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Abstract

Dynamics of Lipid Transport between Membranes: Insights from Simulation and Theory

by

Julia R. Rogers

Doctor of Philosophy in Chemistry

University of California, Berkeley

Professor Phillip L. Geissler, Chair

Cell homeostasis requires spatiotemporal regulation of heterogeneous membrane composi-
tions. One key way that proper lipid distributions are maintained is through non-vesicular
transport of individual lipids between membranes. Despite its biological importance, non-
vesicular transport remains poorly understood at the molecular level. While lipid transfer
proteins may be largely responsible for the selective transport of individual lipids in vivo,
lipid transfer can also occur passively. Here, we expand our biophysical knowledge of non-
vesicular lipid transport mechanisms by investigating the dynamics of passive lipid transport
and then using those insights to examine how lipid transfer proteins catalyze lipid transport.

A detailed understanding of passive lipid transport has remained elusive due in part to in-
consistencies between experimental findings and previous molecular simulations. We resolve
these discrepancies by discovering the reaction coordinate for passive lipid transport, which
enables a complete biophysical characterization of the rate-limiting step of lipid transport.
Through analysis of unbiased all-atom and coarse-grained molecular dynamics simulations,
we find that the reaction coordinate measures the formation and breakage of hydrophobic
contacts between the membrane and transferring lipid. Consistent with experiments, free
energy profiles along the reaction coordinate exhibit both a rate-limiting activation barrier
for lipid desorption from a membrane and a significant barrier for lipid insertion, which
was entirely missed in previous computational studies. Using our newly identified reaction
coordinate, we formulate an expression for the rate of passive lipid transport to enable a
quantitative comparison with experiments. Most importantly, we find that the breakage of
hydrophobic lipid–membrane contacts is rate limiting for passive lipid transport.

Knowledge of the reaction coordinate allows us to systematically investigate how the activa-
tion free energy of passive lipid transport depends on membrane physicochemical properties.
Through all-atom molecular dynamics simulations of 11 chemically distinct glycerophospho-
lipids, we determine how lipid acyl chain length, unsaturation, and headgroup influence the
free energy barriers for lipid desorption from and insertion into liquid-crystalline and gel
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phase membranes. Consistent with previous experimental measurements, we find that lipids
with longer, saturated acyl chains have increased activation free energies compared to lipids
with shorter, unsaturated chains. Lipids with different headgroups exhibit a range of activa-
tion free energies; however, no clear trend based solely on chemical structure can be identi-
fied, mirroring difficulties in the interpretation of previous experimental results. Compared
to liquid-crystalline phase membranes, gel phase membranes exhibit substantially increased
free energy barriers. Overall, we find that the activation free energy depends on a lipid’s local
hydrophobic environment in a membrane and that the free energy barrier for lipid insertion
depends on a membrane’s interfacial hydrophobicity. Both of these properties can be altered
through local changes in membrane composition and phase, suggesting that variations in cell
membrane hydrophobicity may be exploited to direct non-vesicular lipid traffic.

Our discovery that the rate of passive lipid exchange is limited by the disruption of a lipid’s
local hydrophobic environment suggests that lipid transfer proteins may catalyze lipid trans-
port by lowering the free energy barrier for hydrophobic lipid–membrane contact breakage.
To test this hypothesis, we investigate how ceramide-1-phosphate transfer protein (CPTP)
catalyzes the transport of ceramide-1-phosphate (C1P), a bioactive sphingolipid, between
membranes. To resolve how CPTP extracts and inserts C1P into a membrane, we utilize a
multiscale simulation approach that builds upon our findings about passive lipid exchange.
We find that both the apo and C1P-bound forms of CPTP bind a membrane poised to ex-
tract and insert C1P, confirming predictions based on crystal structures. Membrane binding
promotes conformational changes that widen the entrance to CPTP’s hydrophobic cavity,
further facilitating the exchange of C1P between CPTP and a membrane. Due to its stronger
electrostatic attraction to the membrane, the apo form binds deeper into the membrane, sub-
stantially disrupting a lipid’s local hydrophobic environment in the membrane below. As a
result, CPTP lowers the free energy barrier for the breakage of hydrophobic C1P–membrane
contacts. After extracting C1P, CPTP likely unbinds a membrane through an electrostatic
switching mechanism similar to that used by other lipid transfer proteins. Thus, we provide
novel insights into the molecular mechanisms used by lipid transfer proteins to efficiently
traffic lipids between membranes.

Many lipid transfer proteins, including CPTP, function in local thermodynamic equilibrium.
Yet, others require an expenditure of energy to drive lipid transport, thus functioning out
of equilibrium. Efforts to characterize such lipid transfer proteins are currently limited
by deficiencies in nonequilibrium simulation methods. To address some of the challenges
in using simulations to calculate generalized free energies, or large deviation functions, of
nonequilibrium systems, we develop a new transition path sampling method. Specifically, we
devise a novel set of path sampling moves based on Brownian bridges, which are stochastic
trajectories constrained to start and end at specified configurations. We use our method
to efficiently calculate large deviation functions of asymmetric simple exclusion processes, a
paradigmatic nonequilibrium transport model that could foreseeably be used to model lipid
transfer proteins with tubular structures.
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The studies presented in this thesis together significantly advance our biophysical knowledge
of lipid transport. Furthermore, the approaches used and methods developed provide a
means to investigate the function of numerous lipid transfer proteins. By understanding how
individual lipid transfer proteins function at the molecular level, we can begin to understand
how they collectively function to spatiotemporally regulate cell membrane compositions.
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For my grandparents.
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“So in this sense, all places are the same place. And the only time you ever notice any
difference, is in the moment of transition."

— Alan Watts
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Chapter 1

An Introduction to Membrane
Biophysics and Lipid Transport

Lipids: Chemically Diverse Amphiphiles

Lipids are one of the essential building blocks of all cells. As a class of biomolecules, all
lipids, regardless of their specific chemical structure, share common physical features. Lipids
have elongated hydrophobic tails attached to a hydrophilic headgroup. The hydrophilic
headgroup favorably interacts with water, for example by incorporating itself into water’s
hydrogen bond network, whereas the hydrophobic tails prefer to be shielded from water.
Lipids are amphiphiles since they are composed of groups that have conflicting relationships
with water. Due to their amphiphilicity, lipids readily assemble into bilayers so that the
hydrophobic tails are shielded from solvent by the polar headgroups (Figure 1.1A).

Over a thousand chemically distinct lipid species make up cellular membranes.1,2 The
main classes of eukaryotic lipids are glycerophospholipids (GPLs),3 sphingolipids,4 and sterols5
(Figure 1.1B). Such chemical diversity arises from mixing and matching different headgroups
and tails. Indeed, lipids have modular structures: GPLs are composed of a phosphate func-
tionalized headgroup, glycerol backbone, and two acyl chains derived from fatty acids; sph-
ingolipids are composed of a headgroup, sphingoid base (which is both the backbone and
one acyl chain), and one N-acyl chain derived from a fatty acid; and sterols are composed
of a hydroxyl group, fused ring backbone, and hydrocarbon chain. Combinations of chem-
ically distinct building blocks create a large diversity of lipids. Chemical variations in the
acyl chain(s) and headgroup contribute to the diversity of both GPLs and sphingolipids.
Fatty acid chains, such as those shown in Figure 1.1C, differ in length, double bond number,
double bond position, and hydroxylation. Headgroups, such as those shown in Figure 1.1D,
vary in net charge, polarity, and size. Among GPLs, the glycerol backbone and sn1 acyl
chain are linked through either an ester, ether, or vinyl-ether linkage. Among sphingolipids,
the sphingosine base can be hydroxylated to form 4-hydroxy-sphingosine or unsaturated to
form sphinganine. Among sterols, the fused rings vary in the number of methyl substituents
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Figure 1.1: Cell membranes assemble from a diversity of lipids. (A) Due to their am-
phiphilic structure, lipids form bilayers. The hydrophobic tails create a hydrophobic core sand-
wiched between polar surfaces of headgroups. (B) Glycerophospholipids (GPLs), sphingolipids, and
sterols are the main classes of cellular lipids. Each lipid has a modular structure composed of
building blocks, which are labeled in boxes of different colors. Chemical variations in those building
(Continued on next page)
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Figure 1.1: (Continued from previous page)
blocks create a large diversity of lipids. GPLs have two acyl chains attached to the sn1 and sn2
positions of a glycerol backbone. A headgroup, which is composed of a phosphate and variable
functional group, is attached to the sn3 position of the backbone. GPLs are named according to
both their tails and headgroup. Sphingolipids have an N-acyl chain attached to a sphingoid base,
which is simultaneously the backbone and a second chain. A headgroup, which may not include a
phosphate, is attached to the sphingoid base. Sphingolipids are named according to their headgroup.
Sterols have a hydrocarbon chain attached to fused rings, which are functionalized with a hydroxyl
group at the other end. The chemical structure of cholesterol, the major mammalian sterol, is
shown. Variations in acyl chain, backbone (or sphingoid base), and headgroup chemistry result in
a diversity of GPLs and sphingolipids. For example, (C) acyl chains, which are derived from fatty
acids, vary in length, degree of unsaturation, and position of any double bonds, and (D) headgroups
vary in chemical structure.

and number of double bonds, and the hydrocarbon chain varies in length, number of double
bonds, and location of methyl branching.

Such a large chemical diversity allows lipids to serve multiple cellular functions. First,
lipid membranes act as fluid boundaries that delineate a cell from its surrounding environ-
ment and that organize and compartmentalize intracellular functions (Figure 1.2A).2 Such
compartmentalization enhances biochemical efficiency by colocalizing interrelated chemical
reactions within the same cellular volume and by creating microenvironments tailored to each
organelle’s function. Because lipids help establish particular microenvironments, organelles’
membrane compositions vary depending on their function. For example, the membrane of
the endoplasmic reticulum (ER) contains a larger fraction of phosphatidylcholine (PC) lipids
(Figure 1.2A, red box) compared to the plasma membrane (PM), which contains a signifi-
cant fraction of anionic phosphatidylinositol (PI) and phosphatidylserine (PS) lipids (Figure
1.2A, blue box).2 Throughout the cell, membranes also serve as 2D planar environments
for proteins, and, thus, they can directly modulate the activities of integral and peripheral
membrane proteins6–8 (Figure 1.2A, gray box). Due to their inherently 2D structures, mem-
branes can also enhance the assembly of membrane-bound protein complexes that otherwise
occurs slowly in 3D.9 Due to their fluidity, membranes, and hence cellular boundaries, are
malleable and dynamic. This enables many essential cellular processes, such as cell division,
biological reproduction, and intracellular membrane trafficking, to occur through membrane
budding, tubulation, fission, and fusion.

Second, lipids serve as chemical energy sources. Due to their reduced and anhydrous
from, triacylglycerols (TAGs) along with cholesterol esters (CEs) are predominantly used for
energy storage within lipid droplets (Figure 1.2B). Lipid droplets function as both caloric
reserves and stocks of precursors for membrane biogenesis. Thus, lipid droplets and their
lipid contents are essential for both energy and membrane homeostasis.10

Third, lipids act as signaling molecules.11 Phosphoinositide GPLs (PIPs)12–14 and sph-



CHAPTER 1. AN INTRODUCTION TO MEMBRANE BIOPHYSICS AND LIPID
TRANSPORT 4

Nucleus

Lysosome

Mitochondrion

Lipid
droplet

Golgi

Endosome

ER
ER

PM

A Structure and organization

Endoplasmic reticulum (ER)

Plasma membrane (PM)

PC PE

PI PIPPS PA

Chol

Cer SM

C

C
B

Organelle membranes

Akt

Cell growth

PIP3

PM

InflammationPLA2

C1P

trans-Golgi

2D membrane scaffold for proteins

PM
GPCRhERG

TAG CE

PLIN

DGAT2 LD

B Energy storage C Signaling molecules

Figure 1.2: Lipids serve multiple cellular functions. (A) Lipid membranes act as physical
boundaries between cells and their environment and compartmentalize cellular functions into or-
ganelles. Organelles’ membrane compositions are fine-tuned to their function, and a model of two
(Continued on next page)
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Figure 1.2: (Continued from previous page)
lipid territories can describe the starkest variations observed. The membrane of the endoplasmic
reticulum (ER) epitomizes a territory characterized by loose lipid packing and neutral surfaces.
The plasma membranes (PM) epitomizes a territory characterized by tight lipid packing and an-
ionic surfaces. Illustrated are some of the common lipids found in each membrane: PC GPLs, PE
GPLs, ceramide (CER), sphingomyelin (SM), PS GPLs, PA GPLs, PI GPLs, phosphatidylinositol
phosphate GPLs (PIP), and cholesterol (Chol). Because membranes also serve as 2D platforms
for peripheral and transmembrane proteins, lipids modulate the activity, assembly, and function
of proteins, such as the human ether-a-go-go-related gene encoded K+ channel (hERG) and G
protein-coupled receptors (GPCRs). (B) Lipids are energy sources. Significant amounts of energy
are stored in lipid droplets (LDs), which have a neutral core of mostly triacylglycerides (TAGs)
and cholesteryl esters (CEs) surrounded by a GPL monolayer decorated by proteins such as per-
ilipins (PLINs) and diacylglycerol acyltranferase-2 (DGAT2). (C) Lipids are signaling molecules.
For example, phosphatidylinositol-(3,4,5)-trisphosphate (PIP3) in the PM acts a secondary mes-
senger of extracellular stimuli by activating and recruiting Akt (also called protein kinase B) to
the membrane, which once activated mediates downstream pathways responsible for cell growth,
proliferation, and migration. Another example is ceramide-1-phosphate (C1P). C1P activates and
recruits cytosolic phospholipase A2 (cPLA2) to the trans-Golgi, where it produces arachidonic acid,
a pro-inflammatory molecule.

ingolipids15–17 are commonly involved in signal transduction. Lipids can be both primary
and secondary messengers in signalling pathways.18 For example, the class of lipids known
as eicosanoids are primary messengers responsible for stimulating immune responses to in-
fections and injuries.19 Another example, phosphatidylinositol-(3,4,5)-trisphosphate (PIP3)
acts as a secondary messenger of growth factor stimulation. Bioactive lipids can also re-
cruit cytosolic proteins to a membrane and, as a result, congregate together proteins that
are responsible for further downstream signal propagation or bring enzymes that produce
signaling molecules into proximity with their substrates. In fact, PIP3 recruits Akt (also
known as protein kinase B) to the plasma membrane and causes conformational changes
necessary to activate Akt and further propagate downstream signals (Figure 1.2C, magenta
box).20 Another example which will be featured in Chapter 4, ceramide-1-phosphate (C1P),
a bioactive sphingolipid, recruits phospholipase A2 (PLA2) to the Golgi membrane (Figure
1.2C, green box). When bound to the trans-Golgi, PLA2 produces precursors of eicosanoids,
ultimately activating inflammatory pathways.21,22

Thus, lipids as a class perform multiple essential cellular functions due to the fact that
subtle chemical differences endow individual lipids with unique properties. Indeed, a number
of genetic diseases are linked to mutations in the enzymes responsible for lipid metabolism,
remodelling, and modification.1 For example, mutations in the enzymes that catalyze the
first steps of sphingolipid synthesis (serine palmitoyltransferase 1 and 2) that make them less
selective for their main substrate lead to the production of 1-deoxysphingolipids. Although 1-
deoxysphingolipids only differ from sphingolipids by a single hydroxyl group, they are toxic,
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and buildup causes hereditary sensory and autonomic neuropathy.23,24 Altered lipidomes
have been found in a number of other diseases, including cancers,25,26 diabetes,27 cystic
fibrosis,28,29 and neurological ones.30–32 In many cases, though, neither causality nor the
mechanism by which aberrant lipid chemistry results in disease has been determined.

Membrane Physicochemical Properties Are Determined
by their Lipid Composition

Cell membrane compositions exhibit further compositional diversity. Membrane composi-
tions vary between species,33,34 between tissues and cells within an organism,35–37 between
organelles within a cell2,38 (see for example Figure 1.2A, red and blue boxes), and even be-
tween leaflets39 and lateral domains of a single membrane.40 Membrane compositions also
vary in time, and such dynamic changes can help drive cell state transitions.41,42

The collective behavior of a membrane’s constituent lipids determines its physicochemical
properties. So, membranes with different compositions exhibit different properties. Because
mesoscale membrane properties result from molecular interactions between many lipids, in
vitro experiments using model membranes and molecular simulations have both greatly ad-
vanced the field’s understanding of how lipid chemistry influences a membrane’s proper-
ties.40,43–46 While such studies lack the full complexity of cellular membranes, they form a
biophysical foundation for understanding how the properties of more complex membranes
arise. A subset of membrane properties with known cellular relevance (most of which are
also highly relevant to Chapter 3) are discussed in the following paragraphs and illustrated
in Figure 1.3.

Membrane surface electrostatics are determined by the lipid headgroups (Figure 1.3A).
Membranes with a significant fraction of anionic lipids, such as PS, phosphatidic acid (PA),
PIs, and PIPs, have negatively charged surfaces. In contrast, membranes with predom-
inantly zwitterionic GPLs, such as PC and phosphatidylethanolamine (PE), and neutral
sphingolipids, such as ceramide (Cer), have neutral surfaces. Membrane electrostatics vary
along the secretory pathway, which is responsible for trafficking material from the ER to
its final destination through the Golgi. ER and cis-Golgi membranes are poorly charged
whereas the trans-Golgi and plasma membranes have a significant negative charge.47 Be-
cause many peripheral membrane proteins bind to membranes through both specific and
nonspecific electrostatic interactions, variations in cell membrane electrostatics help ensure
their precise cellular localization.48–50

The thickness of the hydrophobic interior of a membrane is dependent on not only the
length of the lipid tails but also how well lipids pack together (Figure 1.3B). Repulsion be-
tween lipid headgroups and steric hinderance among tails with kinked, unsaturated bonds
can each cause looser lipid packing. Lipids with long, saturated tails, such as derived from
arachidic and lignoceric acids (which have 20 and 24 carbons, respectively) assemble into
thicker membranes compared to lipids with shorter tails, such as derived from lauric and
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Figure 1.3: Membrane physicochemical properties are determined by their lipid com-
position. Examples of membrane physicochemical properties that vary between cellular membranes
and influence biological processes are illustrated. Chemical features of lipids that are characteris-
tic of a particular property are noted along with specific examples of such lipids. Because each
property is determined by the collective behavior of the membrane’s lipids, combinations of lipids
not noted can also result in the same property. Many properties are interrelated and not mutually
exclusive. (A) Membrane electrostatics are largely determined by lipid headgroup. (B) Membrane
hydrophobic thickness can be increased by increasing lipid acyl chain length and also tightening
lipid packing and increasing membrane order. (C) Loose lipid packing can create surface regions
where the hydrophobic core is exposed to solvent, which are termed packing defects and indicated
in blue. Lipids with unsaturated tails, membranes with a fraction of lipids with small headgroups,
or curved membranes exhibit increased packing defects. (D) Membranes composed of lipids with
saturated tails and cholesterol are ordered and commonly found in the liquid-ordered (Lo) phase if
sterol is present or the gel (Lβ) phase. Membranes composed of lipids with unsaturated tails are
commonly found in liquid-disordered (Ld) or liquid-crystalline (Lα) phases. (E) Membrane leaflets
with negative, zero, and positive curvature are preferentially formed by conical, cylindrical, and
inverted-conical lipids, respectively.
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myristic acid (which have 12 and 14 carbons, respectively) and lipids with unsaturated tails.
Membrane thickness generally increases along the secretory pathway. Mirroring changes
in organelles’ membrane thickness, the length of transmembrane domains also typically in-
creases from the ER to the plasma membrane.51,52 By matching the length of the transmem-
brane domain to the membrane’s thickness, no hydrophobic portions of the protein or of the
membrane are exposed to solvent. Reducing such hydrophobic mismatch53,54 can provide a
driving force for proper protein localization between organelles55–57 and lateral membrane
domains58 and also for protein clustering within a membrane.59

Due to imperfections in the geometrical arrangement of lipids within a membrane, packing
defects arise (Figure 1.3C). Such defects expose portions of the membrane’s hydrophobic
core to solvent. Packing defects are more prevalent in membranes that contain high levels
of unsaturated lipids,60,61 curved membranes,61 and membranes that include conical lipids,
which have small headgroups.62 In contrast, packing defects are sparse in membranes that
contain high levels of saturated lipids and cholesterol.60,61 Along the secretory pathway,
the size and prevalence of packing defects decreases. Tight lipid packing and a minimal
occurrence of defects decreases the plasma membrane’s permeability and improves its barrier
function. Loose lipid packing and an increased occurrence of defects may be advantageous
for the ER’s biosynthetic function.47 Indeed, accumulation of saturated lipids or cholesterol,
which reduce the occurrence of packing defects, triggers ER stress. Such stress can be relieved
by increasing levels of saturated lipids.63 Additionally, packing defect size and shape may
help guide peripheral protein binding and cellular localization.64,65

Membranes are naturally fluid structures since lipids can diffuse within the plane of the
membrane. The molecular structure of the membrane influences how quickly lipids dif-
fuse: Highly ordered membranes exhibit low fluidity whereas disordered membranes exhibit
high fluidity. Highly ordered membranes are typically composed of unsaturated lipids and
cholesterol, which pack tightly together (Figure 1.3D). Disordered membranes are typically
composed of unsaturated lipids, which loosely pack together. Even single component mem-
branes can undergo an order-to-disorder transition from a gel phase to a liquid-cyrstalline
phase when heated above their melting temperature.66,67 Model membranes composed of a
saturated lipid, unsaturated lipid, and cholesterol can separate into coexisting liquid-ordered
and liquid-disordered domains.68 Such local phase separation, in combination with specific
lipid–lipid and lipid–protein interactions, may also contribute to the creation of lateral het-
erogeneities in cellular membranes, referred to as lipid rafts.40,69,70 Lipid rafts may function
to concentrate specific proteins together and, thus, regulate their activity.71

In addition to forming flat bilayers, lipids can form highly curved structures depending
on the relative size of the headgroup and tails (Figure 1.3E). Cylindrical lipids, whose head-
groups are roughly equal in width to their tails, such as PC and PS, yield membranes with
zero spontaneous curvature. Conical lipids, whose headgroups are smaller in width than their
tails, such as PE and PA, yield concave membranes with negative spontaneous curvature.
Inverted-conical lipids, whose headgroups are larger in width than their tails, such as PIPs
and single-tailed lyso-lipids, yield convex membranes with positive spontaneous curvature.
The ability to form highly curved structures enables membrane to bud, tubulate, fuse, and
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undergo fission.72,73 Many cellular membranes, and especially those significantly involved in
membrane trafficking, exhibit regions of high curvature, such as found among ER tubules
and Golgi vesicles.74

Additional membrane phyiscochemical properties, along with those described above, have
been found to regulate cellular function. These include properties such as lateral membrane
pressure, membrane compressibility, and membrane stiffness.75–77 However, as can be seen
from the presented examples, many properties are interrelated, making a comprehensive list
unnecessary to grasp the biological importance of maintaining proper membrane properties.

Cell Membrane Compositions are Spatiotemporally
Regulated

To ensure that membrane physicochemical properties are within the ranges compatible with
cellular physiology, membrane compositions are under homeostatic control.75–77 Membranes
adapt to perturbations, such as environmental changes, by altering their lipid compositions.
For example, when ambient temperatures drop, tightly packing unsaturated lipids are re-
placed with loosely packing saturated ones in the membranes of prokaryotes and ectothermal
animals to maintain membrane viscosity.78,79 Even mammals exhibit such a ‘homeoviscous
adaptation’ in response to dietary changes in saturated lipid content.80 Because each or-
ganelle also relies on specific membrane physicochemical properties to function, membrane
compositions are spatiotemporally regulated within a cell.

Membrane homeostasis relies on sense-and-respond systems. A protein senses changes in
membrane properties and stimulates an effector to respond accordingly by altering lipidomes.75,76
Because only a few sensors have been elucidated, their molecular mechanisms are largely un-
characterized. During a homeostatic response, lipidomes may be altered through changes
in lipid metabolism, such as accomplished through transcriptional control of biosynthetic
enzymes,81,82 and also through redistribution of lipids via transport pathways.83–85 The bio-
physical mechanisms of lipid transport are the focus of this thesis.

Lipids are transported between cellular membranes through both vesicular and non-
vesicular mechanisms. Examples of both types of transport pathways are illustrated in
Figure 1.4A. Vesicular transport is the predominant way that proteins and other molecules
are transported along the secretory pathway and also between cells. Because lipids form
vesicular transport vehicles, large amounts of lipids are non-specifically transported along
with their cargoes.77,86 Organelles that lack secretory machinery, such as mitochondria and
peroxisomes, rely on non-vesicular transport to exchange lipids. Furthermore, non-vesicular
transport enables rapid and specific transfer of individual lipids between all organelles.85,87,88
Often, non-vesicular transport occurs at membrane contact sites, where organelle membranes
are separated by a small (< 30 nm) cytosolic gap.89–91 By reducing the distance that the
lipid must travel, it can be transported faster, decreasing the time it takes to remodel
lipidomes in response to environmental changes, acute stresses, metabolic challenges, and
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Figure 1.4: (Continued from previous page)
transport are indicated: ceramide transfer protein (CERT), ceramide-1-phosphate transfer protein
(CPTP), GRAM domain-containing protein 1A (GRAMD1A), LTP anchored at membrane contact
sites (Lam), oxysterol binding protein (OSBP)-related protein (ORP), OSBP homologue (Osh),
phosphatidylinositol transfer protein (PIPT), steroidogenic acute regulatory protein (StAR) domain
containing protein (STARD), complex of ubiquitin–proteasome system 1 (Ups1) and mitochondrial
distribution and morphology 35 (Mdm35). (B) Illustrations of non-vesicular transport mechanisms.
During passive transport, a lipid traverses the cytosol alone as opposed to being escorted by a LTP.
Cytosolic LTPs, such as Osh6/7, shuttle lipids between membranes. LTPs with membrane tethering
domains and motifs, such as CERT with a pleckstrin homology (PH) domain that binds PIPs and
with a two phenylalanines in an acidic tract (FFAT) motif that interacts with the integral membrane
protein VAMP-associated protein (VAP), function like cable cars. LTPs that span the distance
between two membranes, such as the lipopolysaccharide transport apparatus (Lpt), function like
bridges.

cellular differentiation.
The simplest possible mechanism for non-vesicular transport is characterized by passive

diffusion of a lipid between membranes (Figure 1.4B, leftmost mechanism).85 Such a passive
mechanism, involving lipid desorption from a donor membrane, diffusion through solvent,
and insertion into an acceptor membrane, has been found to occur in a number of in vitro
experiments.92–103 However, due to the larger free energy barrier for lipid desorption, passive
lipid transport occurs over hours to days, far too slowly to be the main in vivo mechanism.
Nevertheless, a complete biophysical characterization of passive lipid exchange, as given in
Chapters 2 and 3, provides a foundation to understand more complex mechanisms.

Within a cell, lipid transfer proteins (LTPs) may act as catalysts of non-vesicular lipid
transport by lowering the free energy barrier for lipid desorption.85,87,88,91,104,105 Examples
of known LTPs and their transfer pathways are indicated in Figure 1.4A. While LTPs can
vary in structure and utilize different transport mechanisms, all encase a lipid within their
hydrophobic interiors so that the lipid’s tails are shield from the cytosol during transport. A
comprehensive understanding of how LTPs catalyze the transport of specific lipids between
target cellular membranes, often performing the energy-intensive process of transporting
lipids up concentration gradients, requires further investigation.

In vitro and computational studies have begun to elucidate some of the mechanisms used
by LTPs. While some LTPs show specificity for particular lipid species, such as ceramide
transfer protein (CERT), which transports ceramides with acyl chains of 14−20 carbons,106
others are nonspecific, such as sterol carrier protein 2 (SCP2), which transports diacyl GLPs,
glycolipids, and cholesterol.107,108 LTPs can act like cytosolic lipid shuttles (Figure 1.4B,
mechanism second from the left). Such LTPs may recognize the proper donor and acceptor
membranes based on their physicochemical properties.109,110 A detailed molecular mechanism
of a shuttle-like LTP, ceramide-1-phosphate transfer protein (CPTP), is described in Chapter
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4. LTPs equipped with membrane tethering domains or motifs can act like lipid cable cars
(Figure 1.4B, mechanism second from the right).85,87,111,112 Both shuttle-like and cable car-
like LTPs can undergo conformational changes upon membrane binding, triggering the next
step in the lipid transport cycle.113–116 In contrast to shuttle-like and cable car-like LTPs,
which have a single opening to a lipid-sized cavity, bridge-like LTPs have an extended opening
that runs along their length, creating a path between membranes. Lipids can slide along
such a bridge, exposing only their hydrophilic heads to cytosol during their journey between
membranes (Figure 1.4B, rightmost mechanism).87,117,118

While LTPs consistently transfer lipids between liposomes under laboratory conditions,
their physiological roles may be more diverse. For example, they may sense specific lipids,
present lipids to other proteins, or facilitate enzymatic remodeling of lipids.85,87 Thus, some
LTPs may act as both the sensor and effector in homeostatic sense-and-response systems.

Approaches to Model Lipid Dynamics

Non-vesicular transport of individual lipids is inherently a molecular scale process, but it
occurs between membranes, which are mesoscale objects. Such a coupling of disparate
scales endows membranes with many unique physicochemical properties that are essential to
biological function. However, the need to access a range of length and timescales also poses
challenges for modeling lipid transport.119,120

One approach to overcome this issue involves using models with varied resolutions to
investigate different aspects of lipid transport. The most detailed model describes the system
quantum mechanically and probes angstrom lengthscales and femtosecond to picosecond
timescales; however, this level of detail is generally unnecessary to model lipid transport, a
classical phenomena whose accurate representation does not require an explicit treatment of
electrons. Furthermore, quantum mechanical calculations of cellular membranes remain too
computationally expensive to perform.120

Classical force fields, which describe intra- and intermolecular interactions through ap-
proximate functional forms parameterized to reproduce quantum mechanical calculations
or experimental data, form the basis of the most detailed models commonly used to study
lipid membranes.46,119,120 The highest resolution force fields explicitly describe all atoms in
a system and are referred to as all-atom models. At a slightly lower resolution, united-atom
force fields combine some atoms, such as non-polar hydrogens, into a single site and ex-
plicitly describe all other atoms. While united-atom models are somewhat computationally
less expensive to simulate than all-atom models, improvements in hardware and software
over the last decade have made all-atom simulations commonplace. All-atom simulations
of thousands of lipids spanning lengthscales of 10s of nanometers and extending for multi-
ple microseconds are indeed possible. As a result, all-atom simulations have been used to
gain insights into numerous biological processes, including vesicle fusion,121–123 membrane
pore formation by antimicrobial and cell-penetrating peptides,124,125 binding of peripheral
proteins to membranes,64 and modulation of transmembrane protein activity by lipids.126,127
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Coarse-grained models group together multiple related atoms into a single bead. Thus,
they trade atomistic resolution for the ability to model processes that occur over 100s of
nanometers and milliseconds. The amount of detail captured by coarse-grained models varies
widely. For example, the standard MARTINI model utilizes roughly 8−14 beads to represent
a lipid and a single bead to represent a water cluster128 whereas the model of Cooke and
Deserno uses 3 beads to represent a lipid and an implicit description of solvent.129 Different
approaches have been used to develop coarse-grained models, with some being developed to
primarily reproduce detailed structural data from experiments or all-atom simulations and
others to primarily reproduce macroscopic experimental observables.46,119,120 Coarse-grained
models have enabled simulations of biological processes otherwise too expensive to simulate
at all-atom resolution. For example, coarse-grained simulations have been used to monitor
lipid-mediated protein assembly and sorting between membrane domains and to probe how
multiple components collectively remodel membranes.126,127,130 While coarse-grained models
of entire organelles can be built,131,132 it is still computationally intractable to simulate their
dynamics.

To reach even larger scales, including those probed with cell microscopy, even lower
resolution models that do not account for chemical differences between lipid species or even
explicitly model the individual lipids in a membranbe have been developed. Such models
include supra-coarse-grained ones, dissipative particle dynamics models, lattice models, and
continuum models.46,119,120 Some of the largest scales are accessible with continuum models
that represent a membrane mathematically based on its physical properties and otherwise
ignore its chemical details.133 For this reason, continuum models based on the elasticity
theory developed by Helfrich and Canham in the 1970s continue to inform approaches used
to model membranes at the micrometer scale.132

Models of different resolutions can be combined in multiscale approaches to capitalize
on the benefits of each.46,119,120 Consecutive multiscale schemes alternate between all-atom
and coarse-grained simulations, mapping between the two models at every exchange. Long
trajectories can be obtained with a coarse-grained representation to capture slow steps of a
processes. By then switching to an atomistic representation, details of key fast steps are re-
solved. Such an approach has been used to monitor viral entry by influenza hemagglutinin134

and is also used in Chapter 4 to investigate protein facilitated lipid transport. Concurrent
multiscale schemes simulate some regions of a system at a coarse-grained level and others
at an all-atom level. While potentially more powerful than a consecutive multiscale scheme,
methods to interface between regions of varying resolution are still being developed.

While the choice of model significantly dictates the length and timescales that are acces-
sible, a judicious choice of simulation method can extend the range of accessible timescales.
Molecular dynamics (MD) simulations, which are widely used to study biomolecules and
used in Chapters 2-4, evolve the positions of all particles in time by numerically solving clas-
sical equations of motion. Because typical integration time steps are limited by the highest
frequency motions (1-2 fs in all-atom simulations to account for fast vibrations of bonds
involving hydrogens), millions of integration steps must be performed to generate ns-long
trajectories. Unfortunately, this is generally far too short to observe any biologically im-
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portant events. Furthermore, because the space of possible system configurations is very
high dimensional (3N -dimensional, where N is the number of atoms) as illustrated in Figure
1.5A, it is incredibly difficult to sample even the most biologically important states, let alone
all of them, with a single MD trajectory. Attempts to simulate transitions between states
are generally further doomed since during most (if not all) of the trajectory, the system will
remain in single, free energetically favorable state waiting for a rare fluctuation to cause
a rapid transition to a new state (Figure 1.5B, top panel). Unfortunately, observations of
thousands of transitions are required to characterize a reaction mechanism, including that
of lipid transport.

While conventional MD simulations typically generate unreactive trajectories, reactive
ones can be more readily obtained from transition path sampling (TPS) simulations.135–137
TPS simulations utilize a Monte Carlo scheme to efficiently harvest transition paths, which
are trajectory segments that connect an initial state with a final state (Figure 1.5B, middle
panel). By analyzing the harvested transition paths, reaction mechanisms can be deciphered.
Often of prime interest is identifying the reaction coordinate, which describes the collective
motion of molecules that advances a transition.136–141 Because the reaction coordinate cap-
tures the slowest degrees of freedom that can otherwise hinder a transition, projections of a
system’s full configuration space onto the reaction coordinate preserve information about the
transition dynamics, whereas a projection onto an order parameter that is not the reaction
coordinate does not (Figure 1.5A). Furthermore, free energy profiles along the reaction coor-
dinate resolve the rate-limiting activation barrier, whereas free energy profiles along another
order parameter underestimate or even fail to resolve the activation barrier (Figure 1.5B,
bottom panel).139 Atop the activation free energy barrier is the transition state, which is the
collection of configurations that are equally likely to end up in either stable state.136–138,142
Identifying the reaction coordinate, and thus also the transition state, provides a complete
description of the transition dynamics. In Chapter 2, the reaction coordinate for passive
lipid transport is elucidated by analyzing transition paths.

TPS simulations can yield incredibly valuable insights into transition dynamics. Indeed
they have been used to investigate enzymatic reactions,143–145 conformational changes of
proteins146–148 and nucleic acids,149–151 and ion transport through protein channels,152 for
example. However, TPS simulations can be ineffective at sampling long transitions with
metastable intermediates and also transitions that occur through multiple, distinct paths. As
an initial attempt to address some of these challenges, Chapter 5 describes the development
of new path sampling approaches and their application to a simple model of non-equilibrium
transport.

