Evaporation-driven instability of the precorneal tear film.

https://escholarship.org/uc/item/9kx434x4

Advances in colloid and interface science, 206

0001-8686

Peng, Cheng-Chun
Cerretani, Colin
Braun, Richard J

et al.

2014-04-01

10.1016/j.cis.2013.06.001

Peer reviewed
Evaporation-driven instability of the precorneal tear film

Cheng-Chun Peng, Colin Cerretani, Richard J. Braun, C.J. Radke

Abstract

Tear-film instability is widely believed to be a signature of eye health. When an interblink is prolonged, randomly distributed ruptures occur in the tear film. “Black spots” and/or “black streaks” appear in 15 to 40 s for normal individuals. For people who suffer from dry eye, tear-film breakup time (BUT) is typically less than a few seconds. To date, however, there is no satisfactory quantitative explanation for the origin of tear rupture. Recently, it was proposed that tear-film breakup is related to locally high evaporative thinning. A spatial variation in the thickness of the tear-film lipid layer (TFLL) may lead to locally elevated evaporation and subsequent tear-film breakup. We examine the local-evaporation-driven tear-film-rupture hypothesis in a one-dimensional (1-D) model for the evolution of a thin aqueous tear film overriding the cornea subject to locally elevated evaporation at its anterior surface and osmotic water influx at its posterior surface. Evaporation rate depends on mass transfer both through the coating lipid layer and through ambient air. We establish that evaporation-driven tear-film breakup can occur under normal conditions but only for higher aqueous evaporation rates. Predicted roles of environmental conditions, such as wind speed and relative humidity, on tear-film stability agree with clinical observations. More importantly, locally elevated evaporation leads to hyperosmolar spots in the tear film and, hence, vulnerability to epithelial irritation. In addition to evaporation rate, tear-film instability depends on the strength of healing flow from the neighboring region outside the breakup region, which is determined by the surface tension at the tear-film surface and by the repulsive thin-film disjoining pressure. This study provides a physically consistent and quantitative explanation for the formation of black streaks and spots in the human tear film during an interblink.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

The phenomenon of tear-film breakup was observed in the 1960s when aqueous sodium fluorescein was applied for ophthalmic clinical evaluation [1–3]. When blinking is slowed, randomly distributed “black spots” and/or “black streaks” develop in the tear film in 15 to 40 s [4,5]. For subjects who suffer from dry eye, ruptures can appear in a few seconds [6]. Thus, measurement of tear-film stability by fluorescein breakup time (FBUT), i.e., the elapsed time between the end of a complete blink and the first appearance of randomly distributed black spots [4], has been widely used as a diagnostic aid to ascertain dry-eye syndromes [7].

Tear rupture is easily seen in slit-lamp examination as rapidly expanding dark circular spots, linear streaks, or irregular pools on a yellow-green fluorescence background [8]. The tear film in humans is generally described as a three-layer film [9]. The aqueous layer, where the applied fluorescein marker participates, is the main component. The average thickness of the aqueous layer was thought to be 7 μm when the three-layer model was proposed [9]. Recent studies, however, suggest that the average aqueous tear thickness is around 3 μm [10]. A thin (~0.1 μm) tear-film lipid layer (TFLL) covers the bulk aqueous layer [9], and a spatially feathered mucous-rich region (~0.2–0.5 μm) resides in the aqueous layer directly adjacent to the corneal epithelium [11–16]. Each region of the tear plays specific roles in the maintenance of health and normal function of the eye [17].

Black spots/streaks observed under fluorometry are typically interpreted as local holes where the aqueous layer of the tear film completely ruptures down to the underlying mucin/corneal interface, exposing the epithelium to air [18]. The mechanism(s) of tear-film breakup remain clouded in spite of several decades of attention. We first review previous models of tear-film rupture and their underlying physical mechanisms in Section 2. Subsequently in Section 3, we outline the physics of the newly proposed evaporation-driven tear-film breakup model. Results of the numerical modeling work based on this evaporation-driven tear-film breakup model are reported and discussed in Section 4. Sections 5 and 6 present discussion of the model assumptions and conclusions, respectively.

2. Tear-film breakup mechanism(s)

The first proposed tear-film breakup mechanism by Holly [18] attributed rapid tear-film breakup to migration of lipids from the TFLL towards the mucous region and adsorption of these lipids to the glycolcocalyx membrane-bound mucin. Lipid adsorption was thought to expose the polar end of the lipid molecule to the aqueous tear film, which then breaks locally over the lipid-contaminated region due to increased epithelium hydrophobicity. Unfortunately, numerous physical flaws exist in this proposed mechanism [19–23], including lack of a driving force for lipid adsorption, inconsistency between the time scale of lipid molecular diffusion and film rupture, lipid equilibration in the aqueous tear, soluble mucin redistribution over long time, failure to explain localized rupture, and breakup in subjects with lipid deficiency.

In the early 1980s, researchers studied tear-film breakup using hydrodynamic stability analyses of thin liquid films on a solid substrate under the hypothesized influence of van der Waals dispersion forces [20–25]. Two primary competing forces affected tear-film stability. The first is capillarity or curvature-driven flow that heals local disturbances within the tear film and enhances stability. The healing effect of capillarity is responsible for maintaining a smooth refractive tear surface for clear vision. The second is flow driven by thin-film forces, known commonly as Hamaker forces [26,27] that are expressed as an excess pressure within the film, \(\Pi, \) the conjoining/disjoining pressure. If the epithelium subsurface supporting tear film is hydrophobic, the Hamaker force is purely attractive (conjoining) and varies with film thickness, \(h, \) as \(-A/6h^3\) [26,27], where \(A \) is the Hamaker constant characteristic of the substrate and liquid phases. For very thin films, attractive Hamaker forces (i.e., \(A > 0 \)) can overpower the stabilizing curvature forces leading to film rupture. Lin and Brenner [22] first conducted a linear stability analysis of a thin-film model for human tear film and concluded that an attractive Hamaker dispersion force can initiate tear-film rupture. However, the accepted magnitude range for \(A \) lies between \(10^{-10} \) and \(10^{-21} \) J [26,27]. Accordingly, the film thickness that is vulnerable to rupture in a reasonable time frame, even upon invoking hydrodynamic slip at the epithelium surface, must be less than about 100 nm [28,29]. This value is two orders of magnitude smaller than the accepted overall thickness of the tear film. Thus, although attractive Hamaker forces are well-accepted for hydrophobic solid surfaces [26], they are unlikely the origin of rupture in the human tear film.

In a second early contribution [23], Lin and Brenner considered the role of Marangoni flow (i.e., surface-tension-gradient-driven tangential flow) in tear-film rupture. They, and others following [20,21,24,25,29–37], treat the TFLL as a classical submonolayer surfactant adsorbed at the air/water interface with a spatial variation of surface tension that induces tear flow. In a region of local instability thinning, surfactant adsorption is smaller than that of the surrounding tear film. Hence, the corresponding local surface tension is higher than that of the surrounding tear, and flow is directed toward the region of higher tension to heal the growing instability. Thus, classical Marangoni flow retreats tear-film rupture [20,21,23–25,29–37].

