on the criterion that it must account for 99% of the total variance observed (this is

104



(a): Disbert (SNLI) (b): RoBERTa (SNLI) (c): Disbert (MNLI)
(d): RoBERTa

(MNLI)

Figure 4.5: (a) and (b) are radar plots that summarize Distilbert and RoBERTaLarge in Table
4.1 for SNLI dataset, respectively. (c) and (d) are radar plots that summarize Distilbert and
RoBERTaLarge in Table 4.2 for MNLI dataset, respectively.

done by accumulating the singular values). Finally, the optimal solution outlined in Proposition

4.2.2 is implemented to generate a time-dependent control regularization parameter.

4.3.2 Robustness Against Adversarial Examples

Here, we empirically validate the robustness improvement of employing the proposed PID

control on pre-trained LLMs. In Figure 4.5 (a), a radar plot is presented to illustrate the

comparative performance between the baseline and controlled models, utilizing the DistilBERT

architecture and evaluated on the SNLI dataset. This demonstrates that the employment of

PID control significantly improves model robustness against all four distinct types of perturba-

tions, with a negligible impact on performance with unaltered data (denoted as None). Shifting

to a different model architecture, Figure 4.5 (b) reveals that applying the proposed PID control

approach to the RoBERTa model yields analogous enhancements in robustness. For more chal-

lenging scenarios, Figures 4.5 (c) and (d) detail the performance on the MNLI dataset. In these

plots, both the DistilBERT and RoBERTa architectures are examined. These figures showcase

that, despite the increased complexity of the MNLI dataset, the PID control method consis-

tently maintains robustness improvements. The increased complexity of the MNLI dataset

poses additional challenges in creating embedding subspaces, making it more difficult to ac-

curately represent state, state integration, and state derivatives with linear embeddings. The
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Table 4.1: Measurement on SNLI dataset: baseline model / controlled model

Standard models

None A2T PSO TextBugger TextFooler

Disbert 87.24 / 86.05 53.89 / 62.31 49.84 / 54.96 24.73 / 40.26 24.69 / 41.73

Roberta 90.87 / 90.64 58.36 / 64.11 51.44 / 54.40 35.90 / 43.20 27.03 / 37.35

Bert 90.36 / 89.75 74.18 / 75.54 66.84 / 67.55 64.13 / 64.41 56.37 / 58.27

RobertaL 92.39 / 92.05 59.40 / 64.95 52.15 / 56.70 33.72 / 42.43 26.43 / 37.29

Robust models (trained with AT)

None A2T PSO TextBugger TextFooler

Disbert 86.74 / 85.81 71.78 / 71.81 52.85 / 57.87 29.63 / 41.64 31.59 / 43.81

Roberta 90.65 / 89.87 76.28 / 77.08 53.85 / 56.45 35.43 / 43.35 29.64 / 39.39

Bert 90.29 / 90.33 86.02 / 85.76 69.23 / 70.38 69.17 / 69.55 63.78 / 65.27

RobertaL 92.10 / 91.62 81.11 / 81.62 55.28 / 59.71 34.15 / 44.74 28.74 / 42.44

Robust models (trained with FreeLB)

None A2T PSO TextBugger TextFooler

Disbert 85.68 / 84.50 57.75 / 62.95 52.53 / 56.86 26.68 / 37.80 25.47 / 39.64

Roberta 91.31 / 90.67 64.23 / 68.85 52.22 / 55.24 34.08 / 42.75 24.80 / 36.81

Bert 90.81 / 90.72 77.64 / 78.21 64.72 / 65.56 58.21 / 59.29 53.31 / 56.26

RobertaL 92.37 / 92.26 67.53 / 71.30 53.37 / 57.20 34.64 / 44.42 27.55 / 38.59

plots distinctly highlight that the controlled models exhibit increased resistance to a broader

spectrum of linguistic perturbations and complexities, without significant trade-offs in overall

accuracy. This underlines the efficacy of PID control in enhancing model robustness across

different architectures and datasets.

Table 4.1 and Table 4.2 provide detailed comparisons of performance between baseline and

controlled models on the SNLI and MNLI datasets. When a method’s accuracy surpasses

others by more than 1%, it’s highlighted in red. It is evident that the proposed PID control

method significantly enhances the robustness of both standard and robustly trained LLMs.

The enhancement is more pronounced in standard trained models, which are generally more

vulnerable to adversarial attacks. On average, the PID control method yields an improvement

of nearly 10% in standard models and about 5% in robustly trained models, including both AT

and FreeLB training.
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Table 4.2: Measurement on MNLI dataset: baseline model / controlled model

Standard models

None A2T PSO TextBugger TextFooler

Disbert 79.39 / 76.98 59.43 / 64.61 51.81 / 59.49 36.02 / 47.34 38.78 / 50.62

Roberta 86.66 / 85.84 59.60 / 63.39 49.77 / 53.05 34.76 / 40.68 31.43 / 40.22

Bert 84.92 / 84.79 77.38 / 77.96 69.71 / 70.41 65.11 / 65.54 64.80 / 65.91

RobertaL 89.71 / 89.40 62.85 / 67.93 51.19 / 56.77 37.18 / 45.11 32.81 / 43.27

Robust models (trained with AT)

None A2T PSO TextBugger TextFooler

Disbert 79.70 / 76.50 66.52 / 67.71 57.34 / 62.90 40.22 / 50.00 45.62 / 54.93

Roberta 86.55 / 85.54 64.52 / 66.70 53.41 / 56.78 35.61 / 40.88 34.27 / 43.41

Bert 84.90 / 85.02 81.37 / 81.69 73.05 / 74.05 68.27 / 68.91 71.69 / 72.80

RobertaL 90.10 / 89.51 76.94 / 78.36 59.34 / 64.44 41.21 / 48.34 40.69 / 49.33

Robust models (trained with FreeLB)

None A2T PSO TextBugger TextFooler

Disbert 78.76 / 75.33 64.10 / 66.25 58.03 / 62.94 38.87 / 49.50 43.58 / 52.88

Roberta 86.10 / 85.59 61.60 / 65.31 51.69 / 54.93 36.06 / 42.42 33.27 / 42.21

Bert 85.32 / 85.62 79.34 / 79.64 72.25 / 72.68 65.90 / 66.58 67.44 / 68.49

RobertaL 90.18 / 89.81 67.28 / 71.61 53.27 / 58.04 36.40 / 44.91 32.83 / 43.84

4.3.3 Robustness Against Adversarial Dataset

In this study, we assess the effectiveness of the PID control system in an adversarial Natu-

ral Language Inference (NLI) task. The ANLI dataset is created through an iterative process

involving both humans and models, aimed at improving natural language understanding. Ini-

tially, human annotators create examples that challenge the current best-performing models.

These difficult examples, intended to reveal more weaknesses, are then incorporated into the

training set to enhance the models. This cycle of identifying and addressing weaknesses is

repeated across several rounds, each producing an increasingly complex adversarial dataset

(ANLI consists of three rounds of development and test datasets). Unlike the evaluation using

adversarial examples described in Section 4.3.2, the ANLI dataset is pre-constructed by human

annotators. In contrast, adversarial examples from Section 4.3.2 are created in relation to the

specific characteristics of the underlying classifier.
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Table 4.3: Measurement on ANLI dataset: baseline model / controlled model

r1 r2 r3

RobertaL (Dev) 72.60 / 72.65 50.99 / 52.33 40.99 / 43.31

RobertaL (Test) 72.79 / 72.60 48.19 / 49.39 40.66 / 42.41

The evaluation with the ANLI dataset encompasses both baseline and controlled models,

utilizing the development and test datasets. The results obtained from the ANLI dataset are

outlined in Table 4.3. ANLI involves three progressively challenging rounds. The baseline model

shows a decline in performance with increasing difficulty from round 1 to round 3. Conversely,

the PID control demonstrates a more pronounced improvement in performance as the challenge

increases. Specifically, in round 3, the enhancements in performance are 2.32% and 1.76%,

respectively.

4.3.4 Ablation Study

Comparative analysis of various control schemes. We present a comparative analysis

of various control schemes, emphasizing the benefits of implementing multiple controllers over

the single use of P control. Table 4.4 shows a comparison of the robustness performance across

Proportional (P), Proportional-Integral (P-I), Proportional-Derivative (P-D), and Proportional-

Integral-Derivative (P-I-D) control schemes within different model architectures and training

methodologies. It is evident that the P-D control scheme significantly surpasses the others in

most scenarios, underscoring the efficacy of the proposed PID control framework, which expands

upon the limited scope of earlier P control methods. Specifically, the mean of employing the

P-D control over the P control is 2.35%, with a 95% confidence interval of 1.677 to 3.0121.

The reason why P-D outperforms P-I-D is mainly due to noise sensitivity and hyperparam-

eter tuning.

• Noise sensitivity: The integral term has the potential to aggregate errors across multi-

ple hidden layers, incorporating noise inherent in the embedding manifolds, as well as
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Table 4.4: Measurement on SNLI dataset: P / P-I / P-D / P-I-D

Disbert

Standard training Adversarial training

A2T 60.11 / 58.24 / 62.31 / 61.30 72.09 / 71.12 / 71.81 / 71.97

PSO 53.39 / 52.67 / 54.96 / 53.96 55.80 / 54.72 / 57.87 / 56.35

TextBugger 37.15 / 37.15 / 40.26 / 39.54 38.91 / 38.98 / 41.64 / 40.98

TextFooler 36.81 / 34.84 / 41.73 / 38.98 40.15 / 38.21 / 43.81 / 41.12

Roberta

Standard training Adversarial training

A2T 61.78 / 60.81 / 64.11 / 61.94 76.63 / 75.82 / 77.08 / 76.28

PSO 53.34 / 52.94 / 54.40 / 53.35 55.49 / 54.76 / 56.45 / 54.99

TextBugger 40.46 / 39.00 / 43.20 / 40.53 41.71 / 40.22 / 43.35 / 41.33

TextFooler 33.19 / 32.10 / 37.35 / 33.83 34.48 / 32.47 / 39.39 / 35.29

Bert

Standard training Adversarial training

A2T 75.75 / 75.68 / 75.54 / 75.60 86.13 / 86.03 / 85.76 / 85.92

PSO 67.72 / 67.69 / 67.55 / 67.60 70.21 / 70.26 / 70.38 / 70.25

TextBugger 64.59 / 64.53 / 64.41 / 64.36 69.74 / 69.89 / 69.55 / 69.62

TextFooler 58.48 / 58.25 / 58.27 / 58.12 65.43 / 65.25 / 65.27 / 65.10

RobertaL

Standard training Adversarial training

A2T 65.10 / 64.89 / 64.95 / 64.38 81.91 / 81.72 / 81.62 / 81.80

PSO 55.83 / 55.04 / 56.70 / 55.31 57.99 / 57.29 / 59.71 / 58.18

TextBugger 44.61 / 42.20 / 42.43 / 41.29 45.00 / 43.54 / 44.74 / 43.53

TextFooler 36.63 / 35.52 / 37.29 / 35.39 39.64 / 37.06 / 42.44 / 39.87

the distributional shift between the training and testing datasets. In scenarios where

substantial noises are presented in each hidden layer, the integral component, dependent

on the embedding manifold of accumulated past states, may lead to instability during

model inference. Conversely, a Proportional-Derivative (PD) controller, lacking the inte-

gral component, tends to exhibit improved performance under such noisy conditions by

not accumulating this noise.

• Hyperparameter tuning: In the realm of traditional PID control design, selecting the

appropriate control gains, denoted as Kp, Ki, and Kd, for proportional, integral, and

derivative controls respectively, presents a notable challenge. These gains are crucial
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Table 4.5: Measurement on SNLI dataset: baseline model / controlled model

SNLI Dataset

None A2T PSO TextBugger TextFooler

OPT 91.24 / 88.69 49.15 / 63.28 48.00 / 60.06 17.57 / 41.79 16.64 / 44.70

MNLI Dataset

None A2T PSO TextBugger TextFooler

OPT 86.89 / 84.27 54.47 / 65.87 45.14 / 59.08 24.12 / 45.97 21.68 / 49.13

for achieving a balance among the different types of controls. Typically, the calibra-

tion of these gains is empirically based, with the aim of optimizing the performance of

PID control. Our method follows a similar strategy, determining the gains through ex-

perimentation with training data. Given that our hyperparameter searching space only

contains 0 and 0.5 for each control gain, this results in the values Kp = 0.5, Kd = 0.5,

and KI = 0. A more principled method would entail adjusting these hyper-parameters

through numerical optimization, treating these control gains as adjustable variables. The

development of a more sophisticated strategy for fine-tuning the control gains will be

studied for future exploration.

Additional experiments on large-scale LLMs. Here we present the numerical results

of OPT-1.3B. OPT-1.3B is a decoder-based large language model that contains 1.3 billion

model parameters. For the proposed PID control, we follow the same P-D control implemen-

tation (proportional-derivative) as done in all numerical experiments from the paper. Table

4.5 demonstrates that the controlled OPT-1.3B model consistently improves the robustness

performance against all four types of adversarial attacks. Specifically, on the SNLI dataset, the

average improvement is over 20% compared with the base model. On a more challenging MNLI

dataset, with only a 2.5% accuracy drop on the unperturbed testing dataset. The improvement

reaches 21% against the TextBugger attack, and 11% on both A2T and PSO attacks.
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Negative impact of violating the main assumptions. Here we discuss the negative im-

pact of violating the assumptions made to derive the analytic solution. Through empirical

evaluations, we highlight how the main assumptions have increasingly adverse effects, espe-

cially when the embedding manifolds fail to accurately capture the complex, high-dimensional

states. More specifically, applying regularization on control solutions can mitigate these inac-

curacies. However, as the precision of the embedding manifolds decreases, a greater degree of

regularization is required, thereby complicating the optimal control problems. The increased

complexity in the optimal control problem makes the negative impact of violating the main

assumptions more significant.