Once the reaction coordinate is known, approaches that do not require sampling transi-
tion paths can be used to investigate a dynamical event. Instead, free energy profiles can
be efficiently calculated as a function of the reaction coordinate using enhanced sampling
methods, such as umbrella sampling, metadynamics, and accelerated MD simulations.153,154
Such free energy profiles can be combined with kinetic theories to calculate reaction rates.
Additionally, they can be used to assess how subtle changes in a system, which do not change
the overall reaction mechanism, affect the activation free energy and, thus, reaction rate. In
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Figure 1.5: Multiple approaches can be used to overcome challenges simulating
biomolecular dynamics. (A) (Top) Sampling challenges arise due to the high dimensionality
of a biomolecular system’s configuration space, which is illustrated in only three dimensions for vi-
sualization purposes. Each point represents a different possible configuration of the system’s atoms.
(Bottom) Projecting this high dimensional configuration space onto a smaller number of coordi-
nates enables physical insights to be more readily gleaned. The choice of coordinates determines
how well important aspects of the high dimensional space are maintained in the lower dimension
projection. A projection onto the reaction coordinate maintains information about all degrees of
freedom involved in advancing a transition between a pair of states, whereas a projection onto an
order parameter that is not the reaction coordinate lacks such information. (B) Different simulation
approaches can be used to study biomolecular processes. To determine the free energetics of differ-
ent configurations, each point in configuration space must be sampled according to its Boltzmann
probability. To investigate the kinetics of a dynamical process, or transitions between an initial
state (red points) and final state (blue points), reactive trajectories (green) must be sampled. (Top)
Conventional molecular dynamics (MD) simulations naturally sample biomolecular dynamics by
propagating Newton’s equations of motion. They typically sample fluctuations within a single sta-
ble configurational basin in the free energy landscape and generate unreactive trajectories (orange).
(Continued on next page)



CHAPTER 1. AN INTRODUCTION TO MEMBRANE BIOPHYSICS AND LIPID
TRANSPORT 16

Figure 1.5: (Continued from previous page)
(Middle) Transition path sampling simulations sample transition paths, which are trajectory seg-
ments that connect an initial state to a final one (dashed gray box), using Monte Carlo moves
performed in trajectory space. From the harvested ensemble of reactive trajectories, the transition
state (TS, indicated with a star), which is composed of configurations that are equally likely to end
up in either the initial or final state, can be identified, and the reaction coordinate can be deter-
mined. (Bottom) Free energy calculations can be performed using enhanced sampling techniques
to obtain free energy profiles along coordinates chosen a priori. A free energy profile along the
reaction coordinate accurately quantifies the rate-limiting activation free energy and can be com-
bined with kinetic theories to calculate rate constants. The TS is accurately resolved in such free
energy profiles. In contrast, a free energy profile along an order parameter that is not the reaction
coordinate underestimates the activation free energy, does not resolve the TS, and cannot be used
to accurately characterize dynamics.

Chapter 3, this approach is used to determine how subtle changes in lipid chemistry and
membrane order influence the rate of passive lipid transport.

Molecular simulations are the primary method used in this thesis to gain biophysical
insights into lipid transport, but this approach is not without limitations. Significantly,
molecular simulations provide a picture isolated from the biological networks responsible
for maintaining membrane homeostasis. In response to cellular signals and external pertur-
bations, cell membrane compositions are altered through lipid metabolism and trafficking.
However, algorithmically mimicking a cell’s homeostatic response by changing membrane
compositions during an MD simulation poses technical challenges. For this reason, most
MD simulations are performed in thermodynamic ensembles where the number of atoms
(and lipid identity) is held fixed. A recently developed framework takes initial steps to over-
come this limitation by conducting simulations in the semigrand canonical ensemble and
representing the influence of metabolic and transport networks on membrane composition in
terms of chemical potential differences between lipid species.155 Much future work, including
the development of new simulation algorithms that explicitly account for cellular sense-and-
respond systems, will be required to fully model membrane homeostasis and to understand
the regulatory logic that is responsible for maintaining membrane physicochemical proper-
ties.
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Chapter 2

Breakage of Hydrophobic Contacts
Limits the Rate of Passive Lipid
Exchange between Membranes

Reproduced with permission from Rogers, J. R.; Geissler, P. L. J. Phys. Chem. B 2020,
124, 5884–5898. Copyright 2020 American Chemical Society.

Introduction

Lipid membranes are essential to the structural integrity of cells. They form fluid bound-
aries that organize and compartmentalize cellular functions within organelles. Each organelle
requires a unique membrane composition for its proper function.2,88 To maintain such var-
ied compositions, lipids are heterogeneously trafficked between cellular membranes through
vesicular or non-vesicular transport. Vesicular transport plays a major role in trafficking
lipids and proteins between organelles in the secretory pathway.77,86 Organelles that are not
connected by vesicular transport machinery rely on non-vesicular mechanisms to receive and
export lipids. Even for organelles in the secretory pathway, non-vesicular transport mech-
anisms provide an additional way to more rapidly exchange lipids, for example, to swiftly
alter membrane compositions in response to environmental changes.85,87

Despite its cellular importance, non-vesicular transport mechanisms in vivo have not
been fully characterized. Non-vesicular transport predominantly involves the movement of
individual lipids between membranes. Monomeric lipid transfer between membranes may
occur passively, in which a lipid desorbs and freely diffuses to another membrane.85 Alter-
natively, lipid transfer proteins may facilitate monomeric lipid exchange by enclosing lipids
within their hydrophobic interiors during transport.87,104 With half-times on the order of
hours, passive lipid exchange is too slow to fully account for lipid transport in vivo,85 in-
dicating that lipid transfer proteins are likely catalysts of lipid exchange. Nevertheless, a
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mechanistic understanding of passive lipid exchange can inform our knowledge of how lipid
transfer proteins increase the rate of lipid transport.

Molecular simulations are well suited to explore the microscopic dynamics and to identify
the rate limiting step of passive lipid exchange. Quantifying the free energy barrier associated
with the rate limiting step, however, requires knowledge of the reaction coordinate, which
characterizes the collective motion of molecules that advances a transition.136–139 Previous
computational work156–160 on lipid transport has presumed that a lipid’s displacement normal
to the membrane is the reaction coordinate (Figure 2.1A) and has yielded results in conflict
with experimental findings.97–99,161 Here we show that the reaction coordinate for passive

B

✘ Incorrectly predicted

to be a TS based on

lipid’s displacement

✔ Correctly predicted

to be a TS based on

hydrophobic contacts

A

Figure 2.1: A lipid’s displacement normal to the membrane has conventionally been
presumed to be the reaction coordinate for passive lipid exchange; however, the lipid’s
displacement does not reliably identify transition state (TS) configurations. Although
the lipid’s displacement (black arrow) in configuration A is consistent with values observed at the
transition state, this configuration is not a transition state. By contrast, configuration B is correctly
predicted to be a transition state based on the extent of hydrophobic contact between the lipid and
membrane (highlighted in yellow and cyan).

lipid exchange is indeed more subtle than a simple distance measurement. The reaction
coordinate characterizes the creation (or disruption) of a locally hydrophobic environment
around the incoming (or outgoing) lipid (Figure 2.1B). This realization resolves qualitative
(but not quantitative) discrepancies between simulation and experiment and suggests that
the breakage of hydrophobic contacts between a lipid and membrane limits the rate of passive
lipid transport.

Experimental and Computational Background

Numerous in vitro studies of passive monomeric lipid exchange between membranes have
demonstrated that it is a first-order process and that the rate of lipid exchange strongly
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correlates with a lipid’s solubility.95–101,103,162,163 Based on these observations, the most widely
accepted mechanism is characterized by aqueous diffusion.92–103 The diffusive mechanism
involves lipid desorption, which is rate limiting, followed by diffusion through solvent and
insertion into another membrane. Based on experimentally measured activation energies,
calculated activation free energies for lipid exchange exceed free energies for transferring a
lipid from water to a membrane, indicating that there is a barrier for lipid desorption and
insertion.97–99,161 At this barrier, the desorbing lipid is hypothesized to only have the terminal
carbons of its tails left within the membrane.92,99 Thus, the activation free energy required
to form the transition state has been attributed to the creation of a cavity in the membrane
due to partial removal of a lipid and another cavity in the solvent to accommodate that
lipid.99,164

However, because the experimental methods currently used to study lipid exchange have
coarse temporal and spatial resolution, molecular features of the transient transition state
can only be hypothesized. Molecular dynamics (MD) simulations offer an attractive means
to test these hypotheses since the necessary time and length scales are accessible. Addition-
ally, a complete free energy profile can be obtained from MD simulations. By calculating the
free energy as a function of the reaction coordinate, which describes the system’s dynamics
during transitions between stable states,136–138 free energies of activation can in principle be
accurately quantified. If, however, the free energy is computed as a function of an order
parameter that is not the reaction coordinate, then the apparent barrier generally under-
estimates the rate-determining free energy of activation.139 Thus, identifying the reaction
coordinate and corresponding free energy profile for passive lipid exchange can provide fun-
damental insights into the physical processes and work required to maintain heterogeneous
cell membrane compositions.

Most previous computational studies have focused on obtaining a full free energy pro-
file for lipid desorption and insertion.156–160 Traditionally, free energy profiles have been
computed as a function of a lipid’s displacement normal to a bilayer measured from the
lipid’s phosphate group to the bilayer’s center-of-mass (COM) (Figure 2.1A).156–160 These
free energy profiles lack a barrier for insertion,156–160 seemingly in conflict with experimental
results.97–99,161 If the COM displacement is not the reaction coordinate for lipid exchange,
the kinetically relevant barrier may not be resolved in these free energy profiles; instead, a
barrier may exist along a different degree of freedom that is the reaction coordinate. Consis-
tent with this idea, Vermaas and Tajkhorshid’s MD study of lipid insertion indicated that
the COM displacement is not sufficient to fully describe the microscopic dynamics of lipid
insertion. They demonstrated that after the lipid associates with a bilayer, each tail of the
lipid enters the bilayer successively to complete the insertion processes. The observation of
splayed lipid intermediates during insertion, which are indistinguishable from other configu-
rations based on the lipid’s COM displacement, suggests that other degrees of freedom need
to be considered to construct an accurate reaction coordinate for lipid exchange.165
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Our Approach

The discrepancy between experimental97–99,161 and computational156–160 reports about a bar-
rier for lipid exchange, together with the evidence suggesting that the lipid’s COM displace-
ment is a poor reaction coordinate from a MD study of lipid insertion165 prompt two ques-
tions: (1) What is the reaction coordinate for lipid exchange? (2) What, if any, activation
free energy barrier impedes the process of lipid insertion? In this article, we aim to answer
these questions using molecular simulation. In doing so, we identify the reaction coordi-
nate for passive lipid exchange in all-atom and coarse-grained lipid models. Knowledge of
the reaction coordinate allows us to elucidate key biophysical details of the transition state
ensemble and properly assess the free energetic cost of lipid transport.

Rather than driving the system along a presumed reaction coordinate, we instead har-
vest natural, unbiased trajectories in which a lipid spontaneously inserts into a membrane.
Statistical analysis of this ensemble of dynamical pathways reveals the key collective motions
required for lipid transport. Firstly, we find that lipid insertion is a barrier crossing event
and occurs via three different pathways, distinguished by various splayed lipid intermediates.
Secondly, we find that the reaction coordinate characterizes the formation and breakage of
hydrophobic lipid–membrane contacts. The lipid’s displacement normal to the bilayer, even
formulated to distinguish splayed configurations, is not the reaction coordinate and obfus-
cates the barrier for insertion. Consistent with previous experimental results,97–99,161 free
energy profiles as a function of our reaction coordinate display a barrier for insertion and
yield insertion rates calculated from Kramers theory that agree with those obtained directly
from simulations. Finally, using our newfound reaction coordinate, we formulate a Smolu-
choski equation for the lipid exchange rate to directly compare our simulation results with
experiments. Overall, our results demonstrate that the rate limiting step for passive lipid
exchange is the breakage of hydrophobic contacts, suggesting that lipid transfer proteins may
catalyze lipid transport in part by lowering the associated activation free energy.

Methods

Molecular Dynamics Simulations

Spontaneous desorption of a lipid from a membrane is a very slow process occurring over
minutes to hours, which is well beyond the timescale accessible in MD simulations. Most
previous work has addressed this problem by introducing an external bias that allows rare
configurations otherwise inaccessible in MD simulations to be readily sampled. While this
approach generates configurations plausibly found along a lipid desorption trajectory, it can
fail to reveal the natural, unbiased route of lipid desorption. Our approach instead exploits
a fundamental statistical property of microscopic dynamics, namely its time reversibility.
Natural desorption trajectories are simply the time reverse of spontaneous lipid insertion
trajectories. As shown by Vermaas and Tajkhorshid,165 the latter are straightforward to
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generate in an unbiased way since lipid insertion is a rapid process. Thus, to gain insights
into the dynamics of lipid exchange, we harvested trajectories of lipid insertion into a bilayer
of 128 lipids using both all-atom and coarse-grained MD simulations. All simulations were
performed in an isothermal-isobaric (NPT) ensemble using GROMACS 5.166 The tempera-
ture was maintained at 320 K, ensuring that the bilayers were in the liquid crystalline phase.
The pressure was maintained at 1 bar using semi-isotropic pressure coupling to allow the z
dimension, which is perpendicular to the bilayer, to fluctuate separately of x and y, ensuring
tensionless bilayers.

Coarse-Grained Systems. A large number of lipid insertion trajectories are required to
make conclusions with high statistical accuracy. To obtain 1,000 lipid insertion trajectories in
a computationally tractable manner, we performed MD simulations using the coarse-grained
MARTINI force field.167 All coarse-grained simulations used dilauroylphosphatidylcholine
(DLPC) to compare to all-atom simulations of dimyristoylphosphatidylcholine (DMPC).
Because MARTINI maps roughly four heavy atoms to a single coarse-grained bead, DMPC,
which has 14 carbon atoms per tail, is best represented by the MARTINI model for DLPC,
which has 3 beads per tail.

First, a bilayer surrounded by 3 nm thick slabs of standard MARTINI water was built us-
ing INSANE.168 Prior to the addition of a tagged lipid into the solvent surrounding a bilayer
of MARTINI DLPC lipids, the bilayer’s structure was fully relaxed from its initial lattice
configuration. This involved an energy minimization using the steepest descent algorithm
followed by equilibration and production runs. During the first 500 ps equilibration run, a
10 fs time step and the Berendsen barostat169 with a coupling time constant of 3 ps and an
isothermal compressibility of 3 × 10−4 bar−1 were used. During a second 1 ns equilibration
run, the time step was increased to 30 fs and the barostat was switched to the Parinello-
Rahman algorithm170 with a coupling time constant of 12 ps. A 50 ns production run using
the same simulation parameters as the second equilibration run was performed to allow the
bilayer’s structure to fully equilibrate, as monitored by the area per lipid (Figure A.1). The
temperature was maintained at 320 K with the V-rescale thermostat171 using a coupling time
constant of 1 ps. The lipids and solvent were coupled to separate thermostats to avoid the
“hot solvent-cold solute” problem.172 Dynamics were evolved according to the leapfrog algo-
rithm.173 As determined to yield optimal performance for simulations using MARTINI,174
neighbor lists were updated using the Verlet neighbor searching algorithm,175 Lennard-Jones
and Coulomb interactions were truncated at 1.1 nm, and Coulomb interactions beyond the
cutoff were evaluated with a reaction-field potential176 with a relative dielectric constant of
∞.

Next, 1,000 replicate systems with a free lipid were built by inserting a tagged lipid at a
random location in the solvent around the equilibrated bilayer such that the tagged lipid’s
COM and bilayer’s COM are separated in z by at least 3.2 nm. All replicates were then
energy minimized and equilibrated using the protocol described above with one modification:
To ensure that the tagged lipid did not adsorb or insert into the bilayer during equilibration,
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the z coordinates of its heavy atoms were restrained by a harmonic potential with a force
constant of 500 kJ/mol/nm2. Upon release of the position restraints, production runs of 1
µs were performed, and lipid insertion occurred in all replicates during this time. Reported
times for MARTINI simulations are not scaled by a factor of 4, as done in other work to
account for the erroneously fast solvent diffusion in MARTINI as compared to real water.167

All-Atom Systems. Additionally, we harvested 10 all-atom lipid insertion trajectories
to compare with our results using MARTINI. The CHARMM36 force field177 was used
in combination with the CHARMM TIP3P water model178 since it accurately reproduces
many experimental observables, including the volume and area per lipid, bilayer thickness,
lipid lateral diffusion coefficient, and neutron density profiles, for a liquid crystalline DMPC
bilayer.179,180 We used a simulation protocol similar to that described above for MARTINI.

First, a bilayer surrounded by 3 nm thick slabs of solvent was built using the CHARMM-
GUI Membrane Builder.181,182 The bilayer was energy minimized prior to undergoing a two-
stage equilibration at 320 K and 1 bar. The first 250 ps equilibration utilized the Berendsen
barostat169 for semi-isotropic pressure coupling with a coupling time constant of 2 ps and
isothermal compressibility of 4.5×10−5 bar−1, and the second 250 ps equilibration utilized the
Parinello-Rahman barostat170 with a coupling time constant of 5 ps. A 50 ns production run
was performed to allow the bilayer to fully equilibrate (Figure A.1). The lipids and solvent
were coupled to separate Nosé-Hoover thermostats183,184 using a coupling time constant
of 1 ps to maintain the temperature. Dynamics were evolved according to the leapfrog
algorithm173 using a 2 fs time step. All bonds to hydrogen were constrained using the
LINCS algorithm.185 Lennard-Jones forces were smoothly switched off between 0.8 and 1.2
nm. Coulomb interactions were truncated at 1.2 nm, and long-ranged Coulomb interactions
were calculated using Particle Mesh Ewald (PME) summation186 with a Fourier spacing of
0.12 nm and an interpolation order of 4. Neighbor lists were constructed with the Verlet
algorithm.175

Next, 10 replicate systems with a tagged lipid in solution were built as for the MARTINI
systems. Each replicate was energy minimized and equilibrated using the protocol described
for the CHARMM36 bilayer system with the addition of harmonic restraints on the z coor-
dinates of all heavy atoms of the tagged lipid. After the position restraints were removed,
each replicate was simulated in increments of 100 ns until the tagged lipid inserted into the
bilayer.

Characterization of Transition Paths

From the harvested lipid insertion trajectories, we identified transition paths, trajectory
segments that connect “reactant” and “product” states A and B. In state A, the tagged lipid
is fully surrounded by solvent; in state B, the tagged lipid is fully within the bilayer. States
A and B are characterized by the displacements dlip, dsn1, and dsn2 shown in Figure 2.2A.
dlip is the displacement in z from the COM of the tagged lipid to the COM of the closest
leaflet. Similarly, dsn1 is the displacement in z from the terminal carbon of the sn1 tail of
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the tagged lipid to the COM of the closest leaflet, and dsn2 is the analogous distance for the
sn2 tail. Based on distributions of these three distances obtained from coarse-grained and

z
x

min(dCC)
nCC

B Hydrophobic contacts

z

zsn1dsn1
dlip COMz

leaflet

COMz lipid
zsn2

dsn2

A Lipid’s displacement

Figure 2.2: Schematics of order parameters that measure (A) the displacement of the
lipid along the bilayer’s normal and (B) hydrophobic lipid–bilayer contacts. The tagged
lipid is colored orange. (A) dlip is the displacement in z between the center-of-mass (COMz) of the
tagged lipid (magenta dashed line) and COMz of the closest leaflet (black dashed line). dsn1 is the
displacement in z between the terminal carbon of the sn1 tail (green dashed line) and COMz of
the closest leaflet. dsn2 is the displacement in z between the terminal carbon of the sn2 tail (cyan
dashed line) and COMz of the closest leaflet. (B) min(dCC) is the minimum distance between a
hydrophobic carbon of the tagged lipid and a hydrophobic carbon of the closest leaflet. The closest
pair of hydrophobic carbons are drawn as circles. nCC is the total number of close hydrophobic
carbon contacts between the tagged lipid and closest leaflet. Any pair of lipid and membrane
hydrophobic carbons within a cutoff distance of 14 Å for MARTINI and 10 Å for CHARMM36 are
counted as contacts and drawn as circles. The light orange region highlights the space within a
cutoff distance (black arrow) from hydrophobic carbons of the tagged lipid.

all-atom MD simulations (Figure A.2), state A is defined by dlip > 24 Å, which ensures that
any configurations with the tagged lipid adsorbed onto the surface of the bilayer are not
included. State B is defined by dsn1 < −3 Å and dsn2 < −3 Å, which ensures that the both
tails of the tagged lipid are inserted into the bilayer.

In addition to dlip, dsn1, and dsn2, we evaluated over 50 order parameters as putative
reaction coordinates for lipid exchange. Hydrophobic contacts between the tagged lipid and
bilayer are judged according to the distance d(i)

CC between a hydrophobic carbon of the tagged
lipid and a hydrophobic carbon of the closest membrane leaflet, where i indexes the many
pairs of such atoms. For MARTINI lipids, hydrophobic carbons include all tail beads. For
CHARMM36 lipids, hydrophobic carbons include atoms C23 – C214 and C33 – C314. More
specifically, hydrophobic contacts are measured by the order parameters min(dCC) and nCC

(Figure 2.2B). min(dCC) = mini d
(i)
CC is the minimum distance between a hydrophobic carbon

of the tagged lipid and a hydrophobic carbon of the closest leaflet. nCC is the number of
close contacts between hydrophobic carbons of the tagged lipid and hydrophobic carbons of
the closest leaflet. The ith pair of hydrophobic carbons was counted as a close contact if
d

(i)
CC ≤ 14 Å for MARTINI lipids and if d(i)

CC ≤ 10 Å for CHARMM36 lipids. These cutoff
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values encompass approximately two water solvation shells around a hydrophobic carbon
of a lipid in solution and also two carbon solvation shells around a hydrophobic carbon
of a lipid in a bilayer. We found smaller cutoffs to be insufficient for fully characterizing
the tagged lipid’s hydrophobic environment and, thus, also insufficient for constructing the
reaction coordinate. Our definition of nCC is similar to the order parameter developed by
Lin and Grossfield to measure hydrophobic contacts between lipopeptides and phospholipids.
Similar to the conclusions we make herein about phospholipid exchange, they found that a
hydrophobic contact order parameter was key to accurately investigate lipopeptide insertion
from a micelle into a phospholipid bilayer, whereas the COM displacement was insufficient.187
Complete descriptions of all other order parameters are provided in the SI. The MDAnalysis
Python library188 was used to analyze all trajectories for each order parameter.

Free Energy Calculations

Based on the dynamics observed along transition paths, lipid insertion is a barrier-crossing
process. To identify the physical origin of this barrier, we calculated free energy surfaces as
a function of different order parameters. To obtain these free energy surfaces, we performed
umbrella sampling simulations189 using the PLUMED 2 patch190 for GROMACS.

Coarse-Grained Systems. We computed the 2D free energy surfaces ∆F (min(dCC), nCC)
and ∆F (dsn1, dsn2) for the MARTINI system. To obtain ∆F (min(dCC), nCC), we simulated
208 windows with harmonic biases centered at physically possible values of (min(dCC), nCC)
for 2 µs each. Each window was initialized with a configuration, drawn from a transition
path, that has a value of (min(dCC), nCC) close to the center of the window’s bias. To
calculate biasing forces on min(dCC), a smooth form for the minimum function

γ

[
log

(∑
i

exp(γ/d
(i)
CC)

)]−1

, (2.1)

was used with γ = 260 nm. min(dCC) calculated with Eq. 2.1 differed from the exact value
by 0.007 Å on average and by at most 0.34 Å. To calculate biasing forces on nCC, a switching
function was used

∑
i

1−
(
d

(i)
CC−d0

r0

)6

1−
(
d

(i)
CC−d0

r0

)12 , (2.2)

with d0 = 14 Å and r0 = 0.25 Å. nCC calculated with Eq. 2.2 differed from the exact value
by 4 contacts on average and by at most 28 contacts.

To obtain ∆F (dsn1, dsn2), we simulated 370 windows with harmonic biases centered at
positions (dsn1, dsn2) ranging from (−10 Å, −10 Å) to (30 Å, 30 Å) for 2 µs each. To avoid
unrealistically distorting the tagged lipid, we simulated only windows whose harmonic bias
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centers satisfy |dsn1− dsn2| ≤ 30 Å. Each window was initialized with a configuration, drawn
from a transition path, that has a value of (dsn1, dsn2) close to the center of the window’s
bias. A force constant of 500 kJ/mol/nm2 was used for all harmonic bias potentials.

The weighted histogram analysis method (WHAM)191 was used to obtain both of these
2D free energy surfaces from the biased distributions, after discarding data from the first 1
µs. Error bars were calculated as the standard error of free energy surfaces estimated from
five independent 200 ns blocks.

All-Atom Systems. To obtain ∆F (min(dCC), nCC) for the CHARMM36 system, 202 win-
dows with harmonic biases centered at physically possible values of (min(dCC), nCC) were
simulated for 24 ns each. Eq. 2.1 was used to calculate biasing forces on min(dCC) with
γ = 200 nm, and it differed from the exact value by 0.002 Å on average and by at most 0.27
Å. Eq. 2.2 was used to calculate biasing forces on nCC with d0 = 10 Å and r0 = 0.25 Å,
and it differed from the exact value by 68 contacts on average and by at most 175 contacts.
Each window was initialized with a configuration, drawn from a transition path, that has a
value of (min(dCC), nCC) close to the center of the window’s bias. The first 4 ns of data from
these windows was discarded to account for equilibration. Finally, data from all windows
was combined with WHAM to obtain a free energy surface as a function of min(dCC) and
nCC. Error bars were calculated as the standard error of free energy surfaces estimated from
five independent 5 ns blocks.

Calculation of 1D Free Energy Profiles from 2D Free Energy Surfaces. We cal-
culated 1D free energy profiles ∆F (min(dCC)) and ∆F (nCC) by numerically integrating
∆F (min(dCC), nCC) over one of its variables. Denoting the two variables as q and q′ (in ei-
ther order), the free energy profile ∆F (q) is obtained from the free energy surface ∆F (q, q′)
according to

∆F (q) = −β−1 ln

[∫
dq′ e−β∆F (q,q′)

]
, (2.3)

where β = (kBT )−1 is the inverse of Boltzmann’s constant, kB, multiplied by temperature.

Committor Analysis

To identify the reaction coordinate for passive lipid exchange and determine if transition
states are sampled in umbrella sampling simulations, we characterized configurations accord-
ing to their tendency to proceed to state B using committor analysis.136–138 The committor,
pB, is the probability that a configuration will reach state B prior to state A when its mo-
menta are chosen randomly from a Maxwell-Boltzmann distribution. By construction, the
committor distinguishes transition states, which have pB = 0.5, from stable state A and B
configurations, which have pB = 0 and 1, respectively. Thus, pB is the true reaction co-
ordinate. Through committor analysis of configurations found along transition paths, we
identified order parameters that are strongly correlated with the committor and, thus, can
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be used as approximate reaction coordinates. These order parameters have the advantage
of being more physically descriptive and, thus, more easily interpreted than the commit-
tor. Henceforth we refer to order parameters that correlate strongly with pB as the reaction
coordinate. We calculated committor values for 98,094 MARTINI and 138 CHARMM36
configurations sampled along transition paths. Additionally, we calculated the committor
for 500 MARTINI and 100 CHARMM36 configurations from each umbrella sampling sim-
ulation. For each MARTINI configuration, the outcome of 50 trajectories, each 3 ns long
and initialized with random velocities sampled from a Maxwell-Boltzmann distribution, were
used to calculate its committor value. For each CHARMM36 configuration, the outcome of
20 trajectories, each 12 ns long, were used to calculate its committor value.

Rate Calculations

To further assess how well the dynamics of lipid transport are captured by monitoring lipid–
membrane hydrophobic contacts, we calculated the rate constant for lipid insertion, kins,
using Kramers theory192 coupled with thermodynamic information about hydrophobic con-
tacts. The resulting value was compared with the insertion rate calculated from the mean
first passage time in MD simulations. Based on Kramers theory,

kins = D

[∫ L

xB

dx e−βU(x)

∫ x

xB

dx′ eβU(x′)

]−1

, (2.4)

where D is the diffusion coefficient along a reaction coordinate x for lipid insertion, xB is
the value of x in state B, L is the maximal value of x in state A sampled in our simulations,
and U(x) is the effective interaction potential biasing the dynamics of x. We have taken
x to be min(dCC) since min(dCC) describes the spatial motion of the lipid during insertion
in addition to hydrophobic contact formation. For the same reason we set D to be the
diffusion coefficient of a freely diffusing lipid in solution. Note that min(dCC) alone is not
the reaction coordinate for lipid exchange (a linear combination of min(dCC) and nCC is the
reaction coordinate), but it is more simply interpretable to utilize a single order parameter
for these calculations. U(x) is taken to be the free energy profile ∆F (min(dCC)). U(x)
was obtained from the free energy surface that depends jointly on min(dCC) and nCC using
Eq. 2.3. We evaluated Eq. 2.4 with numerical integration using the trapezoidal rule. The
diffusion coefficient was calculated from an additional MD simulation of a single lipid solvated
in a cubic box with the same area and simulation protocol as the bilayer systems, but with
isotropic pressure coupling. D was calculated according to Einstein’s relation from the mean
squared displacement of the lipid’s COM obtained from 1 µs and 100 ns trajectories of a
MARTINI and CHARMM36 lipid, respectively.
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Results and Discussion

Lipid Insertion Is a Barrier Crossing Process that Occurs via
Multiple Pathways

We first investigated the dynamics of lipid insertion by harvesting 1,000 MARTINI DLPC
and 10 CHARMM36 DMPC insertion trajectories from MD simulations. A lipid insertion
event is classified by a transition from state A, in which the tagged lipid is fully in the solvent,
to state B, in which the tagged lipid resides within the bilayer. State A is distinguished by
dlip, which measures the COM displacement of the tagged lipid along the bilayer’s normal;
state B is distinguished by dsn1 and dsn2, which measure the displacement of each tail of the
tagged lipid along the bilayer’s normal (Figure 2.2A). Precise definitions are given above
in the Methods section. The fact that state B configurations cannot be reliably identified
by dlip alone suggests that the COM displacement is not the reaction coordinate for passive
lipid exchange.

Free energy profiles as a function of the lipid’s displacement along the bilayer normal
obtained from previous computational studies156–160 give the impression that lipid insertion
is a barrier-less process. If that were true, insertion should occur immediately once the tagged
lipid reaches the bilayer. However, as seen in snapshots from a MARTINI and a CHARMM36
trajectory shown in Figure 2.3, the tagged lipid repeatedly arrives at the bilayer and adheres
to its surface without inserting. Instead, it detaches from the bilayer’s surface and returns to
the solvent. In typical trajectories, many such unproductive encounters occur before the lipid
inserts into the bilayer. Indeed, as seen in time traces of dlip in Figure 2.4A, many adsorption
events commonly precede insertion. Similar adsorption events have been observed during
simulations of 1-palmitoyl-2-oleoylphosphatidylcholine (POPC) insertion into a bilayer.165

When lipid insertion eventually occurs in these trajectories, it does so suddenly. Charac-
teristic of barrier-crossing dynamics, dlip, dsn1, and dsn2 change sharply from values of state
A to those of state B (Figure 2.4A). The fact that the transition times are much faster than
the inverse rate constant for lipid insertion, 1/kins, points to a substantial free energy barrier
for insertion. Free energy profiles as a function of the lipid’s displacement simply do not
resolve this barrier.156–160 Thus, the barrier must exist along a different degree of freedom
that captures other important features of the dynamics.

In fact, lipid insertion occurs via three different pathways which cannot be differentiated
by dlip. Each pathway is characterized by a distinct lipid configuration, which is distinguished
by dsn1 and dsn2, near the bilayer’s surface: (1) In the sliding pathway, the two tails enter
the bilayer almost simultaneously as the tagged lipid slides into the bilayer (Figure 2.3,
CHARMM36 trajectory and Figure 2.4A, magenta time traces). Near the bilayer’s surface,
both tails are a similar distance from the bilayer (Figure 2.4B, magenta region). (2) In the
sn1 splayed pathway, the sn1 tail enters the bilayer first (Figure 2.4A, green time traces),
creating a splayed intermediate with the sn1 tail anchored in the bilayer (Figure 2.4B, green
region). (3) In the sn2 splayed pathway, the sn2 tail enters the bilayer first (Figure 2.3,
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Figure 2.3: Snapshots along MD trajectories of a tagged lipid inserting into a bilayer
illustrate that a membrane-adsorbed lipid does not immediately insert into a bilayer,
suggesting that there is a barrier for insertion. For clarity, solvent is not shown in the
snapshots. The tagged lipid is rendered with van der Waals spheres. For the MARTINI simulation,
the headgroup, phosphate, glycerol, and tail beads of the tagged lipid (bilayer lipids) are colored
red (blue), gray (brown), green (pink), and orange (cyan), respectively. For the CHARMM36
simulation, the carbon atoms of the tagged lipid (bilayer lipids) are colored orange (cyan).

MARTINI trajectory and Figure 2.4A, cyan time traces), creating a splayed intermediate
with the sn2 tail anchored in the bilayer (Figure 2.4B, blue region). Table A.1 reports
the frequency of each pathway in our simulations. Splayed intermediates have also been
observed in a previous study of lipid insertion165 and postulated as transition states for stalk
formation during membrane fusion,122,193–197 a key step in vesicular transport. The existence
of distinct insertion pathways might suggest that the displacements of individual tails along
the bilayer’s normal could serve as reaction coordinates since they encapsulate dynamically
relevant information that is not contained in the COM displacement. We demonstrate below,
however, that the displacements of individual tails are not the reaction coordinates for lipid
exchange.
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Figure 2.4: Time evolution of dlip, dsn1, and dsn2 during MD simulations of lipid in-
sertion is indicative of barrier crossing dynamics. (A) State A configurations (dlip > 24 Å)
are located in the red region. State B configurations (dsn1 < −3 Å and dsn2 < −3 Å) are located
in the blue region. Dips in the distances dlip, dsn1, and dsn2 out of the state A region without
entering the state B region occur when the tagged lipid adsorbs to the surface of the bilayer. Ex-
amples for the sliding, sn1 splayed, and sn2 splayed pathways are shown for both MARTINI and
CHARMM36. The initial times have been shifted so that all trajectories can be plotted together.
(B) Probability distributions of dsn1 − dsn2 when the tagged lipid is near the surface of the bilayer
(specifically, MARTINI configurations with 7 ≤ dlip ≤ 9 Å and CHARMM36 configurations with
2.5 ≤ dlip ≤ 15 Å), which were used to identify splayed tail configurations. Distributions from MD
simulations are plotted with open circles, and the fits to a sum of three Gaussians are plotted with
solid lines. Transition paths that follow the sn1 splayed pathway sample configurations found in
the green region, and those that follow the sn2 splayed pathway sample configurations found in the
cyan region. Transition paths that follow the sliding pathway sample configurations in the magenta
region and do not sample splayed configurations in either the cyan or green regions.

Reaction Coordinate Characterizes Hydrophobic Contacts Between
the Lipid and Membrane

Based on experiments, a cavity model has been proposed to describe the transition state.99,164
According to the cavity model, solvent is evacuated above the desorbing lipid and a void
forms in the membrane below. Such a focus on cavities is reminiscent of modern theories
of the hydrophobic effect, which characterize hydrophobicity in terms of the statistics of
solvent density fluctuations.198 Although no true cavities are observed at transition states
sampled in our simulations (Figure A.3), the importance of hydrophobicity in lipid transport
is evident from our analysis of over 50 order parameters. For example, the number of water
molecules solvating the tagged lipid steadily decreases during insertion (Figure A.4). The
density of hydrophobic molecular fragments below the tagged lipid gradually increases while
the number of hydrophilic ones decreases (Figure A.3). Defects in the polar head group
region of the bilayer that expose hydrophobic membrane patches60,61 are also observed in
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the transition state ensemble (Figures A.5 and A.6). Based on these results, we hypothesized
that the reaction coordinate for passive lipid exchange monitors the formation and breakage
of hydrophobic contacts between the tagged lipid and membrane (Figure 2.1B).

To rigorously test this hypothesis, we employed committor analysis.136–138 The commit-
tor, pB, is the probability that a trajectory initiated at a given configuration will reach state B
prior to state A when initial momenta are chosen randomly from a Maxwell-Boltzmann distri-
bution. Configurations within stable states A and B have pB = 0 and 1, respectively. Transi-
tion states are equally likely to advance to states B and A, such that pB = 0.5.136–138,142 Since
pB directly measures the progress of a reaction, pB is the true reaction coordinate.136,137,199
However, pB is a complicated function of the system’s microscopic configuration — a very
large set of variables in the case of biomolecular systems. The complete functional form for
pB is practically unobtainable and would provide little physical insight into reaction mech-
anisms. Instead, it is more informative to identify an order parameter, q, that is strongly
correlated with pB and closely approximates the true reaction coordinate.141,199 Henceforth
we refer to such order parameters as the reaction coordinate.