Immediately following a blink, the TFLL spreads upwards [31,38–40] most likely due to thickness-dependent conjoining/disjoining forces in the lipid layer or equivalently to a thin-film tension gradient arising from thickness variation of the lipid layer [41]. However, net upward flow of the TFLL stops in about 1–2 s and does not contribute to pre-corneal tear-film instability during the subsequent portion of the interblink. Once the TFLL stabilizes, interfacial flows apparently do not induce typical tear-film rupture [38,42].

In 1985, Sharma and Rubenckstein emphasized the insufficiency of classical Hamaker forces for destabilizing the human tear film and proposed an alternative explanation [20,21]. They envisioned a distinct soluble-mucous layer residing next to a hydrophobic cornea and over-ridden by a thick aqueous tear film. The mucin layer was thin and subject to attractive Hamaker dispersion forces (~100 nm). In a two-step process, conjoining Hamaker forces break the thin soluble-mucin sublayer and expose the aqueous tear film to a hydrophobic epithelium. Rupture of the mucous layer in turn, is stated, but not proved, to rupture the thick overlying tear film (i.e., of initial thickness beyond the range of thin-film forces).

Subsequently, Sharma and Rubenckstein extended the distinct mucous-layer model to account for the lipid layer [24,25]. In their second model, lipid exhibits finite solubility in the aqueous and mucous phases and behaves as an “antisurfactant” (i.e., undergoes net desorption) at the mucous/aqueous interface raising the interfacial tension there and stabilizing the mucous layer through Marangoni flow. Although their extended two-step model correlates several clinical observations of human tear-film breakup, including lipid abnormalities, and aqueous and mucus deficiencies, it is arguable that human lipid is aqueous soluble.
More importantly, subsequent breakup of the thick tear film following rupture of the mucous layer remained unquantified.

More recently, Zhang et al. amplified the distinct mucin-lam model to include non-Newtonian rheology of aqueous mucus and to treat the lipid layer as an insoluble surfactant submonolayer at the air/water interface [32,33]. These authors explicitly include the overriding thick tear film in their stability formulation and show that the mucous-layer instability of Sharma and Ruckenstein thins the bounding thick tear film. Unfortunately, calculations were not carried beyond the rupture time of the mucous layer where the locally thinned tear layer remains of finite thickness. It is not established whether the bounding tear film eventually ruptures or whether the necessary additional time for tear breakup (BUT) after mucin rupture is reasonable. The view that there is a distinct, well-defined soluble-mucous layer appears incorrect in most recent findings [11–13]. No sharp interface exists between the aqueous and mucous regions in human tear [10,14–16,43]. Even if the mucous region is approximated as a distinct layer coating a hydrophobic surface, rupture within clinically observed time frames (BUT) in these models demands an extremely thin soluble-mucin layer of 20–40 nm [20–25,29,32,33]. Critically, the membrane-bound mucin molecules protruding from the anterior epithelium (i.e., the glyocalyx) are highly water-like [11–13]. This fact, plus the folded microplicae structure of the corneal anterior surface [44] argue strongly against a hydrophobic corneal surface.

It is now generally accepted that a healthy corneal epithelium exhibits a water-wet surface [45–47]. Thus, it is thermodynamically unfavorable to eliminate mucin/cornea and mucin/aqueous interfaces in favor of a single cornea/aqueous interface [28]. For a water–water corneal surface, Hamaker dispersion forces are repulsive, i.e., the Hamaker constant is negative, and no dewetting of the tear film is possible. Thus, the physical basis for the distinct mucous-layer model of tear rupture must be questioned. In spite of statements to the contrary [32], no experimental evidence exists confirming that a thin unstable fluid layer sandwiched between a solid and a thick bounding film can destabilize the thicker film within clinically relevant breakup times [48–50]. Although numerous factors, including Marangoni stress, hydrodynamic slip, surface diffusion of adsorbed surfactants, gravity, capillarity, lipid solubility, thin-film forces, and rheology are discussed in earlier works [51], no physically viable mechanism is yet available to explain human tear-film rupture.

Early on, tear-film evaporation instability was ruled out based on the observation that the overall thickness of the tear film (~7 μm) decreases by only about 10% due to evaporation during a 15–40 s interblink under normal conditions (~0.75 μm/min) [52–54]. Recent studies, however, suggest that the average aqueous tear thickness is thinner (~3 μm) [10], and that the normal evaporation rate of pre-corneal tear-film in “free-air” conditions may be four to five times faster than that measured in goggles [55–58].

Here, we re-visit the possibility of evaporation-driven tear-film breakup [56,59]. The underlying picture is that the TFLL covering aqueous tear is very thin and not necessarily stable [59–63]. Any breakup spots in the lipid layer expose the water/lipid interface directly to air. Since the TFLL acts as a barrier to water evaporation from the underlying tear [53], local lipid-layer rupture leads to high evaporation rates that potentially drive rupture of the tear film [64].

As in the Hamaker-driven instability, a growing evaporation hole is opposed by curvature-driven flow that attempts to fill in that hole. Thus, only if the water evaporation rate is sufficient to overcome capillary healing flow does rupture occur. In addition, curvature-driven opposition flow brings in salt from the surrounding thicker tear film. Salt concentration then builds directly underneath the deepening hole as salt molecular diffusion is typically slow compared to convection. Further, water locally evaporates further concentrating the salt just below the rupture hole. Such local salinity “hot spots” in the tear film have been suggested [65] but not verified. Locally high salt content underneath a growing hole increases the osmolarity there and draws water locally from the cornea. Osmotic-driven flow is a second means to heal a deepening dimple. To rupture the tear film, evaporation rates must be large enough to overcome both curvature-driven and osmotic-driven healing water flow. Only a quantitative analysis of the proposed evaporation-driven instability can assess the reasonableness of the hypothesis.

We examine quantitatively evaporation-driven tear-film breakup in a 1-D mathematical model including simultaneous evolution of and osmolarity distribution within a solid–supported thick (~3.5 μm) aqueous tear film subject to evaporation at its anterior surface and osmotic water influx at its posterior surface. The localized tear-film instability is initiated by breakup of the TFLL, leading to localized elevated evaporation. Inclusion of both evaporation and osmotic effects in a dynamic tear-film-thinning model is requisite to represent environmental effects on tear-film stability, such as relative humidity and air flow. To determine the feasibility of evaporation-driven tear-film rupture, model predictions are compared with current clinical observations.

3. Physics of evaporation-driven tear-film breakup

3.1. Tear-film dynamics

We outline a 1-D model for the evolution of a thin aqueous tear film bounding the cornea based on a two-layer tear-film model [11–13]. A single Newtonian fluid layer represents the aqueous layer of the tear film including distributed soluble mucin with a thin overriding lipid layer. No distinctive mucous region is explicitly defined in our model. Adoption of Cartesian coordinates specifies a “black streak” whereas cylindrical coordinates give rise to a “black spot”. In our analysis, initial rupture events are considered independent. Fig. 1 illustrates that both black spots and streaks are common. Fig. 2 is a schematic of the rupture process, defining the relevant dimensions, fluxes, water and salt concentrations, and temperatures.

