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Abstract: The results of a search for top squark (stop) pair production in final states

with one isolated lepton, jets, and missing transverse momentum are reported. The analy-

sis is performed with proton-proton collision data at
√
s = 8 TeV collected with the ATLAS

detector at the LHC in 2012 corresponding to an integrated luminosity of 20 fb−1. The

lightest supersymmetric particle (LSP) is taken to be the lightest neutralino which only

interacts weakly and is assumed to be stable. The stop decay modes considered are those to

a top quark and the LSP as well as to a bottom quark and the lightest chargino, where the

chargino decays to the LSP by emitting a W boson. A wide range of scenarios with different

mass splittings between the stop, the lightest neutralino and the lightest chargino are con-

sidered, including cases where the W bosons or the top quarks are off-shell. Decay modes

involving the heavier charginos and neutralinos are addressed using a set of phenomenolog-

ical models of supersymmetry. No significant excess over the Standard Model prediction is

observed. A stop with a mass between 210 and 640 GeV decaying directly to a top quark

and a massless LSP is excluded at 95% confidence level, and in models where the mass of

the lightest chargino is twice that of the LSP, stops are excluded at 95% confidence level up

to a mass of 500 GeV for an LSP mass in the range of 100 to 150 GeV. Stringent exclusion

limits are also derived for all other stop decay modes considered, and model-independent

upper limits are set on the visible cross-section for processes beyond the Standard Model.

Keywords: Hadron-Hadron Scattering, proton-proton scattering, supersymmetry, top

squark

ArXiv ePrint: 1407.0583

Open Access, Copyright CERN,

for the benefit of the ATLAS Collaboration.

Article funded by SCOAP3.

doi:10.1007/JHEP11(2014)118

mailto:atlas.publications@cern.ch
http://arxiv.org/abs/1407.0583
http://dx.doi.org/10.1007/JHEP11(2014)118


J
H
E
P
1
1
(
2
0
1
4
)
1
1
8

Contents

1 Introduction 2

2 Analysis strategy 3

3 The ATLAS detector 5

4 Trigger and data collection 6

5 Simulated samples 7

5.1 Background samples 7

5.2 Signal samples 8

6 Physics object reconstruction and discriminating variables 10

6.1 Physics object reconstruction 10

6.2 Tools to discriminate signal from background 14

7 Signal selections 16

7.1 Event preselection 17

7.2 Selections for the t̃1 → tχ̃
0
1 decay 18

7.3 Selections for the t̃1 → bχ̃
±
1 decay 21

7.4 Selections for the mixed, three- and four-body decays 27

8 Background estimates 28

8.1 Control regions 29

8.2 Validation 32

9 Systematic uncertainties 35

10 Results 38

11 Summary and conclusions 45

A Detailed description of the discriminating variables 53

B Background fit results 56

The ATLAS collaboration 70

– 1 –



J
H
E
P
1
1
(
2
0
1
4
)
1
1
8

1 Introduction

The hierarchy problem [1–4] has gained additional attention with the observation of a new

particle consistent with the Standard Model (SM) Higgs boson [5, 6] at the LHC [7]. Super-

symmetry (SUSY) [8–16], which extends the SM by introducing supersymmetric partners

for all SM particles, provides an elegant solution to the hierarchy problem. The partner

particles have identical quantum numbers except for a half-unit difference in spin. The

superpartners of the left- and right-handed top quarks, t̃L and t̃R, mix to form the two

mass eigenstates t̃1 and t̃2, where t̃1 (top squark or stop) is the lighter one. If the super-

symmetric partners of the top quarks have masses . 1 TeV, loop diagrams involving top

quarks, which are the dominant contribution to the divergence of the Higgs boson mass,

can be largely cancelled [17–24]. Significant mass splitting between t̃1 and t̃2 is possible

due to the large top Yukawa coupling.1 Furthermore, effects of the renormalisation group

equations are strong for the third generation squarks, usually driving their masses signifi-

cantly lower than those of the other generations. These considerations suggest a light stop

which, together with the stringent LHC limits excluding other coloured supersymmetric

particles up to masses at the TeV level, motivates dedicated stop searches.

SUSY models can violate the conservation of baryon number and lepton number, re-

sulting in a proton lifetime shorter than current experimental limits [25]. This is commonly

solved by introducing a multiplicative quantum number called R-parity, which is 1 and −1

for all SM and SUSY particles, respectively. A generic R-parity-conserving minimal su-

persymmetric extension of the SM (MSSM) [17, 26–29] predicts pair production of SUSY

particles and the existence of a stable lightest supersymmetric particle (LSP). In a large va-

riety of SUSY models, the lightest neutralino2 (χ̃
0
1) is the LSP, which is also the assumption

throughout this paper. Since the χ̃
0
1 interacts only weakly it is a candidate for dark matter.

The stop can decay into a variety of final states, depending amongst other things on

the SUSY particle mass spectrum, in particular on the masses of the stop and the lightest

neutralino. Figure 1 illustrates the simplest decay modes as a function of the stop and LSP

masses. In the rightmost wedge, the stop mass is greater than the sum of the top quark

and the LSP masses, hence the decay t̃1 → tχ̃
0
1 is kinematically allowed. A lighter stop

can undergo a three-body decay t̃1 → bWχ̃0
1 if the stop mass is still above the b+W + χ̃0

1

mass. For an even lighter stop, the decay proceeds via a four-body process t̃1 → bff ′χ̃
0
1,

where f and f ′ are two distinct fermions, or flavour-changing neutral current (FCNC)

processes, such as the loop-suppressed t̃1 → cχ̃
0
1. If supersymmetric particles other than

the χ̃0
1 are lighter than the stop, then additional decay modes can open up. The stop

decay to a bottom quark and the lightest chargino (t̃1 → bχ̃
±
1 ) is an important example,

where the χ̃
±
1 can decay to the lightest neutralino by emitting an on- or off-shell W boson

1The masses of the t̃1 and t̃2 are given by the eigenvalues of the stop mass matrix. The stop mass

matrix involves the top-quark Yukawa coupling in the off-diagonal elements, which typically induces a large

mass splitting. The stop mass matrix is diagonalised by the stop mixing matrix, which gives the t̃L and t̃R
components of the mass eigenstates t̃1 and t̃2.

2The charginos χ̃
±
1,2 and neutralinos χ̃

0
1,2,3,4 are the mass eigenstates formed from the linear superpo-

sition of the charged and neutral SUSY partners of the Higgs and electroweak gauge bosons (higgsinos,

winos and binos).

– 2 –
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Figure 1. Illustration of stop decay modes in the plane spanned by the masses of the stop (t̃1)

and the lightest neutralino (χ̃
0
1), where the latter is assumed to be the lightest supersymmetric

particle. Stop decays to supersymmetric particles other than the lightest supersymmetric particle

are not displayed.

(χ̃
±
1 →W (∗)χ̃0

1). The t̃1 → bχ̃
±
1 decay is considered for a stop mass above around 100 GeV

since the LEP limit on the lightest chargino is mχ̃±
1
> 103.5 GeV [30].

This article presents a search for direct t̃1 pair production in final states with exactly

one isolated charged lepton (electron or muon,3 henceforth referred to simply as ‘leptons’),

several jets, and a significant amount of missing transverse momentum, the magnitude of

which is referred to as Emiss
T . The lepton arises from the decay of either a real or a virtual

W boson, and the potentially large Emiss
T is generated by the two undetected LSPs and neu-

trino(s). All stop decay modes described above except for the FCNC modes are considered,

as illustrated in figure 2. With several decay modes kinematically available, the t̃1 decay

branching ratio is determined by factors including the stop mixing matrix and the field

content of the neutralino/chargino sector. Results are mainly based on simplified models

that have 100% branching ratio to one or a pair of these specific decay chains. In addition,

phenomenological MSSM (pMSSM) [31] models are used to study the sensitivity to realistic

scenarios where more complex decay chains are present alongside the simpler ones.

Searches for direct t̃1 pair production have previously been reported by the ATLAS [32–

38] and CMS [39–43] collaborations, as well as by the CDF and DØ collaborations (for ex-

ample refs. [44, 45]) and the LEP collaborations [46]. Indirect searches for stops, mediated

by gluino pair production, have been reported by the ATLAS [47–50] and CMS [39, 40, 51–

55] collaborations.

2 Analysis strategy

Searching for t̃1 pair production in the various decay modes and over a wide range of stop

masses requires different analysis approaches. The t̃1 pair production cross-section falls

3Electrons and muons from τ decays are included.
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Figure 2. Diagrams illustrating the considered signal scenarios, which are referred to as (a)

t̃1 → tχ̃
0
1, (b) t̃1 → bWχ̃0

1 (three-body), (c) t̃1 → bff ′χ̃0
1 (four-body), (d) t̃1 → bχ̃

±
1 . Furthermore, a

non-symmetric decay mode where each t̃1 can decay via either t̃1 → tχ̃
0
1 or t̃1 → bχ̃

±
1 is considered

(not shown). In these diagrams, the charge-conjugate symbols are omitted for simplicity; all

scenarios begin with a top squark-antisquark pair. The three-body and four-body decays are

assumed to proceed through an off-shell top quark, and an off-shell top quark followed by an

off-shell W boson, respectively.

rapidly with increasing stop mass mt̃1
: for the range targeted by this search, mt̃1

∼ 100–

700 GeV, the cross-section at
√
s = 8 TeV proton-proton (pp) collisions decreases from

560 pb to 8 fb. While the various t̃1 decay modes considered all have identical final state

objects — one electron or muon accompanied by one neutrino (or more for a leptonic τ

decay), two jets originating from bottom quarks (b-jets), two light-flavour jets, and two

LSPs — their kinematic properties change significantly for the different decay modes and

as a function of the masses of the stop, LSP, and lightest chargino (if present). The

search presented in this paper is based on 15 dedicated analyses that target the various

scenarios. The identification of b-jets (b-tagging) is utilised in the event selections and

for constructing kinematic variables. The search for a heavy stop exploits a specialised

technique, which reconstructs several decay products in a single large-radius (large-R) jet.

Low-momentum leptons (referred to as soft leptons) are reconstructed and identified to

– 4 –
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enhance the sensitivity for t̃1 → bχ̃
±
1 decays where the χ̃

0
1 and χ̃

±
1 states are close in mass.

These and other tools and variables to discriminate signal from background, described in

section 6, are used to design sets of requirements for the event selection. Each of these

sets of requirements is referred to as a signal region (SR), and is optimised to target one

or more signal scenarios. Furthermore, two different analysis techniques are employed,

which are referred to as ‘cut-and-count’ and ‘shape-fit’. The former is based on counting

events in a single region of phase space (bin), while the latter employs several bins. By

utilising different signal-to-background ratios in the various bins, shape-fits enhance the

search sensitivity in challenging scenarios, where it is particularly difficult to separate signal

from background. All SRs are described in section 7.

The dominant background in most SRs arises from top quark pair production (tt̄) where

both W bosons decay leptonically (dileptonic tt̄) but one of the leptons is not identified,

is outside the detector acceptance, or is a hadronically decaying τ lepton. The sub-leading

background for most SRs stems from W+jets production. As part of each analysis, the tt̄

and W+jets backgrounds are estimated using dedicated control regions (CRs), making the

analysis more robust against potential mis-modelling effects in simulated events and reduc-

ing the uncertainties on the background estimates. Other small backgrounds are estimated

using simulation only. Dedicated samples are used to validate the background predictions.

The background estimation including the definition of all CRs is detailed in section 8.

The analysis results are based on maximum likelihood fits, which include the CRs to

simultaneously normalise the tt̄ and W+jets backgrounds. Systematic uncertainties due to

theoretical and experimental effects are considered for all background and signal processes,

and are described in section 9. The final results and interpretations, both in terms of

model-dependent exclusion limits on the masses of relevant SUSY particles and model-

independent upper limits on the number of beyond-SM events, are presented in section 10.

3 The ATLAS detector

The ATLAS experiment [56] is a multi-purpose particle physics detector with nearly

4π steradian coverage in solid angle. It consists of an inner detector of tracking devices

surrounded by a thin superconducting solenoid, electromagnetic and hadronic calorimeters,

and a muon spectrometer in a toroidal magnetic field. The inner detector, in combination

with the 2 T axial field from the solenoid, provides precision tracking and momentum mea-

surement of charged particles up to |η| = 2.5 and allows efficient b-jet identification.4 It

consists of a silicon pixel detector, a semiconductor microstrip detector and a straw-tube

tracker which also provides transition radiation measurements for electron identification.

High-granularity liquid-argon (LAr) sampling electromagnetic calorimeters cover the pseu-

dorapidity range |η| < 3.2. The hadronic calorimeter system is based on two different tech-

4ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point in the

centre of the detector and the z-axis along the beam pipe. Cylindrical coordinates (r, φ) are used in the

transverse plane, φ being the azimuthal angle around the beam pipe. The pseudorapidity η is defined in

terms of the polar angle θ by η = − ln tan(θ/2), and the angular separation ∆R in the η–φ space is defined

as ∆R =
√

(∆η)2 + (∆φ)2.

– 5 –
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nologies, a scintillator-tile sampling calorimeter (|η| < 1.7) and a LAr sampling calorimeter

(1.5 < |η| < 3.2). LAr calorimeters in the most forward region (3.1 < |η| < 4.9) provide

electromagnetic and hadronic measurements. The muon spectrometer has separate trigger

and high-precision tracking chambers, the former provide trigger coverage up to |η| = 2.4

while the latter provide muon identification and momentum measurements for |η| < 2.7.

Events are selected by a three-level trigger system [57], the first level (L1) is implemented

in customised hardware while the two high-level triggers (HLT) are software-based.

4 Trigger and data collection

The data used in this analysis were collected from March to December 2012 with the

LHC operating at a pp centre-of-mass energy of
√
s = 8 TeV. After application of beam,

detector and data quality requirements, the total integrated luminosity is 20.3 fb−1 with

an uncertainty of 2.8%. The uncertainty is derived, following the methodology detailed in

ref. [58], from a preliminary calibration of the luminosity scale from beam-separation scans

performed in November 2012.

The dataset was recorded using three different types of triggers based on requiring

either an electron, a muon, or large Emiss
T . The single-electron trigger identifies electrons

based on the presence of an energy cluster in the electromagnetic calorimeter with a shower

shape consistent with that of an electron, low hadronic leakage, and a matching track in the

inner detector. The HLT threshold5 on the energy deposit transverse to the beam (ET) is

24 GeV. An electron isolation criterion at the HLT requires the scalar sum of the transverse

momenta (pT) of tracks within a cone of radius ∆R = 0.2 around the electron (excluding

the electron itself) to be less than 10% of the electron ET. The single-muon trigger iden-

tifies muons using tracks reconstructed in the muon spectrometer and inner detector. The

pT threshold at the HLT is 24 GeV. An isolation criterion at the HLT requires the scalar

sum of the pT of tracks within a cone of radius ∆R = 0.2 around the muon (excluding the

muon itself) to be less than 12% of the muon pT. To recover some of the small efficiency

loss for high-pT leptons, events were also collected using complementary single-lepton trig-

gers. These triggers have less stringent shower-shape requirements and no hadronic leakage

criterion for electrons, and no isolation criteria, but have an increased ET (pT) threshold of

60 GeV (36 GeV) for electrons (muons). Corrections are applied to the simulated samples to

account for small differences between data and simulation in the lepton trigger efficiencies.

The Emiss
T trigger is based on the vector sum of the transverse energies deposited in

projective calorimeter trigger towers. A more refined calculation based on the vector sum

of all calorimeter cells above noise is made at the HLT. The trigger Emiss
T threshold at the

HLT is 80 GeV, and it is fully efficient for offline-calibrated Emiss
T > 150 GeV in signal-like

events. At the beginning of the 2012 data-taking, the Emiss
T trigger used in this analysis was

disabled for the first three bunch crossings of every bunch train, causing a loss of 0.2 fb−1

in integrated luminosity.

5The trigger thresholds refer to lower requirements on the given quantity, and the HLT thresholds are

always more stringent than the corresponding L1 thresholds.

– 6 –
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Candidate events in the electron (muon) channel were collected using a logical-OR

combination of the single-electron (single-muon) and Emiss
T triggers. Since the single-

lepton trigger thresholds are too high for the soft-lepton selection, these candidate events

were recorded using only the Emiss
T trigger. Consequently, the effective dataset for the

soft-lepton selections amounts to an integrated luminosity of 20.1 fb−1. All results quote

a rounded value of 20 fb−1, while inside the analysis the appropriate integrated luminosity

values are used. The efficiency of the Emiss
T and lepton triggers are measured with W → µν

and Z → `` data samples, respectively. In all cases the combined trigger efficiency

is greater than 98% for simulated signal events satisfying the selection criteria for the

analyses described in sections 7–8.

5 Simulated samples

Samples of Monte Carlo (MC) simulated events are used for the description of the back-

ground and to model the SUSY signals. As detailed below, the samples are generated with

either POWHEG-r2129 [59], ACERMC-3.8 [60], MadGraph-5.1.4.8 [61], SHERPA-

1.4.1 [62] or Herwig++ 2.5.2 [63]. All POWHEG and SHERPA samples use the

next-to-leading-order (NLO) parton distribution function (PDF) set CT10 [64], while sam-

ples generated with ACERMC, MadGraph or Herwig++ use the CTEQ6L1 [65] PDF

set. The ATLAS Underlying Event Tune 2B [66] is used for all MadGraph samples,

while the samples generated with POWHEG or ACERMC use the Perugia 2011C [67]

tune and samples generated with Herwig++ use UEEE3 [68]. The SHERPA genera-

tor has an integrated underlying event tune. The fragmentation and hadronisation for the

POWHEG, ACERMC, and MadGraph samples is performed with PYTHIA-6.426 [69],

while SHERPA and Herwig++ use their own built-in models.