As one assessment of correlation between an order parameter q and the true reaction
coordinate pB, we compare the probability distribution of q from transition states to dis-
tributions of q from states A and B. The typical values of q at the transition state should
differ from its values in states A and B such that these probability distributions do not
overlap. Otherwise, q cannot reliably distinguish transition states from stable reactant and
product states and, thus, poorly recapitulates the true reaction coordinate. Additionally, we
compare the probability distribution of q from transition states to distributions from pre-
and post-transition states. Because pre-transition states are intermediates between state A
and the transition state and post-transition states are intermediates between the transition
state and state B, it is often challenging to devise an order parameter q that distinguishes
transition states from them, as pB naturally does. A good approximation to the true reaction
coordinate should reliably distinguish transition states from pre- and post-transition states
in addition to state A and B configurations.

A more stringent test of a putative reaction coordinate examines a histogram of pB values
for configurations with a particular value of q. If q is the reaction coordinate, then a histogram
of pB for configurations with a given value of q will be peaked at the corresponding value of
pB. This histogram test is useful to determine if the mapping from q to pB is approximately
one-to-one, a requirement for q to be the reaction coordinate. Bimodal histograms of pB

are clear indicators that q is not the reaction coordinate. By contrast, a histogram sharply
peaked at pB = 0.5 for values of q characteristic of transition states clearly indicates that q
accurately describes the true reaction coordinate.136,137

Using the first criterion that q must reliably distinguish transition states from all other
configurations to be the reaction coordinate, we assessed measures of hydrophobic lipid–
membrane contacts as approximations to the true reaction coordinate. Specifically, we char-
acterize hydrophobic contacts by the minimum distance between hydrophobic carbons of the
tagged lipid and hydrophobic carbons of the bilayer, min(dCC), and the number of close hy-
drophobic carbon–carbon contacts between the tagged lipid and bilayer, nCC (Figure 2.2B).
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Precise definitions are given above in the Methods section. To determine if this crite-
rion was satisfied, we compared the probability distributions of min(dCC) and nCC from
several ensembles: equilibrium configurations representative of (1) state A and (2) state B
(as defined above in Methods); and three ensembles drawn from transition paths of (3)
pre-transition state configurations identified by pB = 0, (4) transition states identified by
pB ≈ 0.5 (specifically, 0.45 ≤ pB ≤ 0.55 for MARTINI and 0.4 ≤ pB ≤ 0.6 for CHARMM36
configurations), and (5) post-transition state configurations identified by pB = 1. Joint dis-
tributions of min(dCC) and nCC in these five different ensembles are shown in Figure 2.5.
Corresponding 1D probability distributions of min(dCC) and nCC are shown in Figures A.7
and A.8. The distributions from MARTINI and CHARMM36 configurations exhibit similar
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Figure 2.5: Distributions of min(dCC) and nCC demonstrate that hydrophobic lipid–
membrane contacts reliably identify transition states. (A) 2D probability distribution of
min(dCC) and nCC from MARTINI simulations. Individual 2D distributions for state A, for state B,
and for three ensembles of configurations drawn from transition paths: pre-transition state (pre-TS)
configurations, transition states (TS), and post-transition state (post-TS) configurations are each
plotted in a single color and outlined in a dashed rectangle. (B) Scatter plot of min(dCC) and nCC

from CHARMM36 simulations. Magnified views around transition states are shown in the insets.

features. In state A, min(dCC) effectively measures the separation between the tagged lipid
and the distant bilayer. Large values of min(dCC) are therefore typical. No close hydrophobic
contacts are formed since the tagged lipid is fully solvated. As the tagged lipid progresses
from state A towards the transition state, it becomes a pre-transistion state configuration.
Pre-transition state configurations are closer to the bilayer than state A configurations, re-
sulting in decreased values of min(dCC), but hydrophobic contacts between the tagged lipid
and bilayer still scarcely exist. At the transition state, the tagged lipid has made only a few
initial hydrophobic contacts with the bilayer. The transition state distribution is centered
at values of min(dCC) and nCC intermediate between those of states A and B. As the tagged
lipid progress from the transition state to state B, it becomes a post-transition state con-
figuration. Post-transition state configurations, which include splayed lipid configurations,
have a substantial number of hydrophobic contacts between the tagged lipid and bilayer
compared to transition states but on average half as many as state B configurations. Both
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the post-transition state and state B distributions of min(dCC) are sharply peaked at a value
consistent with the minimum of the Lennard-Jones potential for a carbon–carbon interac-
tion (or a bead–bead interaction in the MARTINI model). In state B, a maximal number
of hydrophobic contacts exist between the tagged lipid and adjacent lipids in the bilayer.
Importantly, the transition state distribution overlaps negligibly with the other four distri-
butions. A combination of min(dCC) and nCC distinguishes transition states from not only
stable state A and B configurations but also pre- and post-transition state configurations,
and, therefore, may serve as the reaction coordinate for lipid exchange.

If the true reaction coordinate is well described by a combination of min(dCC) and nCC

— in other words if the formation and breakage of hydrophobic contacts are the essential
processes required for lipid exchange — the free energy surface ∆F (min(dCC), nCC) should
exhibit a barrier for insertion and desorption. These free energy surfaces for both MARTINI
and CHARMM36 are shown in Figure 2.6A. Corresponding 1D free energy profiles along
min(dCC) and nCC are shown in Figure A.10. A deep free energy minimum exists at val-
ues of min(dCC) and nCC characteristic of state B due to the formation of many favorable
hydrophobic contacts between the tagged lipid and membrane lipids. At larger values of
min(dCC) characteristic of state A, the free energy surface flattens; when the lipid is far
away from the membrane, the free energy is no longer sensitive to min(dCC). The surface
plateaus at larger free energy values for MARTINI compared to CHARMM36. This discrep-
ancy is consistent with the fact that compared to atomistic models, the MARTINI model
overestimates the free energy difference between a lipid in solution and in the bilayer.167 In
qualitative agreement with experimental findings,97–99,161 there is a free energy barrier for
lipid insertion (Figure 2.6A, outlined in dashes). The activation free energy for the formation
of hydrophobic contacts is roughly 5 kBT . Additionally, transition paths closely follow the
minimum free energy path in the space of min(dCC) and nCC (Figure A.9), indicating that
the dynamics of lipid exchange are well described in terms of hydrophobic contacts.

Most importantly, a combination of min(dCC) and nCC can locate transition states with
high fidelity. We find that a linear combination suffices for this purpose (rLxS = α1 min(dCC)+
α2nCC + α0 with coefficients αi determined using a maximum likelihood approach140,200 as
detailed in Appendix A). By construction, rLxS = 0 at the dividing surface between states A
and B where transition states are located. The dashed lines in Figure 2.6A outline a narrow
range around rLxS = 0, which roughly traces the ridgeline of ∆F (min(dCC), nCC) between
states A and B. To definitively test if rLxS is the reaction coordinate reaction coordinate
for lipid (L) transport via solvent (xS), we performed committor analysis of configurations
drawn from a narrow range around rLxS = 0. Figure 2.6B shows that the ensemble defined
by rLxS ≈ 0 predominantly includes transition states for both MARTINI and CHARMM36.
Thus, a measure of hydrophobic contacts between the tagged lipid and bilayer is the reaction
coordinate for lipid exchange.

Together, min(dCC) and nCC capture many different aspects of the lipid’s hydrophobic
environment, underlying the ability of rLxS to precisely describe the process of lipid exchange.
Hydrophobicity can be quantified in other ways as well. For example, we constructed a more
complicated reaction coordinate, r(M=48)

c , that is a linear combination of 48 order parameters
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Figure 2.6: A free energy barrier for hydrophobic lipid–membrane contact breakage
and formation limits the rate of lipid desorption and insertion, respectively. (A) Free
energy surfaces as a function of min(dCC) and nCC for the MARTINI and CHARMM36 force fields
exhibit a barrier for insertion, which separates states A (bottom right corner) and B (top left
corner). In each free energy profile, the dashed lines outline a narrow range about the dividing
surface between states A and B. Specifically, the dashed lines outline the region −0.2 ≤ rLxS ≤ 0.2
for MARTINI and −0.12 ≤ rLxS ≤ 0.12 for CHARMM36, where rLxS = α1 min(dCC) + α2nCC + α0

with coefficients αi determined using a maximum likelihood approach140,200 (Table A.3). Statistical
errors in the free energy profiles are shown in Figure A.9. (B) Histogram of committor values,
pB, for configurations drawn from umbrella sampling simulations within a narrow range about the
dividing surface, demonstrate that a linear combination of min(dCC) and nCC is indeed the reaction
coordinate.

excluding min(dCC) and nCC, with coefficients again determined using a maximum likelihood
approach140,200 (Table A.2). As fully described in Appendix A, each of these 48 order pa-
rameters measure different details about the lipid’s environment, including the number of
water molecules solvating the tagged lipid and the size of exposed hydrophobic membrane
defects near the tagged lipid. This more complex reaction coordinate identifies transition
states almost as faithfully as rLxS does (Figure A.11A), but r(M=48)

c is difficult to interpret
physically. The reaction coordinates rLxS and r(M=48)

c are highly correlated (Figure A.11B),
demonstrating that detailed information about the lipid’s environment is well represented
by a simple combination of min(dCC) and nCC. Not only is a linear combination of min(dCC)
and nCC the most accurate reaction coordinate out of all tested (Table A.3), but it has
the advantage of providing physical insight into lipid exchange: The rate limiting step for
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desorption is the breakage of hydrophobic contacts between the lipid and membrane.

Lipid’s Displacement Normal to the Bilayer Is Not the Reaction
Coordinate

Previous computational studies presumed that the lipid’s displacement normal to the bilayer
is the reaction coordinate for lipid desorption and insertion.156–160 However, dlip is not the
reaction coordinate, a fact we confirm by performing committor analysis. The probability
distributions of dlip from transition states are compared to the distributions from state A,
state B, pre-transition state, and post-transition state configurations in Figure 2.7. The
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Figure 2.7: Probability distributions of dlip from (A) MARTINI and (B) CHARMM36
simulations indicate that dlip is not the reaction coordinate for lipid exchange. Dis-
tributions are plotted for state A, for state B, and for three ensembles of configurations drawn
from transition paths: pre-transition state (pre-TS) configurations, transition states (TS), and
post-transition state (post-TS) configurations.

distributions from MARTINI and CHARMM36 configurations are quite similar. In state
A, where the tagged lipid is fully solvated and away from the bilayer, the typical value of
dlip is large. As the lipid enters the bilayer, it progresses from being in state A to being a
pre-transition state configuration, a transition state, a post-transition state, and finally in
state B; correspondingly, the centers of each distribution shift to smaller values of dlip. In
state B, the tagged lipid is in register with the other lipids in the membrane such that the
distribution is centered near zero. For both MARTINI and CHARMM36, distributions from
transition states overlap significantly with those from the other ensembles, indicating that
transition states cannot be reliably identified by dlip (Figure 2.1A). Furthermore, histograms
of pB for configurations sampled along transition paths with values of dlip typical of transition
states are bimodal and lack a peak at 0.5 (Figure A.12), indicating that dlip is not strongly
correlated with pB. Therefore, dlip is not the reaction coordinate for lipid exchange.

Based on the observation of multiple pathways for lipid insertion characterized by splayed
intermediates (Figure 2.4), combinations of the tail displacements dsn1 and dsn2 might have
been considered as pathway-specific reaction coordinates. For transitions via the sliding
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pathway, 1
2
dsn1 + 1

2
dsn2 is a plausible reaction coordinate since both tails enter the bilayer at

approximately the same time. For transitions via the sn1 splayed and sn2 splayed pathways,
dsn1 and dsn2 are plausible reaction coordinates for each pathway, respectively, since the
lipid is committed to fully insert after the first tail has entered the bilayer. Probability
distributions of these putative reaction coordinates from MARTINI transition states are
compared to the distributions from state A, state B, pre-transition state, and post-transition
state configurations in Figure 2.8 for each pathway individually. With only 10 CHARMM36
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Figure 2.8: Probability distributions of 1
2
dsn1 + 1

2
dsn2, dsn1, and dsn2 from MARTINI

simulations that follow a given lipid insertion pathway demonstrate that the tail dis-
placements can reliably identify transition states. Distributions are plotted for state A, for
state B, and for three ensembles of configurations drawn from transition paths: pre-transition state
(pre-TS) configurations, transition states (TS), and post-transition state (post-TS) configurations.

insertion trajectories, there is insufficient data to reliably examine distributions for each
pathway individually (data from all CHARMM36 transitions is shown in Figure A.13). With
limited overlap between the transition state distribution and distributions from all other
ensembles (Figure 2.8), 1

2
dsn1+1

2
dsn2, dsn1, and dsn2 appear to be potential reaction coordinates

that are specific to each pathway. dsn1 cannot be used to accurately identify transition
states along the sn2 splayed pathway and vice versa (Figure A.14). While this indicates
that transition states have values of dsn1 and dsn2 distinct from configurations in the other
ensembles, it does not guarantee that 1

2
dsn1 + 1

2
dsn2, dsn1, and dsn2 are strongly correlated

with pB, as required for them to be the reaction coordinates for each lipid exchange pathway.
Furthermore, if 1

2
dsn1+ 1

2
dsn2 is the reaction coordinate for the sliding pathway, dsn1 for the

sn1 splayed pathway, and dsn2 for the sn2 splayed pathway, then they should fully describe
the dynamics of lipid exchange. In that case, the free energy surface ∆F (dsn1, dsn2) should
have a barrier for lipid insertion and desorption to be consistent with the observed barrier
crossing dynamics (Figure 2.4A). This free energy surface is shown in Figure 2.9A for the
MARTINI model. Between states A (top right corner) and B (bottom left corner), slight
plateaus in the free energy profile occur at combinations of dsn1 and dsn2 characteristic of
splayed configurations (top left and bottom right corners). The free energy profile has a
saddle point near dsn1 ≈ dsn2 ≈ 15 Å with a barrier for insertion of approximately 1 kBT
(outlined in dashes), which is only slightly larger than the statistical error in the calculated
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Figure 2.9: Lipid tail displacements from the membrane are not the reaction coor-
dinate. (A) Free energy surface as a function of dsn1 and dsn2 obtained from umbrella sampling
simulations using the MARTINI force field lacks a significant barrier for insertion. The dashed line
outlines a saddle point separating states A (top right corner) and B (bottom left corner). Statistical
error in the free energy profile is shown in Figure A.15. (B) Histogram of committor values, pB, for
configurations located at the saddle point during umbrella sampling simulations demonstrate that
the reaction coordinate is not simply a function of dsn1 and dsn2.

free energy (Figure A.15). This small barrier would hardly impede the dynamics of insertion.
Indeed, it is significantly lower than the barrier for hydrophobic contact formation (Figure
2.6A), demonstrating that decreases in the tail displacments do not limit the rate of lipid
insertion.

Finally, to determine if the tail displacements are strongly correlated with the true reac-
tion coordinate, we constructed a histogram of pB values for configurations found near the
saddle point during umbrella sampling simulations. The histogram of pB for configurations
that are predicted to be transition states based on the free energy surface is strongly bimodal
(Figure 2.9B). Almost all of the tested saddle point configurations are committed to state A
or B, and transitions states are seldom sampled in our simulations. Thus, the lipid’s displace-
ment normal to the bilayer, even reformulated to account for the three different insertion
pathways, is not the reaction coordinate for lipid exchange.

Calculation of Lipid Exchange Rate Enables Comparison to
Experiment

Having identified the reaction coordinate, which measures hydrophobic contact formation
and breakage between the lipid and membrane, we utilized this knowledge to calculate the
kinetic parameters of lipid exchange. First, we calculated the lipid insertion rate, kins, using
Kramers theory (Eq. 2.4) as detailed in the Methods section and compared it to the rate
obtained directly from our unbiased trajectories. Kramers theory provides an expression
for the reaction rate of a process whose dynamics are diffusive and well described by an
overdamped Langevin equation.192 During insertion, the lipid is buffeted by solvent molecules
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and other membrane lipids while crossing the broad free energy barrier for hydrophobic
contact formation (Figure 2.6A), resulting in diffusive barrier crossing dynamics (Figure
A.9) and making Kramers theory appropriate. The value of kins calculated with Kramers
theory is 7.0 µs−1 for MARTINI and 21.0 µs−1 CHARMM36; kins obtained from the mean
first passage time in the spontaneous insertion simulations is 8.0 µs−1 for MARTINI and
5.7 µs−1 for CHARMM36. The insertion rates calculated based on hydrophobic contact
formation differ from those obtained from dynamical simulations by a factor of 4 or less.
Such good agreement demonstrates that hydrophobic contacts describe the dynamics of lipid
insertion, an elementary step of lipid exchange, with quantitative accuracy. Unfortunately,
the timescale of insertion is too fast to measure with straightforward experimental methods.

To compare our results to experiments, we sought to calculate instead the much slower
lipid exchange rate, kex. Although we obtained kins directly from simulations, kex cannot be
obtained in the same manner. Complete exchange events, which involve lipid desorption and
diffusion to another membrane in addition to insertion, could not be simulated due to their
prohibitively long waiting times. Given the good agreement between kins calculated directly
from simulation and from Kramers theory, we instead calculated kex from a Smoluchowski
equation that contains information about the free energetics of hydrophobic lipid–membrane
contacts.

To experimentally probe passive lipid exchange, two populations of vesicles, one initially
composed of labeled lipids and the other initially of unlabeled ones, are combined in solution.
kex is then determined by monitoring the rate of mixing of labeled lipids between these two
populations of vesicles.98,101,103,201–203 We can obtain an expression for the rate of mixing
by first considering how the concentration of labeled lipids in a single vesicle changes over
time. The concentration of labeled lipids in each vesicle will adopt a steady state with the
concentration in the solution surrounding that vesicle. At steady state, the flux of lipids
over any closed surface around a vesicle is constant. Importantly, since lipids that desorb
may rapidly return to their original vesicle given the small barrier for insertion compared
to desorption (Figure 2.6A), the flux contains contributions from lipids both leaving and
entering a vesicle. According to the Smoluchowski equation, the flux, J , of lipids radially
into a vesicle is

−J =
∂nB

∂t
= 4πr2De−βU(r) ∂

∂r

(
eβU(r)ρ(r)

)
, (2.5)

where nB is the number of labeled lipids in a vesicle, r is the radial distance from the center of
a vesicle, D is the diffusion coefficient of a lipid in solution, U(r) is the effective interaction
potential between a lipid and a vesicle, and ρ(r) is the concentration of labeled lipids at
a distance r. As for the calculations using Kramers theory, we use min(dCC) to describe
interactions between a lipid and a vesicle in 3D space. U(r) is then the free energy profile as
a function of min(dCC) (Figure A.10). We set U(r) = 0 far away from a vesicle and shift the
peak of the free energy barrier to r = 50 nm, a typical radius of large unilamellar vesicles
(LUVs) used in experimental studies.98,101,103,201–203 Assuming that the concentration profile
of labeled lipids reaches steady state much faster than nB is varying, the time dependence
of the bulk concentration of labeled lipids, ρ̄, can be regarded as constant while calculating
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the steady-state profile ρ(r)/ρ̄. Assuming as well that equilibration within state B is fast,
the concentration of labeled lipids within a vesicle obeys equilibrium statistics,

ρ(rB) = n
(i)
B

e−βU(rB)

qB

(2.6)

qB =

∫
B

dr 4πr2e−βU(r),

where i indicates whether the vesicle was initially composed of labeled (i = 1) or unlabeled
(i = 2) lipids, rB is a particular location within a vesicle, qB is the partition function for
labeled lipids in a vesicle, and the integral is performed over the range of r designated as
state B. With these two assumptions, Eq. 2.5 integrates to

−J (i) = 4πD

(
ρ̄− n

(i)
B

qB

)[∫ rc

rB

dr
eβU(r)

r2
+

1

rc

]−1

, (2.7)

where rc is the distance beyond which U(r) is zero. Finally, the rate of mixing is obtained
by considering how the difference between the number of labeled lipids in type 1 vesicles and
in type 2 changes over time:

∂

∂t

(
n

(1)
B − n

(2)
B

)
= −kex

(
n

(1)
B − n

(2)
B

)
(2.8)

kex = 4πD

[
qB

(∫ rc

rB

dr
eβU(r)

r2
+

1

rc

)]−1

. (2.9)

Eq. 2.8 correctly reflects the fact that lipid exchange is a first order process.92–103 Both the
first term in the denominator of Eq. 2.9, which dominates when the free energy barrier is
very large, and the second term, which dominates when diffusion is rate limiting, are key to
the rate of lipid exchange.

The values of kex calculated with Eq. 2.9 for MARTINI DLPC and CHARMM36 DMPC
are compared to experimental values in Table 2.1. In the case of MARTINI DLPC, our

Table 2.1: Rates of lipid exchange.

kex (s−1)
Simulation Experiment98,101,103,201–203

MARTINI 1.2× 10−2 1.2× 10−3 − 4.3× 10−2

CHARMM36 5.7× 102 4.5× 10−5 − 6.6× 10−4

calculated kex is in agreement with experimental values. However, in the case of CHARMM36
DMPC, our calculated kex differs from experimental values by six orders of magnitude.
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Some discrepancy between experiment and simulation/theory is to be expected because
small errors in the free energy profile are magnified exponentially in kex. Yet, a six-order-of-
magnitude difference between theoretical and experimental rates corresponds to a significant
underestimation of the free energy barrier of approximately 12 kBT for CHARMM36. This
large discrepancy could be due to any number of the following reasons:

1. Sampling errors, which are within about 1 kBT throughout the free energy surface
(Figure A.9), may influence our rate calculations.

2. Inaccuracies in the force field may cause errors in the calculated free energy surface.
Based on reported differences between permeabilities and partition coefficients for wa-
ter, alkanes, and other small molecules obtained from simulations with CHARMM36
and from experiments,204,205 we estimate that errors due to the force field are ap-
proximately 1 − 2 kBT . We also repeated our calculations using a different force
field (Stockholm lipids, also known as Slipids206,207) as detailed in Appendix A. The
height of the free energy barrier is approximately 2 kBT higher for Slipids compared
to CHARMM36 (Figure A.16), resulting in an estimate of kex that still differs from
experiment by about five orders of magnitude.

3. The ionic strength of the solution may influence the free energy surface. Our simula-
tions are performed with neat water, but experimental systems are conducted in buffer,
which contains significant amounts of monovalent salts, such as NaCl or KCl.98,201–203
The addition of NaCl or KCl could salt out the free lipids in solution, increasing the
difference in free energy between state A and B. Additionally, monovalent cations bind
to the carbonyl region of phosphatidylcholine membranes, causing the thickness of the
bilayer and order of the tails to increase.208–210 These structural changes are expected
to increase the free energy barrier for hydrophobic contact formation.

4. The assumptions we made to obtain Eq. 2.7 may not be consistent with what oc-
curs in experimental systems, causing discrepancies between our calculated kex and
experimental measurements. In writing down a Smoluchowski equation (Eq. 2.5), we
assumed that lipids exchange between stable, spherical vesicles of uniform size. This
may be justified since vesicles composed of biological phospholipids are kinetically-
trapped, metastable states, which by definition do not quickly relax into equilibrium
lamellar structures.211–214 But, we lack the requisite knowledge about the processes and
associated timescales by which vesicles relax into equilibrium structures to confirm the
validity of this assumption. Other relaxation processes, such as uncatalyzed vesicle
fusion, which has an experimentally measured rate similar to lipid exchange,215 could
occur simultaneously. We note that lipid flip-flop, the process by which a lipid moves
between leaflets of the same bilayer,2,85 also has a rate measured under some experi-
mental conditions that is similar to the exchange rate.201,216 Unlike vesicle fusion, lipid
flip-flop is accounted for in experimental determination of lipid exchange rates.
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5. Similar issues of random error and unjustified kinetic assumptions could plague the
inference of exchange rates from laboratory measurements.

Conclusions

The breakage of hydrophobic contacts limits the rate of passive lipid transport. To reach
this conclusion, we investigated the elementary steps of lipid exchange, lipid insertion into
and desorption from a membrane, using molecular dynamics simulations of the coarse-
grained MARTINI and all-atom CHARMM36 lipid models. Results from MARTINI and
CHARMM36 provide consistent pictures; even with a coarse description of lipids and water,
the MARTINI model captures the essential features of lipid exchange exhibited in an all-
atom model. We discovered that the reaction coordinate for passive lipid exchange measures
the formation and breakage of hydrophobic lipid–membrane contacts, which gives rise to a
free energy barrier for both lipid desorption and insertion.

Thus, knowledge of the reaction coordinate resolves previous qualitative discrepancies
between simulations, which predicted that there is no barrier for lipid insertion, and ex-
periments, which indicated that there is a barrier. This barrier likely plays an important
biological role: A barrier for lipid insertion ensures that membrane compositions, which
are spateotemporally regulated to maintain cell homeostasis,2,88 are not easily disrupted.
We suspect that the formation of hydrophobic contacts may generally give rise to a free
energy barrier for transporting amphiphiles, including synthetic surfactants217 and lipopep-
tides,187,218 which is not resolved by monitoring the amphiphile’s center-of-mass displacement
from a membrane.

Additionally, knowledge of the reaction coordinate allowed us to formulate a Smolu-
chowski equation to model lipid exchange between vesicles, which occurs over time and
length scales inaccessible in MD simulations, and calculate the rate of lipid exchange. Dif-
ferences between our calculated lipid exchange rate and experimental measurements indicate
that considerable quantitative discrepancies between simulation and experiment still exist.
Future studies will be performed to better assess the sources of these discrepancies.

Finally, this knowledge provides a foundation to understand how catalysts of lipid ex-
change work at a molecular level. Lipid transfer proteins may efficiently extract lipids from
membranes by lowering the activation free energy barrier for hydrophobic contact breakage.
Interestingly, catalysts of vesicle fusion, the key step in vesicular lipid transport, may function
in a similar way. For example, carbon nanotubes aid vesicle fusion by facilitating the forma-
tion of hydrophobic contacts between two vesicles,219 and viral fusion peptides are thought
to catalyze fusion by promoting hydrophobic lipid tail protrusions and contacts.122 Thus,
common physical properties of lipids, specifically their hydrophobicity, may be exploited in
vivo to precisely control both non-vesicular and vesicular lipid transport.
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Chapter 3

Membrane Hydrophobicity Determines
the Activation Free Energy of Passive
Lipid Transport

Reproduced with permission from Rogers, J. R.; Espinoza Garcia, G.; Geissler, P. L. bioRxiv
doi: 10.1101/2021.03.17.435885.

Introduction

Over a thousand chemically diverse lipid species are heterogeneously distributed among
eukaryotic cell membranes.1,2 Even within a single membrane, compositional differences exist
between leaflets39 and laterally between nanodomains.40 Because the collective behavior of a
membrane’s constituent lipids determines its physical properties, such as fluidity, thickness,
and curvature, membrane compositions are under homeostatic control.75–77 One way that
proper lipid distributions are maintained is through non-vesicular transport of individual
lipids between membranes. Non-vesicular transport enables rapid and specific alteration of
membrane compositions, such as required to withstand cellular stress.85,88

Despite the recognized importance of lipid chemistry in determining membrane physi-
cal properties, how lipid physicochemical properties influence the dynamic processes that
maintain precise membrane compositions is poorly understood. In vivo, lipid transfer pro-
teins may be largely responsible for selectively transferring lipids recognized through specific
protein–lipid interactions. Lipid transfer proteins are also equipped with membrane bind-
ing domains or motifs that may enable them to target donor and acceptor membranes with
particular compositions and biophysical properties.87,105 As demonstrated by in vitro exper-
iments, lipids with subtle chemical differences are also passively exchanged between mem-
branes at different rates.95–101,103,161–163,202,220,221 For example, diacyl phosphatidylcholine
(PC) exchanges much more slowly than lysoPC, its single-tailed counterpart.98,100 Even the
addition of just two carbons to an acyl chain of a phospholipid reduces its exchange rate by
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roughly 10-fold.96,98–101,103,161,163,220,221 The physical properties and chemical composition of
the donor and acceptor membranes additionally influence the rate at which a lipid is passively
transported.95,96,98,101,161,202,221,222 For example, dimristoylphosphatidylcholine (DMPC) ex-
changes more rapidly between liquid-crystalline (Lα) phase vesicles than more ordered gel
(Lβ) phase ones.98,222 Therefore, the underlying free energy barriers for transport also depend
on a lipid’s chemical structure and properties of the donor and acceptor membranes.

During passive lipid transport, a lipid first desorbs from a donor membrane, diffuses
through solvent, and then inserts into an acceptor membrane. Due to the large free energetic
cost of disrupting a lipid’s local hydrophobic environment in a membrane, lipid desorption is
the rate-limiting step and, thus, determines the activation free energy of lipid transport. A
smaller free energy barrier exists for lipid insertion.97–99,161,223 In Chapter 2, we elucidated the
molecular origins of both free energy barriers by identifying the reaction coordinate for pas-
sive DMPC transport: The reaction coordinate measures the extent of hydrophobic contact
between the transferring DMPC and membrane. The free energy barrier for DMPC desorp-
tion reflects the thermodynamic cost of breaking hydrophobic lipid–membrane contacts, and
the free energy barrier for DMPC insertion reflects the cost of disrupting the membrane–
solvent interface during the formation of initial hydrophobic lipid–membrane contacts.223

Here, we systematically investigate how the free energy barriers for both lipid desorp-
tion and insertion vary with lipid chemistry and membrane phase. By focusing our analysis
on glycerophospholipids, we determine how the chemical diversity found among structural
lipids in eukaryotic lipidomes1,2 influences the rate of passive lipid transport. Since all glyc-
erophospholipids possess the same general physical properties, we assume at the outset that
the reaction coordinate for DMPC transport discovered in Chapter 2223 also captures the
salient features of transporting other glycerophospholipids. Working under this assumption
allows us to efficiently quantify the free energy barriers for transporting lipids between 14
different membranes using all-atom molecular dynamics (MD) simulations. The results re-
ported herein indicate that the biophysical mechanism of lipid transport is indeed invariant
to glycerophospholipid chemistry, supporting our initial assumption. We find that the ac-
tivation free energy for lipid transport increases as lipid acyl chain length increases and
as membrane order increases such that Lβ phase membranes pose the largest barriers for
lipid transport. Additionally, we find the activation free energy to be strongly dependent on
the identity of the lipid headgroups. Our results are consistent with in vitro measurements
and provide a biophysical rationale for previously unexplained experimental observations.
Furthermore, the atomistic detail provided by molecular simulations allows us to correlate
the free energy barriers for lipid desorption and insertion with the molecular properties of
a membrane and, thus, to identify the key physicochemical properties that control trans-
port rates: Membrane hydrophobicity, which can be tuned through subtle changes in lipid
chemistry and membrane order, determines the rate of passive lipid transport.



CHAPTER 3. MEMBRANE HYDROPHOBICITY DETERMINES THE ACTIVATION
FREE ENERGY OF PASSIVE LIPID TRANSPORT 43

Methods

The rate-limiting step of passive lipid transport – spontaneous desorption of a lipid from
a membrane – occurs over minutes to hours. As a result, calculating the transport rate
directly from unbiased MD simulations is computationally intractable for even one membrane
system. Instead, our approach to quantitatively assess how the rate of passive lipid transport
varies with lipid chemistry and membrane phase capitalizes on knowledge of the reaction
coordinate,223 which we assume to be the same for all lipids investigated.

Free energy profiles along order parameters other than the reaction coordinate generally
yield barriers that underestimate the rate-determining activation free energy, and therefore
do not provide sufficient thermodynamic information to accurately determine barrier-crossing
rates.139 A barrier can even be entirely absent from such a free energy profile, in which case
even a qualitative inference of the transition dynamics is erroneous. As shown in Chapter
2, lipid insertion is a prime example of this pathology: Free energy profiles calculated as
a function of the center of mass displacement of the lipid from the membrane incorrectly
suggest that lipid insertion is a barrier-less process.223

By calculating free energy profiles along the reaction coordinate, we efficiently determined
the rate-limiting free energy barrier for transporting 11 different lipids between membranes
composed of the same lipid species as the one being transported. For high melting temper-
ature lipids, free energy barriers for lipid desorption from and insertion into both Lα and Lβ
phase membranes were determined (Figure 3.1).

Simulated Systems

To systematically assess how the activation free energy of lipid transport depends on lipid
physicochemical properties, we simulated membrane systems composed of one of eleven
different glycerophospholipid species. This included a series of PC lipids with increas-
ing acyl chain lengths and various degrees of saturation (Figure 3.1C): 1,2-dimyristoyl-
sn-glycero-3-PC (DMPC), 1,2-dipalmitoyl-sn-glycero-3-PC (DPPC), 1-palmitoyl-2-oleoyl-
sn-glycero-3-PC (POPC), 1,2-dioleoyl-sn-glycero-3-PC (DOPC), 1-stearoyl-2-oleoyl-sn-glyc-
ero-3-PC (SOPC), and 1,2-distearoyl-sn-glycero-3-PC (DSPC). This also included a series
of 1-palmitoyl-2-oleoyl (PO) lipids with both zwitterionic and anionic headgroups (Figure
3.1D): PO-sn-glycero-3-phosphoethanolamine (POPE), POPC, PO-sn-glycero-3-phosphate
(POPA), PO-sn-glycero-3-phospho-L-serine (POPS), PO-sn-glycero-3-phospho-(1’-rac-glyc-
erol) (POPG), and PO-sn-glycero-3-phosphoinositol (POPI). Membranes composed of each
lipid were simulated in the Lα phase at 320 K with the exception of DSPC, which was simu-
lated at 350 K due to its higher melting temperature. Membranes composed of the saturated
lipids, DMPC, DPPC, and DSPC, were additionally simulated in the Lβ phase (Figure 3.1E)
at 275 K, 295 K, and 320 K, respectively.

For all lipid species, initial Lα phase bilayers of 128 lipids surrounded by 3.2 nm thick
slabs of solvent were built using the CHARMM-GUI Membrane Builder.181,182 Neutralizing
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Figure 3.1: Physicochemical properties that determine the rate of lipid transport were
assessed for a variety of lipid chemistries and phases by calculating the free energy
barriers for lipid desorption and insertion. (A) An illustrative free energy profile, calculated
as a function of the reaction coordinate, rLxS, for a Lα phase DMPC membrane, reveals barriers
(Continued on next page)
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Figure 3.1: (Continued from previous page)
for lipid desorption (∆Fdes) and lipid insertion (∆Fins). Representative configurations are shown
for negative values of rLxS (where the lipid is in solution) and for positive values of rLxS (where the
lipid is in the membrane). Solvent is not rendered. (B) rLxS is a linear combination of min(dCC)
(the minimum distance between any hydrophobic carbon of the lipid and of the closest membrane
leaflet) and nCC (and the number of close hydrophobic carbon contacts between the lipid and
closest leaflet). (C and D) Chemical structures of the lipids investigated with varied (C) acyl chain
lengths and degrees of saturation, and (D) headgroups. In (C), hydrophobic carbons are boxed.
(E) Representative configurations of membranes composed of DMPC, DPPC, or DSPC in both Lα
and Lβ phases.

sodium ions were added to each anionic membrane. The Lα phase DSPC bilayer was also
used to initialize a simulation at 320 K that yielded a Lβ phase bilayer within 100 ns. Con-
figurations of Lβ phase DPPC and DMPC bilayers were instead used to initialize simulations
at temperatures consistent with a Lβ phase to avoid these systems getting trapped in the
ripple phase upon cooling, which can occur in simulations of shorter chain lipids.224 The
initial Lβ phase DPPC bilayer was obtained from the LipidBook repository225 and also used
to construct an initial Lβ phase DMPC bilayer. The CHARMM36 force field177 was used to
model all lipids in combination with the CHARMM TIP3P water model.178

Molecular Dynamics Simulations

For each different lipid species and membrane phase, solvated bilayers were simulated to
characterize the physical properties of each membrane at equilibrium. All simulations were
performed in an isothermal–isobaric (NPT) ensemble using GROMACS 2019.166 The pres-
sure was maintained at 1 bar using semi-isotropic pressure coupling with an isothermal
compressibility of 4.5× 10 − 5 bar−1, and the temperature was maintained using the Nosé-
Hoover thermostat183,184 with a coupling time constant of 1 ps. The lipids and solvent were
coupled to separate thermostats. Dynamics were evolved using the leapfrog algorithm173

and a 2 fs time step. All bonds to hydrogen were constrained using the LINCS algorithm.185
Lennard-Jones forces were smoothly switched off between 0.8 and 1.2 nm. Coulomb interac-
tions were truncated at 1.2 nm, and long-ranged Coulomb interactions were calculated using
Particle Mesh Ewald (PME) summation.186 Neighbor lists were constructed using the Verlet
list cut-off scheme.175

Each initial bilayer configuration was first energy minimized using the steepest descent al-
gorithm and then equilibrated in two steps: The first 250 ps equilibration used the Berendsen
barostat169 to maintain the pressure with a coupling time constant of 2 ps, and the second
250 ps equilibration used the Parinello-Rahman barostat170 with a coupling time constant
of 5 ps. To allow the bilayers’ structures to fully equilibrate, runs of 50 ns for the Lα and
of 100 ns for the Lβ phase membranes were performed using the same parameters as the
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second equilibration step. The final configurations from these runs were used to construct
initial configurations for enhanced sampling simulations that had an additional lipid free
in solution. Simulations of each bilayer were extended for an additional 300 ns, which was
analyzed to calculate average properties of each membrane.

