Title
Rapid concerted evolution in animal mitochondrial DNA

Permalink
https://escholarship.org/uc/item/9kx4585c

Journal
Proceedings of the Royal Society B, 274(1619)

ISSN
0962-8452

Authors
Tatarenkov, Andrey
Avise, John C

Publication Date
2007-07-22

DOI
10.1098/rspb.2007.0169

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License, available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed
Rapid concerted evolution in animal mitochondrial DNA
Andrey Tatarenkov* and John C. Avise

Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697, USA

Recombinational genetic processes are thought to be rare in the uniparentally inherited mitochondrial (mt) DNA molecules of vertebrates and other animals. Here, however, we document extremely rapid concerted microevolution, probably mediated by frequent gene conversion events, of duplicated sequences in the mtDNA control region of mangrove killifishes (Kryptolebias marmoratus). In local populations, genetic distances between paralogous loci within an individual were typically smaller (and often zero) than those between orthologous loci in different specimens. These findings call for the recognition of concerted evolution as a microevolutionary process and gene conversion as a likely recombinational force in animal mtDNA. The previously unsuspected power of these molecular phenomena could greatly impact mtDNA dynamics within germ cell lineages and in local animal populations.

Keywords: duplicated control regions; mangrove killifish; orthologous; paralogous; *Kryptolebias marmoratus

1. INTRODUCTION
Mitochondrial (mt) DNA is probably the single most popular and powerful molecule for a wide range of phylogenetic, phylogeographic and population genetics studies. It is thus both surprising and lamentable that phylogenetic, phylogeographic and population genetics studies fail to take advantage of this popular and powerful molecule for a wide range of phylogenetic, phylogeographic and population genetics studies.

1.1. The mtDNA control region
The mtDNA control region is a non-coding region that is essential for the transcription and replication of mtDNA. It is a hotspot for genetic variation and is therefore a valuable tool for studying population genetics. In many species, the control region is duplicated, with one copy serving as a template for the synthesis of new DNA and the other copy being actively transcribed.

1.2. Rapid concerted evolution
Rapid concerted evolution is a process in which duplicated mtDNA sequences are rapidly converted into each other, resulting in the loss of genetic diversity. This process is thought to be important in the evolution of mtDNA, as it can lead to the emergence of new genetic lineages.

1.3. Mangrove killifish
Mangrove killifish (Kryptolebias marmoratus) are a popular model organism for studying genetic diversity and evolution. They are small, tropical fish that are found in the mangrove swamps of the Florida Keys.

1.4. Materials and methods
Samples were collected from the following locales (with abbreviations indicated in parentheses): Twin Cays, Belize (TC); Exuma and San Salvador Islands, Bahamas (EL, SS); Everglades National Park near Flamingo in Monroe County, FL (EP); Shark River also in Monroe County, FL (SR); Charlotte County, FL (CC); St Lucie County, FL (SL); Marco Island in Collier County, FL (MI); and No Name Key in the Florida Keys (NK). Additional details on capturing are provided in Mackiewicz et al. (2006).

2. MATERIAL AND METHODS
Samples were collected from the following locales (with abbreviations indicated in parentheses): Twin Cays, Belize (TC); Exuma and San Salvador Islands, Bahamas (EL, SS); Everglades National Park near Flamingo in Monroe County, FL (EP); Shark River also in Monroe County, FL (SR); Charlotte County, FL (CC); St Lucie County, FL (SL); Marco Island in Collier County, FL (MI); and No Name Key in the Florida Keys (NK). Additional details on capturing are provided in Mackiewicz et al. (2006).

Following Lee et al. (2001), we refer to CR1 as the 887 bp non-coding region between the 5’ ends of loci coding for tRNA-Pro and tRNA-Phe, and CR2 as a 795 bp non-coding region between the 3’ ends of loci coding for tRNA-Leu(UUR) and tRNA-Asp(UUR). In each fish specimen, we sequenced two disjunct mtDNA regions: (i) ‘Cytb–trnT–trnP–CR1’, which spans 1243 bp (positions 16 060–17 300 on GenBank Accession AF283503) and (ii) ‘trnL1–CR2–ND1’, which spans 871 bp (positions 2791–3662 on AF283503). A large segment (735 bp) of CR2 displays high overall sequence similarity (greater than 99%) to CR1, and, based on high sequence similarity between CR1 and CR2 in the single specimen examined, they also noted the possibility of concerted evolution. However, their study could not rule out an alternative hypothesis that the duplication was recent and the two copies had not yet accumulated mutational differences. To demonstrate concerted evolution at the microevolutionary level, it is necessary to (i) identify polymorphic duplicated sequences in a sample of conspecific individuals, preferably within local populations and (ii) show that the genetic differences between paralogous loci in the same individuals are unambiguously smaller than the differences between orthologous loci in different individuals. Here, we fulfil both of these criteria using complete (or nearly so) CR1 and CR2 sequences from 88 specimens.

