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Finite-size effects in periodic coupled cluster calculations

Xin Xing1, ∗ and Lin Lin1, 2, †

1Department of Mathematics, University of California, Berkeley, CA 94720, USA
2Applied Mathematics and Computational Research Division,

Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

We provide the first rigorous study of the finite-size error in the simplest and representative coupled cluster

theory, namely the coupled cluster doubles (CCD) theory, for gapped periodic systems. Assuming that the CCD

equations are solved using exact Hartree-Fock orbitals and orbital energies, we prove that the convergence rate

of finite-size error scales as O(N
− 1

3

k
), where Nk is the number of discretization point in the Brillouin zone and

characterizes the system size. Our analysis shows that the dominant error lies in the coupled cluster amplitude

calculation, and the convergence of the finite-size error in energy calculations can be boosted to O(N−1
k

) with

accurate amplitudes. This also provides the first proof of the scaling of the finite-size error in the third order

Møller-Plesset perturbation theory (MP3) for periodic systems.
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I. INTRODUCTION

In 1990, Kenneth Wilson wrote “ab initio quantum chemistry is an emerging computational area that is

fifty years ahead of lattice gauge theory, a principal competitor for supercomputer time, and a rich source

of new ideas and new approaches to the computation of many fermion systems.” [21] Coupled cluster (CC)

theory is one of the most advanced ab initio quantum chemistry methods, and the coupled cluster singles

and doubles with perturbative triples (CCSD(T)) is often referred to as the “gold standard” of molecular

quantum chemistry. Compared to the success in molecular systems, applications of the CC theory to periodic

systems (i.e., bulk solids and other extended systems) [1, 7, 25] have been much more limited. Nonetheless,

thanks to the combined improvements of computational power and numerical algorithms in the past few

years, periodic CC calculations have been increasingly performed routinely for ground state and excited

state properties of condensed matter systems [5, 12, 25].

Unlike CC calculations for molecular systems, properties of periodic systems need to be evaluated in the

thermodynamic limit (TDL). The TDL can be approached by employing a large supercell containing Nk

unit cells, but this approach does not take advantage of the translational symmetry and is thus increasingly

inefficient as the system size grows. A more efficient approach is to discretize the Brillouin zone (BZ) of

one unit cell into Nk grid points, and the most widely used discretization method is a uniform grid called

the Monkhorst-Pack grid [16]. The result in the TDL is given by the limit Nk → ∞. Due to the singularity

caused by the long range Coulomb interaction, the convergence of the energy and other physical properties

towards the TDL is often slow and follows a low-order power law. It is therefore important to understand

the precise scaling of the finite-size effects in periodic CC calculations. Finite-size scaling analysis is the

foundation for the power law extrapolation to calculate properties in the TDL, as well as for more advanced

finite-size error correction schemes [3, 5, 11, 13].

To our knowledge, this work is the first mathematical study of finite-size errors of periodic CC theories.

We interpret the finite-size error as numerical quadrature error of a trapezoidal rule applied to certain singular

integrals. Thus the main body of this work is (1) to analyze the singularity structure of quantities in CC

theories, and (2) to bound the trapezoidal quadrature errors associated with these singular integrands. At

first glace, the task (2) seems to be a classical problem in numerical analysis. We therefore emphasize that

standard quadrature error analysis for smooth integrands (see e.g., [19]) may produce an overly pessimistic

upper bound of the finite-size error that does not decrease at all as Nk increases. Our quadrature error

analysis adapts the Poisson summation formula in a new setting and is related to a recently developed

trapezoidal rule-based quadrature analysis for certain singular integrals [10]. This provides tighter estimates

and is more generally applicable than a previous quadrature analysis based on the partial Euler-Maclaurin

formula for finite-size error studies [22].

To simplify the presentation and the analysis, we focus on ground-state energy calculations in three-

dimensional (3D) insulating systems using the simplest and representative CC theory, i.e., the coupled cluster

doubles (CCD) theory. The Brillouin zone is discretized using a Monkhorst-Pack grid of size N
1

3

k ×N
1

3

k ×
N

1

3

k . The core of CC theories is the amplitude equation, which is a nonlinear system often solved by iterative

methods. In particular, when the amplitude equation is solved using a fixed point iteration with a zero

initial guess, it can systematically generate a set of perturbative terms as in the Møller-Plesset perturbation

theory [18] that can be represented using Feynman diagrams. In practice, the number of iterations needs

to be truncated at some number n, and we refer to the resulting scheme as CCD(n). We assume that the

amplitude equations are solved with exact (or in practice, sufficiently accurate) Hartree-Fock orbitals and

orbital energies in the TDL (see Appendix A). The main result of this paper is that under such assumptions,

the convergence rate of CCD(n) (for any fixed n) is O
(
N

− 1

3

k

)
(Theorem 1).

It is worth noting that previous numerical studies [5, 11] have suggested that under different assump-

tions, the finite-size error of the CCD energy calculation can scale as O(N−1
k ). A possible origin of this
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discrepancy will be discussed at the end of the manuscript in Section VII. The restriction of discussion to

CCD(n) is a technical one. Under additional assumptions, the same convergence rate can be established for

the converged solution of CCD with n → ∞ (Corollary 3). Many finite-size error correction methods work

under the assumption that the error in the CC double amplitude is small, and the finite-size error mainly

comes from the evaluation of the total energy using the CC double amplitude [5]. Our analysis reveals that

the opposite is true in general: most of the finite-size error is in fact in the CC double amplitude, which is

responsible for the O
(
N

− 1

3

k

)
convergence rate. On the other hand, with accurate CC double amplitudes,

the convergence rate of energy calculations could be improved to O
(
N−1

k

)
without any further finite-size

corrections.

The finite-size error analysis of many quantum chemistry methods can be reduced to certain quadrature

error analysis. This perspective has recently provided the first unified finite-size error analysis for the peri-

odic Hartree-Fock and the second order Møller-Plesset perturbation theory (MP2) [22], and similar analysis

can be carried out for more complex theories such as the random phase approximation (RPA) and the second

order screened exchange (SOSEX) [24]. The commonality of these theories (beyond the Hartree-Fock level)

is that they only include certain perturbative terms (referred to as the “particle-hole” Feynman diagrams, see

the main text for the explanation), and the associated integrand singularities are relatively weak. As a result,

for ground-state energy calculations in 3D insulating systems, the finite-size errors of MP2, RPA, SOSEX

all scale as O
(
N−1

k

)
. Starting from the third order Møller-Plesset perturbation theory (MP3), other pertur-

bative terms (referred to as “particle-particle” and “hole-hole” diagrams) must be taken into account, and

the singularities in these terms are much stronger. Our new techniques can be used to analyze the quadrature

error associated with these terms. Since the MP3 diagrams form a subset of the CCD diagrams, our result

also gives the first proof that the finite-size error of the MP3 energy scales as O
(
N

− 1

3

k

)
(Corollary 2).

II. BACKGROUND

Denote a unit cell as Ω and its Bravais lattice as L. Denote the corresponding reciprocal Brillouin zone

and lattice as Ω∗ and L∗. Consider a mean-field (Hartree-Fock) calculation with a Monkhorst-Pack mesh

K which is a uniform mesh of size Nk discretizing Ω∗. Each molecular orbital from the calculation can be

represented as

ψnk(r) =
1√
Nk

eik·runk(r) =
1

|Ω|
√
Nk

∑

G∈L∗

ûnk(G)ei(k+G)·r,

where n is a band index and unk is periodic with respect to the unit cell. As is common in the chemistry

literature, n ∈ {i, j} refers to an occupied (or “hole”) orbital and n ∈ {a, b} refers to an unoccupied (or

“particle”) orbital. Throughout this paper, we use the following normalized electron repulsion integral (ERI):

〈n1k1, n2k2|n3k3, n4k4〉 =
4π

|Ω|
∑′

G∈L∗

1

|q+G|2
ˆ̺n1k1,n3(k1+q)(G)ˆ̺n2k2,n4(k2−q)(−G), (1)

where q = k3−k1 is the momentum transfer vector, the crystal momentum conservationk1+k2−k3−k4 ∈
L
∗ is assumed implicitly, and ˆ̺n′k′,nk(G) = 〈ψn′k′ |ei(k′−k−G)·r|ψnk〉 is the pair product. This normalized

ERI (and the normalized amplitude below) is used mainly for better illustration of the connection between

various calculations in the finite and the TDL cases, and will introduce extra 1
Nk

factors in the energy and

amplitude formulations compared to the standard ones in the literature.

In this paper, we consider insulating systems with a direct gap between occupied and virtual bands. In

addition, we assume that the orbitals and orbital energies can be exactly evaluated at any k point and the
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virtual bands are truncated (i.e., only a finite number of virtual bands are included in the calculations)

which corresponds to calculations using a fixed basis set. Lastly, we assume that with a proper gauge,

both ψnk(r) and εnk are smooth and periodic with respect to k ∈ Ω∗. For systems free of topological

obstructions [2, 15], these conditions may be replaced by weaker conditions using techniques based on

Green’s functions. However, such a treatment can introduce a considerable amount of overhead to the

presentation, and therefore we adopt the stronger but simpler assumptions on the orbitals and orbital energies

as stated above.

All the finite order energy diagrams in CCD share the common form

ENk

# =
1

N3
k

∑

kikjka∈K

∑

ijab

(2 〈iki, jkj |aka, bkb〉 − 〈iki, jkj |bkb, aka〉)T#,Nk

ijab (ki,kj ,ka)

=
1

N3
k

∑

kikjka∈K

∑

ijab

Wijab(ki,kj ,ka)T
#,Nk

ijab (ki,kj ,ka), (2)

whereWijab(ki,kj ,ka) is the antisymmetrized ERI and the normalized double amplitudeT#,Nk

ijab (ki,kj ,ka)
is different in each term (annotated by #). For example, the double amplitudes in MP2 and MP3-4h2p (reads

“4 hole 2 particle”, because i, j, k, l are hole indices and a, b are particle indices) energies are defined as

TMP2,Nk

ijab (ki,kj ,ka) =
1

εaka,bkb

iki,jkj

〈aka, bkb|iki, jkj〉 , (3)

T
MP3-4h2p,Nk

ijab (ki,kj ,ka) =
1

Nk

∑

kk∈K

∑

kl

1

εaka,bkb

iki,jkj

〈kkk, lkl|iki, jkj〉
〈aka, bkb|kkk, lkl〉

εaka,bkb

kkk,lkl

. (4)

Unlike the MP2 energy which only involves interactions between particle-hole pairs (iki, aka) and (jkj , bkb),
the MP3-4h2p energy involves interactions between hole-hole pairs (iki, kkk) and (jkj , lkl). It is such in-

teraction terms involving particle-particle or hole-hole pairs in MP3 and CCD that lead to considerable

difficulties in the finite-size error analysis, compared to the existing analysis for MP2.

The CCD correlation energy is also defined as Eq. (2) with the double amplitude being an infinite sum of

the double amplitudes from a subset of finite order perturbation energies. Specifically, the double amplitude

in CCD calculation is defined as the solution of a nonlinear amplitude equation which consists of constant,

linear, and quadratic terms. The exact definition of the amplitude equation is provided in Eq. (25).

A common practice in CCD calculation is to solve the amplitude equation approximately using fixed point

iterations with a zero initial guess which is equivalent to a quasi-Newton method [17]. After n iterations, we

refer to the approximate amplitude as the CCD(n) amplitude and the resulting approximate energy as the

CCD(n) energy. At the (n+1)th iteration, plugging the CCD(n) amplitude from the previous iteration into

the right hand side of the amplitude equation in Eq. (25) gives the CCD(n+ 1) amplitude. If the mean-field

calculation gives a good reference wavefunction and the direct gap between occupied and virtual bands is

sufficiently large, this iteration converges and CCD(n) converges to CCD [17]. The CCD(n) scheme is

directly related to the Møller-Plesset perturbation theory [18]. For example, MP2 can be identified with

CCD(1), and CCD(2) contains all terms in MP2 and MP3, as well as a subset of terms in MP4.

In the TDL with K converging to Ω∗, the correlation energy in Eq. (2) converges to an integral as

ETDL
# =

1

|Ω∗|3
∫

(Ω∗)×3

dki dkj dka
∑

ijab

Wijab(ki,kj ,ka)T
#,TDL
ijab (ki,kj ,ka), (5)

where we note that the double amplitude is converged as well (indicated by its superscript “TDL”). For each

finite order perturbation energy in CCD except MP2, its double amplitude also converges to an integral in
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the TDL. For example, the double amplitude Eq. (4) in MP3-4h2p term converges to

T
MP3-4h2p,TDL

ijab (ki,kj ,ka) =
1

|Ω∗|

∫

Ω∗

dkk
∑

kl

1

εaka,bkb

iki,jkj

〈kkk, lkl|iki, jkj〉
〈aka, bkb|kkk, lkl〉

εaka,bkb

kkk,lkl

. (6)

Since CCD(n) consists of a finite number of perturbation terms, its double amplitude converges to a sum of

many integral terms in the TDL. For more background information, we refer readers to Appendix A.

III. STATEMENT OF MAIN RESULTS

Comparing ENk

# in Eq. (2) and ETDL
# in Eq. (5), we could split the finite-size error of any term in CCD

calculation as

ETDL
# − ENk

# =



 1

|Ω∗|3
∫

(Ω∗)×3

dki dkj dka −
1

N3
k

∑

kikjka∈K




∑

ijab

(
WijabT

#,TDL
ijab

)
(ki,kj ,ka)

+
1

N3
k

∑

kikjka∈K

∑

ijab

Wijab(ki,kj ,ka)
(
T#,TDL
ijab (ki,kj ,ka)− T#,Nk

ijab (ki,kj ,ka)
)
, (7)

where the two parts can be interpreted respectively as the finite-size errors in the energy calculation using

exact amplitudes and in the amplitude calculations. Analyzing these two parts separately, we provide a

rigorous estimate of the finite-size error in CCD(n) calculations.

Theorem 1 (Error of CCD(n)). In CCD(n) calculation with any n > 0, the finite-size errors in energy

calculation using exact amplitudes and in amplitude calculations can be estimated as

∣∣∣∣∣∣



 1

|Ω∗|3
∫

(Ω∗)×3

dki dkj dka −
1

N3
k

∑

kikjka∈K




∑

ijab

(
WijabT

CCD(n),TDL

ijab

)
(ki,kj ,ka)

∣∣∣∣∣∣
= O(N−1

k ),

max
ijab,kikjka∈K

∣∣∣T CCD(n),TDL

ijab (ki,kj ,ka)− T
CCD(n),Nk

ijab (ki,kj ,ka)
∣∣∣ = O(N

− 1

3

k ).

Combining these two estimates with Eq. (7), the overall finite-size error in CCD(n) energy calculation is

∣∣∣ETDL
CCD(n) − ENk

CCD(n)

∣∣∣ = O(N
− 1

3

k ).

We remark that in MP2, there is no finite-size error in its amplitude calculation, i.e., TMP2,TDL
ijab = TMP2,Nk

ijab .

As a result,

∣∣∣ETDL
MP2 − ENk

MP2

∣∣∣ = O(N−1
k ) which recovers the result in [22]. Since all terms in MP3 energy are

a subset of CCD(2), the above results on CCD(n) also provide a finite-size error analysis for MP3 energy

calculation.

Corollary 2. The finite-size error in MP2 calculations is O
(
N−1

k

)
, and the finite-size error in MP3 calcu-

lations is O
(
N

− 1

3

k

)
.

Theorem 1 provides the finite-size error estimates for CCD(n) calculations that consist of finite number of

perturbative terms (Feynman diagrams) in CCD, but not for the converged CCD calculation. These estimates
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holds for any fixed number of iterations n even when the iteration does not converge as n → ∞, and the

prefactors in these estimates depend on n. Under additional assumptions that can control the regularities of

the iterates and guarantee the convergence of the fixed point iterations in the finite and the TDL cases, we

show that the convergence rate of the finite-size error for the converged CCD energy calculation matches

that of the CCD(n) energy calculations.

Corollary 3 (Error of CCD). Under additional assumptions, the finite-size error in the CCD energy calcu-

lation is O(N
− 1

3

k ).

IV. PROOF FOR THEOREM 1

IV.1. Setup

In CCD(n) and all its included perturbation terms (e.g., MP2 and MP3), the double amplitudes computed

in the finite case can be viewed as tensors

{Tijab(ki,kj ,ka)}ijab,kikjka∈K ∈ C
nocc×nocc×nvir×nvir×Nk×Nk×Nk ,

where we assume nocc occupied and nvir virtual bands. Meanwhile, the exact double amplitudes in the TDL

can be viewed as a set of functions of ki,kj ,ka ∈ Ω∗ indexed by band indices i, j, a, b. As shown later in

Lemma 4, all these functions are in a function space T(Ω∗) with special smoothness properties and the exact

double amplitude can be described as

{Tijab(ki,kj ,ka)}ijab ∈ T(Ω∗)nocc×nocc×nvir×nvir .

In CCD(n) calculations with a finite Nk, the computed amplitude approximates the exact amplitude at

K ×K ×K. We define a map that evaluates the exact amplitude at this discrete mesh as

MK : T(Ω∗)nocc×nocc×nvir×nvir −→ C
nocc×nocc×nvir×nvir×Nk×Nk×Nk

{Tijab(ki,kj ,ka)}ijab −→ {Tijab(ki,kj ,ka)}ijab,kikjka∈K .

In the following discussions, we use T to refer to amplitude tensors in the finite case and t to refer to

amplitude functions in the TDL case. We focus on estimating the error in the amplitude calculation between

T and t using the (entrywise) max norm:

‖T −MKt‖∞ = max
ijab,kikjka∈K

|Tijab(ki,kj ,ka)− tijab(ki,kj ,ka)|. (8)

Similarly, define ‖t‖∞ = maxijab ‖tijab‖L∞(Ω∗×Ω∗×Ω∗) and ‖MKt‖∞ 6 ‖t‖∞.