The tear film is “perched” by the black lines formed immediately after tear-film deposition due to capillary suction from the menisci at the lid margins [66,67]. As illustrated in Fig. 2, the local position in the tear film along the palpebral aperture of length 2 L is denoted by x, where x = 0 represents the center of the corneal surface, and x = ±L indicates the upper and lower black lines near the lid margins. The curvature of the cornea under the tear film is neglected since the thickness of the tear film is three orders of magnitude smaller than the diameter of the pre-corneal tear film [51,68]. The z-coordinate denotes the direction normal to the corneal/conjunctival surface, where z = 0 and z = h represent the tear/cornea and tear/air (or tear/lipid) interfaces, respectively. The posterior corneal/tear interface (z = 0), is considered a semipermeable membrane that allows...
weeping flow generated in response to tear osmolarity [51,69,70]. The tear/air interface is located at \(z = h \), where water is lost through evaporation across the entire film. A thick solid line at the outer edge of the tear film marks an intact lipid layer. The dashed portion of this line indicates a region of lipid breakup and corresponding larger water evaporation rate in the region of TFLL rupture. An increased evaporation rate relative to that of the surrounding film initiates a growing dimple in the tear. The resulting curved water interface draws tear into the dimple to heal the growing hole, as shown by curved dotted lines in the film labeled by the flow velocity, \(u \). Underneath the growing hole at thickness \(h(0,t) \), the local salt concentration, \(C(0,t) \), is elevated compared to that in the bulk of the tear film. An elevated salt concentration osmotically draws more water through the cornea compared to that into the encompassing lower-salt concentration tear film. Tear breakup occurs only when the evaporation rate in the growing dimple (or trough) exceeds the curvature- and osmotic-driven healing flows.

3.2. Breakup model

To assess the feasibility of evaporation-driven black spots/streaks in a human tear film, we write continuum mass, momentum, and energy conservation balances for water and salt. Tear-film dynamics in this model are similar to those of Braun et al. [64] and Winter et al. [71], but with important differences in the underlying physics for the evaporation rate. In the current study, the evaporation rate depends on mass-transfer rates rather than on molecular kinetics. Hence, the evaporative flux of water depends inversely on the sum of a gas-phase mass-transfer resistance, \(R_g \), and a TFLL mass-transfer resistance, \(R_w \), and directly on the difference between the tear-film surface vapor pressure and the environment water partial pressure. Details are available in Appendix A. Clearly, however, the evaporative flux is the most important term, which is based on a relative-humidity driving force and impeded by a gas-phase mass-transfer resistance, \(R_g \) and a TFLL diffusion resistance, \(R_w \) [60].

\[
J_e = \frac{1}{R_w} \left(\frac{P_{w,sat}(T_s)}{K_w} \right) \exp \left(-\gamma \frac{P_{w,sat}(T_s)}{P_{w,sat}(T_f)} \right) - R_g \left(\frac{P_{w,sat}(T_f)}{R_g} \right) \]

\[
(2)
\]

where \(\tilde{p}_w \) is the molar density of liquid water, \(R_g \) is the ideal gas constant, \(P_{w,sat}(T) \) is the saturation vapor pressure of water at temperature \(T \), \(R_g \) is the ambient relative humidity, \(T_d(x) \) is the local temperature of the liquid/air interface, and \(T_s \) is ambient temperature. The exponential factor in the first term of the parentheses corrects the vapor pressure at the water surface for curvature (i.e., surface tension, \(\gamma \)) and for thin-film conjoining/disjoining forces, \(H(h) \). This factor is established through a thermodynamic analysis analogous to that of Kelvin [26,74] and is detailed in Appendix A. An evaporative-driven instability gives rise to interface shapes analogous to that for a vapor bubble immersed in a liquid and pressed against a wall. The curved interface raises the local vapor pressure compared to that for a flat liquid/gas interface. Likewise, repulsive thin-film forces (i.e., positive \(H \)) reduce the interface vapor pressure. The Kelvin correction in Eq. (2) disappears when there is no interface curvature or thin-film force. The effect of curvature on evaporation rate is always included in our calculations, whereas the effect of conjoining/disjoining pressure (\(II \)) on the local vapor pressure of water is normally neglected. The exception is in Section 4.9.

In the air environment, the smaller the relative humidity, the faster is tear evaporation. Water evaporation encounters two resistances in series: that through the TFLL and that through the air phase

\[
R_g + R_w = \frac{L_e}{D_w K_w} + \frac{1}{k_m}
\]

where \(L_e \) is the local TFLL thickness, \(D_w K_w \) is the permeability of water (i.e., the product of water diffusivity, \(D_w \), and the partition coefficient, \(K_w \)) in the lipid film, and \(k_m \) is the mass-transfer coefficient of
water in the air phase [60]. We set the lipid-rupture-thickness profile \(L_x(x) \) to local the established water evaporation rate. This procedure does not self-consistently capture the details of TFLL rupture but is consistent with experimental observation [59–64]. The highest water evaporation rate is that through a bare water/air interface where \(L_x = 0 \). Eqs. (2) and (3) describe the dependence of tear-film evaporation rate on both ocular and environmental factors [75]. Environmental factors include temperature, relative humidity, and flow velocity of the ambient air (i.e., \(\nu_{\text{air}} \)); ocular factors include surface temperature, surface tension and conjoining/disjoining forces of the tear film, and the thickness and of water permeability in the TFLL.

Fig. 3 graphs the chosen lipid-layer thickness variation \(L_x(x) \) by a solid line obeying a Gaussian distribution. With a standard deviation (S.D.) of 100 \(\mu \text{m} \), a 0.2-mm wide break in the lipid layer exists where the lipid layer ruptures from a thickness of 100 nm down to zero thickness corresponding to a bare water/air interface. Water evaporates more quickly in the lipid-deficient rupture canyon following Eqs. (2) and (3), as shown by the dashed line in Fig. 3. For the conditions chosen in Fig. 3, the bare water interface evaporates at 38 \(\mu \text{m}/\text{min} \) estimated for an average perpendicular-impinging wind speed of 0.3 m/s characteristic of indoor workplaces [76]. Far away from the lipid rupture, a fully intact lipid layer reduces the evaporation rate of water by 90% to an average perpendicular-impinging wind speed of 0.3 m/s characteris-

Due to evaporative cooling, the temperature of the water/air interface, \(T_s(x,t) \), is lower than that of the eye, and is unknown in Eqs. (2). Energy conservation determines this temperature

\[
\frac{\partial H}{\partial t} = k_w \frac{T_s(x,t) - T_\infty}{h(x,t)} + U(T_s(x,t) - T_\infty)
\]

where \(\rho_w \) is the mass density of liquid water, \(\Delta H_w \) is the specific enthalpy of water vaporization, \(k_w \) is the thermal conductivity of aqueous tear, \(T_s \) is eye temperature (35 °C), \(T_\infty \) is the temperature of the surroundings, and \(U \) is the gas-phase heat transfer coefficient, i.e., \(1/U \) is the resistance to heat transfer in the environment. Energy is required to evaporate water. Eq. (4) specifies that heat conducted from the warm eye at \(T_\infty \) and convected towards the environment at \(T_s \) sets the local temperature of the tear/air surface, \(T_s(x,t) \). The two terms on the right of Eq. (4) quantify these two respective processes.