Our validation approach involves a performance comparison between the proposed analytic

solution and the implementation of Pontryagin’s Maximum Principle, an iterative solver that op-

erates without the need for additional assumptions. Pontryagin’s Maximum Principle provides

the necessary conditions for an optimal control solution, typically offering a robust approxi-

mation of such solutions. We further elaborate this comparison by creating linear embedding

subspaces with varying thresholds for accumulated variances, specifically aiming to capture

99%, 95%, 90%, and 85% of the variances in the underlying states. As the variance threshold is

lowered, the accuracy of these embedding subspaces decreases, thus posing greater challenges in

solving optimal control problems. The performance comparison, detailed in Table 4.6, includes

three large language models, namely Distilbert, RoBERTaBase, and RoBERTaLarge, across

five evaluation tasks. These tasks include a standard scenario with no perturbation and four

adversarial attacks: A2T, PSO, TextBugger, and TextFooler. The results reveal that while

the performance difference between the analytic solution and Pontryagin’s Maximum Principle

is negligible at higher accuracy levels (e.g., 99% variance), the scenario changes significantly

at lower accuracies (e.g., 90% and 85% variances). In these instances, employing Pontryagin’s

Maximum Principle, which operates independently of simplifying assumptions, yields noticeably

better control solutions.
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Table 4.6: Performance Comparison Between Analytic Solution and PMP

Distilbert

Base 0.99% 0.95% 0.9% 0.85%

None 87.23 85.88 / 86.52 68.92 / 80.21 34.24 / 54.06 34.28 / 46.75

A2T 53.89 61.75 / 60.87 57.93 / 62.88 34.10 / 44.17 34.28 / 42.01

PSO 49.84 54.33 / 52.80 56.21 / 58.22 34.13 / 46.27 34.28 / 42.55

TextBugger 24.73 40.35 / 36.69 43.89 / 42.50 36.24 / 39.02 34.28 / 42.20

TextFooler 24.69 40.28 / 36.13 49.05 / 46.69 34.37 / 39.56 34.28 / 40.80

RoBERTaBase

Base 0.99% 0.95% 0.9% 0.85%

None 90.87 90.10 / 90.59 85.09 / 89.63 64.60 / 85.82 40.02 / 76.71

A2T 58.36 63.82 / 62.19 65.12 / 66.44 51.19 / 66.86 37.56 / 60.41

PSO 51.44 54.36 / 52.98 59.97 / 56.75 52.55 / 59.18 37.91 / 59.07

TextBugger 35.90 43.03 / 40.53 46.74 / 46.41 38.72 / 47.36 34.84 / 42.43

TextFooler 27.03 37.18 / 33.47 47.16 / 42.79 41.40 / 46.60 35.76 / 45.49

RoBERTaLarge

Base 0.99% 0.95% 0.9% 0.85%

None 92.39 91.98 / 92.11 86.50 / 91.68 66.40 / 90.53 44.54 / 86.52

A2T 59.40 64.64 / 63.15 67.17 / 65.03 54.67 / 64.99 41.54 / 61.94

PSO 52.15 56.62 / 54.35 62.14 / 55.51 55.13 / 58.41 41.15 / 58.85

TextBugger 33.72 42.39 / 39.18 47.48 / 41.59 41.30 / 43.77 35.49 / 40.32

TextFooler 26.43 36.92 / 32.27 48.79 / 37.14 47.09 / 41.43 40.47 / 41.97

Computational wall time analysis. Here we present a detailed discussion of the computa-

tion overhead of the proposed PID control method. Specifically, we compare the computational

wall time between the base model without any controls applied, the proposed analytic solution,

and Pontryagin’s maximum principle employed in the previous closed-loop control approach.

As shown in Table 4.7, across all four models, the computational wall time between the base

model and the proposed analytic solution is comparable, the analytic solution only adds a

small amount of wall time during inference. However, solving the PMP significantly adds to

the computational wall time of the base model.

Empirical error analysis. We provide the details of the error computation outlined in

Theorem 4.2.1. Our objective is to demonstrate that the accuracy of the error computation
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Table 4.7: Computational Wall Time

Wall Time (s) of 10, 000 Test Samples (averaged over 5 experiments)

Distilbert RoBERTa RoBERTaL OPT

Base model 6.3751 11.7756 36.0178 123.5379

Controlled model 6.4221 11.8620 36.5051 124.1090

PMP 62.2667 81.2795 263.7920 757.0649

Table 4.8: Error Comparison

6 Layers 12 Layers 24 Layers

A2T 3.2189 4.3062 5.1566

PSO 1.9156 2.6087 3.3047

TextBugger 3.2189 4.3062 5.1566

TextFooler 3.1348 4.2894 5.2915

specified in Theorem 4.2.1 diminishes with the addition of more layers to the language model.

This decrease in accuracy is due to the assumptions of linearity and orthogonality. According

to these assumptions, the transformations applied to each layer of a language model merely

rotate the hidden state without altering its magnitude. However, as the model incorporates

more of these layer-wise transformations, the accuracy of these assumptions starts to decrease.

Table 4.8 presents the calculation of the absolute difference between the actual error and the

error estimate as per Theorem 4.2.1. It is evident that with all types of adversarial perturbations

(A2T, PSO, TextBugger, and TextFooler), the increase in the number of layers within the

language model (with 6 layers representing Distilbert, 12 layers symbolizing RoBERTaBase,

and 24 layers signifying RoBERTaLarge) leads to a rise in the absolute error. This indicates a

decline in the precision of the error estimation.

4.4 Conclusion

This chapter presents a novel framework to improve neural network robustness against

input perturbations, particularly in large-scale language models, by integrating a novel PID
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control framework. This methodology significantly advances beyond traditional adversarial

training techniques, offering a more efficient solution to counteract adversarial perturbations.

Through our innovative PID control design, we have successfully demonstrated that it is pos-

sible to maintain computational efficiency comparable to simpler control schemes, while sub-

stantially improving robustness. The analytical solution we developed further underscores our

method’s practical applicability, especially in large neural networks, enabling rapid online infer-

ence. Moreover, our comprehensive theoretical error analysis not only validates the effectiveness

of the PID control in simulated environments but also lays a foundational understanding of con-

trolled neural systems. These contributions mark a significant step forward in the field of neural

network security and robustness, opening new avenues for deploying more reliable and robust

NLP models in critical applications.

4.5 Detailed Theoretical Proofs

4.5.1 Analytic Solution for Optimal Control

In this section, we elaborate on the derivation of the analytic solution as presented in

Propositions 4.2.1 and 4.2.2. Let θt represent the tth linear transformation, and πt : Rd → Rd

denote the PID controller. The controlled dynamical system can be expressed as:

xt+1 = θt(xt + πt(xt)),

where the control action is added to the current state. Recall the running loss defined in

Equation (3.2),

L({xs}ts=0, πt, (f
P
t , f I

t , f
D
t )) :=

1

2
∥fP

t (xt + πt(xt))∥22+
1

2
∥f I

t (xt + πt(xt) +
t−1∑
s=0

xs)∥22

+
1

2
∥fD

t (xt + πt(xt) − xt−1)∥22 +
ct
2
∥πt(xt)∥22,
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we consider the surjective mappings fP
t , f I

t , and fD
t as orthogonal projections. Let QP

t , QI
t ,

and QD
t be the orthogonal projections associated with fP

t , f I
t , and fD

t , respectively, assuming

a uniformly bounded state space with maxx∈X ∥x∥22 ≤ B, the running loss can be bounded as

follows,

L({xs}ts=0, πt, (Q
P
t ,Q

I
t ,Q

D
t ))

=
1

2
∥QP

t (xt + πt(xt))∥22+
1

2
∥QI
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,

(4.7)

where T represents the maximum number of layers of the neural network, and B is the uniform

upper bound for the state space.

Let Qt = QP
t + QI

t + QD
t , the following Lemma derives the analytic solution for the PID

control πt(xt).

Proposition 4.2.1 Consider the following objective function,

min
π

E(x0,y)∼D [J(x0, y, π)] := min
π

E(x0,y)∼D

[
Φ(xT , y) +

T−1∑
t=0

L({xs}ts=0, πt, (Q
P
t ,Q

I
t ,Q

D
t ))

]
,

s.t. xt+1 = θt(xt + πt(xt)). (4.4)
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the optimal value function, parametrized as V (xt) = x⊤
t Ptxt, satisfies the Riccati equation:

Pt =
1

2
Qt+θ⊤

t Pt+1θt−
1

2
(Qt+2θ⊤

t Pt+1θt)
⊤(Qt+2θ⊤

t Pt+1θt+ctI)
−1(Qt+2θ⊤

t Pt+1θt). (4.5)

The optimal control solution is given by

πt(xt) = −(Qt + c · I + 2θ⊤
t Pt+1θt)

−1(Qt + 2θ⊤
t Pt+1θt)xt, (4.6)

where Qt = QP
t + QI

t + QD
t .

Proof: In the objective function defined in Equation (4.4), the terminal loss Φ(xT , y)

quantifies the discrepancy between the terminal state xT and the true label y. However, in

general machine learning applications, the true label y remains unknown during online inference,

leading to the terminal loss being set to zero. Recall Equation (4.7), the running loss is defined

as

L({xs}ts=0, πt, (Q
P
t ,Q

I
t ,Q

D
t )) :=

1

2
∥QP

t (xt + πt(xt))∥22+
1

2
∥QI

t (xt + πt(xt) +
t−1∑
s=0

xs)∥22

+
1

2
∥QD

t (xt + πt(xt) − xt−1)∥22 +
ct
2
∥πt(xt)∥22.

Consequently, the optimal value function V (xt) satisfies

V (xt) = min
πt

1

2
(QP

t xt + QP
t πt(xt))

⊤(QP
t xt + QP

t πt(xt))

+
1

2
(QI

txt + QI
tπt(xt))

⊤(QI
txt + QI

tπt(xt))

+
1

2
(QD

t xt + QD
t πt(xt))

⊤(QD
t xt + QD

t πt(xt)) +
c

2
· πt(xt)

⊤πt(xt) + V (xt+1),

s.t. xt+1 = θt(xt + πt(xt)).
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Taking the derivative of the right-hand side with respect to πt(xt) yields

dV (xt)

dπt(xt)
= QP

t xt + QP
t πt(xt) + QI

txt + QI
tπt(xt) + QD

t xt + QD
t πt(xt) + cπt(xt)

+

(
dxt+1

dπt(xt)

)⊤dV (xt+1)

dxt+1
,

= QP
t xt + QP

t πt(xt) + QI
txt + QI

tπt(xt) + QD
t xt + QD

t πt(xt)

+ cπt(xt) + 2θ⊤
t Pt+1xt+1,

= (QP
t + QI

t + QD
t )xt + (QP

t + QI
t + QD

t )πt(xt) + cπt(xt)

+ 2θ⊤
t Pt+1θtxt + 2θ⊤

t Pt+1θtπt(xt),

= Qtxt + Qtπt(xt) + cπt(xt) + 2θ⊤
t Pt+1θtxt + 2θ⊤

t Pt+1θtπt(xt),

where Qt = QP
t + QI

t + QD
t .

Setting the derivative dV (xt)
dπt(xt)

to 0 results in the optimal control π∗
t (xt) (as shown in Equation

(4.6))

π∗
t (xt) = −(Qt + c · I + 2θ⊤

t Pt+1θt)
−1(Qt + 2θ⊤

t Pt+1θt)xt.

Parametrizing the value function V (xt) as x⊤
t Ptxt and considering the optimal control
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solution Equation (4.6), we can convert the expression of the value function as follows,

x⊤
t Ptxt

= min
πt

1

2
(QP

t xt + QP
t πt(xt))

⊤(QP
t xt + QP

t πt(xt)) +
1

2
(QI

txt + QI
tπt(xt))

⊤(QI
txt + QI

tπt(xt))

+
1

2
(QD

t xt + QD
t πt(xt))

⊤(QD
t xt + QD

t πt(xt)) +
c

2
· πt(xt)

⊤πt(xt) + x⊤
t+1Pt+1xt+1,

=
1

2
x⊤
t (QP

t + QI
t + QD

t + 2θ⊤
t Pt+1θt)xt

+
1

2
(π∗

t (xt))
⊤(QP

t + QI
t + QD

t + cI + 2θ⊤
t Pt+1θt)π

∗
t (xt)

+ x⊤
t (QP

t + QI
t + QD

t + 2θ⊤
t Pt+1θt)π

∗
t (xt),

=
1

2
x⊤
t (Qt + 2θ⊤

t Pt+1θt)xt +
1

2
(π∗

t (xt))
⊤(Qt + cI + 2θ⊤

t Pt+1θt)π
∗
t (xt)

+ x⊤
t (Qt + 2θ⊤

t Pt+1θt)π
∗
t (xt),

where π∗
t (xt) is the optimal control solution leading to the minimum, Qt = QP

t +QI
t +QD

t . For

the second term in the above, recall the optimal control solution π∗
t (xt) from Equation (4.6),

1

2
(π∗

t (xt))
⊤(Qt + c · I + 2θ⊤

t Pt+1θt)π
∗
t (xt),

= −1

2

(
(Qt + c · I + 2θ⊤

t Pt+1θt)
−1(Qt + 2θ⊤

t Pt+1θt)xt

)⊤
(Qt + c + 2θ⊤

t Pt+1θt)π
∗
t (xt),

= −1

2
x⊤
t (Qt + 2θ⊤

t Pt+1θt)π
∗
t (xt),

the above uses the fact that (Qt + c · I + 2θ⊤
t Pt+1θt)

−1 is symmetric. Therefore,

x⊤
t Ptxt

=
1

2
x⊤
t (Qt + 2θ⊤

t Pt+1θt)xt −
1

2
x⊤
t (Qt + 2θ⊤

t Pt+1θt)π
∗
t (xt) + x⊤

t (Qt + 2θ⊤
t Pt+1θt)π

∗
t (xt),

=
1

2
x⊤
t (Qt + 2θ⊤

t Pt+1θt)xt +
1

2
x⊤
t (Q⊤

t Qt + 2θ⊤
t Pt+1θt)π

∗
t (xt),
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which results in the algebraic Riccati equation

Pt =
1

2
Qt + θ⊤

t Pt+1θt −
1

2
(Qt + 2θ⊤

t Pt+1θt)
⊤(Qt + 2θ⊤

t Pt+1θt + cI)−1(Qt + 2θ⊤
t Pt+1θt).