Define the two linear functionals that compute the correlation energy with a given double amplitude in the

finite and the TDL cases, respectively, as

GNk
(T ) =

1

N3
k

∑

kikjka∈K

∑

ijab

Wijab(ki,kj ,ka)Tijab(ki,kj ,ka),

GTDL(t) =
1

|Ω∗|3
∫

(Ω∗)×3

dki dkj dka
∑

ijab

Wijab(ki,kj ,ka)tijab(ki,kj ,ka).
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Furthermore, we denote the two mappings that define the fixed point iterations over the amplitude equations

in the finite and the TDL cases, respectively, as

FNk
(T ) : Cnocc×nocc×nvir×nvir×Nk×Nk×Nk → C

nocc×nocc×nvir×nvir×Nk×Nk×Nk ,

FTDL(t) : T(Ω
∗)nocc×nocc×nvir×nvir → T(Ω∗)nocc×nocc×nvir×nvir ,

which correspond to the right hand sides of Eq. (25) and Eq. (27) with all the concerned i, j, a, b,ki,kj ,ka.

One main technical result of this paper is to prove that the image of FTDL is in T(Ω∗)nocc×nocc×nvir×nvir (see

Lemma 4).

Using these notations, the CCD(n) energy calculation in the finite case can be formulated as

ENk

CCD(n) = GNk
(Tn) with

Tm = FNk
(Tm−1),m = 1, 2, . . .

T0 = 0 ∈ Cnocc×nocc×nvir×nvir×Nk×Nk×Nk
, (9)

and in the TDL case can be formulated as

ETDL
CCD(n) = GTDL(tn) with

tm = FTDL(tm−1),m = 1, 2, . . .
t0 = 0 ∈ T(Ω∗)nocc×nocc×nvir×nvir

. (10)

To connect to the previous notations in Section III, we have

Tn = {T CCD(n),Nk

ijab (ki,kj ,ka)}ijab,ki,kj ,ka∈K and tn = {T CCD(n),TDL

ijab (ki,kj ,ka)}ijab.

When the two fixed point iterations converge with respect to n, the corresponding CCD(n) energies converge

to the CCD energies in the finite and the TDL cases, respectively.

Lastly, we introduce the notations for the trapezoidal quadrature rule that will be used in the proof. Given

an n-dimensional cubic domain V , we construct a uniform mesh X in V by first partitioning V into sub-

domains uniformly and then sampling one point in each subdomain with the same offset. The (generalized)

trapezoidal rule for an integrand f(x) in V using X is defined as

QV (f,X ) =
|V |
|X |

∑

xi∈X

f(xi).

Further denote the targeted exact integral and the corresponding quadrature error as

IV (f) =
∫

V

f(x) dx, EV (f,X ) = IV (f)−QV (f,X ).

In the following analysis, we abuse the notation “C” to denote a generic constant that is independent of

any concerned terms in the context unless otherwise specified. In other words, f 6 Cg is equivalent to

|f | = O(|g|).

IV.2. Proof Outline

In CCD(n) calculation, the splitting of the finite-size error shown in Eq. (7) can be written as

∣∣∣ETDL
CCD(n) − ENk

CCD(n)

∣∣∣ = |GTDL(tn)− GNk
(Tn)|

6 |GTDL(tn)− GNk
(MKtn)|+ |GNk

(MKtn)− GNk
(Tn)|

6 |GTDL(tn)− GNk
(MKtn)|+ C ‖MKtn − Tn‖∞ , (11)
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where the last two terms can be interpreted as the error in the energy calculation using the exact CCD(n) am-

plitude tn and the error in the amplitude calculation, respectively. The last inequality uses the boundedness

of the linear operator GNk
, i.e.,

|GNk
(T )| 6 1

N3
k

∑

kikjka∈K

∑

ijab

|Wijab(ki,kj ,ka)Tijab(ki,kj ,ka)|

6
1

N3
k

∑

kikjka∈K

∑

ijab

C max
ijab,kikjkc∈K

|Tijab(ki,kj ,ka)| 6 C‖T ‖∞.

This uses the fact that Wijab(ki,kj ,ka) = O(1).
The error in the energy calculation using exact amplitude can be interpreted as a quadrature error

|GTDL(tn)− GNk
(MKtn)| =

∣∣∣∣∣∣
1

|Ω∗|3 EΩ∗×Ω∗×Ω∗



∑

ijab

(Wijab[tn]ijab) (ki,kj ,ka),K ×K ×K




∣∣∣∣∣∣
.

(12)

The defined integrand is periodic with respect to ki,kj ,ka ∈ Ω∗. As a result, the dominant quadrature error

is determined by the smoothness properties of the integrand. The antisymmetrized ERI, Wijab, is made of

two ERIs. The ERI 〈iki, jkj |aka, bkb〉 is singular (or slightly more accurately, nonsmooth) only at zero

momentum transfer q = ka − ki = 0 (and its periodic images) due to the fraction term in its definition

Eq. (1),

4π

|Ω|
ˆ̺iki,a(ki+q)(0)ˆ̺jkj ,b(kj−q)(0)

|q|2 .

In this term, the numerator is smooth with respect to ki,kj ,q and the singularity solely comes from the

denominator that only depends on q. The other ERI 〈iki, jkj |bkb, aka〉 in Wijab has similar singularity

structure at its zero momentum transfer point.

We characterize the singularity structure of CC amplitudes and ERIs in terms of the algebraic singularity

of certain orders (see Section V.1). Our first main technical result is that the singularity structure of all the

exact CCD(n) amplitude entries, [tn]ijab(ki,kj ,ka), is the same as that of the ERI 〈iki, jkj |aka, bkb〉 (or

equivalently the MP2/CCD(1) amplitude entries).

Lemma 4 (Singularity structure of the amplitude). In CCD(n) calculation with n > 0, each entry of the

exact double amplitude tn = {T CCD(n),TDL

ijab }ijab belongs to the following function space

T(Ω∗) =
{
f(ki,kj ,ka) : f is periodic with respect to ki,kj ,ka ∈ Ω∗,

f is smooth everywhere except at ka = ki with algebraic singularity of order 0,

f is smooth with respect to ki,kj at nonsmooth point ka = ki
}
.

Our second technical result is the estimate of the quadrature error in the energy calculation using an

arbitrary amplitude t whose each entry lies in T(Ω∗) (which covers the exact CCD(n) amplitude).

Lemma 5 (Energy error with exact amplitude). For an arbitrary amplitude t ∈ T(Ω∗)nocc×nocc×nvir×nvir , the

finite-size error in energy calculation using t can be estimated as

|GTDL(t)− GNk
(MKt)| 6 CN−1

k .
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The above two lemmas together prove that the finite-size error in the energy calculation using the exact

CCD(n) amplitude in Eq. (12) scales as O(N−1
k ). As will be seen later, this can be much faster than the

convergence rate using the numerically computed amplitudes.

Similar to the finite-size error splitting in Eq. (11), the error in amplitude calculation can be split into two

terms using the recursive definitions of the CCD(n) amplitudes in the finite and the TDL cases

‖MKtn − Tn‖∞ = ‖MKFTDL(tn−1)−FNk
(Tn−1)‖∞

6 ‖MKFTDL(tn−1)−FNk
(MKtn−1)‖∞ + ‖FNk

(MKtn−1)−FNk
(Tn−1)‖∞ .

(13)

The first term is the error between the exact CCD(n) amplitude and the one computed using the exact

CCD(n − 1) amplitude MKtn−1. The second term is the error between the amplitude computed using the

exact CCD(n−1) amplitude, MKtn−1, and the one using the amplitude CCD(n−1) amplitude, Tn−1. The

latter can be interpreted as the error accumulation from the CCD(n− 1) amplitude calculation.

To estimate the first error term in the Eq. (13), the error between each exact and approximate amplitude

entry using tn−1, i.e.,

[MKFTDL(tn−1)−FNk
(MKtn−1)]ijab,kikjka

, ∀i, j, a, b, ∀ki,kj ,ka ∈ K,

can be decomposed into the summation of a series of quadrature errors that are associated with the calculation

of different linear and quadratic terms in the amplitude equation.

One third technical result is the estimate of these quadrature errors, and it suggests that this first error term

is of scale O(N
− 1

3

k ).

Lemma 6 (Amplitude error in a single iteration). For an arbitrary amplitude t ∈ T(Ω∗)nocc×nocc×nvir×nvir ,

the finite-size error in the next iteration amplitude calculation when using t can be estimated as

‖MKFTDL(t)−FNk
(MKt)‖∞ 6 CN

− 1

3

k . (14)

To address the second error term in Eq. (13), the goal is to show that the application of FNk
propagates the

error in the CCD(n−1) amplitude calculation in a controlled way. Specifically, noting that FNk
(T ) consists

of constant, linear and quadratic terms of T (see Eq. (25) for details), we can use its explicit definition to

show that the second error term can be bounded by the error in the CCD(n− 1) amplitude calculation.

Lemma 7 (Lipschitz continuity of the finite CCD iteration mapping). For two arbitrary amplitude tensors

T, S ∈ C
nocc×nocc×nvir×nvir×Nk×Nk×Nk , the iteration map FNk

in the finite case satisfies

‖FNk
(T )−FNk

(S)‖∞ 6 C (1 + ‖T ‖∞ + ‖S‖∞) ‖T − S‖∞. (15)

Substitute t = tn−1 in Eq. (14) and T = Tn, S = MKtn−1 in Eq. (15), the error splitting in Eq. (13) can

then be further estimated as

‖MKtn − Tn‖∞ 6 C (1 + ‖Tn−1‖∞ + ‖tn−1‖∞) ‖MKtn−1 − Tn−1‖∞ + CN
− 1

3

k , (16)

where the second constant C depends on the exact CCD(n − 1) amplitude tn−1. Combining this recursive

relation and the fact that MKt0 = T0, the finite-size error in the amplitude calculation can be estimated as

‖MKtn − Tn‖∞ 6 CN
− 1

3

k , ∀n > 0,

where constant C depends on tm with m = 0, 1, 2, . . . , n− 1. Lastly, we finish our proof of Theorem 1 by

combining this estimate, Lemma 5 with t = tn−1, and the error splitting in Eq. (11).
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V. MAIN TECHNICAL TOOLS

Our main idea is to interpret the finite size errors in the CCD(n) energy and amplitude calculations as

numerical quadrature errors of trapezoidal rules over certain singular integrals. Specifically, all the averaged

summations over K in GNk
and FNk

are trapezoidal rules that approximate corresponding integrations over

Ω∗ in GTDL and FTDL. The problem is thus reduced to estimating the quadrature errors of trapezoidal rules

over the integrands defined in GTDL and FTDL which consist of ERIs and exact amplitudes.

In general, the asymptotic error of a trapezoidal rule depends on boundary condition and smoothness

property of the integrand. In the ideal case when an integrand is periodic and smooth, the quadrature error

decays super-algebraically, i.e., faster than N−l
k with any l > 0, according to the standard Euler-Maclaurin

formula. (See Lemma 12 with a simple Fourier analysis explanation.) All the integrands defined in GTDL

and FTDL turn out be periodic but have point singularities. Therefore it is important to characterize the

singularity structure of ERIs and exact amplitudes that constitute all these concerned integrands.

The proof of Theorem 1 involves two main technical challenges: describing the singularity structure

of exact amplitudes in Lemma 4, and the quadrature error estimates for integrands defined in energy and

amplitude calculations using exact amplitudes in Lemma 5 and Lemma 6. For the first challenge, we define

a class of functions with algebraic singularity of certain orders in Section V.1. For the second challenge,

we summarize five general integral forms from the energy and amplitude calculations in Section V.2 and

provide tight quadrature error estimates based on Poisson summation formula.

V.1. Algebraic singularity

Consider an ERI 〈n1k1, n2k2|n3k3, n4k4〉 as a periodic function of k1,k2,q = k3 − k1 over Ω∗ while

k4 = k2 − q using the crystal momentum conservation. By its definition, this ERI can be split as

〈n1k1, n2k2|n3k3, n4k4〉 =
4π

|Ω|
ˆ̺n1k1,n3(k1+q)(0)ˆ̺n2k2,n4(k2−q)(0)

|q|2 +
4π

|Ω|
∑

G∈L∗\{0}

· · ·
|q+G|2 , (17)

where all the terms with G 6= 0 are smooth with respect to k1,k2,q ∈ Ω∗ and the singularity of the ERI

only comes from the first fraction term at q = 0. The numerator of this fraction is smooth with respect to

k1,k2,q ∈ Ω∗ (note the assumption that ψnk(r) is smooth with respect to k) and is of scale O(|q|a) with

a ∈ {0, 1, 2} near q = 0 using orbital orthogonality. The exact value of a depends on the relation between

band indices (n1, n2) and (n3, n4). As can be verified by direct calculation, this fraction and its derivatives

over q with any fixed k1,k2 satisfy the following characterization.

Definition 8 (Algebraic singularity for univariate functions). A function f(x) has algebraic singularity of

order γ ∈ R at x0 ∈ Rd if there exists δ > 0 such that
∣∣∣∣
∂α

∂xα
f(x)

∣∣∣∣ 6 Cα|x− x0|γ−|α|, ∀0 < |x− x0| < δ, ∀α > 0,

where constant Cα depends on δ and the non-negative d-dimensional derivative multi-index α. For brevity,

f is also said to be singular (or nonsmooth) at x0 with order γ.

Remark 9. In integral equations, algebraic singularity is commonly used to describe the asymptotic be-

havior of a kernel function near a singular point. The above definition slightly generalizes this concept to

additionally include the asymptotic behaviors of all the derivatives. Note that when γ > 0, f(x) is contin-

uous but nonsmooth at x0 since its derivatives can be singular at this point. In this case, we slightly abuse

the name and still refer to x0 as a point of algebraic singularity.
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A simple example of such nonsmooth functions is p(x)/|x|2 where p(x) is smooth and of scale O(|x|γ+2)
near x = 0. Using this concept, the leading fraction term in Eq. (17) is nonsmooth at q = 0 with order γ ∈
{−2,−1, 0}. Since the smooth terms in Eq. (17) do not change the inequalities in Definition 8 qualitatively,

the ERI example is also nonsmooth at q = 0 with order γ. In addition, to connect the algebraic singularities

of the ERI example with varying k1,k2 ∈ Ω∗, we further introduce the algebraic singularity with respect to

one variable for a multivariate function.

Definition 10 (Algebraic singularity for multivariate functions). A function f(x,y) is smooth with respect

to y ∈ VY ⊂ Rdy for any fixed x and has algebraic singularity of order γ with respect to x at x0 ∈ Rdx if

there exists δ > 0 such that

∣∣∣∣
∂α

∂xα

(
∂β

∂yβ
f(x,y)

)∣∣∣∣ 6 Cα,β|x− x0|γ−|α|, ∀0 < |x− x0| < δ, ∀y ∈ VY , ∀α,β > 0,

where constant Cα,β depends on δ, α and β. Compared to the univariate case in Definition 8, the key

additions are the shared algebraic singularity of partial derivatives over y at x = x0 with order γ and the

independence of Cα,β on y ∈ VY .

A simple example of such nonsmooth functions is p(x,y)/|x|2 where p(x,y) is smooth and of scale

O(|x|γ+2) near x = 0. The first fraction term in Eq. (17) is of this form with x = q, y = (ki,kj), and

γ ∈ {−2,−1, 0}. Therefore the ERI example is smooth everywhere with respect to ki,kj ,q ∈ Ω∗ except

at q = 0 with order γ ∈ {−2,−1, 0}. If treating the ERI as a function of k1,k2,k3, then the ERI is

smooth everywhere except at k3 = k1 with order γ. This defines the algebraic singularity used in T(Ω∗) in

Lemma 4.

Lemma 4 states that all entries of the exact CCD(n) amplitude, [tn]ijab(ki,kj ,ka), are smooth every-

where in Ω∗ × Ω∗ × Ω∗ except at q = ka − ki = 0 with order 0 (as specified in T(Ω∗)). Due to similar

singularity structures between CC amplitudes and ERIs, we also refer to q as the momentum transfer of the

amplitude. Recall that the exact CCD(1) amplitude t1 =
{
〈aka, bkb|iki, jkj〉 /εaka,bkb

iki,jkj

}

ijab
has entries in

T(Ω∗) and tn is defined by recursively applying FTDL to t1. It is thus sufficient to prove that

FTDL(t) ∈ T(Ω∗)nocc×nocc×nvir×nvir , ∀t ∈ T(Ω∗)nocc×nocc×nvir×nvir .

For each set of (i, j, a, b), [FTDL(t)]ijab(ki,kj ,ka) consists of constant, linear, and quadratic terms of

t (see Eq. (27)). It turns out that each of these terms as a function of ki,kj ,q = ka − ki is smooth

everywhere except at q = 0 with order 0. The constant term is an MP2 amplitude entry [t1]ijab and can be

verified directly. All the linear terms are of integral form with integrands being the product of an ERI and

an amplitude entry, and can be categorized into three classes with representative examples (ignoring orbital

energy fraction and constant prefactor) as

∫

Ω∗

dkk
∑

kc

〈aka, kkk|iki, ckc〉 tkjcb(kk,kj ,kc), (18)

∫

Ω∗

dkk
∑

kc

〈aka, kkk|iki, ckc〉 tkjbc(kk,kj ,kb), (19)

∫

Ω∗

dkk
∑

kl

〈kkk, lkl|iki, jkj〉 tklab(kk,kl,ka), (20)

The difference among the three classes is the singularity structure of the integrand with respect to the integra-

tion variable, e.g., kk in the above examples. For any fixed ki,kj ,q 6= 0, the singular points of integrands
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(a)
∑

KC 〈AK|IC〉 tCB
KJ (b)

∑
KC 〈AK|CI〉 tCB

KJ (c)
∑

KC 〈AK|IC〉 tBC
KJ

(d)
∑

KC 〈AK|CJ〉 tCB
IK (e)

∑
KL 〈KL|IJ〉 tAB

KL (f)
∑

CD 〈AB|CD〉 tCD
IJ

Figure V.1. Diagrams of all the linear terms in the amplitude calculation. The dashed horizontal line denotes the ERI,

and the solid horizontal line denotes the t amplitude. The permuted amplitudes from (a), (b), (c), and (d) are not plotted.