Free Energy Calculations

To determine the activation free energy for passively transporting a lipid between membranes,
we calculated free energy profiles as a function of the reaction coordinate (Figure 3.1A). As
determined in Chapter 2,223 the reaction coordinate, rLxS, is a linear combination of two order
parameters that measure hydrophobic lipid–membrane contacts between the transferring
lipid and closest membrane leaflet (Figure 3.1B). Both parameters are based on the collection
of distances d(i)

CC between a hydrophobic carbon of the lipid and a hydrophobic carbon of the
membrane, where i labels a particular carbon-carbon (CC) pair: (1) min(dCC) = mini d

(i)
CC

is the minimum of these CC distances; and (2) nCC is the number of CC pairs that satisfy
d

(i)
CC ≤ 1 nm. The hydrophobic carbons that are considered to calculate nCC for each lipid

are boxed in Figure 3.1C. In detail,

rLxS = α1 min(dCC) + α2nCC + α0 (3.1)

with coefficients α1 = −2.247 nm−1, α2 = 0.004828, and α0 = 0.6014 such that rLxS is
a unitless quantity. By construction, rLxS = 0 at the free energy barrier that separates
configurations with the transferring lipid fully in solution, which have negative values of
rLxS, and configurations with the transferring lipid fully in the membrane, which have positive
values of rLxS (Figure 3.1A). Regardless of its total number of hydrophobic carbons, a lipid
forms only a few hydrophobic contacts with the membrane at the free energy barrier.223
The largest free energy barrier therefore occurs at rLxS ≈ 0 for all lipid species investigated,
even though {αi} were determined specifically for DMPC. During all enhanced sampling
simulations, rLxS was calculated using a differentiable form for min(dCC),

γ

[
log

(∑
i

exp(γ/d
(i)
CC)

)]−1

(3.2)

with γ = 200 nm, and for nCC,

∑
i
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CC−d0
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)12 (3.3)

with d0 = 1 nm and r0 = 0.025 nm.
We performed umbrella sampling simulations189 using the PLUMED 2 patch190 for GRO-

MACS to obtain the free energy profiles ∆F (rLxS) for each system. To generate initial con-
figurations, a tagged lipid of the same species as the membrane lipids was randomly inserted
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into the solvent around each equilibrated bilayer such that the center of mass of the tagged
lipid and of the bilayer were separated by at least 3.2 nm along z, which is the axis per-
pendicular to the bilayer. Each system was then energy minimized and equilibrated using
the same two-step procedure as used for the bilayers with the addition of harmonic position
restraints on the z coordinates of the tagged lipid’s heavy atoms with a force constant of 500
kJ/mol/nm2. Next, to generate initial configurations for each umbrella sampling window, a
steered MD simulation was performed using a harmonic bias on rLxS with a spring constant
of 500 kJ/mol. Each umbrella sampling window was initialized with a configuration from
the steered MD simulation that has a value of rLxS within 0.1 of the window’s bias center.
Bias parameters used for umbrella sampling are tabulated in Table B.1. All windows were
run for 52 ns. After discarding 20 ns to account for equilibration, data from all windows was
combined with the weighted histogram analysis method (WHAM)191 to obtain ∆F (rLxS).
Error bars were calculated as the standard error of ∆F (rLxS) estimated from 4 independent
8 ns blocks. As indicated in Figure 3.1A, by setting ∆F (rLxS) to zero at the global free
energy minimum, the barriers for lipid desorption and insertion are defined as

∆Fdes = max
−3<rLxS<3

∆F (rLxS) (3.4)

∆Fins = ∆Fdes −∆F (rLxS = −3.45). (3.5)

Analysis of Membrane Properties

We analyzed trajectories of each bilayer system to assess how lipid chemistry and membrane
phase influence the molecular structure of a membrane, and to provide a reference for ra-
tionalizing activation free energies for passive lipid transport in terms of physicochemical
properties. In addition to the measures of hydrophobic lipid–membrane contacts defined
above, we computed the membrane–solvent interaction energy, area per lipid, area of in-
terfacial packing defects, membrane thickness, density profiles along the membrane normal,
carbon–deuterium order parameters of the lipid tails, and radial distribution functions that
characterize the intermolecular structure of the membrane–solvent interface. A combina-
tion of MDAnalysis188 and NumPy226 Python libraries in addition to GROMACS tools were
used to calculate all properties. The membrane–solvent interaction energy, Emem−solv, was
calculated as the sum of short-ranged Lennard-Jones and Coulomb interaction energy terms
between the membrane and solvent. The average area per lipid, 〈Alip〉, was calculated as
the area of the box in the xy plane divided by the total number of lipids in a leaflet. Lipid
packing defects, which are interfacial voids between polar lipid heads that expose aliphatic
atoms to solvent, were identified with PackMem.61 The packing defect size constant, πdefect,
was obtained by fitting the distribution of defect areas, Adefect, to a monoexponential decay,
P (Adefect) ∝ e−Adefect/πdefect . Fits were performed on P (Adefect) ≥ 10−4 and Adefect ≥ 1.5 nm2

for Lα phase membranes or Adefect ≥ 0.5 nm2 for Lβ phase membranes. Definitions of all
other properties are provided in Appendix B. All analysis was performed on the final 300 ns
of each bilayer trajectory split into 100 ns intervals for block averaging. Reported error is
the standard error calculated from the three 100 ns intervals.
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Results

For a series of 14 different single-component membranes, we quantified the free energy bar-
riers that limit the rates of lipid desorption from and insertion into a membrane (Figure
3.1). By calculating free energy profiles ∆F (rLxS) as a function of the reaction coordinate,
which captures the collective motion of molecules that advances a transition,136–139 we are
able to extract dynamical information from them. Lipid desorption, which limits the rate of
passive lipid transport, occurs when a lipid transitions from the membrane to the solvent,
breaking hydrophobic contacts with the membrane along the way. Lipid insertion, which
is the final step of lipid transfer, is the reverse process. The reaction coordinate for lipid
(L) transport via solvent (xS), rLxS, measures the breakage and formation of hydrophobic
lipid–membrane contacts through a linear combination of the minimum distance, min(dCC),
and number of close contacts, nCC, between hydrophobic carbons of the transferring lipid
and membrane (Figure 3.1B).223 We assume that rLxS serves as a good reaction coordinate
for all lipids investigated as long as all hydrophobic carbons of each lipid species (Figure
3.1C) are used to calculate nCC. rLxS describes progress from configurations with the lipid
in the membrane (which exhibit many hydrophobic lipid–membrane contacts and large pos-
itive values of rLxS) to configurations with the lipid in solution (which have very few if any
hydrophobic lipid–membrane contacts and negative values of rLxS). Correspondingly, the
rate of lipid desorption is limited by the free energy barrier ∆Fdes, which is the difference
between ∆F (rLxS ≈ 0) and the global free energy minimum found at large positive values
of rLxS; the rate of lipid insertion is limited by the free energy barrier ∆Fins, which is the
difference between ∆F (rLxS ≈ 0) and the free energy at very negative values of rLxS (Figure
3.1A).

Increasing Lipid Acyl Chain Length Increases the Desorption
Barrier

To investigate how the chemical structure of the lipid tails influences the rate of lipid trans-
port, we simulated a series of Lα phase membranes composed of PC lipids with acyl chain
lengths ranging from 14 to 18 carbons and degrees of unsaturation ranging from zero to two
(Figure 3.1C). This list included fully saturated lipids DMPC, DPPC, and DSPC, that only
differ in chain lengths by two carbons; lipids with acyl chains of 18 carbons each DOPC,
SOPC, and DSPC, that only differ by one degree of unsaturation; and the mixed-chain lipid
POPC, which has an sn1 chain of 16 carbons and sn2 chain of 18 carbons with one double
bond.

The free energy profiles of each lipid exhibit the same qualitative features (Figure 3.2A).
This commonality is consistent with our assumption that PC lipids with different tails share
the same biophysical mechanism of lipid transport, and that the generic transition pathway
is well characterized by rLxS. Importantly, all of the free energy profiles exhibit a barrier at
rLxS ≈ 0. However, the free energy profiles are quantitatively different.
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Figure 3.2: Increasing lipid acyl chain length increases the desorption barrier and does
not substantially influence the insertion barrier. (A) Free energy profiles as a function of
the reaction coordinate for Lα phase membranes composed of lipids with different tail chemistries.
Corresponding free energy barriers are shown for (B) lipid desorption and (C) lipid insertion.

As shown in Figure 3.2B, ∆Fdes varies significantly with lipid tail chemistry. Increasing
the total number of carbons in the acyl chains increases ∆Fdes. Lipids with longer tails
have more hydrophobic carbons (Figure 3.1C) that can form hydrophobic contacts with
surrounding lipids in the membrane (Table B.2). Consequently, more hydrophobic lipid–
membrane contacts must break for lipids with longer tails to desorb, explaining why (a)
∆Fdes increases for the fully saturated lipids in the order DMPC < DPPC < DSPC, and
(b) ∆Fdes increases for the unsaturated lipids that differ in the length of a single acyl chain
in the order POPC < SOPC. ∆Fdes is smaller for lipids with unsaturated bonds than for
fully saturated lipids with the same acyl chain lengths (Figure 3.2B); both DOPC and
SOPC have slightly reduced ∆Fdes compared to DSPC. Membranes composed of lipids with
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increased degrees of unsaturation are more disordered (Figure B.1), with decreased bilayer
thicknesses (Figure B.2 and Table B.2) and increased areas per lipid (Table B.2). As a
result, hydrophobic contacts in these membranes can be more easily disrupted during lipid
desorption.

∆Fins is substantially smaller than ∆Fdes, again demonstrating that lipid desorption
limits the rate of lipid transport. In contrast to ∆Fdes, ∆Fins does not vary significantly
with lipid tail chemistry (Figure 3.2C). During lipid insertion, a lipid must break through
the membrane’s interface to form an initial hydrophobic lipid–membrane contact. Since all
the lipids that we investigated with different tail chemistries have the same PC headgroup,
the interfacial structure and chemistry of the membranes are quite similar (Figure B.2-B.4).
Consequently, the free energetic cost for a lipid to cross the membrane’s interface during
insertion is roughly the same.

Lipid Headgroup Influences Both Desorption and Insertion Barriers

To investigate how the chemical structure of the lipid headgroups influence lipid transport
rates, we simulated a series of Lα phase membranes composed of PO lipids with both zwitte-
rionic and anionic headgroups (Figure 3.1D). This list included neutral lipids POPE, which
has a terminal amine group, and POPC, which has a bulkier choline group; and the anionic
lipids POPA and POPS, which have terminal acidic groups, and POPG and POPI, which
have terminal polar groups.

The free energy profiles of the PO lipids with different headgroups exhibit the same gen-
eral features as the profiles for the PC lipids, including a free energy barrier at rLxS ≈ 0
(Figure 3.3A). This commonality further supports our assumption that rLxS is a generic re-
action coordinate among glycerophospholipids. It additionally suggests that lipids with dif-
ferent headgroups and tails are transferred through the same biophysical mechanism, which
is characterized by the breakage and formation of hydrophobic lipid–membrane contacts.

Quantitative differences in ∆Fdes indicate that lipids with different headgroups are trans-
ported at different rates (Figure 3.3B). It is difficult to rationalize why certain headgroups
result in smaller or larger ∆Fdes based on their chemical structures alone. But, differences in
∆Fdes can be explained based on each headgroup’s influence on general physical properties of
a membrane,62,227,228 including lipid packing as measured by the average area per lipid (Ta-
ble B.2), membrane thickness (Figure B.2 and Table B.2), and acyl chain order parameters
(Figure B.1). Crucial to lipid transport, the headgroup impacts the number of hydrophobic
contacts that a lipid forms with surrounding lipids in the membrane. A greater number
of hydrophobic contacts between lipids in PE, PS, and PA membranes must be disrupted
on average than in PI, PC, and PG membranes (Table B.2) during lipid desorption. ∆Fdes

increases accordingly in the order POPG < POPC < POPI < POPA < POPS < POPE.
The interfacial structure and chemistry of a membrane is largely determined by the lipid

headgroup (Figure B.2-B.4). ∆Fins, which reflects the cost for a hydrophobic lipid tail to
cross the membrane’s interface, thus varies with lipid headgroup (Figure 3.3C). On average,
zwitterionic lipids have smaller ∆Fins compared to anionic lipids; when comparing lipids
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Figure 3.3: Lipid headgroup chemistry influences both desorption and insertion bar-
riers. (A) Free energy profiles as a function of the reaction coordinate for Lα phase membranes
composed of lipids with different headgroups. Corresponding free energy barriers are shown for (B)
lipid desorption and (C) lipid insertion.

with chemically similar headgroups (PE and PC; PA and PS; PG and PI), ∆Fins decreases
as the molecular size of the headgroup decreases. Decreasing the net charge of the membrane
surface and decreasing the surface density of polar functional groups both reduce the free
energetic cost of disrupting the membrane’s interfacial structure during the formation of an
initial hydrophobic contact with an incoming lipid.
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Increasing Membrane Order Increases Both Desorption and
Insertion Barriers

Finally, we investigated how the rate of lipid transport depends on membrane phase. We sim-
ulated Lβ phase membranes composed of the high melting temperature lipids DMPC, DPPC,
and DSPC. Because the other lipid species investigated have very low melting temperatures,
it would have been intractable to simulate them in a Lβ phase and, furthermore, they are
unlikely to be dominant components of highly ordered membrane domains at physiological
temperatures.

As with Lα phase membranes, the free energy profiles of Lβ phase membranes exhibit a
rate-limiting free energy barrier at rLxS ≈ 0, albeit broader and more rugged (Figure 3.4A).
Thus, for both Lα and Lβ phase membranes, the rate of lipid transport critically depends
on the breakage and formation of hydrophobic lipid–membrane contacts. In contrast to free
energy profiles of Lα phase membranes, profiles of Lβ phase membranes exhibit a local free
energy minimum at positive values of rLxS. At this local minimum, the transferring lipid
adopts a splayed configuration with one tail anchored in the membrane and the other ex-
posed to solvent (Figure 3.4A and B.5). While splayed intermediates have been observed
in trajectories of lipid insertion into Lα phase membranes,165,223 they are not locally ther-
modynamically stable in those cases. Given that splayed lipids form the transition state for
vesicle fusion,122,193–197 the enhanced stability we have observed in more ordered membranes
may help explain why ripple phase membranes fuse faster than Lα phase membranes in in
vitro assays229 and why many viral fusion proteins localize to lipid rafts.230–235 In Lβ phase
membranes, splayed lipids persist after hydrophobic contacts between a single lipid tail and
the membrane are broken since a second free energy barrier must be crossed to break con-
tacts with the other lipid tail. The free energy maximum at rLxS ≈ 0 ultimately limits the
rate of lipid transport; its value relative to the global minimum is reported as ∆Fdes below.

Both ∆Fdes and ∆Fins are substantially larger for Lβ compared to Lα phase membranes
(Figure 3.4B and 3.4C). Lipids in highly ordered and tightly packed membranes, epitomized
by Lβ phase membranes, form a greater number of hydrophobic contacts with surrounding
membrane lipids (Table B.2). More contacts must be broken for a lipid to desorb from a
Lβ phase membrane compared to a Lα phase membrane, thus increasing ∆Fdes. Consistent
with the trend observed for Lα phase membranes, Lβ phase membranes composed of lipids
with longer acyl chains also have larger ∆Fdes. The tight packing of lipids in Lβ compared
to Lα phase membranes also increases the density of polar lipid headgroups at the mem-
brane’s interface (Figure B.2). Consequently, the free energetic cost for a lipid to traverse
the membrane’s interface to form an initial hydrophobic lipid–membrane contact increases,
explaining the overall increase in ∆Fins for Lβ phase membranes. Lipids pack more tightly in
Lβ phase DPPC and DMPC membranes than in Lβ phase DSPC membranes, as indicated by
their smaller areas (Table B.2) and more ordered tails (Figure B.1). The resulting increased
surface density of headgroups further hinders the disruption of the membrane’s interfacial
structure during lipid insertion and, thus, ∆Fins increases accordingly in the order DSPC <
DMPC < DPPC for Lβ phase membranes.



CHAPTER 3. MEMBRANE HYDROPHOBICITY DETERMINES THE ACTIVATION
FREE ENERGY OF PASSIVE LIPID TRANSPORT 53

0
4
8

12
16
20

DMPC
DPPC

DSPC

DMPC
DPPC

DSPC

∆
F i

ns
(k

ca
l/m

ol
)

∆
F d

es
(k

ca
l/m

ol
)

∆
F

(k
ca

l/m
ol

)

C

B

A

rLxS = −3.5 rLxS = 18.2rLxS = 8.6

0
4
8

12
16
20

DMPC
DPPC

DSPC

DMPC
DPPC

DSPC

∆
F i

ns
(k

ca
l/m

ol
)

∆
F d

es
(k

ca
l/m

ol
)

∆
F

(k
ca

l/m
ol

)

C

B

A

rLxS = −3.5 rLxS = 18.2rLxS = 8.6

0
4
8

12
16
20

−4 0 4 8 12 16 20

∆
F i

ns
(k

ca
l/m

ol
)

∆
F d

es
(k

ca
l/m

ol
)

∆
F

(k
ca

l/m
ol

)

C

B

A

Lβ

rLxS = −3.5 rLxS = 18.2rLxS = 8.6

0
4
8

12
16
20

DMPC
DPPC

DSPC

DMPC
DPPC

DSPC

Lα Lβ

0
4
8

12
16
20

DMPC
DPPC

DSPC

DMPC
DPPC

DSPC

Lα Lβ

rLxS

DMPC
DPPC
DSPC

0
4
8

12
16
20

−4 0 4 8 12 16 20

Figure 3.4: Lβ phase membranes exhibit increased barriers for both desorption and
insertion compared to Lα phase membranes. (A) Free energy profiles as a function of the
reaction coordinate for Lβ phase membranes, together with configurations of DSPC representating
all three local minima of ∆F (rLxS): the lipid in solution, splayed lipid intermediate, and lipid in
the membrane. (B and C) Free energy barriers of (B) lipid desorption and (C) lipid insertion for
membranes simulated in both Lα and Lβ phases.

Desorption Barrier Depends on a Lipid’s Local Hydrophobic
Environment in a Membrane

We attribute the main free energetic cost for lipid desorption to the disruption of a lipid’s
locally hydrophobic environment in a membrane. A lipid’s hydrophobic environment is
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quantified by the average number of close hydrophobic contacts that a lipid in a membrane
makes with surrounding lipids, 〈nCC〉mem. As shown in Figure 3.5, a general trend between
〈nCC〉mem and ∆Fdes exists: As 〈nCC〉mem increases, ∆Fdes increases since more hydrophobic
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Figure 3.5: The barrier for desorption of a lipid is determined by its local hydrophobic
membrane environment, which we quantify by the average number of close hydrophobic
contacts between membrane lipids, 〈nCC〉mem. Black line is the best linear fit: ∆Fdes =
0.0058〈nCC〉mem + 0.53. Gray region indicates 95% confidence interval.

contacts must be broken to displace a lipid from the membrane. ∆Fdes is roughly linearly
correlated with 〈nCC〉mem, indicating that the cost of breaking each hydrophobic contact is
approximately the same (roughly 5.8 cal/mol/contact). Because 〈nCC〉mem is sensitive to
both lipid chemistry and membrane phase, the observations made above about how lipid tail
chemistry, headgroup, and membrane phase individually affect ∆Fdes are all attributable to
differences in 〈nCC〉mem. In other words, 〈nCC〉mem integrates the contributions to ∆Fdes from
all chemical and physical features of a membrane. Differences in ∆Fdes between membranes
that vary in both lipid chemistry and membrane phase, for example a Lβ phase DMPC
membrane compared to a Lα phase POPE membrane, are indeed explained by differences
in 〈nCC〉mem. Thus, the hydrophobicity of a membrane’s core, as measured by 〈nCC〉mem,
predominantly determines ∆Fdes and, consequently, the rate of passive lipid transport.

Insertion Barrier Depends on a Membrane’s Interfacial
Hydrophobicity

We attribute the main free energetic cost for lipid insertion to the disruption of the mem-
brane’s stratified chemical organization when the lipid breaches the membrane’s interface to
form an initial hydrophobic lipid–membrane contact. The price of such a “mixing” of lipid
headgroups and tails is greatest when the two groups are most chemically dissimilar; there is
more resistance for lipid insertion into membranes with more hydrophilic surfaces. However,
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this picture is complicated by the fact that a membrane’s interface is chemically heteroge-
neous at the molecular scale, exhibiting regions dominated by headgroups and regions where
tails are partially exposed to solvent. Contributions from both types of regions must be
considered to explain all observed variations in ∆Fins. To compare different membranes,
we characterize the net chemical character of their surfaces by an interfacial hydrophobicity.
(The textbook description of lipid membranes’ surfaces is strongly hydrophilic, corresponding
to very low interfacial hydrophobicity.) We quantify contributions from the headgroups by
the average membrane–solvent interaction energy, 〈Emem−solv〉, and we consider membranes
with less favorable 〈Emem−solv〉 to have more hydrophobic interfaces. As shown in Figure
3.6A, for membranes with different headgroups, ∆Fins decreases as 〈Emem−solv〉 becomes less
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Ādefect

〈Emem−solv〉 × 104 (kcal/mol)

∆
F i

ns
(k

ca
l/m

ol
)

∆
F i

ns
(k

ca
l/m

ol
)

B

A
PO lipids

R2 = 0.88

2
3
4
5
6
7
8
9

0.05 0.1 0.15 0.2 0.25

DMPC
DPPC

POPC DOPC
SOPC
DSPC

DPPC, Lβ

DSPC, Lβ

DMPC, Lβ

2

3

4

5

−2 −1.75 −1.5 −1.25 −1

POPC

POPE

POPA

POPG

POPS

POPI

DSPC, Lβ

DMPC, Lβ

Figure 3.6: The barrier for lipid insertion is determined by a membrane’s interfacial
hydrophobicity, which we quantify by the average membrane–solvent interaction energy
(〈Emem−solv〉) and the relative area of membrane packing defects (Ādefect). (A) Changes
in ∆Fins due to lipid headgroup chemistry are attributed to differences in 〈Emem−solv〉. Black line
is the best linear fit: ∆Fins = −0.00030〈Emem−solv〉 − 1.2. (B) Changes in ∆Fins due to lipid tail
chemistry and membrane phase are attributed to differences in Ādefect. Black line is the best linear
fit: ∆Fins = −22.9Ādefect + 7.8. Gray regions indicate 95% confidence intervals.

favorable since the cost to compromise interactions between the headgroups and solvent dur-
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ing lipid insertion is reduced. For membranes with the same headgroup, differences in ∆Fins

arise from variations in the contributions to the interfacial hydrophobicity from regions where
lipid tails are partially exposed. Because these regions result from lipid packing defects, we
quantify these contributions by the relative area of packing defects, Ādefect, defined as the
ratio of the characteristic packing defect size πdefect

61 (Figure B.6) to the average area of a
lipid in the membrane, 〈Alip〉. We consider membranes with increased Ādefect to have more
hydrophobic interfaces. As shown in Figure 3.6B, for membranes with the same headgroup
but different tails or phases, ∆Fins decreases as Ādefect increases since the cost to locally
expose the membrane’s hydrophobic core during lipid insertion is reduced.

Overall, a membrane’s interfacial hydrophobicity determines ∆Fins, and, consequently,
the rate of lipid insertion. To identify a relationship between ∆Fins and quantitative met-
rics of a membrane’s interfacial hydrophobicity, we have considered variations due to lipid
headgroup, which modulate interfacial hydrophobicity through changes in 〈Emem−solv〉, sep-
arately from variations due to tail chemistry and membrane phase, which tune interfacial
hydrophobicity through changes in Ādefect. More sophisticated and precise measures of a
membrane’s interfacial hydrophobicity, such as have been developed to characterize protein
surfaces,236–239 may abrogate the need to consider contributions from headgroups separately
from lipid tails and membrane phase. However, the two simplistic measures that we iden-
tify, 〈Emem−solv〉 and Ādefect, reasonably explain variations in ∆Fins for different membranes
relative to the errors in calculated values of ∆Fins.

Discussion

In order to decipher the physicochemical properties that control the rate of passive lipid
transport between membranes, we systematically investigated how the free energy barriers
for lipid desorption and insertion vary with lipid chemistry and membrane phase. Specifi-
cally, we quantified the barriers for transporting glycerophospholipids, the major structural
component of cell membranes,1,2 with a diversity of acyl chains and headgroups. To do so
efficiently, we calculated free energy profiles as a function of the reaction coordinate rLxS,
which we first identified for DMPC transport between Lα phase membranes in Chapter 2223

and here assumed applicable to similar systems. All of the free energy profiles exhibit a rate-
limiting barrier at nearly the same value of the reaction coordinate (Figure 3.2A, 3.3A, and
3.4A), supporting our assumption that rLxS is a good reaction coordinate for all glycerophos-
pholipids; regardless of glycerophospholipid chemistry or membrane phase, the dynamics of
lipid transport are best described in terms of the breakage and formation of hydrophobic
lipid–membrane contacts. In all cases, the free energy barrier for lipid desorption is at least
twice the barrier for lipid insertion, confirming that desorption limits the rate of lipid trans-
port and that the free energy barrier for desorption is equivalent to the activation free energy
barrier for lipid transport.

We have revealed a correlation between the activation free energy and the hydrophobicity
of a lipid’s local membrane environment, as measured by the average number of close hy-
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drophobic contacts that a lipid forms with surrounding membrane lipids, 〈nCC〉mem (Figure
3.5). 〈nCC〉mem, and hence the activation free energy, is sensitive to subtle changes in a mem-
brane’s chemistry and structure. In general, lipids form more hydrophobic contacts in thick,
tightly packed, and ordered membranes (Figure B.7). Membranes with these characteristics
are typically composed of lipids with long, saturated acyl chains, lipids with headgroups that
facilitate tight lipid packing, or lipids in ordered phases. Indeed, lipids with long, saturated
acyl chains exhibit increased activation free energies (Figure 3.2B) and slower experimentally
measured transfer rates95–101,103,161–163,220,221 than counterparts with unsaturated and shorter
acyl chains; conical lipids with smaller headgroups that pack well, for example PE,47,62,240
also have increased activation free energies (Figure 3.3B) and slower experimentally mea-
sured transfer rates95,163 compared to cylindrical lipids with bulkier headgroups such as PC;
and lipids in highly ordered Lβ phase membranes exhibit the largest activation free energies
(Figure 3.4B) and slowest experimentally measured transfer rates.96,98,222

We report an average increase in the activation free energy of 0.62 kcal/mol per methy-
lene unit added to the tails of a saturated lipid due to an average increase in 〈nCC〉mem of 103
contacts per methylene unit. Previous in vitro experiments have demonstrated that lipid
transfer rates decrease with increasing acyl chain length,95–101,103,161–163,220,221 estimating an
increase in the activation free energy of 0.32 − 0.65 kcal/mol per methylene unit.163,220,221
Our results are in quantitative agreement with these values. Furthermore, our finding that
the activation free energy depends on the hydrophobic environment around the desorbing
lipid may explain why different values are reported from experiments using different donor
membranes. Changing the desorbing lipid’s tail length alters the average number of hy-
drophobic contacts it makes with surrounding lipids, 〈nCC〉, and correspondingly alters its
activation free energy. However, if donor membranes contain components capable of regulat-
ing 〈nCC〉mem, then desorbing lipids with different tail lengths may not exhibit substantially
different 〈nCC〉, resulting in similar activation free energies. Proteins, for example, could
act as such regulating components. Consistent with this hypothesis, smaller changes in the
activation free energy were determined from experiments that utilized model high-density
lipoproteins (HDL) composed of apolipoprotein A-I (apo A-I) and POPC as donors220 com-
pared to those using large unilamellar vesicles composed of only PC lipids.163,221 Apo A-I
wraps around lipids in model HDL to create a discoidal morphology,241 suggesting that
it may regulate 〈nCC〉mem by controlling the membrane’s overall structure. Alternatively,
changes in 〈nCC〉mem could be directly compensated by specific protein–lipid interactions.

We report an average increase of 4.3 kcal/mol in the activation free energy for a Lβ
phase membrane compared to a Lα one due to an average increase in 〈nCC〉mem of 762
contacts. Due to the exponential dependence of the rate on the activation free energy,
this increase corresponds to a lipid transport rate that is roughly 3 orders of magnitude
slower for Lβ compared to Lα phase membranes. In agreement with our results, in vitro
assays have demonstrated that lipid transport between Lβ phase membranes is substantially
slowed compared to transport between Lα phase membranes, with an increased activation
free energy of 1.6− 12.7 kcal/mol.96,98,222 We suggest that the wide range of activation free
energies reported likely reflects differences in the hydrophobicity of the donor membranes
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used in the experiments. The smallest difference is reported for lipid transport between highly
curved small unilamellar vesicles,98 which are more disordered than planar membranes.242,243
Thus, they likely have reduced 〈nCC〉mem, and correspondingly reduced activation free energy,
compared to other experimental Lβ phase systems.96,222

We report an increase in the activation free energy for lipids with different headgroups
in the order PG < PC < PA < PS < PE due to an increase in 〈nCC〉mem in the same order.
We cannot directly compare our results to experiments since significantly different donor
membrane compositions were used. While we used donor membranes composed of the same
lipid species as the one being transferred, donor membranes composed of predominantly PC
lipids were used in experiments.95,103,162,163 Nevertheless, we note that in multiple experi-
ments, PE lipids are transferred at slower rates than PC lipids,95,163 consistent with our
results. However, no consensus ranking of transfer rates for lipids with other headgroups
has been reached based on experiments.95,103,162,163 Results from even the same experimental
setup have often been difficult to interpret,95,103,163 most likely because no clear trend in
the activation energy can be identified based on the chemical structure of the headgroup
alone. Our finding that the activation free energy depends on 〈nCC〉mem, which depends on
lipid headgroup chemistry in a nontrivial way, may help guide the design of experiments to
conclusively assess the impact of headgroup on transfer rates.

In contrast to the activation free energy barrier for lipid desorption, trends in the free
energy barrier for lipid insertion can be explained by chemical features of the headgroup,
especially net charge, presence of terminal acidic groups, and molecular size (Figure 3.3C).
Changing any of these chemical features modulates the membrane’s interfacial hydropho-
bicity by altering the strength of membrane–solvent interactions (Table B.2). A mem-
brane’s interfacial hydrophobicity can also be tuned by changing lipid tail chemistry or
membrane phase so that packing defects expose more of the hydrophobic core (Figure B.6
and Table B.2). Membranes with increasingly hydrophobic surfaces, characterized by weaker
headgroup–solvent interactions and larger packing defects, exhibit reduced insertion free en-
ergy barriers (Figure 3.6) and correspondingly faster lipid insertion rates. Unfortunately, the
rate of lipid insertion is too fast to monitor with standard experimental techniques, so we
cannot compare our calculated free energy barriers for insertion to experimental ones. Nev-
ertheless, one of the parameters that we find controls the rate of lipid insertion is similar to
the membrane property that is predictive of experimentally measured rates of nanoparticle
insertion into PC membranes: Nanoparticle insertion rates depend on the prevalence of low
density areas at the membrane surface, which are physically similar to packing defects.244
Given this similarity, we suspect that accounting for changes in a membrane’s interfacial hy-
drophobicity through additional measures such as the membrane–solvent interaction energy
may be necessary to predict nanoparticle insertion rates into more complex membranes that
contain lipids with diverse headgroups and better mimic cell membrane compositions.

In summary, membrane hydrophobicity determines the rate of passive lipid transport.
Our discovery that the rate of lipid transport depends on the physicochemical properties of
the donor membrane within 1 nm of the transferring lipid suggests that transport rates can
be regulated, for example, by membrane proteins and local changes in membrane composi-
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tion that alter the hydrophobicity of the membrane core. Sequestering lipids into ordered,
tightly packed lipid rafts,40 where a significant expenditure of energy is required to extract
a lipid, may create pools of non-exchangeable lipids within a single membrane. Membrane
physicochemical properties vary even more substantially between organelles, creating two
cell membrane territories: Loose lipid packing and minimally charged membrane surfaces
define the territory found among membranes of the early secretory pathway, whereas tight
lipid packing and highly anionic membrane surfaces define the territory found among late
secretory membranes.47,77 Given that tight lipid packing increases the hydrophobicity of the
membrane core and that stronger membrane electrostatics decrease interfacial hydrophobic-
ity, we suggest that the free energy barriers for lipid transport may transition from low to
high between these two territories.

Within cells, lipid transfer proteins are largely responsible for specifically transporting
individual lipids between membranes.85,87,104 Lipid transfer proteins may generally enhance
the rate of lipid desorption by disrupting the hydrophobic environment around a target
lipid. Those that transport lipids from membranes with highly hydrophobic cores, such as
may be found among late secretory membranes, may have acquired additional mechanisms
to overcome increased activation free energies. Similarly, lipid transfer proteins may aid
lipid insertion by increasing the surface hydrophobicity of the membrane. For example,
multiple lipid transfer proteins contain basic surface regions that enhance binding to an-
ionic membranes110,114,245 and that could also compensate for the disruption of especially
favorable interactions between solvent and anionic lipids during insertion. Thus, the mem-
brane physicochemical properties that control the rate of passive lipid transport may also be
exploited to direct non-vesicular lipid traffic via lipid transfer proteins.
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Chapter 4

Ceramide-1-phosphate Transfer Protein
Enhances Lipid Transport by Disrupting
Hydrophobic Lipid–Membrane Contacts

Introduction

Bioactive sphingolipids play critical roles in most cellular processes, including cell growth,
differentiation, migration, and survival.15,246 Normal biological function requires spatiotem-
poral regulation of sphingolipid levels, and altered distributions are linked to the pathophys-
iology of numerous diseases, including cancers, inflammatory diseases, metabolic syndromes,
and neurological disorders.15–17 Precise sphingolipid distributions are maintained, in part,
through non-vesicular transport of specific lipids by lipid transfer proteins.85,88 One such pro-
tein, ceramide-1-phosphate transfer protein (CPTP) transports ceramide-1-phosphate (C1P)
from the trans-Golgi to target membranes.247 Elevated levels of C1P in the trans-Golgi over-
stimulate the production of pro-inflammatory eicosanoids by group IVA cytosolic phospho-
lipase A2. By selectively trafficking C1P from the trans-Golgi, CPTP modulates eicosanoid
production and, thus, helps reduce the risk of chronic inflammation.247,248

CPTP acts as a cytosolic shuttle that transports C1P from the trans-Golgi membrane to
nuclear and plasma membranes.247 Experiments suggest that lipid transfer occurs through
the following steps: CPTP binds the donor membrane in its apo form to initiate a transfer
event. CPTP then extracts C1P from the membrane. Once C1P is housed inside its hy-
drophobic cavity, CPTP unbinds from the membrane and diffuses through solution to reach
an acceptor membrane. After the C1P-bound form binds the acceptor membrane, C1P exits
the hydrophobic cavity and inserts into the membrane. Unbinding of CPTP, which is now
in its apo form, restarts the transfer cycle.

Structural and biochemical studies have elucidated further details about how CPTP func-
tions as a C1P transfer protein.247 CPTP has a two-layered, all α-helical topology that is
homologous with the glycolipid transfer protein fold. At the interior of its sandwich-like
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structure is a hydrophobic cavity that shields the hydrophobic tails of a C1P from unfavor-
able exposure to the cytosol during transport. Although the hydrophobic cavity adaptively
expands to accommodate C1P species with acyl chain lengths ranging from 2 to 18 car-
bons, CPTP preferentially transports species with chain lengths of 16 or 18 carbons. CPTP
selectively targets C1P by recognizing its phosphate headgroup through a triad of cationic
residues located within a positively-charged surface cavity at the entrance to the hydrophobic
cavity and by also recognizing its acyl-amide moiety through a bifurcated hydrogen bond.
Based on crystallographic measurements, a cleft-like gating mechanism has been proposed
to facilitate C1P entry into and exit from the hydrophobic cavity. Furthermore, the observa-
tion of two C1P-binding modes suggests that C1P entry and exit occur through a two-step
mechanism whereby the acyl chain enters into the cavity before the sphingosine during entry
and leaves after the sphingosine during exit.