Osmotic weeping flow, \(J_w \) in Eq. (1), is proportional to the difference between the concentration of salt in the aqueous tear and that in the anterior chamber, \(J_w(x,t) = P_C(C(x,t) - C_0) \) where \(C(x,t) \) is the z-averaged salt concentration in the tear film expressed in osmolality units, \(C_0 \) is the serum salt concentration (300 mOsm), and \(P_C \) is the corneal salt permeability [69,70]. The local tear salt concentration must be known to determine \(J_w \). Conservation of salt in the perched tear film demands that

\[
\frac{\partial C}{\partial t} = C \frac{\partial J_w}{\partial t} + D \frac{\partial}{\partial x} \left(\frac{\partial C}{\partial x} \right) - u h \frac{\partial C}{\partial x}
\]

where \(D \) is the diffusion coefficient of aqueous sodium chloride. Since the water evaporative flux is larger than the weeping flux, the first term on the right of Eq. (5) increases the salt concentration in the tear. The local increase in salt concentration underneath the growing instability, where the evaporation rate is the highest, is partially mitigated by diffusion of salt out from underneath the trough, as described by the second term on the right of Eq. (5). Diffusive transport of salt away from the instability trough is offset by fluid convection into that region, as quantified by the third term on the right of Eq. (5). Since \(uh/D \) is much greater than unity (i.e., diffusion is slow compared to convection) the increased salt concentration arising from locally high evaporation is augmented by salt inflow from surrounding tear. Essentially, salt is trapped underneath a growing tear instability leading to a local “hot spot” in salt concentration. This same argument holds for any nonvolatile aqueous solute including proteins, soluble mucins, and dyes.

Finally, the volumetric flux, \(u \) in Eqs. (1) and (5), is obtained from curvature-driven tangential flow according to Laplace’s law of surface tension as described in Appendix A. Thin-film or Hamaker forces can also influence tear flow, but in our case, only extremely near the corneal epithelium in the region of the glycocalyx. Thus, in some illustrative calculations, we include a repulsive (disjoining) thin-film excess pressure. A thin-film disjoining pressure prevents the glycocalyx from drying out immediately adjacent to the corneal epithelium thereby maintaining a water-wet cornea even in a ruptured tear film [51,71]. Model details and calculation procedures are discussed in Appendix A and below. Because initial TFLL breakup is not addressed, our analysis gauges the feasibility of evaporative-driven tear-film rupture.
4. Results and discussion

4.1. Rupture dynamics

Fig. 4A portrays a tear-rupture streak initiated by the imposed precursor TFLL break and resulting local elevated evaporation rate in Fig. 3. Except in Section 4.9, thin-film forces are not accounted for (i.e., \(I_l = 0 \)). The ordinate and abscissa scales in this figure, and in those to follow, are quite different. In reality, the rupture streak in Fig. 4A is thin and flat compared to its depth, consonant with a lubrication analysis. After 5 s in Fig. 4A, a noticeable depression is evident that is wider than the TFLL rupture. This depression narrows and deepens quickly until complete tear rupture occurs at about 33 s. If observed under fluorescein instillation, the trough becomes black when the tear film underneath it nears zero thickness. Outside the rupture trough, tear-film thickness declines uniformly and more slowly because of the protection afforded by the intact TFLL against tear evaporation. A small narrow rim forms just beyond the growing instability. The curvature along the deepening canyon wall drives tear evaporation. A small narrow rim forms just outside the instability as tear accumulates there. Fig. 4B compares the film thickness at the center, \(h_{r_c} \), and far from the center of the rupture streak, \(h_{r_f} \). Tear breakup is again evident at about 33 s during which time the surrounding uniform tear film thins from 3.5 to 2.2 \(\mu m \) due to evaporative loss.

As shown in Fig. 5A, the temperature of the evaporating tear-film surface is lower than that of the eye at 35 °C, but only so by less than 0.01 °C. The thinness of the tear film presents minimal heat-transfer resistance so the cornea and tear temperatures are nearly equal. All heat necessary to evaporate the tear is obtained from the eye. The surface temperature of the instability recession is slightly warmer than that of the surrounding tear film due to the thinness of the depression and to the resulting lower conductive heat-transfer resistance. The temperature of the trough floor reaches that of the eye at tear rupture, 35 °C in Fig. 5B. In Eq. (4), we neglect the enthalpy carried by the warm weeping flow into the tear film from the cornea because osmotic-weeping flow accounts for a small fraction of the volume change of the tear film compared to that arising from evaporation (i.e., \(J_{\nu} \gg J_{w} \)).

The important finding from Fig. 5 is that the temperature of the tear-film surface is that of the cornea with negligible difference. Hence, in the calculations presented below, we no longer report \(T_s(x,t) \). The temperature at the corneal epithelium is assumed constant in our model, which potentially underestimates the temperature variation in the z-direction of the tear film. In the future, an extended heat-transfer model including that of the anterior eye (cornea and aqueous humor) [77] can be incorporated to examine more carefully temperature effects on tear-film stability.

Fig. 6A reveals a fascinating salt-osmolarity spike at the instability center \(x = 0 \). Here the salt concentration increases from 300 mOsm to 545 and 850 after 10 and 20 s, respectively, and soars to 1534 mOsm after a 33-s interblink corresponding to tear-film breakup. In regions

Fig. 4. Dynamics of tear-film thickness under typical indoor conditions (Table 1). \(h_{r_f} \) and \(h_{r_t} \) represent tear-film thicknesses at \(x = 0 \) and \(x = \pm 5 \) mm, respectively.

Fig. 5. Dynamics of tear-film temperature at the air/aqueous interface under typical indoor conditions (Table 1). \(T_{s_f} \) and \(T_{s_t} \) represent interface temperatures at \(x = 0 \) and \(x = \pm 5 \) mm, respectively.
surrounding the trough, the increase in osmolarity remains strong, but more modest, from 300 mOsm to 360, 420, and 488 mOsm over the same respective time period. The thinner is the tear film underneath the trough, the larger is the relative increase in salinity due to evaporative-water loss. Conversely, curvature-driven healing flow draws in water from the surroundings as does weeping flow from the cornea. These two flows partially offset the evaporative osmolarity increase. Over that left behind from water evaporation, curvature-driven flow supplies additional salt to the growing trough. The only escape for salt from the deepening trough is back diffusion against the two convective flows. For realistic diffusion coefficients, salt back diffusion lowers the local osmolarity enough to prevent aqueous osmotic inflow from stabilizing the instability. Nevertheless, diffusion is too slow to prevent salt accumulation within the tear-rupture depression; a local salinity “hot spot” emerges [65].

Fig. 6B compares the salinity history in the furrow of the trough (dashed line) to that in the surrounding tear (solid line) corresponding to the salinity profiles in Fig. 6A. Salt content of the encompassing tear slowly increases, whereas that in the tear underneath the instability rises dramatically. At the point of tear rupture, about 33 s, trough salinity abruptly ends at about 1534 mOsm. Once the tear film disappears leaving behind a dry spot, aqueous salt concentration is no longer well defined in the calculation.