In our analysis, we focus on a specific scenario where each linear transformation θt is both

orthogonal and full-rank. This implies that the linear transformations satisfy the condition

θ⊤
t θt = θtθ

⊤
t = I for all t in the considered range.

Recall that Qt = QP
t + QI

t + QD
t , where

QP
t = I−VP

t (VP
t )⊤, QI

t = I−VI
t (VI

t )⊤, QD
t = I−VD

t (VD
t )⊤,

are orthogonal projections corresponding to linear embedding subspaces of state, state inte-

gration, and state derivative. For simplicity, we assume that the basis VP
t , VI

t , and VD
t are

mutually orthogonal to each other, meaning that

(VP
t )⊤VI

t = 0, (VP
t )⊤VD

t = 0, (VI
t )⊤VD

t = 0.

Based on this assumption, the combination of three orthogonal projections Qt is an orthog-
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onal projection,

Qt = VP
t



0 0 · · · 0

0 0 · · · 0

...
...

. . . 0

0 0 · · · 1


(VP

t )⊤ + VI
t



0 0 · · · 0

0 0 · · · 0

...
...

. . . 0

0 0 · · · 1


(VI

t )⊤ + VD
t



0 0 · · · 0

0 0 · · · 0

...
...

. . . 0

0 0 · · · 1


(VD

t )⊤,

= Vt



0 0 · · · 0

0 0 · · · 0

...
...

. . . 0

0 0 · · · 1


V⊤

t ,

where Vt represents the basis for the intersection of VP
t , VI

t , and VD
t .

Lemma 4.5.1 Consider a T -layer neural network characterized by orthogonal linear transfor-

mations. The solution to the algebraic Riccati equation, as delineated in Equation (4.5), is

given by

Pt =
1

2
Vt



0 0 · · · 0 0

0 0 · · · 0 0

...
...

. . . 0 0

0 0 · · · λt 0

0 0 · · · 0 λt


V⊤

t , (4.8)

where the parameter λt is governed by a backward difference equation λt = c(1+λt+1)
1+λt+1+c , with the

initial condition specified as λT = 0.

Proof: The proof proceeds by induction on t. Recall the algebraic Riccati Equation (4.5).
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Given the terminal condition PT = 0, the equation for t = T − 1 is

PT−1 =
1

2
QT−1 −

1

2
Q⊤

T−1(QT−1 + cI)−1QT−1,

=
1

2
VT−1



0 0 · · · 0 0

0 0 · · · 0 0

...
...

. . . 0 0

0 0 · · · c
1+c 0

0 0 · · · 0 c
1+c


V⊤

T−1,

Suppose it is true for t + 1, such that,

Pt+1 =
1

2
Vt+1



0 0 · · · 0 0

0 0 · · · 0 0

...
...

. . . 0 0

0 0 · · · λt+1 0

0 0 · · · 0 λt+1


V⊤

t+1.

Given that θ⊤
t θt = θtθ

⊤
t = I, θ⊤

t Vt+1 = Vt, in which case, Qt and θ⊤
t Pt+1θt contain the
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same basis Vt. Recall the algebraic Riccati Equation (4.5),

Pt =
1

2
Qt + θ⊤

t Pt+1θt −
1

2
(Qt + 2θ⊤

t Pt+1θt)
⊤(Qt + 2θ⊤

t Pt+1θt + cI)−1(Qt + 2θ⊤
t Pt+1θt),

=
1

2
Vt



0 · · · 0

0 · · · 0

...
. . . 0

0 · · · 1 + λt+1


V⊤

t − 1

2
Vt



0 · · · 0

0 · · · 0

...
. . . 0

0 · · · (1 + λt+1)
2(1 + λt+1 + c)−1


V⊤

t ,

=
1

2
Vt



0 0 · · · 0

0 0 · · · 0

...
...

. . . 0

0 0 · · · λt = c(1+λt+1)
1+λt+1+c


V⊤

t .

Recall the optimal control solution in Equation (4.6) and Lemma 4.5.1, we reach the fol-

lowing analytic formulation.

Proposition 4.2.2 When the layer-wise transformations are represented as orthogonal matri-

ces, and the basis of state embedding, state integration embedding, and state derivative embed-

dings are mutually orthogonal, the optimal feedback control, denoted as πt(xt), can be represented

as follows:

πt(xt) = −Vt



0 0 · · · 0 0

0 0 · · · 0 0

...
...

. . . 0 0

0 0 · · · 1 − c
1+λt+1+c 0

0 0 · · · 0 1 − c
1+λt+1+c


V⊤

t xt,

where the parameter λt is governed by a backward difference equation λt = c(1+λt+1)
1+λt+1+c , with the

terminal condition specified as λT = 0.
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4.5.2 PID Error Analysis

Recall the optimal control formulation in Proposition 4.2.2, we define a control gain matrix

Kt

Kt = −Vt



0 0 · · · 0

0 0 · · · 0

...
...

. . . 0

0 0 · · · 1 − c
1+λt+1+c


V⊤

t .

Let θt represent the tth linear transformation, and π : Rd → Rd be the closed-loop controller.

We denote the unperturbed state at time t as xt, and the controlled state with perturbation z

applied at the initial condition as xt,

xt+1 = θt(xt + πt(xt)), x0 = xt + z.

The difference between the controlled system applied with perturbation at the initial condition

and the uncontrolled system without perturbation is shown

xt+1 − xt+1 = θt(xt + πt(xt) − xt),

= θt(xϵ,t −Ktxϵ,t − xt),

= θt(I−Kt)xt − θtxt + θtKtxt,

= θt(I−Kt)(xt − xt), (4.9)

where θtKtxt = 0 since xt is in the null space of the control gain matrix Kt.

Lemma 4.5.2 For t ≥ 0, we have

I−Kt = αt · I + (1 − αt) ·Pt,

where Pt := Vt(Vt)
⊤, αt = c

1+λt+1+c .
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Proof: Recall Equation (4.9), (I−Kt) can be expressed as

I−Kt = Vt



1 0 · · · 0

0 1 · · · 0

...
...

. . . 0

0 0 · · · c
1+λt+1+c


V⊤

t ,

where the first r diagonal elements are 1, and the last (d− r) diagonal elements are c
1+λt+1+c .

By denoting the projection of first r columns as Vr
t and last (d− r) columns as V̂r

t , it can be

further shown

I−Kt = Vr
t (V

r
t )

⊤ +
c

1 + λt+1 + c

(
V̂r

t (V̂
r
t )

⊤),
= Pt + αt

(
I−Pt

)
,

= αt · I + (1 − αt) ·Pt,

where αt = c
1+λt+1+c .

In the presented formulation, the input state space, denoted as Z, is partitioned into a direct

sum comprising two orthogonal subspaces. This decomposition is expressed as Z = Z∥ ⊕ Z⊥,

where Z∥ represents the linear embedding subspace, encapsulating the input data. This is

characterized by the condition x0 ∈ Z for all pairs (x, y) sampled from the distribution D.

Concurrently, Z⊥ defines the orthogonal complement of Z∥. Extending this notion, the time-

dependent state space at any given timestep t is represented as Zt = Z
∥
t ⊕ Z⊥

t .

Lemma 4.5.3 For t ≥ 0, let Ps
t be defined as follows,


P0

t := Pt,

P
(s+1)
t := θ−1

t−s−1P
s
tθt−s−1, s = 0, 1, . . . , t− 1.

Then
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1. Ps
t is a projection.

2. Ps
t is a projection onto Z

∥
t−s, i.e. range(Ps

t ) = Z
∥
t−s.

3. If all θt are orthogonal, then Pt
t = P0, ∀t, where P0 is the orthogonal projection onto

Z
∥
0 .

Proof:

1. We prove it by induction on s for each t. For s = 0, P0
t = Pt, which is a projection by its

definition. Suppose it is true for s such that Ps
t = Ps

tP
s
t (P is a projection if P = P2),

then for (s + 1),

(Ps+1
t )2 =

(
θ−1
t−s−1P

s
tθt−s−1

)2
,

= θ−1
t−s−1

(
Ps

t

)2
θt−s−1,

= θ−1
t−s−1P

s
tθt−s−1,

= Ps+1
t .

2. We prove it by induction on s for each t. For s = 0, P0
t = Pt, which is the orthogonal

projection onto Z
∥
t . Suppose that it is true for s such that Ps

t is a projection onto Z
∥
t−s,

then for (s + 1), Ps+1
t = θ−1

t−s−1P
s
tθt−s−1, which implies

range(Ps+1
t ) = range(θ−1

t−s−1P
s
t ),

= {θ−1
t−s−1x : x ∈ Z

∥
t−s},

= Z
∥
t−s−1.
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3. If θt is orthogonal,

Ps+1
t = θ−1

t−s−1P
s
tθt−s−1,

= θT
t−s−1P

s
tθt−s−1,

= (Ps+1
t )⊤.

Ps+1
t is a orthogonal projection onto range Z

∥
t−s−1. Therefore, PT

t is a orthogonal pro-

jection onto Z
∥
0 , orthogonal projection onto the same range is unique, PT

t = P0, ∀t.

The following Lemma uses the concept of oblique projection to show a recursive relationship

to project any tth state space of Equation (4.9) back to the input data space.

Lemma 4.5.4 Define for 0 ≤ s ≤ t,

Gs
t := αt · I + (1 − αt)P

s
t .

Then, Equation (4.9) can be written as

xt − xt = (θt−1θt−2 · · ·θ0)(Gt−1
t−1G

t−2
t−2 · · ·G

0
0)(x0 − x0), t ≥ 1.

Proof: We prove it by induction on t. For t = 1, by the definition of Gs
t and transformation

from Lemma 4.5.2,

x1 − x1 = θ0(I−K0)(x0 − x0), Equation(4.9),

= θ0(α0 · I + (1 − α0) ·P0)(x0 − x0),

= θ0G
0
0(x0 − x0).
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Suppose that it is true for (xt − xt), by Lemma 4.5.2, we have

xt+1 − xt+1 = θt(I−Kt)(xt − xt),

= θt(αt · I− (1 − αt) ·Pt)(xt − xt), Lemma 4.5.2,

= θtG
0
t (θt−1θt−2 · · ·θ0)(Gt−1

t−1G
t−2
t−2 · · ·G

0
0)(x0 − x0). (4.10)

Recall the definitions of P
(s+1)
t := θ−1

t−s−1P
s
tθt−s−1, and Gs

t := αt · I + (1 − αt)P
s
t ,

Gs+1
t = αt · I + (1 − αt) ·P(s+1)

t ,

= αt · I + (1 − αt) · θ−1
t−s−1P

s
tθt−s−1,

= θ−1
t−s−1

(
αt · I + (1 − αt) ·Ps

t

)
θt−s−1,

= θ−1
t−s−1G

s
tθt−s−1,

which results in the equality of the oblique projections. Furthermore,

θt−s−1G
(s+1)
t = Gs

tθt−s−1.

Applying the above to Equation (4.10) results in

xt+1 − xt+1 = θtG
0
t (θt−1θt−2 · · ·θ0)(Gt−1

t−1G
t−2
t−2 · · ·G

0
0)(x0 − x0),

= (θtθt−1)G
1
t (θt−2θt−3 · · ·θ0)(Gt−1

t−1G
t−2
t−2 · · ·G

0
0)(x0 − x0),

= (θtθt−1θt−2)G
2
t (θt−3θt−4 · · ·θ0)(Gt−1

t−1G
t−2
t−2 · · ·G

0
0)(x0 − x0),

= (θtθt−1 · · ·θ0)(Gt
tG

t−1
t−1 · · ·G

0
0)(x0 − x0).

Lemma 4.5.5 Let

Ft := G
(t−1)
t−1 G

(t−2)
t−2 · · ·G0

0, t ≥ 1.
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Then,

Ft =
t−1∏
s=0

αs · I + (1 −
t−1∏
s=0

αs) ·P0.

Proof: We prove it by induction on t. Recall the definition of Gs
t := αt · I + (1 − αt) ·Ps

t .

When t = 1,

F1 = G0
0 = α0 · I + (1 − α0) ·P0.

Suppose that it is true for t such that

Ft =
t−1∏
s=0

αs · I + (1 −
t−1∏
s=0

αs) ·P0,

for (t + 1),

Ft+1 = Gt
tFt,

= (αt · I + (1 − αt) ·Pt
t)Ft,

= (αt · I + (1 − αt) ·Pt
t)(

t−1∏
s=0

αs · I + (1 −
t−1∏
s=0

αs) ·P0),

=
t∏

s=0

αs · I + αt(1 −
t−1∏
s=0

αs) ·P0 + (1 − αt)
t−1∏
s=0

αs ·Pt
t + (1 − αt)(1 −

t−1∏
s=1

αs) ·Pt
tP0.

Recall Lemma 4.5.3, if all θt is orthogonal, then Pt
t = P0, and Pt

tP0 = P0. Hence,

Ft+1 =

t∏
s=0

αs · I + αt(1 −
t−1∏
s=0

αs) ·P0 + (1 − αt)

t−1∏
s=0

αs ·P0 + (1 − αt)(1 −
t−1∏
s=1

αs) ·P0,

=

t∏
s=0

αs · I +

(
αt −

t∏
s=0

αs +

t−1∏
s=0

αs −
t∏

s=0

αs + 1 − αt −
t−1∏
s=0

αs +

t∏
s=0

αs

)
·P0,

=

t∏
s=0

αs · I +

(
1 −

t∏
s=0

αs

)
·P0.

Theorem 4.2.1 For any time step t ≥ 1, assuming that each θt is an orthogonal matrix, we
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have the following error computation:

∥xt − xt∥22 =
t−1∏
s=0

α2
s · ∥z⊥∥22 + ∥z∥∥22,

where αt is a time-varying parameter defined in relation to the control regularization c, and λt

are auxiliary variables, as follows:

αt =
c

1 + λt+1 + c
, λT = 0, λT−1 =

c

1 + c
, λt =

c(1 + λt+1)

1 + c + λt+1
.

