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Cognition and Behavior in Two-Person Guessing Games:
An Experimental Study

By MIGUEL A. COSTA-GOMES AND VINCENT P. CRAWFORD*

This paper reports an experiment that elicits subjects’ initial responses to 16
dominance-solvable two-person guessing games. The structure is publicly an-
nounced except for varying payoff parameters, to which subjects are given free
access. Varying the parameters allows very strong separation of the behavior
implied by leading decision rules. Subjects’ decisions and searches show that most
subjects understood the games and sought to maximize payoffs, but many had
simplified models of others’ decisions that led to systematic deviations from equi-
librium. The predictable component of their deviations is well explained by a
structural nonequilibrium model of initial responses based on level-k thinking. (JEL
C72, C92, D83)

... professional investment may be likened to
those newspaper competitions in which the com-
petitors have to pick out the six prettiest faces
from a hundred photographs, the prize being
awarded to the competitor whose choice most
nearly corresponds to the average preferences of
the competitors as a whole; so that each compet-
itor has to pick, not those faces which he himself
finds prettiest, but those which he thinks likeliest to
catch the fancy of the other competitors, all of
whom are looking at the problem from the same
point of view. It is not a case of choosing those
which, to the best of one’s judgment, are really the
prettiest, nor even those which average opinion
genuinely thinks the prettiest. We have reached
the third degree where we devote our intelligences
to anticipating what average opinion expects the

average opinion to be. And there are some, I
believe, who practice the fourth, fifth, and higher
degrees.

—John Maynard Keynes
The General Theory of Employment,

Interest, and Money

Most applications of game theory assume
equilibrium even in predicting initial responses
to games played without clear precedents. There
is substantial experimental evidence, however,
that initial responses often deviate systemati-
cally from equilibrium, especially when the rea-
soning that leads to it is not straightforward.
This evidence also suggests that a structural
model in which some players follow certain
kinds of boundedly rational decision rules, in
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lieu of equilibrium, can outpredict equilibrium
in applications involving initial responses.

Modeling initial responses more accurately
promises several benefits. It can establish the
robustness of the conclusions of equilibrium
analyses in games where boundedly rational
rules mimic equilibrium. It can challenge the
conclusions of applications to games where
equilibrium is implausible without learning, and
can resolve empirical puzzles by explaining the
systematic deviations from equilibrium such
games often evoke. More generally, it can yield
insights into cognition that elucidate many other
aspects of strategic behavior. A leading exam-
ple is learning, where assumptions about cogni-
tion determine which analogies between current
and previous games players recognize, and also
sharply distinguish reinforcement from beliefs-
based and more sophisticated rules, thereby in-
fluencing implications for convergence and
equilibrium selection.

The potential for improving on equilibrium
models of initial responses is vividly illustrated
by the “guessing” or “beauty contest” experi-
ments of Rosemarie Nagel (1995) and Teck-
Hua Ho, Colin F. Camerer, and Keith Weigelt
(1998; “HCW”), inspired by Keynes’s analogy
quoted in our epigraph. In their games, n sub-
jects (n � 15–18 in Nagel, n � 3 or 7 in HCW)
made simultaneous guesses between lower and
upper limits (0 and 100 in Nagel, 0 and 100 or
100 and 200 in HCW). The subject who guessed
closest to a target (p � 1⁄2 , 2⁄3 , or 4⁄3 in Nagel;
p � 0.7, 0.9, 1.1, or 1.3 in HCW) times the
group average guess won a prize. There were
several treatments, each with identical targets
and limits for all players and games. The struc-
tures were publicly announced to justify com-
paring the results with predictions based on
complete information.

Although Nagel’s and HCW’s subjects
played a game repeatedly, their first-round
guesses can be viewed as initial responses to the
game as if played in isolation if they treated
their own influences on future guesses as neg-
ligible, which is plausible for all but HCW’s
three-subject groups. With complete informa-
tion, in all but one treatment the game is dom-
inance-solvable in a finite (limits 100 and 200)
or infinite (limits 0 and 100) number of rounds,
with a unique equilibrium in which all players

guess their lower (upper) limit when p � 1 (p �
1). As a result, equilibrium predictions depend
only on rationality, in the decision-theoretic
sense, and beliefs based on iterated knowledge
of rationality.

Yet Nagel’s subjects never made equilibrium
guesses initially, and HCW’s rarely did so.
Most initial guesses respected from zero to three
rounds of iterated dominance, in games where
three to an infinite number are needed to reach
equilibrium (Nagel, fig. 1; HCW, figs. 2A–H
and 3A–B). Nagel’s and HCW’s data resemble
neither “equilibrium plus noise” nor “equilib-
rium taking noise into account” as in quantal
response equilibrium (“QRE”; Richard Mc-
Kelvey and Thomas Palfrey, 1995). Their data
do suggest that subjects’ deviations from equi-
librium have a coherent structure. In Nagel’s
games, for example, the distributions of guesses
have spikes that track 50pk for k � 1, 2, 3 across
the different targets p in her treatments (Nagel,
fig. 1). Like the spectrograph peaks that fore-
shadow the existence of chemical elements,
these spikes are evidence of a partly determin-
istic structure, one that is discrete and individ-
ually heterogeneous.