The most important finding from Figs. 4–6 is that tear-film breakup due to elevated evaporation below a lipid-film rupture is physically reasonable. The parameters underlying Figs. 4–6 fall within clinically observed trends. To our knowledge, this is the first physically consistent quantitative explanation for the formation of black streaks and/or spots during a human interblink. The proposed model for breakup, however, is not universal. First, a pre-TFL rupture is demanded resulting in a relatively large rate of water evaporation. Second, the initial blink-deposited precorneal tear film must be perched and relatively thin, and third, no other healing flows are present except those due to curvature and osmotic weeping. We investigate briefly the roles of several pertinent physical parameters to gain insight into the generality of evaporation-induced tear-film rupture.

4.2. Healing flow

Fig. 7 illustrates the roles of curvature-driven and weeping flows in preventing evaporative tear-film rupture. With both curvature-induced and weeping-induced flows, rupture time in Fig. 7 curve C is that of Figs. 4–6 or 33 s. If curvature flow is prevented by setting the tear-film surface tension to zero in Fig. 7 curve A, then rupture occurs quickly in 5.5 s. Conversely, blocking weeping flow by setting the corneal water permeability to zero in Fig. 7 curve B has much less of an effect. Breakup occurs in about 19 s. We conclude that healing flow arising from curvature outweighs significantly that arising from weeping flow through the cornea.

4.3. Initial tear thickness

The role of the initial precorneal tear thickness on rupture is illustrated in Fig. 8A. Reported average tear-film thicknesses under normal conditions vary between 1.5 and 2.1 μm [10] with more recent interferometric measurements favoring thinner films [56]. With all other parameters identical to those in Fig. 4, a 7-μm tear film does not rupture within a measureable interblink time, whereas a 2-μm tear film ruptures in 10 s. Eventually, the 7-μm tear film ruptures in Fig. 8A, but long after a human interblink can be sustained. Tear rupture within an observable interblink time due to the proposed evaporative mechanism depends strongly on the initial tear-film thickness: only thin tear films rupture.

No mechanism is yet available to account for black spots or streaks in thick precorneal tear films. Nevertheless, Fig. 8B shows that there is a substantial increase in salinity within the slowly growing trough. Salt content in an initial 300-mOsm tear film rises to 580 mOsm after 35 s under the most slowly deepening instability in Fig. 8 (h0 = 7 μm). For a tear film with several growing, but not completed,
instabilities, the cornea is exposed to a number of salinity hot spots and, hence, possible eye discomfort [65]. Human subjects who exhibit thinner tear films, such as evaporative dry-eye patients, are exposed to higher general salinities in addition to hot spots even when tear breakup is not observed. When tear breakup is observed in such subjects, much higher salinity hot spots exist.

4.4. Tear-film evaporation rate

The calculations presented above correspond to a 90% reduction in evaporation rate outside the instability due to an intact 100-nm thick TFLL (see Fig. 3). Earlier studies on rabbits demonstrated that complete removal of the lipid layer increased evaporation rate from four times, in patients with no detectable lipid layer (<10 nm) [78]. Tear-film evaporation rate under normal conditions demonstrates considerable variation [55–58]. To address the role of TFLL evaporation reduction, the background evaporation rate was altered while keeping the same elevated evaporation rate at the center of tear film where the lipid layer is absent, (i.e., \(\dot{J}_{\text{ev}} = 38 \mu \text{m/min} \)). Fig. 9 shows the dynamics of tear-film thickness and osmolarity at the center of TFLL breakup with various evaporation reductions by the intact 100-nm thick lipid layer. By increasing evaporation reduction by 75%, 90%, 95%, and 98%, the evaporation rate of the tear film away from lipid-deficient region, \(\dot{J}_{\text{ev}} \), decreases as 9.5, 3.8, 1.9, and 0.76 \mu \text{m/min}, respectively. As illustrated in Fig. 9A, tear-film breakup time decreases with increased \(\dot{J}_{\text{ev}} \) even though \(\dot{J}_{\text{F}} \) remains constant. With a small background evaporation rate of 0.76 \mu \text{m/min}, or that reported with the “fluid-capture” goggle method in a stagnant air [57,58], the instability-trough thickness only decreases from 3.5 to 2.1 \mu \text{m} after a 60-s interblink. No tear-film rupture is predicted with a 0.76 \mu \text{m/min} background tear-film evaporation rate. Conversely, tear-film breakup time shortens to ~60 s when the background evaporation rate increases to 1.9 \mu \text{m/min}. Thus, tear rupture only occurs with sufficiently high evaporation rate from the undisturbed tear film. Fig. 9B reveals that for reduced evaporation rates salinity hot spots still form at the region of instability.

4.5. Wind speed

The evaporation rate of pure water at the nadir of a deepening tear instability is not a fixed value but depends on, among other parameters, environment air flow and relative humidity. Higher wind speeds reduce the mass-transfer resistance in the air phase and lead to higher evaporation rates. In comparison to Fig. 4 for a perpendicular-directed wind of 0.3 m/s, Fig. 10A reports the effects of different perpendicular-directed wind speeds: 0.1, 0.3, 1 and 10 m/s that represent sequentially “sitting/reading”, “working(indoor)”, “walking”, and “bicycling”, respectively [76,79]. Mass-transfer coefficients for water vapor in air are estimated from impinging-jet flow [80]. Resistance to evaporation, \(R_e = 1/k_{\text{ev}} \), is thus estimated as 90.9, 51.5, 28.7 and 9.1 s/m for sitting,
working, walking, and bicycling [79,80] giving corresponding pure-water evaporation rates of 21.5 μm/min (sitting), 38.0 μm/min (working), 68.1 μm/min (walking), and 215 μm/min (bicycling). For fixed water permeability in the TFLL corresponding to Fig. 4 ($D_k K_w = 2.2 \times 10^{-10} \text{ m}^2/\text{s}$), the background evaporation rates are 3.5, 3.8, 4.0, and 4.1 μm/min for sitting, working, walking and bicycling, respectively. Wind speed clearly plays an important role in controlling rupture times, especially at higher speeds. During sitting or with minimal activity, tear rupture can be forestalled. Nevertheless, Fig. 10B re-emphasizes that even without tear breakup, significant salinity hot spots grow in the tear under any growing instability.

4.6. Relative humidity

Reduced air humidity exacerbates dry-eye symptoms [81,82]. The presumption is that low relative humidity increases the evaporation rate thereby lowering BUT and increasing tear salinity [81,82]. Fig. 11A confirms this presumption. When the relative humidity decreases in Fig. 11A from 30%, that in Fig. 4, to 15%, representing an airplane cabin or an arid environment, evaporative-driven rupture time decreases from 33 to 28 s, a measureable effect. Conversely, increasing the relative humidity to 75% staves-off interblink tear rupture. As illustrated in Fig. 11B, however, major salinity hot spots still arise even when there is no interblink tear rupture.

4.7. Spot instability

The Cartesian geometry adopted in all figures above represents a trough instability or a black streak. Black-spot or dimple instabilities are also common, for example, as evidenced in Fig. 1. To mimic a black spot, we consider an axisymmetric cylindrical coordinate system (i.e., r and z) with a circular TFLL rupture as detailed in Eqs. (A19)–(A26). Comparison between instability thickness for black-spots (solid lines) and black-streaks (dashed lines) is highlighted in Fig. 12 for two different TFLL-rupture standard deviations of 100 and 200 μm. For a given rupture size, black streaks grow more quickly than do black spots, all else being equal. This finding is reasonable because a circular depression in the tear film induces relatively more curvature-driven healing flow from the instability perimeter compared to that for a linear trench where there is no healing flow from the direction parallel to the trench (y-direction). More healing flow waylays rupture. Fig. 12 also shows that increasing the size of the instability decreases BUT. A larger trough or dimple increases the resistance for curvature-driven healing flow because more fluid must be drawn into the depression center from a longer distance away. The results in Fig. 12 suggest a wide variety of rupture patterns as differing-shaped growing depressions merge and expand.