Proof: The input perturbation z = x0 − x0 can be decomposed as z = z∥ + z⊥, where

z∥ ∈ Z
∥
0 and z⊥ ∈ Z⊥

0 , and z∥ and z⊥ are vectors such that

• z∥ · z⊥ = 0 almost surely.

• z∥, z⊥ have uncorrelated components.

• z∥ ∈ Z∥, and z⊥ ∈ Z⊥.

Since the layer transformations θt are orthogonal matrices for all t, recall the dynamical

system Equation (4.9) and Lemma 4.5.4,

∥xt − xt∥22 = ∥θt(I−Kt)θt−1(I−Kt−1) · · ·θ0(I−K0)z∥22,

= ∥(θt−1θt−2 · · ·θ0)(Gt−1
t−1 · · ·G

0
0)z∥22,

= ∥(Gt−1
t−1 · · ·G

0
0)z∥22, (4.11)
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For the term ∥(Gt−1
t−1 · · ·G0

0)z∥22, recall Lemma 4.5.5,

∥(Gt−1
t−1 · · ·G

0
0)z∥22

= ∥
( t−1∏

s=0

αs · I + (1 −
t−1∏
s=0

αs)P0

)
z∥22,

= ∥
t−1∏
s=0

αs · z + (1 −
t−1∏
s=0

αs) · z∥∥22,

= (
t−1∏
s=0

αs)
2 · ∥z∥22 + (1 −

t−1∏
s=0

αs)
2 · ∥z∥∥22 + 2(

t−1∏
s=0

αs)(1 −
t−1∏
s=0

αs)(z)⊤z∥,

= (
t−1∏
s=0

αs)
2 · (∥z∥∥22 + ∥z⊥∥22) + (1 −

t−1∏
s=0

α0)
2 · ∥z∥∥22 + 2(

t−1∏
s=0

αs)(1 −
t−1∏
s=0

αs)(z
∥ + z⊥)⊤z∥

=
t−1∏
s=0

α2
s · ∥z⊥∥22 +

( t−1∏
s=0

α2
s + (1 −

t−1∏
s=0

αs)
2 + 2(

t−1∏
s=0

αs)(1 −
t−1∏
s=0

αs)

)
· ∥z∥∥22,

=
t−1∏
s=0

α2
s · ∥z⊥∥22 + ∥z∥∥22.

Recall the error computation in Equation (4.11),

∥xϵ,t − xt∥22 =

t−1∏
s=0

α2
s · ∥z⊥∥22 + ∥z∥∥22.
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Chapter 5

Achieving Asymptotic Fairness of Machine
Learning Models via Optimal Control

This chapter investigates fairness issue in a non-stationary environment where the distribution

of training data evolves with time, and the deployed model needs to be adjusted accordingly,

the adjusted model will influence users’ participation and future training data in turn. Consider

a scenario wherein a deployed model is continuously fine-tuned based on the majority’s input.

Minority users may find that their interactions with the machine learning model are unsatisfy-

ing. As a result, these minority users tend to not engage with the model. The deployed model,

which is already under-representing them, gets even less data from minority users, leading to

even worse services to this group

With considerations of the interplay between a machine learning model and users’ partici-

pation, we propose a model-based optimal control method to engage users from all demographic

groups over a long time horizon. The optimal control formulation accounts for long-term plan-

ning, therefore it can achieve asymptotic fairness in a non-stationary setting. Different from

existing reinforcement learning-based approaches, our model-based optimal control allows more

efficient computation, leading to superior performance compared with existing baseline meth-

ods. Adopting an optimal control approach to achieve asymptotic fairness poses three main

challenges: (1) lack of a fairness metric in a non-stationary environment, (2) complexity of solv-

ing the optimal control problem under complicated user dynamics, and (3) lack of a dynamic

model describing users participation. To address these challenges, we make the following major

131



contributions:

1. We introduce the concept of asymptotic fairness to describe the maintenance of perfor-

mance across all demographic groups over a long time horizon. Existing fairness def-

initions like equal opportunity [43] and demographic parity [104] focus on measuring

performance disparities between different demographic groups at a single time step, thus

they are not applicable to a non-stationary setting. Instead, our definition describes how

the fairness evolves in a long term. As time approaches to infinity, user engagement

dynamics converge towards a state wherein users from all demographic groups are fully

participating. Our definition leverages a Markov decision process (MDP) and a deter-

ministic dynamic system that describe the behavior of each individual user and of each

demographic group, respectively.

2. We present an optimal control formulation to achieve the asymptotic fairness of a machine

learning model. Solving the resulting optimal control problems is particularly challenging

due to the complex dynamics of user engagements. To address this challenge, we employ

an efficient implementation of Pontryagin’s Maximum Principle (PMP) to solve the con-

trol problem. We further derive a Hamiltonian under mild assumptions to achieve better

convergence.

3. We design a discrete dynamic system as a surrogate model to approximate the com-

plex dynamics of user engagement. Different from reinforcement learning, a model-based

control framework relies on a dynamical system to describe the objective function and

constraints. Our surrogate model provides a simplified description for the dynamic behav-

ior of users in a complex environment, making solving the model-based optimal control

problem and achieving asymptotic fairness feasible.

Figure 5.1 shows the key idea of this work. In Figure 5.1 (a), a machine learning model is

updated based on newly generated user data, resulting in increasing bias towards the majority

group and disparate population density (calculated as the ratio of participating users and total
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Figure 5.1: (a) illustrates the initial feature distributions for two distinct demographic groups.
The variations in feature distribution among engaged users, resulting from population risk
minimization and the proposed optimal control method, are presented in (b) and (c). (d) and
(e), respectively, reveal the changes in the population densities of these users over time.

users) at terminal step. In Figure 5.1 (b), the proposed optimal control method initially biases

the machine learning model towards the minority group to attract more users, and control the

long-term behavior of the machine learning model, ultimately leading the population densities

of both groups to asymptotically converging to 1.

Table 5.1 further highlights the key difference of our method with main existing baselines.

Most existing methods fail to handle the long-term fairness of a machine learning model. Our

method and reinforce learning-based methods are among the limited techniques that can pro-

vide long-term fair performance, but our method is computationally more efficient due to the

employment of a model-based control.

5.1 Fairness in Non-Stationary Environment

In this section, we elaborate on the problem setting to fairness in a non-stationary environ-

ment, where user participation depends on the model’s performance (Section 5.1.1). We then

define asymptotic fairness as a condition to measure the performance of a machine learning

model across all demographic groups in a long time horizon (Section 5.1.2). Table 5.2 presents
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Table 5.1: Key differences between the proposed optimal control method and baseline ap-
proaches. ERM (empirical risk minimization) represents the naive optimization to generate pre-
dictive models. Minimax and DRO (distributional robust optimization) are fairness-concerned
approaches to generate predictive models. Reinforcement learning (RL) method that take into
consideration the underlying dynamics. The proposed optimal control method is more efficient
compared to RL-based approaches.

Fairness Lone-term Effect Efficiency

ERM X X X

Minimax X X

DRO X X

RL X

Proposed

a list of used notations accompanied by their descriptions.

5.1.1 Problem Setting

We denote a sequence of models as {θt}T−1
t=0 , where model θt ∈ Rm and m is the number of

parameters. We consider the interplay of the machine learning model with its users consisting of

K different demographic groups. Assume that the ith group has N i users, and the total number

of users is N =
∑K

i=1N
i. A user can either have a status of participating or non-participating.

and the nth user is represented by a feature vector (x(n) ∈ Rd), a label (y(n) ∈ R), and a

demographic membership (z(n) ∈ R).

We develop a Markov decision process (MDP) to simulate the dynamics of user engagement

across different demographic groups as they interact with a machine learning model. This MDP

is intuitively explained in Fig. 5.2 (a), and its detailed descriptions are given below.

• States: The state is described by a binary vector st ∈ {0, 1}N that indicates whether

each user is participating or not at time step t. For instance, the nth user at time t is

participating if st(n) = 1 and non-participating if st(n) = 0.

• Actions: Actions are the outputs, at(n) = θt(x(n)), of the machine learning model. An

action at consists of N binary elements. Moreover, only actions of participating users
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Table 5.2: Notation Table

Symbol Description

m Number of model parameters

d Dimension of user feature

T Length of time horizon

K Total number of demographic groups

N i Number of users from the ith demographic group

N Total number of users

x(n) Feature vector of the nth user

y(n) Label of the nth user

z(n) Demographic membership of the nth user

θt Predictive model at time step t

θ Predictive model θ := {θt}T−1
t=0

λt Population density of participating users from the ith group

λt Vector of population densities of all demographic groups

pt Adjoint state at time step t

F ∗ Population retention system (simulation environment)

F surrogate dynamic system (estimation of the simulation environment)

st State of the simulation environment at time step t

at Action at time step t

R(·) Reward function acting on state st
Ψ(·) Terminal objective function acting on terminal state

Φ(·) Classification loss function (e.g. Cross-entropy)

H(·) Hamiltonian function

V θ(·) Value function of model θ

γ Discounting factor

κi, gi, hi Functions used to define surrogate dynamic system F

(where st(n) = 1) are leveraged by the transition probability that will be specified later.

• Transition probability: The transition probability characterizes the changes in the

participating status of all users. The status of the nth user at time step t+1 is conditioned

on both the nth action θt(x(n)) and st(n). Following [105,106], we assume that user n is

more likely to be participating [i.e., st+1(n) = 1] if the machine learning model θt provides

a correct prediction for this particular user. In contrast, a wrong prediction results in a

higher possibility of user n stopping using the machine learning model [i.e., st+1(n) = 0].
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This is defined by the transition probability,

st+1 ∼ MDP(·|st,{θt(x(n))}Nn=1, {y(n)}Nn=1, {z(n)}Nn=1),

where st+1(n) ∼Bernoulli (u (P [θt(xn) = y(n)])) , (5.1)

where u(·) is a utility function u : [0, 1] → [0, 1]. For example, if u(·) is an identity

mapping, then the probability of a participating user continuing to be engaged in the

next time step equals the probability of model making a correct prediction. We denote

Eq. (5.1) as population retention system.

• Rewards: At a time t, a reward R(st) is measured from the current state st. Let λi
t be

the population density of participating users from the ith demographic group,

λi
t =

1

N i
·

N∑
n=1

st(n) · 1z(n)=i,

where 1z(n)=i is a indicator function that returns 1 if z(n) = i, meaning that the nth

user belongs to the ith group. This density value is between 0 and 1. If λi
t increases, it

means more users from the ith demographic group become participating. Conversely, a

decrease in λi
t suggests users from that group are leaving or becoming non-participating.

We compute rewards by measuring the population densities, one example could be the

sum of population densities R(st) =
∑K

i=1 λ
i
t, where λi

t is computed based on st.

• Initial states: Given the initial population densities, the initial states are constructed

by randomly sampling participating users from each demographic group. For example,

consider two demographic groups, each with a total of 10 users. The initial population

densities for these groups are 0.7 and 0.1, respectively. To construct the initial state

s0 ∈ R20, we randomly select 8 elements to be 1 (representing 7 users from the first group

and 1 user from the second group) and the remaining 12 elements to be 0 (representing

3 users from the first group and 9 users from the second group).
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Figure 5.2: (a): The intuition of our designed MDP. A user, once receiving satisfactory service
from a machine learning model, is more likely to stay participating. (b) An example of the
MDP transition in Eq. (5.1). At time step t, the first, second, and third users are actively
participating. However, due to an incorrect prediction made by the model θt, the second user
becomes non-participating at time step t + 1. On the other hand, the fourth user, who is non-
participating at t, has a slight chance of becoming participating at time step t + 1.

The setup of the MDP slightly deviates from the general case, where the agent (here the

model) can take any action in the action space. In this framework, actions are produced by a

predetermined, parameterized model, such as an classifier. Additionally, these actions can only

be updated by data obtained from users who are currently participating (from feature vectors

x(n), labels y(n) and demographic information z(n) if st(n) = 1).

The proposed MDP consists of two stages.

• Model generation: Our goal is to create a sequence of T models, represented by

{θt}T−1
t=0 , from interacting with the population retention system in Eq. (5.1). At every

time step, we use the feature vectors and labels of participating users, along with feedback

on rewards, to improve model performance. However, if a user stops participating in the

following time step, we no longer have access to their data.

• Model evaluation: To assess the performance of the generated models, we deploy

them into the population retention system, initiating from a random starting point, and

evaluating the reward based on the observed population densities λi
0, λ

i
1, ..., λ

i
T .

Figure 5.2 (b) provides an example of the proposed MDP. At time step t, the state st reveals

that the first three users are actively participating. However, due to an erroneous prediction
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by the predictive model θt(x(2)) ̸= y(2), the second user stops participation in the next time

step, leading to st+1(2) = 0. Regarding non-participating users at t, there is a small chance

that they will engage with the model in the following time step, exemplified by the behavior of

the fourth user.

5.1.2 The Definition for Asymptotic Fairness

The population retention system, defined in Eq. (5.1), simulates the user’s stochastic ac-

tivity of participating in a machine learning model. In this context, a machine learning model

with minimum population risk across the entire population encourages increased user partici-

pation. Consequently, active users are more inclined to provide additional training data, which

is invaluable for refining the model performance. With these newly contributed data, the ma-

chine learning model is further improved. This process progressively improves the predictive

accuracy of the machine learning model, thereby reducing population risk even further in each

succeeding time step.

Given the above interplay between users and the machine learning model, there exists

a positive feedback loop. With sufficient iterations and time, this loop leads to a scenario

where the population risks associated with all demographic groups tend towards 0. This occurs

as the number of total users denoted as N i grows significantly larger. Simultaneously, the

population densities of all demographic groups approach 1, indicating high levels of engagement

and participation across all demographics. This motivates us to define asymptotic fairness as

follows:

Definition 5.1.1 (asymptotic fairness) A sequence of models satisfies asymptotic fairness

if the dynamics of population density it drives satisfy the following condition:

λi
t → 1 almost surely, as t → ∞ ∀i ∈ {1, 2, ...,K}, s.t. Eq. (5.1).

When the population densities of participating users from each demographic group converge
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towards 1, it indicates that the underlying predictive model consistently performs fairly across

all these groups.