A capital letter P refers to an orbital index (p,kp). The amplitude calculation in (f) can be formulated as an integral

over momentum vector kc, and in all other subplots as integrals over momentum vector kk.

in the three examples above with respect to kk are: (1) none, (2) kk = kb, (3) kk = ki and kk = ka. Hence

the three integrands are nonsmooth with respect to kk at zero, one, and two points, respectively. The goal is

to show that derivatives of these integrals with respect to ki,kj ,q ∈ Ω∗ exist except at q = 0 and satisfy

the algebraic singularity condition in Definition 10 with order γ = 0. The first two classes can be addressed

using the Leibniz integral rule for the differentiation under integral sign and direct derivative estimates after

the interchange of differentiation and integration operations. The third class requires more involved analysis

based on an additional technical lemma in Appendix E. Figure V.1 plots diagrams of all the linear amplitude

terms where the first class contains (a), the second contains (b) and (c), and the third contains (d), (e) and (f).

All the quadratic terms are also of integral form with integrands being the product of an ERI and two

amplitude entries, and the analysis of their smoothness property can be decomposed into two subproblems

similar to those for the linear terms above. For example, the 4h2p quadratic term is defined as

1

|Ω∗|2
∫

Ω∗

dkk

(∫

Ω∗

dkc
∑

klcd

〈kkk, lkl|ckc, dkd〉 tijcd(ki,kj ,kc)
)
tklab(kk,kl,ka). (21)

The term in the parenthesis is a linear term as a function of ki,kj ,q,kk and is singular at kk = ki with

order 0. In other words, its singularity structure is the same as the ERI 〈kkk, lkl|iki, jkj〉 in the 4h2p linear

term in Eq. (20). The overall 4h2p quadratic term thus resembles the 4h2p linear term, simply with the ERI

replaced by the term in the parenthesis above, and the analysis for linear terms still can be applied to prove

its algebraic singularity of order 0 at q = 0.
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V.2. Quadrature error for periodic functions with algebraic singularity

Two quadrature error estimate problems need to be addressed for Theorem 1: the error in the energy

calculation using exact amplitude in Lemma 5 and the error in the single iteration amplitude calculation

using exact amplitude in Lemma 6. Integrands in these two problems are all products of orbital energy

fractions, ERIs, and exact amplitudes, and are periodic with respect to involved momentum vectors over Ω∗.

Therefore, their smoothness properties determine the dominant quadrature errors with a trapezoidal rule.

Specifically, the integrand nonsmoothness only comes from the algebraic singularity of ERIs and amplitudes

at their zero momentum transfer points (and their periodic images). The dominant quadrature errors thus

come from the numerical quadrature over integration variables dependent on the momentum transfer vectors

of the included ERIs and amplitudes.

By proper change of variables and splitting of error terms, all the quadrature error estimates in Lemma 5

and Lemma 6 can be summarized as those for the five types of integrals described in Table V.1. The quadra-

ture errors for these five integrals are studied separately in Lemmas 12, 14, 16, 18 and 20 in Appendix D. In

our finite-size error analysis, we have V = Ω∗, d = 3, and m = N
− 1

3

k .

Table V.1. Five types of integrals in the quadrature error estimate problems that appear in CCD energy and amplitude

calculations. All functions are assumed to be periodic with respect to V ⊂ R
d and are smooth everywhere except at the

singular points. Parameter d denotes the domain dimension and m denotes the number of points along each dimension in

the uniform mesh used for trapezoidal quadrature rule (thus the mesh has md points). The “Estimate” column gives the

quadrature error estimates for the trapezoidal rule using an md-sized mesh, which are obtained in the lemma specified

in the “Lemma” column.

Description Singular points and order Estimate Lemma

∫

V
dxf(x) None Super-Algebraic Lemma 12

∫

V
dxf(x) x = 0 of order γ m−(d+γ) Lemma 14

∫

V
dxf1(x)f2(x)

f1(x): x = 0 of order γ;

f2(x): x = z of order 0
m−(d+γ) Lemma 16

∫

V ×V
dx1 dx2f1(x1,x2)f2(x1,x2) fi(x1,x2): xi = 0 of order

γi, i = 1, 2
m−(d+mini γi) Lemma 18

∫

V ×V
dx1 dx2f1(x1,x2)f2(x1,x2)f3(x1,x2±x1)

fi(x1,x2): xi = 0 of order

γi, i = 1, 2;

f3(x1, z): z = 0 of order 0
m−(d+mini γi) Lemma 20

To demonstrate the classification in Table V.1, we provide three examples.

Example 1: The 4h2p linear terms in the amplitude calculation with any fixed i, j, a, b and ki,kj ,ka
using an exact amplitude t ∈ T(Ω∗)nocc×nocc×nvir×nvir is of the form

∫

Ω∗

dkk
∑

kl

〈kkk, lkl|iki, jkj〉 tklab(kk,kl,ka). (22)

The ERI and the amplitude have momentum transfers q1 = ki−kk and q2 = ka−kk, respectively. By the

change of variable kk → ki−q1, the integral with each k, l over q1 ∈ Ω∗ is a product of two functions that
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have algebraic singularity at q1 = 0 and q2 = q1 + (ka − ki) = 0 and thus belongs to type 3 in Table V.1.

Since the ERI with k = i, l = j is nonsmooth at q1 = 0 with order −2, the overall quadrature error in the

calculation of this term using K is of scale O(N
− 1

3

k ) according to the estimate.

Example 2: The correlation energy exchange term using an exact amplitude t is of form
∫

Ω∗×Ω∗×Ω∗

dki dkj dka
∑

ijab

〈iki, jkj |bkb, aka〉 tijab(ki,kj ,ka).

The ERI and the amplitude have momentum transfers q1 = kb − ki and q2 = ka − ki, respectively. By the

change of variables kj → ka + q1 and ki → ka − q2, the integrand is defined over ka,q1,q2 ∈ Ω∗ and is

smooth with respect to ka. As a result, the partial integral over ka belongs to type 1 and for each fixed ka
the partial integral over q1,q2 belongs to type 4. Since the included ERIs and amplitudes all have algebraic

singularities of order 0, the quadrature error in calculating this term scales as O(N−1
k ).

Example 3: The 4h2p quadratic term in the amplitude calculation is of form
∫

Ω∗×Ω∗

dkk dkc
∑

klcd

〈kkk, lkl|ckc, dkd〉 tijcd(ki,kj ,kc)tklab(kk,kl,ka),

where kl = ki+kj −kk and kd = ki+kj −kc by crystal momentum conservation. The three momentum

transfers are q1 = kc − kk, q2 = kc − ki, and q3 = ka − kk. By the change of variables kc → ki + q2

and kk → ki + q2 − q1, we have q3 = q1 − q2 + (ka − ki) and the integral over q1,q2 belongs to type

5. Since the included ERIs and amplitudes all have algebraic singularities of order 0, the quadrature error in

calculating this term scales as O(N−1
k ).

Table V.2 summarizes the quadrature error estimates for all the CCD amplitude and energy calculations

in the proofs of Lemma 5 and Lemma 6. Note that all entries of the exact CCD(n) amplitude tn are smooth

everywhere except at ka = ki with order 0. The order of singularity of an ERI 〈n1k1, n2k2|n3k3, n4k4〉 at

k3 − k1 = 0 equals to −2, −1, and 0 respectively when its band indices match (i.e., n1 = n3, n2 = n4),

partially match (i.e., n1 = n3, n2 6= n4 or n1 6= n3, n2 = n4), and do not match (i.e., n1 6= n3, n2 6= n4).

Excluding the special terms with super-algebraically decaying errors, the rule of thumb for these quadrature

error estimates is that one calculation can have O(N
− 1

3

k ), O(N
− 2

3

k ), and O(N−1
k ) errors respectively when

it contains ERIs with matching, partially matching, and no-matching band indices. For example, the 4h2p

linear term in Eq. (22) consists of ERI-amplitude products with varying band indices k, l. The products with

(1) k = i, l = j, (2) k = i, l 6= j or k 6= i, l = j, and (3) k 6= i, l 6= j have respectively O(N
− 1

3

k ),

O(N
− 2

3

k ), and O(N−1
k ) quadrature errors due to the ERI 〈kkk, lkl|iki, jkj〉. The overall quadrature error

in the 4h2p linear term is thus O(N
− 1

3

k ), dominated by the product term with k = i, l = j. In CCD

amplitude calculations, ERIs with matching or partially matching band indices only appear in terms whose

diagrams have interaction vertices with ladder structure, see Fig. V.1 for the four linear terms in Table V.2

with O(N
− 1

3

k ) error.

VI. NUMERICAL EXAMPLES

To demonstrate the finite-size errors in the energy and amplitude calculations with large k-point meshes,

we consider a model system with an effective potential field. Using a fixed effective potential field, we can

obtain orbitals and orbital energies in the TDL at any k point, which satisfies the assumptions in Theorem 1.

This simplified setup also enables us to perform large calculations using up to Nk = 163 = 4096 k points,

which can be interpreted as a supercell with 4096 atoms in total.
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Table V.2. Error estimate for each individual term that appear in CCD energy (using exact amplitudes) as well as

amplitude calculations. All amplitude terms assume fixed I, J,A,B and the integral over momentum vector and the

summation over band indices are over intermediate orbitals, e.g., K,L,C,D. Each of the 3h3p linear terms permuted

by P in Eq. (27) has the same error estimates as the unpermuted one and is not listed here.

Type Terms Error Estimate

Energy
∑

IJAB 〈IJ |AB〉 tAB
IJ ,

∑

IJAB 〈IJ |BA〉 tAB
IJ N−1

k

Amplitude

constant 〈AB|IJ〉 0

linear

〈KL|IJ〉 tAB
KL, 〈AB|CD〉 tCD

IJ , 〈AK|CI〉 tCB
KJ , 〈AK|CJ〉 tBC

KI N
− 1

3

k

〈AK|IC〉 tBC
KJ N−1

k

〈AK|IC〉 tCB
KJ Super-Algebraic

quadratic
〈LK|DC〉 tAD

IL tCB
KJ Super-Algebraic

all other terms N−1
k

Let the unit cell be Ω = [0, 1]3, we use 16 planewave basis functions along each direction to discretize

operators and functions in this unit cell (i.e., the number of G points is 163 = 4096 and this is independent

of Nk). At each momentum vector k ∈ Ω∗, we solve the effective Kohn-Sham equation to obtain nocc = 1
occupied orbital and nvir = 1 virtual orbital where the Gaussian effective potential is defined as

V (r) =
∑

R∈L

C exp

(
−1

2
(r+R− r0)

⊤Σ−1(r+R− r0)

)
,

with r0 = (0.5, 0.5, 0.5), Σ = diag(0.12, 0.22, 0.32), and C = −200. This model problem has a direct gap

of size around 30.4 between the occupied and virtual bands.

Figure VI.1 plots six calculations that are representative of the error estimates summarized in Table V.2

using the exact CCD(1) amplitude. To identify the asymptotic error scaling without reference values, in each

plot, we use the three data points at smallNk to construct the power-law extrapolations (i.e., the curve fitting

in the form C0 + C1N
−s
k ) and the discrepancy between the extrapolation and the actual values at larger

Nk can then be used to measure the fitting quality. As can be observed, the convergence rates of the tested

energy and amplitude calculations are consistent with the theoretical estimates in Table V.2. These results

thus justify the finite-size error estimates in Lemma 5 and Lemma 6, and the series of general quadrature

error estimates for periodic functions with algebraic singularity obtained in Lemmas 12, 14, 16, 18 and 20.

These numerical evidences demonstrate that the estimate of the finite-size error in Theorem 1 is sharp.

VII. DISCUSSION

We have investigated the convergence rate of the periodic coupled cluster theory calculations towards the

thermodynamic limit. The analysis in this paper focuses on the simplest and representative CC theory, i.e.,

the coupled cluster doubles (CCD) theory. Since CCD consists of many finite order perturbation energy

terms from Møller-Plesset perturbation theory, this also provides the first finite-size error analysis of these

included perturbation energy terms, e.g., MP3. We interpret the finite-size error as numerical quadrature

error. The key steps include: (1) analyze the singularity structure, i.e., the algebraic singularity of the

integrand; (2) bound the quadrature error of the (univariate or multivariate) trapezoidal rule of singular

integrands with certain algebraic singularity. Our quadrature analysis based on the Poisson summation

formula for certain “punctured” trapezoidal rules and may be of independent interest in other contexts.
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Figure VI.1. Energy and amplitude calculations using exact CCD(1) amplitude. All the amplitudes are evaluated at

ki = kj = (0, 0, 0),ka = (0, 0, π) and (i, j, a, b) = (1, 1, 2, 2). The power-law extrapolations use the three data points

at Nk = 53, 63, 73 in (a) and Nk = 63, 83, 103 in the remaining subplots. These calculations are estimated theoretically

in Table V.2 to have quadrature errors decay asymptotically in the rate of N−1
k

, N
− 1

3

k
, N−1

k
, super-algebraically, super-

algebraically, and N−1
k

, respectively. In subplots (d) and (e), the actual data curve converges faster than the power-law

extrapolations using N−1
k

and N
− 1

3

k
. This can be seen as evidence that the quadrature errors decay super-algebraically.

Our main result in Theorem 1 studied the finite-size error in CCD(n) calculation with any n > 0 number

of fixed point iterations over the amplitude equation. However, for gapless and small-gap systems, it has

been observed in practice that this fixed point iteration might not converge or the amplitude equation might

have multiple solutions. In the case of divergence, the perturbative interpretation of CCD is not valid any

more and our analysis over CCD(n) can not be exploited to study the finite size error in the CCD energy

calculation. In the case of multiple solutions, CCD itself is not well defined and nor is the problem of its



18

finite-size error analysis.

Our finite-size error analysis is not applicable to theories that do not directly rely on Hartree-Fock orbitals

and orbital energies, such as tensor network methods or quantum Monte Carlo methods. The precise analysis

of these methods may require a more detailed understanding of the behavior of structure factors [4, 9]. For

gapless systems (e.g., metals), additional singularities are introduced by the orbital energy differences of the

form (εaka,bkb

iki,jkj
)−1 and the occupation number near the Fermi surface. Quadrature error analysis in this case

needs to take into account of these additional singularity structures, and the finite-size scaling in metals can

also be qualitatively different from that in gapped systems [5, 8, 14].

Our statement that the finite-size error in CCD energy calculation scales as O(N
− 1

3

k ) may seem pes-

simistic compared to numerical results in the literature [5, 11], which find the finite-size error of certain CC

calculations can scale as O(N−1
k ) when the nonlinear amplitude equation is solved self-consistently. Our

analysis is sharp for any constant number of iteration steps in the CCD(n) scheme, under the assumption

of the Hartree-Fock orbitals and orbital energies can be evaluated exactly at any given k point. The orbital

energies are needed in setting up the CC iterations (Eq. (25)), and the correction of finite-size errors in

the occupied orbital energies are important for the accurate evaluation of the Fock exchange energy. How-

ever, since the abstract form of the CC amplitude equation (Eq. (24)) can be statement without explicitly

referring to orbital energies, there may be a fortuitous error cancellation when the iteration scheme reaches

self-consistency. Specifically, if CCD calculation uses inexact Hartree-Fock orbital energies without any cor-

rection, the special structure of CCD amplitude equations implies that this simple scheme can be equivalent

to a more complex one, which simultaneously applies the Madelung constant correction to the Hartree-Fock

orbital energies [23], and the shifted Ewald kernel [4] correction to the ERIs. In other words, the finite-

size error correction to the orbital energy alone may be detrimental in CCD theories. The analysis of this

more complex method is beyond the scope of this work. A viable path may be combining the quadrature

error analysis with the singularity subtraction method [6, 20, 23] for simultaneous correction of the orbital

energies and ERIs.

While we have focused on the finite-size error of the ground state energy, we think our quadrature based

analysis includes some of the essential ingredients in analyzing the finite-size errors for a wide range of

diagrammatic methods in quantum physics and quantum chemistry, such as n-th order Møller-Plesset per-

turbation theory (MPn), GW, CCSD, CCSD(T), and equation of motion coupled cluster (EOM-CC) theories.
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surfaces in the thermodynamic limit. Phys. Rev. X, 8(2):021043, 2018.

[6] F. Gygi and A. Baldereschi. Self-consistent Hartree-Fock and screened-exchange calculations in solids: Applica-

tion to silicon. Phys. Rev. B, 34:4405–4408, 1986.

[7] S. Hirata, R. Podeszwa, M. Tobita, and R. J. Bartlett. Coupled-cluster singles and doubles for extended systems. J.

Chem. Phys., 120(6):2581–2592, 2004.

[8] M. Holzmann, B. Bernu, and D. M. Ceperley. Finite-size analysis of the Fermi liquid properties of the homogeneous

electron gas. J. Phys. Conf. Ser., 321(1):012020, 2011.

[9] M. Holzmann, R. C. Clay, M. A. Morales, N. M. Tubman, D. M. Ceperley, and C. Pierleoni. Theory of finite size

effects for electronic quantum Monte Carlo calculations of liquids and solids. Phys. Rev. B, 94(3):1–16, 2016.

[10] F. Izzo, O. Runborg, and R. Tsai. High order corrected trapezoidal rules for a class of singular integrals. arXiv

preprint arXiv:2203.04854, 2022.
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Appendix A BRIEF INTRODUCTION OF MP3 AND CCD

The double amplitude T#,Nk

ijab (ki,kj ,ka) is commonly denoted in the literature as taka,bkb

iki,jkj
which assumes

implicitly the crystal momentum conservation,

ki + kj − ka − kb ∈ L
∗,

and a set of ki,kj ,ka can determine a unique kb ∈ Ω∗ accordingly. This explains our notation of the double

amplitude as a function of ki,kj ,ka with discrete indices i, j, a, b. For brevity, we use a capital letter P to

denote an orbital index (p,kp), and use P ∈ {I, J,K, L} to refer to occupied orbitals (a.k.a., holes) and

P ∈ {A,B,C,D} to refer to unoccupied orbitals (a.k.a., particles). Any summation
∑

P refers to summing

over all occupied or virtual band indices p and all momentum vectors kp ∈ K while the crystal momentum

conservation is enforced according to the summand.