4.8. Surface tension

As mentioned earlier, curvature-driven healing is the dominant flow preventing tear-film rupture due to evaporation. Infill volumetric
surface tension, other parameters are given in Table 1.

Fig. 13 shows the effect of surface tension on the center-thickness dynamics of a streak instability. Clearly, BUT decreases as the surface tension decreases. The surface tension of normal tear is about 2/3 of that of pure water/air interface or 45 mN/m. Clinical observations suggest that the average surface tension of tear is higher for dry-eye patients. Fig. 13 indicates that during evaporation-driven tear film thinning, higher surface tension enhances curvature-driven healing flow and forestalls tear film instabilities. It is sometimes argued that the lipid layer stabilizes the tear film against rupture by lowering the surface tension and, hence, lowering the free energy of the tear. As in Fig. 4, when

\[\Pi = -\frac{A}{6\pi h^3} \]

with \(A \) the Hamaker disjoining force prevents tear film rupture. As in Fig. 4, when

\[A = -5 \times 10^{-17} \text{ J} \]

Fig. 13. Dynamics of tear film thickness at the center of TFLL breakup (\(x = 0 \)) with various surface tensions, \(\gamma \), at the tear-air interface. All other parameters are given in Table 1.

4.9. Epithelial disjoining forces

In all figures above, tear rupture occurs when the trough or dimple center reaches zero thickness forming a dry streak or dry spot. The epithelial/tear interface, however, is impregnated with membrane-bound glycoalyx mucin and possibly interspersed with soluble gel-forming mucins, both of which are highly water liking. The overriding soluble mucin molecules keep the epithelial surface strongly wet so that dry regions void of liquid are unlikely. To account for the strong water-wetting nature of the epithelium, we introduce a repulsive disjoining force obeying the Hamaker functionality, \(\Pi = -A/6\pi h^3 \) with \(A \) negative. Because the Hamaker thin-film force is infinite for a zero-thickness film, mechanical rupture of water layers is prevented in the range of these forces, approximately 100-nm away from the epithelium. Consequently, a dry patch is theoretically not permitted. A 100-nm unbroken tear layer compared to a broken one still appears black in microscopic BUT experiments and is not possible to detect under fluorescein observation. Further, strong water binding by the thin glycoalyx region of the anterior epithelial cells likely impedes, if not completely prevents, water evaporation. In our model, the presence of disjoining pressure at the trough center affects the infill volumetric flux, \(\dot{u} \), in Eqs. (1) and (5), as detailed in Appendix A. In addition, the vapor pressure of water at the interface is also affected when the film thickness decreases to within the range of the disjoining force, as shown in Eq. (2). Fig. 14 demonstrates how a Hamaker disjoining force prevents tear-film rupture. As in Fig. 4, when

\[A = 0 \text{ J} \]

Fig. 14. Dynamics of tear film thickness at the center of TFLL breakup (\(x = 0 \)) with various repulsive Hamaker constants. (B) is the enlargement of (A) at long times. All other parameters are given in Table 1.
no disjoining pressure is considered (i.e., $A = 0$), the film thickness reaches zero in 33 s. When $A = -10^{-18}$ J, film thinning is retarded at a thickness of around 50 nm and eventually stabilizes at 4.5 nm. This final constant film thickness rises as the repulsive Hamaker dispersion force increases.

Fig. 15 shows the corresponding dynamics of tear-film osmolarity at the trough center for various repulsive Hamaker constants. Disjoining pressure prevents the film thickness from reaching zero where osmolarity approaches infinity, and, thus, stabilizes the final osmolarity in a constant thickness film. Increased magnitude of repulsive Hamaker constants lead to larger stabilized film thicknesses (see Fig. 14) and correspondingly lower stabilized osmolarities. When the repulsive Hamaker constant is small in magnitude, e.g. 10^{-18} J, a bulge in osmolarity arises. In the case of zero disjoining force, a spike happens in an instant, and the osmolarity approaches infinity. However, with a finite disjoining pressure to prevent tear-film rupture, the osmolarity burst is damped by osmotic-driven weeping water flow through the corneal epithelium.

Fig. 16 shows the evaporation rates at the center of a trough instability (where the TFLL is absent) normalized to the initial evaporation rate at time zero. The evaporation rate slightly increases ($<0.1\%$) during the tear-film thinning before the film reaches submicron thicknesses. This minor increase is due to the small increase of surface temperature during tear-film thinning, as shown in Fig. 5. However, the evaporation rate decreases when the film reaches the region where the disjoining force becomes significant. As discussed earlier, a repulsive disjoining pressure lowers the vapor pressure over that of a thick, flat film, and thus, decreases the evaporation rate. Fig. 16 indicates that the Hamaker force has a negligible effect on evaporation rate when the magnitude of A is larger than 10^{-17} J. The reason is that disjoining pressure prevents tear-film rupture mainly through enhancing healing flow and not reducing the evaporation rate. Thus, film thinning is prevented by increased healing flow, and the trough center does not fall to film thicknesses where the evaporation rate is significantly affected by thin-film forces.

5. Discussion

We do not include the possible stabilizing effect of classical surfactant-gradient Marangoni stresses [20,21,23–25,29–37] during black-streak (spot) formation. The TFLL is not an adsorbed surfactant monolayer at an air/water interface. Rather, it is a 100-nm or less duplex oil film consisting of two interfaces (air/oil and water/oil) with a viscous waxy dispersion sandwiched between [89]. The lipid/water interface of the TFLL is laden with surfactant phospholipids and partially denatured protein [89]. Approximating the TFLL as a surfactant monolayer adsorbed at the air/water surface is unrealistic.

Fig. 15. Dynamics of tear-film osmolarity at the center of TFLL breakup ($x = 0$) with various repulsive Hamaker constants. All other parameters are given in Table 1.

The chosen duplex-film lipid-layer profile, $L(x)$, in Fig. 3 has no influence on the rate of tear streak/spot growth other than to control the local evaporation rate. However, the assumed $L(x)$ profile is consistent with attractive (conjoining) thin-films forces that drive lipid flow away from the TFLL rupture region. Resulting lipid flow drags underlying tear outwards from the growing tear dimple providing an additional stabilizing flow over those from curvature- and osmotic-driven healing flows. A complete analysis of evaporative-driven tear-film rupture is beyond the scope of the current feasibility analysis.

Since tear rupture commences by the appearance of individual spots and/or streaks, our proposed 1-D analysis of isolated rupture events is pertinent for establishing the feasibility of evaporative-driven tear breakup. Interacting spots or streaks that occur later in the rupture process require a 2-D analysis.