Prior research has considered disparity amplification [51] to assess the representation dis-

parity across all demographic groups at each individual time step. The proposed asymptotic

fairness provides a more precise interpretation of fairness in a non-stationary environment.

To illustrate, consider an extreme scenario where the population densities of all demographic

groups concurrently decay to zero. Although this is an undesirable situation, it would nonethe-

less satisfy the condition of disparity amplification defined in [51], yet not meet the criterion of

asymptotic fairness. Thus, the distinction underscores the importance of considering long-term

behavior in fairness definitions, a perspective that asymptotic fairness uniquely encapsulates.

5.2 Optimal Control for Asymptotic Fairness

In this section, we first present an optimal control formulation to achieve asymptotic fair-

ness. Next, we provide an efficient solver based on Pontryagin’s maximum principle (PMP) [78].

Finally, we derive a new form of the Hamiltonian under mild assumptions to achieve better con-

vergence.

5.2.1 Optimal Control Formulation

The asymptotic fairness in Definition 5.1.1 requires that over an infinite period, the popu-

lation density of every demographic group approaches 1. In a practical scenario where there’s

a finite time horizon, this definition is equivalent to maximizing the population densities of

all demographic groups at the terminal time. This can be formulated as an optimal control

problem with terminal reward by viewing the machine learning model parameters {θt}T−1
t=0 as

control variables.

The model-based optimal control formulation relies on a dynamical system to describe the

objective function and constraints. We consider a discrete dynamic system to approximate the
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complex dynamics of the MDP in Eq. (5.1):

λt+1 = f(λt,θt), given λ0. (5.2)

Here the K-dimensional vector λt = [λ1
t , λ

2
t , ..., λ

K
t ]T denote the population density of all user

groups. In practice, f(·) is optimized together with the machine learning model {θt}T−1
t=0 by

interacting with the simulation environment. The detailed design for this discrete dynamic

system is elaborated in Section 5.3. For now, let f be a continuous function with respect to λt.

Remark 5.2.1 While not necessarily the best modeling choice, this discrete dynamic system

significantly simplifies the state space, reducing its complexity from extremely high to relatively

manageable dimensions. Additionally, the state space representing population density is contin-

uous, as opposed to the discrete state space of user participation status. This distinction makes

an optimal control solution more feasible.

Let Ψ(λT ) denote a measurement of the terminal state. As an example, Ψ(λT ) can be the

sum of population densities Ψ(λT ) =
∑K

i=1 λ
i
T at the terminal step. Then the model-based

optimal control formulation to achieve asymptotic fairness can be formulated as follows:

max
{θt}T−1

t=0

Ψ(λT ) s.t. dynamic sysetm Eq. (5.2). (5.3)

This is a special case of a class of optimal control problems for discrete dynamical systems, in

which we consider the control variables as the model parameters at all time steps [56].

5.2.2 Optimal Control Solution via Pontryagin’s Maximum Principle

We describe PMP as a general solver for the optimal control problem defined in Eq. (5.3).

The PMP [78] consists of two difference equations and a maximization condition. The PMP

solves for a set of fixed control parameters for a given initial state. To begin with, we define

the Hamiltonian as
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H(t,λt,pt+1,θt) := p⊤
t+1 · f(λt,θt) − L(θt,λt), (5.4)

where L(θt, λ
i
t) is a running loss at time t, which can be defined as the regularization term of

model parameters. pt is the adjoint state representing the derivative of the terminal cost with

respect to λt, pt = ∂Ψ(λT )
∂λt

.

The PMP consists of a two-point boundary value problem,

λt+1 = ∇pH(t,λi
t,pt,θt), λ0 given, (5.5)

pt = ∇λH(t,λi
t,pt+1,θt), pT =

∂Ψ(λT )

∂λT
, (5.6)

plus a maximization condition of the Hamiltonian.

H(t,λi
t,pt,θt) ≥ H(t,λi

t,pt,θt), ∀ θt and t. (5.7)

The PMP establishes a necessary condition for the optimal control solution, the optimal

solution maximizes the Hamiltonian, given the states and adjoint states. We consider the

method of successive approximation [56,107,108] to solve the PMP. For a given dynamic system

M(·), this algorithm iteratively runs Eq. (5.5), (5.6) to generate states λ0,λ1, ...,λT and adjoint

states pT , pT−1, ...,p0, and maximizes the Hamiltonian as defined in (5.7) to generate the

optimal control solution {θt}T−1
t=0 .

5.2.3 Modified Pontryagin’s Maximum Principle

In this subsection, we introduce a modified Hamiltonian that can achieve better convergence

for solving the PMP. In addition, we also provide a detailed implementation that iteratively

optimizes both the surrogate dynamic system and the control variables (e.g., parameters of the

machine learning model).
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Deterministic surrogate dynamical system: The proposed optimal control formulation

utilizes a deterministic surrogate dynamical system to simplify the complex MDP defined in

Eq. (5.1). Specifically, for a given state st that represents the participation status of all users

at time t, this MDP produces the next state st+1 with a certain probability. Among the various

possible next states st+1, let sML
t+1 denote the most likely one. Then the optimal design of the

surrogate dynamical system is to deterministically predict sML
t+1 from the current state st using

the predictive model θt.

sML
t+1 = F (st,θt). (5.8)

The surrogate dynamical system is not used to describe the dynamic behavior of the MDP

exactly. Instead, when utilizing this surrogate system, the optimal control aims to improve

model performance based on the most probable dynamics of the users. For example, if the

current model predicts incorrectly for an participating user st(n) = 1, it is more likely that

the user will not participate in the next state [st+1(n) = 0]. Although there remains a small

probability that the user might continue to participate [st+1(n) = 1], the optimal control

formulation prioritizes the more likely scenario, predicting the user as non-participating in the

subsequent state.

Non-decreasing value function: To begin with, let θ := {θt}T−1
t=0 represent a sequence

of models, where θ(xt) = θt(xt) generates deterministic predictions. We denote V θ as the

expected accumulated rewards obtained by deploying the model θ to the MDP,

V θ(s) = Est+1∼MDP(st+1|st,θ(st))

[ ∞∑
t=0

γtR(st)|s0 = s
]
,

where γ is a discounting factor, and MDP(st+1|st,θ(st)) is the MDP-based population retention

system defined in Eq. (5.1).

Let F ∗ denote the stochastic process represented by the MDP defined in Eq. (5.1).
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Theorem 5.2.1 Let the value function satisfy L-Lipschitz continuity with a Lipschitz constant

L. Suppose F ∗ is an element of the set F , which denotes the space of estimated systems under

consideration. When the optimality of the following objective is achieved,

θnew, F new = arg max
θ,F

V θ −
(
γ · L · E

s∼ρθ
old,MDP

[
∥F (s,θ(s)) − F ∗(s,θ(s))∥

]
+

2Bγκ

1 − γ

)
s.t. KL(θold(s),θ(s))

1
2 ≤ κ,

where F is the surrogate dynamical system defined in Eq. (5.8), ρθ
old,MDP represents the sta-

tionary state distribution of the MDP with model at previous iteration θold. θnew and F new

represent the optimal model and surrogate dynamical system for maximizing the objective func-

tion, respectively. ∥s∥ ≤ B. κ is an upper bound on the Kullback–Leibler divergence. Then we

have a non-decreasing value function of the MDP from the resulting models,

E
s∼ρθ

old,MDP

[
V θold

(s)
]
≤ E

s∼ρθ
old,MDP

[
V θnew

(s)
]
.

The detailed proof is provided in Section 5.5.1.

Theorem 5.2.1 suggests an objective function that optimizes both the value function and the

surrogate dynamical system. The central message provided by this Theorem is on the constraint

of model parameter updates. To ensure non-decreasing expected accumulated rewards for each

model update, an KL-divergence constraint is applied on the predictions of the updated and

previous models. This is consistent with existing RL algorithms [109, 110] as constraining the

model parameter update from collected simulation data has been shown to improve algorithm

convergence. The connection between Theorem 5.2.1 and the concept of asymptotic fairness is

that it improves the convergence of the control solution towards an asymptotically fair state by

incorporating a KL-divergence regularization term.

A modified Hamiltonian: In practice, the KL-divergence constraint can be approximated

by a regularization term. Motivated by the theoretical insights from this Theorem, we design
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a modified Hamiltonian of Eq. (5.4),

H(t,λt,pt+1,θt) := pT
t+1 · f(λt,θt) − KL(θold

t ,θt)
1
2 − 2Bγκ

1 − γ
. (5.9)

Theorem 5.2.1 considers a surrogate dynamical system that deterministically predicts sML
t+1

as defined in Eq. (5.8). Its derivation does not rely on a specific form of F . Recall that

the simplified surrogate dynamical system defined in Eq. (5.2) acts on population densities

λt. This is a special case of the general surrogate dynamical system considered in Eq. (5.8),

since population densities can be computed exactly from state st. Section 5.3 elaborates on a

specific design for f , which allows the theoretical results from Theorem 5.2.1 to be applied. Let

λt = e(st) compute population densities, then the simplified surrogate dynamical system f(·)

can be optimized from ∥f(e(st),θ(s)) − e(F ∗(s,θ(s)))∥.

Practical implementation: Algorithm 3 outlines the implementation steps of the modified

PMP for solving the optimal control problem as defined in Eq. (5.3). Starting with the initial

population densities for each demographic group, we employ forward propagation following

Eq. (5.5) to calculate population densities at subsequent time points. Beginning with the

terminal condition pT = ∂Ψ(λT )
∂λT

, backward propagation is then performed as per Eq. (5.6)

to determine all adjoint states. The process involves iteratively updating a surrogate discrete

dynamic system through its interaction with the simulation environment and maximizing the

modified Hamiltonian defined in Eq. (5.9).

5.3 Surrogate Dynamic System Design

In this section, we provide a specific choice for the surrogate system outlined in Eq. (5.2).

This design features a low-dimensional state representation, thereby improving computational

efficiency. A discrete dynamic system describing the population dynamics can be constructed

144



Algorithm 3 Modified Method of Successive Approximation.

Input: λ0, learning rate lr, maxItr, InnerItr
Output: models {θt}Tt=0

for m = 1 to maxItr do
for t = 0 to T-1 do

λt+1 = ∇pH(t,λt,pt,θt), // Forward propagation of number densities (Eq. (5.5)).
end for
pT = ∂Ψ(λT )

∂λT
, // Set terminal condition.

for t = T − 1 to 0 do
fnew = arg min

f
γ ·L ·E

s∼ρθ
old,MDP

[
∥f(e(s),θ(s))− e(F ∗(s,θ(s)))∥

]
// Update surrogate

dynamic system.
θnew
t = arg max

θ
pT
t+1 ·fnew(λt,θt)−KL(θold(s),θ(s))

1
2 − 2Bγκ

1−γ , // Maximize Hamiltonian

Eq. (5.9). λt = e(st).
pt = ∇λH(t,λt,pt+1,θt), // Backward propagation of adjoint state (Eq. (5.6)).

end for
end for

as follows,

λt+1 = f(λt,θt), where fi(·) = g
(
κi

(
λi
t,θt

))
(1 − λi

t) + h
(
κi(λi

t,θt)
)
λi
t, (5.10)

where fi is the ith element of f , κi(·) measures the model performance on the ith demographic

group, g(·) and h(·) compute the rates of incoming and retained users at each time step, respec-

tively. As an example, when κi(·) measures the model accuracy, g(·) and h(·) are monotonically

increasing functions with range from 0 to 1 (e.g., sigmoid function).

The discrete dynamic system yields a low-dimensional state representation, consists only of

the population densities across all demographic groups. However, notice that κi(λi
t,θt) mea-

sures the model performance with population density λi
t, this requires data selection based on

the population density λi
t. We consider the distributionally robust optimization (DRO), which

facilitates a deterministic generation process of λi
t proportion of users who received optimal

model performance. To begin with, let dX 2(P||Q) denote the X 2-divergence between two prob-

ability distributions P and Q 1, B(P, r) = {Q : dX 2(P||Q) ≤ r} denote the chi-squared ball

around a probability distribution P of radius r. Let P i be the feature distribution of users

1X 2-divergence definition: dX2(P||Q) =
∫
( dP
dQ − 1)2dQ)
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from the ith demographic group. The performance measure κi(·) is defined as the worst-case

distributional loss over all r-radius balls around P i,

κi(λi
t,θt) = sup

Q∈B(Pi,rit)

E(x,y)∼QΦ(θt,x, y), rit = (1/λi
t − 1)2. (5.11)

Clearly, as the number density λi
t approaches 1, rit decays to 0, and κi(λi

t,θt) is equivalent to

population risk. For small λi
t, the radius rit → ∞ and this leads to a large loss value. The

computation of the the worst-case distributional loss defined in Eq. (5.11) is a challenging task.

Section 5.5.2 provides its dual form for the ease of computation.

Stability of asymptotically fair state: The definition of asymptotic fairness requires that

the population densities of each demographic group approach and stabilize at 1 over an infinite

period. The subsequent Proposition confirms that an equilibrium state signified by λt = 1 is

stable under a certain condition. This suggests that upon reaching the equilibrium state of 1,

the population densities will remain in this state.

Proposition 5.3.1 In the surrogate system as described by Eq. (5.10), a equilibrium state with

λt = 1 is stable if the following condition holds,

max
i∈[1,2,...,K]

∂h

κi(λi
t,θt)

· ∂η
∗

∂λi
t

·
(

1 −
EPi

[
Φ(θt,x, y)

]√
EPi

[
Φ(θt,x, y)2

]) < 1,

where

η∗ = arg inf
η∈R

(
C(λi

t) ·
(
EPi

[
[Φ(θt,x, y) − η]2+

]) 1
2 + η

)
, C(λi

t) = (2(1/λi
t − 1)2 + 1)

1
2 ,

where [a]+ = a if a ≥ 0 and [a]+ = 0 when a < 0, in which case, the DRO is the expected loss

of samples that have higher loss than the optimal η∗. The detailed proof is derived in Section

5.5.2.