The samples are processed with either a detector simulation [70] using GEANT4 [71]

or a fast simulation framework where the showers in the electromagnetic and hadronic

calorimeters are simulated using a parameterised description [72] and GEANT4 is used

for the rest of the detector. The fast simulation has been validated against full GEANT4

simulation for several signal models and for the main background, tt̄ production. All sam-

ples are produced with varying numbers of simulated minimum-bias interactions, generated

with PYTHIA-8.160 [73], overlaid on the hard-scattering event to account for multiple

pp interactions in the same or nearby bunch crossings (pileup). The average number of

interactions per bunch crossing is reweighted to match the distribution in data that varies

between approximately 10 and 30.

5.1 Background samples

A sample of tt̄ events is generated with POWHEG using a top quark mass mt = 172.5 GeV.

The same top quark mass is used when simulating other signal or background processes

involving top quarks. To account for discrepancies between data and simulated tt̄ events,

the simulated sample is reweighted as a function of the pT of the tt̄ system; the weights are

based on the ATLAS measurement of the differential tt̄ cross-section at 7 TeV, following

the method described in ref. [74]. Single top quark production in the s-channel and the

– 7 –



J
H
E
P
1
1
(
2
0
1
4
)
1
1
8

Wt mode are also generated with POWHEG, while the t-channel process is generated

with ACERMC. In Wt production, the interference with tt̄ at NLO in quantum chromo-

dynamics (QCD) is treated by the diagram removal scheme [75]. Associated production of

tt̄ and vector bosons (W , Z and WW ) as well as single top production in association with

a Z boson, are generated with MadGraph with up to two additional partons. Samples

of W+jets and Z/γ∗ + jets are produced with SHERPA, containing up to four addi-

tional partons and the correct treatment of bottom and charm quark masses. The diboson

processes (WW , ZZ and WZ) are also generated with SHERPA.

The processes are normalised using theoretical inclusive cross-sections, including

higher-order QCD corrections where available. The tt̄ production cross-section is calculated

at next-to-next-to-leading order (NNLO) in QCD including resummation of next-to-next-

to-leading logarithmic (NNLL) soft gluon terms with top++2.0 [76–81]. Cross-sections for

single top quark production are calculated to approximate NLO+NNLL precision [82–84].

The production of tt̄ in association with vector bosons is calculated at NLO [85, 86], while

the production of a single top quark in association with a Z boson is normalised to the LO

cross-sections from the generator, because NLO calculations are only available for t-channel

production [87]. The cross-sections for the production of W and Z bosons are calculated

with DYNNLO [88]. The production cross-sections for electroweak diboson production

are calculated at NLO with MCFM [89, 90]. The tt̄, single top, W , Z, and diboson calcula-

tions use the MSTW2008 NNLO PDF set [91], while the cross-sections for tt̄ in association

with a vector boson use the MSTW2008 NLO (W ) or CTEQ6.6M [92] (Z) PDF set. The

cross-sections for tt̄ and W production are used for the optimisation of the selections, while

for the final results the two processes are normalised to data in control regions.

5.2 Signal samples

Signal samples of top squark-antisquark pairs are generated with different stop decay and

mass configurations. The first scenario assumes the t̃1 → tχ̃
0
1 decay with a branching ratio

(BR) of 100%. The samples are generated with Herwig++ in a grid across the plane of

t̃1 and χ̃0
1 masses with a spacing of 50 GeV for most of the plane; the grid is more finely

sampled towards the diagonal region where mt̃1
approaches mt +mχ̃0

1
. The t̃1 is chosen to

be mostly the partner of the right-handed top quark6 and the χ̃
0
1 to be almost pure bino.

This choice is consistent with a large BR for the given t̃1 decay. Different hypotheses on

the left/right mixing in the stop sector and the nature of the neutralino lead to different

acceptance values. The acceptance is affected because the polarisation of the top quark

changes as a function of the field content of the supersymmetric particles, which impacts

the boost of the lepton in the top quark decay. A subset of models where the t̃1 is purely

t̃L are studied to quantify this effect.

The second signal scenario assumes the t̃1 → bχ̃
±
1 → bW (∗)χ̃0

1 decay with a BR of

100%.7 The stop pairs are always generated with MadGraph, while for the t̃1 decay

either MadGraph or PYTHIA is employed. For models where the W boson is on-shell,

6The t̃R component is given by the the off-diagonal entry of the stop mixing matrix. Here, this matrix

is set with (off-) diagonal entries of approximately (±0.83) 0.55.
7All possible decays of the (possibly virtual) W boson are considered.
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the full t̃1 decay is performed by MadGraph, while PYTHIA is used to decay the t̃1
in models where the W is off-shell. In the latter case, generating the full event with

MadGraph would be computationally too expensive. Seven two-dimensional planes are

defined to probe the three-dimensional parameter space of the t̃1, χ̃
±
1 , and χ̃0

1 masses.

The typical grid spacing is 50 GeV; higher grid densities are generated in regions where

a rapid change of sensitivity is expected. The boundary conditions are derived from the

LEP chargino mass limit of 103.5 GeV [30], and by requiring the χ̃
±
1 mass to be below

the t̃1 mass. Six out of the seven planes span the t̃1 and χ̃0
1 masses. The first plane sets

the chargino mass to twice the LSP mass (mχ̃±
1

= 2mχ̃0
1
), motivated by the pattern in

GUT-scale models with gaugino universality. The second and third planes fix the chargino

mass to be above (mχ̃±
1

= 150 GeV) or close to (mχ̃±
1

= 106 GeV) the chargino mass limit,

respectively. In the fourth and fifth planes the chargino mass and neutralino mass are

relatively close, mχ̃±
1
−mχ̃0

1
= 5 GeV and mχ̃±

1
−mχ̃0

1
= 20 GeV, respectively; small mass

differences are motivated by higgsino-like states. The sixth plane sets the chargino mass to

be slightly below the stop mass, mχ̃±
1

= mt̃1
− 10 GeV. The last plane fixes the stop mass,

mt̃1
= 300 GeV, while varying the χ̃

±
1 and χ̃0

1 masses. The samples in all planes assume

that the t̃1 is a t̃L state. The t̃1 → bχ̃
±
1 branching ratio might not reach 100% in the MSSM

if the t̃1 → t+ χ̃0
1/χ̃

0
2 decays are kinematically allowed, but high branching ratios can occur

in the allowed parameter space, such as for the above choices of particle field content.

The BR = 100% assumption is relaxed in a third signal scenario where a stop can

decay either via t̃1 → tχ̃
0
1 or via t̃1 → bχ̃

±
1 . For this purpose, ‘asymmetric’ samples are

generated where in each event one stop is forced to decay via one and the second stop

via the other decay mode. The signal plane as a function of the BR can be probed

by combining, with appropriate reweighting, the asymmetric samples with the two

BR = 100% samples for the t̃1 → tχ̃
0
1 and t̃1 → bχ̃

±
1 decays. The asymmetric samples are

generated with the same generator settings used for the other t̃1 → bχ̃
±
1 samples, except

for using the maximum stop mixing angle (yielding equal components of t̃L and t̃R) since

the stop mixing is directly related to the BR. The mass points generated are identical to

those for the mχ̃±
1

= 2mχ̃0
1

scenario.

The three- and four-body stop decay modes, t̃1 → bWχ̃0
1 and t̃1 → bff ′χ̃

0
1 respectively,

are relevant for a relatively light stop, as shown in figure 1. Samples for each scenario

are generated with the assumption of BR = 100%. The three-body samples are produced

with Herwig++, which performs the full matrix element calculation of the three-body

decay, using the same settings as for the t̃1 → tχ̃
0
1 decay mode. The four-body decay mode

is generated with MadGraph interfaced with PYTHIA for the t̃1 decay and for parton

showering, and with up to one additional parton. The four-body decay itself is forced to

proceed via a virtual W boson. The t̃1 and χ̃0
1 mass parameters are varied with a grid

spacing between 25 and 50 GeV.

Signal cross-sections are calculated in the MSSM at NLO, including the resumma-

tion of soft gluon emission at next-to-leading-logarithmic accuracy (NLO+NLL) [93–95].

The nominal cross-section and the uncertainty are taken from an envelope of cross-section

predictions using different PDF sets and factorisation and renormalisation scales, as de-
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scribed in ref. [96]. The t̃1 pair production cross-section obtained using this prescription is

(5.6± 0.8) pb for mt̃1
= 250 GeV, and (0.025± 0.004) pb for mt̃1

= 600 GeV.

Although the simplified models described above can probe large regions of the allowed

SUSY parameter space, more realistic SUSY models can feature more complex stop decays

involving the heavier charginos and neutralinos. To study the sensitivity of the various

analyses to these well-motivated scenarios, the pMSSM models described in ref. [97] are

used. These models produce a Higgs boson in the mass range (mh = 126±3 GeV), saturate

the WMAP relic density [98] and produce values of fine-tuning no worse than 1 part in 100

using the measure proposed by Barbieri, Giudice and Ellis et al. [23, 99]. In all models the
χ̃0

1 is the LSP. To investigate the impact of varying parameters other than the stop and

LSP mass while at the same time avoiding the processing of a large number of events, only

three different t̃1 and χ̃0
1 mass regions are considered. Only models where both t̃1 → tχ̃

0
1

and t̃1 → bχ̃
±
1 are kinematically allowed are used. This serves to remove the models which

have a branching ratio of 100% for only one decay mode, as these regions of parameter

space are already probed by the simplified models. This results in a total of 27 models,

for which top squark-antisquark pair events are generated with Herwig++ and processed

with the fast simulation. Some details of the models are given in table 1. By keeping the

stop and LSP masses fixed, the impact on the sensitivity from varying other parameters

can be studied, such as the branching ratios to the heavier charginos and neutralinos. The

sensitivity for pMSSM models can then be compared to that obtained in the simplified

models with the corresponding stop and LSP masses.

6 Physics object reconstruction and discriminating variables

6.1 Physics object reconstruction

The reconstruction and identification of all final state objects used in this search, such as

vertices, jets, leptons, and missing transverse momentum, is described in the following.

Two sets of lepton identification criteria are utilised. One set defines the leptons used in

the overlap removal procedure with jets and other objects and to veto events with more

than one lepton. The second set imposes tighter identification criteria, and is used to select

the primary lepton in the event.

The reconstructed primary vertex is required to be consistent with the beam diamond

envelope and to have at least five associated tracks with pT > 0.4 GeV [100]. If there

are multiple primary vertices in an event, the vertex with the largest summed p2
T of the

associated tracks is chosen. Relevant quantities such as the track impact parameters are

calculated with respect to the selected primary vertex.

Jets are reconstructed from three-dimensional noise-suppressed calorimeter energy

clusters [101] using the anti-kt jet clustering algorithm [102, 103] with a radius param-

eter (R) of 0.4. The impact of pileup is statistically subtracted based on the jet area

method [104]. To calibrate the reconstructed energy, jets are corrected for the effects of

calorimeter response and inhomogeneities using energy- and η-dependent calibration fac-

tors based on simulation and validated with extensive test-beam and collision-data studies.

In the simulation, this procedure calibrates the jet energies to those of the corresponding
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Mass [GeV] Branching ratio t̃1 →
t̃1 χ̃0

1 χ̃0
2 χ̃0

3 χ̃±1 χ̃±2 tχ̃0
1 tχ̃0

2 tχ̃0
3 bχ̃±1 bχ̃±2 [T11]2 [N11]2

404 40 221 230 220 1073 0.09 0.01 0.09 0.81 0.00 0.53 0.96

404 44 324 445 325 471 0.16 0.00 0.00 0.84 0.00 0.98 0.99

407 46 368 372 367 1515 0.74 0.00 0.00 0.26 0.00 0.02 0.98

408 49 187 207 188 376 0.02 0.31 0.23 0.41 0.04 0.97 0.95

409 39 211 212 206 1768 0.05 0.24 0.02 0.68 0.00 0.56 0.95

409 49 180 190 179 795 0.02 0.22 0.17 0.59 0.00 0.99 0.94

410 40 232 253 234 427 0.11 0.25 0.00 0.64 0.00 0.96 0.97

410 43 387 396 386 889 0.88 0.00 0.00 0.12 0.00 0.01 0.99

413 42 197 367 197 385 0.03 0.10 0.00 0.85 0.02 0.95 0.98

413 45 373 406 374 508 0.32 0.00 0.00 0.68 0.00 0.99 0.99

414 45 194 440 195 453 0.03 0.14 0.00 0.83 0.00 0.96 0.99

416 45 394 397 393 1975 0.90 0.00 0.00 0.10 0.00 0.99 0.99

417 46 333 350 335 573 0.65 0.00 0.00 0.35 0.00 0.96 0.98

418 39 206 209 202 1779 0.09 0.05 0.28 0.59 0.00 0.47 0.95

546 46 292 310 292 520 0.02 0.28 0.24 0.44 0.01 0.98 0.98

547 46 346 374 346 500 0.12 0.49 0.00 0.22 0.16 0.93 0.98

550 40 225 235 225 760 0.02 0.28 0.24 0.46 0.00 0.98 0.96

551 43 351 366 351 621 0.07 0.38 0.21 0.35 0.00 0.98 0.99

552 41 249 275 252 420 0.02 0.20 0.21 0.44 0.13 0.98 0.97

552 42 332 337 331 1496 0.05 0.47 0.35 0.13 0.00 0.99 0.98

552 43 346 350 344 1501 0.08 0.27 0.52 0.13 0.00 0.97 0.98

552 43 385 397 385 731 0.36 0.00 0.00 0.64 0.00 0.97 0.99

554 44 439 445 439 1007 0.21 0.00 0.00 0.79 0.00 0.99 0.99

555 47 279 287 280 933 0.04 0.54 0.38 0.04 0.00 0.97 0.97

553 147 169 444 168 455 0.31 0.12 0.00 0.27 0.30 0.07 0.93

554 151 195 207 191 1969 0.09 0.35 0.43 0.12 0.00 0.88 0.68

546 154 210 213 200 434 0.07 0.40 0.34 0.05 0.14 0.86 0.70

Table 1. Properties of the 27 selected pMSSM models. The table contains the masses of the stop,

of neutralinos and of the charginos, the branching ratios of the stop decays, the t̃L content of the

t̃1 ([T11]2, with T being the stop mixing matrix) and the bino content of the χ0
1 ([N11]2, with N

being the neutralino mixing matrix).
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jets constructed from stable simulated particles (particle-level jets). In-situ measurements

are used to further correct the data to match the energy scale in simulated events [105, 106].

Events containing jets that are likely to have arisen from detector noise, cosmic-ray muons,

or machine-induced backgrounds such as beam-gas interactions and beam-halo particles,

are removed [106]. Only jets with pT > 20 GeV are considered. After the overlap removal

procedure (described below), jets are required to have |η| < 2.5.

A second collection of anti-kt jets reconstructed with R = 1.0 is used to collect col-

limated decay products of high-pT top quarks and W bosons; these jets are referred to

as large-R jets [107]. The energy calibration is based on the same strategy as used for

the jets with R = 0.4 [107]. Jet trimming [108] — a procedure to remove contributions

from pileup and from the underlying event by discarding softer components of the jet

— is applied with a kt sub-jet size Rsub = 0.3 and a transverse momentum of the sub-

jet relative to the large-R jet, fcut, greater than 0.05. Large-R jets are required to have

pT > 150 GeV and |η| < 2.0. The invariant mass of large-R jets is obtained from the energy

and momentum of the jet constituents (themselves treated as massless) after the trimming

procedure. In addition to the energy calibration, a mass calibration is applied to both data

and simulation that accounts for differences between the jet masses derived at particle- and

reconstruction-level. Large-R jets may overlap with other physics objects such as jets or

leptons; no overlap removal procedure between large-R jets and other objects is applied.

Consequently, large-R jets are neither an input to the calculation of the missing transverse

momentum, nor considered for the identification of b-jets.

The identification of b-jets uses the ‘MV1’ b-tagging algorithm (defined in refs. [109,

110]), which is based on a neural network and exploits both impact parameter and sec-

ondary vertex information. It is trained to assign high weights to b-jets and low weights

to jets originating from light-flavour quarks or gluons. Three working points are chosen

to maximise the search sensitivity for the various selections. They correspond to an aver-

age b-tagging efficiency of 60%, 70% and 80% for b-jets with pT > 20 GeV and |η| < 2.5

in simulated tt̄ events. For these three working points, the average rejection factors for

light-quark or gluon jets are approximately 600, 140, and 25 in the same simulated tt̄

events [111], respectively. In the simulated samples, the efficiency of identifying b-jets and

the probability for mis-identifying (mis-tagging) jets from light-flavour quarks, gluons and

charm quarks are corrected to match those found in data.

Electron candidates are reconstructed from energy clusters in the electromagnetic

calorimeter matched to a track measured in the inner detector [112, 113]. They are required

to have pT > 10 GeV, |η| < 2.47, and to satisfy the ‘loose’ shower shape and track selec-

tion criteria (defined in ref. [114]). The energy is corrected in data to match simulation,

while the reconstruction efficiency is scaled in simulated samples to match that observed in

data. Muons are reconstructed and identified either as a combined track in the muon spec-

trometer and inner detector systems, or as an inner detector track matched with a muon

spectrometer segment [115–117]. Candidate muons are required to have pT > 10 GeV and

|η| < 2.4. Corrections are applied to the momentum and to the reconstruction efficiency

in simulation to match the data. For the soft-lepton selections, the thresholds are lowered

to pT > 7 GeV (electrons) and pT > 6 GeV (muons), and electron candidates are required

to satisfy the ‘medium’ identification criteria (defined in ref. [114]).
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Potential ambiguities between overlapping candidate objects are resolved based on

their angular separation. If an electron candidate and a non-b-tagged jet (using the 70%

efficiency b-tagging working point) overlap within ∆R < 0.2 of each other, then the object

is considered to be an electron and the jet is dropped. If an electron candidate and any jet

overlap within 0.2 < ∆R < 0.4 of each other, or if an electron candidate and a b-tagged

jet overlap within ∆R < 0.2 of each other, then the electron is dropped and the jet is

retained. If a muon candidate and any jet overlap within ∆R < 0.4 of each other, then

the muon is not considered and the jet is kept. For the analysis exploiting a large-R-jet,

the last requirement is changed to ∆R < 0.1, still between the muon and the R = 0.4 jets,

to recover efficiency losses in boosted topologies. The remaining leptons are referred to as

‘baseline’ leptons, and are used to veto events with more than one lepton.