A.1 Amplitude in the finite case

With a finite k-point mesh K of size Nk, the normalized MP3 amplitude TMP3,Nk

ijab (ki,kj ,ka) = tABIJ with

ki,kj ,ka ∈ K is defined as

tABIJ =
1

εABIJ
〈AB|IJ〉+ 1

εABIJ

[
1

Nk

∑

KL

〈KL|IJ〉 sABKL +
1

Nk

∑

CD

〈AB|CD〉 sCDIJ

+ P
(

1

Nk

∑

KC

(2 〈AK|IC〉 − 〈AK|CI〉)sCBKJ − 〈AK|IC〉 sBCKJ − 〈AK|CJ〉 sBCKI

)]
, (23)

where εABIJ = εI + εJ − εA − εB , sABIJ = 〈AB|IJ〉 /εABIJ is the normalized MP2 double amplitude, and P
is a permutation operator defined as P(· · · )ABIJ = (· · · )ABIJ + (· · · )BAJI . The three included summations are

referred to as the 4-hole-2-particle (4h2p), 2-hole-4-particle (2h4p), and 3-hole-3-particle (3h3p) terms in

MP3 according to the number of dummy occupied and virtual orbitals involved. We note that the summation

over each P implicitly enforces the crystal momentum conservation. For example, the MP3-4h2p amplitude

is explicitly written as

1

εABIJ

1

Nk

∑

KL

〈KL|IJ〉 sABKL =
1

εaka,bkb

iki,jkj

1

Nk

∑

kk∈K

∑

kl

〈kkk, lkl|iki, jkj〉 saka,bkb

kkk,lkl
,

where kl ∈ K is uniquely determined by ki,kj ,kk.

In CCD theory with a finite mesh K, the wavefunction is represented in an exponential ansatz as

|Ψ〉 = eT |Φ〉 := exp

(
1

Nk

∑

IJAB

tABIJ a
†
Aa

†
BaJaI

)
|Φ〉 ,

where a†P and aP are creation and annihilation operators, |Φ〉 is the reference Hartree-Fock determinant, and

tABIJ = T CCD,Nk

ijab (ki,kj ,ka) is the normalized CCD double amplitude. The double amplitude satisfies the

amplitude equation (which is derived from the Galerkin projection) as

〈ΦABIJ , e−T HKe
T Φ〉 = 0, ∀I, J, A,B, (24)
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where |ΦABIJ 〉 = a†Aa
†
BaJaI |Φ〉 is an excited single Slater determinant and HK is the model Hamiltonian

with k-point mesh K. In practice, this nonlinear amplitude equation can be solved using a quasi-Newton

method [17], which can be equivalently written in the form of a fixed point iteration as

tABIJ =
1

εABIJ
〈AB|IJ〉+ 1

εABIJ
P
(
∑

C

κACt
CB
IJ −

∑

K

κKI t
AB
KJ

)
+

1

εABIJ

[
1

Nk

∑

KL

χKLIJ t
AB
KL

+
1

Nk

∑

CD

χABCDt
CD
IJ + P

(
1

Nk

∑

KC

(2χAKIC − χAKCI )t
CB
KJ − χAKIC tBCKJ − χAKCJ t

BC
KI

)]
. (25)

This reformulation of CCD amplitude equation can also be derived from the CCSD amplitude equation in

[7] by removing all the terms related to single amplitudes and normalizing the involved ERIs and amplitudes

(which gives the extra 1/Nk factor in the equation and the intermediate blocks). The intermediate blocks in

the equation are defined as

κAC = − 1

N2
k

∑

KLD

(2 〈KL|CD〉 − 〈KL|DC〉) tADKL,

κKI =
1

N2
k

∑

LCD

(2 〈KL|CD〉 − 〈KL|DC〉) tCDIL ,

χKLIJ = 〈KL|IJ〉+ 1

Nk

∑

CD

〈KL|CD〉 tCDIJ ,

χABCD = 〈AB|CD〉 ,

χAKIC = 〈AK|IC〉+ 1

2Nk

∑

LD

(2 〈LK|DC〉 − 〈LK|CD〉) tADIL − 〈LK|DC〉 tDAIL ,

χAKCI = 〈AK|CI〉 − 1

2Nk

∑

LD

〈LK|CD〉 tDAIL ,

and their momentum vector indices also assume the crystal momentum conservation

κQP → kp − kq ∈ L
∗,

χRSPQ → kp + kq − kr − ks ∈ L
∗.

A.2 Amplitude in the TDL

In the TDL with K converging to Ω∗, all the averaged summation N−1
k

∑
k∈K converge to integration

|Ω∗|−1
∫
Ω∗ dk in MP3 and CCD. It is worth noting that the double amplitude is computed approximately on

K×K×K as a tensor in the finite case and it converges to a function of ki,kj ,ka defined in Ω∗ ×Ω∗×Ω∗

in the TDL. In MP3, the exact amplitude TMP3,TDL
ijab (ki,kj ,ka) = tABIJ with any ki,kj ,ka ∈ Ω∗ can be

formulated according to Eq. (23) as

tABIJ =
1

εABIJ
〈AB|IJ〉+ 1

εABIJ

[
1

|Ω∗|

∫

Ω∗

dkk
∑

kl

〈KL|IJ〉 sABKL +
1

|Ω∗|

∫

Ω∗

dkc
∑

cd

〈AB|CD〉 sCDIJ

+ P
(

1

|Ω∗|

∫

Ω∗

dkk
∑

kc

(2 〈AK|IC〉 − 〈AK|CI〉)sCBKJ − 〈AK|IC〉 sBCKJ − 〈AK|CJ〉 sBCKI

)]
. (26)
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Similarly in CCD, the amplitude equation in the TDL for the exact amplitudes as functions of ki,kj ,ka ∈
Ω∗ can be formulated according to Eq. (25) as

tABIJ =
1

εABIJ
〈AB|IJ〉+ 1

εABIJ
P
(
∑

C

κACt
CB
IJ −

∑

K

κKI t
AB
KJ

)
+

1

εABIJ

[
1

|Ω∗|

∫

Ω∗

dkk
∑

kl

χKLIJ t
AB
KL

+
1

|Ω∗|

∫

Ω∗

dkc
∑

cd

χABCDt
CD
IJ + P

(
1

|Ω∗|

∫

Ω∗

dkk
∑

kc

(2χAKIC − χAKCI )t
CB
KJ − χAKIC tBCKJ − χAKCJ t

BC
KI

)]
,

(27)

where the intermediate blocks in the TDL are defined as

κAC = − 1

|Ω∗|2
∫

Ω∗×Ω∗

dkk dkl
∑

kld

(2 〈KL|CD〉 − 〈KL|DC〉) tADKL,

κKI =
1

|Ω∗|2
∫

Ω∗×Ω∗

dkc dkd
∑

lcd

(2 〈KL|CD〉 − 〈KL|DC〉) tCDIL ,

χKLIJ = 〈KL|IJ〉+ 1

|Ω∗|

∫

Ω∗

dkc
∑

cd

〈KL|CD〉 tCDIJ ,

χABCD = 〈AB|CD〉 ,

χAKIC = 〈AK|IC〉+ 1

2|Ω∗|

∫

Ω∗

dkl
∑

ld

(2 〈LK|DC〉 − 〈LK|CD〉) tADIL − 〈LK|DC〉 tDAIL ,

χAKCI = 〈AK|CI〉 − 1

2|Ω∗|

∫

Ω∗

dkl
∑

ld

〈LK|CD〉 tDAIL .

A.3 Amplitude in CCD(n)

In this paper, we use CCD(n) to refer to solving the CCD amplitude approximately by applying n fixed

point iterations with a zero initial guess to the amplitude equation and then using the obtained amplitude to

compute an approximate CCD energy. In the finite case, the initial amplitude for CCD(0) is set as zero and

when n = 1 we have

T
CCD(1),Nk

ijab (ki,kj ,ka) =
1

εABIJ
〈AB|IJ〉 .

Therefore, CCD(1) can be identified with MP2. In CCD(2) calculation, the CCD(1) amplitude is plugged

into the right hand side of Eq. (25) where the constant term plus all the linear terms exactly gives the MP3

amplitude in Eq. (23) and all the quadratic terms belong to the MP4 amplitude. Therefore, CCD(2) contains

all terms in MP2 and MP3, as well as a subset of MP4.

At the nth iteration, we plug the CCD(n − 1) amplitude from the (n − 1)th iteration into the right hand

side of the amplitude equation in Eq. (25) and the left hand side gives the CCD(n) amplitude, i.e.,

T
CCD(n),Nk

ijab (ki,kj ,ka) =
1

εABIJ
〈AB|IJ〉+ 1

εABIJ
P
(
∑

C

κACT
CCD(n−1),Nk

ijcb (ki,kj ,kc)

−
∑

K

κKI T
CCD(n−1),Nk

kjab (kk,kj ,ka)

)
+

1

εABIJ

1

Nk

∑

KL

χKLIJ T
CCD(n−1),Nk

klab (kk,kl,ka) + · · ·
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where all the involved intermediate blocks are now computed using CCD(n− 1) amplitude, e.g.,

κAC =
1

N2
k

∑

KLD

(2 〈KL|CD〉 − 〈KL|DC〉)T CCD(n−1),Nk

klad (kk,kl,kc),

χKLIJ = 〈KL|IJ〉+ 1

Nk

∑

CD

〈KL|CD〉T CCD(n−1),Nk

ijcd (ki,kj ,kc).

In the finite case, by unfolding the fixed point iteration, the CCD(n) amplitude consists of many averaged

summations of products of ERIs and orbital energy fractions which correspond to the double amplitudes of

certain perturbation terms in Møller-Plesset perturbation theory [18] with order up to 2n. Each averaged

summation in the unfolded CCD(n) amplitude converges in the TDL to an integral over involved intermedi-

ate momentum vectors in Ω∗. As a result, the CCD(n) amplitude in the TDL could be explicitly formulated

as a summation of many integrals which are respectively approximated by trapezoidal rules in the finite case.

On the other hand, the CCD(n) amplitude in the TDL can also be defined recursively by applying n fixed

point iterations to the amplitude equation in the TDL in Eq. (27), i.e.,

T
CCD(n),TDL

ijab (ki,kj ,ka) =
1

εABIJ
〈AB|IJ〉+ 1

εABIJ
P
(
∑

c

κaka

cka
T

CCD(n−1),TDL

ijcb (ki,kj ,ka) (28)

−
∑

k

κkki

iki
T

CCD(n−1),TDL

kjab (ki,kj ,ka)

)
+

1

εABIJ

1

|Ω∗|

∫

Ω∗

dkk
∑

kl

χKLIJ T
CCD(n−1),TDL

klab (kk,kl,ka) + · · ·

where all the involved intermediate blocks are computed using exact CCD(n− 1) amplitude. Unfolding this

fixed point iteration, it can be verified that this recursive definition of the amplitude in the TDL is consistent

with the above definition obtained by taking the thermodynamic limit of each individual averaged summation

term in the double amplitude in the finite case.

Appendix B PROOF OF THEOREM 1

B.1 Proof of Lemma 4: Singularity structure of the exact CCD(n) amplitude

Based on the smoothness property of ERIs in Section V.1, it can be verified that each CCD(1) ampli-

tude entry, i.e., the MP2 amplitude with any (i, j, a, b), lies in T(Ω∗) and thus satisfies the statement in

the lemma. Since the exact CCD(n) amplitude with n > 1 is defined by recursively applying FTDL in

Eq. (10) to the CCD(1) amplitude, it is sufficient to prove that FTDL(t) ∈ T(Ω∗)nocc×nocc×nvir×nvir , ∀t ∈
T(Ω∗)nocc×nocc×nvir×nvir .

Consider an arbitrary t ∈ T(Ω∗)nocc×nocc×nvir×nvir . Fixing a set of (i, j, a, b), we focus on analyzing the

constant, linear, and quadratic terms included in the entry [FTDL(t)]ijab

[FTDL(t)]ijab (ki,kj ,ka) =
1

εaka,bkb

iki,jkj

〈aka, bkb|iki, jkj〉

+
1

εaka,bkb

iki,jkj

1

|Ω∗|

∫

Ω∗

dkk
∑

kl

〈kkk, lkl|iki, jkj〉 tklab(kk,kl,ka)

+
1

εaka,bkb

iki,jkj

1

|Ω∗|2
∫

Ω∗

dkk

∫

Ω∗

dkc
∑

klcd

〈kkk, lkl|ckc, dkd〉 tijcd(ki,kj ,kc)tklab(kk,kl,ka)

+ · · · , (29)
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where the listed linear and quadratic terms come from the 4h2p term χKLIJ t
AB
KL in Eq. (27) and the neglected

terms include all the remaining linear and quadratic terms. Our goal is to prove that each of these terms

as a function of ki,kj ,ka is in T(Ω∗). It can be verified directly that these terms satisfy the periodicity

condition described in T(Ω∗). Therefore we focus on showing that these terms are smooth everywhere

except at q = ka − ki = 0 with order 0 and is smooth with respect to ki,kj ∈ Ω∗ when q = 0. We recall

the algebraic singularity for multivariate functions in Definition 10 that a periodic function f(ki,kj ,ka) is

smooth everywhere in except at ka = ki with order γ if with the change of variable ka → ki + q, there

exists constants {Cα,β} satisfying

∣∣∣∣
∂α

∂qα

(
∂β

∂(ki,kj)β
f(ki,kj ,q)

)∣∣∣∣ 6 Cα,β|q|γ−|α|, ∀q ∈ Ω∗ \ {0},ki,kj ∈ Ω∗, ∀α,β > 0, (30)

where the inequality is extended to all q ∈ Ω∗ \ {0} by using the function smoothness.

The constant term is exactly an MP2/CCD(1) amplitude entry and lies in T(Ω∗).

All the linear terms takes the form of an integral over an intermediate momentum vector in Ω∗, and the

integrand is products of one ERI and one amplitude entry (see Eq. (29) for an example). These linear terms

can be categorized into three classes according to the number of singular points of the integrand with respect

to the intermediate momentum vector, see Table B.1. The analysis of smoothness properties with respect to

ki,kj ,ka is similar for terms in the same class. Below we illustrate the analysis for one example in each

class.

Table B.1. Classification of linear amplitude terms by the number of nonsmooth points with respect to the intermediate

momentum vector. The 3h3p terms permuted by P are of the same class as the unpermuted ones and thus not listed. The

summations over intermediate orbitals, e.g., K,L, C,D, and the prefactor 1/εAB
IJ are omitted for brevity.

Number of singular points Linear terms

0 〈AK|IC〉 tCB
KJ

1 〈AK|CI〉 tCB
KJ , 〈AK|IC〉 tBC

KJ

2 〈KL|IJ〉 tAB
KL, 〈AB|CD〉 tCD

IJ , 〈AK|CJ〉 tCB
IK

For linear terms with no singular point, we consider the 3h3p term 〈AK|IC〉 tCBKJ detailed as (ignoring

the prefactor and orbital energy fraction),

∫

Ω∗

dkk
∑

kc

〈aka, kkk|iki, ckc〉 tkjcb(kk,kj ,kc),

where kc = ka+kk−ki = kk+q. The ERIs and the amplitudes have momentum transfers ki−ka = −q

and kc − kk = q, respectively, which are both independent of kk. As a result, for any (ki,kj ,q) ∈ (Ω∗)×3

with q 6= 0, there exists an open domain containing this point where the above integrand is smooth with

respect to ki,kj ,q and kk ∈ Ω∗. This meets the condition of the Leibniz integral rule which can then be

used to prove that this integral is smooth at all points (ki,kj ,q) ∈ (Ω∗)×3 with q 6= 0 and any derivative

of this integral equals to the integral of the corresponding integrand derivatives. The algebraic singularity
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condition in Eq. (30) for this term at any ki,kj ,q ∈ Ω∗ with q 6= 0 can then be verified as

∣∣∣∣∂
α
q ∂

β
kikj

∫

Ω∗

dkk · · ·
∣∣∣∣ =

∣∣∣∣
∫

Ω∗

dkk∂
α
q ∂

β
kikj

· · ·
∣∣∣∣

6 C

∫

Ω∗

dkk
∑

kc

∣∣∣∣∣∣∣

∑

α0+α1=α
β0+β1=β

∂α0

q ∂β0

kikj
〈aka, kkk|iki, ckc〉 ∂α1

q ∂β1

kikj
tkjcb(kk,kj ,kc)

∣∣∣∣∣∣∣

6 C

∫

Ω∗

dkk
∑

kc

∣∣∣∣∣∣∣

∑

α0+α1=α
β0+β1=β

Cα,β|q|0−|α0||q|0−|α1|

∣∣∣∣∣∣∣

6 Cα,β|q|−|α|, (31)

where Cα,β denotes a generic constant depending on α,β and the third inequality uses the algebraic sin-

gularity of the ERIs and the amplitudes at q = 0 with order 0. Lastly, the ERI terms at q = 0 are smooth

with respect to ki,kj (see Eq. (1)) and so are the amplitudes by the assumption tkjcb ∈ T(Ω∗). We thus can

use the Leibniz integral rule to prove that the integral at q = 0 is smooth with respect to ki,kj . The above

discussion then shows this integral to be in T(Ω∗).
For linear terms with one nonsmooth point, we consider the 3h3p term 〈AK|CI〉 tCBKJ detailed as

∫

Ω∗

dkk
∑

kc

〈aka, kkk|ckc, iki〉 tkjcb(kk,kj ,kc),

where the ERIs and the amplitudes have momentum transfers kk − ki and kc − kk = q, respectively. By

the change of variable kk → ki + q1 and the integrand periodicity, this term can be reformulated as

∫

Ω∗

dq1

∑

kc

〈aka, k(ki + q1)|c(ka + q1), iki〉 tkjcb(ki + q1,kj ,ka + q1),

where the integrand is nonsmooth at q1 = 0 due to the ERIs and is asymptotically of scale O(1/|q1|2) near

q1 = 0. As a result, for any (ki,kj ,q) ∈ (Ω∗)×3 with q 6= 0, there exists an open domain containing this

point where the concerned integrand is smooth with respect to ki,kj ,q and q1 ∈ Ω∗ \ {0} and its absolute

value is bounded by C/|q1|2 from above which is integrable in Ω∗. This still meets the condition of the

Leibniz integral rule which can then be used to prove that this integral is smooth at all points (ki,kj ,q) ∈
(Ω∗)×3 with q 6= 0. The algebraic singularity of the integral at q = 0 can be similarly proved as in Eq. (31),

except now that the ERI derivatives are estimated as

∣∣∣∂α0

q ∂β0

kikj
〈aka, k(ki + q1)|ckc, iki〉

∣∣∣ 6 Cα,β/|q1|2,

by noting that the ERI here has momentum transfer q1 and is smooth with respect to ki,kj ,q.