The above proposition indicates that the stability of an asymptotically fair state depends on
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the variance of losses Φ(θt,x, y) experienced by individual users. Specifically, within any given

demographic group, an asymptotically fair state achieves stability when the losses encountered

by individual users are similar, indicating consistent performance of the predictive model for

all users within the group. This makes sense as uniform losses among users lead to a more

consistent DRO loss across varying proportions of users.

5.4 Numerical Experiments

In this section, we begin with detailing experimental settings. Following that, we conduct an

empirical validation of our optimal control solution using a synthetic dataset. We also explore

two realistic datasets commonly used in fairness research, as outlined.

5.4.1 Experimental Setting

Simulation environment: We implement two simulation environments to realize the popu-

lation retention systems.

• F ∗
1 : In this system, when a user decides to stay or leave, their decision follows a Bernoulli

distribution conditioned on the model performance of this user. For instance, a user has

a higher chance of staying when the model prediction is correct, and low probability of

staying engaged when a wrong model prediction is given.

• F ∗
2 : The second system takes a more complex approach to modeling user retention. A user

decides to leave because the model has consecutively resulted three incorrect prediction

on this particular user.

Algorithm 4 shows the implementation of the population retention system for evaluation.

Evaluation metrics: We consider 3 evaluation metrics,

• Loss measures the terminal population densities λT using the binary cross-entropy loss

function (e.g.
∑K

i=1− log(λi
T )). This metric assesses the variance in population densi-
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Algorithm 4 Implementation of Population Retention System for Evaluation.

Input: Dataset {x(n),y(n), z(n)}Nn=1,
A sequence of models {θt}T−1

t=0 ,
Initial population densities λ0.
Output: Population densities at all time step {λt}Tt=0.
for episode = 1 to max episodes do

// Set up an initial state by randomly sampling user indices as participating users.
Initialize s0.
for t = 1 to max time steps do

// Return the features of currently participating users.
Return x(n) if st(n) = 1.
// Model prediction based on the collected features.
Predict θt(x(n)) if st(n) = 1.
// Environment update for active users based on model predictions.
st+1 ∼ F ∗(·|st, {θt(x(n))}Nn=1, {y(n)}Nn=1, {z(n)}Nn=1).
// Collect reward.
R(st).

end for
end for

ties from a vector of all values set to 1, thereby measuring the distance from achieving

asymptotic fairness.

• Density-2 indicates the population density of the minority demographic group at the

terminal time step.

• Disparity is the absolute difference between population densities of majority and mi-

nority groups at the terminal time step.

Implementation of Baseline Methods: We delve into three categories of algorithms de-

signed for achieving asymptotic fairness: fairness-agnostic, fairness-aware, and dynamic-

aware approaches. While fairness-agnostic algorithms employ empirical risk minimization,

fairness-aware techniques utilize demographic data to ensure balanced model performance across

diverse demographic groups. Additionally, dynamic-aware approaches consider the inherent

population dynamics, typically leading to enhanced performance compared to the other types.

• Fairness-agnostic: Empirical risk minimization (ERM) optimizes an average loss of all
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observable data,

θt = arg min
θ

1∑N
n=1 st(n)

N∑
n=1

Φ(θt,x(n),y(n)) · st(n),

where st ∈ {0, 1}N indicating the participating user indices. This method often results in

undesirable outcomes in terms of fairness [51]. Specifically, when there exists a disparity

between the population densities of the majority and minority demographic groups at

a particular time step, ERM focuses on minimizing the average loss across all samples.

Consequently, this produces a model that performs better for the majority group than

for the minority group. This not only accentuates the imbalance between the two de-

mographic groups in subsequent time steps but also exacerbates the inherent bias in the

model derived in the following steps.

• Fairness-aware: Methods that prioritize fairness use demographic data to ensure equal

model performance among various demographic groups. We detail two techniques from

this group: Minimax optimization (Minimax), and distributional robust optimization

(DRO).

– Minimax focuses on optimizing the most unfavorable outcome for all groups by

using the demographic information of each sample [111].

θt = arg min
θ

max
i=[1,2,...,K]

( 1∑N
n=1 st(n) · 1z(n)=i

N∑
n=1

Φ(θt,x(n),y(n)) · st(n) · 1z(n)=i

)
,

where 1z(n)=i is a indicator function that is used to select samples belonging to the

ith demographic group.

– DRO can be seen as a milder form of Minimax since it optimizes for the most

unfavorable outcome over a specified proportion (represented by λ) of samples.
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Notably, the loss from DRO is always greater than or equal to the loss from Minimax.

θt = arg sup
Q∈B(Mi,rit)

E(x,y)∼QΦ(θt,x, y), rit = (1/λi
t − 1)2.

The DRO algorithm is implemented by the dual representation shown in Eq. (5.13).

• Dynamic-aware: This category takes into account the underlying population evolution

for optimal decision-making. In general time-evolving environments, optimizing model

performance at each time step often cannot lead to the optimal model subject to dynamic

change. In the MDP defined in Eq. (5.1), the transition of users’ behavior can lead to

different decision-making algorithms. We implement various reinforcement learning (RL)

algorithms to build dynamic-aware models.

To begin with, we first define the probability of transitioning from an initial state S0

to any state s under model {θt}T−1
t=0 and system f for 1 step (we use F ∗ to indicate the

population retention system defined in Eq. (5.1) and f as its estimated surrogate dynamic

system defined in Eq. (5.10)),

P (s0 → s, 1,θ, F ) =

∫
a
θ(a|s0)f(s|s0,a)da,

where θ indicates a sequence of models {θt}T−1
t=0 . More generally, this transitioning prob-

ability admits a recursive form with any steps t, a t-step probability transition can be

represented as first transitioning to some intermediate state s′ after t − 1 steps, then

transitioning to s for one more step,

P (s0 → s, t,θ, F ) =

∫
s′
P (s0 → s′, t− 1,θ, F )

∫
a
θ(a|s′)f(s|s′,a)dads′.

We define ρθ,F the stationary state distribution of the MDP under model {θt}T−1
t=0 and
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system f ,

ρθ,F =

∫
s0

µ(s0)

∫
s

∞∑
t=0

γt · P (s0 → s, t, {θt}T−1
t=0 , F ).

We detail three RL algorithms: Naive policy gradient (PG), trust region policy opti-

mization (TRPO), and proximal policy optimization (PPO).

– PG [112] is implemented via Monte-Carlo sampling to generate the accumulated

reward,

θt = arg min
θ

Es∼ρθ,F∗

[
Ea∼θ(a|s)

[
Gt∇θ lnθ(a|s)

]]
,

where ρθ,F
∗

is the stationary state distribution resulting from model {θt}T−1
t=0 and the

population retention system F ∗, Gt =
∑T

τ=t γ
τ−tR(st, At) represents the accumu-

lated reward from time step t, which is generated from collecting sample trajectories

using the current model {θτ}T−1
τ=t . This policy gradient implementation is sample-

inefficient since every parameter update requires re-collecting the sample trajectory

(the stationary state distribution depends on the current model {θt}T−1
t=0 ).

– TRPO [109] makes updates that improve the model parameters while ensuring the

new model doesn’t deviate too much from the old one, it can produce more stable

and reliable learning compared to vanilla policy gradient methods.

θt = arg min
θ

Es∼ρq,F∗

[
Ea∼q(a|s)

[θ(a|s)
q(a|s)

]
Gt

]
,

where q = {qt}T−1
t=0 is the sequence of models at previous update.

– PPO [110] aims to approximate the behavior of TRPO but in a more straightfor-

ward and computationally efficient manner.

θt = arg min
θ

E
s∼ρq,F

∗

a∼q(a|s)

[
min

(θ(a|s)
q(a|s)

, clip(
θ(a|s)
q(a|s)

, 1 − ϵ, 1 + ϵ)
)
Gt

]
,

where clip(·) is the clip function. PPO simplifies and improves upon the TRPO
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(a): Synthetic data (b): Loss in F ∗
1 (c): Loss in F ∗

2 (d): Slopes

Figure 5.3: (a) shows the feature distribution of synthetic dataset. (b) and (c) plot the binary
cross-entropy losses of population densities resulting from ERM, DRO, TRPO, and the optimal
control method in simulation environments F ∗

1 and F ∗
2 respectively. (d) plots model slopes

resulting from the optimal control method in the base and modified environments.

method, offering a balance between ease of implementation and sample efficiency.

5.4.2 Modeling with Synthetic Dataset

In this study, we employ both F ∗
1 and F ∗

2 , with a synthetic binary classification dataset. As

depicted in Fig. 5.3 (a), the synthetic dataset is composed of two Gaussian blobs, each centered

at different locations of a 2-dimensional space, which formulate the feature distributions of two

demographic groups. The blobs located on the left and right are denoted as the majority and

minority demographic groups, respectively, with respective initial population densities of 0.6

and 0.4 (e.g. majority demographic group has a larger population density compared with the

minority demographic group at the initial step). All experiments are repeated with five random

seeds.

In the simulation environment F ∗
1 , user churn is sensitive to model accuracy, as a single

incorrect prediction can lead to churn with high probability. This sensitivity is depicted by

the sharp increase in the loss trajectory when using ERM, as seen in Fig. 5.3 (b). The DRO

method, which is static and fairness-aware, fails to correct this undesired trend. In contrast,

TRPO accounts for population dynamics and markedly improves upon the static methods,

consistently boosting the population densities of both groups. The optimal control method,
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Table 5.3: Synthetic Dataset: Terminal State with Initial λ1
0 = 0.6 and λ2

0 = 0.4.

Environment F ∗
1

Fair-agnostic Fair-aware Dynamic-aware

ERM Minimax DRO PG TRPO PPO Optim

Density-2 ↑ 0.323 0.224 0.275 0.481 0.645 0.405 0.920

Disparity ↓ 0.677 0.776 0.715 0.459 0.335 0.555 0.05

Loss ↓ 0.56 0.76 0.66 0.40 0.23 0.47 0.06

Environment F ∗
2

Fair-agnostic Fair-aware Dynamic-aware

ERM Minimax DRO PG TRPO PPO Optim

Density-2 ↑ 0.316 0.215 0.348 0.312 0.327 0.314 0.471

Disparity ↓ 0.684 0.785 0.652 0.688 0.673 0.686 0.529

Loss ↓ 0.556 0.775 0.478 0.555 0.434 0.553 0.402

however, excels by optimally moderating the model across demographics, thereby substantially

increasing minority densities with minimal impact on the majority. This is evaluated by the loss

metrics in Fig. 5.3 (b), where the optimal control method consistently shows lower losses at every

step when compared to other methods. Experimental results from simulation environment F ∗
2 ,

in Fig. 5.3 (c), show comparable trends, with smoother transitions. This is due to the slower

variation in user churn behavior specific to the environment F ∗
2 (e.g. 3 consecutive wrong

prediction causes a user churn instead of 1).

Here we aim to demonstrate that the optimal control method makes performance tradeoffs

from the majority group to balance the population densities of both groups at the terminal step.

We manually introduce a substantial quantity of users into the minority demographic group

at t = 50. Consequently, it is expected that the optimal control method would make fewer

tradeoffs and adjust its decision boundaries accordingly at earlier time steps (e.g., t < 50). We

consider a linear classifier where a positive (resp. negative) slope indicates a model favoring

the majority demographic (resp. minority) group. Fig. 5.3 (d) illustrates the slopes of the

model decision boundary at t ∈ [0, 50]. As observed, the introduction of additional users to the

minority group at t = 50 enables the optimal control solution to make less performance tradeoff

against the majority group due to the increased population density at a later time step. This
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Table 5.4: Adult Income: Terminal State with Initial λ1
0 = 0.6 and λ2

0 = 0.4.

Environment F ∗
1

Fair-agnostic Fair-aware Dynamic-aware

ERM Minimax DRO PG TRPO PPO Optim

Density-2 ↑ 0.292 0.252 0.291 0.284 0.285 0.285 0.318

Disparity ↓ 0.708 0.748 0.709 0.716 0.715 0.715 0.682

Loss ↓ 0.615 0.690 0.618 0.630 0.627 0.627 0.573

Environment F ∗
2

Fair-agnostic Fair-aware Dynamic-aware

ERM Minimax DRO PG TRPO PPO Optim

Density-2 ↑ 0.363 0.315 0.353 0.334 0.334 0.334 0.397

Disparity ↓ 0.637 0.685 0.647 0.666 0.666 0.666 0.603

Loss ↓ 0.507 0.579 0.521 0.549 0.548 0.549 0.462

adjustment cannot be accomplished by the existing baselines.

5.4.3 Modeling with Adult Income and COMPAS Recidivism Racial Bias.

We explore two real-world datasets: the Adult Income dataset (Adult) [113] and the COM-

PAS dataset [114]. The Adult dataset provides information on individual annual incomes,

influenced by factors like gender, race, age, and education. COMPAS, on the other hand, is a

commercial tool used in the legal system to predict a criminal defendant’s likelihood of reof-

fending. In both datasets, gender attributes are used to differentiate demographic groups. To

simulate population dynamics in these static datasets, we follow the same simulation configu-

rations as the experiment with the synthetic dataset in Section 5.4.2. For each demographic

group, we randomly select N i = 1000 samples and set initial population densities at λ1
0 = 0.6

for the majority group and λ2
0 = 0.4 for the minority group.

The outcomes of these simulations, specifically for the Adult dataset, are summarized in

Table 5.4, in which the minority population density at the terminal state (Density-2, higher is

better), the disparity between two population densities (e.g. |λ1
T − λ2

T |, lower is better), and

the loss measures (Loss, lower is better) are presented. These results show that our proposed

optimal control method (Optim) outperforms other baseline methods. In environments F ∗
1 and
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Table 5.5: COMPAS: Terminal State with Initial λ1
0 = 0.6 and λ2

0 = 0.4.

Environment F ∗
1

Fair-agnostic Fair-aware Dynamic-aware

ERM Minimax DRO PG TRPO PPO Optim

Density-2 ↑ 0.271 0.256 0.184 0.263 0.264 0.257 0.274

Disparity ↓ 0.522 0.529 0.153 0.435 0.489 0.442 0.516

Loss ↓ 0.770 0.803 1.391 0.848 0.808 0.858 0.764

Environment F ∗
2

Fair-agnostic Fair-aware Dynamic-aware

ERM Minimax DRO PG TRPO PPO Optim

Density-2 ↑ 0.316 0.298 0.075 0.317 0.317 0.317 0.317

Disparity ↓ 0.684 0.702 0.925 0.863 0.683 0.683 0.683

Loss ↓ 0.577 0.605 1.296 0.594 0.574 0.574 0.574

F ∗
2 , it achieves terminal states with λ1

T = 1.0 and λ2
T = 0.318, and λ1

T = 1.0 and λ2
T = 0.81,

respectively.