Photons are not used in the main selections in this analysis, but they are used to select

events for one validation sample. Photon candidates must satisfy the ‘tight’ quality criteria

with pT > 20GeV and |η| < 2.47 [118, 119]. For the validation sample selection only, jets

close to a photon, with ∆R < 0.2, are dropped.

An event-veto based on identifying hadronically decaying τ leptons (τhad) is used in

some selections to reject tt̄ background. The τhad candidates are reconstructed in the

same way as jets with pT > 15GeV and |η| < 2.47, but calibrated separately to account

for a different calorimeter response. The τ -identification is performed with a boosted

decision tree (BDT) discriminator [120, 121], which combines tracking information and

the transverse and longitudinal shapes of the energy deposits in the calorimeter. If a τhad

candidate overlaps with any baseline lepton within ∆R < 0.2, the τhad is not counted.

The missing transverse momentum vector ~pmiss
T is the negative vector sum of the pT

of reconstructed objects in the event: jets with pT > 20 GeV, charged lepton (electron and

muon) and photon candidates with pT > 10 GeV, and calibrated calorimeter clusters not

assigned to these physics objects [122, 123].

The lepton identification criteria are tightened for the selection of the primary electron

or muon in the event. The lepton pT is required to be above 25 GeV, except for the soft-

lepton selections where the baseline thresholds of 7 GeV (electron) or 6 GeV (muon) are

kept. Electrons are required to satisfy the ‘tight’ selection criteria (defined in ref. [114]),

and are required to satisfy a track-isolation criterion. The scalar sum of the pT of tracks

associated with the primary vertex and found within a cone of radius ∆R = 0.2 around

the electron (excluding the electron itself) is required to be less than 10% of the electron

pT. Similarly, a muon isolation criterion is imposed: the track isolation is required to be

less than 1.8 GeV in a cone of radius ∆R = 0.2. A less stringent muon isolation criterion is

used for the analysis using a large-R jet: the track isolation is required to be less than 12%

of the muon pT. This helps to recover signal efficiency losses in boosted topologies. For

the analyses based on a soft lepton, the ‘tight’ electron selection is omitted (keeping the

‘medium’ criteria from the baseline selection), and a modified version of the track-isolation

is applied to electrons and muons: the scalar sum of the pT of tracks within a cone of radius

∆R = 0.3 around the lepton (excluding the lepton itself) is required to be less than 16%

(12%) of the electron (muon) pT. Furthermore, the impact parameters along the beam

direction (z0) and in the transverse plane (d0) are used to impose additional soft-lepton
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requirements: |z0 sin θ| < 0.4(0.4) mm and |d0/σd0 | < 5(3) for electrons (muons), where σd0
is the uncertainty on d0. The modified criteria of the soft-lepton selection are specifically

optimised to suppress low-pT jets mis-identified as isolated leptons.

6.2 Tools to discriminate signal from background

Requiring one isolated lepton (`), several jets, and Emiss
T selects a sample enriched in semi-

leptonic tt̄ and W+jets events. Both backgrounds are reduced by requiring the transverse

mass (mT) to be above the W boson mass, where mT is defined by

mT =

√
2 · p`T · Emiss

T

(
1− cos ∆φ(~̀, ~pmiss

T )
)
.

Here p`T is the lepton pT, and ∆φ(~̀, ~pmiss
T ) is the azimuthal angle between the lepton

and the ~pmiss
T directions.8 The dominant background after this requirement stems

from dileptonic tt̄ events, where one lepton is not identified, or is outside the detector

acceptance, or is a hadronically decaying τ lepton. In all of these cases, the tt̄ decay

products include two or more high-pT neutrinos, resulting in large Emiss
T and large mT

values. Requiring one or more b-tagged jets further removes W+jets events, while a b-tag

veto reduces the tt̄ background but also the stop signal in most models. All but one SR

require at least one or two b-tagged jets.

A number of variables and tools have been developed specifically to suppress the dif-

ferent types of dileptonic tt̄ events. The detailed definitions of the variables are provided

in appendix A.

- amT2 and mτ
T2 are two variants of the variable mT2 [124], which is a generalisation

of the transverse mass applied to signatures with two particles that are not directly

detected. Figure 3 illustrates the tt̄ event topologies targeted by the two variables.

The first variant is a form of asymmetric mT2 (amT2) [125–127] in which the undetected

particle is theW boson for the branch with the lost lepton and the neutrino is the missing

particle for the branch with the observed charged lepton. For dileptonic tt̄ events with

a lost lepton, amT2 is bounded from above by the top quark mass, whereas new physics

can exceed this bound.

The second mT2 variant (mτ
T2) is designed for events with a hadronically decaying τ

lepton by using the ‘τ -jet’ as a visible particle for one branch and the observed lepton

for the other branch. For tt̄ events where one W boson decays leptonically and the

other to a τhad, the endpoint is the W boson mass in the limit of collinear neutrinos.

- topness is a variable designed to identify and suppress partially reconstructed dileptonic

tt̄ events, as proposed in ref. [128]. The topness variable is based on minimising a χ2-

type function indicating the similarity of the event to dileptonic tt̄ events. Similar to

the amT2 variable, one lepton is assumed to be lost.

- A hadronic top mass, mhad−top, is designed to reject dileptonic tt̄ events while retaining

signal events that contain a hadronically decaying on-shell top quark, as in the t̃1 → tχ̃
0
1

8This formula of mT makes the assumption that the lepton mass is negligible.
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Figure 3. Illustration of the construction of the amT2 (left) and mτ
T2 (right) variables, which

are used to discriminate against dileptonic tt̄ background with one lost lepton (left) or with a

hadronically decaying τ (right). The dashed lines indicate the objects that are assumed to be

undetected (‘lost’) for the purpose of defining the two variables.

decay mode. The mhad−top variable is a three-jet invariant mass, where the jets are

selected by minimising a χ2-distribution taking into account the jet momenta and energy

resolutions [105, 129].

- Dedicated τ -identification criteria are used to reject tt̄ events which contain a hadronic

τ decay. For the construction of the τ -veto, the reconstructed τhad candidates, as previ-

ously defined, are subject to further selection requirements (described in appendix A).

Three τ -veto working points are defined: loose, tight, and extra-tight.

- A track-veto is designed to reject events which contain an isolated track not associated

with a baseline lepton. This complements the second-lepton veto, and helps to reject tt̄

events with a one-prong τhad. The selection criteria are detailed in appendix A.

Multijet events can pass the event selection if a jet is mis-identified as a lepton or when

a real lepton from a heavy-flavour decay satisfies the isolation criteria, and if large Emiss
T

occurs due to mis-measured jets. The former is suppressed by the lepton isolation criteria,

while the following variables are used to reduce the latter effect.

- ∆φ(jeti, ~p
miss
T ), the azimuthal opening angle between jet i and ~pmiss

T , is used to suppress

multijet events where ~pmiss
T is aligned with a jet.

- Emiss
T /

√
HT, where HT is defined as the scalar pT sum of the four leading jets, is an

approximation of the Emiss
T significance.

- Emiss
T /meff , where meff = HT + p`T + Emiss

T .

- Hmiss
T,sig is an object-based missing transverse momentum, divided by the per-event reso-

lution of the jets. The object-based missing transverse momentum is the negative sum

of the jets and lepton vectors. A detailed description is given in appendix A.
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bCb_med1, 

bCb_med2,

bCb_high

bCc_diag bCd_bulk, 

bCd_high1,

bCd_high2

Signal

Regions

Figure 4. Schematic diagram of the mass hierarchies for the t̃1 → bχ̃
±
1 decay mode, with a

subsequent χ̃
±
1 → W (∗)χ̃0

1 decay. A list of the corresponding signal regions is given above the

diagram.

7 Signal selections

Signal selections are optimised using simulated samples only. The metric of the optimisa-

tion is to maximise the exclusion sensitivity for the various decay modes, and for different

regions of SUSY simplified model parameter space. A set of signal benchmark models,

selected to cover the various stop scenarios, was used for the optimisation considering all

studied discriminating variables and including statistical and systematic uncertainties. The

shape-fits employ multiple bins in one or two discriminating variables, which were selected

considering the signal and background separation potential, inter-variable correlations, sys-

tematic uncertainties, and modelling of the data.

Table 2 summarises all 15 SRs with a brief description of the targeted signal scenarios,

the exclusion analysis techniques, and forward references to the tables which list the event

selection details. Four SRs target the t̃1 → tχ̃
0
1 decay. The corresponding SR labels begin

with tN, which is an acronym for ‘top neutralino’; additional text in the label describes

the stop mass region, for example tN diag targets the ‘diagonal’ of the t̃1–χ̃
0
1 mass plane.

Nine SRs target the t̃1 → bχ̃
±
1 decay, where the SR labels follow the same logic: the first

two characters bC stand for ‘bottom chargino’, a third letter (‘a’ to ‘d’) denotes the four

different mass hierarchies illustrated in figure 4, and the last piece of text describes the

stop mass region. Furthermore, two SRs labelled 3body and tNbC mix are dedicated to

the three-body decay mode (t̃1 → bWχ̃0
1), and the mixed scenario where t̃1 → tχ̃

0
1 and

t̃1 → bχ̃
±
1 decays both occur, respectively. The SRs are not mutually exclusive.

All SRs employ selection requirements to suppress the multijet background, and most

SRs use the tools described in section 6.2 to reduce the dileptonic tt̄ background. Shape-fit

techniques are employed to derive model-dependent exclusion limits where useful, while

for all model-independent results a simple cut-and-count approach is used. This procedure

implies that for SRs using shape-fits one bin is probed at a time to extract the model-

independent results. Only a single bin, or the four bins with highest signal-to-background

ratio are included; these are referred to as signal-sensitive bins. The model-dependent
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SR Signal scenario Exclusion technique Table

tN diag t̃1 → tχ̃
0
1, mt̃1

& mt +mχ̃0
1

shape-fit (Emiss
T and mT) 4

tN med t̃1 → tχ̃
0
1, mt̃1

∼ 550 GeV, mχ̃0
1
. 225 GeV cut-and-count 4

tN high t̃1 → tχ̃
0
1, mt̃1

& 600 GeV cut-and-count 4

tN boost t̃1 → tχ̃
0
1, mt̃1

& 600 GeV, with a large-R jet cut-and-count 4

bCa low t̃1 → bχ̃
±
1 , ∆M . 50 GeV shape-fit (lepton pT) 5

t̃1 → bff ′χ̃0
1

bCa med t̃1 → bχ̃
±
1 , 50 GeV. ∆M . 80 GeV shape-fit (lepton pT) 5

t̃1 → bff ′χ̃0
1

bCb med1 t̃1 → bχ̃
±
1 , ∆m . 25 GeV, mt̃1

. 500 GeV shape-fit (amT2) 5

bCb high t̃1 → bχ̃
±
1 , ∆m . 25 GeV, mt̃1

& 500 GeV shape-fit (amT2) 5

bCb med2 t̃1 → bχ̃
±
1 , ∆m . 80 GeV, mt̃1

. 500 GeV shape-fit (amT2 and mT) 6

bCc diag t̃1 → bχ̃
±
1 , mt̃1

& mχ̃±
1

cut-and-count 6

bCd bulk t̃1 → bχ̃
±
1 , (∆M,∆m) & 100 GeV, mt̃1

. 500 GeV shape-fit (amT2 and mT) 6

bCd high1 t̃1 → bχ̃
±
1 , (∆M,∆m) & 100 GeV, mt̃1

& 500 GeV cut-and-count 6

bCd high2 t̃1 → bχ̃
±
1 , ∆M & 250 GeV, mt̃1

& 500 GeV cut-and-count 6

3body t̃1 → bWχ̃0
1, mt̃1

. 300 GeV shape-fit (amT2 and mT) 7

tNbC mix non-symmetric (t̃1 → tχ̃
0
1, t̃1 → bχ̃

±
1 ) cut-and-count 7

Table 2. Overview of all signal regions (SRs) together with the targeted signal scenario, the

analysis technique used for model-dependent exclusions, and a reference to the table with the event

selection details. For the t̃1 → bχ̃
±
1 decay mode, the mass splittings ∆M = m(t̃1) − m(χ̃

0
1) and

∆m = m(χ̃
±
1 )−m(χ̃

0
1) are used to characterise the mass hierarchies, as illustrated in figure 4. The

SRs bCa low, bCa med, bCb med1 and bCb high employ selections based on a soft lepton.

and model-independent selections are defined in this section, and the corresponding fit

configurations are described in section 10.

7.1 Event preselection

Common preselection criteria are employed as follows. Events are required to contain a

reconstructed primary vertex. Furthermore, a set of quality requirements to avoid badly

reconstructed jets, mismeasured-Emiss
T and detector-related problems is imposed on all

events. Events with a bad quality muon or with a cosmic-ray muon candidate9 are rejected.

Exactly one isolated lepton is required with pT > 25 GeV except for the soft-lepton

selections which employ a pT > 6(7) GeV requirement for muons (electrons). The com-

9Defined as a muon candidate with a transverse or longitudinal impact parameter of |d0| > 0.2 mm or

|z0| > 1 mm.
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Preselection Description

Trigger logical-OR combination of single-lepton and Emiss
T triggers;

soft lepton: Emiss
T trigger only.

Data quality jet and Emiss
T cleaning, cosmic-ray muon veto, primary vertex.

Lepton one isolated electron or muon with pT > 25 GeV;

soft lepton: the pT threshold is 6(7) GeV for muons (electrons).

2nd-lepton veto No additional baseline lepton with pT > 10 GeV;

soft lepton: no further baseline soft muon (electron) with pT > 6(7) GeV.

Jets The minimum jet multiplicity requirement varies between 2 and 4.

Emiss
T Emiss

T > 100 GeV or tighter is required in all selections.

Table 3. Preselection criteria common to all signal selections.

mon lepton isolation criteria are tightened for the soft-lepton selections while they are

relaxed for the analysis exploiting a large-R jet (cf. section 6). Events containing addi-

tional baseline leptons are rejected. A minimum number of jets ranging between 2 and 4,

and Emiss
T > 100 GeV are common requirements amongst all analyses. Table 3 summarises

the preselection criteria.

Figure 5 illustrates the separation power for a selection of discriminating variables.

For these distributions, events are required to pass the preselection (table 3), to have at

least four jets with pT > 25 GeV, one of which above 60 GeV, and with at least one of

them b-tagged using the 70% working point, and to have Emiss
T > 100 GeV, mT > 60 GeV

and Emiss
T /

√
HT > 5 GeV1/2. The W+jets background is normalised to match data in a

sample selected in the same way, except that a b-veto is imposed. The other processes are

normalised to their theoretical cross-sections. Data and background estimation are seen to

be in good agreement.

7.2 Selections for the t̃1 → tχ̃
0
1 decay

Stop pair production with subsequent t̃1 → tχ̃
0
1 decays leads to final state objects similar to

that of tt̄ production augmented by two χ̃
0
1. Four SRs, labelled tN diag, tN med, tN high,

and tN boost, target different regions in the t̃1 − χ̃
0
1 mass plane and implement different

analysis strategies. Table 4 details the event selections for these SRs. Criteria based on a

subset of the variables outlined in section 6.2, as well as optimised jet thresholds, a more

stringent Emiss
T requirement, and a requirement on the angular separation between the

highest-pT b-tagged jet and the lepton, ∆R(b -jet, `), are used to suppress tt̄ and W+jets

backgrounds as well as to reduce the multijet background to a negligible level.

The loosest selection, tN diag, employs a multi-binned shape-fit that targets the chal-

lenging parameter space where the stop and its decay products are nearly mass degenerate

(mt̃1
& mt + mχ̃0

1
), also referred to as the ‘diagonal’. The strategy of exploiting binned
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tN diag tN med tN high tN boost

Preselection Default preselection criteria, cf. table 3.

Lepton = 1 lepton

Jets ≥ 4 with pT > ≥ 4 with pT > ≥ 4 with pT > ≥ 4 with pT >

60, 60, 40, 25 GeV 80, 60, 40, 25 GeV 100, 80, 40, 25 GeV 75, 65, 40, 25 GeV

b-tagging ≥ 1 b-tag (70% eff.) amongst four selected jets

large-R jet — ≥ 1, pT > 270 GeV

and m > 75 GeV

∆φ(jetlarge-R2 , ~pmiss
T ) — > 0.85

Emiss
T > 100 GeV > 200 GeV > 320 GeV > 315 GeV

mT > 60 GeV > 140 GeV > 200 GeV > 175 GeV

amT2 — > 170 GeV > 170 GeV > 145 GeV

mτ
T2 — — > 120 GeV —

topness — — — > 7

mhad−top ∈ [130, 205] GeV ∈ [130, 195] GeV ∈ [130, 250] GeV

τ-veto tight — — modified, see text.

∆R(b-jet, `) < 2.5 — < 3 < 2.6

Emiss
T /

√
HT > 5 GeV1/2 —

Hmiss
T,sig — > 12.5 > 10

∆φ(jeti, ~p
miss
T ) > 0.8 (i = 1, 2) > 0.8 (i = 2) — > 0.5, 0.3 (i = 1, 2)

Model-dependent selection:

shape-fit in mT and cut-and-count

Emiss
T , cf. figure 6.

Model-independent selection:

test 4 most cut-and-count

signal-sensitive

bins one-by-one.