However, because structures were solved in the absence of a membrane in the aforemen-
tioned studies, it is unclear if CPTP uses the proposed mechanism to efficiently extract (or
insert) C1P from (or into) a membrane. Furthermore, how CPTP overcomes the signifi-
cant free energy barrier for passive lipid desorption from a membrane, which limits the rate
of passive lipid transport,97–99,161,223 is unknown. In Chapters 2 and 3, we demonstrated
that the free energy barrier for passive lipid desorption reflects the thermodynamic cost of
breaking hydrophobic lipid–membrane contacts,223 and that it can be lowered by decreasing
the hydrophobicity of the transferring lipid’s local membrane environment.249 Thus, we hy-
pothesize that CPTP rapidly extracts C1P from a membrane by disrupting C1P–membrane
hydrophobic contacts, thereby lowering the free energy barrier for lipid desorption and cat-
alyzing C1P transport.

To test this hypothesis, we investigate the molecular mechanism by which CPTP extracts
and inserts C1P into a membrane using molecular dynamics simulations. Significant struc-
tural differences between the apo and C1P-bound forms, observed in both published crystal
structures247 and our solution simulations, indicate that conformational changes are required
to accommodate C1P in CPTP’s hydrophobic cavity. We find that CPTP exhibits a single
favorable membrane binding pose, which aptly positions the entrance to its hydrophobic
cavity at the membrane interface. Membrane binding promotes rearrangements of CPTP’s
helices much like that expected for a cleft-like gating mechanism to facilitate C1P entry and
exit into its hydrophobic cavity. When closed, a gating helix anchors the apo form deeply
into the membrane through strong electrostatic interactions. Furthermore, the apo form
substantially disrupts a lipid’s local hydrophobic environment in the membrane below. As
a result, CPTP lowers the free energy barrier for C1P extraction. Uptake of C1P may then
trigger conformational changes that prompt membrane unbinding through an electrostatic
switching mechanism such as used by other lipid transfer proteins.109 Our proposed molecu-
lar mechanism not only sheds light on how CPTP efficiently traffics C1P between membranes
but also offers explanations for previous experimental findings. Significantly, we provide, to
our knowledge, the first biophysical characterization of an essential catalytic step of all lipid
transfer proteins at atomic resolution.



CHAPTER 4. CERAMIDE-1-PHOSPHATE TRANSFER PROTEIN ENHANCES LIPID
TRANSPORT BY DISRUPTING HYDROPHOBIC LIPID–MEMBRANE CONTACTS 62

Results and Discussion

We use a multiscale approach that builds upon previous structural studies and our earlier
studies of passive lipid transport to efficiently and accurately characterize key elementary
steps of C1P transport by CPTP. Specifically, we model the transport of C1P with a sat-
urated, 16-carbon acyl chain, which is CPTP’s most likely in vivo substrate,247 between
membranes composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-PC (POPC) lipids, which have
been used in experimental transfer assays,250 by human CPTP. We use atomistic simulations
to resolve conformational changes that occur upon membrane binding and to capture C1P
extraction from and insertion into a membrane, whereas we use coarse-grained simulations
to capture membrane binding events, which require multiple microsecond-long simulations.

CPTP’s Hydrophobic Cavity Must Expand to Accommodate C1P

First, we examine how the structures of the apo and C1P-bound forms of CPTP differ in
solution. To initialize solution simulations, we use the most complete crystal structure of
CPTP with C1P fully bound in its hydrophobic cavity (PDB 4K85). Final structures from
our solution simulations of the apo and C1P-bound forms are shown in Figures 4.1A-4.1C.
Upon artificial removal of C1P, CPTP’s helices reorient themselves, closing off the entrance
to the hydrophobic cavity and barring the entry of solvent molecules. In particular, helices
α2 and α4, which are located on opposite layers of CPTP’s sandwich topology, angle into
the hydrophobic cavity and fill the space otherwise occupied by C1P (Figure 4.1A). Due
to the closer packing of multiple helices in the apo form, the hydrophobic cavity collapses
(Figure 4.1B and 4.1C). The total volume of the hydrophobic cavity in the apo form is on
average only half the volume of the cavity in the C1P-bound form (Figure 4.1D). Consistent
with conclusions made based on crystal structures,247 our results indicate that CPTP must
undergo significant conformational changes to accommodate C1P in its hydrophobic cavity.

Membrane Binding Poises CPTP to Extract C1P

We next characterize how CPTP, in both apo and C1P-bound forms, binds to a POPC
membrane. To observe spontaneous binding events, we performed coarse-grained simula-
tions. While our coarse-grained model accurately recapitulates the structure and internal
dynamics of CPTP observed in our atomistic solution simulations (Figures C.1 and C.2),
it cannot capture conformational changes that may occur upon membrane binding. Thus,
we converted membrane-bound, coarse-grained configurations back into all-atom represen-
tations in order to resolve conformational changes that may result from CPTP–membrane
interactions.

A single binding pose is observed in coarse-grained simulations, and CPTP remains fa-
vorably bound to the membrane in the same overall pose in all-atom simulations (Figure
4.2). In both apo and C1P-bound forms, the loop between helices α1 and α2 and helix α6
inserts into the membrane’s hydrophobic core (Figure 4.2A). A combination of hydrophobic
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Figure 4.1: In solution, conformational differences between the apo and C1P-bound
forms of CPTP tune the accessibility and volume of the hydrophobic cavity. (A) Super-
imposed structures of the apo form (cyan) and C1P-bound form (magenta) obtained from solution-
phase simulations are shown from three views. Structures were aligned to minimize the root-mean-
square deviation (RMSD) of Cα atoms of helix α6. α-helices (αN and α1−α8) are numbered from
amino (N) to carboxy (C) termini. C1P is rendered as van der Waals spheres and colored orange. (B
and C) Residues lining the hydrophobic cavity are shown as a gray surface on the (B) apo and (C)
C1P-bound structures. (D) Distributions of the total volume of the hydrophobic cavity, including
volume occupied by C1P, during solution simulations of the apo and C1P-bound forms.

and aromatic residues, specifically I49, F50, and F52 of the α1-α2 loop and W152, V153, and
V160 of helix α6, anchor CPTP to the membrane as predicted from cystral structures.247
When bound to the membrane, the entrance to CPTP’s hydrophobic cavity is aptly posi-
tioned at the membrane–solvent interface (Figure 4.2B and 4.2C). Additionally, the cleft
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Figure 4.2: Both apo and C1P-bound forms of CPTP bind a membrane poised to
extract or insert C1P. (A) Average insertion depth of each residue measured relative to the
average position of lipid phosphate groups (black line) from coarse-grained (CG) and all-atom (AA)
simulations. The gray region highlights the location of the membrane’s hydrophobic core. CPTP’s
secondary structure is schematically illustrated above with helices represented as rectangles and
unstructured loop regions as lines. (B and C) Representative configurations of the (B) apo form
and (C) C1P-bound form of CPTP bound to a POPC membrane for both coarse-grained and all-
atom representations. The entrance to CPTP’s hydrophobic cavity is indicated with an orange
arrow. C1P is rendered as van der Waals spheres and colored orange.

between CPTP’s two α-helical layers faces into the membrane’s hydrophobic core, providing
an avenue for C1P to move from the membrane into CPTP’s hydrophobic cavity without
exposing its tails to solvent.

Subtle differences in the binding pose of the apo form observed in all-atom versus coarse-
grained representations (Figures 4.2A and 4.2B) suggest that conformational changes may
be coupled to membrane binding. Indeed, membrane binding promotes a widening of the
entrance to CPTP’s hydrophobic cavity. Helix α2, which partially gates the entrance to
the hydrophobic cavity (Figure 4.1A), is rotated outward in membrane bound structures of
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both the apo and C1P-bound forms compared to their respective solution structures (Figure
4.3A). We quantify this conformational change by the angle θα2 between helix α2 and the
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Figure 4.3: Conformational changes that promote the opening of gating helix α2 are
coupled to membrane binding. (A) Orientation of helix α2 relative to helix α6 is highlighted
on structures of both the apo and C1P-bound forms in both solution and bound to the membrane.
Both helices are outlined by a gray cylinder. C1P is rendered as van der Waals spheres and colored
orange. (B) Definition of angle θα2 used to characterize gate opening. θα2 is the angle between the
helical axis of α2 and a vector normal to the plane of the top surface of helix α6 when CPTP is
membrane bound. This plane nearly corresponds to the location of the membrane–solvent interface
when CPTP is membrane bound. (C) Distributions of θα2 from all-atom simulations of the apo and
C1P-bound forms of CPTP both in solution and bound to the membrane.

axis normal to the membrane when CPTP is bound. In order to calculate θα2 for both
solution and membrane-bound structures, we define the latter vector as the vector normal to
the plane that contains the top surface of helix α6 when CPTP is membrane bound (Figure
4.3B). We use helix α6 as an internal reference point since helix α6 is approximately parallel
to the membrane surface when CPTP is membrane bound (Figure 4.2) and has a rather
rigid structure. A decrease in θα2 indicates opening of the gate created by helix α2, whereas
an increase in θα2 indicates closing. As shown in Figure 4.3C, membrane bound structures
of CPTP indeed have reduced θα2 compared to solution structures on average. By locking
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down the gate created by helix α2 when in solution, the hydrophobic cavity, and any lipid
inside, remains sealed off from solvent. Widening of the entrance to the hydrophobic cavity
upon membrane binding then readies CPTP to extract or insert C1P and is consistent with
the proposed cleft-like gating mechanism for C1P entry and exit into the hydrophobic cavity.

Both the apo and C1P-bound forms of CPTP bind the membrane in the same overall
pose and exhibit conformational changes of similar magnitude upon binding; however, such
conformational changes enable the apo form to insert more deeply into the membrane’s hy-
drophobic core (Figure 4.2A and 4.2B). In the apo form, a slight widening of the entrance to
the hydrophobic cavity brings helix α2 closer to the membrane surface. As a result, energet-
ically favorable interactions between residues on helix α2 and the membrane are present in
the apo form but not the C1P-bound form (Figure 4.4). In particular, two positively charged
residues, R62 and R66, form significantly favorable electrostatic interactions with the mem-
brane. By anchoring helix α2 to the membrane, such favorable interactions may facilitate
the opening of the gate created by helix α2 in the apo form. Although our simulated mem-
branes are composed of zwitterionic POPC lipids, the presence of anionic lipids may further
strengthen such interactions and thereby facilitate gate opening. Consistent with this idea,
including anionic phosphatidylserine lipids in donor membranes has been shown to enhance
C1P transport in in vitro assays.250 Complete opening of the gate created by helix α2 to
accommodate C1P inside CPTP’s hydrophobic cavity breaks these favorable electrostatic
interactions with membrane. Thus, gate opening may facilitate membrane unbinding in a
manner reminiscent of the electrostatic switching mechanism used by other cytosolic lipid
transfer proteins that have well-defined lids to their hydrophobic cavities.109

When bound to the membrane, CPTP also influences the molecular structure and physi-
cal properties of the membrane. Especially relevant to lipid transport is how CPTP impacts
nearby lipids’ hydrophobic membrane environments. In Chapter 3, we demonstrated that
the activation free energy for passive lipid transport correlates with the average number of
hydrophobic contacts that a lipid makes with surrounding membrane lipids, 〈nCC〉mem. As
〈nCC〉mem decreases, the rate of passive lipid desorption from a membrane increases.249 Fig-
ure 4.5 demonstrates how the apo and C1P-bound forms of CPTP impact 〈nCC〉mem. The
C1P-bound form only minimally reduces the number of hydrophobic contacts that nearby
lipids make with other membrane lipids. In contrast, the apo form significantly disrupts hy-
drophobic contacts that lipids within roughly 1−2 nm of its binding location make with other
membrane lipids. The membrane lipids closest to the apo form of CPTP make only 1,650
contacts with other membrane lipids, whereas when CPTP is not bound to the membrane,
POPC lipids form an average of 2,340 contacts with each other.249 Based on the relation-
ship between 〈nCC〉mem and the free energy barrier for passive lipid desorption provided in
Chapter 3 (Figure 3.5),249 this reduction in 〈nCC〉mem by 690 contacts corresponds to a 4
kcal/mol decrease in the free energy barrier. Thus, the apo form of CPTP may efficiently
extract C1P by reducing the barrier for hydrophobic C1P–membrane contact breakage.
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Figure 4.4: Favorable electrostatic interactions anchor the apo form deeply into the
membrane. (A) Average interaction energy between each protein residue and the membrane,
〈ECPTP−mem〉, from all-atom simulations of the apo and C1P-bound forms of CPTP bound to
a POPC membrane. CPTP’s secondary structure is schematically illustrated above with helices
represented as rectangles and unstructured loop regions as lines. (B and C) 〈ECPTP−mem〉 mapped
onto the structures of the (B) apo and (C) C1P-bound forms of CPTP bound to the membrane.
〈ECPTP−mem〉 is indicated by the color of the residue. Residues that most favorably interact with
the membrane are colored dark red, those that weakly or do not interact with the membrane are
colored gray. Side chains of residues with 〈ECPTP−mem〉 < −12 kcal/mol are rendered. Residues
with 〈ECPTP−mem〉 < −18 kcal/mol are labeled. C1P is rendered as van der Waals spheres and
colored orange. The black line indicates the average position of phosphate groups of membrane
lipids, and the membrane’s hydrophobic core is shown in gray.

CPTP Efficiently Extracts C1P by Lowering the Free Energy
Barrier for Breaking Hydrophobic C1P–Membrane Contacts

To determine if CPTP lowers the free energy barrier for hydrophobic C1P–membrane contact
breakage, we performed free energy calculations. Specifically, we calculated free energy
landscapes along two coordinates that may capture key intermediates of CPTP facilitated
C1P transport: (1) The reaction coordinate for passive lipid (L) transport via solvent (xS),
rLxS, defined in Eq. 3.1 of Chapter 3 describes interactions between C1P and the membrane
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Figure 4.5: The apo form of CPTP significantly disrupts the local hydrophobic mem-
brane environment of lipids below. Average number of hydrophobic contacts that a lipid in
the membrane makes with surrounding lipids, 〈nCC〉mem, as a function of its displacement in the xy
plane from CPTP. Color scale is set relative to 〈nCC〉mem for a POPC membrane in the absence of
CPTP; membrane regions where lipids make more contacts than an unperturbed POPC membrane
are colored red, and regions where lipids make less are colored blue. The structure of the apo and
C1P-bound forms of CPTP bound to the membrane are outlined for reference.

and monitors progress from configurations with C1P in the membrane (which exhibit many
hydrophobic lipid–membrane contacts and large values of rLxS) to configurations with the
lipid outside the membrane (which lack hydrophobic lipid–membrane contacts and have
negative values of rLxS);223,249 (2) The fraction of contacts C1P makes with CPTP when fully
inside its hydrophobic cavity, Q, monitors progress from configurations with C1P outside
CPTP (which have values of Q close to zero) to configurations with C1P inside CPTP
(which have values of Q close to one). Specifically, Q is calculated according to

Q =
1

N

∑
(i,j)

[
1 + exp

[
β(rij − λr(0)

ij )
]]−1

, (4.1)

where N is the total number of contact pairs (i, j) between an atom i of C1P and atom j of
CPTP, rij is the distance between atoms i and j, r(0)

ij is a reference distance between atoms i
and j, which we take to be the average distance between the atom pair in solution simulations
of the C1P-bound form, β = 50 nm−1, and λ = 1.8. Contact pairs used to calculateQ include:
(1) hydrophobic contacts between C1P and residues that line CPTP’s hydrophobic cavity
and (2) nonpolar contacts between C1P’s headgroup and sphingoid backbone and residues
responsible for C1P recognition.

A preliminary free energy landscape is shown in Figure 4.6A. At the global free energy
minimum, C1P resides in the membrane where it makes many hydrophobic contacts with
surrounding membrane lipids but does not substantially interact with CPTP. An example
of a configuration found within the global free energy minimum is shown in Figure 4.6D1.
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Figure 4.6: CPTP lowers the free energy barrier for hydrophobic C1P–membrane
contact breakage. (A) Preliminary free energy landscape along rLxS and Q. (B and C) Free
energy profiles along (B) rLxS or (C) Q obtained from the free energy landscape in (A). (D) Example
configurations from different regions of the free energy landscape outlined in (A). C1P is rendered
(Continued on next page)
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Figure 4.6: (Continued from previous page)
as van der Waals spheres and colored orange. The apo form of CPTP in configuration 1 is col-
ored dark cyan, and the C1P-bound form in configuration 9 is colored dark magenta. The black
line indicates the average position of phosphate groups of membrane lipids, and the membrane’s
hydrophobic core is shown in gray.

At the second most favorable minimum in the free energy landscape, C1P resides within
CPTP’s hydrophobic cavity but does not form hydrophobic contacts with membrane lipids.
An example of a configuration found at this local minimum is shown in Figure 4.6D9. This
free energy profile is consistent with CPTP’s observed function as a C1P transporter; CPTP
serves as a free energetically favorable vehicle for C1P transport between even more favorable
states in which C1P is part of a membrane.

Figure 4.6B shows preliminary free energy profiles along rLxS both in the presence and
absence of CPTP. The free energy profile for passive C1P transport exhibits a rate-limiting
activation free energy barrier of 15.5 kcal/mol at rLxS ≈ 0. When CPTP is present, the
free energy barrier for C1P desorption from the membrane is reduced to 11.9 kcal/mol
and shifted to slightly larger values of rLxS. CPTP lowers the free energy barrier by 3.6
kcal/mol, corresponding to a roughly 500 fold speedup in the rate of lipid transport at room
temperature. Furthermore, this value in reasonable agreement with the one predicted above
based on the maximal reduction in 〈nCC〉mem caused by the apo form. By disrupting C1P’s
local hydrophobic environment in the membrane (Figure 4.5), CPTP lowers the free energy
barrier that limits the rate of C1P desorption from a membrane and, thus, catalyzes lipid
extraction. Because CPTP provides C1P with another favorable hydrophobic environment,
C1P enters CPTP’s hydrophobic cavity after fewer hydrophobic contacts with the membrane
have been broken than required for C1P desorption into solvent, which offers no favorable
hydrophobic environment. As a result, the free energy barrier for lipid desorption is shifted
to slightly larger values of rLxS, which are indicative of more C1P–membrane contacts, when
CPTP is present. Indeed, as illustrated by configurations around this free energy barrier
in Figure 4.6D5, C1P maintains a few hydrophobic contacts with the membrane while also
forming contacts with CPTP.

A preliminary free energy profile along Q (Figure 4.6C) suggests that C1P entry into
CPTP’s hydrophobic cavity may require passage through multiple metastable intermediates.
Configurations representative of potential intermediates are shown in Figure 4.6D. Consis-
tent with the two C1P-binding modes to CPTP resolved by crystallography, we observe
metastable intermediates with one tail of C1P inside CPTP’s hydrophobic cavity and the
other still within the membrane. Thus, our findings support a two-step mechanism whereby
each tail of C1P enters into and exits from CPTP’s hydrophobic cavity individually.
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Conclusions

Based on atomistic simulations of CPTP in the presence of a membrane, we propose a
molecular mechanism for how CPTP functions as a C1P transfer protein that is consistent
with the previously suggested cleft-like gating mechanism:247 To initiate a transfer event, the
apo form of CPTP, whose collapsed hydrophobic cavity is closed off to C1P entry, binds a
donor membrane. Interactions between the membrane and gating helix α2 and also helix α6
anchor CPTP deeply into the membrane and aptly position the entrance to its hydrophobic
cavity at the membrane-solvent interface. Strong electrostatic interactions between positively
charged residues on gating helix α2 facilitate cleft widening and gate opening. Poised for
C1P entry into its hydrophobic cavity, CPTP significantly disrupts C1P’s local membrane
environment thereby lowering the free energy barrier for C1P extraction from the membrane.
Complete uptake of C1P into CPTP’s hydrophobic cavity further opens gating helix α2. Such
conformational changes break strong electrostatic interactions with the membrane that had
previously anchored the apo form, potentially facilitating membrane unbinding through an
electrostatic-switching-like mechanism.109 Having extracted C1P from a donor membrane,
CPTP then inserts C1P into a target membrane, a free energetically downhill event, to
complete a transfer event. While this molecular mechanism is partially based on preliminary
free energy calculations, simulations to more rigorously evaluate its potential validity are
ongoing.

Significantly, we demonstrate how CPTP enhances the rate of C1P transport by dis-
rupting hydrophobic C1P–membrane contacts and lowering the free energy barrier for lipid
extraction. To our knowledge, we provide the first molecular evidence that lipid transfer
proteins catalyze lipid extraction from and insertion into a membrane. Because the catalytic
mechanism described here is closely related to that of passive lipid transport,223,249 we sus-
pect it may be generally used by lipid transfer proteins, not just CPTP, to increase the rate
of lipid transport between cell membranes.

Methods

Molecular Dynamics Simulations

We performed molecular dynamics simulations of CPTP both in solution and in the pres-
ence of a POPC membrane at both all-atom and coarse-grained resolutions using GROMACS
2019.166 The CHARMM36 force field177 in combination with the CHARMM TIP3P water
model178 was used for the all-atom simulations. CHARMM36 force field parameters de-
veloped for sphingolipids251 were used for C1P with a saturated acyl chain of 16 carbons
(16:0-C1P) and are provided in Figure C.3. The MARTINI 2.3P force field252 in combination
with polarizable MARTINI water model253 was used for all coarse-grained simulations since
it accurately reproduces the binding poses of peripheral membrane proteins. An ElNeDyn
elastic network254 with harmonic springs connecting all backbone beads within 0.9 nm of
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each other and a spring constant of 500 kJ/mol/nm2 was used to maintain the overall shape
of CPTP in its apo and C1P-bound forms. Parameters for 16:0-C1P were chosen according
to the standard MARTINI 2.0 lipid definitions and building block rules167 and are provided
in Figure C.4.

All-Atom Solution Simulations. The crystal structure of CPTP provided in PDB 4K85247

was used to initialize all-atom simulations since it has the most residues fully resolved out
of all structures of CPTP with C1P fully bound. The first six N-terminal residues that were
not resolved in PDB 4K85 were built using MODELLER.255,256 To investigate the trans-
fer of CPTP’s most likely in vivo substrate, the structure of 16:0-C1P fully bound inside
CPTP provided in PDB 4K84 was aligned onto the structure of C1P with a saturated acyl
chain of 12 carbons (12:0-C1P) present in PDB 4K85 to generate an initial configuration of
CPTP in its C1P-bound form. C1P was removed from this structure to generate an initial
configuration of the apo form. Both initial structures of the apo and C1P-bound forms
were solvated in triclinic boxes of pre-equilibrated water molecules with dimensions chosen
such that the minimum distance between any protein atom and the box walls was at least
2 nm. Sodium and chloride ions were added to achieve a salt concentration of 150 mM,
matching the conditions used in in vitro experiments of C1P transfer by CPTP,250 and to
fully neutralize each system. Both systems were then energy minimized using the steepest
descent algorithm and equilibirated using a three-step protocol: (1) a 200 ps simulation in an
isothermal–isochoric (NVT) ensemble with the positions of CPTP’s heavy atoms restrained
by harmonic potentials with a force constant of 1000 kJ/mol/nm2 to equilibrate the solvent
molecules and adjust the system density; (2) a 200 ps simulation in an isothermal–isobaric
(NPT) ensemble using the Berendsen barostat169 to maintain the pressure with isotropic
pressure coupling and a coupling time constant of 2 ps; and (3) a 200 ps simulation in an
NPT ensemble using the Parinello-Rahman barostat170 with a coupling time constant of 5
ps. Subsequently, production simulations in an NPT ensemble were run for 300 ns using
the parameters given below. The final 200 ns of each of these simulations was analyzed to
characterize the solution structure of the apo and C1P-bound forms of CPTP. The final con-
figurations from these simulations were used to initialize simulations with a POPC bilayer
present.

Coarse-Grained Simulations of CPTP in the presence of a Membrane Coarse-
grained bilayers of 264 lipids surrounded by 3.2 nm slabs of solvent were built using IN-
SANE168 for simulations of CPTP in the presence of a membrane. For simulations of the
apo form, the bilayer consisted of 262 POPC lipids and two 16:0-C1P lipids, one in each
leaflet. For simulations of the C1P-bound form, the bilayer consisted of 264 POPC lipids.
Prior to the addition of CPTP into the solvent surrounding the bilayer, the structures of
both bilayers were fully relaxed from their initial lattice configurations. This involved an
energy minimization using the steepest descent algorithm followed by equilibration using
a two-step protocol: (1) a 500 ps simulation using a 10 fs time step and the Berendsen
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barostat169 with semi-isotropic presssure coupling and a coupling time constant of 3 ps; and
(2) a 1 ns simulation using a 20 ps time step and the Parinello-Rahman barostat170 with
a coupling time constant of 12 ps. Subsequently, a 50 ns production run was performed to
obtain bilayer structures that were used to construct initial configurations of CPTP in the
presence of a membrane. The martinize.py script257 was used to construct coarse-grained
protein topologies and structures based on the final configurations of the apo and C1P-bound
forms of CPTP obtained from all-atom solution simulations. Both coarse-grained structures
were then fully equilibrated in solution through an energy minimization and a three-step
protocol: (1) a 500 ps simulation in an NVT ensemble using a 10 fs time step and with the
positions of CPTP’s backbone beads restrained by harmonic potentials with a force constant
of 1000 kJ/mol/nm2 to equilibrate solvent molecules and adjust the system density; (2) a
500 ps simulation in an NPT ensemble using a 20 fs time step and the Berendsen barostat169
with isotropic pressure coupling and a coupling time constant of 3 ps; and (3) a 500 ps sim-
ulation using a 20 fs time step and the Parinello-Rahman barostat170 with a coupling time
constant of 12 ps. Subsequently, 300 ns production runs were performed to obtain structures
of CPTP used to initialize simulations that probe membrane binding. For simulations of
both forms of CPTP in the presence of a membrane, four different initial coarse-grained
configurations were built by inserting a structure of CPTP sampled during the last 100 ns
of the coarse-grained solution simulation in a random location and orientation in the solvent
around the equilibrated bilayer such that the minimum distance between any atom of CPTP
and the membrane was 6 Å. Each replicate was then energy minimized and equilibrated
using a three-step protocol: (1) a 500 ps simulation in an NVT ensemble using a 10 fs time
step and with the positions of CPTP’s backbone beads restrained by harmonic potentials
with a force constant of 1000 kJ/mol/nm2 to equilibrate solvent molecules and adjust the
system density; (2) a 500 ps simulation in an NPT ensemble using a 20 fs time step and the
Berendsen barostat169 with semi-isotropic pressure coupling and a coupling time constant of
3 ps; and (3) a 1 ns simulation using a 20 fs time step and the Parinello-Rahman barostat170
with a coupling time constant of 12 ps. During production runs of 2 µs, CPTP spontaneously
bound to the membrane in all but one replicate of the apo form (Figure C.5), which was
excluded from analysis of CPTP’s membrane binding pose in coarse-grained simulations.

All-Atom Simulations of CPTP bound to a Membrane Membrane bound coarse-
grained configurations of the apo and C1P-bound forms of CPTP were then backmapped into
all-atom representations using the backward method.258 The systems then underwent a three-
step equilibration using the same protocol as used for the all-atom solution simulations but
with semi-isotropic pressure coupling. Subsequently, 300 ns production runs were performed.
The final 200 ns from each of these runs was used to analyze all-atom configurations of CPTP
bound to a membrane.

All-Atom Production Simulation Parameters. All simulations were performed in an
NPT ensemble at a pressure of 1 bar and temperature of 310 K. Separate Nosé-Hoover
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thermostats183,184 were used for the solvent and solute molecules. The pressure was main-
tained using the Parinello-Rahman barostat170 with a compressibility of 4.5 × 10−5 bar−1

and coupling time constant of 1 ps. Isotropic pressure coupling was used in solution simu-
lations, and semi-isotropic coupling was used in simulations with a bilayer. Dynamics were
evolved using the leapfrog algorithm173 and a 2 fs time step. All bonds to hydrogen were
constrained using the LINCS algorithm.185 Lennard-Jones forces were smoothly switched
off between 0.8 and 1.2 nm. Real-space Coulomb interactions were truncated at 1.2 nm,
and long-ranged Coulomb interactions were calculated using Particle Mesh Ewald (PME)
summation.186 Neighbor lists were constructed using the Verlet list cut-off scheme.175

Coarse-Grained Production Simulation Parameters. All simulations were performed
in an NPT ensemble at a pressure of 1 bar and temperature of 310 K. To avoid the “hot
solvent–cold solvent” problem,172 separate V-rescale thermostats171 were used for the solvent
and solute molecules. The pressure was maintained using the Parinello-Rahman barostat170
with a compressibility of 3 × 10−4 bar−1 and coupling time constant of 12 ps. Isotropic
pressure coupling was used in solution simulations, and semi-isotropic coupling was used
in simulations with a bilayer. Dynamics were evolved using the leapfrog algorithm173 and
a 20 fs time step. Lennard-Jones and Coulomb interactions were truncated at 1.1 nm,
and long-ranged Coulomb interactions were calculated using PME summation.186 A relative
dielectric constant of 2.5 was used. Neighbor lists were constructed using the Verlet list
cut-off scheme.175

Analysis of CPTP’s Structure and Interactions with the Membrane

We analyzed the structure of apo and C1P-bound forms of CPTP both in solution and
bound to a membrane. We quantified the volume of CPTP’s hydrophobic cavity using
MDpocket.259 All other analysis was performed using a combination of MDAnalysis188 and
NumPy226 Python libraries in addition to GROMACS tools. The insertion depth of each
residue was calculated as the average signed distance in z, which is the axis normal to the
membrane, between the center of mass (COM) of each residue and the average position of
phosphate atoms (beads) in all-atom (coarse-grained) simulations. To calculate the angle
θα2 (Figure 4.3B), the Cα atoms of residues 54 and 65 were used to define the vector along
the axis of helix α2, and the Cα atoms of residues of residues 155, 158, and 162 were used to
define the plane that contains the top surface of helix α6 when CPTP is membrane bound.
The interaction energy between each residue of CPTP and the membrane, ECPTP−mem, was
calculated as the sum of short-ranged Lennard-Jones and Coulomb interaction energy terms
between each residue and the membrane. The number of hydrophobic contacts between lipids
was calculated based on the distances d(i)

CC between hydrophobic carbons of two different
lipids, where i labels a particular carbon-carbon (CC) pair. For all-atom POPC lipids,
hydrophobic carbons include atoms C23−C216 and C33−C316. For all-atom 16:0-C1P,
hydrophobic carbons include atoms C3F−C16F and C5S−C18S. The number of hydrophobic
contacts, nCC, is the number of CC pairs that satisfy d(i)

CC ≤ 1 nm.
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Free Energy Calculations

CPTP Catalyzed C1P Transport. We calculated free energy landscapes along the re-
action coordinate for passive lipid transport, rLxS, and fraction of contacts between C1P and
CPTP, Q. rLxS is defined in Eq. 3.1 of Chapter 3 and was calculated during all enhanced
sampling simulations using the differential forms given in Eqs. 3.2 and 3.3 of Chapter 3. Q
is calculated using the functional form developed to calculate the fraction of native protein
contacts260 given in Eq. 4.1 above. Contact pairs used to calculate Q include: (1) pairs
of hydrophobic carbons of C1P and carbons of the residues that line CPTP’s hydrophobic
cavity (residues 10, 14, 36, 39, 40, 42, 43, 46, 48, 50, 52, 53, 57, 110, 111, 114, 117, 118,
121, 122, 146, 150, 153, 154, 158, 162, 165, 171, and 175) that have 〈rij〉 ≤ 7.8 Å during
solution simulations of the C1P-bound form of CPTP; and (2) pairs of heavy atoms of C1P’s
headgroup and sphingoid backbone and heavy atoms of the residues responsible for C1P
recognition (residues 52, 53, 56, 60, 96−102, 106, 110, 113, 114, 146−151, 154, and 214) that
have have 〈rij〉 ≤ 5.5 Å during solution simulations of the C1P-bound form.

To calculate the free energy landscape, we performed multi-walker261 well-tempered meta-
dynamics simulations262 using the PLUMED 2 patch190 for GROMACS. A total of 20 walk-
ers, 10 initialized from all-atom configurations of the apo form of CPTP bound to the
membrane and 10 initialized from all-atom configurations of the C1P-bound form bound to
the membrane, were used. Gaussian hills with σrLxS

= 0.1 and σQ = 0.01 and initial heights
of 2.5 kJ/mol were added by each walker every 4 ps with a bias factor of 30. To avoid
pushing the system into regions with very negative values of rLxS, where C1P is free in solu-
tion far away from either the membrane or CPTP, and at very large positive values of rLxS,
which are unphysical, harmonic wall potentials with a spring constant of 500 kJ/mol were
applied at rLxS = −3 and 15. The simulation was run for 560 ns (cumulatively 11.2 µs). To
facilitate sampling of configurations with C1P inside CPTP by walkers initialized with the
apo form, and vice versa for walkers initialized with the C1P-bound form, moving restraints
were applied to each walker to pull it to (rLxS = −2.5, Q = 1), if it was initialized from the
apo form, and to (rLxS = 12, Q = 0), if it was initialized from the C1P-bound form, over the
course of 20 ns. The moving restraint applied a harmonic bias on rLxS with a spring constant
of 75 kJ/mol and a harmonic bias on Q with a spring constant of 7500 kJ/mol. During this
time, no Gaussians were deposited, but the bias due to previously accumulated Gaussians
was applied. Subsequently, the multi-walker well-tempered metadynamics simulation was
continued for an additional 20 ns without the moving restraints. After discarding the data
from the first 100 ns of each walker and from the time period when moving restraints were
applied, a free energy landscape and profiles along rLxS and Q were obtained using the time-
independent free energy estimator of Tiwary and Parrinello.263 As the simulations have not
yet converged, these free energy landscape and profiles are considered preliminary.

Passive C1P Transport. We calculated a free energy profile along rLxS for passive trans-
port of C1P between membranes using umbrella sampling simulations.189 Simulations were
performed using two different membrane compositions that matched the membrane compo-
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sitions used for simulations with both forms of CPTP. An initial bilayer of 264 POPC lipids
surrounded by 3.2 nm thick slabs of solvent was built using the CHARMM-GUI Membrane
Builder.181,182 A lipid in each leaflet was replaced with a 16:0-C1P molecule to construct
a second membrane. Sodium and chloride ions were added to achieve a salt concentration
of 150 mM and to fully neutralize each system. Both membranes were energy minimized
and equilibrated using a two-step protocol: (1) a 250 ps simulation using the Berendsen
barostat;169 and (2) a 250 ps simulation using the Parinello-Rahman barostat.170 All other
simulation parameters matched those given above for all-atom simulations of CPTP bound
to a membrane. 50 ns production runs were performed to fully equilibrate the structure
of each bilayer. The final configuration from the simulation of the membrane composed of
both POPC and 16:0-C1P was used to initialize one enhanced sampling simulation. Another
initial configuration was constructed by inserting a 16:0-C1P lipid randomly into the solu-
tion above the POPC membrane such that its COM was at least 3.2 nm above the COM
of the membrane, energy minimizing the system, and equilibrating it using the two-step
protocol used for the membrane only system with the addition of harmonic restraints with
a force constant of 500 kJ/mol/nm2 on the z coordinates of all heavy atoms of 16:0-C1P.
Next, to generate configurations to initialize each umbrella sampling window, 20 ns steered
MD simulations were performed using a harmonic bias on rLxS with a spring constant of 75
kJ/mol. During one steered simulation, a tagged 16:0-C1P was pulled from rLxS = 14 to
rLxS = −5 to extract it from the membrane. In the other, the 16:0-C1P was pulled from
rLxS = −5 to rLxS = 14 to insert it into the membrane. A total of 66 umbrella sampling
windows were simulated with equally spaced harmonic bias centers ranging from rLxS = −5
to rLxS = 15 and a spring constant of 40 kJ/mol. All windows were run for 52 ns, and
the first 20 ns was discarded to account for equilibration. Data from all windows of both
systems was combined with the weighted histogram analysis method (WHAM)191 to obtain
the free energy profile. Error bars were calculated as the standard error estimated from the
two independent systems.
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Chapter 5

Development of Brownian Bridge Based
Path Sampling Methods for a
Nonequilibrium Transport Model

The work presented in this chapter was conducted in collaboration with Prof. Juan P.
Garrahan from the University of Nottingham.