For linear terms with two nonsmooth points, we consider the 4h2p linear term 〈KL|IJ〉 tABKL as detailed

in Eq. (29). We first denote the ERI and the amplitude with band indices (k, l) as

F kl1 (q1,ki,kj ,ka) = 〈k(ki − q1), l(kj + q1)|iki, jkj〉 ,
F kl2 (q2,ki,kj ,ka) = tklab(ka − q2,ki + kj − ka + q2,ka),
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where q1 and q2 are the respective momentum transfers of the two terms. Note that F kl1 does not depend on

ka which is included as a variable for general cases. Both the ERI and the amplitude depend on kk and kl and

these dependencies will be converted to that of q1,q2 using change of variables and the crystal momentum

conservation. For example, we have tklab(kk,ki + kj − kk,ka) = tklab(kk,kl,ka) = tklab(ka − q2,ki +
kj − ka + q2,ka).

Note that F kl1 can be verified to be periodic and smooth everywhere with respect to ki,kj ,ka,q1 ∈ Ω∗

except at q1 = 0 with order 0,−1, or −2 depending on the relation between (k, l) and (i, j). Similarly, F kl2

is periodic and smooth everywhere with respect to ki,kj ,ka,q2 ∈ Ω∗ except at q2 = 0 with order 0 by the

assumption tklab ∈ T(Ω∗). Using this notation, the 4h2p linear term can be reformulated as

1

|Ω∗|

∫

Ω∗

dkk
∑

kl

F kl1 (ki − kk,ki,kj ,ka)F
kl
2 (ka − kk,ki,kj ,ka)

=
1

|Ω∗|

∫

Ω∗

dq1

∑

kl

F kl1 (q1,ki,kj ,ka)F
kl
2 (q1 − (ki − ka),ki,kj ,ka),

where the second equation applies kk → ki−q1 and uses the integrand periodicity with respect to kk ∈ Ω∗.

Due to the integrand being nonsmooth at q1 = ki −ka and q1 = 0, the smoothness property of the integral

with respect to ki,kj ,ka cannot be obtained using the Leibniz integral rule as in the previous two cases. We

provide a technical lemma analyzing the singularity structure of such a function in integral form.

Lemma 11. Let f(x1,x2, z) be defined in V × V × VZ with V = [− 1
2 ,

1
2 ]
d and VZ ⊂ Rdz of arbitrary

dimension dz . Assume f(x1,x2, z) is periodic with respect to x1,x2 ∈ V and smooth everywhere except at

x1 = 0 or x2 = 0 where the nonsmooth behavior can be characterized as

∣∣∣∣
∂α1

∂xα1

1

∂α2

∂xα2

2

(
∂β

∂zβ
f(x1,x2, z)

)∣∣∣∣ 6 Cα1,α2,β|x1|γ1−|α1||x2|γ2−|α2|, ∀x1,x2 ∈ V \ {0}, z ∈ VZ , (32)

with any derivative orders α1,α2,β > 0.

Assuming mini γi > −d+ 1, the partially integrated function,

F (y, z) =

∫

V

dxf(x,x − y, z),

is smooth everywhere in V × VZ except at y = 0 with order max(γ1, γ2).

Proof. See Appendix E.

To convert to the condition in Lemma 11, we reformulate the integrand for the 4h2p linear term as

f(q1,q2;ki,kj ,ka) =
∑

kl

F kl1 (q1,ki,kj ,ka)F
kl
2 (q2,ki,kj ,ka),

which satisfies Eq. (32) with x1 = q1, x2 = q2, z = (ki,kj ,ka), γ1 = −2, and γ2 = 0. Lemma 11 shows

that the partially integrated function,

1

|Ω∗|

∫

Ω∗

dq1f(q1,q1 − y;ki,kj ,ka),

is periodic and smooth everywhere with respect to y,ki,kj ,ka ∈ Ω∗ except at y = 0 with order 0. Since

the 4h2p linear term equals this function with y = ki − ka, we can follow Definition 10 to show that it is
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periodic and smooth everywhere except at ka = ki with order 0. This proves the 4h2p linear term to be in

T(Ω∗).
All the quadratic terms are also of the same integral form where the integration is over two intermediate

momentum vectors in Ω∗ and the integrand is products of an ERI and two amplitude entries (see Eq. (29)

for an example). Smoothness property analysis for these quadratic terms can be decomposed into two

subproblems that can be addressed by the earlier analysis for linear terms. We use the 4h2p quadratic term

in Eq. (29) to demonstrate the analysis.

In the 4h2p quadratic term, the momentum vectors kl = ki + kj − kk and kd = ki + kj − kc, and the

integrand is a function of kk and kc for any fixed ki,kj ,ka. We first consider the partial integration over kc
as

Hijkl(ki,kj ,kk) =

∫

Ω∗

dkc
∑

cd

〈kkk, lkl|ckc, dkd〉 tijcd(ki,kj ,kc).

The integrand here as a function of kc is nonsmooth at kc = kk and kc = ki both with order 0, due to the

ERI and the amplitude. It is thus of the same form as the linear term with two nonsmooth points studied

earlier, and we can use the same analysis to show that this intermediate functionHijkl(ki,kj ,kk) is smooth

everywhere except at ki = kk with order 0. The overall quadratic term can then be written as

∫

Ω∗

dkk
∑

kl

Hijkl(ki,kj ,kk)tklab(kk,kl,ka).

The integrand here is of similar form to the 4h2p linear term, simply with the ERI term 〈kkk, lkl|iki, jkj〉
replaced by Hijkl which has the same nonsmooth behavior at kk = ki with order 0. Using the same

analysis for linear terms based on Lemma 11 can then show that this term as a function of ki,kj ,ka is

smooth everywhere except at ki = ka with order 0. This proves the 4h2p quadratic term to be in T(Ω∗).
All the other quadratic terms can be similarly analyzed using the analysis for the three types of linear terms

above.

With all the constant, linear, and quadratic terms in [FTDL(t)]ijab shown to be in T(Ω∗), we finish the

proof of Lemma 4.

B.2 Proof of Lemma 5: Error in energy calculation using exact amplitude

Consider an arbitrary amplitude t ∈ T(Ω∗)nocc×nocc×nvir×nvir . By expanding the antisymmetrized ERI, the

finite-size error in the energy calculation using t can be decomposed into the errors in the direct and the

exchange term calculations as

GTDL(t)− GNk
(MKt) =

2

|Ω∗|3 EΩ∗×Ω∗×Ω∗




∑

ijab

〈iki, jkj |aka, bkb〉 tijab(ki,kj ,ka),K ×K ×K





− 1

|Ω∗|3 EΩ∗×Ω∗×Ω∗




∑

ijab

〈iki, jkj |bkb, aka〉 tijab(ki,kj ,ka),K ×K ×K



 .

For each set of band indices i, j, a, b, we denote the integrand for the direct term calculation, i.e., the first

term above, with the change of variable ka → ki + q as

F ijabd (ki,kj ,q) = 〈iki, jkj |a(ki + q), b(kj − q)〉 tijab(ki,kj ,ki + q).
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The momentum transfers of the ERI and the amplitude entry are both equal to q. Expanding the ERI near

q = 0 and using the assumption tijab ∈ T(Ω∗), we can show that F ijabd is periodic and smooth everywhere

with respect to ki,kj ,q ∈ Ω∗ except at q = 0 with order 0. Since ki and ka are sampled on the same

mesh K, the induced mesh for q = ka − ki (map each q to q + G ∈ Ω∗ with some G ∈ L
∗ using the

integrand periodicity with respect to Ω∗) is of the same size as K and always contains q = 0. Denote this

induced mesh as Kq. The quadrature error in the direct term calculation with each set of i, j, a, b can then

be formulated and split as

EΩ∗×Ω∗×Ω∗

(
F ijabd (ki,kj ,q),K ×K ×Kq

)

=EΩ∗×Ω∗

(∫

Ω∗

dqF ijabd (ki,kj ,q),K ×K
)
+

|Ω∗|2
N2

k

∑

ki,kj∈K

EΩ∗

(
F ijabd (ki,kj ,q),Kq

)
. (33)

Fixing ki,kj ∈ K, F ijabd (ki,kj ,q) as a function of q is periodic and smooth everywhere in Ω∗ except at

q = 0 with order 0 from the analysis above. Lemma 14 provides quadrature error estimates for such periodic

functions with a single point of algebraic singularity, and specifically in this case we have
∣∣∣EΩ∗

(
F ijabd (ki,kj ,q),Kq

)∣∣∣ 6 CN−1
k , ∀ki,kj ∈ K,

where constant C is independent of ki,kj by using the algebraic singularity characterization of F ijabd at

q = 0 and the prefactor estimate in Lemma 14 (see Remark 15).

Since F ijabd is periodic and smooth with respect to ki,kj ∈ Ω∗,
∫
Ω∗

dqF ijabd (ki,kj ,q) is also periodic

and smooth with respect to ki,kj ∈ Ω∗ using the Leibniz integral rule. According to Lemma 12, the

quadrature error for this partially integrated function (the first term in Eq. (33)) decays super-algebraically

as ∣∣∣∣EΩ∗×Ω∗

(∫

Ω∗

dqF ijabd (ki,kj ,q),K ×K
)∣∣∣∣ 6 ClN

−l
k , ∀l > 0.

Plugging the above two estimates into Eq. (33) proves that the quadrature error in the direct term calculation

scales as ∣∣∣∣∣∣
EΩ∗×Ω∗×Ω∗



∑

ijab

〈iki, jkj |aka, bkb〉 tijab(ki,kj ,ka),K ×K ×K




∣∣∣∣∣∣
6 CN−1

k .

Similar analysis can be applied to the exchange term where we formulate the integrand using two changes

of variables kj → ka + q1 and ki → ka − q2 as

F ijabx (ka,q1,q2) = 〈i(ka − q2), j(ka + q1)|b(ka − q2 + q1), aka〉 tijab(ka − q2,ka + q1,ka),

where the momentum transfers of the ERI and the amplitude are q1 and q2, respectively. The ERI and

the amplitude are smooth everywhere with respect to ka,q1,q2 ∈ Ω∗ except at q1 = 0 and q2 = 0,

respectively, both with order 0. Similar to the discussion for the direct term, the exchange term calculation is

equivalent to the trapezoidal rule over F ijabx using uniform mesh K ×Kq ×Kq. The associated quadrature

error with each set of (i, j, a, b) can be split as

EΩ∗×Ω∗×Ω∗

(
F ijabx (ka,q1,q2),K × Kq ×Kq

)

=EΩ∗

(∫

Ω∗×Ω∗

dq1 dq2F
ijab
x (ka,q1,q2),K

)
+

|Ω∗|
Nk

∑

ka∈K

EΩ∗×Ω∗

(
F ijabx (ka,q1,q2),Kq ×Kq

)
.

(34)
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The first term decays super-algebraically since
∫
Ω∗×Ω∗

dq1 dq2F
ijab
x (ka,q1,q2) is smooth and periodic

with respect to ka ∈ Ω∗ using the Leibniz integral rule. For the second term with each fixed ka ∈ K, F ijabx

can be viewed as a product of two periodic functions, f1(ka,q1,q2)f2(ka,q1,q2), where f1 is smooth

everywhere except at q1 = 0 with order 0 and f2 is smooth everywhere except at q2 = 0 with order 0.

Lemma 18 provides quadrature error estimates for periodic functions in such a product form, and specifically

in this case we have

∣∣EΩ∗×Ω∗

(
F ijabx (ka,q1,q2),Kq ×Kq

)∣∣ 6 CN−1
k , ∀ka ∈ K,

where constantC can be proved independent of ka using the algebraic singularity characterization of f1 and

f2 and the prefactor estimate in Lemma 18 (see Remark 19).

Plugging these two estimates into Eq. (34) proves that the quadrature error in the exchange term calcula-

tion scales as

∣∣∣∣∣∣
EΩ∗×Ω∗×Ω∗



∑

ijab

〈iki, jkj |bkb, aka〉 tijab(ki,kj ,ka),K ×K ×K




∣∣∣∣∣∣
6 CN−1

k .

Combining the above estimates for the direct and exchange terms together, we have

|GTDL(t)− GNk
(MKt)| = O(N−1

k ), ∀t ∈ T(Ω∗)nocc×nocc×nvir×nvir ,

which covers the case of the exact CCD(n) amplitudes with any n > 0.

B.3 Proof of Lemma 6: Amplitude error in a single iteration

Consider the error in the amplitude calculation using an arbitrary amplitude t ∈ T(Ω∗)nocc×nocc×nvir×nvir .

Fixing a set of (i, j, a, b) and ki,kj ,ka ∈ K, the corresponding error entry can be detailed using the ampli-

tude mapping definitions in Eq. (25) and Eq. (27) as

[MKFTDL(t)−FNk
(MKt)]ijab,kikjka

=
1

εaka,bkb

iki,jkj

1

|Ω∗|EΩ∗

(
∑

kl

〈kkk, lkl|iki, jkj〉 tklab(kk,kl,ka),K
)

+
1

εaka,bkb

iki,jkj

1

|Ω∗|2 EΩ∗×Ω∗

(
∑

klcd

〈kkk, lkl|ckc, dkd〉 tijcd(ki,kj ,kc)tklab(kk,kl,ka),K ×K
)

+ · · · , (35)

where the constant terms cancel each other and the listed two quadrature errors are the errors in the 4h2p

linear and 4h2p quadratic term calculations. The neglected terms are the errors in remaining linear and

quadratic terms calculations which can all be similarly formulated as quadrature errors of trapezoidal rules.

The problem is thus reduced to the error estimate for trapezoidal rules applied to integrands defined by

different amplitude terms in the amplitude equation.

As shown in Section B.1, the linear terms can be categorized into three classes listed in Table B.1 where the

integrands respectively have zero, one, and two nonsmooth points. For terms in each class, their quadrature

errors can be estimated similarly and we below demonstrate the error estimate for one example in each class.
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For linear terms with zero nonsmooth point, we consider the 3h3p term 〈AK|IC〉 tCBKJ detailed as,

∫

Ω∗

dkk
∑

kc

〈aka, kkk|iki, ckc〉 tkjcb(kk,kj ,kc).

The ERIs and the amplitudes have momentum transfers ki − ka = −q and kc − kk = q, respectively,

which are independent of kk. Therefore, for any ki,kj ,ka ∈ Ω∗, the integrand is smooth and periodic with

respect to kk and thus has the quadatrure error decay super-algebraically according to Lemma 12, i.e.,

∣∣∣∣∣EΩ∗

(
∑

kc

〈aka, kkk|iki, ckc〉 tkjcb(kk,kj ,kc),K
)∣∣∣∣∣ 6 ClN

−l/3
k , ∀l > 0. (36)

where constant Cl can be shown independent of ki,kj ,ka ∈ Ω∗ using the prefactor estimate in Lemma 12

and the uniform boundedness of integrand derivatives over kk for all ki,kj ,ka (see Remark 13).

For linear terms with one nonsmooth point, we consider the 3h3p term 〈AK|CI〉 tCBKJ detailed as

∫

Ω∗

dkk
∑

kc

〈aka, kkk|ckc, iki〉 tkjcb(kk,kj ,kc),

where the ERIs and the amplitudes have momentum transfers kk − ki and kc − kk = q, respectively. For

any ki,kj ,ka ∈ Ω∗, these ERIs are smooth everywhere in Ω∗ except at kk = ki with order 0, −1, or

−2 depending on the relation between (k, c) and (i, a). It can then be verified that the overall integrand is

smooth everywhere except at kk = ki with order −2 due to the product term with k = i, c = a. Lemma 14

provides the quadrature error estimate for such a periodic function that has algebraic singularity at one point,

and specifically in this case we have

∣∣∣∣∣EΩ∗

(
∑

kc

〈aka, kkk|ckc, iki〉 tkjcb(kk,kj ,kc),K
)∣∣∣∣∣ 6 CN

−1/3
k , (37)

where constant C can be shown independent of ki,kj ,ka using the prefactor estimate in Lemma 14 and the

algebraic singularity characterization of the ERIs and the amplitudes (see Remark 15).

For linear terms with two nonsmooth points, we consider the 4h2p term 〈KL|IJ〉 tABKL detailed in Eq. (35).

First denote the integrand with each set of (k, l) as

F kl(kk) = 〈kkk, lkl|iki, jkj〉 tklab(kk,kl,ka). (38)

The ERI in F kl(kk) is smooth everywhere except at kk = ki with order 0, −1, or −2 depending on the

relation between (k, l) and (i, j). The amplitude in F kl(kk) is smooth everywhere except at kk = ka with

order 0. Applying the change of variable kk → ki − q1, F kl(q1) can be formulated as the product of two

periodic functions, f1(q1)f2(q1), where f1(q1) is nonsmooth at q1 = 0 with order 0, −1, or −2 and f2(q1)
is nonsmooth at q1 = ki − ka with order 0. Quadrature error of periodic functions in such a product form

is estimated by Lemma 16 when ki 6= ka ∈ K and by Lemma 14 when ki = ka ∈ K as

∣∣EΩ∗

(
F kl(q1),Kq

)∣∣ 6 C






N−1
k k 6= i, l 6= j

N
− 2

3

k k = i, l 6= j or k 6= i, l = j

N
− 1

3

k k = i, l = j



31

where constant C can be shown independent of ki,kj ,ka using the prefactor estimates in the two lem-

mas and the algebraic singularity characterization of the ERIs and the amplitudes (see Remark 15 and Re-

mark 17). Summing over the above estimates for each set of (k, l), the quadrature error in the 4h2p linear

term calculation can be estimated as
∣∣∣∣∣EΩ∗

(
∑

kl

〈kkk, lkl|iki, jkj〉 tklab(kk,kl,ka),K
)∣∣∣∣∣ 6 CN

− 1

3

k .