Table 4. Selection criteria for SRs employed to search for t̃1 → tχ̃
0
1 decays.
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Figure 5. Comparison of data with estimated backgrounds in the Emiss
T (top left), topness (top

right), amT2 (bottom left), and mτ
T2 (bottom right) distributions for the preselection defined in the

text. The uncertainty band includes statistical and all experimental systematic uncertainties. The

last bin includes overflows. Benchmark signal models with cross-sections enhanced by a factor of

100 are overlaid for comparison.

shape information significantly improves the sensitivity. The two-dimensional shape-fit in

the variables mT and Emiss
T is illustrated in figure 6 (left plot). The top 12 bins serve both to

probe a signal and to normalise the tt̄ background; a subset of the 12 bins has a high purity

in tt̄ events. Three additional bins with a b-tag veto, shown in the bottom part, are used

to derive the normalisation of the W+jets background. The bins with Emiss
T > 150 GeV or

mT > 140 GeV are defined without upper boundaries.

The two SRs tN med and tN high target medium and high stop mass regions, respec-

tively. Both SRs are based on a cut-and-count approach with relatively tight selections.

The SR labelled tN boost also targets models with a high stop mass and a nearly massless
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Figure 6. Schematic illustration of the tN diag (left) and 3body (right) shape-fit binning. The

mT and Emiss
T (left) or amT2 (right) variables are used to define a matrix of 4 × 3 bins (left) or

3 × 4 (right) in the top part, which is sensitive to stop models, while also being enriched with tt̄

background. The bottom bins invert the b-tag requirement into a veto, and serve to normalise the

W+jets background. The numbers of observed events together with the estimated background,

obtained using the background-only fit described in section 8, are given for each bin. The data and

estimated background are in perfect agreement in the six bottom bins for the left plot because the

fit is configured to use these six bins together with six free parameters; the fit used for the right

plot employs the bottom eight bins and two free parameters. For comparison the expected numbers

of events for one signal model are shown.

LSP, but takes advantage of the ‘boosted’ topology. The selection assumes that either

all decay products of the hadronically decaying top quark, or at least the decay products

of the hadronically decaying W boson, collimate into a jet with a radius of . 1.0. Fig-

ure 7 shows some of the relevant large-R jet related distributions. The overlaid heavy stop

benchmark model illustrates the separation power of the variables. The tN boost selection

requires at least one large-R jet with pT > 270 GeV and an invariant mass above 75 GeV.

To further discriminate stop decays from the tt̄ background, events with a second (ordered

by pT) large-R jet are required to have a minimum azimuthal distance between ~pmiss
T and

the second large-R jet, ∆φ(jetlarge-R
2 , ~pmiss

T ). The extra-tight τ -veto is applied to discard

events with τhad candidates well separated from large-R jets, ∆R(τhad, large-R-jet) > 2.6,

that satisfy the above pT and mass requirements.

7.3 Selections for the t̃1 → bχ̃
±
1 decay

Nine SRs target scenarios where both stops decay as t̃1 → bχ̃
±
1 followed by subsequent

χ̃±1 → W (∗)χ̃0
1 decays. The mass of the lightest chargino m(χ̃

±
1 ) relative to the t̃1 and χ̃0

1

masses largely defines the kinematic properties. Figure 4 schematically illustrates the four

distinct mass hierarchies, whose SRs are described below.
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Figure 7. Comparison of data with background expectations of large-R jet distributions: multi-

plicity (top left), invariant mass (top right), transverse momentum (bottom left), and distance in φ

space between the second-highest-pT large-R jet and ~pmiss
T . Events are required to pass the prese-

lection defined in section 7.1. In addition, the jet thresholds are tightened (pT > 75, 65, 40, 25 GeV)

and a requirement of mT > 120 GeV is imposed. The uncertainty band includes statistical and all

experimental systematic uncertainties. The last bin includes overflows. A benchmark signal model,

with cross-section enhanced by a factor of 100, is overlaid for comparison.

Selections for mass hierarchy (a): the selection of signal events with a small overall

mass splitting, ∆M = m(t̃1) −m(χ̃
0
1), relies on the presence of an initial-state radiation

(ISR) jet, against which the stop decay products recoil. Consequently, events with a hard

leading jet are selected together with a soft lepton and relatively soft sub-leading jets. The

leading jet must not satisfy the b-tagging criteria, while at least one b-tagged jet amongst

the sub-leading jets is required.
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bCa low bCa med bCb med1 bCb high

Preselection soft-lepton preselection, cf. table 3.

Lepton = 1 soft lepton = 1 soft lepton with pT < 25 GeV

Jets ≥ 2 with ≥ 3 with ≥ 2 with

pT > 180, 25 GeV pT > 180, 25, 25 GeV pT > 60, 60 GeV

∆φ(jeti, ~p
miss
T ) — > 0.4 (i=1,2)

Jet veto — HT,2 < 50 GeV —

b-tagging ≥ 1 sub-leading jet b-tagged (70% eff.) Leading two jets b-tagged (60% eff.)

b-veto 1st jet not b-tagged (70% eff.) —

mbb — > 150 GeV

Emiss
T > 370 GeV > 300 GeV > 150 GeV > 250 GeV

Emiss
T /meff > 0.35 > 0.3 —

mT > 90 GeV > 100 GeV —

Model-dependent selection: shape-fit

4 bins in lepton pT range [6(7), 50] GeV 6 bins in amT2 range [0, 500]GeV

Model-independent selection: 1 bin with

lepton pT < 25 GeV amT2 > 170 GeV amT2 > 200 GeV

Table 5. Selection criteria for soft-lepton SRs, employed to search for t̃1 → bχ̃
±
1 decays. The two

leftmost/rightmost SRs target mass hierarchies (a)/(b), illustrated in figure 4.

Two SRs, labelled bCa low and bCa med, are defined to probe scenarios with a mass

splitting ∆M . 50 GeV, and 50 GeV . ∆M . 80 GeV, respectively. The SR event selec-

tions are listed in table 5. The requirement of ≥ 3 jets suppresses the W+jets background

in bCa med. For bCa low, the jet multiplicity requirement is lowered to ≥ 2 to avoid large

signal acceptance losses, but tighter Emiss
T and Emiss

T /meff thresholds are applied to keep

the W+jets and multijet backgrounds suppressed. Figure 8 compares data with estimated

backgrounds in the lepton pT and Emiss
T /meff distributions. The overlaid stop benchmark

model motivates the selection of low-pT leptons, and the background estimates show the

non-negligible contribution from multijet events (with mis-identified leptons).

Model-dependent exclusion results are obtained using a shape-fit in the lepton pT

variable with four bins of approximately uniform widths in the range [6(7), 50] GeV for

muons (electrons). For model-independent results, the cut-and-count approach is used with

an additional lepton pT < 25 GeV requirement.

Selections for mass hierarchy (b): signal scenarios with a moderately large ∆M but a

small ∆m = m(χ̃
±
1 )−m(χ̃

0
1) feature two high-pT b-jets and low-momentum decay products

from the two off-shell W bosons.
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Figure 8. Comparison of data with estimated backgrounds in the lepton pT (left) and Emiss
T /meff

(right) distributions. Events are required to satisfy the soft-lepton preselection criteria (cf. table 3),

have mT > 40 GeV, and contain two or more jets (pT > 130, 25 GeV) of which the leading one must

not be b-tagged while the sub-leading one is required to be b-tagged. The tt̄ andW+jets backgrounds

are normalised using control regions, the multijet background is estimated directly from data, and

all other backgrounds are normalised to their theoretical predictions (as described in section 8).

The uncertainty band includes statistical and all experimental systematic uncertainties. The last

bin includes overflows. A benchmark signal model, with cross-section enhanced by a factor of 100,

is overlaid for comparison.

Two SRs, labelled bCb med1 and bCb high, employ event selections based on the pres-

ence of one soft lepton and two b-tagged jets. They target medium and high stop mass

regions, respectively. The complete event selections are listed in table 5. The bCb med1 SR

employs an Emiss
T > 150 GeV requirement, the lowest possible to retain full Emiss

T trigger

efficiency. For models with a heavier t̃1, a higher Emiss
T threshold improves the sensitivity.

The dominant background stems from tt̄ production and is suppressed by vetoing addi-

tional hard jet activity. The variable HT,2 is defined like HT but without including the two

leading jets. The bCb high SR omits the jet activity veto to compensate for the loss in

signal acceptance associated with the more stringent Emiss
T requirement. Beyond the kine-

matic amT2 bound, the dominant source of background arises from mis-tagged c-jets in

semileptonic tt̄ events, and the production of a W boson in association with heavy-flavour

jets. To minimise the mis-tagged background, the b-tagging algorithm is operated at the

60% efficiency working point. A minimum requirement on the invariant mass of the two

b-tagged jets, mbb, is imposed to reduce the contribution from W + bb̄ events.

Exclusion results are obtained using a shape-fit in the amT2 variable with six bins

in the range [0, 500] GeV with a uniform bin width. For all model-independent results,

the cut-and-count approach is used but applying an amT2 > 170(200) GeV requirement in

bCb med1 (bCb high).
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Figure 9. Schematic illustration of the bCb med2 (left) and bCd bulk (right) shape-fit binning.

More details are given in the caption of figure 6. The data and estimated background are in perfect

agreement in the six bottom bins of the right plot because the fit is configured to use these six bins

together with six free parameters; the fit used for the left plot employs the bottom four bins and

two free parameters.

A third SR, labelled bCb med2, also targets intermediate stop masses. It is based on

the default lepton selection (pT > 25 GeV), and requiring at least two high-pT b-tagged

jets to exploit larger t̃1–χ̃
±
1 mass splittings than bCb med1. The full event selection is

detailed in the leftmost column in table 6. The analysis employs a two-dimensional

shape-fit technique similar to the one used for tN diag but in the mT and amT2 variables.

Figure 9 (left plot) illustrates the configuration. The highest signal sensitivity is obtained

from bins in the top-right region.

Selections for mass hierarchy (c): models with mχ̃±
1

just below mt̃1
yield two low-

momentum b-jets. The signal selection strategy is based on vetoing events with b-tagged

jets, assuming both signal b-jets are below the jet pT acceptance of the analysis, and

therefore suppressing the tt̄ background. The sensitivity for low-m(t̃1) models is improved

by selecting events with ISR-like jet activity. One SR, labelled bCc diag, is employed and

defined in table 6. The suffix ‘diag’ refers to the diagonal region of the mχ̃±
1

= 2mχ̃0
1

scenario, the benchmark region used to optimise this SR. The event selection includes one

central lepton (|η| < 1.2) to suppress the W+jets background, and three or more jets, of

which none must satisfy the b-tagging criteria. In signal events, two of the three required

jets tend to originate from the hadronic W boson decay, while the highest-pT jet typically

arises from ISR. The b-veto strongly suppresses tt̄ events, leaving W+jets as the dominant

background. Requirements on the ∆R(j1, `) and Emiss
T variables further enhance the signal-

to-background ratio, by selecting events where the two stops recoil from an ISR jet.

Selections for mass hierarchy (d): signal models with relatively large mass splittings

between the three mass states, t̃1, χ̃
±
1 , and χ̃

0
1, result in events where all particles from the
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two t̃1 decays are well above the identification pT thresholds. Three SRs, labelled bCd bulk,

bCd high1, and bCd high2, target specific mass regions.

The bCd bulk SR employs a two-dimensional shape-fit technique with bins in the

mT − amT2 plane. Figure 9 (right plot) illustrates the binning. Compared to bCb med2,

which uses the same two variables in a shape-fit, a loose and more inclusive event selection

is employed. The bCd high1 and bCd high2 SRs are based on tight event selections, leading

to low expected background yields. Table 6 details the event selections.

7.4 Selections for the mixed, three- and four-body decays

Three additional stop decay modes are considered: events where t̃1 → tχ̃
0
1 and t̃1 → bχ̃

±
1

decays are both allowed, with the branching ratios of the two decays summing to one; both

stops decay via a three-body process (t̃1 → bWχ̃0
1); and both stops undergo a four-body

decay (t̃1 → bff ′χ̃
0
1).

In the mixed decay mode, models with a very large and a very small BR(t̃1 → tχ̃
0
1) are

well covered by the SRs targeting the pure t̃1 → tχ̃
0
1 and t̃1 → bχ̃

±
1 decays, respectively. A

dedicated SR with the label tNbC mix is optimised for models with BR(t̃1 → tχ̃
0
1) ∼ 0.5.

It employs a requirement on the topness variable, which was designed specifically for the

mixed decay mode, to suppress the dominant dileptonic tt̄ background. Diboson events

that pass the selection tend to have a leptonic W boson decay and a hadronic W or Z

decay, accompanied by at least two additional jets. Large Emiss
T can be generated by the

neutrino when the diboson system is sufficiently boosted; the two additional jets hence

typically arise from ISR activity. The diboson background is suppressed by placing a loose

upper requirement on the three-jet invariant mass, mjjj . The jet-jet pair with an invariant

mass above 60 GeV that has the smallest ∆R is selected to form the hadronic V boson.

The mass mjjj is reconstructed from the third jet closest in ∆R to the hadronic V boson

momentum vector. Table 7 lists the entire event selection.

A dedicated SR labelled 3body is optimised for the three-body decay mode. Compared

to the scenario with on-shell top quarks, three-body decays yield the same final state objects

but with significantly lower momenta, although typically still above the reconstruction

thresholds. The dileptonic tt̄ background is separated from signal in the very low amT2

regime. The three-body signal peaks in amT2 below around 100 GeV due to the kinematic

construction of the variable and the fact that m(t̃1)−m(χ̃
0
1) is below the top quark mass. A

two-dimensional shape-fit technique using the mT and amT2 variables is employed, similar

to that used in bCd bulk and bCb med2, but with different binning. The configuration is

illustrated in figure 6 (right plot). Fine binning is used in the low amT2 region where the

highest signal sensitivity is obtained. The full 3body event selection is detailed in table 7.

The four-body decay mode is characterised by events with final state objects that

tend to have even lower momenta than for three-body decays. The selections based on a

soft lepton designed for the overall ‘compressed’ mass hierarchy (a) provide good search

sensitivity for this scenario.
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tNbC mix 3body

Preselection Default preselection criteria, cf. table 3.

Lepton = 1 lepton

Jets ≥ 4 jets with pT > 80, 70, 50, 25 GeV ≥ 4 jets with pT > 80, 25, 25, 25 GeV

b-tagging ≥ 1 b-tag (70% eff.) with pT > 60 GeV ≥ 1 b-tag (70% eff.) with pT > 25 GeV

Emiss
T > 270 GeV > 150 GeV

mT > 130 GeV > 60 GeV

amT2 > 190 GeV > 80 GeV

topness > 2 −

mjjj < 360 GeV −

Emiss
T /

√
HT > 9 GeV1/2 > 5 GeV1/2

τ-veto loose

∆φ(jeti, ~p
miss
T ) > 0.6 (i = 1, 2) > 0.2 (i = 1, 2)

∆φ(`, ~pmiss
T ) > 0.6 > 1.2

∆R(`, jeti) < 2.75 (i = 1) > 1.2 (i = 1), > 2.0 (i = 2)

∆R(`, b-jet) < 3.0 −

Model-dependent selection:

cut-and-count shape-fit in mT and amT2, cf. figure 6.

Model-independent selection:

cut-and-count test 4 most signal-sensitive

bins one-by-one.

Table 7. Selection criteria for the two SRs employed to search for the mixed t̃1 → tχ̃
0
1 and t̃1 → bχ̃

±
1

decay mode (left), and the three-body decay, t̃1 → bWχ̃0
1 (right).

8 Background estimates

The dominant sources of background are the production of tt̄ events and W+jets where the

W decays leptonically. Other background processes considered are single top, dibosons,

Z+jets, tt̄ produced with a vector boson (tt̄V ), and multijet events.

The tt̄ and W+jets backgrounds are estimated by isolating each of them in a dedicated

control region, normalising simulation to match data in that control region, and then using

simulation to extrapolate the background predictions into the SR. A detailed description

of the method and its validation are given below.

The multijet background is estimated from data using a matrix method described in

refs. [130, 131]. The contribution is found to be negligible for all but the soft-lepton selec-
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tions. All other (small) backgrounds are determined entirely from simulation, normalised

to the most accurate theoretical cross-sections available (cf. section 5).

8.1 Control regions

Each cut-and-count analysis has two orthogonal CRs which are enriched in either tt̄ events

(TCR) or W+jets events (WCR). These CRs are used to normalise the corresponding

backgrounds in data, specifically for the associated SR. For the two-dimensional shape-fits,

bins enriched in tt̄ events are already part of the SR and act as a TCR, while additional

bins are used to normalise the W+jets background. The one-dimensional shape-fits are

set up similar to the cut-and-count analyses, with two additional bins acting as TCR and

WCR. The CRs are designed to select events as similar as possible to those selected by the

corresponding SR while keeping the contamination from other backgrounds and potential

signal low. The CRs are also chosen to retain a sufficiently large number of events to not

be limited by the statistical precision. This background estimation approach improves the

robustness against potential mis-modelling effects in simulation since the dependence on

simulation is reduced, and hence it reduces the uncertainties on the background estimates.

A likelihood fit is performed for each analysis, involving all associated bins: SR, TCR,

WCR for cut-and-count or all bins of a shape-fit. Each bin is modelled by a separate prob-

ability density function based on a Poisson term, where the expected number of events is

given by the sum over all background processes, and optionally a signal model. The normal-

isation of the tt̄ and W+jets backgrounds is controlled by two free parameters in the fit.10

To obtain a set of background predictions that is independent of the observation in the SRs,

the fit can be configured to use only the CRs to constrain the fit parameters: the SR bins (or

signal-sensitive bins in shape-fits) are removed from the likelihood and any potential signal

contribution is neglected everywhere. This fit configuration, referred to as the background-

only fit, is used throughout this section. The treatment of systematic uncertainties in the

likelihood fits is discussed in section 9. To quantify a potential excess, or to derive exclusion

limits, the SR bins are included in the likelihood, as further detailed in section 10.