The results from the COMPAS dataset are detailed in Table 5.5, where minority population

density, disparity, and loss measures are shown. In this scenario, the optimal control method

shows comparable performance to RL-based algorithms. Specifically, TRPO and PPO reach a

terminal state with a loss value of 0.574, which achieves the same level of performance com-

pared to the proposed optimal control method. This similarity in performance is attributed to

the lesser disparity in representation between different gender attributes within the COMPAS

dataset.

5.5 Detailed Theoretical Proofs

5.5.1 Monotone Improvement

In this section, we provide derivation for Theorem 5.2.1. We consider an infinity horizon

discounted reward setting, where the reward function R(st) is defined over a state. As defined

in Section 5.1.1, the state st includes indices of participating and non-participating users, the

reward function can be defined as measuring the population density of participating users, for
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instance,

R(st) =
N∑
i=1

λi
t where λi

t =
1

N i
·

N∑
n=1

st(n) · 1z(n)=i,

where this reward function measures the sum of all population densities at time step t.

Let F ∗ denote the stochastic process represented by the MDP defined in Eq. (5.1), F̃ (·) and

F̂ (·) denote two stochastic processes that estimate F ∗(·). θ := {θt}T−1
t=0 represents a sequence

of models, where θ(xt) = θt(xt) generates deterministic predictions. We denote V θ,F ∗
as the

value function obtained by deploying model θ to the stochastic process F ∗(·),

V θ,F ∗
(s) = Est+1∼F ∗(st+1|st,θ(st))

[ ∞∑
t=0

γtR(st)|s0 = s
]
,

where γ is a discounting factor. In addition, for the estimated stochastic processes F̃ (·) and

F̂ (·),

V θ,F̃ (s) = Est+1∼F̃ (st+1|st,θ(st))

[ ∞∑
t=0

γtR(st)|s0 = s
]
,

and

V θ,F̂ (s) = Est+1∼F̂ (st+1|st,θ(st))

[ ∞∑
t=0

γtR(st)|s0 = s
]
.

The proof is structured as follows,

• We first calculate the difference between the value functions of two distinct stochastic

processes, V θ,F̃ − V θ,F̂ (See Lemma 5.5.1).

• We assume that the value function satisfies an L-Lipschitz condition to a certain norm,

and determine an upper bound for the difference between the value functions resulting

from the population retention system and an estimated dynamical system (e.g. surrogate

dynamic system) (See Proposition 5.5.1).

• We discuss the challenge of optimizing the aforementioned upper bound. To address this,

we further refine this upper bound. (See Proposition 5.5.2).

To begin with, we define the probability of transitioning from an initial state s0 to any state
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s under the predictive model θ and dynamical system F (·) for 1 step,

P (s0 → s, 1,θ, F ∗) = F ∗(s|s0,θ0(s0)),

this transitioning probability admits a recursive form with any steps t. A t-step probability

transition can be represented as first transitioning to some intermediate state s′ after t − 1

steps, then transitioning to s for one more step,

P (s0 → s, t,θ, F ∗) =

∫
s′
P (s0 → s′, t− 1,θ, F ∗) · F ∗(s|s′,θ(s′))ds′.

Moreover, we define ρθ,F
∗

as the stationary state distribution,

ρθ,F
∗

=

∫
s0

µ(s0)

∫
s

∞∑
t=0

γtP (s0 → s, t,θ, F ∗), (5.12)

where γ is the discounting factor, and we assume that the initial state s0 follows uniform

distribution over the state space (e.g. µ(s0) has equal probability for all possible s0).

For any predictive model {θt}T−1
t=0 , the following lemma quantifies the discrepancy between

V θ,F̃ − V θ,F̂ .

Lemma 5.5.1 For any predictive model θ and two distinct dynamical systems, F̃ and F̂ , the

following holds true,

V θ,F̃ − V θ,F̂ = γ · E
s∼ρθ,F̃

[
Es′∼F̃ (s′|s,θ(s))

[
V θ,F̂ (s′)

]
− Eŝ∼F̂ (ŝ|s,θ(s))

[
V θ,F̂ (ŝ)

]]
.

Proof: We denote wj(s0) as the discounted rewards computed from a dynamical system F̃
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for the first j steps and another dynamical system F̂ starting from the (j + 1)th step.

wj(s0) =

j∑
t=0

γt
∫
s
P (s0 → s, t,θ, F̃ ) ·R(s)ds

+γj+1

∫
s
P (s0 → s, j,θ, F̃ )

∫
s′
F̂ (s′|s,θ(s)) · V θ,F̂ (s′)ds′ds,

=

j∑
t=0

γt
(
Es∼P (s0→s,t,θ,F̃ )

[
R(s)

])
+ γj+1

(
Es∼P (s0→s,j,θ,F̃ )

[
Eŝ∼F̂ (ŝ|s,θ(s))

[
V θ,F̂ (ŝ)

]])
.

Moreover, wj+1(s0) at time step t + 1 can be shown similarly,

wj+1(s0)

=

j∑
t=0

γt
(
Es∼P (s0→s,t,θ,F̃ )[R(s)]

)
+ γj+1

(
Es∼P (s0→s,j,θ,F̃ )

[
Es′∼F (s′|s,θ(s))

[
V θ,F̂ (s′)

]])
.

Notice that the difference between wj(s0) and wj+1(s0) lies in the transitioning dynamical

system from state sj to sj+1 (wj(s0) relies on F̂ and wj+1(s0) relies on F̃ ). From the definitions

of wj(s0) and wj+1(s0), the discrepancy between the value functions V θ,F̃ (s0) and V θ,F̂ (s0) can

be reformulated in terms of the definition of wj(s0),

V θ,F̃ (s0) − V θ,F̂ (s0) =

∞∑
j=0

wj+1(s0) − wj(s0) = w∞(s0) − w0(s0),

since V θ,F̃ (s0) = w∞(s0), and V θ,F̂ (s0) = w0(s0).

For a given j, each term wj+1(s0) − wj(s0) can be computed based on their definitions,

wj+1(s0) − wj(s0)

= γj+1

(
Es∼P (s0→s,j,θ,F̃ )

[
Es′∼F̃ (s′|s,θ(s))[V

θ,F̂ (s′)] − Eŝ∼F̂ (ŝ|s,θ(s))[V
θ,F̂ (ŝ)]

])
.

Recall that ρθ,F̃ =
∫
s0
µ(s0)

∫
S

∑∞
t=0 γ

tP (s0 → s, t,θ, F̃ ), the expected value of V θ,F̃ (s0) −
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V θ,F̂ (s0) with respect to s0 can be computed as follows,

V θ,F̃ − V θ,F̂

=

∫
s0

µ(s0)
[
V θ,F̃ (s0) − V θ,F̂ (s0)

]
,

=

∞∑
j=0

γj+1 ·
∫
s0

µ(s0) · Es∼P (s0→s,j,θ,F̃ )

[
Es′∼F̃ (s′|s,θ(s))

ŝ∼F̂ (ŝ|s,θ(s))

[V θ,F̂ (s′) − V θ,F̂ (ŝ)]
]
,

= γ · Es∼ρθ,F

[
Es′∼F̃ (s′|s,θ(s))

[
V θ,F̂ (s′)

]
− Eŝ∼F̂ (ŝ|s,θ(s))

[
V θ,F̂ (ŝ)

]]
.

For a given state st that represents the participation status of all users at time t, F ∗

produces the next state st+1 with a certain probability. Among the various possible next states

st+1, let sML
t+1 denote the most likely one and F (st,θt) denote the surrogate dynamical system

that deterministically predict sML
t+1 from the current state st using the predictive model θt. Let

V θ,F (s) denote the value function of the surrogate dynamical system F and model θ,

V θ,F (s) = Est+1∼F (st+1|st,θ(st))

[ ∞∑
t=0

γtR(st)|s0 = s
]
,

Proposition 5.5.1 Suppose that the value function V θ,F ∗
on any stochastic process is L-

Lipschitz with respect to some norm ∥·∥ in the sense that

|V θ,F ∗
(s) − V θ,F ∗

(s′)| ≤ L · ∥s− s′∥, ∀s, s′.

and assume that the underlying dynamical system is deterministic, then the following establishes

an upper bound for the discrepancy between the value functions V θ,F of an estimated dynamical

system F and the value function of the true environment V θ,F ∗
,

|V θ,F − V θ,F ∗ | ≤ γ · L · E
s∼ρθ,F

∗

[
∥F (s,θ(s)) − F ∗(s,θ(s))∥

]
.
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Proof: According to Lemma 5.5.1,

|V θ,F ∗ − V θ,F |

= γ ·
∣∣∣Es∼ρθ,F

∗

[
Es′∼F ∗(s′|s,θ(s))

[
V θ,F (s′)

]
− EŜ∼F (ŝ|s,θ(s))

[
V θ,F (ŝ)

]]∣∣∣,
= γ ·

∣∣∣Es∼ρθ,F
∗

[
V θ,F (F ∗(s,θ(s))) − V θ,F (F (s,θ(s)))

]∣∣∣, (Deterministic)

≤ γ · E
s∼ρθ,F

∗

[
|V θ,F (F ∗(s,θ(s))) − V θ,F (F (s,θ(s)))|

]
,

≤ γ · L · E
s∼ρθ,F

∗

[
∥F ∗(s,θ(s)) − F (s,θ(s))∥

]
. (L − Lipschitz)

Given two transition kernels P and P′, the accumulated state transitions resulting from P

and P′ are
∑∞

t=0(γP)t = (I − γP)−1, and
∑∞

t=0(γP
′)t = (I − γP′)−1, respectively. The subse-

quent Corollary establishes an upper bound for the difference between two state distributions

that emerge from these kernels.

Corollary 5.5.1 Let µ be a distribution over the state space, d = (1 − γ)(I − γP)−1µ, and

d′ = (1 − γ)(I − γP′)−1µ denote the discounted distribution starting from µ induced by the

transitions P and P′. Then,

|d− d′|1 ≤
γ

1 − γ
|(P−P′)d′|1.

Proof:

|d− d′|1 = (1 − γ) · |(I− γP)−1µ− (I− γP′)−1µ|1,

= (1 − γ) · |
(

(I− γP)−1
(

(I− γP′) − (I− γP)
)

(I− γP′)−1µ
)
|1,

= (1 − γ) · |
(

(I− γP)−1(γP− γP′)(I− γP′)−1µ
)
|1,

≤ |γ(P−P′)(I− γP′)−1µ|1,

=
γ

1 − γ
|(P−P′)d′|1,
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where (1 − γ) · |(I− γP)−1|1 ≤ 1.

Consider two sequences of predictive models, denoted as θ = {θt}T−1
t=0 and θ′ = {θ′

t}T−1
t=0 .

The stationary state distributions resulting from θ and θ′ are ρθ,F
∗

and ρθ
′,F ∗

. The subsequent

Corollary establishes an upper bound for the stationary state distributions that emerge from θ

and θ′.

Corollary 5.5.2 The following holds true for ρθ,F
∗
and ρθ

′,F ∗
,

|ρθ,F ∗ − ρθ
′,F ∗ |1 ≤

γ

1 − γ
· Es∼ρθ′,F∗

[
KL(θ(s),θ′(s))

1
2

]
.

Proof: Recall Corollary 5.5.1, given two state distributions ρθ,F
∗

and ρθ
′,F ∗

,

|ρθ,F ∗ − ρθ
′,F ∗ |1 ≤

γ

1 − γ
· Es∼ρθ′,F∗

[
|PF ∗(s,θ(s)) − PF ∗(S,θ′(s))|1

]
,

where PF ∗(s,θ(s)) represents the probability distribution of F ∗(s,θ(s)). Since PF ∗(s,θ(s)) is a

mapping from a state action pair to a probability,

γ

1 − γ
· Es∼ρθ′,F∗

[
|PF ∗(s,θ(s)) − PF ∗(S,θ′(s))|1

]
≤ γ

1 − γ
· Es∼ρθ′,F∗

[
|Pθ(s) − Pθ′(s)|1

]
,

where Pθ(s) represents the probability distribution of θ(s). Based on Pinkser’s inequality,

γ

1 − γ
· Es∼ρθ′,F∗

[
|Pθ(s) − Pθ′(s)|1

]
≤ γ

1 − γ
· Es∼ρθ′,F∗

[
KL(θ(s),θ′(s))

1
2

]
,

where KL(·, ·) represents the Kullback–Leibler divergence of two distributions.

Recall in Proposition 5.5.1, |V θ,F −V θ,F ∗ | ≤ γ ·L ·E
s∼ρθ,F

∗

[
∥F (s,θ(s))−F ∗(s,θ(s))∥

]
. In

the stationary state distribution ρθ,F
∗
, the upper bound has explicit dependence on the model

parameter θ. However, this complex dependency on θ complicates the process of incorporating

this upper bound into any objective function for the purpose of optimizing model parameters.

The following Proposition further refines this upper bound to convert the explicit dependence

on θ to a reference model θref .
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Proposition 5.5.2 Assume that the dynamical system is deterministic. Consider the value

function V θ,F for the estimated dynamical model F , which is L-Lipschitz. Also, assume that

the state space is uniformly bounded by B. Under these conditions, we can determine an upper

bound for the difference between the value functions V θ,F of the estimated dynamical system F

and the value function corresponding to the actual environment F ∗.

|V θ,F − V θ,F ∗ | ≤ γ · L · E
s∼ρθ

ref ,F∗

[
∥F (s,θ(s)) − F ∗(s,θ(s))∥

]
+ 2Bκ

γ

1 − γ
,

where κ is an upper bound on the Kullback–Leibler divergence between θref and θ.