2.1. Recombinational genetic processes
Rapid concerted evolution is thought to be mediated by frequent gene conversion events between duplicated mtDNA sequences. However, other processes such as gene conversion events between orthologous loci within an individual and between paralogous loci in the same individual may also contribute to the observed genetic variation.

2.2. Population genetic patterns
Population genetic patterns for animal mtDNA are complicated by the fact that mtDNA is uniparentally inherited and can undergo concerted evolution. In some cases, this can lead to the emergence of new genetic lineages that are not reflected in the nuclear genome.

2.3. Conclusion
The findings of this study call for the recognition of concerted evolution as a microevolutionary process and gene conversion as a likely recombinational force in animal mtDNA. The unexpectedly rapid concerted process has potential broad implications for intracellular population dynamics and population genetic patterns for animal mtDNA.
Table 1. Evidence for concerted evolution in CR1 and CR2 sequences. (Shown is the common sequence in most specimens and observed departures from it at the indicated loci in specified individuals at each of 27 polymorphic nucleotide positions. Each letter ‘d’ is a 1 bp deletion. Cases of intra-individual genetic identity for CR1 and CR2 are shown in bold.)

<table>
<thead>
<tr>
<th>Specimens and loci</th>
<th>CR1, CR2</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC10 (CR1, CR2)</td>
<td>TC10 (CR1)</td>
</tr>
<tr>
<td>TC30 (CR1, CR2)</td>
<td>TC30 (CR1)</td>
</tr>
<tr>
<td>SR21 (CR1, CR2)</td>
<td>SR21 (CR1)</td>
</tr>
<tr>
<td>SR23 (CR1, CR2)</td>
<td>SR23 (CR1)</td>
</tr>
<tr>
<td>SR30 (CR1, CR2)</td>
<td>SR30 (CR1)</td>
</tr>
<tr>
<td>EP3 (CR1, CR2)</td>
<td>EP3 (CR1)</td>
</tr>
<tr>
<td>SR2 (CR1, CR2)</td>
<td>SR2 (CR1)</td>
</tr>
<tr>
<td>SR26 (CR1, CR2)</td>
<td>SR26 (CR1)</td>
</tr>
<tr>
<td>SL4 (CR1)</td>
<td>SL4 (CR2)</td>
</tr>
<tr>
<td>TC7 (CR1, CR2)</td>
<td>TC7 (CR1)</td>
</tr>
<tr>
<td>NK1 (CR1, CR2)</td>
<td>NK1 (CR1)</td>
</tr>
<tr>
<td>NK3 (CR1, CR2)</td>
<td>NK3 (CR1)</td>
</tr>
<tr>
<td>TC9 (CR1, CR2)</td>
<td>TC9 (CR1)</td>
</tr>
<tr>
<td>SL6 (CR1, CR2)</td>
<td>SL6 (CR1)</td>
</tr>
<tr>
<td>TC4 (CR1, CR2)</td>
<td>TC4 (CR1)</td>
</tr>
<tr>
<td>TC91 (CR1, CR2)</td>
<td>TC91 (CR1)</td>
</tr>
<tr>
<td>TC92 (CR1, CR2)</td>
<td>TC92 (CR1)</td>
</tr>
</tbody>
</table>

We aligned CR1 and CR2 sequences visually, with assistance from CLUSTAL V (default parameters) as implemented in MEGALIGN (LASERGENE v. 6, DNASTAR, Inc.). We employed the p distance as the measure of sequence divergence (Nei & Kumar 2000). Other distance measures were unnecessary or inappropriate, respectively, because the sequences were so similar and because we also included indels as characters (these would require subjective weight assignments in more complex distance metrics). Gene conversion rates were estimated by the method of Eberhard et al. (2001), which assumes that genetic distances between pairs of sequences scale with time to the most recent gene conversion events. The haplotype network was constructed using the method of Templeton et al. (1992) implemented in software TSC v. 1.21 (Clement et al. 2000).

3. RESULTS AND DISCUSSION

Alignments of the 735 bp sequences from CR1 and CR2 revealed 27 variable nucleotide positions, including five 1 bp deletions (table 1). A striking result is the near identity of CR1 and CR2 within individuals, despite extensive sequence differences (at as many as nine nucleotide positions) between CR1 and CR2 in different specimens. At nucleotide position 663, for example, most individuals displayed an adenine in both CR1 and CR2, but three individuals displayed a cytosine at both loci and one showed a guanine at both CR1 and CR2. Qualitatively similar outcomes were apparent at each of 26 other polymorphic nucleotide sites surveyed (table 1; figure 1).

Overall, this pattern of concerted microevolution is also quantitatively evidenced by a 10-fold higher mean genetic distance (p) between orthologues in different individuals (p = 1.9 ×10^{-5}) vis-à-vis paralogues within individuals (p = (1.7 ×10^{-5})).