6. Conclusions

We demonstrate that an evaporation-driven tear-film rupture mechanism is a physically consistent explanation for the formation of black streaks and spots in the human tear film during an interblink. Elevated evaporation rate in a lipid-deficient spot drives the instability. With reasonable TFLL breakup sizes, shapes, and evaporation rates, tear-film breakup occurs in 10–45 s under normal environmental conditions, but relatively higher tear evaporation rates are needed. Predicted roles of wind speed and relatively humidity on tear-film stability compare well with clinical observations. More
importantly, locally elevated evaporation leads to hyperosmolar spots in the tear film and, hence, vulnerability to epithelial irritation. In addition to evaporation rate, tear-film instability depends significantly on the strength of healing flow from the tear outside the breakup domain. Contrary to common belief, low tear surface tension reduces curvature-driven healing flow and promotes tear breakup. For the first time, we quantitatively relate environmental conditions to human tear-film instability.

Acknowledgment

This work was partially funded by Alcon Corporation under Contract 022466-003 to the University of California.

Appendix A. Mathematical model for tear-film evolution

Since the thickness of tear film is three orders of magnitude smaller than the diameter of the precorneal tear film, mass conservation for water in the thin film in Eq. (1) is based on lubrication theory accounting for flow in the x-direction, evaporation, and osmotic water influx [72,73].

The evaporative flux, \(J_v \), depends on the gas-phase mass-transfer resistance, \(R_c \), the lipid film mass-transfer resistance, \(R_l \), and the water vapor concentration driving force between the environment and the tear-film surface, as described in Eq. (2) of the text. The mass-transfer coefficient of the air phase, \(k_m \), is estimated by assuming impinging-jet flow with a stagnation region near the tear-film surface and a uniform laminar flow with known speed exiting the nozzle located infinitely far away from the tear film [80]. As shown in Fig. 3, \(L(x) \) is varied in a Gaussian fashion [64] to represent a locally absent or deficient lipid layer that increases evaporation according to the change of \(R_c \). The intact lipid layer is assumed to reduce evaporation rate of water by 90\% [53], i.e., the evaporation rate is 10-fold higher at the region where lipid layer is absent than that at the region covered by a complete lipid layer with initial evaporation rate of 2.16 × 10^{-10} m^2/s [60]. Water permeability in the lipid layer is 2.16 × 10^{-10} m^2/s [60].

To establish the Kelvin correction in Eq. (2), local equilibrium is assumed so that the chemical potential of water, \(\mu \), in the liquid film and gas phase is identical

\[
\mu_c = \mu_l = \mu \left(T, h, \frac{\partial^2 h}{\partial x^2} \right) \quad \text{(A1)}
\]

The chemical potential of both the gas and liquid phases depends on temperature, and also on interface curvature (surface tension) and film thickness (conjoining/disjoining pressure). To determine these latter two dependencies, the Gibbs–Duhem equation is written for the liquid phase at constant temperature as

\[
-\bar{V}_l \nu P_l + \mu_l = 0, \quad \text{const} T \quad \text{(A2)}
\]

where \(\bar{V}_l \) is liquid-water molar volume and \(P_l \) is the liquid pressure. Thus, from Eq. (A1) at constant temperature

\[
d\mu = d\mu_l = \bar{V}_l \nu dP_l = \frac{1}{\bar{P}_l} dP_l, \quad \text{const} T \quad \text{(A3)}
\]

Upon integrating both sides of Eq. (A3) between a zero curvature and a finite-curved interface and by replacing \(\mu_l \) by \(\mu_c \) based on Eq. (A2) we find that

\[
\begin{align*}
\bar{P}_l \left(\mu_c - \mu_c^{\text{ext}} \right) = P_l - P_w^{\text{ext}} = \left(P_c - P_w^{\text{ext}} \right), & \quad \text{const} T
\end{align*} \quad \text{(A4)}
\]

The first term on the far right of Eq. (A4) is generally neglected because it is much smaller than the second term. Upon assuming ideal-gas behavior, Eq. (A4) is rewritten as

\[
\bar{P}_l \nu T \ln \frac{P_c}{P_w^{\text{ext}}} = P_l - P_c
\]

The augmented Young–Laplace equation for a thin liquid film with small surface curvature is given by [26,27,90]

\[
P_c - P_l = \frac{\gamma}{R} + \Pi
\]

where \(\gamma \) is the surface tension at the interface, and \(\Pi \) is the conjoining/disjoining pressure. We take \(\Pi = -A/6\pi h^3 \) between two flat interfaces [26,27]. Substitution of Eq. (A6) into Eq. (A5) gives

\[
P_c = \rho \alpha^0(T) \exp \left(-\frac{1}{\bar{P}_l \nu T} \left(\frac{\gamma}{R} - \frac{A}{6\pi h^3} \right) \right) \quad \text{(A7)}
\]

For a repulsive disjoining force, \(A \) is negative. Since the surface-tension term in the exponential is typically negligible, the vapor pressure decreases when the film thickness decreases to the region where the Hamaker thin-film force becomes significant. This result is equivalent to Kelvin’s equation for vapor-pressure lowering under a curved bubble interface [26,27]. Eq. (A7) explains the exponential (or Kelvin) correction to the saturation vapor pressure in Eq. (2) of the main text.

We now write the osmotic water volumetric flux as

\[
J_w(x, t) = \frac{P_c[C(x, t) - C_0]}{\kappa_T} \quad \text{(A8)}
\]

where \(\kappa_T \) is the osmotic permeability (m/s/mOsM) of the cornea or conjunctiva to water, and \(C(x, t) \) and \(C_0 \) are the tear-film and serum molar salt concentrations, respectively [69]. Although the fundamental molecular physics of weeping flow is not fully understood, Eq. (A8) provides a reasonable estimate [69,70]. Corneal water permeability measured on mice is about 1.97 × 10^{-10} m/s/mOsM (1.1 × 10^{-5} m/s) [91]. Estimates for humans are 2.34 × 10^{-10} m/s/mOsM [64] and 4.0 × 10^{-10} m/s/mOsM when hydraulic, osmotic and electro-osmotic flows are combined [69].

We must also conserve salt (i.e., primarily sodium chloride) in the aqueous tear film assuming that the salt concentration varies only in the x-direction due to diffusion and convective mass transport. The characteristic time for diffusion of salt in the z-direction is \(\tau_{sz} = h^2/D \), where \(D \) is the diffusion coefficient of salt in water. In a 3-μm-thick tear film, \(\tau_{sz} \approx 0.01 \) s, assuring a well-mixed condition in the z-direction. Local conservation of salt then reads

\[
\frac{\partial (hC)}{\partial t} = -\frac{\partial}{\partial x} \left(-Dh \frac{\partial C}{\partial x} + uC \right) \quad \text{(A9)}
\]

If we apply the product rule to the time derivative and substitute Eq. (1) into (A9), the effects of evaporation and osmotic water influx on the salt concentration become clearer as stated in Eq. (5).