Similar to the linear term case, all the quadratic terms and their quadrature error estimates can be cate-

gorized into four classes according to the nonsmoothness with respect to the two intermediate momentum

vectors, as listed in Table B.2.

Table B.2. Classification of quadratic amplitude terms by the nonsmooth points with respect to the intermediate momen-

tum vectors. We use k1,k2 to denote the two integration variables after proper change of variables over the intermediate

momentum vectors and x1,x2,x3 to denote generic points in Ω∗. The 3h3p terms permuted by P are of the same class

as the unpermuted ones and thus not listed. The intermediate block underlying each product indicates the origin of this

product in Eq. (27).

Singular Points Quadratic terms

None 〈LK|DC〉 tAD
IL

︸ ︷︷ ︸

χAK
IC

tCB
KJ

k1 = x1 〈LK|CD〉 tAD
IL

︸ ︷︷ ︸

χAK
IC

tCB
KJ , 〈LK|DC〉 tDA

IL
︸ ︷︷ ︸

χAK
IC

tCB
KJ , 〈LK|DC〉 tAD

IL
︸ ︷︷ ︸

χAK
IC

tBC
KJ 〈KL|CD〉 tAD

KL
︸ ︷︷ ︸

κA
C

tCB
IJ , 〈KL|CD〉 tCD

IL
︸ ︷︷ ︸

κK
I

tAB
KJ

k1 = x1, k2 = x2 〈LK|CD〉 tDA
IL

︸ ︷︷ ︸

χAK
CI

tCB
KJ , 〈LK|CD〉 tAD

IL
︸ ︷︷ ︸

χAK
IC

tBC
KJ , 〈KL|DC〉 tAD

KL
︸ ︷︷ ︸

κA
C

tCB
IJ , 〈KL|DC〉 tCD

IL
︸ ︷︷ ︸

κK
I

tAB
KJ

k1 = x1, k2 = x2, k1 ± k2 = x3 〈KL|CD〉 tCD
IJ

︸ ︷︷ ︸

χAB
IJ

tAB
KL, 〈LK|DC〉 tDA

IL
︸ ︷︷ ︸

χAK
IC

tBC
KJ , 〈LK|CD〉 tDA

JL
︸ ︷︷ ︸

χAK
CJ

tBC
KI

For quadratic terms of the first and second class, their quadrature errors can be estimated using Lemma 12

and Lemma 14 in a similar way as for the linear terms above. In the following, we demonstrate the quadrature

error estimate for the third and forth classes of quadratic terms.

For the third class, we consider the 3h3p quadratic term 〈LK|CD〉 tADIL tBCKJ and denote the integrand for

each set of (k, l, c, d) as

F klcd3h3p (kk,kl) = 〈lkl, kkk|ckc, dkd〉 tilad(ki,kl,ka)tkjbc(kk,kj ,kb),

where kc = kk+kj−kb and kd = kl+ki−ka. The ERI and the two amplitudes have momentum transfers

as kc − kl = kk − kl + kj − kb, ka − ki, and kb − kk, respectively. To single out the nonsmoothness with

respect to kk and kl, we introduce two changes of variables kk → kb − q2 and kl → kk + kj − kb + q1

and this term calculation can be formulated using the integrand periodicity as

1

N2
k

∑

q1,q2∈Kq

∑

klcd

F klcd3h3p (q1,q2) −→
1

|Ω∗|2
∫

Ω∗×Ω∗

dq1 dq2

∑

klcd

F klcd3h3p (q1,q2),

where the integrand is smooth everywhere except at q1 = 0 and q2 = 0. This explains the classification of

this term as the third class listed in Table B.2. Note that the first amplitude in F klcd3h3p is smooth with respect to
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q1,q2 and thus F klcd3h3p can be written in a product form f1(q1,q2)f2(q1,q2) where fs(q1,q2) with s = 1, 2
is smooth everywhere except at qs = 0 with order 0. Lemma 18 provides the quadrature error estimate for

bivariate functions in such a product form, and specifically in this case we have
∣∣∣∣∣EΩ∗×Ω∗

(
∑

klcd

F klcd3h3p (q1,q2),Kq ×Kq

)∣∣∣∣∣ 6 CN−1
k ,

where constant C can be shown independent of ki,kj ,ka using the prefactor estimate in Lemma 18 and the

algebraic singularity characterization of ERIs and amplitudes (see Remark 19).

For the forth class, we consider the 4h2p quadratic term 〈KL|CD〉 tCDIJ tABKL and denote the integrand with

each set of (k, l, c, d) with the change of variable kk → kc + q1 and kc → ki + q2 as

F klcd4h2p (q1,q2) = 〈kkk, lkl|ckc, dkd〉 tijcd(ki,kj ,kc)tklab(kk,kl,ka),
where the ERI is smooth everywhere except at q1 = 0 with order 0, the two amplitudes are smooth every-

where except at q2 = 0 and ka−ki = q2−q1, respectively, with order 0. This explains the classification of

this term as the forth class listed in Table B.2. Lemma 20 provides the quadrature error estimate for bivariate

functions in such a product form, and specifically in this case we have
∣∣∣∣∣EΩ∗×Ω∗

(
∑

klcd

F klcd4h2p (q1,q2),Kq ×Kq

)∣∣∣∣∣ 6 CN−1
k ,

where constant C can be shown independent of ki,kj ,ka using the prefactor estimate in Lemma 20 and the

algebraic singularity characterization of ERIs and amplitudes (see Remark 21).

Collecting all the above quadrature error estimates for linear and quadratic terms (see Table V.2 for a

summary), we obtain the final error estimate in amplitude calculation
∣∣∣[MKFTDL(t)−FNk

(MKt)]ijab,kikjka

∣∣∣ 6 CN
− 1

3

k , ∀i, j, a, b, ∀ki,kj ,ka ∈ K.

It is worth pointing out that the dominant error comes from the following six linear amplitude terms,
∑

KL

〈KL|IJ〉 tABKL,
∑

CD

〈AB|CD〉 tCDIJ , P
∑

KC

〈AK|CJ〉 tCBIK , P
∑

KC

〈AK|CI〉 tBCKJ ,

where the involved ERIs can have matching band indices and thus are nonsmooth at zero momentum transfer

points with order −2.

B.4 Proof of Lemma 7: Error accumulation in the CCD iteration

Fixing a set of i, j, a, b and ki,kj ,ka, we focus on one constant, one linear, and one quadratic terms in

the entry [FNk
(T )]ijab,kikjka

detailed as follows

[FNk
(T )]ijab,kikjka

=
1

εaka,bkb

iki,jkj

〈aka, bkb|iki, jkj〉 (39)

+
1

εaka,bkb

iki,jkj

1

Nk

∑

kk∈K

∑

kl

〈kkk, lkl|iki, jkj〉Tklab(kk,kl,ka)

+
1

εaka,bkb

iki,jkj

1

N2
k

∑

kkkc∈K

∑

klcd

〈kkk, lkl|ckc, dkd〉Tijcd(ki,kj ,kc)Tklab(kk,kl,ka)

+ · · · ,
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where the linear and quadratic terms come from the 4h2p term χKLIJ t
AB
KL in Eq. (25) and the neglected terms

above are the other linear and quadratic terms included in Eq. (25).

In the subtraction FNk
(T )−FNk

(S), the constant terms above in these two maps cancel each other. The

subtraction between the two 4h2p linear terms can be formulated and bounded as
∣∣∣∣∣

1

εaka,bkb

iki,jkj

1

Nk

∑

kk∈K

∑

kl

〈kkk, lkl|iki, jkj〉 (Tklab(kk,kl,ka)− Sklab(kk,kl,ka))

∣∣∣∣∣

6C
1

Nk

∑

kk∈K

∑

kl

|〈kkk, lkl|iki, jkj〉| ‖T − S‖∞

6C‖T − S‖∞
∫

Ω∗

dkk
∑

kl

|〈kkk, lkl|iki, jkj〉| 6 C‖T − S‖∞.

Similar estimate can be obtained for all the other linear terms in the amplitude map FNk
. The subtraction

between the two 4h2p quadratic terms can be formulated and bounded as
∣∣∣∣∣

1

εaka,bkb

iki,jkj

1

N2
k

∑

kkkc∈K

∑

klcd

〈kkk, lkl|ckc, dkd〉 (Tijcd(ki,kj ,kc)Tklab(kk,kl,ka)− Sijcd(ki,kj ,kc)Sklab(kk,kl,ka))

∣∣∣∣∣

6C

∫

Ω∗×Ω∗

dkk dkc
∑

klcd

| 〈kkk, lkl|ckc, dkd〉 | (‖T ‖∞ + ‖S‖∞) ‖T − S‖∞

6C (‖T ‖∞ + ‖S‖∞) ‖T − S‖∞,
where the first inequality uses the estimate

|Tijcd(ki,kj ,kc)Tklab(kk,kl,ka)− Sijcd(ki,kj ,kc)Sklab(kk,kl,ka)|
6 |Tijcd(ki,kj ,kc) (Tklab(kk,kl,ka)− Sklab(kk,kl,ka))|+ |(Tijcd(ki,kj ,kc)− Sijcd(ki,kj ,kc))Sklab(kk,kl,ka)|
6‖T ‖∞‖T − S‖∞ + ‖S‖∞‖T − S‖∞.
Similar estimate can be obtained for all the other quadratic terms in the amplitude map FNk

. Collecting all

these estimates together, we have

‖FNk
(T )−FNk

(S)‖∞ = max
ijab,kikjka∈K

∣∣∣[FNk
(T )−FNk

(S)]ijab,kikjka

∣∣∣

6 C (1 + ‖T ‖∞ + ‖S‖∞) ‖T − S‖∞.

Appendix C PROOF OF COROLLARY 3

As discussed in Section VII, it is possible in general that the CCD amplitude equation may have multiple

solutions or its fixed point iteration may diverge. In these cases, the finite size error in CCD energy calcu-

lation can be ill-defined and not connected to CCD(n) we have analyzed. Here, we consider the ideal case

where T = FNk
(T ) for any sufficiently large Nk and t = FTDL(t) both have unique solutions, denoted as

TNk
∗ and t∗, and the corresponding fixed point iterations converge in the sense of the ‖ · ‖∞-norm, i.e.,

lim
n→∞

‖Tn − TNk
∗ ‖∞ = 0 and lim

n→∞
‖tn − t∗‖∞ = 0.

In general, a common sufficient condition that guarantees the convergence of a fixed point iteration is that

the target mapping is contractive (to be specified later) in a domain that contains the solution point and the

initial guess also lies in this domain. Following this practice, we make four assumptions:
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• FTDL is a contraction map in a domain BTDL ⊂ T(Ω∗)nocc×nocc×nvir×nvir that contains t∗ and the initial

guess 0, i.e.,

FTDL(t) ∈ BTDL, ∀t ∈ BTDL,

‖FTDL(t)−FTDL(s)‖∞ 6 L‖t− s‖∞, ∀t, s ∈ BTDL,

with a constant L < 1. This assumption guarantees that {tn} lies in BTDL and converges to t∗.

• FNk
with sufficiently largeNk is a contraction map in a domainBNk

⊂ Cnocc×nocc×nvir×nvir×Nk×Nk×Nk

that contains TNk
∗ and the initial guess 0, i.e.,

FNk
(T ) ∈ BNk

, ∀T ∈ BNk
,

‖FNk
(T )−FNk

(S)‖∞ 6 L‖T − S‖∞, ∀T, S ∈ BNk
,

with a constant L < 1. This assumption guarantees that {TNk
n } lies in BNk

and converges to TNk
∗ .

• For sufficiently large Nk, the domains in the above two assumptions satisfy that

MKBTDL := {MKt : t ∈ BTDL} ⊂ BNk
. (40)

Theorem 1 proves that for each fixed n the finite-size amplitude TNk
n converges to tn in the sense of

lim
Nk→∞

‖MKtn − TNk
n ‖∞ = 0,

showing that {TNk
n } ⊂ BNk

converges to {tn} ⊂ BTDL with K → Ω∗. Intuitively, this argument

suggests certain closeness between BNk
and MKBTDL which leads to the assumption here.

• Note that the error estimate in Lemma 6 has prefactor C dependent on the amplitude t. For the whole

set of iterates {tn}, we make a stronger assumption that there exists a constant C such that

‖MKFTDL(tn)−FNk
(MKtn)‖∞ 6 CN

− 1

3

k , ∀n > 0. (41)

Under these assumptions, the finite-size error in the CCD energy calculation can be estimated as

∣∣∣ETDL
CCD − ENk

CCD

∣∣∣ =
∣∣GTDL(t∗)− GNk

(TNk
∗ )

∣∣

6
∣∣GNk

(MKt∗)− GNk
(TNk

∗ )
∣∣+ |GTDL(t∗)− GNk

(MKt∗)|
6 C

∥∥MKt∗ − TNk
∗

∥∥
∞

+ CN−1
k , (42)

where the last inequality uses the boundedness of linear operator GNk
and Lemma 5. To estimate the finite-

size error in the converged amplitudes,
∥∥MKt∗ − TNk

∗

∥∥
∞

, we consider the error splitting Eq. (13) for the

amplitude calculation at the n-th fixed point iteration as

∥∥MKtn − TNk
n

∥∥
∞

6 ‖MKFTDL(tn−1)−FNk
(MKtn−1)‖∞ +

∥∥∥FNk
(TNk

n−1)−FNk
(MKtn−1)

∥∥∥
∞

6 CN
− 1

3

k + L
∥∥∥MKtn−1 − TNk

n−1

∥∥∥
∞
,
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where the last estimate uses the assumption in Eq. (41) for the first term and the assumptions that FNk
is

a contraction map and MKtn−1 ∈ BNk
for the second term. Since the initial guesses in the finite and the

TDL cases satisfy ‖MKt0 − TNk

0 ‖∞ = 0, we can recursively derive that

∥∥MKtn − TNk
n

∥∥
∞

6 C
1− Ln

1− L
N

− 1

3

k ,

and thus

∥∥MKt∗ − TNk
∗

∥∥
∞

= lim
n→∞

∥∥MKtn − TNk
n

∥∥
∞

6 CN
− 1

3

k .

Plugging this estimate into Eq. (42) then finishes the proof.

Appendix D QUADRATURE ERROR ESTIMATE FOR PERIODIC FUNCTION WITH ALGEBRAIC

SINGULARITY

This section consists of five lemmas that provide the quadrature error estimates for trapezoidal rules over

integrands in five different classes as listed in Table V.1. All the integrands are either smooth or built

by univariate/multivariate functions that have algebraic singularity at one single point. In addition to the

asymptotic scaling of the quadrature errors, our finite-size error analysis also needs quantitative descriptions

about the relation between prefactors in the estimate and the smoothness properties of the integrand.

For a univariate function f(x) that is smooth everywhere in V except at x = x0 with algebraic singularity

of order γ, we define a constant

Hl
V,x0

(f) = min
{
C : |∂αx f(x)| 6 C|x− x0|γ−|α|, ∀|α| 6 l, ∀x ∈ V \ {x0}

}

= max
|α|6l

∥∥∥(∂αx f(x)) /|x− x0|γ−|α|
∥∥∥
L∞(V )

. (43)

For a multivariate function f(x,y) that is smooth everywhere in VX × VY except at x = x0 with algebraic

singularity of order γ, we define a constant

Hl
VX×VY ,(x0,·)

(f) = min
{
C :

∣∣∂αx ∂βy f(x,y)
∣∣ 6 C|x− x0|γ−|α|, ∀|α|, |β| 6 l, ∀x ∈ VX \ {x0},y ∈ VY

}

= max
|α|6l

∥∥∥
(
∂αx ∂

β
y f(x,y)

)
/|x− x0|γ−|α|

∥∥∥
L∞(V×V )

, (44)

where “·” in the subscript “(x0, ·)” is a placeholder to indicate the smooth variable. Using these two quanti-

ties, we have following function estimates that will be extensively used in this section

|∂αx f(x)| 6 Hl
V,x0

(f)|x− x0|γ−|α|, ∀l > |α|, ∀x ∈ V \ {x0}, (45)
∣∣∂αx ∂βy f(x,y)

∣∣ 6 Hl
VX×VY ,(x0,·)

(f)|x− x0|γ−|α|, ∀l > |α|, |β|, ∀x ∈ VX \ {x0},y ∈ VY . (46)

The following lemma is the standard result that the quadrature error of a trapezoidal rule applied to smooth

and periodic functions decays super-algebraically. For completeness, we include a proof using the Poisson

summation formula.

Lemma 12. Let f(x) be smooth and periodic in V = [− 1
2 ,

1
2 ]
d. The quadrature error of a trapezoidal rule

using an md-sized uniform mesh X in V decays super-algebraically as

|EV (f,X )| 6 Clm
−l, ∀l > 0.
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Proof. Denote the Fourier transform of f(x) as

f(x) =
1

|V |
∑

k∈2πZd

f̂(k)eik·x with f̂(k) =

∫

V

f(x)e−ik·x dx.

Let X0 be themd-sized uniform mesh in V that contains x = 0 and let X = X0+x0. Denote the unit length

h = 1/m. Using these notations, we have

IV (f) = f̂(0),

QV (f,X ) =
|V |
md

∑

x∈X0

f(x+ x0) =
∑

k∈2πZd

f̂(k)eik·x0
1

md

∑

x∈X0

eik·x =
∑

k∈2πZd

f̂

(
k

h

)
ei

k
h
·x0 ,

and thus the quadrature error of the trapezoidal rule using X can be estimated as

|EV (f,X )| 6
∑

k∈2πZd\{0}

∣∣∣∣f̂
(
k

h

)∣∣∣∣ . (47)

Based on the periodicity and smoothness of f(x) in V , we can use integration by part to estimate the Fourier

transform coefficient as
∣∣∣∣f̂
(
k

h

)∣∣∣∣ =
∣∣∣∣
∫

V

dxf(x)e−i k
h
·x

∣∣∣∣

=
h|α|

|k|α
∣∣∣∣
∫

V

dx
∂α

∂xα
f(x)e−i k

h
·x

∣∣∣∣

6
h|α|

|k|α
∫

V

dx

∣∣∣∣
∂α

∂xα
f(x)

∣∣∣∣ = Cα

h|α|

|k|α , (48)

with any derivative order α > 0 where |α| = ∑
iαi and |k|α =

∏
i |ki|αi . Plugging this estimate into

Eq. (47), we obtain

|EV (f,X )| 6 Cαh
|α|

∑

k∈2πZd\{0}

1

|k|α ,

which then proves the lemma by choosing an arbitrary α with |α| = l > d.