CR1 and CR2 did differ in sequence within 11 out of 88 specimens, but never by more than one mutation step (table 1). Furthermore, each of these intraspecific sequence discrepancies was confined to a single population, the only possible exception being a 1 bp deletion in CR2 in specimens EI6 and CC5. The finding that most intraspecimen differences between paralogues are confined to a local population further indicates that such discrepancies are short lived due to rapid concerted evolution at these two loci.

Following Eberhard et al. (2001), we provisionally estimated the pace of gene conversion by assuming a standard vertebrate rate for CR evolution (10% change per lineage per million years) as applied to the mean within-individual genetic distance between CR1 and CR2. By this approach, the mean time (± 95% CI) between gene conversion events is 850 ± 479 years or about eightfold shorter than the mean time-interval between successive nucleotide substitutions within either CR region. Although the precision of this estimate is debatable, the fact remains that the data evidence a stunning pace of concerted evolution in a molecule that is normally assumed to evolve without appreciable recombinant processes (Wolstenholme 1992; Birky 2001).

A high incidence of concerted evolution in mitochondrial sequences has both practical and conceptual implications. Pragmatically, it means that the two CR regions should be of equal, but redundant, utility in
phylogenetic or phylogeographic appraisals (much like the members of any nuclear gene family that experiences strong concerted evolution; Hillis & Dixon 1991). Of potential broader significance, it documents that animal mtDNA can display frequent if not routine recombination. The molecular mechanism itself is not revealed by our data, but all proposed mechanisms of concerted evolution entail genetic recombination of one sort or another: gene turnover via frequent duplications and losses of sequences, or, more likely in this case, some form of gene conversion (non-reciprocal genetic exchange) per se (Kumazawa et al. 1996, 1998).

Previous evidence for recombination in animal mtDNA, e.g. from subtle patterns of linkage disequilibria across the molecule (Awadalla et al. 1999; Eyre-Walker et al. 1999), has been indirect and hotly contested (McVean 2001; Kmiec et al. 2006). Our current evidence for recombinational processes is far more compelling, but, on the other hand, it applies at face value only to the duplicated CR sequences. Perhaps homologous recombination is confined to this small section of mtDNA (one hypothetical mechanism involves recombination between parental and nascent DNA strands during replication of the duplicate loci within the three-stranded D-loop structure; Eberhard et al. 2001). But the mere fact that recombinational machinery in animal mtDNA exists (Thyagarajan et al. 1996) and can apparently function routinely (present study) at least raises the possibility that the phenomenon has much wider ramifications.

We wonder, for example, whether concerted microevolution might possibly have any bearing on the phenomenon of homoplasy. A long-standing puzzle for most animal species is why each individual often displays a single predominant mtDNA genotype (i.e. homoplasmic), despite having developed from a zygote that had many thousands of mtDNA molecules and belonging to a local population of animals in which mtDNA sequence variation is normally extensive (Avise 2000). A traditional explanation for rapid evolutionary transitions through transient heteroplasmic states is that mtDNA numbers undergo population bottlenecks in the germline cells that are precursor to each mtDNA-rich oocyte (Chapman et al. 1982; Laips et al. 1988). However, direct empirical evidence for such mtDNA bottlenecks in germline cells is meagre, and another hypothetical process (that could operate in conjunction with the first) is rapid, biased gene conversion such that particular mtDNA molecules often convert others to their own sequence within germline cells.

We also wonder whether concerted evolution in mtDNA might have a bearing on mtDNA repair mechanisms, which are generally thought to be deficient compared with those in the cell nucleus. But if gene conversion is widespread and routine, perhaps the underlying mechanisms play a role in mtDNA repair as well. The current data do not address whether the inferred gene conversion events are intramolecular (within one circular mtDNA molecule) or intermolecular (between different mtDNA molecules), but if the latter is true, there are certainly many mtDNA templates within any cell that could, in principle, serve as useful substrates for the recombinational repair of sequence defects.

These possibilities are admittedly highly speculative, but they do highlight the potential significance of the discovery that concerted microevolution does occur and can be extremely rapid in animal mtDNA. Nevertheless, our current findings are unlikely to challenge conventional wisdom about the utility of mtDNA for phylogeographic or phylogenetic inferences about matrilines. For that to be true, routine interparent mtDNA recombination (following paternal leakage) would have to be demonstrated as well, and numerous studies seem to indicate that such processes are at most very rare.

We thank Bruce J. Turner, D. Scott Taylor, William P. Davis, William Dunson, John Grizzle and Carole McIvor for sample collections. Walter Fitch made helpful comments on the manuscript. Mark Mackiewicz developed primers for CR2, which he kindly shared. The work was supported by funds from the University of California at Irvine to J.C.A.

REFERENCES


Eberhard, J. R., Wright, T. F. & Bermingham, E. 2001