In a lubrication analysis, the augmented Young–Laplace equation relates the anterior interface curvature to the liquid pressure, including conjoining/disjoining pressure between the two interfaces of the tear film. Assuming small curvatures, we write the following expression for water flow in the aqueous layer

\[
\nu = \frac{h^2}{12\mu} \left(-\frac{\partial P_l}{\partial x} \right) = \frac{h^2}{12\mu} \left(\frac{\gamma}{\rho} \frac{\partial^2 h}{\partial x^2} + \frac{\partial \Pi}{\partial x} \right) \quad \text{(A10)}
\]

where \(P_l \) is the liquid pressure, \(\mu \) is the shear viscosity, \(\gamma \) is the surface tension of aqueous tears, and \(\Pi \) is the conjoining/disjoining pressure.
in the film. Eq. (A10) is used to eliminate the flow velocity from Eqs. (1) and (5).

The last conserved quantity is the energy of the tear film. We assume that heat conduction from the epithelial surface provides the energy for evaporation, so the tear temperature varies in the z-direction. Because the evaporative flux varies with x, we also expect tear temperature to depend on x. Then the thermal balance within the tear film is

\[
\frac{\partial T}{\partial t} + u \frac{\partial T}{\partial x} = \alpha \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial z^2} \right)
\]

(A11)

Since the thickness of tear film is much smaller than its diameter, scaling reduces Eq. (A11) to

\[
\frac{\partial^2 T(x,z)}{\partial z^2} = 0
\]

(A12)

Eq. (A12) demands a linear temperature profile in the z-direction at each x even though the temperature changes with x-position and time.

Boundary conditions for the thermal balance are,

\[
T(t,x,0) = T_e,
\]

(A13)

and

\[
-k_w \frac{\partial T(t,x,h)}{\partial z} + U[T_w - T(t,x,h)] = \frac{J_w}{\rho_w} \Delta H_v
\]

(A14)

where \(k_w\) is the heat transfer coefficient of air that depends on geometry and air flow, \(k_\text{TFLF}\) is the thermal conductivity of the aqueous tear film, and \(\Delta H_v\) is the specific latent heat of vaporization of water. Thermal resistance of the TFLF is neglected. Since the mass-transfer coefficient is known for impinging-jet flow [80], the convective heat-transfer coefficient in the air is correlated by the Chilton-Colburn analogy that relates the Nusselt number to the Sherwood, Prandtl, and Schmidt numbers as [92]

\[
Nu = Sh \left(\left(\frac{Pr}{Sc} \right) \frac{h}{T} \right)
\]

(A15)

Thus, given the mass-transfer coefficient, \(k_m\), the heat-transfer coefficient of air is determined as

\[
U = k_t \frac{k_m}{D_{\text{water/air}}} \left(\frac{Pr}{Sc} \right) \left(\frac{h}{T} \right)
\]

(A16)

where \(k_t\) is the thermal conductivity of air, and \(D_{\text{water/air}}\) is the diffusivity coefficient of water in air. At 25 °C, assuming the wind speed in the air is 0.3 m/s, \(k_m\) is 1.94 \times 10^{-2} W/mK, \(Pr\) and \(Sc\) for air are 0.7 and 0.64, respectively, \(k_\text{TFLF}\) is 2.63 \times 10^{-5} W/mK, and \(D_{\text{water/air}}\) is 2.53 \times 10^{-5} m^2/s [92]. Thus, \(U\) is estimated to be 20.7 (W/m²-K).

The first conserved condition in Eq. (A13) assumes a constant epithelial surface temperature, \(T_e\). The second boundary condition in Eq. (A14) describes local conservation of thermal energy at the air/tear-film interface, including heat influx from the tear film, heat loss to the environment, and heat loss to evaporation during the interblink. By solving Eqs. (A12)–(A14), we obtain the tear-film surface temperature, \(T_{lm}\), as given in Eq. (4) of the main text.

Six chosen unknowns (\(h, C, u, T_s, J_w\), and \(J_w\)) in six equations (Eqs. (1), (2), (4), (5), (A8), and (A10)) are solved simultaneously to yield the tear-film dynamics. Among these, Eqs. (1) and (5) are partial differential equations, whereas Eqs. (2), (4), (A8), and (A10) are algebraic.

Eq. (A10) contains a third-order spatial derivative in film thickness. To apply Eq. (A10) numerically, we introduce a new variable

\[
H = \frac{\partial^3 h}{\partial x^3}
\]

(A17)

By substituting Eq. (A17) into Eq. (A10), we obtain seven coupled nonlinear equations for seven unknown variables each depending on \(x\) and \(t\). The physical reason for these boundary conditions is that the precorneal tear film is “perched” by the black lines formed immediately after tear-film deposition due to capillary suction from menisci at the lid margins. No flow exchange occurs across the black lines between blinks [66,67]. The initial tear film is flat \((H(x,0) = 0; u(x,0) = 0)\) with thickness \(h_c\); the initial osmolarity in the tear film is the serum osmolarity in the epithelium \((C(x,0) = C_0)\).

The coupled nonlinear equations are solved numerically by finite differences using Newton–Raphson iteration to resolve the nonlinearities [93]. All 7 unknown variables are marched forward in time by a fully explicit scheme with a grid spacing of 2.5 µm. To enhance the efficiency of the computation, only half of the tear film \((0 \leq x \leq L)\) was analyzed due to symmetry.

Finally, when the fluid dynamic model changes from a Cartesian to a cylindrical coordinate system, previous derived equations are rewritten accordingly as

\[
\frac{\partial h}{\partial t} = -J_x + J_w \frac{1}{r} \frac{\partial (uh_r)}{\partial r} \]

(A19)

\[
J_e(r,t) = \frac{1}{\rho_w (k_\text{TFLF} + k_C)} \left\{ \frac{p_w^{\text{sat}}(r)}{R_g T_s(r,t)} \exp \left(\frac{\gamma h}{\rho_w k_w} \frac{f(h)}{h} \right) - R_h \frac{p_w^{\text{sat}}(T_w)}{R_g T_s} \right\} \]

(A20)

\[
J_w(r,t) = P_s (C(r,t) - C_0) \]

(A21)

\[
\frac{\partial (h C)}{\partial t} = - \frac{1}{r} \frac{\partial}{\partial r} \left(-DH \frac{\partial C}{\partial t} + u h_r \right) \]

(A22)

\[
u = \frac{h^2}{12 \mu} \left(\frac{\partial^3 h}{\partial x^3} + \frac{\partial^3 h}{\partial x^2} \right) \]

(A23)

\[
k_m \left(\frac{T_{lm} - T_{lm}(r,t)}{h} \right) + U(T_w - T_{lm}(r,t)) = \frac{J_w}{\rho_w} \Delta H_v \]

(A24)

and

\[
H = \frac{\partial^3 h}{\partial r^3} \]

(A25)

Boundary conditions are now

\[
\frac{\partial h}{\partial r} = 0; \quad \frac{\partial C}{\partial r} = 0; \quad \frac{\partial u}{\partial r} = 0 \quad \text{and} \quad \frac{\partial H}{\partial r} = 0 \quad \text{at} \quad r = 0, \pm L \]

(A26)
References

[14] Sharma A, Ruckenstein E. The role of lipid abnormalities, aqueous and mucus de-

[19] Fatt I, Weissman BA. Physiology of the eye: an introduction to the vegetative func-

[82] Uchiyama E, Aronowicz JD, Butovich IA, McCulley JP. Increased evaporative rates in laboratory testing conditions simulating airplane cabin relative humidity: an important factor for dry eye syndrome. Eye Contact Lens 2007;33:174–6.