The key observable used to define the TCR and WCR for most analyses is the trans-

verse mass. Figure 10 shows the mT distribution for events passing the preselection defined

in section 7.1 and with ≥ 1 (left) or ≥ 2 b-tagged jets (right) using the 70% and 80% working

points, respectively. The tt̄ and W+jets backgrounds drop sharply beyond the W boson

mass, while signal events can exceed this kinematic endpoint due to the two additional

LSPs in the event. In all cut-and-count analyses the CRs differ from the associated SR

by the mT requirement, which is set to 60 GeV< mT < 90 GeV for the CRs. For the four

SRs based on a soft lepton, which all employ one-dimensional shape-fits, the two CRs are

defined by loosening the Emiss
T and mT requirements (bCa med and bCa low), or the soft-

lepton selection of 6(7) GeV < pT(`) < 25 GeV for muons (electrons) in the SR is changed

to a pT(`) > 25 GeV requirement in the CRs (bCb med1 and bCb high). All WCRs have

a b-tag veto instead of a b-tag requirement to reduce the tt̄ contamination; consequently

10For some of the two-dimensional shape-fits, the tt̄ and W+jets backgrounds are controlled by more

than two parameters, as discussed later in the text.
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Figure 10. Distribution of the transverse mass, mT, for events that pass the same preselection as

used in figure 5 and with at least one (left) or at least two (right) b-tagged jets. The uncertainty

band includes statistical and all experimental systematic uncertainties. The last bins include the

overflows. Benchmark signal models with cross-sections enhanced by a factor of 100 are overlaid

for comparison.

all requirements related to the presence of a b-jet are removed. The b-tag requirement

used in all but one SR enhances the heavy-flavour contribution of the W+jets background,

while the WCRs with the b-tag veto predominantly select light-flavour W+jets events. A

systematic uncertainty and a dedicated validation related to this effect are described in

section 9 and in the next subsection, respectively. The TCRs employ the same b-tagging

requirement as used in the associated SRs, except for bCc diag where the b-tag veto in the

SR is turned into a ≥ 1 b-tag requirement in the TCR (using the same b-tagging working

point as for the b-tag veto in the SR). Furthermore, some other kinematic requirements are

slightly loosened or removed to increase the event yields in the CRs. The event selections

for all CRs associated with the cut-and-count or the one-dimensional shape-fit analyses are

specified in table 8. In each analysis the same two CRs are used for the model-dependent

and the model-independent fit configurations.

The four two-dimensional shape-fits (tN diag, 3body, bCb med2, and bCd bulk) have

built-in bins enhanced in tt̄ events, which act as TCRs, while additional WCR bins are

added with a b-tag veto and with a 60 GeV< mT < 90 GeV requirement (as can be seen

in figures 6 and 9). For the background-only fits, the WCRs and the subset of the TCR

shape-fit bins with mT < 90 GeV are used to constrain the likelihood fit. The tt̄ and

W+jets backgrounds are normalised separately in each Emiss
T or amT2 slice in the tN diag

and bCd bulk shape-fits, as these two have sufficiently large numbers of events in the low-

mT bins. Thus, there are three tt̄ and three W+jets normalisation parameters, which

are applied to all mT bins in the given Emiss
T or amT2 range. This approach increases

the robustness of the fit against potential mis-modelling in the simulation at the expense

of a reduced statistical precision. For the other two shape-fits with lower event yields,
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Analysis Variable Control regions Validation regions Signal reg.

TCR WCR TVR WVR SR

All tN * mT [60, 90] [60, 90] [90, 120] [90, 120] > [140, 200]

Nb ≥ 1 = 0 ≥ 1 = 0 ≥ 1

tN med amT2 > 120 > 120 > 120 > 120 > 170

tN high amT2 - - - - > 170

mτ
T2 - - - - > 120

Emiss
T > 225 > 225 > 225 > 225 > 320

Hsig
T > 8.8 > 8.8 > 8.8 > 8.8 > 12.5

tN boost amT2 > 130 > 130 > 130 > 130 > 145

Emiss
T > 260 > 260 > 260 > 260 > 315

topness - - - - > 7

All bCa * pT(`) > 6(7) > 6(7) [6(7),25] [6(7),25] [6(7),25/50]

Nb ≥ 1 = 0 ≥ 1 ≥ 1 ≥ 1

bCa low Emiss
T [200,250] [200,250] [250,370] [250,370] > 370

mT [90,120] [90,120] > 90 > 90 > 90

Emiss
T /meff - - - > 0.35 > 0.35

bCa med Emiss
T [200,250] [200,250] [250,300] [250,300] > 300

mT [100,120] [100,120] > 100 > 100 > 100

Emiss
T /meff - - - > 0.3 > 0.3

All bCb * pT(`) > 25 > 25 [6(7),25] [6(7),25]

Nb = 2 = 0 = 2 = 2

mT - [40, 80] - -

mbb - - < 150 > 150

bCb med1 amT2 - - - > 170

bCb high amT2 - - - > 200

Emiss
T > 250 > 150 > 250 > 250

All bCc *, bCd * mT [60, 90] [60, 90] [90, 120] [90, 120] > 120

bCc diag Nb ≥ 1 = 0 ≥ 1 = 0 = 0

All bCd * Nb ≥ 2 = 0 ≥ 2 = 0 ≥ 2

bCd high1 amT2 > 120 > 200 > 120 > 200 > 200

bCd high2 amT2 > 120 > 250 > 120 > 250 > 250

tNbC mix mT [60, 90] [60, 90] [90, 120] [90, 120] > 130

Nb ≥ 1 = 0 ≥ 1 = 0 ≥ 1

amT2 > 120 > 120 > 120 > 120 > 190

Emiss
T > 170 > 170 > 170 > 170 > 270

Emiss
T /

√
HT > 5 > 5 > 5 > 5 > 9

Table 8. Event selections for control regions, validation regions, and the signal regions of

the model-independent selection (defined in tables 4–6) associated with cut-and-count or one-

dimensional shape-fit analyses. The asterisk symbol ‘*’ is used as a wildcard to describe variable

requirements common to several regions. Only one validation region is defined for the bCb med1

and bCb high selections. Variables for which the requirements are the same between the regions

are not listed. Requirements related to the presence of a b-tagged jet are removed in all selections

with a b-tag veto (WCRs and WVRs). All units are in GeV except for unitless quantities and

Emiss
T /

√
HT which is quoted in GeV1/2.
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3body and bCb med2, one tt̄ and one W+jets normalisation parameter is applied across

all bins. All shape-fit bins are used to extract model-dependent exclusion limits, while a

subset is used for the model-independent results and for the background only fits. This

subset includes all bins with mT < 90 GeV, acting as CR bins, and in addition for the

model-independent results one signal-sensitive bin is included.

Top pair and W+jets production accounts for 70–80% of events in the TCRs and

WCRs. The signal contamination, for all signal models studied and all CRs, is typically at

the percent level and never exceeds 10%. It is explicitly taken into account when setting

model-dependent exclusion limits.

Table 9 shows the background predictions in each SR. The number of tt̄ and W+jets

events are estimated using the background-only fit configuration. For the four two-

dimensional shape-fits, the background predictions are given for the four bins with the

highest signal-sensitivity. The quoted uncertainties include all statistical and systematic

effects, described in section 9. The numbers of tt̄ events normalised in the various TCRs

are compatible with the predictions entirely based on simulation and the theoretical cross-

section, while the W+jets estimates are about 30% lower than, but nonetheless compatible

with the predictions from simulation normalised to the theoretical cross-section. Tables

showing the estimated and fitted number of background events in the CRs, validation

regions, and SRs of all analyses are shown in appendix B.

8.2 Validation

The background fit predictions are validated using dedicated event samples. For each

cut-and-count and one-dimensional shape-fit analysis one or more dedicated validation

regions (VRs) are defined for the tt̄ and W+jets backgrounds. The VRs are designed to

be kinematically close to the associated SRs to test the background estimates in regions of

phase space as similar as possible to the SRs. For most analyses the associated VRs are

defined following a similar strategy as used for the CRs but with a 90 GeV < mT < 120 GeV

requirement, which leads to a set of events orthogonal to both the associated CRs and the

SR. The event selections for the tt̄ and W+jets VRs, TVR and WVR respectively, are

given in table 8. Another set of tt̄ validation regions, referred to as TVR2 but not shown

in the table, is defined where applicable by inverting the SR requirement on amT2 while

keeping all other requirements the same as in the SR. For the four two-dimensional shape-

fits, a subset of the shape-fit bins in the region falling in between that dominated by tt̄ and

the region enhanced by a potential signal is used for the tt̄ background validation. These

signal-depleted shape-fit bins are referred to as validation bins.

For the cut-and-count and one-dimensional shape-fit analyses, the VRs are not used

in any fit configuration to constrain the fit parameters. The validation bins of the two-

dimensional shape-fits, on the other hand, are not used in the background-only fit configura-

tion but are included in the model-dependent fit configuration. The number of background

events in each VR or validation bin is predicted by the background-only fit (using simu-

lation for the extrapolation) and compared to the data, as shown in the upper panel of

figure 11. The lower panel shows the pull for each bin, where the pull is defined as the

difference between the predicted background and the observed number of events divided
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by the total uncertainty. The latter is given by the full uncertainty of the prediction (de-

scribed in section 9) added in quadrature with the statistical uncertainty of the observed

number of events. No indication of background mis-modelling is found. VRs or validation

bins belonging to different analyses can share events, and the systematic uncertainties are

correlated across different regions and bins.

Several other cross checks are performed to further validate the background estima-

tions. For the SRs requiring more than two jets, dileptonic tt̄ events can pass the event

selection only if they contain additional jets beyond the two b-jets from the leading-order

description of the decay. The modelling of these additional jets, which in the simulation

arise from radiation or higher-order-corrections, and which is relevant for the background

estimation, is validated using a dedicated sample. The event selection is based on requiring

one isolated electron and one oppositely-charged, isolated muon, as well as two or more jets

of which at least one is b-tagged using the 70% working point. This selects a clean sample

of tt̄ events, which is used in figure 12 (left) to compare the jet multiplicity distributions

between data and simulation. Data is modelled sufficiently well within the systematic un-

certainties. Further dedicated validation samples are used to test the modelling of the tt̄

background with a τhad or isolated track. These samples are based on the common event

preselection and inverting either the track- or τ -veto. The simulation is found to model

data well within uncertainties.

The W+jets light- vs heavy-flavour composition in the WCR can be different from

that in the SR. A dedicated validation is performed by selecting a sample enriched with

W+heavy-flavour jets events. The event selection is based on exactly one isolated lepton,

and exactly three jets (the fourth jet veto reduces tt̄ events), of which at least one is

b-tagged. Furthermore, events are required to have 60 GeV< mT < 90 GeV, Emiss
T >

150 GeV, and the two jets with the highest b-tagging weights are required to yield an

invariant mass below 80 GeV and to have a limited separation in η–φ space to increase the

sensitivity to pair-produced heavy-flavour jets in association with a W boson. The selected

sample of 166 events has a predicted W+heavy-flavour jets component of about 40%; data

are found to be in good agreement with simulation, predicting 171 events, when the overall

W+jets background is normalised to match data in a b-veto control region.11

Another dedicated validation sample is constructed to test the background prediction

for tt̄ produced with a Z boson that decays to two neutrinos, tt̄Z(→ νν̄). This process

represents an irreducible background that becomes important for SRs with stringent re-

quirements on kinematic variables, such as tN high or tN boost. The validation strategy

is to select tt̄ events produced in association with a photon, tt̄γ. This process closely resem-

bles tt̄Z(→ νν̄) in terms of Feynman diagrams and kinematic properties when the vector

boson pT is well above mZ . The event selection is based on one isolated lepton, four or

more jets with at least one b-tag, one high-pT photon, as well as requirements on modified

versions of mT and Emiss
T where photons are treated as invisible particles. Figure 12 (right)

compares data and background predictions, illustrating the accuracy of data modelling.

11The W+jets background is normalised using the WCR associated with bCc diag, which requires three

or more jets with a jet pT selection similar to that used in the validation sample.
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Figure 11. The upper panel compares data with background predictions in the VRs of the

cut-and-count and one-dimensional shape-fit analyses as well as the validation bins of the two-

dimensional shape-fit analyses. The lower panel shows the pull of the same bins. The tt̄ and

W+jets background estimates are obtained using the background-only fit to the CRs (described in

the text). All statistical and systematic uncertainties are included.

The sample of 104 events has a purity in tt̄γ of more than 70%. The production of tt̄γ

events is estimated using simulation, based on the same generator (MadGraph) as used

for the tt̄Z process, and normalised to the NLO theoretical cross-section [132].

9 Systematic uncertainties

The systematic uncertainties affecting the results can be divided into two classes: uncer-

tainties due to theoretical predictions and modelling, and uncertainties stemming from

experimental effects. The impact of both types of uncertainty is evaluated for all back-
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Figure 12. Left: jet multiplicity distribution for events with one opposite charged electron-muon

pair and at least two jets of which one or more is b-tagged. Other processes include single top quark

production, tt̄ production in association with a vector boson, Z+jets, and diboson production.

Right: missing transverse momentum where photons are treated as invisible particles (Ẽmiss
T ) for

an event selection of tt̄ + photon (described in the text). Both plots: the uncertainty band includes

all statistical and experimental uncertainties, and the last bins include overflows.

ground and signal samples. Since the yields for the dominant background sources, tt̄ and

W+jets, are obtained in dedicated control regions, the modelling uncertainties for these

processes affect only the extrapolation from the CRs into the signal regions (and between

TCR and WCR), but not the overall normalisation. The systematic uncertainties are in-

cluded as nuisance parameters and profiled in the likelihood fits. The nuisance parameters

are constrained by Gaussian terms with widths corresponding to the sizes of the system-

atic uncertainties. The same set of nuisance parameters is used across all bins, with the

exception of the two shape-fits that have three tt̄ and three W+jets normalisation param-

eters and hence also have three sets of nuisance parameters. The effects of the sources of

uncertainties discussed in this section are quantified in terms of the corresponding relative

uncertainty on the estimated number of background events in the various signal regions,

this is referred to as the ‘impact on the background estimate’.

The dominant experimental uncertainties arise from imperfect knowledge of the jet

energy scale (JES) and jet energy resolution (JER) as well as from the modelling of the

b-tagging efficiency. The JES uncertainty is derived from a combination of simulation and

data samples [105, 106] taking into account the dependence on the pT, η and flavour of the

jet as well as the amount of pileup. The impact of JES on the background estimate varies

from 1% to 13%. The JER uncertainties are determined with in-situ measurements of the

jet response balance in dijet events [129], and the impact on the background estimate is

1%–21%. The JES, JER, and jet mass scale and resolution uncertainties for large-R jets are

derived from a combination of data and simulation samples [107, 133], and their combined

impact on the background estimate amounts to 3%. The b-tagging uncertainty is estimated
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by varying the b-tagging efficiency and mis-tag rate correction factors, obtained from data-

driven measurements of these quantities in tt̄ and dijet events [111, 134–136], within their

uncertainties. The impact of these uncertainties on the background estimate ranges from

1% to 8%, and is dominated by the uncertainty on the b-tagging efficiency. Other sources

of experimental uncertainty are the modelling of the average number of pp interactions

per bunch crossing, the modelling of the contribution to the Emiss
T from energy deposits

not associated with any reconstructed objects and from pileup, the modelling of lepton-

related quantities (trigger and identification efficiency, energy and momentum scale and

resolution, isolation and τ -veto) as well as imperfect knowledge of the integrated luminosity.

The combined impact of these sources on the background estimate is between 1% and 5%.

Uncertainties related to theoretical predictions and MC modelling are evaluated for

all signal and background processes obtained entirely or partly from simulated events.

The sources of uncertainty considered for both the tt̄ and W+jets background processes

are the variations of the renormalisation and factorisation scales by factors of 0.5 and

2.0 as well as PDF variations, which are studied following the PDF4LHC recommen-

dations [137] comparing CT10 NLO, MSTW2008 NNLO and NNPDF21 100 [138] PDF

error sets. For the tt̄ background, the uncertainty on the hadronisation modelling is

derived from a comparison between events generated with POWHEG and interfaced with

PYTHIA for the shower model and those generated in the same way, but interfaced with

Herwig+Jimmy [139]. Furthermore, the effect of the modelling of ISR and final-state

radiation (FSR) is studied using samples of tt̄ events generated with ACERMC with

reduced and increased amounts of additional radiation (constrained by the measurement

of ref. [140]). The impact of the tt̄ modelling on the background estimate is 2%–6%.

For the W+jets background, the effect of varying the number of partons used in the

hard-scatter process is estimated by comparing samples generated with up to four extra

partons to samples generated with up to five extra partons. The impact of merging matrix

elements and parton showers is studied by varying the SHERPA scales related to the

matching scheme. As the W+jets background is normalised in a region with a b-tag veto,

additional uncertainties on the flavour composition of the W+jets events in the signal

region, based on the uncertainties on the measurement of ref. [141] extrapolated to higher

jet multiplicities, are applied in all regions requiring at least one b-tagged jet. The impact

of the W+jets modelling on the background estimate is 1%–7%.

Background sources other than tt̄ and W+jets are estimated from simulated events and

are normalised to the most accurate cross-section predictions available. The cross-section

uncertainty for the single-top process is 7% [82–84], while it is 22% for tt̄V [85, 86]. The ZZ

and WZ cross-section uncertainties are 5% and 7%, respectively [89, 90]. Other sources of

systematic uncertainty considered depend on the physics process, but include the choice of

renormalisation and factorisation scales, PDF variations, hadronisation modelling, choice

of MC generator, modelling of ISR and FSR, variations of the matrix element to parton

shower matching scales, the generation of a finite number of partons, and the interference

between single-top and tt̄ production at NLO. The uncertainty on the interference treat-

ment is estimated using inclusive WWbb samples at LO generated with ACERMC (which

includes both the tt̄ and Wt processes). The total impact of the modelling of the smaller

backgrounds on the background estimate ranges from 1% to 11%.
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The theoretical uncertainties affecting the signal yields originate from the uncertainty

on the production cross-section [96], and from the uncertainty on the acceptance. The

latter includes PDF variations assessed using the PDF4LHC prescription [137], as well as

modelling uncertainties of ISR and FSR and variations of the renormalisation and fac-

torisation scales, evaluated by varying the relevant parameters in MadGraph. The total

uncertainty on the production cross-section varies as a function of the stop mass; it amounts

to about 15% for mt̃1
= 200 GeV and increases to 18% for mt̃1

= 700 GeV. The impact of

the ISR/FSR modelling uncertainty on the signal acceptance ranges from 10% to 20% for

signal regions that select events with ISR activity, such as bCc diag, and for signal models

of mass hierarchy (c). It is negligible for the other signal regions.