Similarly structured initial responses have
been found in matrix games by Dale O. Stahl
and Paul W. Wilson (1994, 1995; “SW”), Costa-
Gomes, Crawford, and Bruno Broseta (1998,
2001; “CGCB”), and Costa-Gomes and Georg
Weizsäcker (2003); in other normal-form games
by Camerer, Ho, and Juin-Kuan Chong (2004;
“CHC”); and in extensive-form bargaining
games by Camerer, Eric J. Johnson, Talia
Rymon, and Shankar Sen (1993, 2002; “CJ”).
As in the guessing games, subjects usually
make undominated decisions; but they rely
less often on dominance for others (T. Randolph
Beard and Richard Beil, 1994), and reliance on
iterated dominance seldom goes beyond three
rounds.

The main difficulty in analyzing the data
from such experiments is identifying subjects’
decision rules, or types, within the enormous set
of possibilities. The studies above assume that
each subject’s decisions follow one of a small
set of a priori plausible types, with error, and
estimate which type best fits each subject’s de-
cisions econometrically. Leading types include
L1 (Level 1), which best responds to a uniform

1738 THE AMERICAN ECONOMIC REVIEW DECEMBER 2006



prior over its partner’s decisions; L2 (or L3),
which best responds to L1 (L2); D1 (Dominance
1), which does one round of deletion of domi-
nated decisions and best responds to a uniform
prior over its partner’s remaining decisions; D2,
which does two rounds of iterated deletion and
best responds to a uniform prior over the re-
maining decisions; Equilibrium, which makes
its equilibrium decision; and Sophisticated,
which best responds to the distribution of other
subjects’ responses, and is included to test
whether any subject has a prior understanding
of others’ decisions that transcends the other
simple rules.

Like Equilibrium, Lk and Dk types are ratio-
nal, with perfect models of the game, and gen-
eral in that they are applicable to any game.
They are usually defined, as we shall do here, to
satisfy subsidiary assumptions of self-interest
and risk-neutrality. Thus, their only essential
departure from Equilibrium is replacing its per-
fect model of others’ decisions with a simple
nonequilibrium model.1 Lk’s and Dk-1’s guesses
both survive k rounds of iterated elimination of
dominated decisions, and so in two-person
games are k-rationalizable (B. Douglas Bern-
heim, 1984). These types mimic equilibrium in
games that are dominance-solvable in small
numbers of rounds, but deviate systematically
in some more complex games, where their de-
cisions can differ significantly, especially for
the low values of k that are empirically plausi-
ble. Dk types are closer to how theorists analyze
games, and Nagel’s results are often taken as
evidence of explicit finitely iterated dominance.
But Lk types have larger estimated frequencies

and predominate in applications (Crawford,
2003; CHC; and Crawford and Nagore Iriberri,
2005a,b).

Successful applications depend on correctly
specifying the structure of initial responses, but
previous experiments leave considerable room
for doubt on this issue. Previous designs—in
which each subject repeatedly plays a single
game with a large strategy space, as in Nagel
and HCW, or a series of different games with
small strategy spaces, as in SW and CGCB—
only weakly separate the types included in the
specification from each other and nearby types.
Nagel’s and HCW’s games with p � 1 and
limits 0 and 100 are an extreme example, where
Lk’s guesses [(0 � 100)/2]pk and Dk � 1’s
guesses ([0 � 100pk�1]/2)p both track the
spikes at 50pk. The freedom to specify the pos-
sible types also raises doubts about omitted
types and overfitting via accidental correlations
with included but irrelevant types. Thus, SW’s,
CHC’s, and CGCB’s high estimated numbers of
L1 and L2 subjects might be no more than
proxies for altruistic, spiteful, risk-averse, or
confused Dk or Equilibrium subjects; or other,
entirely different omitted types.2

Our experiment resolves many of these
doubts by eliciting subjects’ responses to a se-
ries of 16 guessing games designed for this
purpose, and using a novel specification test to
detect omitted types or overfitting. Like previ-
ous designs, ours suppresses learning and
repeated-game effects to justify an analysis of
subjects’ guesses as initial responses, game by
game. Unlike Nagel’s and HCW’s games, ours
have only two players, who make simultaneous
guesses within limits. Each player has a lower
limit (100 or 300), an upper limit (500 or 900),
and a target (0.5, 0.7, 1.3, or 1.5). A player’s
payoff is higher, the closer his guess is to his

1 Compare Reinhard Selten (1998): “Basic concepts in
game theory are often circular in the sense that they are
based on definitions by implicit properties ... . Boundedly
rational strategic reasoning seems to avoid circular con-
cepts. It directly results in a procedure by which a problem
solution is found.” Lk makes precise predictions without
closing the loop as equilibrium does by anchoring its beliefs
in a uniform prior and adjusting them by iterating best
responses. Dk does so by invoking a uniform prior after
finitely iterated deletion of dominated decisions. Keynes’s
wording in our epigraph connotes Lk’s finite iteration of
best responses, anchored by true preferences rather than
uniform priors, as is natural in a beauty contest. The infor-
mal literature on deception also features finite iteration of
best responses, anchored by truthfulness or credulity (Craw-
ford, 2003, p. 139).