Remark 13. If we replace f(x) by f(x,y) defined in V ×VY which is smooth and periodic with respect to x

for each y ∈ VY and satisfies supx∈V,y∈VY
|∂αx f(x,y)| <∞ for any α > 0, Lemma 12 can be generalized

as

|EV (f(·,y),X )| 6 Clm
−l, ∀l > 0, ∀y ∈ VY ,

where constant Cl is independent of y ∈ VY based on the prefactor estimate in Eq. (48).

Lemma 14. Let f(x) be periodic with respect to V = [− 1
2 ,

1
2 ]
d and smooth everywhere except at x = 0

with order γ > −d + 1. At x = 0, f(x) is set to 0. The quadrature error of a trapezoidal rule using an

md-sized uniform mesh X that contains x = 0 can be estimated as

|EV (f,X )| 6 CHd+max(1,γ)
V,0 (f)m−(d+γ).

If f(0) is set to an O(1) value in the calculation, it introduces additional O(m−d) quadrature error.
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Proof. Define a cutoff function ψ ∈ C∞
c (Rn) satisfying

ψ(x) =

{
1, |x| 6 1

2

0, |x| > 1
,

and denote its scaling as ψL(x) = ψ(x/L) that is compactly supported in |x| 6 L. Let h = 1/m be the unit

length of the uniform mesh X . Using the cutoff function, we split f(x) as

f(x) = f(x)ψ 1

2

(x) + f(x)(1 − ψ 1

2

(x)),

where the first term is compactly supported in V and the second term is smooth in V and satisfies the periodic

boundary condition on ∂V . Accordingly, the quadrature error can be split into

EV (f,X ) = EV (fψ 1

2

,X ) + EV (f(1− ψ 1

2

),X ),

where the second error decays super-algebraically with respect to m according to Lemma 12. The problem

is reduced to estimating the first quadrature error for a localized integrand fψ 1

2

. In the following discussion,

we abuse the notation f to denote the localized function fψ 1

2

and assume that f is compactly supported in

V and smooth everywhere except at 0 with order γ.

Since f(0) = 0, the trapezoidal rule over f(x) using X satisfies

QV (f,X ) = QV (f(1− ψh),X ),

and accordingly its quadrature error can be split as

EV (f,X ) = IV (fψh) + IV (f(1− ψh))−QV (f(1− ψh),X )

= IV (fψh) + EV (f(1 − ψh),X ). (49)

The first part in Eq. (49) can be estimated as

|IV (fψh)| 6 C

∫

|x|6h

|f(x)| dx 6 CH0
V,0(f)

∫

|x|6h

|x|γ dx 6 CH0
V,0(f)h

d+γ , (50)

using the algebraic singularity characterization Eq. (45) for f(x) at x = 0. The second part in Eq. (49) can

be reformulated using the Poisson summation formula as

EV (f(1− ψh),X ) = −
∑

k∈2πZd\{0}

f̂ψ,h

(
k

h

)
, (51)

where fψ,h = f(1− ψh) and its Fourier transform can be estimated as

∣∣∣∣f̂ψ,h
(
k

h

)∣∣∣∣ =
h|α|

|k|α
∣∣∣∣
∫

Rd

dx
∂α

∂xα
f(x)(1 − ψh(x))e

−i k
h
·x

∣∣∣∣

6
h|α|

|k|α
∫

Rd

dx

∣∣∣∣
∂α

∂xα
f(x)(1 − ψh(x))

∣∣∣∣ ,

with any derivative order α > 0. The derivative in the last integral can be further expanded as

∂α

∂xα
f(x)(1 − ψh(x)) =

∑

α1+α2=α

(
α

α1

)
∂α1

∂xα1

(1 − ψh(x))
∂α2

∂xα2

f(x).
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Using the locality of 1− ψh(x) and f(x) and the inequality |∂βx f(x)| 6 H|α|
V,0(f)|x|γ−|β| with any β 6 α,

we can estimate this derivative as

∣∣∣∣
∂α

∂xα
f(x)(1 − ψh(x))

∣∣∣∣ 6 CH|α|
V,0(f)






0, |x| 6 1
2h

hγ−|α|, 1
2h 6 |x| 6 h

|x|γ−|α|, h 6 |x| 6 1
2

0, |x| > 1
2

.

Using this estimate, the associated integral can be bounded as

∫

Rd

dx

∣∣∣∣
∂α

∂xα
f(x)(1 − ψh(x))

∣∣∣∣ 6 CH|α|
V,0(f)

(∫ h

1

2
h

hγ−|α|rd−1 dr +

∫ 1

2

h

rγ−|α|+d−1 dr

)

6 CH|α|
V,0(f)(h

γ+d−|α| + 1).

Plugging this estimate into Eq. (51), we obtain

|EV (f(1− ψh),X )| 6 CH|α|
V,0(f)

∑

k∈2πZd\{0}

1

|k|α
(
hγ+d + h|α|

)
.

Choosing an arbitrary α with |α| = max(d+ 1, d+ γ), we obtain

|EV (f(1 − ψh),X )| 6 CH|α|
V,0(f)h

γ+d,

which together with Eq. (49) and Eq. (50) proves the lemma.

Remark 15. If we replace f(x) by f(x,y) defined in V ×VY which is smooth everywhere in V ×VY except

at x = 0 with order γ, Lemma 14 can be generalized to

|EV (f(·,y),X )| 6 CHd+max(1,γ)
V×VY ,(0,·)

(f)m−(d+γ), ∀y ∈ VY ,

where the prefactor applies uniformly across all y ∈ VY . This generalization can be obtained using the

prefactor estimate in Lemma 14 and the fact that

Hl
V,0(f(·,y)) 6 Hl

V×VY ,(0,·)
(f), ∀l > 0, ∀y ∈ VY ,

based on the definitions of the two quantities in Eq. (43) and Eq. (44).

Lemma 16. Let f(x) = f1(x)f2(x) where f1(x) and f2(x) are periodic with respect to V = [− 1
2 ,

1
2 ]
d and

• f1(x) is smooth everywhere except at x = z1 = 0 with order γ 6 0,

• f2(x) is smooth everywhere except at x = z2 6= 0 with order 0.

Consider an md-sized uniform mesh X in V . Assume that X satisfies that z1, z2 are either on the mesh or

Θ(m−1) away from any mesh points, and m is sufficiently large that |z1 − z2| = Ω(m−1). At x = z1 and

x = z2, f(x) is set to 0. The trapezoidal rule using X has quadrature error

|EV (f,X )| 6 CHd+1
V,z1

(f1)Hd+1
V,z2

(f2)m
−(d+γ).

If f(z1) and f(z2) are set to arbitrary O(1) values, it introduces additional O(m−d) quadrature error.
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Proof. First, we can introduce a proper translation f(x) → f(x − x0) and move the nonsmooth points z1
and z2 to both lie in the smaller cube [− 1

4 ,
1
4 ]
d in V . Assume such a translation has been applied to f and the

mesh X , which does not change the integral value due to the function periodicity. Using the cut-off function

ψ 1

2

(x), we split f(x) as

f(x) = f(x)ψ2
1

2

(x) + f(x)(1 − ψ2
1

2

(x)), (52)

where the quadrature error for the second term decays super-algebraically according to the analysis in the

proof of Lemma 14. The problem is reduced to the quadrature error estimate for the localized integrand fψ2
1

2

which can be decomposed as fψ2
1

2

= (f1ψ 1

2

)(f2ψ 1

2

). In the following, we abuse the notation fi to denote

fiψ 1

2

and f to denote fψ2
1

2

, and then assume that f1 and f2 is are both compactly supported in V and smooth

everywhere except at z1 and z2 with order γ and 0, respectively. Denote h = 1/m be the unit length of X .

The remaining analysis follows the proof of Lemma 14.

First, the quadrature error of the trapezoidal rule can be reformulated as

EV (f,X ) = (IV (fψh,1) + IV (fψh,2)) + EV (f(1− ψh,1)(1 − ψh,2),X ) , (53)

where ψh,1(x) and ψh,2(x) are two scaled and shifted cutoff functions centered at z1 and z2, respectively,

with cutoff radius C1h as

ψh,1(x) = ψ

(
x− z1

C1h

)
, ψh,2(x) = ψ

(
x− z2

C1h

)
,

where C1 is a constant such that the two balls B(z1, C1h) and B(z2, C1h) do not overlap with each other

or with any mesh points in X other than z1 and z2. Here we use B(x, r) to denote a ball centered at x with

radius r. Such C1 exists based on the assumptions over X in the lemma.

The first part in Eq. (53) can be estimated directly as

|IV (fψh,1) + IV (fψh,2)|

6

∫

B(z1,C1h)

dx|f(x)|+
∫

B(z2,C1h)

dx|f(x)|

6CH0
V,z1(f1)H

0
V,z2(f2)

(∫

B(z1,C1h)

dx|x− z1|γ +
∫

B(z2,C1h)

dxhγ |x− z2|0
)

6CH0
V,z1(f1)H

0
V,z2(f2)h

d+γ ,

where the second inequality uses the two estimates from Eq. (45) as

|f1(x)| 6 H0
V,z1(f1)|x − z1|γ ,

|f2(x)| 6 H0
V,z2(f2)|x − z2|0.
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The second part in Eq. (53) can be estimated using Poisson summation formula with any α > 0 as

|EV (f(1− ψh,1)(1 − ψh,2),X )|

6
∑

k∈2πZd\{0}

∣∣∣∣f̂ψ,h
(
k

h

)∣∣∣∣

6
∑

k∈2πZd\{0}

h|α|

|k|α
∫

Rd

dx

∣∣∣∣
∂α

∂xα
(f(x)(1 − ψh,1(x))(1 − ψh,2(x)))

∣∣∣∣

6C
∑

k∈2πZd\{0}

h|α|

|k|α
∫

Rd

dx
∑

α1+α2+α3=α

|∂α1

x (1− ψh,1(x))∂
α2

x (1− ψh,2(x))∂
α3

x f(x)| . (54)

To estimate the last integral for each set of (α1,α2,α3), we consider three cases:

• α1 > 0. Since 1 − ψh,1(x) is constant inside B(z1,
1
2C1h) and outside B(z1, C1h), its derivatives

are nonzero only in the annulusB(z1, C1) \B(z1,
1
2C1h). The derivative term in Eq. (54) in this case

can be estimated as

|∂α1

x (1− ψh,1)∂
α2

x (1− ψh,2)∂
α3

x f | 6 CH|α|
V,z1

(f1)H|α|
V,z2

(f2)





0 |x− z1| < 1
2C1h

0 |x− z1| > C1h

hγ−|α| otherwise

.

The estimate for x in the annulus around z1 above uses for any β > 0

∣∣∂βx f(x)
∣∣ 6 C

∑

β1+β2=β

∣∣∂β1

x f1(x)∂
β2

x f2(x)
∣∣

6 CH|β|
V,z1

(f1)H|β|
V,z2

(f2)
∑

β1+β2=β

|x− z1|γ−|β1||x− z2|−|β2|

6 CH|β|
V,z1

(f1)H|β|
V,z2

(f2)
∑

β1+β2=β

hγ−|β1|h−|β2|

6 CH|β|
V,z1

(f1)H|β|
V,z2

(f2)h
γ−|β|,

where the third inequality uses the fact |x− z1| = O(h) and |x− z2| = Ω(h).

• α2 > 0. Similar to the first case, we could get an estimate of the derivative as

|∂α1

x (1− ψh,1)∂
α2

x (1− ψh,2)∂
α3

x f | 6 CH|α|
V,z1

(f1)H|α|
V,z2

(f2)






0 |x− z2| < 1
2C1h

0 |x− z2| > C1h

hγ−|α| otherwise

.

• α1 = α2 = 0,α3 = α. We could use the estimate in the first case for ∂αx f(x) to get

|(1− ψh,1)(1− ψh,2)∂
α
x f | 6 CH|α|

V,z1
(f1)H|α|

V,z2
(f2)






0 |x− z1| < 1
2C1h

0 |x− z2| < 1
2C1h∑

β1+β2=α |x− z1|γ−|β1||x− z2|−|β2| otherwise with |x| < 1

.
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Based on the analysis of the three cases above, we get an estimate of the integral as

∫

Rd

dx |∂α1

x (1− ψh,1)∂
α2

x (1− ψh,2)∂
α3

x f | 6 CH|α|
V,z1

(f1)H|α|
V,z2

(f2)

{
hγ−|α|+d α1 > 0 or α2 > 0

1 + hγ−|α|+d α1 = α2 = 0
.

The estimate for the case with α1 = α2 = 0 can be obtained directly when β1 = α and be bounded as

follows when β1 < α

∫

B(0,2)\(B(z1,
1

2
C1h)∪B(z2,

1

2
C1h))

dx|x− z1|γ−|β1||x− z2||β1|−|α|

6

(∫

B(0,2)\B(z1,
1

2
C1h)

dx|x − z1|pγ−p|β1|

) 1

p
(∫

B(0,2)\B(z2,
1

2
C1h)

dx|x− z2|q|β1|−q|α|

) 1

q

6 C
(
1 + hpγ−p|β1|+d

) 1

p
(
1 + hq|β1|−q|α|+d

) 1

q

6 C
(
1 + hγ−|β1|+

1

p
d + h|β1|−|α|+ 1

q
d + hγ−|α|+d

)
6 C

(
1 + hγ−|α|+d

)
,

where the last estimate assumes |α| > γ + d and is obtained by setting the Hölder inequality exponents as

{
p = 1, q = ∞ when d+ γ − |β1| 6 0

p = d
|β1|−γ

, q = d
d+γ−|β1|

when d+ γ − |β1| > 0
.

Plugging this estimate into Eq. (54) and choosing an arbitrary α with |α| = d+ 1, we obtain

|EV (f(1− ψh,1)(1 − ψh,2),X )| 6 CHd+1
V,z1

(f1)Hd+1
V,z2

(f2)h
d+γ ,

which together with Eq. (53) proves the lemma.

Remark 17. If we replace fi(x) with i = 1, 2 by fi(x,y) defined in V × VY which is smooth everywhere

in V × VY except at x = zi with order γ and 0, respectively, Lemma 16 can be generalized to

|EV (f1(·,y)f2(·,y),X )| 6 CHd+1
V×VY ,(0,·)

(f1)Hd+1
V×VY ,(0,·)

(f2)m
−(d+γ), ∀y ∈ VY ,

where the prefactor applies uniformly across all y ∈ VY . This generalization can be obtained using the

prefactor characterization in Lemma 14 and a similar discussion as in Remark 15.

Lemma 18. Let f(x1,x2) = f1(x1,x2)f2(x1,x2) where f1(x1,x2) and f2(x1,x2) are periodic with

respect to x1,x2 ∈ V = [− 1
2 ,

1
2 ]
d and

• f1(x1,x2) is smooth everywhere except at x1 = 0 with order γ1,

• f2(x1,x2) is smooth everywhere except at x2 = 0 with order γ2.

Consider an md-sized uniform mesh X in V that contains x = 0. At x1 = 0 or x2 = 0, f(x1,x2) is set to

zero. The trapezoidal rule using X × X for f(x1,x2) has quadrature error

|EV×V (f,X × X )| 6 CHd+max(1,γ1,γ2)
V×V,(0,·) (f1)Hd+max(1,γ1,γ2)

V×V,(·,0) (f2)m
−(d+mini γi),

If f(x1,0) and f(0,x2) are set to arbitrary O(1) values, it introduces additionalO(m−d) quadrature error.
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Proof. The quadrature error for f can be split into two parts

EV×V (f,X × X ) = EV
(∫

V

dx2f(·,x2),X
)
+

|V |
md

∑

x1∈X

EV (f(x1, ·),X ) . (55)

For the first quadrature error,
∫
V dx2f(x1,x2) as a function of x1 is periodic with respect to V . Using

the Leibniz integral rule, we can show that the integrand is smooth everywhere in V except at x1 = 0 and

its derivatives can be estimated as
∣∣∣∣
∂α

∂xα
1

∫

V

dx2f(x1,x2)

∣∣∣∣ =
∣∣∣∣
∫

V

dx2
∂α

∂xα
1

f(x1,x2)

∣∣∣∣

6 C

∫

V

dx2

∑

α1+α2=α

∣∣∂α1

x1
f1(x1,x2)

∣∣ ∣∣∂α2

x1
f2(x1,x2)

∣∣

6 C

∫

V

dx2

∑

α1+α2=α

(
H|α|
V×V,(0,·)(f1)|x1|γ1−|α1|

)(
H|α|
V×V,(·,0)(f2)|x2|γ2

)

6 CH|α|
V×V,(0,·)(f1)H

|α|
V×V,(·,0)(f2)|x1|γ1−|α|,

where the third inequality uses the estimate in Eq. (44) for multivariate functions with algebraic singularity.

This derivative estimate suggests that
∫
V dx2f(x1,x2) is smooth everywhere in V except at x1 = 0 with

order γ1, and its algebraic singularity characterization satisfies,

Hl
V,0

(∫

V

dx2f(·,x2)

)
6 CHl

V×V,(0,·)(f1)Hl
V×V,(·,0)(f2), ∀l > 0.