The search sensitivity is directly connected to the fitted uncertainty of the signal

strength parameter, where the signal strength is a fit parameter that scales the signal

yield predicted by the model in question; a signal strength of one corresponds to the

nominal signal yield. The impact of the various sources of uncertainty, including the

statistical precision, on the signal strength uncertainty is quantified in table 10 for selected

signal regions and signal benchmark models. The breakdown of the size of the systematic

uncertainties is evaluated by re-running the fit, fixing the relevant nuisance parameter in

question to its value from the nominal fit, and taking the difference in quadrature between

the signal strength uncertainty of this fit and the nominal fit. The statistical uncertainty

is obtained from re-running the fit without any systematic uncertainties, again fixing the

nuisance parameters to their values from the nominal fit. The tightest signal regions, such

as tN boost, are statistically limited. Systematic uncertainties dominate the looser signal

regions. Overall, the largest contributions to the systematic uncertainty on the signal

strength come from JER and tt̄ modelling. The energy scale and energy resolution of

large-R jets is relevant in the tN boost signal region.

10 Results

Figures 13 and 14 show comparisons between the observed data and the SM background

prediction from the background-only fit with all selections applied except the requirement

on the plotted variable. In all SRs, the plots indicate good compatibility between the data

and the SM background. The expected distributions from representative signal benchmark

models are overlaid.

Table 11 shows the number of observed events together with the predicted number of

background events in the SRs using the model-independent selection of the 15 analyses.

The predicted numbers of background events are obtained using the background-only

fits to the number of observed events in the CRs as described in section 8. These fitted

background estimates in the CRs are then used to obtain the fitted numbers of background

events in the SRs by extrapolations that use transfer factors obtained with simulated

events. The observed numbers of events are found to agree well with the fitted numbers

of background events in all SRs.

To assess the compatibility of the SM background-only hypothesis with the observa-

tions in the SRs, a profile likelihood ratio test is performed implementing the methodology
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Figure 13. For each signal region one characteristic distribution is shown, with the full event selec-

tion of the signal region applied, except for the requirement (indicated by an arrow) on the shown

quantity. The uncertainty band includes statistical and all experimental systematic uncertainties.

The last bin includes overflows. Benchmark signal models are overlaid for comparison.
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Uncertainty on signal strength tN boost tN diag bCc diag bCd bulk

Total 0.37 0.19 0.11 0.16

Statistical 0.36 0.05 0.07 0.09

Systematic 0.09 0.18 0.09 0.13

Contribution of systematic uncertainty components

Jet energy scale 0.02 0.03 0.02 0.03

Jet energy resolution 0.06 0.11 0.06 0.07

Large-R-jet related 0.03 - - -

Emiss
T (non-associated energy and pileup) 0.01 0.06 0.01 0.03

Pileup < 0.01 0.03 0.01 0.02

b-tagging 0.03 0.01 0.04 0.01

tt̄ modelling 0.01 0.15 0.04 0.08

W+jets modelling < 0.01 0.01 0.02 0.03

Other backgrounds modelling 0.04 0.03 0.02 0.02

Signal acceptance modelling 0.02 0.01 0.02 0.01

Table 10. Breakdown of the size of uncertainties on the signal strength parameter of the likelihood

fit. The central values of the signal strength parameters (not shown) are close to zero because the

data are compatible with the predicted backgrounds. The uncertainty components are obtained

from the difference in quadrature between the signal strength uncertainty of the nominal fit and

a fit where the systematic uncertainty in question is disabled by fixing the corresponding nuisance

parameter(s) to the value(s) from the nominal fit. Some systematic uncertainty components, such

as the jet energy scale or the modelling of backgrounds, are displayed as single entries while the like-

lihood fit employs a more detailed description. The sum in quadrature of the systematic uncertainty

components may not add up to the total systematic uncertainty due to correlations. The following

benchmark signal models are used: mt̃1
= 700 GeV and mχ̃0

1
= 1 GeV for tN boost, mt̃1

= 350 GeV

and mχ̃0
1

= 150 GeV for tN diag mt̃1
= 180 GeV, mχ̃±

1
= 174 GeV and mχ̃0

1
= 87 GeV for bCc diag

mt̃1
= 300 GeV, mχ̃±

1
= 200 GeV and mχ̃0

1
= 100 GeV for bCd bulk.

described in ref. [143]. The model-independent selection is used, and the likelihood for a

given test includes one SR and all its associated CRs. Each SR, and each signal-sensitive

bin in the two-dimensional shape-fits, is probed separately. Table 11 shows the p0 val-

ues obtained using these fits, indicating that the data in all SRs are compatible with the

background-only hypothesis. Good agreement is found when comparing the results ob-

tained using pseudo-experiments to those calculated from asymptotic formulae [142]; the

latter is used as the default for all exclusion results presented below.

As no significant excess over the expected background from SM processes is observed,

the data are used to derive one-sided limits at 95% CL. The results are obtained from a

profile likelihood ratio test following the CLs prescription [143]. Model-independent upper

limits on beyond-SM contributions are derived separately for each analysis, and in case

of the two-dimensional shape-fits for each signal-sensitive bin. The model-independent

selection is used, and the likelihood of the fit is configured to include one SR or shape-fit

bin and all its associated CRs. A generic signal model, which contributes only to the SR,
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Signal region Obs. Exp. bkg. p0
Nnon−SM σvis [fb]

Obs. Exp. Obs. Exp.

tN med 12 13.0± 2.2 ≥ 0.5 8.5 9.2 0.4 0.5

tN high 5 5.0± 1.0 ≥ 0.5 6.0 6.0 0.3 0.3

tN boost 5 3.3± 0.7 0.17 7.0 5.3 0.3 0.3

bCa low 11 6.5± 1.4 0.08 12.2 7.8 0.61 0.92

bCa med 20 17± 4 0.33 14.4 12.3 0.72 0.68

bCb med1 41 32± 5 0.12 23.5 16.0 1.17 0.88

bCb high 7 9.8± 1.6 ≥ 0.5 6.5 7.9 0.32 0.22

bCc diag 493 470± 50 0.27 110.6 95.1 5.4 4.7

bCd high1 16 11.0± 1.5 0.09 13.2 8.5 0.7 0.4

bCd high2 5 4.4± 0.8 0.36 6.3 5.7 0.3 0.3

tNbC mix 10 7.2± 1.0 0.13 9.7 7.0 0.5 0.3

tN diag

125 < Emiss
T < 150 GeV, 120 < mT < 140 GeV 117 136± 22 ≥ 0.5 42.1 55.7 2.1 2.7

125 < Emiss
T < 150 GeV, mT > 140 GeV 163 152± 20 0.35 55.4 47.8 2.7 2.4

Emiss
T > 150 GeV, 120 < mT < 140 GeV 101 98± 13 0.43 36.1 33.9 1.8 1.7

Emiss
T > 150 GeV, mT > 140 GeV 217 236± 29 ≥ 0.5 58.7 71.4 2.9 3.5

bCb med2

175 < amT2 < 250 GeV, 90 < mT < 120 GeV 10 12.1± 2.0 ≥ 0.5 7.3 8.8 0.4 0.4

175 < amT2 < 250 GeV, mT > 120 GeV 10 7.4± 1.4 0.10 9.7 7.3 0.5 0.4

amT2 > 250 GeV, 90 < mT < 120 GeV 16 21± 4 ≥ 0.5 9.3 12.3 0.5 0.6

amT2 > 250 GeV, mT > 120 GeV 9 9.1± 1.6 ≥ 0.5 7.7 7.8 0.4 0.4

bCd bulk

175 < amT2 < 250 GeV, 90 < mT < 120 GeV 144 133± 22 0.29 36.1 33.9 1.8 1.7

175 < amT2 < 250 GeV, mT > 120 GeV 78 73± 8 0.34 58.7 71.4 2.9 3.5

amT2 > 250 GeV, 90 < mT < 120 GeV 61 66± 6 ≥ 0.5 17.5 20.9 0.9 1.0

amT2 > 250 GeV, mT > 120 GeV 29 26.5± 2.6 0.34 14.8 12.6 0.7 0.6

3body

80 < amT2 < 90 GeV, 90 < mT < 120 GeV 12 16.9± 2.8 ≥ 0.5 7.3 9.9 0.4 0.5

80 < amT2 < 90 GeV, mT > 120 GeV 8 8.4± 2.2 ≥ 0.5 7.9 7.8 0.4 0.4

90 < amT2 < 100 GeV, 90 < mT < 120 GeV 29 35± 4 ≥ 0.5 11.7 14.7 0.6 0.7

90 < amT2 < 100 GeV, mT > 120 GeV 22 29± 5 ≥ 0.5 55.4 47.8 2.7 2.4

Table 11. Columns two to four show the numbers of observed events in the SRs (model-independent

selection) of the 15 analyses together with the expected numbers of background events (as predicted

by the background-only fits) and the probabilities, represented by the p0 values, that the observed

numbers of events are compatible with the background-only hypothesis. The p0 values are obtained

with pseudo-experiments with the exception of the shape-fit bins where only the smallest p0 is

derived with pseudo-experiments while the others are calculated from asymptotic formulae [142].

The p0 value is set to 0.5 whenever the number of observed events is below the number of expected

events. Columns five to eight show the 95% CL upper limits on the number of beyond-SM events

(Nnon−SM) and on the visible signal cross-section (σvis = σprod×A×ε). The observed and (median)

expected limits are given for a generic model without uncertainties other than on the luminosity.
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Figure 14. For each signal region one characteristic distribution is shown, with the full event

selection of the signal region applied, except for the requirement on the shown quantity. The

binning is similar to that used for the one-dimensional shape-fits of the corresponding analyses.

The uncertainty band includes statistical and all experimental systematic uncertainties. The last

bin includes overflows. Benchmark signal models are overlaid for comparison.

is assumed and no experimental or theoretical signal systematic uncertainties are assigned

other than the luminosity uncertainty. The resulting limits on the number of beyond-

SM events and on the visible signal cross-section are shown in the rightmost columns of

table 11. The visible signal cross-section (σvis) is defined as the product of acceptance (A),

reconstruction efficiency (ε) and production cross-section (σprod); it is obtained by dividing

the upper limit on the number of beyond-SM events by the integrated luminosity.

Exclusion limits are also derived in various SUSY scenarios. The results are obtained

using the same CLs prescription as used for the model-independent limits, but with

the model-dependent selection. The likelihood for each analysis includes the full set of

bins: SR, TCR, WCR for cut-and-count and the full set of SR and CR bins for shape-fit

analyses. The signal uncertainties and potential signal contributions to all bins are taken

into account. All uncertainties except on the theoretical signal cross-section are included

in the fit. Combined exclusion limits are obtained by selecting a priori the signal region

with the lowest expected CLs value for each signal grid point.

The expected and observed exclusion contours for the t̃1 → tχ̃
0
1 decay mode are shown

in figure 15 overlaying the results for the signal regions targeting two-, three- and four-
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body decays. The ±1σexp uncertainty band indicates the impact on the expected limit of

all uncertainties included in the fit. The ±1σSUSY
theory uncertainty lines around the observed

limit illustrate the change in the observed limit as the nominal signal cross-section is scaled

up and down by the theoretical cross-section uncertainty. Quoted limits are derived from

the −1σSUSY
theory observed limit contours. In the four-body scenario stop masses are excluded

between 100 and 170 GeV, for an LSP mass of about 75 GeV. Stop masses between 100

and nearly 175 GeV in the three-body scenario, and between 210 and 640 GeV in the two-

body scenario are excluded for a massless LSP, while for a stop mass around 550 GeV

the exclusion reaches up to an LSP mass of 230 GeV. The non-excluded area between

the four- and three-body decay regions is due to a reduction in search sensitivity as the

kinematic properties of the signal change significantly when transitioning from a four-

body to a three-body decay. In particular, approaching this boundary from the three-

body side, the momenta of the two b-jets decrease to zero and hence the acceptance of

the pT requirement on the b-tagged jet in the 3body signal region drops quickly. The

kinematic properties change again at the other diagonal, between the three-body and on-

shell top quark decay modes. When approaching this diagonal from the on-shell top quark

side the search sensitivity is limited by the difficulty to disentangle the signal from the

tt̄ background, as the two processes begin to closely resemble each other in kinematic

properties. In the limit of reaching the diagonal from the righthand side, the two LSPs

have no phase space, thus carrying away no momentum, leading to a stop signature similar

to that of tt̄ except for small deviations induced by the difference in spin. This region is also

referred to as ‘stealth stop’. The tN diag signal region has the best expected sensitivity for

stop masses up to 400 GeV and close to the mt̃1
& mt+mχ̃0

1
kinematic boundary, while the

tN boost signal region has the best expected sensitivity for stop masses above 600 GeV. In

the intermediate mass region the best expected sensitivity comes from the tN med signal

region. The use of large-R jets in the tN boost signal region extends the reach for a heavy

stop by about 30 GeV, as obtained from a comparison with the tN high signal region.

Figures 16 to 21 show the expected and observed exclusion contours for the t̃1 → bχ̃
±
1

decay mode with different χ̃
±
1 mass hypotheses. If the mass of the χ̃

±
1 is twice that of the

LSP (figure 16), stop masses up to 500 GeV are excluded for an LSP mass in the range

of 100 to 150 GeV. The various regions in the exclusion area can be mapped to the mass

hierarchies illustrated in figure 4: models in the bulk region correspond to mass hierarchy

(d), those in the (bottom) region with a low χ̃0
1 mass are mass hierarchy (b), and the

ones in the (diagonal) region close to the kinematic boundary are mass hierarchy (c). The

strongest exclusion sensitivity is provided by the signal regions designed for the given mass

hierarchy, for example bCd bulk (bulk), bCb med1 and bCb high (bottom), and bCc diag

(diagonal). The small region around mt̃1
∼ 175 GeV and mχ̃0

1
. 70 GeV is not excluded

because signal events cannot be sufficiently well distinguished from tt̄ background events;

for larger mχ̃0
1

values, the b-tag veto in the bCc diag signal region becomes effective.

If the χ̃
±
1 mass is set to 150 GeV (figure 17), stop masses below 490 GeV are excluded

for LSP masses up to 80 GeV. Models in the top, left, and bulk regions within the exclusion
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contour correspond to the mass hierarchies (a-b), (c), and (d) respectively; the exclusion

power is mostly provided by bCb med1 and bCb high (top), bCc diag (left), bCd bulk

(bulk), and bCb med2 (bulk with high mt̃1
). The vertical drop in search sensitivity for

mt̃1
. 260 GeV in the top part of the plane is caused by the b-tagged jet pT and mbb

requirements in the two bCb * signal regions, which effectively imposes a minimum mass

splitting between the t̃1 and χ̃
±
1 states. The other two signal regions that are based on soft-

lepton selections (bCa *) require ISR activity and are hence limited to the low stop mass

region where the cross-section is large. The sharp horizontal contour line at mχ̃0
1

= 145 GeV

is an artifact caused by the fact that signal grid points were generated only up to this LSP

mass. However, the upper region is excluded by the search described in ref. [37]. If the mass

of the χ̃
±
1 is set to 106 GeV (figure 18), stop masses between 240 and 550 GeV, together

with a small region around a stop mass of 150 GeV, are excluded for an LSP mass of

70 GeV. The identification of regions with mass hierarchies, and the best signal regions are

similar to the previous scenario. The vertical exclusion gap around mt̃1
∼ 175 GeV is due

to the same effect seen in figure 16 and described above, while the reduction in exclusion

power for a decreasing LSP mass is due to the transition of the χ̃
±
1 decay from a three-body

to a two-body process, which happens at an LSP mass of ∼ 26 GeV; the two-body decay

produces less Emiss
T on average, amongst other changes of the kinematic properties.

If the χ̃
±
1 mass is only 5 GeV (20 GeV) above the LSP mass (figures 19 and 20, re-

spectively), stop masses between 265 and 600 GeV (240 and 600 GeV) are excluded for an

LSP mass of 100 GeV. The exclusion in these ‘compressed’ scenarios, corresponding to the

mass hierarchies (a) and (b), is achieved using the soft-lepton selections of the bCa low

and bCa med signal regions. The sensitivity decreases for smaller mass splittings because

of the lepton pT threshold. The diagonal exclusion gap in figure 20 is caused by the effects

described above in the discussion of figure 17 together with the impact of the b-veto on the

leading jet in the bCa * signal regions. If the χ̃
±
1 mass is only 10 GeV below the stop mass

(figure 21), stop masses below 390 GeV are excluded for a massless LSP. The models in

this scenario correspond to mass hierarchy (c). The bulk exclusion power comes from the

bCc diag signal region with a b-veto, while using soft leptons in the bCa low signal region

extends the sensitivity in the top left region.

The complementarity of the signal regions to various mass splittings of χ̃
±
1 and χ̃0

1

is illustrated by fixing the stop mass to 300 GeV and presenting the exclusion limit as a

function of the χ̃
±
1 and χ̃

0
1 masses (figure 22). LSP masses up to about 100 GeV are excluded

for all possible χ̃
±
1 masses, with one small exception in the bottom left corner. The exclusion

power close to the kinematic boundary comes from the signal regions designed for mass

hierarchy (a) and (b), while for larger mass splittings the sensitivity is provided by the

selections for mass hierarchy (d), and (c) in case of a large χ̃
±
1 mass. The non-excluded

region around a χ̃±1 mass of 270 GeV and a χ̃0
1 mass of 175 GeV is caused by the signal

region transition.