Introduction

In the previous chapters, lipid transport has been assumed to occur in thermal equilibrium.
Passive lipid transport is, indeed, an equilibrium process, and many lipid transfer proteins,
including the one highlighted in Chapter 4, can function under equilibrium conditions used
in in vitro experiments. However, within a cell, some lipid transfer proteins require a di-
rect expenditure of energy to transport lipids up concentration gradients.85,87 For example,
the lipopolysaccharide transport apparatus, which is the bridge-like lipid transfer protein
shown in Figure 1.4B in Chapter 1, utilizes ATP hydrolysis to extract lipopolysaccharides
from the inner membrane of Gram-negative bacteria and drive their transport to the outer
membrane.117,118 In this case, lipid transport is an inherently nonequilibrium process.

Much as equilibrium systems are described by free energy functions, nonequilibrium states
are characterized by large deviation functions, or generalized free energies. Both equilibrium
free energy functions and large deviation functions encode information about the stability of
different states of a system.264,265 Thus, a wealth of information about nonequilibrium trans-
port of lipids between membranes is contained in large deviation functions. However, large
deviation functions are difficult to calculate using simulations for complex nonequilibrium
systems. Here, we attempt to address some of the challenges that plague current simulation
methods used to calculate large deviation functions.

Because large deviation functions are averages taken over trajectories ensembles, they
can be calculated from transition path sampling (TPS) simulations.266–269 TPS simulations
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sample trajectory ensembles by performing Monte Carlo moves in trajectory space.136,137
To accurately calculate a large deviation function, rare trajectories must be harvested. By
biasing the system appropriately, rare trajectories can be more easily sampled. Unfortu-
nately, standard TPS moves perform poorly at high bias.266 Standard TPS moves generate
new trajectory segments by shooting off dynamics from a random time point of an original
trajectory.270 At high bias, only very short shooting moves at either end of the trajectory are
accepted, leaving the bulk of the trajectory in the middle unchanged.266 To overcome this
limitation, we developed new TPS moves that utilize Brownian bridges, which are stochas-
tic trajectories constrained to start and end at specified configurations, to readily modify
the middle of trajectories even at high bias. Specifically we developed Brownian bridge
moves to sample trajectories of periodic asymmetric simple exclusion processes (ASEPs), a
paradigmatic nonequilibrium transport model271,272 that exhibits a dynamical phase tran-
sition.273,274 ASEPs have been previously used to model various biological phenomena,271
such as ribosome scanning on mRNA275,276 and proton transport through channels,277 and
could foreseeably be used to model lipid transport via bridge-like lipid transfer proteins.

The remainder of this chapter is organized as follows: First, we provide a brief theoretical
overview of trajectory ensembles and large deviation functions. Second, because we have
developed new TPS moves to specifically sample rare trajectories of the periodic ASEP, we
describe the details of the model and its behavior. Next, we discuss the details of shooting
moves before presenting our new Brownian bridge moves. In the final section, we demonstrate
how Brownian bridge moves enable large deviation functions to be efficiently calculated from
TPS simulations. We conclude by discussing potential ways to further improve our newly
developed Brownian bridge moves in addition to other types of sampling problems that could
be addressed with Brownian bridges moves.

Theory

Trajectory Ensembles

A trajectory is a time-ordered sequence of system configurations. We denote a trajectory,
X (T ), that extends for a total time T as X (T ) = [x(0),x(t1),x(t2), . . . ,x(T )], where
x(tj) is the system configuration at time tj. We focus on sampling trajectories of stochastic
Markov processes, which generally obey a continuity equation of the form

∂p(x(t))

∂t
= Wp(x(t)), (5.1)

where p(x(t)) is the probability of observing the system in configuration x at time t and
W is the linear operator in configuration space that propagates the system’s dynamics. For
discrete configuration space, W is a transition rate matrix and the continuity equation is a
master equation. For continuous configuration space, W is a Liouvillian and the continuity
equation is a Fokker-Planck equation. If W obeys detailed balance, then the steady state
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of the system is an equilibrium distribution that follows Boltzmann statistics. If, however,
W does not obey detailed balance but is irreducible, unique nonequilibrium steady states
with non-vanishing currents are generated in the long time limit.278 The set of trajectories
that collectively characterize a nonequilibrium steady state form an ensemble. In general,
for both equilibrium and nonequilibrium trajectories, the probability of a trajectory is

P [X (T )] =
ρ(x(0))

Z

∏
j

p(x(tj)→ x(tj+1)) (5.2a)

Z =
∑
X (T )

ρ(x(0))
∏
j

p(x(tj)→ x(tj+1)), (5.2b)

where ρ(x(0)) is the stationary distribution of initial system configurations, p(x(tj) →
x(tj+1)) is the transition probability from configuration x(tj) to x(tj+1), and Z is the path
partition function. A trajectory ensemble affords the calculation of probability distributions
of time extensive observables and, furthermore, the large deviation function.

Large Deviation Functions

Nonequilibrium steady states can be characterized by time extensive observables O[X (T )].
In a nonequilibrium steady state, a time extensive observable has a probability distribution
that can be constructed as a marginal over an ensemble of trajectories.264,265 The probability
of observing the value O is

P (O) = 〈δ(O −O[X (T )])〉 =
∑
X (T )

P [X (T )]δ(O −O[X (T )]). (5.3)

In the long time limit, the probability distributions of time extensive observables that are
correlated over only a finite amount of time have a time intensive form,

−T−1 lnP (O) ∼ I(O/T ), (5.4)

where I(O/T ) is the rate function.264,265 Additionally, the Laplace transform of Eq. 5.3
yields the generating function

〈e−ζO〉 =
∑
X (T )

P [X (T )]e−ζO ∼ eψ(ζ)T , (5.5)

where ψ(ζ) is the large deviation function and ζ is a (generally nonphysical) field conjugate
to the observable. Like an equilibrium free energy, the large deviation function is also a
scaled cumulant generating function. When the asymptotic, long time limit exists and the
rate function is smooth and convex, then the large deviation function is obtained from the
rate function through a Legendre transform,

ψ(ζ) = inf
O

[I(O/T ) + ζO/T ] , (5.6)
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where inf is the largest lower bound over O.264,265 As in equilibrium thermodynamics, the
Legendre transform switches between ensembles in which either of a pair of conjugate vari-
ables is held fixed. Ensembles with fixed values of O are typically equivalent to ensembles
with fixed values of the field ζ in the long time limit.279

Calculating large deviation functions from simulations requires sampling trajectories with
rare values of the observable, which are typical of large values of ζ. Conventional simulations
are ill-suited to this task, just as they are for calculating equilibrium free energies. Instead,
the trajectory ensemble is biased, or tilted, to enhance the sampling of rare trajectories. In
the tilted ensemble, the probability of a trajectory is

Pζ [X (T )] = P [X (T )]e−ζO[X (T )]−Tψ(ζ), (5.7)

such that the trajectories which contribute the most to the large deviation function at a
particular value of ζ are sampled with the highest probability.264,265 The large deviation
function can be estimated from a biased simulation according to

ψ(ζ) = Iζ(O)− I(O)− ζO/T, (5.8)

where Iζ(O) is the unnormalized rate function obtained from a simulation with bias ζ.
Distributions obtained from multiple biased simulations with different values of ζ are then
combined using histogram reweighting techniques, including the weighted histogram analysis
method (WHAM),191 to obtain the large deviation function and unbiased rate function.266
Although such an approach only determines the large deviation function up to a global
constant, the full large deviation function can be uniquely determined since the unbiased
trajectory ensemble is normalized, resulting in ψ(0) = 0.264,265 This approach mirrors the
use of umbrella sampling simulations189 to calculate equilibrium free energies and is used
below to calculate the large deviation function for the periodic ASEP.

Model: Periodic Asymmetric Simple Exclusion Process

In a simple exclusion process, particles hop stochastically between sites on a lattice. No
particles can simultaneously occupy the same lattice site. This hard-core excluded volume
constraint mimics short-ranged interactions between particles. Each particle hops clockwise
from lattice site l to l + 1 with rate γ+ and counterclockwise from lattice site l to l − 1
with rate γ−. In ASEPs, γ+ 6= γ−. As a result, detailed balance is broken, and the model
exhibits a nonequilibrium steady state with a stationary current. On a periodic lattice, the
total number of particles, N , is conserved. Figure 5.1A shows a configuration of the periodic
ASEP along with the allowed hops and their rates. Because each particle is identical, unique
system configurations are determined by the occupancy of each lattice site, nl = {0, 1}, where
l = {1, 2, . . . , L} indexes each site. When the system configuration is represented in a basis
of single site occupancies, n = [n1, n2, . . . , nL], the transition rate matrix that propagates
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Figure 5.1: The periodic asymmetric simple exclusion process (ASEP) is a nonequi-
librium lattice model with a dynamical phase transition. (A) Particles hop between sites
on a periodic, 1-dimensional lattice. Clockwise hops occur at rate γ+, and counterclockwise hops
occur at rate γ−. Particles exclude volume so no two particles can occupy the same lattice site.
All allowed hops are indicated with arrows. (B) The periodic ASEP exhbits two dynamical phases:
(top) a hyperuniform steady state with high activity and (bottom) a phase separated state with
low activity. For each phase, an example trajectory is shown with each configuration separated by
a single particle hop.

the system dynamics on a periodic lattice has elements

Wn′n = −
∑
n′

wASEP(n→ n′) +
∑
n′ 6=n

wASEP(n→ n′) (5.9)

where wASEP(n → n′) is the transition rate from n to n′. The first term in Eq. 5.9 is the
total escape rate from configuration n, and the second term counts all possible transitions
from n to n′. The only allowed transitions are ones between configurations separated by a
single particle hop to an adjacent empty lattice site. Under periodic boundary conditions,
the steady state distribution is uniform, and each configuration has the same probability.

In the following sections, each particle will be treated individually with its configuration
xi given by its position on the lattice, which has sites x = {1, 2, . . . , L}. The configuration
of all particles will be denoted x = [x1, x2, . . . , xN ]. Using this notation, the probability of a
trajectory of the periodic ASEP is

P
(pbc)
ASEP[X (T )] =

ρ
(pbc)
ASEP(x(0))θ[X (T )]

Z
(pbc)
ASEP

∏
j

wASEP(x(tj)→ x(tj+1))e−RASEP(x(tj))∆tj (5.10a)

Z
(pbc)
ASEP =

∑
X (T )

ρ
(pbc)
ASEP(x(0))θ[X (T )]

∏
j

wASEP(x(tj)→ x(tj+1))e−RASEP(x(tj))∆tj ,

(5.10b)
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where ρ
(pbc)
ASEP(x(0)) is the stationary distribution of initial configurations of the periodic

ASEP, which is a uniform distribution, θ[X (T )] is a Heaviside function which ensures that
configurations that violate the hard-constraint of excluded volume are never sampled during
the trajectory, RASEP(x(tj)) =

∑
x′ wASEP(x(tj) → x′(tj+1)) is the total escape rate from

configuration x, ∆tj = tj+1 − tj, and Z(pbc)
ASEP is the path partition function for the periodic

ASEP. Trajectories of the periodic ASEP exhibit two characteristic behaviors:273,274 one is
characterized by high dynamical activity and the other by low dynamical activity. The
activity, K[X (T )], is the total number of hops in a trajectory and is calculated according
to

K[X (T )] =
∑
j

N∑
i

Jxi(tj+1) 6= xi(tj)K, (5.11)

where the Iverson bracket of the statement S, JSK = 1, is a generalization of the discrete
delta function and evaluates to 1 if S is true and 0 otherwise. Trajectories with high activity
are termed hyperuniform states since large lengthscale density fluctuations are suppressed
and particles are roughly evenly spaced apart.274,280 Trajectories with low activity are termed
phase separated states since macroscopic density inhomogenities arise and particles cluster
together.274,281 Both are schematically illustrated in Figure 5.1B. A dynamical phase transi-
tion separates the hyperuniform state from the phase separated state.273,274 This is evidenced
by a singularity in the large deviation function, ψ(s), at s = 0, where s is the conjugate field
to activity. The hyperuniform state occurs at s < 0, and the phase separated state occurs
at s > 0.

Another dynamical observable that is useful to characterize the steady states of the
periodic ASEP is the current.282 The current, J [X (T )], is the difference between the number
of clockwise hops and counterclockwise hops in a trajectory and is calculated according to

J [X (T )] =
∑
j

N∑
i

Jxi(tj+1) = xi(tj) + 1K− Jxi(tj+1) = xi(tj)− 1K. (5.12)

The current is determined by the particle’s net displacement during the trajectory. We
denote the field conjugate to current as λ. Trajectories with large positive current, such
as found in the hyperuniform phase, occur at λ � 0, whereas trajectories with negative
current, which indicates a change in particle flow from clockwise to counterclockwise, occur
at λ� 0.

Transition Path Sampling Algorithms

To calculate the large deviation functions ψ(s) and ψ(λ) of the periodic ASEP, we use
TPS simulations to sample trajectory ensembles. During a TPS simulation, trajectories
are sampled through a Monte Carlo random walk in trajectory space. Each Monte Carlo
move generates a new trajectory by altering the present one in a prescribed way. The new
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trajectory is then accepted or rejected according to the Metropolis-Rosenbluth-Rosenbluth-
Teller-Teller-Hastings (subsequently referred to as Metropolis) criterion to sample the desired
distribution. To sample unbiased trajectories of total time T of the periodic ASEP, a new
trajectory X ′(T ) generated from the previous one X (T ) is accepted with probability

acc[X (T )→X ′(T )] = min

[
1,
P

(pbc)
ASEP[X ′(T )]gen[X ′(T )→X (T )]

P
(pbc)
ASEP[X (T )]gen[X (T )→X ′(T )]

]
, (5.13)

where gen[X (T )→X ′(T )] is the generation probability. The specific form of the generation
probability depends on the details of the Monte Carlo move. In the remainder of this section,
we review two standard moves and develop two new moves based on Brownian bridges to
sample trajectories of the periodic ASEP (Figure 5.2). While acceptance probabilities are
derived below for unbiased trajectory ensembles, they can be readily adapted to sample tilted
ensembles.

Forward shot

x(0)
x(ts)

x'(T )

x(T )

Backward shot

x(0)

x(ts)

x(T )

x'(0)
Brownian bridge

x(0) x(T )

x(t0)
x(tf)

A B C

x(tj)x(tj+1)

x'(tj+1)͠
x'(tj)͠

x(tj) x(tj+1)

x'(tj+1)
x'(tj)

x'(tj+1)
x'(tj)

x(tj)
x(tj+1)

Figure 5.2: TPS moves used to sample trajectories of the periodic ASEP. (A) During a
forward shooting move, a new trajectory segment, which is composed of time points x′(ts), . . . ,x′(T )
and colored gray, is obtained by evolving the dynamics forward in time from time ts. (B) Dur-
ing a backwards shooting move, a new trajectory segment, which is composed of times points
x′(0), . . . ,x′(ts) and colored gray, is obtained by evolving the dynamics backwards in time from
time ts. Time reversed configurations are denoted x̃(t). (C) During a Bownian bridge move, a new
trajectory segment, which is composed of time points x′(t0), . . . ,x′(tf ) and colored blue, is obtained
by evolving the dynamics according to the master equation for a bridge trajectory constrained to
start at configuration x(t0) and end at x(tf ).

Shooting Moves

Two standard TPS moves for modifying stochastic trajectories involve shooting off a new
trajectory segment from a randomly chosen time point, x(ts), of a previous trajectory.

Forward Shooting Moves. In a forward shooting move, which is illustrated in Fig-
ure 5.2A, a new trajectory segment is integrated forward in time, altering times after
ts in the original trajectory. The newly generated trajectory consists of configurations
X ′(T ) = [x(0), . . . ,x(ts−1),x(ts),x

′(ts+1), . . . ,x′(T )]. Because the new trajectory segment
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is generated using the propagator for the periodic ASEP given in Eq. 5.9, the gener-
ation probability is P (pbc)

ASEP[X ′(T − ts)|xts ], and the probability of the new trajectory is
P

(pbc)
ASEP[X ′(T )] = P

(pbc)
ASEP[X (ts)]P

(pbc)
ASEP[X ′(T − ts)|xts ]. As a result the acceptance probability

given in Eq. 5.13 simplifies to

acc[X (T )→X ′(T )] = min

[
1,
P

(pbc)
ASEP[X ′(T )]P

(pbc)
ASEP[X (T − ts)|xts ]

P
(pbc)
ASEP[X (T )]P

(pbc)
ASEP[X ′(T − ts)|xts ]

]
= 1. (5.14)

Although unbiased forward shots are always accepted, the acceptance probability of biased
shots decreases exponentially with increasing bias value. For this reason, when the bias is
large, only the very end of an original trajectory is likely to be modified by forward shots.
However, all time points of a trajectory need to be modified for the sampling to be ergodic.

Backward Shooting Moves. Backwards shooting moves are necessary for ergodicity be-
cause they alter early time points in the trajectory. In a backward shooting move, which
is illustrated in Figure 5.2B, a new segment is integrated backwards in the time from time
ts, altering all earlier times in the original trajectory. The newly generated trajectory con-
sists of configurations X ′(T ) = [x′(0), . . . ,x′(ts−1),x(ts),x(ts+1), . . . ,x(T )]. When propa-
gated backwards in time, the clockwise and counterclockwise rates are swapped; the rate
for a particle to hop clockwise from site l to l + 1 backwards in time is γ̃+ = γ−, and
the rate for a particle to hop counterclockwise from site l to l − 1 backwards in time
is γ̃− = γ+. Then, the time reversed transition rates w̃ASEP(x̃(tj) → x̃(tj+1)) between
time-reversed configurations x̃(tj) = x(tj+1) and x̃(tj+1) = x(tj) are equal to the for-
ward transition rates wASEP(x(tj) → x(tj+1)). Additionally, backwards shooting moves
of the periodic ASEP sample initial configurations, x′(0), from a uniform distribution, which
is the same stationary distribution sampled when trajectories are propagated forward in
time (specifically, ρ(x′(0)) = ρ(x(0))). As a result, the generation probability for back-
wards shooting moves is P (pbc)

ASEP[X ′(ts)|xts ], and the probability of the new trajectory is
P

(pbc)
ASEP[X ′(T )] = P

(pbc)
ASEP[X ′(T )|xts ]P (pbc)

ASEP[X (T − ts)|xts ]. As a result the acceptance prob-
ability given in Eq. 5.13 simplifies to

acc[X (T )→X ′(T )] = min

[
1,
P

(pbc)
ASEP[X ′(T )]P

(pbc)
ASEP[X (ts)|xts ]

P
(pbc)
ASEP[X (T )]P

(pbc)
ASEP[X ′(ts)|xts ]

]
= 1. (5.15)

As for forward shots, unbiased backwards shots are always accepted but the acceptance
probability of biased backwards shots decreases exponentially with increasing bias value.
Thus, when the bias is high, backwards shots only modify the very beginning of an original
trajectory. Even when both forwards and backwards shooting moves are performed, the
middle of the trajectory is seldom altered at high bias.
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Brownian Bridge Moves

Brownian bridge moves offer a way to more readily alter the middle of a trajectory, even
at high bias. During a Brownian bridge move, which is illustrated in Figure 5.2C, a new
trajectory segment between configurations x(t0) and x(tf ) is generated so that portions of
the trajectory away from the initial and final time points are modified. Furthermore, the
length of the trajectory that is modified during a Brownian bridge move can be controlled.
This is advantageous since longer trajectory segments are accepted with lower probabilities at
high bias. In order to alter an entire trajectory with forward and backward shooting moves,
shots that are roughly half the total length of the trajectory would need to be accepted
with decent probability; however, this is unlikely for long, biased trajectories. Instead, many
short bridges, which are each accepted with decent probability, can be performed to alter the
entire trajectory, excluding the initial and final time points. Thus, Brownian bridge moves
offer two advantages over shooting moves at high bias: (1) The middle of a trajectory can be
naturally modified with a bridge. (2) Acceptance probabilities can be tuned by controlling
the bridge length. Nevertheless, when using Brownian bridge moves, shooting moves are still
required to modify the initial and final time points of a trajectory and to ultimately sample
trajectories ergodically.

Implementing Brownian bridge moves requires (1) a simulation algorithm for generating
Brownian bridges and (2) an expression for the acceptance probability of a Brownian bridge
move. We first present a general algorithm and acceptance criterion for a continuous-time
Brownian bridge in discrete space. We then derive expressions specifically for two Brownian
bridge moves that we use to sample trajectories of the periodic ASEP.

During a Brownian bridge move, particles are treated as non-interacting. For each par-
ticle, a Brownian bridge trajectory is generated independently of all other particles’ trajec-
tories. The forward time evolution of a single particle that hops between lattice sites obeys
the forward master equation,

∂

∂t
p(bc)(x(t)|xt0) =γ+p

(bc)(x(t)− 1|xt0) + γ−p
(bc)(x(t)− 1|xt0)

− (γ+ + γ−)p(bc)(x(t)|xt0),
(5.16)

where p(bc)(x(t)|xt0) is the probability of the particle to be at position x = {1, 2, . . . , L} on
a lattice with boundary conditions labeled “bc” at time t given that it was previously at
position xt0 at t0. In our development of two different bridge moves, we will consider lattices
of length L with periodic boundary conditions (labeled “pbc”) and lattices of infinite length
with free boundary conditions (labeled “fbc”). The corresponding backwards time evolution
of a single particle obeys the backward master equation, or adjoint of Eq. 5.16,

∂

∂t
q(bc)(x(t)|xtf ) =− γ+q

(bc)(x(t) + 1|xtf )− γ−q(bc)(x(t)− 1|xtf )

+ (γ+ + γ−)p(bc)(x(t)|xtf ),
(5.17)
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where q(bc)(x(t)|xtf ) is the probability of the particle to be at position x at time t given that
it’s at position xtf at the later time tf . During a bridge, the particle’s time evolution from
a given initial configuration xt0 is constrained to end at configuration xtf at time tf . The
probability of the particle to be at position x at time t during a bridge, P(bc)(x(t)|xt0 , xtf ),
is then given in terms of the Green’s function solutions to Eq. 5.16 and 5.17 according to
Bayes’ theorem

P(bc)(x(t)|xt0 , xtf ) =
p(bc)(x(t)|xt0)q(bc)(x(t)|xtf )

p(bc)(xtf |xt0)
. (5.18)

It can be shown that P(bc)(x(t)|xt0 , xtf ) is itself a solution to a master equation as follows

∂

∂t
P(bc)(x(t)|xt0 , xtf ) =

p(bc)(x(t)|xt0)

p(bc)(xtf |xt0)

∂

∂t
q(bc)(x(t)|xtf ) +

q(bc)(x(t)|xtf )

p(bc)(xtf |xt0)

∂

∂t
p(bc)(x(t)|xt0)

=− γ+

p(bc)(x(t)|xt0)q(bc)(x(t) + 1|xtf )

p(bc)(xtf |xt0)

− γ−
p(bc)(x(t)|xt0)q(bc)(x(t)− 1|xtf )

p(bc)(xtf |xt0)

+ γ+

q(bc)(x(t)|xtf )p(bc)(x(t)− 1|xt0)

p(bc)(xtf |xt0)

+ γ−
q(bc)(x(t)|xtf )p(bc)(x(t)− 1|xt0)

p(bc)(xtf |xt0)

=− γ+

q(bc)(x(t) + 1|xtf )

q(bc)(x(t)|xtf )
P(bc)(x(t)|xt0 , xtf ) (5.19)

− γ−
q(bc)(x(t)− 1|xtf )

q(bc)(x(t)|xtf )
P(bc)(x(t)|xt0 , xtf )

+ γ+

q(bc)(x(t)|xtf )

q(bc)(x(t)− 1|xtf )
P(bc)(x(t)− 1|xt0 , xtf )

+ γ−
q(bc)(x(t)|xtf )

q(bc)(x(t) + 1|xtf )
P(bc)(x(t) + 1|xt0 , xtf ).

Eq. 5.19 describes the time evolution of a particle that performs a bridge between config-
urations xt0 and xtf by hopping clockwise with rate Γ

(bc)
+ (x(t)) and counterclockwise with

rate Γ
(bc)
− (x(t)), where

Γ
(bc)
+ (x(t)) = γ+

q(bc)(x(t) + 1|xtf )

q(bc)(x(t)|xtf )
(5.20a)

Γ
(bc)
− (x(t)) = γ−

q(bc)(x(t)− 1|xtf )

q(bc)(x(t)|xtf )
. (5.20b)
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Both rates are space- and time-dependent to ensure the bridge trajectory ends at xtf . When t
approaches tf , the particle preferentially hops in the direction towards xtf . In contrast, when
t� tf , the particle can wander broadly and still reach xtf . As a result, the variance in the
particle’s position is largest midway through the bridge at time tf−t0

2
. Simulating bridges

using these rates requires an analytical expression for q(bc)(x(t)|xtf ); however, analytical
solutions to the backwards master equation (Eq. 5.17) exist only for specific cases. One
such case is a particle undergoing a continuous-time discrete-space random walk. Thus,
to generate Brownian bridges, we have chosen to approximate the particles of the periodic
ASEP as a collection of non-interacting, random walkers.

We will make use of the relationship between a Brownian bridge of non-interacting par-
ticles and continuous-time random walks (CTRW) to derive the acceptance probability of
a bridge move. The probability of a bridge of total length TB = tf − t0 from configuration
xt0 to xtf , P

(bc)
BB [X (TB;xt0 ,xtf )], is related to the probability of a trajectory in which all

particles perform CTRWs, P (bc)
CTRW[X (TB)], according to

P
(bc)
BB [X (TB;xt0 ,xtf )] = P

(bc)
CTRW[X (TB)|xt0 ,xtf ] (5.21)

∝ P
(bc)
CTRW[X (TB)]Jx(t0) = xt0KJx(tf ) = xtf K,

where the discrete delta function is denoted with Iverson brackets, J· · ·K. The probability of
a trajectory in which all particles perform CTRWs is

P
(bc)
CTRW[X (TB)] =

ρ
(bc)
CTRW(x(0))

Z
(bc)
CTRW

∏
j

wCTRW(x(tj)→ x(tj+1))e−RCTRW(x(tj))∆tj (5.22a)

Z
(bc)
CTRW =

∑
X (TB)

ρ
(bc)
CTRW(x(0))

∏
j

wCTRW(x(tj)→ x(tj+1))e−RCTRW(x(tj))∆tj , (5.22b)

where ρ(bc)
CTRW(x(0)) is the stationary distribution of initial configurations, wCTRW(x → x′)

is the transition rate from x to x′ during the collection of CTRWs, RCTRW(x) is the total
escape rate from configuration x, and Z(bc)

CTRW is the path partition function for a collection
of CTRWs. Eq. 5.21 is the generation probability for a Brownian bridge move. In general,
the acceptance probability for a Brownian bridge move is

acc[X (TB)→X ′(TB)] = min

[
1,
P

(pbc)
ASEP[X ′(TB)]P

(bc)
CTRW[X (TB)]Jx(t0) = xt0KJx(tf ) = xtf K

P
(pbc)
ASEP[X (TB)]P

(bc)
CTRW[X ′(TB)]Jx′(t0) = xt0KJx′(tf ) = xtf K

]

= min

[
1,
P

(pbc)
ASEP[X ′(TB)]P

(bc)
CTRW[X (TB)]

P
(pbc)
ASEP[X (TB)]P

(bc)
CTRW[X ′(TB)]

]
. (5.23)

Using Eqs. 5.20 and 5.23, we can now formulate a general simulation algorithm for Brow-
nian bridge moves that sample trajectories of the periodic ASEP. Pseudocode for a Brownian
bridge moves is provided in Algorithm 1. A bridge is first generated through a kinetic Monte
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Algorithm 1: Brownian bridge move
/* Generate new trajectory segment X ′(TB;xt0 ,xtf ) with a Brownian bridge */

1 Select random t0 ∈ [0, T ]
2 tf ← t0 + TB

3 Initialize t← t0, x′(t)← xt0
4 while t < tf do
5 Evaluate the 2N rates Γ

(bc)
{+/−}(x

′
{i}(t)) for each potential single particle hop

6 Evaluate RCTRW(x′(t)) =
∑N

i Γ
(bc)
+ (x′i(t)) + Γ

(bc)
− (x′i(t))

7 Sample r1, r2 ∼ U(0, 1)
8 ∆t← − ln(r1)/RCTRW(x′(t))
9 if ∆t > 0.01/RCTRW(x′(t)) then

10 ∆t← 0.01/RCTRW(x′(t))
11 x′(t+ ∆t)← x′(t)

12 else
13 t← t+ ∆t
14 Obtain x′(t+ ∆t) by updating x′(t) according to the single particle hop j

which first satisfies
∑j

j′=1 Γ
(bc)
j′ (x′j′(t)) < r2RCTRW(x′(t))

15 end
16 end

/* Accept X ′(TB;xt0 ,xtf ) according to Metropolis criterion */

17 Evaluate α =
P

(pbc)
ASEP[X ′(TB)]P

(bc)
CTRW[X (TB)]

P
(pbc)
ASEP[X (TB)]P

(bc)
CTRW[X ′(TB)]

18 Sample r3 ∼ U(0, 1)
19 if r3 ≤ α then
20 X (TB;xt0 ,xtf )←X ′(TB;xt0 ,xtf )

21 else
22 X (TB;xt0 ,xtf )←X (TB;xt0 ,xtf )

23 end

Carlo (KMC) simulation. During a conventional KMC simulation using the Gillespie algo-
rithm, time is continuously advanced as particles hop between sites with specified rates. The
time between hops is determined by sampling from the waiting time distribution. Because
the hopping rates required to generate a bridge (Eq. 5.20) are time-dependent, the waiting
time distribution also varies in time. During a bridge, we approximately sample from the
exact waiting time distribution by only advancing time in intervals short enough that the
exact waiting time distribution is nearly constant. Specifically, from x(t), time is advanced
by no more than 0.01

RCTRW(x(t))
, and only hops that would occur within a time of 0.01

RCTRW(x(t))
are

performed. Further reducing the time interval where hops can occur would better approxi-
mate the exact dynamics; however, we have found a maximal time interval of 0.01

RCTRW(x(t))
to
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be sufficient. Once a new trajectory segment, X ′(TB;xt0 ,xtf ), is generated with a bridge,
it is accepted with the probability given in Eq. 5.23 using the Metropolis algorithm.

Having developed a general algorithm, we now present two types of Brownian bridge
moves, which each utilize different expressions for the hopping rates Γ

(bc)
+/− and for the accep-

tance probability. The first move generates bridges on a periodic lattice. All such bridges end
at the same configuration, xtf , on the periodic lattice. Thus, we call these moves “fixed-end
Brownian bridge moves.” During these moves, the particles’ net displacements typically do
not change since they all start and end at the same configuration. As a result, the current
does not change either. Only when these bridges are long enough for particles to make mul-
tiple laps around the lattice does their net displacement, and thus the current, change. We
additionally developed another bridge move that alters the final configuration by exploiting
the fact that all particles are identical and by making use of a mapping between a lattice
with periodic boundaries and free boundaries. We call these moves “variable-end Brownian
bridge moves.” By slightly altering the final configuration, the particles’ net displacement,
and thus, current, also changes.

Fixed-End Brownian Bridge Moves.

Hopping Rates for Generating a Bridge on a Periodic Lattice. To obtain expressions for
Γ

(pbc)
+/− that yield bridges on a periodic lattice, we derive the Green’s function solutions
p(pbc)(x(t)|xt0) and q(pbc)(x(t)|xtf ). In doing so, we also obtain an expression for the proba-
bility of a particle’s position during a bridge according to Eq. 5.18.

The forward master equation (Eq. 5.16) for a single particle performing an asymmetric
CTRW on a lattice with periodic boundary conditions can be solved using a generating
function. Commensurate with periodic boundary conditions, the generating function G(k, t)
is a discrete Fourier transform of p(pbc)(x(t)),

G(k, t) =
1

L

L−1∑
x=0

zxkp
(pbc)(x(t)), (5.24)

where zk = exp(2πik/L) and p(pbc)(x(t)) is the probability of the particle being at position
x at time t on a periodic lattice. The time derivative of G(k, t) is

∂

∂t
G(k, t) =

1

L

L−1∑
x=0

zxk
∂

∂t
p(pbc)(x(t))

=γ+
1

L

L−1∑
x=0

zx+1
k p(pbc)(x(t)) + γ−

1

L

L−1∑
x=0

zx−1
k p(pbc)(x(t))

− (γ+ + γ−)
1

L

L−1∑
x=0

zxkp
(pbc)(x(t))

=
[
γ+(zk − 1) + γ−(z−1

k − 1)
]
G(k, t), (5.25)
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where the forward master equation for p(pbc)(x(t)) was substituted for ∂
∂t
p(pbc)(x(t)). Inte-

grating ∂
∂t
G(k, t) yields

G(k, t) = G(k0)eλkt, (5.26)

where G(k0) describes the initial condition and

λk = γ+(zk − 1) + γ−(z−1
k − 1).

Without loss of generality, we set the time of the initial configuration to t = 0. In the case of
a Brownian bridge, the initial configuration is fixed at xt0 and p(pbc)(x(t0)) = Jx(t0) = xt0K.
Thus, from Eq. 5.24, G(k0) = z

xt0
k /L. The Green’s function solution for p(pbc)(x(t)) is then

obtained by an inverse Fourier transform of G(k, t),

p(pbc)(x(t)|xt0) =
1

L

L−1∑
k=0

eλktz
xt0−x(t)

k . (5.27)

The Green’s function solution to the backwards master equation (Eq. 5.17) for a particle
performing an asymmetric CTRW on a periodic lattice is derived analogously to the solution
to the forward master equation. Using the change of variables τ = tf − t, the generating
function,

F (k, τ) =
1

L

L−1∑
x=0

zxkq
(pbc)(x(tf − τ)), (5.28)

is a discrete Fourier transform of q(pbc)(x(t)). The time derivative of F (k, τ) is

∂

∂τ
F (k, τ) =

∂t

∂τ

∂

∂t

[
1

L

L−1∑
x=0

zxkq
(pbc)(x(t))

]

=γ+
1

L

L−1∑
x=0

zx−1
k q(pbc)(x(tf − τ)) + γ−

1

L

L−1∑
x=0

zx+1
k q(pbc)(x(tf − τ))

− (γ+ + γ−)
1

L

L−1∑
x=0

zxkq
(pbc)(x(tf − τ))

=
[
γ+(z−1

k − 1) + γ−(zk − 1)
]
F (k, τ), (5.29)

where the backwards master equation for q(pbc)(x(t)) was substituted for ∂
∂t
q(pbc)(x(t)). In-

tegrating ∂
∂τ
F (k, τ) yields

F (k, τ) = F (k0)eλ
†
kτ , (5.30)

where F (k0) describes the initial condition at τ = 0, which is also the configuration at the
final time t = tf , and

λ†k = γ+(z−1
k − 1) + γ−(zk − 1). (5.31)
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In the case of a Brownian bridge, the final configuration is fixed at xtf and q(pbc)(x(tf )) =

Jx(tf ) = xtf K. Thus, from Eq. 5.28, F (k0) = z
xtf
k /L. The Green’s function solution for

q(pbc)(x(t)) is then obtained by an inverse Fourier transform of F (k, τ),

q(pbc)(x(t)|xtf ) =
L−1∑
k=0

eλ
†
k(tf−t)z

xtf−x(t)

k . (5.32)

Bridges between configurations xt0 and xtf on a periodic lattice are then generated using
the hopping rates given by substituting Eq. 5.32 into Eq. 5.20,

Γ
(pbc)
+ (x(t)) = γ+

∑L−1
k=0 e

λ†k(tf−t)z
xtf−x(t)−1

k∑L−1
k=0 e

λ†k(tf−t)z
xtf−x(t)

k

(5.33a)

Γ
(pbc)
− (x(t)) = γ−

∑L−1
k=0 e

λ†k(tf−t)z
xtf−x(t)+1

k∑L−1
k=0 e

λ†k(tf−t)z
xtf−x(t)

k

. (5.33b)

From Eq. 5.18, bridges generated on a periodic lattice using these hopping rates sample the
probability distribution

P(pbc)(x(t)|xt0 , xtf ) =

(∑L−1
k=0 e

λktz
xt0−x(t)

k

)(∑L−1
k=0 e

λ†k(tf−t)z
xtf−x(t)

k

)
L
∑L−1

k=0 e
λ†ktf z

xtf−xt0
k

. (5.34)

As shown in Figure 5.3, bridges generated using the hopping rates in Eq. 5.33 accurately
sample the exact distribution P(pbc)(x(t)|xt0 , xtf ).