Proof: For any distributions ρ and ρ′ and function f(·), we have

Es∼ρF (s) = Es∼ρ′F (s)+ < ρ− ρ′, f >

≤ Es∼ρ′F (s) + ∥ρ− ρ′∥1 · ∥f∥∞.

Recall Proposition 5.5.1 and apply this inequality,

|V θ,F − V θ,F ∗ |

≤ γ · L · E
s∼ρθ,F

∗

[
∥F (s,θ(s)) − F ∗(s,θ(s))∥

]
,

≤ γ · L · E
s∼ρθ

ref ,F∗

[
∥F (s,θ(s)) − F ∗(s,θ(s))∥

]
+ ∥ρθ,F ∗ − ρθ

ref ,F ∗∥1 · ∥F∥∞.

Recall Corollary 5.5.2,

∥ρθ,F ∗ − ρθ
ref ,F ∗∥1 ≤

γ

1 − γ
· E

s∼ρθ
ref ,F∗

[
KL(θ(s),θref(s))

1
2

]
≤ γ

1 − γ
· κ,

where KL(θ(s),θref(s))
1
2 ≤ κ. Since the state space is uniformly bounded by B,

max
S

∥F (s,θ(s)) − F ∗(s,θ(s))∥ ≤ max
S

∥F (s,θ(s))∥ + max
S

∥F ∗(s,θ(s))∥ ≤ 2B.
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Therefore,

|V θ,F − V θ,F ∗ | ≤ γ · L · E
s∼ρθ

ref ,F∗

[
∥F (s,θ(s)) − F ∗(s,θ(s))∥

]
+ 2B · κ · γ

1 − γ
.

Theorem 5.2.1 Let the value function satisfy L-Lipschitz continuity with a Lipschitz constant

L. Suppose F ∗ is an element of the set F , which denotes the space of estimated systems under

consideration. When the optimality of the following objective is achieved,

θnew, F new = arg max
θ,F

V θ −
(
γ · L · E

s∼ρθ
old,MDP

[
∥F (s,θ(s)) − F ∗(s,θ(s))∥

]
+

2Bγκ

1 − γ

)
s.t. KL(θold(s),θ(s))

1
2 ≤ κ,

where F is the surrogate dynamical system defined in Eq. (5.8), ρθ
old,MDP represents the sta-

tionary state distribution of the MDP with model at previous iteration θold. θnew and F new

represent the optimal model and surrogate dynamical system for maximizing the objective func-

tion, respectively. ∥s∥ ≤ B. κ is an upper bound on the Kullback–Leibler divergence. Then we

have a non-decreasing value function of the MDP from the resulting models,

E
s∼ρθ

old,MDP

[
V θold

(s)
]
≤ E

s∼ρθ
old,MDP

[
V θnew

(s)
]
.

Proof: Recall Proposition 5.5.2, at the current iteration,

V θnew,Fnew −
(
γ · L · E

s∼ρθ
old,F∗

[
∥F new(s,θ(s)) − F ∗(s,θ(s))∥

]
+

2Bγκ

1 − γ

)
≤ V θnew,F ∗

,

since the second term measures the difference between the estimated system and the population

retention system F ∗, V θnew,F ∗
leads to 0 difference.
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Since θnew and F new attain the optimal for the following objective function,

θnew, F new = arg max
θ,M

V θ,F −
(
γ · L · E

s∼ρθ
old,F∗

[
∥F (s,θ(s)) − F ∗(s,θ(s))∥

]
+

2Bγκ

1 − γ

)
s.t. KL(θold

t (s),θt(s))
1
2 ≤ κ,

V θnew,Fnew −
(
γ · L · E

s∼ρθ
old,F∗

[
∥F new(s,θ(s)) − F ∗(s,θ(s))∥

]
+

2Bγκ

1 − γ

)
≥ V θnew,Fnew − γ · L · E

s∼ρθ
new,f∗

[
∥F new(s,θ(s)) − F ∗(s,θ(s))∥

]
,

≥ V θold,F ∗ − γ · L · E
s∼ρθ

old,F∗

[
∥F ∗(s,θ(s)) − F ∗(s,θ(s))∥

]
,

= V θold,F ∗
,

the second term equals to 0 since the oracle dynamical system F ∗ is considered. Therefore,

E
s∼ρθ

old,MDP

[
V θold

(s)
]
≤ E

s∼ρθ
old,MDP

[
V θnew

(s)
]
.

5.5.2 Analysis for the Surrogate System

Reformulation for Distributional Robust Optimization Loss In general, computing

the worst-case distributional loss over a set of distributions is a challenging task. Fortunately,

the maximization problem in Eq. (5.11) can be reformulated into its dual form [115]. More

specifically, if Φ(·) is upper semi-continuous for any θ, then for rit ≥ 0 and any θ, the following

holds true:

sup
Q∈B(Pi,rit)

E(x,y)∼QΦ(θt,x, y) = inf
η∈R

(
C(λi

t) ·
(
EPi

[
[Φ(θt,x, y) − η]2+

]) 1
2 + η

)
,

where C(λi
t) = (2(1/λi

t − 1)2 + 1)
1
2 , (5.13)
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where [x]+ = x if x ≥ 0 and 0 otherwise. This dual form provides an intuitive interpretation of

the DRO loss. At each time step t, given θt and λi
t, the DRO loss is computed by averaging the

sample losses that are higher than the optimal η∗(λi
t,θt), where η∗(λi

t,θt) attains the infimum.

Stability Analysis for the Surrogate System

Proposition 5.3.1 In the surrogate system as described by Eq. (5.10), a equilibrium state with

λt = 1 is stable if the following condition holds,

max
i∈[1,2,...,K]

∂h

κi(λi
t,θt)

· ∂η
∗

∂λi
t

·
(

1 −
EPi

[
Φ(θt,x, y)

]√
EPi

[
Φ(θt,x, y)2

]) < 1,

where

η∗ = arg inf
η∈R

(
C(λi

t) ·
(
EPi

[
[Φ(θt,x, y) − η]2+

]) 1
2 + η

)
, C(λi

t) = (2(1/λi
t − 1)2 + 1)

1
2 ,

Proof: Recall the surrogate dynamic system in Eq. (5.10), for the ith demographic group,

λi
t+1 = g ◦ κi(λi

t,θt) · (1 − λi
t) + h ◦ κi(λi

t,θt) · λi
t,

= g ◦ κi(λi
t,θt) + (h ◦ κi(λi

t,θt) − g ◦ κi(λi
t,θt)) · λi

t.

We take the derivative of λi
t+1 with respect to λi

t,

∂λi
t+1

∂λi
t

=
∂g ◦ κi(λi

t,θt)

∂λi
t

+
[∂h ◦ κi(λi

t,θt)

∂λi
t

− ∂g ◦ κi(λi
t,θt)

∂λi
t

]
· λi

t + h ◦ κi(λi
t,θt) − g ◦ κi(λi

t,θt).

When λi
t = 1, suppose that both birth rate and survival rate functions reach their maximum

value of 1, this can simplify the above expression as follows,

∂λi
t+1

∂λi
t

=
∂h ◦ κi(λi

t,θt)

∂λi
t

+ h ◦ κi(λi
t,θt) − g ◦ κi(λi

t,θt),

=
∂h

κi(λi
t,θt)

· κ
i(λi

t,θt)

∂λi
t

.
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Recall the definition of κi(λi
t,θt) as defined in Eq. (5.13),

κi(λi
t,θt) = inf

η∈R

(
C(λi

t) ·
(
EPi

[
[Φ(θt,x, y) − η]2+

]) 1
2 + η

)
, C(λi

t) = (2(1/λi
t − 1)2 + 1)

1
2 ,

= C(λi
t) ·

(
EPi

[
[Φ(θt,x, y) − η∗]2+

]) 1
2 + η∗, C(λi

t) = (2(1/λi
t − 1)2 + 1)

1
2 ,

in which we use η∗ as the optimal η that leads to the infimum, in which case, η∗ is dependent

on λi
t given θt. The derivative of κi(λi

t,θt) with respect to λi
t can be derived as follows,

∂κi(λi
t,θt)

∂λi
t

=
∂C(λi

t)

∂λi
t

·
(
EPi

[
[Φ(θt,x, y) − η∗]2+

]) 1
2

+ C(λi
t) ·

∂
(
EPi

[
[Φ(θt,x, y) − η∗]2+

]) 1
2

∂λi
t

+
∂η∗

∂λi
t

,

where

∂C(λi
t)

∂λi
t

=
1

2
(2(1/λi

t − 1)2 + 1)−
1
2 · 4(1/λi

t − 1) · (−(λi
t)
−2),

when λi
t = 1,

∂C(λi
t)

∂λi
t

= 0, and C(λi
t) = 1. Therefore,

∂κi(λi
t,θt)

∂λi
t

=
∂
(
EPi

[
[Φ(θt,x, y) − η∗]2+

]) 1
2

∂λi
t

+
∂η∗

∂λi
t

,

=
1

2

(
EPi

[
[Φ(θt,x, y) − η∗]2+

])− 1
2 · EPi

[
2 · [Φ(θt,x, y) − η∗]+

]
(−∂η∗

∂λi
t

) + (
∂η∗

∂λi
t

),

notice that when λi
t = 1, η∗ approaches 0 as this leads to population risk in the DRO formula-

tion. Therefore,

∂κi(λi
t,θt)

∂λi
t

=
(
EPi

[
Φ(θt,x, y)2

])− 1
2 · EPi

[
Φ(θt,x, y)

]
· (−∂η∗

∂λi
t

) + (
∂η∗

∂λi
t

).
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Therefore,

∂λi
t+1

∂λi
t

=
∂h

κi(λi
t,θt)

· ∂κ
i(λi

t,θt)

∂λi
t

=
∂h

∂κi(λi
t,θt)

·
((

EPi

[
Φ(θt,x, y)2

])− 1
2 · EPi

[
Φ(θt,x, y)

]
· (−∂η∗

∂λi
t

) + (
∂η∗

∂λi
t

)
)
,

=
∂h

κi(λi
t,θt)

· ∂η
∗

∂λi
t

·
(

1 −
EPi

[
Φ(θt,x, y)

]√
EPi

[
Φ(θt,x, y)2

]).
For a difference equation, an equilibrium state is stable if the maximum eigenvalue of the

Jacobian matrix evaluated at this state is less than 1. Since the Jacobian matrix of the surrogate

dynamic system is a diagonal matrix, its eigenvalues are the diagonal elements.

max
i∈[1,2,...,K]

∂λi
t+1

∂λi
t

∣∣∣
λi
t=1

< 1,

which leads to the following condition,

max
i∈[1,2,...,K]

∂h

κi(λi
t,θt)

· ∂η
∗

∂λi
t

·
(

1 −
EPi

[
Φ(θt,x, y)

]√
EPi

[
Φ(θt,x, y)2

]) < 1.
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Chapter 6

Conclusion

6.1 Summary

This dissertation has made significant advances in addressing the critical challenges of ro-

bustness and fairness in deep neural networks through the innovative application of optimal

control theory. Chapter 3 presents a novel self-healing framework, it not only improves the

robustness of neural networks against perturbations but also connects a closed-loop control

approach for error correction during inference. Chapter 4 extends this methodology through a

PID control framework, which further enables the practical applicability of these solutions to

large-scale models, ensuring faster and more efficient online inference. Most importantly, by

addressing the often-neglected issue of fairness in machine learning, chapter 5 introduces a novel

algorithm for achieving asymptotic fairness across demographic groups, thereby mitigating the

negative feedback loops that exacerbate demographic disparities. The comprehensive approach

of this dissertation, spanning from theoretical foundations to practical applications, sets a new

benchmark for future research in making machine learning models not only more robust and

accurate but also fair. This work not only contributes valuable insights to the field of machine

learning but also paves the way for the development of more robust, fair, and trustworthy AI

systems.
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6.2 Contributions

This dissertation presents three significant contributions: the development of self-healing

robust neural networks through closed-loop control, the implementation of PID control for

self-healing mechanisms, and the introduction of the concept of asymptotic fairness. More

specifically,

• A self-healing framework designed to improve the robustness of a neural network against a

wide range of unexpected perturbations through a closed-loop control formulation. The

effective implementation of this approach leverages the method of successive approxi-

mations, facilitating its application across neural networks of varying depths and sizes.

Additionally, the framework includes a comprehensive error analysis in its broadest ap-

plication.

• A novel PID control framework has been developed to facilitate self-healing capability,

improving the robustness of Large Language Models during online inference processes.

This framework is efficiently implemented, drawing upon principles of linearity and or-

thogonality, which permits the application of PID control mechanisms across extensive

language models with more than 1 billion model parameters.

• The concept of asymptotic fairness describes the maintenance of performance across all

demographic groups over an extended period. This goal of ensuring asymptotic fairness

is framed as an optimal control problem. The proposed optimal control formulation

yields models that exhibit consistently non-diminishing performance with each update,

prompting a new interpretation of the Hamiltonian in Pontryagin’s Minimum Principle.

6.3 Future Works

Future work stemming from this dissertation could extend in several promising directions

to further improve the robustness and fairness of deep neural networks. One area involves
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exploring the integration of advanced machine learning techniques with optimal control the-

ory to develop more sophisticated self-healing mechanisms that can adapt to a broader range

of perturbations and biases. This could include the application of reinforcement learning for

dynamic adjustment of control parameters in real time. Additionally, extending the PID con-

trol framework to incorporate learning-based controllers could offer improved performance and

adaptability to complex and evolving data distributions. Another avenue for future research is

the development of more comprehensive measures and models to quantify and address fairness

in machine learning systems, especially in highly dynamic environments. This could involve

creating simulation environments to test the effectiveness of asymptotic fairness strategies under

various conditions and identifying new challenges that arise from evolving data and user interac-

tion patterns. Further, Investigating the scalability of these approaches to support increasingly

large and complex neural network architectures is also crucial, as is their applicability across

different domains beyond those explored in this dissertation. Lastly, addressing the ethical im-

plications of automated decision-making and control in machine learning systems, particularly

in sensitive applications, is essential. Developing frameworks that not only improve robustness

and fairness but also ensure privacy will be key to the responsible deployment of these advanced

models.
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