In scenarios where both the t̃1 → tχ̃
0
1 and t̃1 → bχ̃

±
1 decay modes are allowed and

where mχ̃±
1

= 2mχ̃0
1

(figure 23), the largest excluded stop mass for an LSP mass of
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100 GeV gradually increases from 530 GeV to 660 GeV as the branching ratio for t̃1 → tχ̃
0
1

is increased from 0% to 100%. Here, the quoted limits correspond to the central observed

limit contour. The signal regions providing the best expected sensitivity for models with

mixed decays are mainly bCd bulk and tNbC mix, with some contribution from tN diag,

tN med and tN boost for models with a large fraction of t̃1 → tχ̃
0
1 decays, as well as some

contributions from bCb med1 and bCb high for models with a low LSP mass and a small

fraction of t̃1 → tχ̃
0
1 decays.

The upper limits on the signal cross-section for models where the t̃1 is a pure t̃L and

models where it is predominantly a t̃R are compared in figure 24 for the t̃1 → tχ̃
0
1 decay

mode with two assumptions for the lightest neutralino, mχ̃0
1

= 50 GeV and mχ̃0
1

= 150 GeV.

The predominantly t̃R mixing composition is the default setting used for all simplified-

model t̃1 → tχ̃
0
1 scenarios. The weaker t̃L model exclusion is mainly the result of a reduced

lepton and mT acceptance. The excluded t̃1 mass reach of the t̃L model is reduced by

about 50 GeV for the two considered LSP masses.

The change in sensitivity when varying parameters other than the stop and χ̃
0
1 masses

is studied using 27 pMSSM samples, which can be classified into three groups of similar

stop and χ̃0
1 masses; a detailed description is given in section 5.2. The expected and

observed CLs significance values for the 27 pMSSM models and two simplified models are

shown in figure 25. The strongest impact on the CLs significance is found to be from the

sum of the branching ratios for t̃1 → tχ̃
0
1 and t̃1 → bχ̃

±
1 , where the CLs significance is

smaller for models where stop decays other than t̃1 → tχ̃
0
1 and t̃1 → bχ̃

±
1 are kinematically

allowed. This is a consequence of the signal selections being optimised using only simplified

models. In addition to the branching ratio dependence, the sensitivity also depends on the

kinematic properties of the events, which are affected, e.g., by the stop mixing matrix and

by the masses and field content of other SUSY particles. These additional dependencies

explain the large spread in CLs significance for the models where the stop decays only to

tχ̃
0
1 and bχ̃

±
1 . For mt̃1

∼ 400 GeV and mχ̃0
1
∼ 50 GeV, 11 of the 14 models are excluded.

No models with mt̃1
∼ 550 GeV are excluded.

11 Summary and conclusions

A search for stop pair production in final states with one isolated lepton, jets, and missing

transverse momentum is presented. Proton-proton collision data from the full 2012 data-

taking period were analysed, corresponding to an integrated luminosity of 20 fb−1 collected

at
√
s = 8 TeV by the ATLAS detector at the LHC. Five decay modes are considered: (1)

each stop decays to a top quark and the LSP; (2) each stop decays to a bottom quark and

the lightest chargino (χ̃
±
1 ), where the χ̃

±
1 decays via an on- or off-shell W boson to the

LSP; (3) each stop decays in a three-body process to a bottom quark, a W boson, and the

LSP; (4) each stop decays in a four-body process to a bottom quark, the LSP and two light

fermions; (5) the two stops decay independently either as described in (1) or in (2). In all

scenarios, R-parity is conserved and the LSP is assumed to be the χ̃
0
1.

The results are in agreement with predictions from the Standard Model, and are thus

translated into 95% CL upper limits on the stop and χ̃
0
1 masses in various supersymmetric

– 45 –



J
H
E
P
1
1
(
2
0
1
4
)
1
1
8

 [GeV]
1

t
~m

200 300 400 500 600 700 800

 [
G

e
V

]
10

m

0

50

100

150

200

250

300

350

400
1

0
 t 1t

~
 / 

1

0
 W b 1t

~
 / 

1

0
 b f f’ 1t

~
 production, 1t

~
1t

~

1

0

+m
t

 <
 m

1t~
m

1

0

 +
 m

W

 +
 m

b

 <
 m

1t~
m

1

0

 +
 m

b

 <
 m

1t~
m

)
exp

1 ±Expected limit (

)
theory

SUSY1 ±Observed limit (ATLAS

All limits at 95% CL
T

miss
1-lepton + jets + E

=8 TeVs, 
-1

 L dt = 20 fb

Figure 15. Expected (black dashed) and observed (red solid) 95% CL excluded region in the plane

of mχ̃0
1

vs. mt̃1
, assuming BR(t̃1 → tχ̃

0
1) = 100%. In the region mb+mW +mχ̃0

1
< mt̃1

< mt+mχ̃0
1

the decay of the t̃1 involves a virtual top quark (three-body decay), while in the region mt̃1
< mb +

mW +mχ̃0
1

it involves both a virtual top quark and a virtual W boson (four-body decay). The mt̃1
<

100 GeV region for the three-body decay mode is excluded by the search described in ref. [38]. Fur-

thermore, the mt̃1
< 78 GeV region in the four-body scenario is excluded by the search in ref. [144].

scenarios. For models where the stop decays exclusively into a top quark and a χ̃
0
1 (scenario

(1) above), stop masses between 210 and 640 GeV are excluded for a massless LSP, and

stop masses around 550 GeV are excluded for LSP masses below 230 GeV. Limits are also

derived in the three- and four-body scenarios. For scenarios where the stop decays exclu-

sively into a bottom quark and a χ̃
±
1 (scenario (2) above), the excluded stop and χ̃

0
1 masses

depend strongly on the mass of the χ̃
±
1 . For models where the mass of the χ̃

±
1 is twice that

of the LSP, stop masses up to 500 GeV are excluded for an LSP mass in the range of 100 to

150 GeV. For models in which the χ̃
±
1 mass is only 20 GeV above the LSP mass, stop masses

between 240 and 600 GeV are excluded for an LSP mass of 100 GeV. In scenarios where only

the t̃1 → tχ̃
0
1 and t̃1 → bχ̃

±
1 decay modes are allowed, the largest excluded stop mass for an

LSP mass of 100 GeV gradually increases from 530 GeV to 660 GeV as the branching ratio

for t̃1 → tχ̃
0
1 is increased from 0% to 100%. Using a limited set of pMSSM models, the exclu-

sion power is found to decrease with an increased branching ratio to decays other than t̃1 →
tχ̃

0
1 and t̃1 → bχ̃

±
1 . These results supersede and significantly extend previous ATLAS limits.
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Figure 25. The expected (top) and observed (bottom) CLs significance values for the 27 pMSSM

models described in section 5.2 and for two simplified models. Models above the dashed line,

indicating the CLs significance corresponding to 95% CL, are excluded. The results of the pMSSM

models are displayed using filled markers where the marker symbol corresponds to the mt̃1
, mχ̃0

1

range and the colour represents the branching ratio for the t̃1 → tχ̃
0
1 decay, while the simplified

models are shown using open markers. The uncertainty on the expected CLs significance includes

all sources except the theoretical cross-section uncertainty, while the uncertainty on the observed

CLs significance includes only the effect of scaling the nominal signal cross-section up and down by

the theoretical cross-section uncertainty.
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A Detailed description of the discriminating variables

This section provides more detailed descriptions of the discriminating variables that are

introduced in section 6.

- Stransverse Mass, mT2.

This variable targets decay topologies with two branches, referred to here as a and b. In

each branch, there are some particles with fully measured momenta and some particles

with momenta that are not measured directly. The sum of the four vectors of the

measured momenta in branch i ∈ {a, b} are denoted pi = (Ei, ~pTi, pzi) and the sum of

the four vectors of the unmeasured momenta are denoted qi = (Fi, ~qTi, qzi). With m2
pi =

E2
i − ~p 2

i and m2
qi = F 2

i − ~q 2
i , the mT of the particles in branch i is given in general by

m2
Ti =

(√
p2

Ti +m2
pi +

√
q2

Ti +m2
qi

)2

− (~pTi + ~qTi)
2

which in the case that mqi = mpi = 0 is the same as the one given in section 6.2. A

generalisation of mT, mT2, is defined as a minimisation over the allocation of ~pmiss
T
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between ~qTa and ~qTb of the maximum of the corresponding mTa or mTb:

mT2 ≡ min
~qTa+~qTb=~pmiss

T

{max(mTa,mTb)},

where one must make an assumption of mqa and mqb in the computation of mTa and

mTb. The result of the above minimisation is the minimum parent mass consistent

with the observed kinematic distributions under the inputs mqa and mqb . The variants

of mT2 described below only differ in the measured particles, (assumed) unmeasured

particles, and choices for the input masses, mqa and mqb .

- Asymmetric mT2, amT2

- Measured particles: for branch a, this is one of the b-jets and for branch b this

is the second b-jet and the charged lepton. The b-jets are identified based on the

highest b-tagging weights. Since there are two ways of assigning the b-tagged jets

to branches a and b, both mT2 values are computed and the minimum kept for

the final discriminant.

- Unmeasured particles: for branch a, this is a W boson that decays leptonically,

with the charged lepton unidentified as such. The unmeasured particle for branch

b is the neutrino associated with the measured charged lepton.

- Input masses: mqa = mW = 80 GeV and mqb = mν = 0 GeV.

- In cases in which the lost lepton is an electron and the corresponding energy

deposit enters the Emiss
T calculation, for instance as a soft calorimeter cluster,

amT2 can exceed the top mass boundary in tt̄ events, but the variable remains

powerful at discriminating signal from background.

- τ -based mT2, mτ
T2

- Measured particles: for branch a, this is the τ -jet, identified as the highest-pT jet

excluding the selected two b-tagged jets. The measured particle for branch b is

the charged lepton.

- Unmeasured particles: for branch a, this includes the two neutrinos associated

with the τ production and hadronic decay. The unmeasured particle for branch

b is the neutrino associated with the charged lepton.

- Input masses: mqa = 0 GeV and mqb = mν = 0 GeV.

- Topness.

The topness event value is defined as ln(min Ŝ), where Ŝ is the minimum of the χ2-type

function S:

S(pW,x, pW,y, pW,z, pν,z) =

(
m2
W − (p` + pν)2

)2

a4
W

+

(
m2
t − (pb1 + p` + pν)2

)2

a4
t

+

+

(
m2
t − (pb2 + pW )2

)2

a4
t

+

(
4m2

t − (Σp)2
)2

a4
CM

.
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The first three arguments of S are the components of the non-reconstructed W boson

3-momentum (pW,x, pW,y, pW,z). This W is assumed to decay leptonically, but the

lepton is not reconstructed and is thus only noticeable in the missing transverse

momentum. The variable pν,z is the longitudinal momentum of the neutrino from the

other W boson decay, for which the lepton was successfully reconstructed. These four

numbers are varied to find the minimum of S.

The momenta appearing on the right-hand side of the equation above are either 4-

momenta of the reconstructed objects (one lepton, p`, and two b-jets, pb1 and pb2)

or 4-momenta assigned by the minimisation procedure (pW and pν). To find all four

components, the neutrinos and the W boson without reconstructed decay products are

assumed to be on-shell. Both combinations for b1 and b2 are evaluated during the min-

imisation; if only one b-tagged jet is present, it is used together with the leading or sub-

leading jet (that means, a total of four possible jet assignments is evaluated in this case).

The minimisation is constrained such that the observed missing transverse momentum

is attributed to the unobserved W boson (decaying into a not-reconstructed lepton

and a neutrino) and a neutrino from the other top decay branch.

The constants aW , at and aCM are set to the values suggested by the authors of S:

aW = 5 GeV, at = 15 GeV, aCM = 1 TeV.

- Hadronic top mass, mhad−top.

This reconstructed top mass is constructed as mj1,j2,bi by minimising

χ2 =

(
mj1,j2,bi −mtop

)2
σ2
mj1,j2,bi

+

(
mj1,j2 −mW

)2
σ2
mj1,j2

,

where i = 1 or 2; b1 and b2 are the two jets with the highest b-tagging weights; j1, j2
are the highest pT jets from the selected jets in the event excluding b1 and b2 and

σ2
mj1,j2,bi

= m2
j1,j2,bi

(r2
j1 + r2

j2 + r2
bi

)

σ2
mj1,j2

= m2
j1,j2(r2

j1 + r2
j2),

where ri is the fractional jet energy uncertainty of the pT for jet i determined by

dedicated studies [105, 129].

- τ -veto.

For the construction of the τ -veto, the reconstructed τhad candidates are subject to

further selection requirements. Candidates are required to have either one associated

track (classified as one-prong τ decay), or two to three tracks (classified as three-prong τ

decay, where one track can be missed). The τhad charge for candidates with one or three

tracks is required to be ±1 and to be opposite to the charge of the selected electron or

muon in the event. For candidates with two tracks, the sign of the τhad charge is required

to be opposite to that of the selected lepton only if the τhad charge is ±2. Finally,
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three different BDT requirements are imposed on the candidates to define three τ -veto

working points: loose, tight, and extra-tight. In simulated tt̄ events with one W → `ν

decay, signal- and background-like events are defined by requiring the other W boson

to either decay into quarks (signal) or into a τhad(background). In these samples, the

loose (tight) τ -veto retains 99% (97%) of signal events, while for background events 81%

(69%) with a one-prong and 75% (63%) with a three-prong τhad decay survive the veto.

- Track-veto.

Tracks are required to satisfy the following criteria: pT > 10 GeV and |η| < 2.5,

transverse and longitudinal impact parameters |d0| < 1 mm and |z0| < 2 mm. The

track isolation requires that there are no additional tracks associated with the primary

vertex with pT > 3 GeV in a cone of ∆R = 0.4 around the track. Events with at least

one isolated track of opposite charge compared to that of the selected electron or muon

in the event are rejected by the track-veto.

- Hmiss
T,sig is an object-based missing transverse momentum, divided by the per-event

resolution of the jets. It is defined by

Hmiss
T,sig =

| ~Hmiss
T | −M
σ| ~Hmiss

T |
,

where ~Hmiss
T is the negative sum of the jets and lepton vectors. The denominator is

computed from the per-event jet energy uncertainties, while the lepton is assumed

to be well-measured. The parameter M is chosen to be a characteristic ‘scale’ of the

background [145], and is fixed at 100 GeV in this analysis based on optimisation studies.

B Background fit results

This section contains the background fit results for all analyses. The model-dependent

selection is used. The CR and SR bins (cut-and-count and one-dimensional shape-fits) or

the full set of bins (two-dimensional shape-fits) are included in the likelihood. However, a

potential signal contribution is neglected everywhere (the signal strength is fixed to zero).

All background uncertainties are taken into account. This fit configuration is different

from the background-only fit, which is used for the validation results in section 8, in that

it includes more bins to constrain the likelihood. The results of the cut-and-count analyses

are given in table 12, and the results for the shape-fits are shown in tables 13–20.
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Region Obs.
Fitted (estimated) background

Total tt̄ W+jets Other

tN med

TCR 159 159± 12 (155) 124± 14 (108) 19± 4 (32) 15.8± 2.6 (16)

WCR 161 161± 13 (232) 36± 9 (31) 109± 17 (185) 16± 5 (15)

TVR 16 26± 6 (26) 20± 5 (17) 3.4± 1.0 (6) 3.1± 0.7 (3)

WVR 25 24± 7 (34) 6.7± 2.5 (6) 15± 5 (26) 2.0± 1.0 (2)

SR 12 12.7± 1.8 (14) 6.3± 1.5 (6) 2.0± 0.5 (3) 4.4± 0.9 (4)

tN high

TCR 359 359± 19 (361) 287± 22 (274) 39± 7 (55) 32± 6 (32)

WCR 483 483± 22 (615) 100± 24 (95) 340± 40 (475) 44± 12 (42)

TVR 59 79± 18 (79) 64± 15 (61) 6.8± 2.1 (10) 8.3± 1.2 (8)

WVR 74 84± 24 (104) 22± 7 (21) 52± 16 (73) 9.7± 2.1 (9)

SR 5 5.0± 0.9 (5) 2.0± 0.6 (2) 0.87± 0.26 (1) 2.2± 0.4 (2)

tN boost

TCR 117 118± 11 (111) 96± 11 (80) 10.8± 2.2 (20) 11.2± 1.9 (11)

WCR 210 210± 14 (332) 35± 10 (29) 149± 20 (278) 26± 7 (24)

TVR 20 23± 5 (21) 19± 5 (15) 1.9± 0.4 (3) 2.5± 0.6 (2)

WVR 29 35± 7 (51) 7.7± 2.3 (6) 21± 5 (38) 6.3± 1.2 (6)

SR 5 3.5± 0.7 (3) 1.2± 0.4 (0.9) 0.31± 0.14 (0.5) 2.1± 0.4 (2)

bCc diag

TCR 1650 1650± 40 (1689) 1240± 60 (1246) 244± 34 (278) 164± 24 (162)

WCR 2162 2160± 50 (2361) 350± 60 (334) 1670± 90 (1890) 141± 25 (127)

TVR 925 890± 100 (876) 770± 90 (752) 46± 7 (51) 73± 7 (71)

WVR 693 740± 160 (781) 163± 35 (155) 520± 130 (567) 60± 6 (52)

SR 493 489± 21 (501) 158± 34 (145) 250± 27 (276) 82± 17 (74)

bCd high1

TCR 218 220± 15 (228) 171± 17 (172) 22± 5 (29) 28± 5 (27)

WCR 757 758± 28 (1002) 87± 25 (86) 610± 40 (860) 57± 16 (55)

TVR 42 53± 13 (53) 43± 11 (41) 4.5± 1.3 (6) 6.3± 1.2 (6)

WVR 166 148± 35 (191) 23± 8 (23) 111± 29 (153) 14.4± 3.4 (14)

SR 16 11.8± 1.4 (12) 5.6± 1.0 (5) 2.1± 0.6 (3) 4.2± 1.0 (4)

bCd high2

TCR 129 129± 11 (154) 92± 13 (110) 16± 4 (23) 22± 4 (22)

WCR 654 654± 26 (911) 56± 19 (67) 550± 40 (792) 53± 16 (52)