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

t

P
(p
b
c)
(x
(t
)|x

t 0
,x

t f
)

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

x = 0
x = 1
x = 2
x = 3
x = 4

x = 5
x = 6
x = 7
x = 8
x = 9

Figure 5.3: Brownian bridges on a periodic lattice are accurately sampled with KMC
simulations using the hopping rates Γ

(pbc)
{+/−}(x(t)). The probability of a particle being at

position x at time t during a Brownian bridge between xt0=0 = 0 and xtf=10 = 0 is plotted. Results
from simulations are plotted in color, and analytical results (Eq. 5.34) are plotted in black. The
particle hops between sites with rates γ+ = 1 and γ− = 1/2 on a lattice of L = 10 sites.
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Acceptance Probability of fixed-end Brownian Bridge Moves. Once a new trajectory seg-
ment is generated through a bridge with the hopping rates in Eq. 5.33, it is accepted with
probability

acc[X (TB)→X ′(TB)] = min

[
1,
P

(pbc)
ASEP[X ′(TB)]P

(pbc)
CTRW[X (TB)]

P
(pbc)
ASEP[X (TB)]P

(pbc)
CTRW[X ′(TB)]

]
. (5.35)

The acceptance probability is further simplified using the ratio of the probability of trajec-
tory of the periodic ASEP (Eq. 5.10) to the probability of a trajectory of a collection of
asymmetric CTRWs (Eq. 5.21),

P
(pbc)
ASEP[X (T )]

P
(pbc)
CTRW[X (T )]

=
ρ

(pbc)
ASEP(x(0))θ[X (T )]Z

(pbc)
CTRW

ρ
(pbc)
CTRW(x(0))Z

(pbc)
ASEP

× exp

[∑
j

(RCTRW(x(tj))−RASEP(x(tj)))∆tj

]
. (5.36)

Thus, fixed-end Brownian bridge moves are accepted with probability

acc[X (TB)→X ′(TB)] = min

1,
exp

[
−∑j RASEP(x′(tj))∆t

′
j

]
θ[X ′(TB)]

exp
[
−∑j RASEP(x(tj))∆tj

]
θ[X (TB)]

 . (5.37)

This acceptance probability ensures that only bridges that respect constraints of volume
exclusion are accepted. Because particles do not interact during a bridge, they can occupy
the same lattice site. Due to the terms RASEP(x) and θ[X (TB)], only bridges that respect
the constraints of volume exclusion are accepted. Figure 5.4 demonstrates that fixed-end
bridge moves accurately sample trajectories of particles that exclude volume: During fixed-
end bridge trajectories of a periodic ASEP with two particles, each particle occupies a
given lattice site with the same probability as it does during a trajectory generated to
obey the constraints of volume exclusion using conventional KMC simulations. Because
the acceptance probability contains a term that scales exponentially with bridge length,
exp

[
−∑j RASEP(x(tj))∆tj

]
, bridges are increasingly rejected as their length is increased.

As shown in Figure 5.5, the acceptance probability of unbiased bridge moves decreases as
TB increases. Good acceptance probabilities (greater than roughly 30%) are nevertheless
obtained for unbiased bridges of lengths TB ≤ 5. Even though the acceptance probability
will decrease with an applied bias, the bridge length can be aptly chosen to obtain a desired
acceptance probability. Thus, unlike shooting moves, bridges can be used to sample new
segments in the middle of a trajectory even at high bias.

Variable-End Brownian Bridge Moves. We also developed a move that samples bridges
with variable final configurations. To do so, we exploit the fact that all particles are identical.
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Figure 5.4: Fixed-end Brownian bridge moves accurately sample trajectories of parti-
cles that exclude volume. The probability of each particle being at position x at time t during a
Brownian bridge between xt0=0 = [0, 5] and xtf=10 = [0, 5] is plotted. Results from fixed-end Brow-
nian bridge moves are plotted in color, and results from conventional KMC simulations that were
generated to obey the constraints of excluded volume are plotted in black. All KMC simulations
were started from xt0=0 = [0, 5] and those that did not end at xtf=10 = [0, 5] were discarded to
calculate P(pbc)(x(t)|xt0 ,xtf ). The two particles hop between sites with rates γ+ = 1 and γ− = 1/2
on a lattice with L = 10 sites.

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

TB〈a
cc
[X

(T
B
)
→

X
′ (
T
B
)]
〉

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

Figure 5.5: Acceptance of fixed-end Brownian bridge moves decreases with bridge
length. Average acceptance probability is plotted versus bridge length, TB. Results are shown for
periodic ASEP trajectories of length T = 10 and of N = 2 particles that hop with rates γ+ = 1 and
γ− = 1/2 between sites on a lattice with L = 10 sites.

This allows us to change the final configuration during a bridge by permuting particle indices
such that same lattice sites are occupied in both the new and old final configurations, but by
different particles. In order to generate variable-end bridge, we additionally use a mapping
between a periodic lattice and infinite, linear lattice. On a periodic lattice, a particle that
starts at position x̄t0 may make any number of laps around the lattice during a trajectory
and end at position x̄tf . Positions on a periodic lattice, which we denote x̄, map to positions
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on a lattice with free boundaries, which we denote as x, according to

xi = x̄i + niL (5.38a)
x̄i = xi − L mod (xi, L), (5.38b)

where n is the signed number of laps that the particle makes around the lattice. In all
previous equations, x denotes the positions commensurate with the specified lattice. When
the particle’s net displacement is clockwise, n is positive, whereas, when the particle’s net
displacement is counterclockwise, n is negative. When a particle’s trajectory is mapped to
a lattice with free boundaries, the particle would end at distinct positions xtf based on the
number of laps it made around the lattice. An example of a new final configuration, x′tf ,
obtained by permuting particle indices in the original final configuration, xtf , is shown in
Figure 5.6. On the lattice with free boundaries, it is evident that the net displacement of each
particle in the new trajectory segment differs from its displacement in the old trajectory, thus
changing the current. To generate bridges that end at a new final configuration, we first map
configurations on a periodic lattice to those on a linear lattice with free boundary conditions.
Next, to construct a x′tf , each particle’s index i in the final configuration is permuted by
∆i = ±1 such that x′i(tf ) = xi+∆i(tf ) while maintaining the overall order of particles. Each
particle then performs an asymmetric CTRW from xt0 to x′tf on the linear lattice with free
boundary conditions. Configurations sampled by the bridge are subsequently mapped back
to the periodic lattice. Finally, the new trajectory segment is accepted or rejected according
to a Metropolis criterion that accounts for the fact that the bridge was generated for non-
interacting particles on a lattice with free boundary conditions.

Hopping Rates for Generating a Bridge on an Infinite, Linear Lattice. To obtain expressions
for Γ

(fbc)
+/− that yield bridges on a linear lattice with free boundary conditions, we derive the

Green’s function solutions p(fbc)(x(t)|xt0) and q(fbc)(x(t)|xtf ). In doing so, we also obtain an
expression for the probability of a particle’s position during the bridge according to Eq. 5.18.

The forward master equation (Eq. 5.16) for a single particle performing an asymmetric
CTRW on a lattice with free boundary conditions can be solved by setting

p(fbc)(x(t)|xt0) =

(
γ+

γ−

)x(t)/2

πp(x(t)|xt0)e−(γ++γ−−2
√
γ+γ−)t, (5.39)

where πp(x(t)|xt0) is the probability of observing the particle at position x at time t during
a symmetric CTRW with hopping rate γeff =

√
γ+γ− given that it started at configuration

xt0 . Without loss of generality, we set the initial time to t = 0. πp(x(t)|xt0) evolves in time
according to the forward master equation

∂

∂t
πp(x(t)|xt0) = γeffπp(x(t)− 1|xt0) + γeffπp(x(t) + 1|xt0)− 2γeffπp(x(t)|xt0). (5.40)

The Green’s function solution for this master equation is

πp(x(t)|xt0) = Ix(t)−xt0 (2γefft)e
−2γeff t, (5.41)
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Figure 5.6: Variable-end Brownian bridge moves change the current by altering the
final configuration of the bridge. The positions of each particle, which are illustrated in different
colors, in the final configuration of the original trajectory x̄(tf ) (top box) are altered to construct
the final configuration in the new trajectory x̄′(tf ) (bottom box). The dashed line indicates an
arbitrarily chosen origin of the periodic lattice; the closest site clockwise from the origin is position
x̄ = 0, n = 0, and the closest site counterclockwise from the origin is position x̄ = 9, n = 0.
Particle indices i are permuted such that x′i(tf ) = xi+∆i(tf ). On a lattice with periodic boundaries
(left), uncolored x̄(tf ) and x̄′(tf ) are identical, but they are distinguishable on a lattice with free
boundaries. Because the particle order is maintained when their indices are permuted, the net
displacement of all particles is increased when their indices are permuted by ∆i = +1, and particles
appear on another periodic image of the lattice, which are highlighted in gray. Each periodic image
of the lattice is labeled by how many images it is away from the original periodic lattice, n.

where Iν(y) is the modified Bessel function of the first kind, since

∂

∂t

[
Ix(t)−xt0 (2γefft)e

−2γeff t
]

=γeff

(
Ix(t)−1−xt0 (2γefft) + Ix(t)+1−xt0 (2γefft)

)
e−2γeff t

− 2γeffIx(t)−xt0 (2γefft)e
−2γeff t

=γeff (πp(x(t)− 1|xt0) + πp(x(t) + 1|xt0))− 2γeffπp(x(t)|xt0)

=
∂

∂t
πp(x(t)|xt0). (5.42)
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Substituting Eq. 5.41 into Eq. 5.39 yields the Green’s function solution for p(fbc)(x(t)|xt0),

p(fbc)(x(t)|xt0) =

(
γ+

γ−

)x(t)/2

Ix(t)−xt0 (2γefft)e
−(γ++γ−)t. (5.43)

The Green’s function solution to the backwards master equation (Eq. 5.17) for a particle
performing an asymmetric CTRW on a lattice with free boundary conditions is derived
analogously to the solution to the forward master equation. The solution can be obtained
by setting

q(fbc)(x(t)|xtf ) =

(
γ+

γ−

)xtf
−x(t)

2

πq(x(t)|xtf )e−(γ++γ−−2γeff)(tf−t), (5.44)

where πq(x(t)|xtf ) is the probability of observing the particle at position x at time t during
a symmetric CTRW with hopping rate γeff =

√
γ+γ− given that it ends at configuration xtf .

πq(x(t)|xtf ) evolves in time according to the backwards master equation

∂

∂t
πq(x(t)|xtf ) = −γeffπq(x(t) + 1|xtf )− γeffπq(x(t)− 1|xtf ) + 2γeffπq(x(t)|xtf ). (5.45)

The Green’s function solution for this master equation is

πq(x(t)|xtf ) = Ixtf−x(t)(2γeff(tf − t))e−2γeff(tf−t), (5.46)

since
∂

∂t

[
Ixtf−x(t)(2γeff(tf − t))e−2γeff(tf−t)

]
=γeff

(
Ixtf−x(t)−1(2γeff(tf − t)) + Ixtf−x(t)+1(2γeff(tf − t))

)
e−2γeff(tf−t)

− 2γeffIxtf−x(t)(2γeff(tf − t))e−2γeff(tf−t)

=γeff

(
πq(x(t) + 1|xtf ) + πq(x(t)− 1|xtf )

)
− 2γeffπq(x(t)|xtf )

=
∂

∂t
πq(x(t)|xtf ). (5.47)

Substituting Eq. 5.46 into Eq. 5.44 yields the Green’s function solution for q(fbc)(x(t)|xtf ),

q(fbc)(x(t)|xtf ) =

(
γ+

γ−

)xtf
−x(t)

2

Ixtf−x(t)(2γeff(tf − t))e−(γ++γ−)(tf−t). (5.48)

Bridges between configurations xt0 and xtf on a lattice with free boundaries are then
generated using the hopping rates given by substituting Eq. 5.48 into Eq. 5.20,

Γ
(fbc)
+ (x(t)) = γeff

Ixtf−x(t)−1(2γeff(tf − t))
Ixtf−x(t)(2γeff(tf − t))

(5.49a)

Γ
(fbc)
− (x(t)) = γeff

Ixtf−x(t)+1(2γeff(tf − t))
Ixtf−x(t)(2γeff(tf − t))

. (5.49b)
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From Eq. 5.18, the bridges generated with these hopping rates sample the probability
distribution

P(fbc)(x(t)|xt0 , xtf ) =
Ix(t)−xt0 (2γefft)Ixtf−x(t)(2γeff(tf − t))

Ixtf−xt0 (2γefftf )
. (5.50)

As shown in Figure 5.7, bridges generated using the hopping rates in Eq. 5.49 accurately
sample the exact distribution P(fbc)(x(t)|xt0 , xtf ).
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Figure 5.7: Brownian bridges on a linear lattice with free boundaries are accurately
sampled with KMC simulations using the hopping rates Γ

(fbc)
{+/−}(x(t)). The probability of

a particle being at position x at time t during a Brownian bridge between xt0=0 = 0 and xtf=10 = 0
is plotted. Results from simulations are plotted in color, and analytical results (Eq. 5.50) are
plotted in black. The particle hops between sites with rates γ+ = 1 and γ− = 1/2.

Acceptance Probability of variable-end Brownian Bridge Moves. Once a new trajectory seg-
ment is generated through a bridge with the hopping rates in Eq. 5.49, it is accepted with
probability

acc[X (TB)→X ′(TB)] = min

[
1,
P

(pbc)
ASEP[X ′(TB)]P

(fbc)
CTRW[X (TB)|xt0 ,xtf ]

P
(pbc)
ASEP[X (TB)]P

(fbc)
CTRW[X ′(TB)|xt0 ,xtf ]

]
. (5.51)

For any given model (ASEP or CTRW), the probability of a trajectory that starts at x̄t0 = xt0
and ends at x̄tf on a lattice with periodic boundaries, P (pbc)

model[X (T )|xt0 , x̄tf ], is related to
the probability on a lattice with free boundaries, P (fbc)

model[X (T )|xt0 , x̄tf ], according to

P
(pbc)
model[X (T )|xt0 , x̄tf ] =

1

Z
(pbc)
model(x̄tf |xt0)

∑
n

P
(fbc)
model[X (T )|xt0 ]

N∏
i

Jxi(tf ) = x̄tf ,i + niLK

(5.52a)

Z
(pbc)
model(x̄tf |xt0) =

∑
X (tf )

∑
n

P
(fbc)
model[X (T )|xt0 ]

N∏
i

Jxi(tf ) = x̄tf ,i + niLK, (5.52b)
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where Z(pbc)
model(x̄tf |xt0) is the path partition function for trajectories on a periodic lattice that

start at xt0 and end at x̄tf . Thus, trajectories on a periodic lattice can be sampled by
generating Brownian bridges on a lattice with free boundaries as long as different values of n
are also sampled. The fact that each particle performs an asymmetric CTRW independently
of all other particles allows us to simplify the path partition function for a collection of
CTRWs,

Z
(bc)
CTRW(xtf |xt0) =

N∏
i

∑
Xi(T )

P
(bc)
CTRW[Xi(T )|xt0,i]Jxi(tf ) = xtf ,iK

=
N∏
i

p(bc)(xtf ,i|xt0,i). (5.53)

Here we have identified Z(bc)
CTRW(xtf |xt0) as the average of Jxi(tf ) = xtf ,iK, which is the Green’s

function p(bc)(x(t)|xt0) evaluated at time t = tf . Thus, the probability of a trajectory that
is a collection of CTRWs that start and end at the same configuration is

P
(bc)
CTRW[X (T )|xt0 ,xtf ] =

(
N∏
i

p(bc)(xtf ,i|xt0,i)
)−1

P
(bc)
CTRW[X (T )|xt0 ]

N∏
i

Jxi(tf ) = xtf ,iK.

(5.54)
Using the above relationships, we simplify the ratio P (pbc)

ASEP[X (T )]/P
(fbc)
CTRW[X (T )|xt0 ,xtf ]

in the acceptance probability in Eq. 5.51 as follows: Using Eqs. 5.36 and 5.52, the probability
of a periodic ASEP trajectory can be written in terms of the probability of a collection of
independent asymmetric CTRWs on a lattice with free boundaries. Using Eq. 5.54, the
probability of a collection of independent asymmetric CTRWs that start from xt0 is then
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written in terms of bridge trajectories that not only start at xt0 but also end at xtf .

P
(pbc)
ASEP[X (T )] ∝P (pbc)

ASEP[X (T )|xt0 , x̄tf ]

∝
∑
n

P
(fbc)
ASEP[X (T )|xt0 ]

N∏
i

Jxi(tf ) = x̄tf ,i + niLK

∝
∑
n

P
(fbc)
CTRW[X (T )|xt0 ]

N∏
i

Jxi(tf ) = x̄tf ,i + niLK

× exp

[∑
j

∆R(x̄(tj))∆tj

]
θ[X (T )]

=
∑
n

P
(fbc)
CTRW[X (T )|xt0 , x̄tf + nL]

N∏
i

p(fbc)(x̄tf ,i + niL|xt0,i)

× exp

[∑
j

∆R(x̄(tj))∆tj

]
θ[X (T )]

=P
(fbc)
CTRW[X (T )|xt0 ,xtf ]

N∏
i

p(fbc)(xtf ,i|xt0,i)Jx̄i(tf ) = x̄tf ,iK (5.55)

× exp

[∑
j

∆R(x̄(tj))∆tj

]
θ[X (T )],

where ∆R(x̄(tj)) = RCTRW(x̄(tj))− RASEP(x̄(tj)). The final simplification was made using
the mapping between positions on a periodic lattice and positions on a lattice with free
boundaries (Eq. 5.38). Using this expression for P (pbc)

ASEP[X (T )],

P
(pbc)
ASEP[X (T )]

P
(fbc)
CTRW[X (T )|xt0 ,xtf ]

∝
N∏
i

p(fbc)(xtf ,i|xt0,i)Jx̄i(tf ) = x̄tf ,iK (5.56)

× exp

[∑
j

∆R(x̄(tj))∆tj

]
θ[X (T )].

Thus, variable-end Brownian bridge moves are accepted with probability

acc[X (TB)→X ′(TB)] =

min

1,

∏N
i p

(fbc)(x′tf ,i|xt0,i) exp
[
−∑j RASEP(x̄′(tj))∆t

′
j

]
θ[X ′(TB)]∏N

i p
(fbc)(xtf ,i|xt0,i) exp

[
−∑j RASEP(x̄(tj))∆tj

]
θ[X (TB)]

 . (5.57)

The acceptance probability includes the same terms in the acceptance probability of fixed-
end bridge moves (Eq. 5.37) to ensure that only bridges that respect constraints of volume
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exclusion are accepted. Figure 5.8 demonstrates that variable-end bridge moves accurately
sample trajectories of particles that exclude volume and can swap final positions: During
variable-end bridge trajectories of a periodic ASEP with two particles, each particle occupies
a given lattice site with the same probability as it does during a trajectory generated to obey
the constraints of volume exclusion using conventional KMC simulations. The additional
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Figure 5.8: Variable-end Brownian bridge moves accurately sample trajectories of
particles that exclude volume. The probability of each particle being at position x at time
t during a Brownian bridge between xt0=0 = [0, 5] and xtf=10 = {[0, 5], [5, 0]} is plotted. Results
from variable-end Brownian bridge moves in which ∆i = {−1, 0,+1} are plotted in color, and results
from conventional KMC simulations that were generated to obey the constraints of excluded volume
are plotted in black. All KMC simulations were started from xt0=0 = [0, 5] and those that did not
end at xtf=10 = {[0, 5], [5, 0]} were discarded to calculate P(pbc)(x(t)|xt0 ,xtf ). The two particles
hop between sites with rates γ+ = 1 and γ− = 1/2 on a lattice with L = 10 sites.

term in the acceptance probability,
∏N

i p(fbc)(x′tf ,i|xt0,i)∏N
i p(fbc)(xtf ,i|xt0,i)

, accounts for differences between the

new and old final configurations. Due to this term, variable-end bridge moves are accepted
with lower probability than fixed-end bridges when ∆i 6= 0 (Figure 5.9). Non-negligible
acceptance probabilities for ∆i = ±1 and N = 2 are nevertheless obtained for unbiased
bridges of lengths TB ≥ 2. When ∆i = ±1 and N = 2, longer bridges are required for a
particle to complete an extra lap around the lattice. As N increases, though, particles do
not have to hop as far to reach their new final position when ∆i = ±1 (see Figure 5.6 for
example), such that shorter variable-end bridges may be accepted with higher probability.
Thus, these bridge moves can be used to efficiently sample new segments in the middle of a
trajectory with different currents.
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Figure 5.9: Acceptance of variable-end Brownian bridge moves depends on bridge
length and ∆i. Average acceptance probabilities for particle permutations of ∆i = {−1, 0,+1}
are plotted versus bridge length, TB. Results are shown for periodic ASEP trajectories of length
T = 10 and of N = 2 particles that hop with rates γ+ = 1 and γ− = 1/2 between sites on a lattice
with L = 10 sites.

Brownian Bridge Moves Sample Biased Trajectories of
the Periodic ASEP More Efficiently than Shooting Moves

As an initial test of our new moves, we evaluate the efficiency of Brownian bridge moves
versus shooting moves at sampling trajectories of a periodic ASEP with N = 2 particles,
which each hop with rates γ+ = 1 and γ− = 1/2 between sites on a lattice with L = 10
sites. All other simulation parameters are given in Appendix D. Specifically, we evaluate the
moves’ abilities to sample rare values of the activity (Eq. 5.11) and current (Eq. 5.12) over
an observation time of T = 10. To enhance the sampling of rare values of the activity and
current we tilt the trajectory ensemble by applying a bias s on the activity or a bias λ on the
current (Eq. 5.7). This amounts to including the factor exp[−sK[X ′(T )] + sK[X (T )]] or
exp[−λJ [X ′(T )] + λJ [X (T )]] in the acceptance probabilities given in the previous section
(Eqs. 5.14, 5.15, 5.37, and 5.57) to bias the activity, K, and current, J , respectively.

Moves must be accepted with reasonable probability (roughly 30% is often optimal) at
high bias, to efficiently sample trajectories with rare activity or current. As shown in Figure
5.10, black points, more than half of all shooting moves are accepted when the magnitude
of the bias is less than 0.25, but very few moves are accepted at high bias. At high bias,
trajectory segments generated by shooting moves are seldom accepted, making shooting
moves inefficient at sampling rare values of the activity or current. Shooting moves of shorter
lengths (roughly lengths TB < 1.5) are accepted with reasonable probabilities at high bias;
however, they only alter the very beginning or end of the trajectory and leave the middle
unchanged. In contrast, fixed-end Brownian bridge moves are accepted frequently at high
bias when the bridge length, TB, is chosen appropriately, and they alter the middle of the
trajectory. Figure 5.11 shows the acceptance probability of biased fixed-end bridges with
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Figure 5.10: Shooting moves are seldom accepted at high bias. Average acceptance proba-
bilities of (left) forward and (right) backward shooting moves are plotted versus bias value. Results
for biasing (top) the activity by s and (bottom) the current by λ are shown for periodic ASEP
trajectories of length T = 10 and of N = 2 particles that hop with rates γ+ = 1 and γ− = 1/2
between sites on a lattice with L = 10 sites. Average acceptances of shooting moves of any length
are shown in black, and acceptances of shooting moves of length TB are shown in shades of gray.

0.5 ≤ TB ≤ 5. As |s| increases, the acceptance probability of fixed-end bridge decreases in a
fashion similar to shooting moves. The acceptance probability decays asymmetrically from
s = 0 due to an underlying asymmetry in the large deviation function ψ(s), which further
hinders sampling for s < 0 compared to s > 0. For all values of s, shorter fixed-end bridges
are accepted with higher probability. When the current is biased, the acceptance probability
of longer fixed-end bridges (roughly TB > 3.5) also decreases in a fashion similar to shooting
moves. The acceptance probability decays roughly symmetrically from λ = 0 since the
large deviation function ψ(λ) is symmetric. For all values of λ, shorter fixed-end bridges
are accepted with higher probability. The acceptance probability of short fixed-end bridges
(roughly TB < 1.5) does not vary significantly with λ. When fixed-end bridges are short,
particles are unlikely to make additional laps around the periodic lattice during the bridge
such that the particles’ net displacements do not change. As a result, the current in the new
trajectory segment is equal to the current in the old segment, and the term in the acceptance
probability that accounts for the bias has no influence since exp[−λJ [X ′(T )]+λJ [X (T )]] =
1. Thus, short fixed-end bridges do not efficiently sample different values of the current.
However, when fixed-end bridges are long enough for particles to make multiple laps around
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Figure 5.11: Short fixed-end Brownian bridge moves are accepted at high bias. Average
acceptance probabilities of fixed-end Brownian bridge of different bridge lengths, TB, are plotted
versus bias value. Results for biasing (top) the activity by s and (bottom) the current by λ are
shown for periodic ASEP trajectories of length T = 10 and of N = 2 particles that hop with rates
γ+ = 1 and γ− between sites on a lattice with L = 10 sites.

the periodic lattice, the current in the new segment differs from the current in the old
segment, and the acceptance probability varies with λ. Importantly, fixed-end bridge moves
are accepted at large |s| and |λ| when TB is chosen appropriately. Thus, unlike shooting
moves, fixed-end bridge moves can be used to efficiently sample rare values of the activity
or current.

Variable-end Brownian bridge moves allow the current to be altered in a controlled way
by swapping particle positions in the final configuration of the bridge. When the final
configuration is not changed, which amounts to permuting particle indices by ∆i = 0, the
acceptance probability of variable-end bridges biased by s (Figure 5.12) is similar to the
acceptance probability of fixed-end bridges (Figure 5.11). When ∆i = 0, the acceptance
probability of variable-end bridges of any length does not vary with λ since the current does
not change during the bridge. Although variable-end bridges with ∆i = ±1 are accepted with
much lower probability, their acceptance probability is non-negligible for biases of roughly
−1 ≤ s ≤ 0 and −0.5 ≤ λ ≤ 0.5. At low bias, longer moves are accepted with higher
probability than shorter ones because longer bridges provide the particles with more time to
make the necessary number of hops to reach their new final configuration. When the indices
of the two particles are permuted, one particle must make at least one full additional lap
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Figure 5.12: Variable-end Brownian bridge moves are accepted at small bias. Av-
erage acceptance probabilities of variable-end Brownian bridge with particle permutations of
∆i = {−1, 0,+1} and different bridge lengths, TB, are plotted versus bias value. Results for biasing
(top) the activity by s and (bottom) the current by λ are shown for periodic ASEP trajectories of
length T = 10 and of N = 2 particles that hop with rates γ+ = 1 and γ− between sites on a lattice
with L = 10 sites.

around the periodic lattice in the new trajectory compared to the old one. In an unbiased
trajectory of the periodic ASEP with our chosen parameters, this takes roughly a total time
of TB = 5 and is less likely to occur as TB decreases. For λ > 0, which biases trajectories
towards negative currents, variable-end bridges with particle indices permuted by ∆i = −1
are accepted more since they can create negative currents. In contrast, for λ < 0, which biases
trajectories towards positive currents, bridge with particle indices permuted by ∆i = +1 are
accepted more since they can create more positive currents. Since variable-end bridges with
∆i = ±1 change the current, which is correlated with the activity, judicious use of variable-
end bridge moves with ∆i = ±1 in addition to fixed-end bridge moves can further enhance
the sampling of rare values of the activity or current.

The efficiency of TPS simulations depends not only on moves being accepted with suf-
ficient probabilities, but more importantly by how readily those moves generate new, inde-
pendent trajectories. If accepted moves only make small changes to an existing trajectory,
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trajectories remain highly correlated. If accepted moves instead make large changes, trajec-
tories decorrelate quickly, fewer moves are required to fully sample the trajectory ensemble,
and overall computational efficiency of the simulation increases. To quantify how quickly tra-
jectories decorrelate during biased simulations, we compute correlations functions of either
the activity or current as a function of the number of moves, τ , according to

Cζ(τ) =
〈δO[X0(T )]δO[Xτ (T )]〉ζ

〈δO[X (T )]2〉ζ
, (5.58)

where 〈· · · 〉ζ indices an ensemble average at a bias value of ζ, δO[X (T )] = O[X (T )]−〈O〉ζ
is the variation in the observable biased by ζ, and each trajectory is indexed by the number
of moves performed. Correlation functions from biased simulations using (1) only shooting
moves, (2) fixed-end bridges and shooting moves, and (3) variable-end bridges with ∆i =
±1, fixed-end bridges, and shooting moves are shown in Figure 5.13. For all combinations
of moves, trajectories decorrelate slower as the magnitude of the bias is increased since
fewer moves are accepted at high bias (Figures 5.10, 5.11, and 5.12). When the bias on
the activity is large and negative, using fixed-end bridges in addition to shooting moves
leads to more rapid decorrelation of the activity. Because the activity and current are
correlated, additionally using variable-end bridges with particle permutations of ∆i = ±1
further enhances sampling of trajectories with large activity typical of s� 0. When the bias
on the current is large, using fixed-end bridges in addition to shooting moves can lead to more
rapid decorrelation of the current since the bridges can modify the middle of the trajectory.
However, because short fixed-end bridges (TB ≤ 3) were used in the simulations, they do not
readily change the current and in fact slow decorrelation for some values of λ. Additionally
using variable-end bridges to change the current in a controlled way leads to significantly
more rapid decorrelation. Thus, Brownian bridge moves, and especially variable-end bridges
that alter the current, improve the efficiency of simulations at high bias.

Finally, we examined whether Brownian bridge moves enable accurate sampling of excep-
tionally rare values of the activity and current, which are otherwise very difficult to sample
with shooting moves alone. Sampling such trajectories is necessary to accurately calculate
the large deviation functions ψ(s) and ψ(λ) over a wide range of values from TPS sim-
ulations. Rate functions and corresponding large deviation functions were calculated from
biased simulations using WHAM. Simulations were performed using (1) only shooting moves,
(2) fixed-end bridges and shooting moves, and (3) variable-end bridges with ∆i = ±1, fixed-
end bridges, and shooting moves. Rate functions and large deviation functions calculated
from each of these simulations are shown in Figure 5.14. For comparison, the exact rate
functions and large deviation functions obtained through matrix diagonalization are also
plotted. Trajectories with exceptionally large values of the activity and current are sampled
when Brownian bridge moves are used. This allows the rate functions I(K/T ) and I(J/T ) to
be accurately estimated over a wider range than possible using shooting moves alone. Sim-
ulations using fixed-end bridges and simulations using fixed-end and variable-end bridges
both yield accurate estimates of I(K/T ). Furthermore, the large deviation function ψ(s)
calculated from both simulations that use bridges agrees with the exact result, with only
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Figure 5.13: Brownian bridge moves decorrelate trajectories more efficiently than
shooting moves at high bias. (Top) Correlation function of the activity, Cs(τ) as a function of
moves, τ , during simulations biased by s. (Bottom) Correlation function of the current, Cλ(τ) as
a function of moves during simulations biased by λ. Results are shown for TPS simulations using
(left) only forward and backward shooting moves (“S”), (middle) a majority of fixed-end Brownian
bridges in addition to shooting moves (“fixed BB+S”), and (right) an equal amount of fixed-end
bridge moves and variable-end bridge moves that permute particles by ∆i = ±1 in addition to
shooting moves (“variable BB+fixed BB+S”).

minor deviations at large positive values of s. In contrast, ψ(s) calculated from simulations
that only use shooting moves significantly deviates from the exact result at large negative
values of s because trajectories with large activity, which contribute most to ψ(s) at large
negative s are not sampled. Simulations using bridges also yield reasonably accurate esti-
mates of I(J/T ). The large deviation function ψ(λ) calculated from both simulations that
use bridges reasonably agrees with the exact result; better agreement is obtained at large
negative λ when only fixed-end bridges are performed whereas better agreement is obtained
at large positive λ when variable-end bridges are also used. By further tuning the relative
number of fixed-end and variable-end bridges and their respective bridge lengths, accurate
results for both large deviation functions over the range −2 ≤ λ ≤ 2 ought to be obtainable
from simulations. In contrast, ψ(s) calculated from simulations that only use shooting moves
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Figure 5.14: Brownian bridge moves sample rare trajectories of the periodic ASEP
more readily than shooting moves. (A and C) Rate functions and (B and D) large deviation
functions for the (A and B) activity and (C and D) current of a periodic ASEP with N = 2
particles that hop with rates γ+ = 1 and γ− = 1/2 between sites on a lattice with L = 10
sites over an observation time of T = 10. Results are shown for TPS simulations using fixed-end
Brownian bridge moves and shooting moves (“fixed BB+S”), an equal amount of fixed-end bridge
moves and variable-end bridge moves that permute particles by ∆i = ±1 in addition to shooting
moves (“variable BB+fixed BB+S”), and only shooting moves (“S”). For reference, exact results from
matrix diagonalization are shown.

deviates more substantially from the exact result at both large negative and large positive
values of λ. Thus, due to their ability to achieve reasonable acceptance probabilities at high
bias and to quickly decorrelate trajectories, Brownian bridge moves enable large deviation
functions of periodic ASEPs to be accurately calculated over a wide range of bias values
from simulations.

Conclusions

Much like equilibrium free energies, large deviation functions characterize the likelihood
of nonequilibrium steady states and fluctuations thereabout. However, calculating large



CHAPTER 5. DEVELOPMENT OF BROWNIAN BRIDGE BASED PATH SAMPLING
METHODS FOR A NONEQUILIBRIUM TRANSPORT MODEL 108

deviation functions from simulations is often quite challenging. To overcome some of the
limitations of current simulation methods, we developed new path sampling moves that
extended the capabilities of transition path sampling simulations to efficiently calculate large
deviation functions of periodic ASEPs. Specifically, we developed two new moves based
on Brownian bridges that allow segments in the middle of a trajectory to be modified in
a controlled manner. Unlike shooting moves, Brownian bridge moves include adjustable
parameters that enable them to achieve good acceptance probabilities even at high bias.
When optimally tuned, Brownian bridge moves enhance the sampling of periodic ASEP
trajectories that exhibit rare values of activity and current. Thus, large deviation functions
are more accurately calculated from transition path sampling simulations that use Brownian
bridge moves compared to those that only use shooting moves.

Our initial tests demonstrated that Brownian bridge moves efficiently sample rare values
of the activity and current for a periodic ASEP with N = 2 particles over an observation
time of T = 10. Because a long time limit is not quite reached by T = 10, a more accurate
estimate of the large deviation function may require sampling longer trajectories. We expect
Brownian bridge moves to be especially valuable to sample longer trajectories since they
modify the middle of trajectories, which comprise the bulk of longer trajectories, but shooting
moves only modify the ends at high bias. Because the dynamical phase transition between
a hyperuniform state and phase separated state becomes more pronounced at high packing
fractions, a thorough investigation of this phase transition may require sampling periodic
ASEPs with a larger number of particles. Variable-end bridges may be accepted with higher
probability as N increases since alterations to the final configuration of the bridge are less
substantial than at small N . However, both fixed-end and variable-end bridges may be less
efficient at sampling systems with increased N since particles are treated as non-interacting
during a Brownian bridge. During a bridge, they are more likely to occupy the same lattice
site when N is large and, thus, more likely to be rejected since they do not respect the
constraints of volume exclusion. A potential way to overcome this limitation is to develop
a simulation algorithm that generates bridges of interacting particles. This approach would
require a solution to the backwards Kolmogorov equation, which generally does not exist
for interacting systems. Recently, however, solutions were obtained for continuous-space
Brownian bridges during which particles never cross paths.283 Thus, it may be possible to
develop a simulation algorithm that generates discrete-space Brownian bridges of excluded-
volume particles and further increases the efficiency of Brownian bridge moves.