Lemma 14 then gives

∣∣∣∣EV
(∫

V

dx2f(·,x2),X
)∣∣∣∣ 6 CHd+max(1,γ1)

V×V,(0,·) (f1)Hd+max(1,γ1)
V×V,(·,0) (f2)m

−(d+γ1). (56)

For the second quadrature error with each x1 ∈ X , f(x1,x2) as a function of x2 is periodic and smooth

everywhere except at x2 = 0 with order γ2. Fixing x1, Lemma 14 gives

|EV (f(x1, ·),X )| 6 CHd+max(1,γ2)
V,0 (f(x1, ·))m−(d+γ2),

where the characterization prefactor with l = d +max(1, γ2) and any x1 ∈ V can be further estimated by

its definition in Eq. (43) as

Hl
V,0(f(x1, ·)) = max

|α|6l

∥∥∥∥
∂αx2

f(x1,x2)

|x2|γ2−|α|

∥∥∥∥
L∞(V )

6 C max
|α|6l

∑

α1+α2=α

∥∥∥∥∂
α1

x2
f1(x1,x2)

∂α2

x2
f2(x1,x2)

|x2|γ2−|α2|
|x2||α1|

∥∥∥∥
L∞(V )

6 C max
|α|6l

∑

α1+α2=α

(
Hl
V×V,(0,·)(f1)|x1|γ1

)(
Hl
V×V,(·,0)(f2)

)∥∥∥|x2||α1|
∥∥∥
L∞(V )

6 CHl
V×V,(0,·)(f1)Hl

V×V,(·,0)(f2)|x1|γ1 , (57)

where the third inequality uses the estimate in Eq. (44).
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Plugging the two estimates Eq. (56) and Eq. (57) above into Eq. (55), we have

|EV×V (f,X × X )| 6 CHl∗
V×V,(0,·)(f1)H

l∗
V×V,(·,0)(f2)

(
m−(d+γ1) +

|V |
md

∑

x1∈X

|x1|γ1m−(d+γ2)

)

6 CHl∗
V×V,(0,·)(f1)H

l∗
V×V,(·,0)(f2)m

−(d+mini γi),

where l∗ = d+max(1, γ1, γ2). This finishes the proof.

Remark 19. If we replace fi(x1,x2) by fi(x1,x2,y) that are smooth and periodic with respect to y ∈ VY ,

Lemma 18 can be generalized as

|EV×V (f(·, ·,y),X × X )| 6 CHd+max(1,γ1,γ2)
V×V×VY ,(0,·,·)

(f1)Hd+max(1,γ1,γ2)
V×V×VY ,(·,0),·

(f2)m
−(d+mini γi), ∀y ∈ VY ,

where the prefactor applies uniformly across all y ∈ VY .

Lemma 20. Let f(x1,x2) = f1(x1,x2)f2(x1,x2)f3(x1,x2 − x1) satisfy that

• f1(x1,x2) and f2(x1,x2) are the same as in Lemma 18,

• f3(x1, z) is periodic with respect to x1, z ∈ V and smooth everywhere except at z = 0 with order 0.

Consider a uniform mesh X in V that is of size md and contains x = 0. At x1 = 0 or x2 = 0, f(x1,x2) is

set to 0. The trapezoidal rule using X × X for f(x1,x2) has quadrature error

|EV×V (f,X × X )| 6 CHd+max(1,γ1,γ2)
V×V,(0,·) (f1)Hd+max(1,γ1,γ2)

V×V,(·,0) (f2)Hd+max(1,γ1,γ2)
V×V,(·,0) (f3)m

−(d+mini γi).

If f(x1,0) and f(0,x2) are set to arbitrary O(1) values, it introduces additionalO(m−d) quadrature error.

Proof. For this new function, we still split the quadrature error into the two parts as

EV×V (f,X × X ) = EV
(∫

V

dx2f(·,x2),X
)
+

|V |
md

∑

x1∈X

EV (f(x1, ·),X ) . (58)

In the first part of the quadrature error,
∫
V

dx2f(x1,x2) as a function of x1 is periodic with respect to V
and below we first show it to be smooth everywhere except at x1 = 0 with order γ1.

In order to exploit the existing nonsmoothness analysis in Lemma 11, we define an auxiliary function

F (x1,y) =

∫

V

dx2f1(y,x2)f2(y,x2)f3(y,x2 − x1),

which satisfies that
∫
V dx2f(x1,x2) = F (x1,x1). First fixing y, the integrand for F (x1,y) as a function

of x1,x2 meets the condition in Lemma 11 and thus F (x1,y) is smooth everywhere with respect to x1 ∈ V
except at x1 = 0 with order 0. Next, fix x1 and consider a point y0 6= 0 ∈ V . It can be verified that there is

an open domain containing y0 where with any y in this domain the integrand is smooth with respect to x2

except at x2 = 0 and x2 = x1, and the absolute integrand is bounded by C|x2|γ2 (from the boundedness of

f1, f3 and the algebraic singularity of f2) which is integrable in V . This meets the condition for the Leibniz

integral rule around y0 and thus F (x1,y) is smooth with respect to y ∈ V except at y = 0. These two

discussions thus show that F (x1,y) is smooth at any points with x1 6= 0,y 6= 0.
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Furthermore, any partial derivative of F (x1,y) over y in V \ {0} can be estimated as

∣∣∂αy F (x1,y)
∣∣ 6 C

∫

V

dx2

∑

α1+α2+α3=α

∣∣∂α1

y f1(y,x2)∂
α2

y f2(y,x2)∂
α3

y f3(y,x2 − x1)
∣∣

6 C

∫

V

dx2

∑

α1+α2+α3=α

H|α|
V×V,(0,·)(f1)|y|

γ1−|α1|H|α|
V×V,(·,0)(f2)|x2|γ2H|α|

V×V,(·,0)(f3)

6 CH|α|
V×V,(0,·)(f1)H

|α|
V×V,(·,0)(f2)H

|α|
V×V,(·,0)(f3)|y|

γ1−|β|

= CCf1,f2,f3,|α||y|γ1−|β|,

where Cf1,f2,f3,|α| denotes the product of the three algebraic singularity prefactors for brevity.

Substituting y by x1 in the above estimate then shows that F (x1,x1) =
∫
V

dx2f(x1,x2) is smooth

everywhere except at x1 = 0 with order γ1. Lemma 14 then gives
∣∣∣∣EV

(∫

V

dx2f(·,x2),X
)∣∣∣∣ 6 CCf1,f2,f3,l1m

−(d+γ1), with l1 = d+max(1, γ1). (59)

For the second part of the quadrature error with each x1 ∈ X , f(x1,x2) as a function of x2 is periodic and

smooth everywhere except at x2 = 0 and x2 = x1 with orders γ2 and 0, respectively. Applying Lemma 16

and Remark 17 with the decomposition f = (f1f2)(f3) then shows that

|EV (f(x1, ·),X )| 6 CHl2
V,0((f1f2)(x1, ·))Hl2

V×V,(·,0)(f3)m
−(d+γ2)

6 CHl2
V×V,(0,·)(f1)H

l2
V×V,(·,0)(f2)|x1|γ1Hl2

V×V,(·,0)(f3)m
−(d+γ2)

6 CCf1,f2,f3,l2 |x1|γ1m−(d+γ2), (60)

where l2 = d+max(1, γ2) and the second inequality is derived as

Hl2
V,0((f1f2)(x1, ·)) = max

|α|6l2

∥∥∥∥
∂αx2

(f1(x1,x2)f2(x1,x2))

|x2|γ2−|α|

∥∥∥∥
L∞(V )

6 C max
|α|6l2

∑

α1+α2=α

∥∥∥∥∂
α1

x2
f1(x1,x2)

∂α2

x2
f2(x1,x2)

|x2|γ2−|α2|
|x2||α1|

∥∥∥∥
L∞(V )

6 C
(
Hl2
V×V,(0,·)(f1)|x1|γ1

)
Hl2
V×V,(·,0)(f2).

Plugging the two estimates Eq. (59) and Eq. (60) into Eq. (55), we have

|EV×V (f,X × X )| 6 CCf1,f2,f3,l∗

(
m−(d+γ1) +

|V |
md

∑

x1∈X

|x1|γ1m−(d+γ2)

)

6 CCf1,f2,f3,l∗m
−(d+mini γi)

with l∗ = d+max(1, γ1, γ2). This finishes the proof.

Remark 21. If we replace fi(x1,x2) by fi(x1,x2,y) that are smooth and periodic with respect to y ∈ VY ,

Lemma 20 can be generalized as

|EV×V (f(·, ·,y),X × X )| 6 CCf1,f2,f3m
−(d+mini γi), ∀y ∈ VY ,

where prefactor Cf1,f2,f3 = Hd+max(1,γ1,γ2)
V×V×VY ,(0,·,·)

(f1)Hd+max(1,γ1,γ2)
V×V×VY ,(·,0,·)

(f2)Hd+max(1,γ1,γ2)
V×V×VY ,(·,0,·)

(f3) applies uni-

formly across all y ∈ VY .
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Appendix E PROOF OF LEMMA 11: SINGULARITY STRUCTURE OF FUNCTIONS IN INTEGRAL

FORM

In this proof, we assume γ2 = mini γi 6 γ1. Otherwise if γ2 > γ1, the target function can be reformu-

lated as

F (y, z) =

∫

V−y

dxf(x+ y,x, z) =

∫

V

dxf(x+ y,x, z),

using change of variable x → x+y and integrand periodicity with respect to x ∈ V . With this reformulation,

the following proof can be applied to f̃(x1,x2, z) = f(x2,x1, z) with F (y, z) =
∫
V

dxf̃(x,x + y, z),

where the order for the second variable of f̃ equals γ1 and is the minimum order.

First we study the smoothness property of F (y, z) with respect to y ∈ V while fixing z. For notation

brevity, we denote F (y, z) and f(x1,x2, z) by Fz(y) and fz(x1,x2), respectively, when z is assumed to be

a fixed point in VZ . Consider an arbitrary open ball domainBσ of radius σ in V that does not contain 0. We

can split Fz(y) for any y ∈ Bσ into two parts,

Fz(y) =

∫

V \Bσ

dxfz(x,x− y) +

∫

Bσ

dxfz(x,x− y), ∀y ∈ Bσ. (61)

For the first term, its integrand fz(x,x− y) is smooth at (x,y) ∈ (V \ (Bσ ∪ {0}))×Bσ and its partial

derivatives over y ∈ Bσ are integrable over x ∈ V \ Bσ based on the nonsmoothness characterization in

Eq. (32). We thus can use the Leibniz integral rule to prove that the first term is smooth at y ∈ Bσ and

∂α

∂yα

∫

V \Bσ

dxfz(x,x − y) =

∫

V \Bσ

dx
∂α

∂yα
fz(x,x− y), ∀y ∈ Bσ.

For the second term with any y ∈ Bσ , we introduce a small perturbation δy to y such that y + δy ∈ Bσ
and Bσ + δy does not contain 0, and consider the difference between the second term evaluated at y + δy
and y as

∫

Bσ

dxfz(x,x − y − δy)−
∫

Bσ

dxfz(x,x− y)

=

∫

Bσ

dx
(
fz(x− δy,x− y − δy)− fz(x,x − y) + fz(x,x− y − δy) − fz(x− δy,x − y − δy)

)

=

(∫

Bσ−δy

dx−
∫

Bσ

dx

)
fz(x,x− y) +

∫

Bσ−δy

dx (fz(x+ δy,x − y)− fz(x,x − y))

=

∫

∂Bσ

dSfz(x,x− y)(−δy) · n(x) +O(|δy|2) +
∫

Bσ−δy

dxδy · ∇1fz(x,x − y) +O(|δy|2)

=δy ·
(
−
∫

∂Bσ

dSfz(x,x− y)n(x) +

∫

Bσ

dx∇1fz(x,x− y)

)
+O(|δy|2),

where ∇1fz(·, ·) denotes the gradient of f over its first variable and similarly for notation ∂α1 f(·, ·) in later

use. This calculation shows that the second term in Eq. (61) is continuous at any y ∈ Bσ up to first order

derivatives and its gradient equals to the term in the parenthesis above.

Putting the above analysis for the two terms in Eq. (61) together, we have

∇Fz(y) =

∫

V \Bσ

dx∇yfz(x,x−y)−
∫

∂Bσ

dSfz(x,x− y)n(x) +

∫

Bσ

dx∇1fz(x,x−y), y ∈ Bσ.

(62)
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It is worth noting that the above smoothness analysis and the gradient calculation in Eq. (62) work for any

open domain Bσ ⊂ V that does not contain 0. Thus, the analysis above shows the Fz(y) is continuous up

to first order derivative at any y ∈ V \ {0}.

In Eq. (62), the integrands of the first two terms are smooth at any y ∈ Bσ as x 6∈ Bσ . These two

integrals are thus smooth with respect to y ∈ Bσ according to the Leibniz integral rule. For the third term,

each entry in ∇1fz(x1,x2) shares similar nonsmooth behavior as fz(x1,x2) described in Eq. (32) only with

γ1 changed to γ1 − 1. Due to this similarity, we can use the same analysis for
∫
V dxfz(x,x − y) above to

prove the continuity up to first order derivatives for the third term at any y ∈ V \ {0}. Recursively applying

this analysis, we then prove that Fz(y) is smooth in Bσ and thus in V \ {0}.

Now taking z back into account, the above analysis shows that F (y, z) is smooth with respect to y ∈
V \ {0} for any fixed z ∈ VZ . On the other hand, with any fixed y, f(x,x − y, z) is smooth with respect

to z ∈ VZ , has two nonsmooth points x = 0 and x = y with respect to x, and its partial derivatives over z

are integrable over x ∈ V according to the assumption in Eq. (32). This meets the condition for the Leibniz

integral rule and thus F (y, z) is smooth with respect to z ∈ VZ for any fixed y. Based on these two partial

smoothness properties, we have F (y, z) to be smooth everywhere in V × VZ except at y = 0.

Lastly, we characterize the algebraic singularity of F (y, z) at y = 0 by proving that there exists constants

{Cα,β} such that

∣∣∂αy ∂βz F (y, z)
∣∣ 6 Cα,β |y|γ2−|α|, ∀y ∈ V \ {0}, z ∈ VZ , ∀α,β > 0. (63)

Consider any y ∈ V \ {0} and choose the ball domain Bσ centered at y with radius σ = |y|/2. Using the

Leibniz integral rule over variable z, Eq. (62) can be generalized to provide the first-order partial derivatives

of ∂βz F (y, z) over y as

∂αy ∂
β
z F (y, z) =

∫

V \Bσ

dx∂αy ∂
β
z f(x,x− y, z)−

∫

∂Bσ

dS∂βz f(x,x− y, z)(α · n(x))

+

∫

Bσ

dx∂α1 ∂
β
z f(x,x− y, z), ∀y ∈ Bσ, z ∈ VZ , ∀|α| = 1,β > 0. (64)

These three terms can be estimated separately based on the assumption in Eq. (32) as

∣∣∣∣∣

∫

V \Bσ

dx∂αy ∂
β
z f(x,x− y, z)

∣∣∣∣∣ 6 C

∫

V \Bσ

dx|x|γ1 |x− y|γ2−1

6 C

∫

V \Bσ

dx|x|γ1 |σ|γ2−1
6 C|y|γ2−1,

∣∣∣∣
∫

∂Bσ

dS∂βz f(x,x− y, z)(α · n(x))
∣∣∣∣ 6 C

∫

∂Bσ

dS|x|γ1 |x− y|γ2

6 C|y|γ1 |∂Bσ|σγ2 6 C|y|γ1+γ2+d−1,
∣∣∣∣
∫

Bσ

dx∂α1 ∂
β
z f(x,x− y, z)

∣∣∣∣ 6 C

∫

Bσ

dx|x|γ1−1|x− y|γ2

6 C|σ|γ1−1

∫

Bσ

|x− y|γ2 6 C|y|γ1+γ2+d−1,

where all constantsC’s depend on α,β, and the corresponding prefactors in Eq. (32). Using the assumption

γ1 > −d + 1, these estimates together show that the algebraic singularity characterization in Eq. (63) for

F (y, z) holds true for all |α| = 1.
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Next we prove Eq. (63) for all |α| = 2. For any |α| = 2, decompose α = α1+α2 with |α1| = |α2| = 1
and accordingly ∂αy ∂

β
z F (y, z) into ∂α1

y

(
∂α2

y ∂βz F (y, z)
)
. Noting that ∂α2

y ∂βz F (y, z) can be expanded into

three terms in Eq. (64) at any y 6= 0, we consider the outer partial derivative ∂α1

y applied to each of the three

terms. The partial derivatives ∂α1

y over the first two terms in Eq. (64) can be estimated directly as

∣∣∣∣∣∂
α1

y

∫

V \Bσ

dx∂α2

y ∂βz f(x,x− y, z)

∣∣∣∣∣ =
∣∣∣∣∣

∫

V \Bσ

dx∂α1+α2

y ∂βz f(x,x− y, z)

∣∣∣∣∣

6 C

∫

V \Bσ

dx|x|γ1 |x− y|γ2−2
6 C|y|γ2−2,

∣∣∣∣∂
α1

y

∫

∂Bσ

dS∂βz f(x,x− y, z)(α2 · n(x))
∣∣∣∣ =

∣∣∣∣
∫

∂Bσ

dS∂α1

y ∂βz f(x,x− y, z)(α2 · n(x))
∣∣∣∣

6 C

∫

∂Bσ

dS|x|γ1 |x− y|γ2−|α1| 6 C|y|γ1+γ2+d−2.

For the partial derivative ∂α1

y over the third term in Eq. (64), note that ∂α2

1 f(x1,x2, z) has similar non-

smooth behavior as f(x1,x2, z) described in Eq. (32) only with γ1 changed to γ1 − 1. We thus can ap-

ply the above derivative estimate in Eq. (63) with |α| = 1 for ∂αy ∂
β
z

∫
V dxf(x,x − y, z) to estimate

∂α1

y ∂βz
∫
Bσ

dx∂α2

1 f(x,x− y, z) and obtain that

∣∣∣∣∂
α1

y ∂βz

∫

Bσ

dx∂α2

1 f(x,x− y, z)

∣∣∣∣ 6 C|y|γ1+γ2+d−2.

Combining the above estimates of the partial derivatives ∂α1

y over the three terms in Eq. (64) together then

proves the algebraic singularity characterization in Eq. (63) with |α| = 2. Recursively applying the above

estimates, we can validate Eq. (63) for all derivative orders α > 0 and thus prove that F (y, z) is smooth

everywhere in V × VZ except at y = 0 with order γ2. This finishes the proof.
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