TVR 28 32± 6 (38) 23± 5 (28) 3.6± 0.9 (5) 5.7± 1.3 (6)

WVR 157 135± 29 (185) 16± 6 (19) 106± 25 (152) 13.7± 2.9 (13)

SR 5 4.5± 0.8 (5) 1.8± 0.4 (2) 0.73± 0.32 (1) 2.0± 0.5 (2)

tNbC mix

TCR 177 178± 13 (168) 139± 15 (125) 20± 4 (25) 18.5± 3.5 (18)

WCR 387 387± 20 (446) 80± 21 (71) 281± 31 (349) 27± 7 (25)

TVR 64 77± 19 (70) 63± 16 (54) 7.4± 1.8 (9) 7.4± 1.8 (7)

WVR 118 130± 40 (139) 33± 13 (29) 84± 28 (101) 9.4± 2.0 (8)

SR 10 7.6± 1.0 (7) 3.0± 0.6 (3) 1.32± 0.35 (2) 3.2± 0.7 (3)

Table 12. Results of the all-bins background fit for the cut-and-count analyses. The numbers in

parenthesis are the pre-fit background estimates using the most accurate theoretical cross-sections

available (cf. section 5).
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tN diag Obs.
Fitted (estimated) background

Total tt̄ W+jets Other

1
0
0
<
E

m
is
s

T
<

1
2
5
G

eV

60<mT<90 GeV+ b-veto16471650± 40(1896)550± 130 (619) 990± 150 (1159) 108± 24 (103)

60<mT<90 GeV 34623450± 60(3402)3090± 90(3005) 180± 40 (212) 180± 50 (184)

90<mT<120 GeV 17121720± 40(1693)1540± 50(1487) 96± 23 (115) 84± 27 (89)

120<mT<140 GeV 313 293± 12 (290) 263± 12 (256) 16± 4 (20) 14± 4 (14)

mT> 140 GeV 201 222± 11 (229) 202± 12 (206) 7± 4 (10) 12.8± 3.1 (13)

1
2
5
<
E

m
is
s

T
<

1
5
0
G

eV

60<mT<90 GeV+ b-veto10811081± 33(1284) 390± 80 (392) 620± 90 (817) 71± 15 (67)

60<mT<90 GeV 20182020± 40(1984)1800± 60(1718) 111± 25 (147) 114± 34 (118)

90<mT<120 GeV 768 764± 24 (751) 690± 26 (664) 32± 10 (42) 42± 13 (44)

120<mT<140 GeV 117 130± 8 (134) 117± 8 (118) 6.0± 2.5 (9) 6.7± 1.9 (7)

mT> 140 GeV 163 151± 7 (149) 136± 8 (131) 6.2± 2.6 (8) 9.3± 2.1 (9)

E
m
is
s

T
>

1
5
0

60<mT<90 GeV+ b-veto17421740± 40(2172)540± 110 (527) 1080± 130(1508) 127± 28 (130)

60<mT<90 GeV 25432540± 50(2554)2170± 80(2099) 200± 40 (271) 170± 50 (182)

90<mT<120 GeV 647 651± 24 (683) 565± 25 (574) 41± 9 (59) 45± 13 (49)

120<mT<140 GeV 101 95± 6 (97) 82± 6 (82) 4.5± 1.4 (6) 8.3± 2.0 (9)

mT> 140 GeV 217 223± 12 (234) 192± 13 (195) 8.8± 2.8 (14) 23± 5 (24)

Table 13. Results of the all-bins background fit for the tN diag analysis. The numbers in parenthe-

sis are the pre-fit background estimates using the most accurate theoretical cross-sections available

(cf. section 5).

bCa low Obs.
Fitted (estimated) background

Total tt̄ W+jets Other

TCR 336 338± 18 (409) 192± 35 (250) 74± 21 (87) 72± 18 (72)

WCR 1149 1149± 34 (1333) 62± 17 (78) 940± 50 (1115) 145+34
−29 (140)

VR 74 75± 12 (90) 44± 10 (56) 12.3± 2.1 (14) 19+7
−7 (19)

6 < p`T < 17 GeV 6 4.1± 1.1 (4) 1.6± 0.6 (2) 0.6± 0.4 (0.7) 1.8+0.8
−0.7 (2)

17 < p`T < 28 GeV 6 3.7± 0.9 (4) 1.7± 0.7 (2) 0.76± 0.24 (0.9) 1.2+0.5
−0.4 (1)

28 < p`T < 39 GeV 4 4.0± 0.9 (5) 1.7± 0.6 (2) 0.77± 0.26 (0.9) 1.6+0.6
−0.6 (2)

39 < p`T < 50 GeV 3 2.8± 0.7 (3) 1.2± 0.7 (1) 0.82± 0.34 (0.9) 0.80± 0.29 (0.8)

Table 14. Results of the all-bins background fit for the bCa low analysis. The numbers in parenthe-

sis are the pre-fit background estimates using the most accurate theoretical cross-sections available

(cf. section 5).
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bCa med Obs.
Fitted (estimated) background

Total tt̄ W+jets Other

TCR 136 136± 11 (157) 98± 16 (111) 15± 5 (23) 23+10
−9 (23)

WCR 189 189± 14 (259) 26± 7 (29) 121± 19 (188) 42+11
−11 (42)

VR 29 28± 5 (31) 19± 4 (22) 1.7± 0.5 (3) 6.7+2.4
−2.2 (7)

6 < p`T < 17 GeV 9 9.2± 2.0 (10) 5.3± 1.3 (6) 0.61± 0.21 (0.9) 3.3± 1.5 (3)

17 < p`T < 28GeV 15 10.9± 1.7 (12) 7.1± 1.5 (8) 1.00± 0.32 (1) 2.8+1.1
−1.0 (3)

28 < p`T < 39GeV 6 10.9± 1.7 (12) 7.1± 1.4 (8) 0.87± 0.31 (1) 2.9± 1.0 (3)

39 < p`T < 50 GeV 9 8.2± 1.4 (9) 5.7± 1.3 (6) 0.90± 0.35 (1) 1.6+0.5
−0.5 (2)

Table 15. Results of the all-bins background fit for the bCa med analysis. The numbers in parenthe-

sis are the pre-fit background estimates using the most accurate theoretical cross-sections available

(cf. section 5).

bCb med1 Obs.
Fitted (estimated) background

Total tt̄ W+jets Other

TCR 390 397± 20 (405) 287± 28 (289) 45± 12 (50) 65+11
−10 (65)

WCR 1372413720± 130(14480) 880± 200 (868)11740± 330(12507) 1100+190
−150 (1104)

VR 76 82± 11 (79) 50± 10 (47) 22.0± 3.3 (23) 10± 4 (9)

83.3 < amT2 < 166.7 GeV 111 97± 11 (95) 73± 9 (70) 3.4± 0.7 (4) 21+8
−5 (21)

166.7 < amT2 < 250.0 GeV 42 35± 4 (33) 20± 4 (18) 7.8± 1.2 (8) 6.8+2.3
−1.2 (7)

250.0 < amT2 < 333.3 GeV 2 3.5± 0.8 (4) 1.2± 0.4 (1) 1.5± 0.4 (2) 0.82+0.28
−0.22 (0.8)

333.3 < amT2 < 416.7 GeV 0 0.58± 0.28 (0.6) 0.21+0.22
−0.21 (0.2) 0.31± 0.12 (0.3) 0.064+0.028

−0.028 (0.1)

416.7 < amT2 < 500.0 GeV 0 0.15± 0.10 (0.1) 0.025+0.050
−0.025 (0.0) 0.06± 0.06 (0.1) 0.06± 0.04 (0.1)

Table 16. Results of the all-bins background fit for the bCb med1 analysis. The numbers in

parenthesis are the pre-fit background estimates using the most accurate theoretical cross-sections

available (cf. section 5).

bCb high Obs.
Fitted (estimated) background

Total tt̄ W+jets Other

TCR 1111 1108± 34 (1131) 880± 50 (881) 62± 17 (82) 165+30
−28 (169)

WCR 4089 4090± 60 (4968) 530± 90 (535) 3140± 130 (4010) 420+60
−50 (423)

VR 12 13.9± 3.0 (16) 9.3± 2.7 (10) 2.9± 0.6 (4) 1.7+1.0
−0.5 (2)

83.3 < amT2 < 166.7 GeV 11 12.9± 2.0 (14) 11.4± 1.9 (12) 0.034± 0.028 (0.0) 1.5± 0.6 (2)

166.7 < amT2 < 250.0 GeV 6 5.8± 1.2 (6) 4.0± 1.1 (4) 0.78± 0.26 (1) 1.07± 0.31 (1)

250.0 < amT2 < 333.3 GeV 4 5.1± 0.8 (6) 2.0± 0.6 (2) 1.23± 0.32 (2) 1.9± 0.5 (2)

333.3 < amT2 < 416.7 GeV 1 1.7± 0.6 (2) 0.47± 0.28 (0.6) 0.29± 0.15 (0.4) 0.9+0.4
−0.4 (0.9)

416.7 < amT2 < 500.0 GeV 0 0.49± 0.23 (0.6) 0.08+0.10
−0.08 (0.1) 0.17± 0.08 (0.2) 0.24+0.18

−0.17 (0.2)

Table 17. Results of the all-bins background fit for the bCb high analysis. The numbers in

parenthesis are the pre-fit background estimates using the most accurate theoretical cross-sections

available (cf. section 5).

– 59 –



J
H
E
P
1
1
(
2
0
1
4
)
1
1
8

bCb med2 Obs.
Fitted (estimated) background

Total tt̄ W+jets Other

a
m

T
2
>

8
0

G
eV

60 <mT< 90 GeV+ b-veto 1069 1067± 33 (1405) 103± 34 (101) 890± 50 (1222) 76± 24 (80)

8
0
<
a
m

T
2

<
1
7
5
G

eV

60 <mT< 90 GeV 65 61± 6 (60) 57± 6 (55) 1.1± 0.4 (2) 3.1± 1.1 (4)

90 <mT< 120 GeV 17 16.8± 2.1 (17) 15.8± 2.1 (15) 0.26± 0.29 (0.4) 0.76± 0.30 (0.9)

mT> 120 GeV 6 7.5± 1.1 (8) 6.6± 1.2 (7) 0.11± 0.11 (0.2) 0.71± 0.27 (0.8)

1
7
5
<
a
m

T
2

<
2
5
0
G

eV

60 <mT< 90 GeV 33 33± 4 (37) 20.6± 3.5 (21) 6.1± 1.6 (9) 5.9± 2.0 (7)

90 <mT< 120 GeV 10 10.8± 1.3 (12) 7.7± 1.2 (8) 1.5± 0.8 (2) 1.6± 0.6 (2)

mT> 120 GeV 10 7.0± 1.0 (7) 4.6± 0.9 (4) 0.45± 0.19 (0.7) 1.9± 0.6 (2)

a
m

T
2
>

2
5
0

G
eV

60 <mT< 90 GeV 65 72± 5 (82) 40± 6 (40) 16± 4 (24) 15± 5 (18)

90 <mT< 120 GeV 16 18.2± 2.3 (21) 10.6± 2.3 (11) 3.5± 1.4 (5) 4.1± 1.6 (5)

mT> 120 GeV 9 8.4± 1.3 (10) 3.6± 0.9 (4) 2.2± 0.8 (3) 2.6± 0.8 (3)

Table 18. Results of the all-bins background fit for the bCb med2 analysis. The numbers in

parenthesis are the pre-fit background estimates using the most accurate theoretical cross-sections

available (cf. section 5).

bCd bulk Obs.
Fitted (estimated) background

Total tt̄ W+jets Other

8
0
<
a
m

T
2

<
1
7
5
G

eV

60 <mT< 90 GeV+ b-veto 1345 1340± 40 (1702) 270± 60 (260) 990± 80 (1354) 86± 24 (86)

60 <mT< 90 GeV 2229 2220± 90 (2216) 1920± 90 (1846) 161± 30 (220) 150± 40 (150)

90 <mT< 120 GeV 583 590± 40 (602) 516± 31 (518) 30± 6 (42) 41± 12 (42)

mT> 120 GeV 361 362± 16 (362) 332± 16 (328) 8.8± 2.4 (13) 21± 5 (21)

1
7
5
<
a
m

T
2

<
2
5
0
G

eV

60 <mT< 90 GeV+ b-veto 705 705± 27 (864) 62± 13 (68) 594± 34 (749) 48± 14 (47)

60 <mT< 90 GeV 547 551± 29 (626) 338± 27 (375) 140± 23 (177) 74± 19 (73)

90 <mT< 120 GeV 144 141± 13 (152) 93± 10 (99) 30± 7 (37) 17± 5 (16)

mT> 120 GeV 78 77± 5 (82) 49± 5 (52) 12.4± 3.5 (15) 15.3± 3.0 (15)

a
m

T
2
>

2
5
0
G

eV 60 <mT< 90 GeV+ b-veto 260 260± 16 (344) 17± 5 (21) 222± 19 (302) 21± 7 (20)

60 <mT< 90 GeV 241 239± 13 (285) 117± 19 (136) 75± 14 (102) 47± 12 (47)

90 <mT< 120 GeV 61 65± 5 (78) 32± 6 (38) 20± 4 (27) 13± 4 (13)

mT> 120 GeV 29 26.3± 2.0 (31) 10.5± 2.2 (12) 7.0± 1.5 (10) 8.8± 1.9 (9)

Table 19. Results of the all-bins background fit for the bCd bulk analysis. The numbers in

parenthesis are the pre-fit background estimates using the most accurate theoretical cross-sections

available (cf. section 5).
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3body Obs.
Fitted (estimated) background

Total tt̄ W+jets Other

8
0
<
a
m

T
2

<
9
0
G

eV

60 <mT< 90 GeV+ b-veto 8 9.8± 2.0 (13) 2.6± 0.8 (3) 6.3± 2.0 (9) 0.8± 0.5 (0.7)

60 <mT< 90 GeV 3 5.9± 0.8 (6) 5.1± 0.8 (5) 0.52± 0.31 (0.2) 0.26± 0.22 (0.4)

90 <mT< 120 GeV 12 14.6± 1.7 (14) 12.0± 1.7 (11) 1.6± 0.7 (2) 1.0± 0.6 (1)

mT> 120 GeV 8 7.3± 1.3 (7) 6.5± 1.3 (7) 0.13± 0.20 (0.1) 0.69± 0.18 (0.5)

9
0
<
a
m

T
2

<
1
0
0
G

eV

60 <mT< 90 GeV+ b-veto 12 16.8± 2.9 (21) 4.1± 1.1 (4) 11.8± 2.8 (16) 1.0± 0.6 (0.8)

60 <mT< 90 GeV 14 16.1± 1.7 (16) 13.1± 1.6 (13) 1.1± 0.5 (2) 1.9± 0.6 (2)

90 <mT< 120 GeV 29 30.2± 2.3 (32) 24.7± 2.2 (26) 3.9± 1.3 (3) 1.6± 1.2 (3)

mT> 120 GeV 22 26.0± 2.1 (26) 22.9± 2.3 (23) 1.1± 0.6 (1) 2.0± 0.7 (2)

1
0
0
<
a
m

T
2

<
1
2
0
G

eV

60 <mT< 90 GeV+ b-veto 36 35± 4 (34) 7.0± 1.9 (7) 26± 4 (26) 2.1± 0.7 (2)

60 <mT< 90 GeV 29 32.4± 2.3 (32) 27.9± 2.2 (28) 3.0± 1.2 (3) 1.5± 0.9 (1)

90 <mT< 120 GeV 57 59± 4 (61) 51± 4 (51) 3.7± 2.0 (5) 3.9± 2.1 (5)

mT> 120 GeV 74 70± 5 (66) 62± 6 (58) 4.4± 1.4 (4) 3.9± 1.2 (4)

a
m

T
2
>

1
2
0

G
eV 60 <mT< 90 GeV+ b-veto 114 112± 10 (115) 14.4± 3.3 (13) 90± 11 (95) 8.0± 1.9 (5)

60 <mT< 90 GeV 108 88± 5 (82) 66± 5 (62) 16± 4 (15) 6.2± 1.7 (5)

90 <mT< 120 GeV 160 162± 10 (167) 131± 10 (131) 20± 5 (22) 11± 4 (14)

mT> 120 GeV 281 281± 12 (277) 216± 15 (211) 33± 8 (32) 32± 7 (33)

Table 20. Results of the all-bins background fit for the 3body analysis. The numbers in parenthesis

are the pre-fit background estimates using the most accurate theoretical cross-sections available (cf.

section 5).
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S. König82, T. Kono65,r, R. Konoplich109,s, N. Konstantinidis77, R. Kopeliansky153,
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– 83 –



J
H
E
P
1
1
(
2
0
1
4
)
1
1
8

Roma, Italy
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and Departamento de Ingenieŕıa Electrónica and Instituto de Microelectrónica de Barcelona

(IMB-CNM), University of Valencia and CSIC, Valencia, Spain

– 84 –



J
H
E
P
1
1
(
2
0
1
4
)
1
1
8

169 Department of Physics, University of British Columbia, Vancouver BC, Canada
170 Department of Physics and Astronomy, University of Victoria, Victoria BC, Canada
171 Department of Physics, University of Warwick, Coventry, United Kingdom
172 Waseda University, Tokyo, Japan
173 Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel
174 Department of Physics, University of Wisconsin, Madison WI, United States of America
175 Fakultät für Physik und Astronomie, Julius-Maximilians-Universität, Würzburg, Germany
176 Fachbereich C Physik, Bergische Universität Wuppertal, Wuppertal, Germany
177 Department of Physics, Yale University, New Haven CT, United States of America
178 Yerevan Physics Institute, Yerevan, Armenia
179 Centre de Calcul de l’Institut National de Physique Nucléaire et de Physique des Particules
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v Also at LAL, Université Paris-Sud and CNRS/IN2P3, Orsay, France
w Also at Academia Sinica Grid Computing, Institute of Physics, Academia Sinica, Taipei, Taiwan
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