While we have focused on developing Brownian bridge moves to sample trajectories of
periodic ASEPs, Brownian bridge moves may enhance the sampling of other systems. For
example, a continuous-space formulation284 can be used to study analogues of ASEPs whose
configuration spaces are continuous in addition to more molecular systems. Furthermore,
Brownian bridge moves may also be useful for sampling equilibrium transitions and especially
rare events characterized by long transitions, many metastable intermediates, or rugged
transition landscapes. Shooting moves are ineffective at sampling such rare events since
they generate trajectories that unproductively wander among metastable states and that
cannot surmount barriers separating different transition paths.135 In contrast, Brownian
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bridge moves modify the middle of a trajectory in a controlled way such that new trajectory
segments do not get stuck in metastable states. Furthermore, the acceptance probability
of biased bridges can be tuned so that enhanced sampling techniques can be used to help
overcome barriers in the transition landscape. Thus, Brownian bridge moves may greatly
expand the capabilities of transition path sampling simulations to study the dynamics of
both equilibrium and nonequilibrium systems.
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Appendix A

Appendix for “Breakage of Hydrophobic
Contacts Limits the Rate of Passive
Lipid Exchange between Membranes”

Additional Order Parameters Used to Characterize
Transition Paths

In addition to the order parameters described in Chapter 1, dlip, dsn1, dsn2, min(dCC), and
nCC, we evaluated additional order parameters for their potential as reaction coordinates.
They are as follows:

n
(lip)
w,X The number of water molecules within the first solvation shell of bead

(atom) X of the tagged MARTINI (CHARMM36) lipid. Water beads (water
molecules with oxygen atoms) within a distance d(lip)

solv (X) of X were counted.
d

(lip)
solv (X) is the location of the first minimum of the radial distribution func-

tion between water beads (oxygens) and X calculated from a simulation of
a single lipid in solution.
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n
(mem)
w,X The number of water molecules within the first solvation shell of bead (atom)

X of MARTINI (CHARMM36) lipids in the membrane that are nearby the
tagged lipid. Only lipids in the membrane whose distance to the tagged
lipid in the plane parallel to the bilayer surface (xy plane) was within 8 Å
were considered. Water beads (water molecules with oxygen atoms) within
a distance d(mem)

solv (X) of X were counted. d(mem)
solv (X) is the location of the first

minimum of the radial distribution function between water beads (oxygens)
and X calculated from a simulation of an unperturbed lipid bilayer. The
value of d(mem)

solv (X) for beads C1A and C1B (hydrophobic carbons closest to
the glycerol group) were used for all hydrophobic carbons in the lipid tails.

n
(cyl)
X,Y The number of X within a cylinder extending in z from Y to the midplane

of the bilayer. X is either water beads (oxygens) with label X = w, all lipid
beads (atoms) with label X = lip, hydrophilic lipid beads (atoms) with label
X = philic, hydrophobic lipid beads (atoms) with label X = phobic, or all
beads (atoms) with label X = all. Y is either the center-of-mass (COM) of
the tagged lipid with label Y = lip, the terminal carbon of the sn1 tail of
the tagged lipid with label Y = sn1, or the terminal carbon of the sn2 tail of
the tagged lipid with label Y = sn2. For Y = lip, the radius of the cylinder
is 8 Å; for Y = sn1, the radius is d(lip)

solv (C3B) for MARTINI and d(lip)
solv (C314)

for CHARMM36; for Y = sn2 the radius is d(lip)
solv (C3A) for MARTINI and

d
(lip)
solv (C214) for CHARMM36.

ρ
(cyl)
X,Y The number density of X within a cylinder extending in z from Y to the

midplane of the bilayer, where X = w, lip, philic, phobic, or all and Y = lip,
sn1, or sn2. The radius of the cylinder depends on Y just as for n(cyl)

X,Y .

〈δzphos〉mem Average height fluctuation of lipids in the membrane that are within 8 Å of
the tagged lipid in the xy plane. δzphos = zphos − 〈zphos〉 is the deviation of
the z position of the phosphate group of a lipid nearby the tagged lipid from
the average z position of the phosphate group of all lipids in the leaflet.

〈nET〉mem Average number of exposed lipid tails flipped out of the bilayer. An exposed
tail has at least one hydrophobic carbon bead (atom) with a z position
greater than 〈zphos〉. Only lipids nearby the tagged lipid, which are within
8 Å of the tagged lipid in the xy plane, were considered.

min(dHT,Y) The minimum distance between head groups of lipids in the membrane
and the terminal carbon of one tail of the tagged lipid in the xy plane.
Specifically, dHT,Y is measured from bead NC3 (atom N) to either terminal
carbon of the tagged lipid’s tails, labeled Y = sn1 or sn2, for MARTINI
(CHARMM36).
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Adefect,Y Area of packing defects in the membrane near one tail of the tagged lipid,
labeled Y = sn1 or sn2. Defects that expose hydrophobic portions of the
membrane were identified with PackMem60,61 on a 1 Å × 1 Å grid. The
tagged lipid was excluded in the analysis to identify defects. A defect is
considered near Y if any grid point that makes up the defect is within 1 Å
of Y in the xy plane.

Eint Interaction energy between the tagged lipid and the rest of the system.

min(dCC,Y) Hydrophobic contacts between one tail of the tagged lipid and membrane.
dCC,Y is the distance between a hydrophobic carbon in the sn1 tail, labeled
Y = sn1, or sn2 tail, labeled Y = sn2, of the tagged lipid and of the closest
leaflet.

nCC,Y Number of close hydrophobic contacts between one tail of the tagged lipid,
labeled Y = sn1 or sn2, and closest leaflet. Any pair of hydrophobic carbons
with a distance dCC ≤ 14 Å for MARTINI lipids or with dCC ≤ 10 Å for
CHARMM36 lipids were counted as close contacts.

Stockholm Lipids (Slipids) Simulations

Molecular Dynamics Simulations

To simulate a bilayer of 128 Slipids206,207 DMPC lipids for use in subsequent umbrella sam-
pling (US) simulations, we used a protocol similar to that used for CHARMM36 lipids. First,
the bilayer was energy minimized prior to undergoing a two-stage equilibration at 320 K and
1 bar. The first 250 ps equilibration utilized the Berendsen barostat169 for semi-isotropic
pressure coupling with a coupling time constant of 2 ps and isothermal compressibility of
4.5 × 10−5 bar−1, and the second 250 ps equilibration utilized the Parinello-Rahman baro-
stat170 with a coupling time constant of 10 ps. Then, a 50 ns production run was performed
to allow the bilayer to fully equilibrate (Figure A.1). The lipids and solvent were coupled to
separate Nosé-Hoover thermostats183,184 using a coupling time constant of 1 ps to maintain
the temperature. Dynamics were evolved according to the leapfrog algorithm173 using a 2 fs
time step. All bonds were constrained using the LINCS algorithm.185 Lennard-Jones forces
were smoothly switched off between 1.4 and 1.5 nm. Coulomb interactions were truncated
at 1.5 nm, and long-ranged Coulomb interactions were calculated using Particle Mesh Ewald
(PME) summation186 with a Fourier spacing of 0.12 nm and an interpolation order of 4. A
long-range analytic dispersion correction was applied to both energy and pressure to account
for the truncation of Lennard-Jones interactions. Neighbor lists were constructed with the
Verlet algorithm.175
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Next, a system with a tagged lipid in solution was built for use in US simulations. This
system was energy minimized and equilibrated using the protocol described for the Slipids
bilayer system with the addition of harmonic restraints on the z coordinates of all heavy
atoms of the tagged lipid.

Free Energy Calculations

To obtain the 2D free energy surface ∆F (min(dCC), nCC) for the Slipids system using US
simulations, the same number of windows and the same harmonic biases on min(dCC) and
nCC were used as for the CHARMM36 system. To generate initial configurations for each
window, a 20 ns steered molecular dynamics (SMD) simulation was performed. During the
SMD simulation, the system was pulled along the minimum free energy path determined for
CHARMM36 (Figure A.9) using a harmonic bias on min(dCC) with a spring constant of 5,000
kJ/mol/nm2 and on nCC with a spring constant of 0.005 kJ/mol/contact2. Each US window
was initialized with a configuration obtained from the SMD simulation that has a value of
(min(dCC), nCC) close to the center of the window’s bias. Each window was simulated for
24 ns. The first 4 ns of data from these windows was discarded to account for equilibration.
Finally, data from all windows was combined with the weighted histogram analysis method
(WHAM)191 to obtain a free energy surface as a function of min(dCC) and nCC. Error bars
were calculated as the standard error of free energy surfaces estimated from five independent
5 ns blocks.

Maximum Likelihood Approach to Identify a Reaction
Coordinate

The maximum likelihood approach140,200 identifies a reaction coordinate rc, which is a linear
combination of order parameters qi, that best represents the outcomes of individual commit-
tor calculations when inserted into a model for the committor. The model for the committor
is

pB(rc(q)) =
1 + tanh(rc(q))

2
. (A.1)

Specifically, the form of the reaction coordinate is

rc(q) = α0 +
M∑
i=1

αiqi, (A.2)

where M is the number of order parameters used to construct rc. All order parameters
qi are scaled to the range [0,1], and their units are absorbed into the coefficients αi. The
coefficient α0 is included as an offset so that rc = 0 for transition states. The coefficients αi
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are determined by maximizing the likelihood

L =

NB∏
k=1

pB(rc(q))

NA∏
k=1

[1− pB(rc(q))] , (A.3)

where NB is the number of trials used in the committor calculations that end in state B
and NA is the number of trials that end in state A. As M is increased, the number of
fitting parameters αi increases, resulting in an improved reaction coordinate and increased
likelihood at the cost of physical insight. A Bayesian information criterion can be used to
determine when including an additional order parameter results in a significantly improved
reaction coordinate. For N = NA + NB realizations of the likelihood, a reaction coordinate
composed of M + 1 order parameters provides a significant improvement over a reaction
coordinate composed of M order parameters if lnL increases by more than the Bayesian
information criterion, 1

2
lnN .

We used the maximum likelihood approach to construct r(M=48)
c as a linear combination

of up to 48 order parameters, excluding min(dCC) and nCC, for the MARTINI model. Ad-
ditionally, we used the maximum likelihood approach to construct the reaction coordinate
for lipid (L) transport via solvent (xS), rLxS, from order parameters including min(dCC) and
nCC for both MARTINI and CHARMM36 models. rLxS constructed as a linear combination
of min(dCC) and nCC was used to identify dividing surfaces between states A and B where
rLxS = 0. For MARTINI, the likelihood for each tested reaction coordinate was evaluated on
N = 4, 569, 150 commitor trials found along transition paths, corresponding to a Bayesian
information criterion of 1

2
lnN = 7.667. For CHARMM36, the likelihood for each tested re-

action coordinate was evaluated based on N = 2, 760 commitor trials found along transition
paths, corresponding to a Bayesian information criterion of 1

2
lnN = 3.961.
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Figure A.1: Equilibration of initial lipid bilayer. Area per lipid, Alip, during MD simulations
of a lipid bilayer composed of 128 lipids. The straight lines that are outlined in black indicate the
average area per lipid during the MARTINI simulation (cyan), CHARMM36 simulation (orage),
and Slipids simulation (magenta).
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Figure A.2: Determination of stable state definitions. Probability distributions of dlip, dsn1,
and dsn2 from MARTINI and CHARMM36 spontaneous insertion trajectories. State A configura-
tions, in which the tagged lipid is fully solvated, are located in the red region. State B configurations,
in which the tagged lipid is in the bilayer, are located in the blue region. The small peak around
dlip = 20 Å arises from configurations in which the tagged lipid is absorbed to the bilayer. The
peak in the distribution from CHARMM36 simulations around dlip = 8 Å arises from splayed lipid
configurations.
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Figure A.3: Cavities around the tagged lipid are not observed during insertion. The
number of water molecules and hydrophilic lipid fragments below the tagged lipid de-
creases during insertion while the density of hydrophobic lipid fragments increases.
Probability distributions of the number, n(cyl)

X,lip, and number density, ρ(cyl)
X,lip, of water and different

types of molecular fragments between the tagged lipid and midplane of the bilayer for (A) MARTINI
and (B) CHARMM36 simulations. Distributions are plotted for state A, for state B, and for three
ensembles of configurations drawn from transition paths: pre-transition state (pre-TS) configura-
tions identified by pB = 0, transition states (TS) identified by 0.45 ≤ pB ≤ 0.55 for MARTINI and
by 0.4 ≤ pB ≤ 0.6 for CHARMM36, and post-transition state (post-TS) configurations identified
by pB = 1.
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Figure A.4: Water molecules are shed from the tagged lipid’s first solvation shell during
insertion. Probability distributions of the number of water molecules within the first solvation shell
of the tagged lipid, n(lip)

w,X . (A) For MARTINI, the number of water beads around each bead of the

tagged lipid is shown. (B) For CHARMM36, n(lip)
w,X is averaged over the atoms that map to a given

MARTINI bead: Atoms N, C13, C14, C15, C12, and C11 are mapped to bead NC3; atoms P,
O13, O14, O11, and O12 are mapped to bead PO4; atoms C1, C2, O21, C21, O22, and C22 are
mapped to bead GL1; atoms C3, O31, C31, O32, and C32 are mapped to bead GL2; atoms C23,
C24, C25, and C26 are mapped to bead C1A; atoms C27, C28, C29, and C210 are mapped to
bead C2A; atoms C211, C212, C213, and C214 are mapped to bead C3A; atoms C33, C34, C35,
and C36 are mapped to bead C1B; atoms C37, C38, C39, and C310 are mapped to bead C2B;
atoms C311, C312, C313, and C314 are mapped to bead C3B. Beads C1B, C2B, and C3B comprise
the sn1 tail, and beads C1A, C2A, and C3A comprise the sn2 tail. Distributions are plotted for
state A, for state B, and for three ensembles of configurations drawn from transition paths: pre-
transition state (pre-TS) configurations identified by pB = 0, transition states (TS) identified by
0.45 ≤ pB ≤ 0.55 for MARTINI and by 0.4 ≤ pB ≤ 0.6 for CHARMM36, and post-transition state
(post-TS) configurations identified by pB = 1.



APPENDIX A. APPENDIX FOR “BREAKAGE OF HYDROPHOBIC CONTACTS
LIMITS THE RATE OF PASSIVE LIPID EXCHANGE BETWEEN MEMBRANES” 138

10−4
10−3
10−2
10−1
100

0 50 100 150

P
ro
ba
bi
lit
y

MARTINI

0 50 100 150

P
ro
ba
bi
lit
y

MARTINI

Adefect, sn1 (Å2)

10−4
10−3
10−2
10−1
100

0 50 100 150

Adefect, sn2 (Å2)

State A
State B
pre-TS

TS
post-TS

0 50 100 150

Figure A.5: Membrane packing defects that expose hydrophobic lipid fragments are
increased at the transition state and when the lipid is committed to entering the mem-
brane. Probability distributions of the area of defects located nearby either tail of the tagged
lipid in the xy plane, Adefect,Y. Distributions are plotted for state A, for state B, and for three en-
sembles of configurations drawn from transition paths: pre-transition state (pre-TS) configurations
identified by pB = 0, transition states (TS) identified by 0.45 ≤ pB ≤ 0.55 for MARTINI and by
0.4 ≤ pB ≤ 0.6 for CHARMM36, and post-transition state (post-TS) configurations identified by
pB = 1. Becuase the tagged lipid is excluded from the analysis of defects, larger defects are observed
in state B than in state A; these defects correspond to the tagged lipid.
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Figure A.6: The distance between the tagged lipid’s tails and hydrophilic head groups
of membrane lipids is increased at the transition state. Probability distributions of the
minimum distance between the head groups of the membrane lipids and either tail of the tagged lipid
measured in the xy plane, min(dHT,sn1/sn2), from (A) MARTINI and (B) CHARMM36 simulations.
Distributions are plotted for state A, for state B, and for three ensembles of configurations drawn
from transition paths: pre-transition state (pre-TS) configurations identified by pB = 0, transition
states (TS) identified by 0.45 ≤ pB ≤ 0.55 for MARTINI and by 0.4 ≤ pB ≤ 0.6 for CHARMM36,
and post-transition state (post-TS) configurations identified by pB = 1.
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Figure A.7: The minimum distance between hydrophobic lipid and membrane carbons
may be the reaction coordinate. Probability distributions of the min(dCC) from (A) MARTINI
and (B) CHARMM36 simulations. Distributions are plotted for state A, for state B, and for three
ensembles of configurations drawn from transition paths: pre-transition state (pre-TS) configura-
tions identified by pB = 0, transition states (TS) identified by 0.45 ≤ pB ≤ 0.55 for MARTINI and
by 0.4 ≤ pB ≤ 0.6 for CHARMM36, and post-transition state (post-TS) configurations identified
by pB = 1. Magnified views of the transition state distributions are shown in the insets.
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Figure A.8: The number of close hydrophobic lipid–membrane contacts may be the
reaction coordinate. Probability distributions of nCC from (A) MARTINI and (B) CHARMM36
simulations. Distributions are plotted for state A, for state B, and for three ensembles of con-
figurations drawn from transition paths: pre-transition state (pre-TS) configurations identified by
pB = 0, transition states (TS) identified by 0.45 ≤ pB ≤ 0.55 for MARTINI and by 0.4 ≤ pB ≤ 0.6
for CHARMM36, and post-transition state (post-TS) configurations identified by pB = 1. Magnified
views of the transition state distributions are shown in the insets.
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Figure A.9: Transition paths follow the minimum free energy path in the space of
min(dCC) and nCC. (Left panel) Free energy surfaces as a function of min(dCC) and nCC ob-
tained from umbrella sampling simulations. (Middle panel) Example transitions paths for each lipid
insertion pathway are plotted along with the minimum free energy path (black line). (Right panel)
Block standard error of the free energy surface calculated from five simulation blocks.
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Figure A.10: A free energy barrier for lipid insertion exists due to hydrophobic lipid–
membrane contact formation. 1D free energy profiles of (A) min(dCC) and (B) nCC obtained
from 2D free energy surfaces shown in Figure SA.9 by numerically integrating out the other degree
of freedom.

Figure A.11: Reaction coordinate, r(M=48)
c , composed of M = 48 order parameters,

excluding min(dCC) and nCC, with coefficients determined using a maximum likeli-
hood approach (Table SA.2) accurately distinguishes transition states. (A) Histogram
of committor values, pB, for MARTINI configurations found along transition paths with −0.25 ≤
r

(M=48)
c ≤ 0.25. (B) Scatter plot of the reaction coordinate, rLxS = α1 min(dCC) + α2nCC + α0

with coefficients determined using the maximum likelihood approach (Table SA.3) versus r(M=48)
c

constructed fromM = 48 other order parameters for all MARTINI configurations found along tran-
sition paths. The black dashed lines outline the values of rLxS characteristic of transition states.
The gray dashed lines outline the values of r(M=48)

c characteristic of transition states.
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Figure A.12: The COM displacement is not the reaction coordinate for lipid exchange.
Histograms of committor values, pB, for configurations found along transition paths and that have
values of dlip typical of transition states (TS). Specifically, MARTINI configurations with 14 ≤
dlip ≤ 19 Å and CHARMM36 configurations with 10 ≤ dlip ≤ 19 Å are included.
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Figure A.13: Displacement-based order parameters do not reliably identify transition
states found along transition paths during CHARMM36 simulations when the transi-
tion paths are not separated based on pathway. Probability distributions of 1

2dsn1 + 1
2dsn2,

dsn1, and dsn2 from transition paths obtained from CHARMM36 simulations. Distributions are plot-
ted for state A, for state B, and for three ensembles of configurations drawn from transition paths:
pre-transition state (pre-TS) configurations identified by pB = 0, transition states (TS) identified
by 0.45 ≤ pB ≤ 0.55 for MARTINI and by 0.4 ≤ pB ≤ 0.6 for CHARMM36, and post-transition
state (post-TS) configurations identified by pB = 1.
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Figure A.14: Displacement-based order parameters focused on the two lipid tails may
be pathway specific reaction coordinates. Probability distributions of 1

2dsn1 + 1
2dsn2, dsn1, and

dsn2 from MARTINI simulations that follow each lipid insertion pathway. Distributions are plotted
for state A, for state B, and for three ensembles of configurations drawn from transition paths:
pre-transition state (pre-TS) configurations identified by pB = 0, transition states (TS) identified
by 0.45 ≤ pB ≤ 0.55 for MARTINI and by 0.4 ≤ pB ≤ 0.6 for CHARMM36, and post-transition
state (post-TS) configurations identified by pB = 1.
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Figure A.15: Error in the free energy surface as a function of the two lipid tail distances
is comparable to the barrier height. (Top panel) Free energy surface as a function of dsn1 and
dsn2 obtained from umbrella sampling simulations using the MARTINI force field. (Bottom panel)
Block standard error of the free energy surface calculated from five 200 ns blocks.
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Figure A.16: The height of the free energy barrier for hydrophobic-contact forma-
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obtained from umbrella sampling simulations using the Slipids force field. (Right) Block standard
error of the free energy surface calculated from five simulation blocks. (B) 1D free energy profiles
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Additional Tables

Table A.1: Frequency of each insertion pathway.

Pathway MARTINI CHARMM36
Sliding 51% 20%

sn1 splayed 27% 40%

sn2 splayed 22% 40%
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Table A.2: Construction of a reaction coordinate, r(M=48)
c , excluding min(dCC) and

nCC using a maximum likelihood approach. The best reaction coordinates for the MARTINI
model with M = 1, 2, and 48 are reported. To determine the best reaction coordinate with M = 2,
only linear combinations with dlip, dsn1, or dsn2 as one of the order parameters were considered. To
determine the best reaction coordinate with M = 3, only linear combinations with either (1) dlip

and ρ(cyl)
philic,lip or (2) dsn1 and dsn2 were considered. All reported reaction coordinates are constructed

from order parameters scaled to the range [0,1]. Scaled order parameters are denoted with a tilde
to distinguish them from the unscaled values.

M r
(M=48)
c ln L

1 −12.635d̃lip + 8.060 −937984

2 −13.583d̃lip − 5.663ρ̃
(cyl)
philic,lip + 11.296 −681129

3 −11.889d̃lip − 4.411ρ̃
(cyl)
philic,lip + 18.892ρ̃

(cyl)
phobic,sn1 + 7.680 −596942

48 −3.919d̃lip − 2.455d̃sn1 − 1.529d̃sn2 − 0.116ñ
(lip)
w,NC3 − 0.054ñ

(lip)
w,PO4 −

0.363ñ
(lip)
w,GL1 − 0.436ñ

(lip)
w,GL2 + 0.051ñ

(lip)
w,C1A + 0.278ñ

(lip)
w,C2A +

0.231ñ
(lip)
w,C3A − 0.028ñ

(lip)
w,C1B + 0.208ñ

(lip)
w,C2B + 0.099ñw,C3B +

0.174ñ
(mem)
w,NC3−0.256ñ

(mem)
w,PO4−0.90ñ

(mem)
w,GL1−0.401ñ

(mem)
w,GL2−0.001ñ

(mem)
w,C1A+

0.188ñ
(mem)
w,C2A + 0.007ñ

(mem)
w,C3A − 0.023ñ

(mem)
w,C1B + 0.043ñ

(mem)
w,C2B +

0.048ñ
(mem)
w,C3B + 1.447〈δz̃phos〉mem + 0.813〈ñET〉mem + 0.169Ãdefect,sn1 −

0.013Ãdefect,sn2 + 0.359 min(d̃HT,sn1) + 0.255 min(d̃HT,sn2) −
0.572ρ̃

cyl)
w,lip− 5.839ρ̃

(cyl)
w,sn1− 5.215ρ̃

(cyl)
w,sn2− 0.521ρ̃

(cyl)
lip,lip− 0.865ρ̃

(cyl)
philic,lip +

1.499ρ̃
(cyl)
phobic,lip + 4.337ρ̃

(cyl)
lip,sn1 + 2.885ρ̃

(cyl)
lip,sn2 − 1.264ρ̃

(cyl)
philic,sn1 −

1.504ρ̃
(cyl)
philic,sn2 + 17.591ρ̃

(cyl)
phobic,sn1 + 18.334ρ̃

(cyl)
phobic,sn2 + 7.904ñ

(cyl)
w,sn1 +

7.161ñ
(cyl)
w,sn2 − 2.827ñ

(cyl)
phobic,sn1 − 4.252ñ

(cyl)
phobic,sn2 − 0.442ñ

(cyl)
all,sn1 +

0.443ñ
(cyl)
all,sn2 − 1.184Ẽint + 5.291

−415253
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Table A.3: Construction of a reaction coordinate that can include nCC and min(dCC)
using a maximum likelihood approach demonstrates that a linear combination of nCC

and min(dCC) is the ideal reaction coordinate. To construct rc, 54 and 32 order parameters
were considered for the MARTINI and CHARMM36 models, respectively. The best reaction coordi-
nates with M = 1 and 2 are reported. To determine the best reaction coordinate with M = 2, only
linear combinations with min(dCC) or nCC (and tail specific variants) as one of the order parameters
were considered. All reported reaction coordinates are constructed from order parameters scaled
to the range [0,1]. Scaled order parameters are denoted with a tilde to distinguish them from the
unscaled values.

M rc ln L
MARTINI

1 24.917ñCC − 1.922 −419147

2 −3.136 min(d̃CC) + 13.643ñCC − 0.516 −399237

CHARMM36

1 18.583ñCC − 1.217 −584

2 −3.982 min(d̃CC) + 8.102ñCC − 0.151 −515



150

Appendix B

Appendix for “Membrane
Hydrophobicity Determines the
Activation Free Energy of Passive Lipid
Transport”

Analysis of Membrane Properties

Membrane Thickness. The average membrane thickness was calculated as the average
distance in z between the phosphorous atoms of the top and bottom leaflets.

Density Profiles. The density of various groups along the membrane normal relative to
the center of mass of the membrane at z = 0 were calculated with the GROMACS tool gmx
density. The groups are: (1) polar, which includes all atoms present in the system that are
not hydrophobic carbons; (2) solvent, which includes all water molecules and any sodium ions
present; (3) membrane, which includes all lipid atoms; (4) polar membrane, which includes
all lipid atoms that are not hydrophobic carbons; and (5) hydrophobic, which includes all
hydrophobic carbons.

Acyl Chain Order Parameters. Deuterium order parameters for carbons in the lipid
tails, except the ester and terminal carbons, were calculated with the GROMACS tool gmx
order. The order parameters of carbons in double bonds were calculated following the
instructions provided by Pluhackova et al.179

Radial Distribution Functions. To characterize the intermolecular structure of the mem-
brane interface, we calculated radial distribution functions between the oxygen atoms of
water molecules and either the phosphorous atoms or carbonyl oxygen atoms of the lipids
using the GROMACS tool gmx rdf. Additionally, 2D radial distribution functions in the
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xy-plane were calculated between the phosphorous atoms of lipids in each leaflet individually
and then averaged to obtain one 2D radial distribution function for each membrane.
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Additional Figures
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Figure B.1: Lipid chemistry and membrane phase influence the membrane’s order.
Deuterium order parameters of the carbons in both acyl chains of the lipids in each membrane.
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Figure B.2: System composition along the axis normal to the membranes varies with
lipid chemistry and membrane phase. Density profiles along the membrane normal, z, for each
membrane. The system is grouped into (1) polar, which includes all atoms that are not hydrophobic
carbons; (2) solvent; (3) membrane; (4) polar membrane, which includes all lipid atoms that are
not hydrophobic carbons; and (5) hydrophobic, which includes all hydrophobic carbons.
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Figure B.3: Water’s structure at the membrane surface depends on the lipid headgroup.
Radial distribution functions, g(r), between water oxygen atoms (OW) and either the phosphorous
atoms (P) or carbonyl oxygen atoms (Ocarbonyl) of the lipids for each membrane.
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Figure B.4: Membrane surface structure, specifically the arrangement of phosphorous
atoms, depends on the lipid headgroup. In Lβ phase membranes, phosphorous atoms
have an increased density of nearest neighbor phosphorous atoms compared to Lα phase
membranes. 2D Radial distribution function, g(xy)

P−P(r), between phosphorous atoms of lipids in
the same leaflet for each membrane.
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Figure B.5: Splayed lipid configurations are locally thermodynamically stable in Lβ
phase membranes. Configurations of Lβ phase (top) DMPC and (bottom) DPPC that are rep-
resentative of all minimum in ∆F (rLxS): the lipid in solution, splayed lipid intermdiate, and lipid
in the membrane.
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Figure B.6: The size of packing defects that expose the membrane’s hydrophobic core
to solvent vary with lipid chemistry and membrane phase. Distributions of the area of
packing defects for each membrane. For each membrane, three independent fits were performed
to distributions constructed from three 100ns simulation blocks. The region used to fit to an
exponential distribution is highlighted in gray.
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Figure B.7: 〈nCC〉mem varies with membrane thickness, lipid packing, and membrane
order. A linear combination of a membrane’s average thickness, 〈Lmem〉, average area per lipid,
〈Alip〉, and average deuterium order parameter of all carbons in the lipid tails, −〈SCD〉, with coef-
ficients w1 = 126 Å−1, w2 = −40 Å−2, w3 = 9964, and w0 = 1584 accurately models 〈nCC〉mem.
Lipids in thicker, more tightly packed (smaller area per lipid), and more ordered (larger −〈SCD〉)
membranes form more hydrophobic contacts.
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Additional Tables

Table B.1: Umbrella sampling parameters.

Membrane
Spring constant

(kJ/mol)
Location of
first center

Location of
last center

Number of
windows

DMPC 20 −5.4468 13 52
DPPC 40 −6 14 54
POPC 40 −6 14 54
DOPC 40 −6 19.2828 68
SOPC 40 −6 19.2828 68
DSPC 40 −6 19.2828 68
POPE 40 −6 14 54
POPA 40 −6 14 54
POPS 40 −6 14 54
POPG 40 −6 14 54
POPI 40 −6 14 54

DMPC, Lβ 40 −6 15.1358 67*
DPPC, Lβ 40 −6 17.7735 67†

DSPC, Lβ 40 −6 19.2828 68

* Count includes 10 windows centered at −0.9048, −0.5273, −0.1499, 1.7372, 2.8695,
7.3985, 7.7760, 8.1534, and 8.9082, which were added to decrease the spacing between
some original windows and improve sampling.

† Count includes 3 windows centered at 9.2830, 9.6604, and 9.5660, which were added to
improve sampling around a local maximum.
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Table B.2: Average membrane physical properties.

Membrane
〈Alip〉
(Å2)

Av. Thickness
(nm) 〈nCC〉mem

πdefect

(Å2)
〈Emem−solv〉
(kcal/mol)

DMPC 62.88± 0.06 3.523± 0.003 1720± 2 11.10± 0.08 −11361± 9

DPPC 60.9± 0.2 3.95± 0.01 2237± 6 10.4± 0.1 −9414± 16

POPC 66.77± 0.01 3.834± 0.001 2329± 1 14.1± 0.2 −11717± 1

DOPC 70.14± 0.07 3.815± 0.003 2485± 2 19.0± 0.2 −11993± 12

SOPC 66.60± 0.05 4.002± 0.003 2550± 2 14.5± 0.2 −11688± 7

DSPC 65.04± 0.02 4.401± 0.001 2544± 1 14.25± 0.02 −10934± 2

POPE 58.98± 0.06 4.148± 0.004 2548± 2 16.6± 0.2 −11168± 18

POPA 62.0± 0.1 3.982± 0.005 2467± 3 24.5± 0.1 −14616± 5

POPS 61.62± 0.06 4.042± 0.004 2491± 3 20.1± 0.1 −19022± 53

POPG 70.70± 0.07 3.630± 0.003 2216± 2 18.2± 0.2 −13889± 3

POPI 65.9± 0.2 3.848± 0.009 2363± 5 17.4± 0.5 −15181± 25

DMPC, Lβ 49.3± 0.1 3.92± 0.05 2351± 5 2.6± 0.2 −9986± 52

DPPC, Lβ 48.75± 0.02 4.376± 0.002 2947± 2 2.5± 0.2 −9416± 16

DSPC, Lβ 50.08± 0.07 4.718± 0.003 3489± 8 3.8± 0.3 −9037± 11

Table B.3: Free energy barriers for lipid desorption (∆Fdes), lipid insertion (∆Fins),
and the creation of splayed lipid configurations (∆Fsplay).

Membrane ∆Fdes (kcal/mol) ∆Fins (kcal/mol) ∆Fsplay (kcal/mol)
DMPC 10.4± 0.1 2.7± 0.2 —
DPPC 12.1± 0.2 3.2± 0.4 —
POPC 13.8± 0.4 2.8± 0.6 —
DOPC 15.0± 0.4 2.5± 0.5 —
SOPC 14.4± 0.2 3.0± 0.3 —
DSPC 15.4± 0.3 3.1± 0.4 —
POPE 17.3± 0.1 1.9± 0.1 —
POPA 16.6± 0.2 3.3± 0.3 —
POPS 16.9± 0.1 4.6± 0.2 —
POPG 12.6± 0.1 2.6± 0.2 —
POPI 15.1± 0.3 3.6± 0.3 —

DMPC, Lβ 13.7± 0.4 7.0± 0.9 9.4± 0.4

DPPC, Lβ 16.3± 0.5 8.0± 0.8 11.4± 0.5

DSPC, Lβ 20.7± 0.4 5.0± 0.6 14.1± 0.4
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Appendix C

Appendix for “Ceramide-1-Phosphate
Transfer Protein Enhances Lipid
Transport by Disrupting Hydrophobic
Lipid–Membrane Contacts”

Additional Figures
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Figure C.1: Coarse-grained representations of CPTP reproduce its internal dynamics
observed in all-atom simulations. Root-mean-square fluctuation (RMSF) of Cα atoms (back-
bone beads) of CPTP in its apo and C1P-bound forms during solution all-atom (coarse-grained)
simulations.
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Figure C.2: Coarse-grained representations of CPTP match its structure in all-atom
simulations. Root-mean-square deviation (RMSD) of Cα atoms (backbone beads) between CPTP
in its apo and C1P-bound forms during solution all-atom (coarse-grained) simulations and the
cystral structure of CPTP in PDB 4K85. In the top row, the RMSD for residues 8− 214 is plotted.
All other rows show the RMSD for individual helices.
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Figure C.3: CHARMM36 topology of 16:0-C1P. (A) Atoms and their connectivity (B)
Parameters in GROMACS format.
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Figure C.5: Membrane binding occurs in all but one coarse-grained simulation. Min-
imum distance between CPTP and the membrane during coarse-grained simulations of membrane
binding. Four simulation runs were performed for each form of CPTP. Within 2 µs, CPTP stably
bound the membrane in all but one simulation of the apo form (right column, plot second from the
top).
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Appendix D

Appendix for “Development of Brownian
Bridge Based Path Sampling Methods
for a Nonequilibrium Transport Model”

Simulation parameters

To determine how the acceptance probabilities of shooting, fixed-end bridge, and variable-
end bridge moves depend on the bias value, TPS simulations were performed for bias values
ranging from −2 to 2 in increments of 0.25. For bridge moves, the acceptance probability
was also obtained for bridge lengths ranging from TB = 0.5 to 5.0. The acceptance proba-
bilities of forward and backward shooting moves of any length were each calculated from a
TPS simulation in which 104 forward shooting moves and 104 backward shooting moves were
performed. The acceptance probabilities of forward and backward shooting moves of a given
length TB were each calculated from a TPS simulation in which 104 forward shooting moves
of length TB, 104 forward shooting moves of any length, 104 backward shooting moves of
length TB, and 104 backward shooting moves of any length were performed. The acceptance
probability of fixed-end bridge moves of a given length TB was calculated from a TPS simu-
lation in which 104 fixed-end bridge moves, 104 forward shooting moves, and 104 backward
shooting moves were performed. The acceptance probability of variable-end bridge moves
of a given length TB was calculated from a TPS simulation in which 104 variable-end bridge
moves, 104 forward shooting moves, and 104 backward shooting moves were performed.

To calculate large deviation functions, biased TPS simulations of the periodic ASEP
were performed for bias values ranging from −2 to 2 in increments of 0.125. During TPS
simulations using only forward and backward shooting moves (labeled “S”), a total of 6×107

moves were performed. During TPS simulations using fixed-end Brownian bridges in addition
to shooting moves (labeled “fixed BB+S”), or both fixed-end and variable-end Brownian
bridges in addition to shooting moves (labeled “variable BB+fixed BB+S”), a total of 107

sweeps were performed. A sweep consisted of d T
TB
e bridge moves, one forward shooting
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move, and one backward shooting move. During variable BB+fixed BB+S simulations, half
of the bridges performed were variable-end bridges and the other half were fixed-end bridges.
Different bridge lengths were used for different bias values, and these are tabulated in Table
D.1.
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Table D.1: Bridge lengths used during biased TPS simulations of the periodic ASEP.

Bias value (s or λ) TB

−2.000 0.5

−1.875 0.5

−1.750 0.5

−1.500 0.5

−1.375 0.5

−1.250 0.5

−1.125 0.5

−1.000 1.0

−0.875 1.0

−0.750 1.0

−0.625 2.0

−0.500 2.0

−0.375 2.0

−0.250 3.0

−0.125 3.0

0.000 3.0

0.125 3.0

0.250 3.0

0.375 2.0

0.500 2.0

0.625 2.0

0.750 2.0

0.875 2.5

1.000 2.5

1.125 1.0

1.250 1.0

1.375 1.0

1.500 1.0

1.625 1.0

1.750 1.0

1.875 1.0

2.000 1.0