2 For example, SW (1994) found large numbers of L1 and
L2 subjects in an econometric analysis that did not include
SW’s (1995) Worldly type, which best responds to an esti-
mated mixture of a noisy L1 and a noiseless Equilibrium;
but SW’s (1995) data analysis from a closely related exper-
iment almost completely rejected L2 in favor of Worldly.
Our specification analysis suggests that SW’s rejection of
L2 may have been incorrect (Section IID).
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target times his partner’s guess.3 The resulting
games are asymmetric and, with complete in-
formation, dominance-solvable in from 3 to 52
rounds, with essentially unique equilibria deter-
mined by players’ lower (upper) limits when the
product of targets is less (greater) than one.
Within this structure, which is publicly an-
nounced, the targets and limits vary indepen-
dently across players and games, with targets
either both less than one, both greater than one,
or mixed. The targets and limits are normally
hidden, but subjects can search for them, game
by game, through a computer interface. Low
search costs then make the structure effectively
public knowledge. Varying the targets and lim-
its makes it impossible for subjects to recall
them from previous games and so makes mon-
itoring information search a powerful additional
tool for studying cognition.

In our design, a subject’s sequence of guesses
yields a strategic “fingerprint” that often reveals
his type with great clarity. Of the 88 subjects in
our main treatments, 43 made guesses that com-
ply exactly (within 0.5) with one of our type’s
guesses in from 7 to 16 of the games (20 L1, 12
L2, 3 L3, and 8 Equilibrium; Figures 1–4, p.
1747–1749). These compliance levels are far
higher than could plausibly occur by chance,
given how strongly types’ guesses are separated
(Figure 5, p. 1750) and that guesses could take
from 200 to 800 different rounded values in
each game. Because our types specify precise,
well-separated guess sequences in a very large
space, these subjects’ guesses allow one intu-
itively to “accept” the hypothesis that they fol-
lowed their apparent types, and so rule out
alternative interpretations of their behavior. In

particular, because the accepted Lk and Equilib-
rium types build in risk-neutral, self-interested
rationality and perfect models of the game, the
deviations from equilibrium of the 35 subjects
whose apparent types are Lk can be confidently
attributed to nonequilibrium beliefs rather than
irrationality, risk aversion, altruism, spite, or
confusion.4 By contrast, with SW’s or CGCB’s
coarse strategy spaces, even a perfect fit does
not distinguish a subject’s apparent type from
nearby omitted types; and in Nagel’s and
HCW’s designs, with each subject playing a
single game, the ambiguity is even more severe.

Our other 45 subjects’ fingerprints are less
clear. But for all but 14 of them, violations of
simple dominance were comparatively rare
(less than 20 percent, versus 38 percent for
random guesses), suggesting that their behavior
was coherent, even though less well described
by our types. We study all 88 subjects’ behavior
in more detail via a maximum likelihood error-
rate analysis, following SW and CGCB. We
assume each subject’s behavior in the 16 games
is determined, with error, by one of the leading
types listed above. Estimates based on guesses
strongly reaffirm our type identifications for the
43 subjects whose fingerprints are clear, and
assign several more subjects each to L1, L2, and
Equilibrium, plus a few to D1 and Sophisticated
(Tables 1 and 7 on pages 1741 and 1758).

For these 45 subjects, our econometric type
estimates suffer from the same ambiguity of
interpretation as the estimates in previous anal-
yses. To learn whether any subjects’ guesses
could be better explained by types omitted from
our specification, or whether any estimated
types are artifacts of accidental correlations
with irrelevant included types, we conduct a
new specification test that compares the likeli-
hood of our estimated types, subject by subject,
with those of estimates based on 88 pseudotypes,
each constructed from one of our subject’s
guesses in the 16 games. This test reaffirms
most of our identifications of L1, L2, or Equi-
librium subjects, but calls into question all but
one each of our identifications of L3, D1, or

3 A subject’s guess is not required to be between his
limits, but guesses outside his limits are automatically ad-
justed up to the lower or down to the upper limit as neces-
sary; and payoffs are determined by players’ adjusted
guesses (Section IB). Two-person guessing games allow us
to focus on the central game-theoretic problem of predicting
the decisions of others who view themselves as a nonneg-
ligible part of one’s own environment. Brit Grosskopf and
Nagel (2001) report experiments with a different class of
two-person guessing games, in which all subjects have the
same limits and targets, the targets are less than one, and
subjects are rewarded for guessing closer to a target times
the pair’s average guess. Guessing the lower limit is a
weakly dominant strategy in their games, which therefore
do not fully address the issue of predicting others’ decisions.

4 For these subjects, our design is also an antidote to
Jörgen W. Weibull’s (2004) argument that rejections of
equilibrium in experiments that do not independently mea-
sure preferences are “usually premature.”
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Sophisticated subjects (Table 1). It also sup-
ports our a priori specification of possible types
by giving no indication of significant numbers
of SW’s Worldly type or any other type omitted
from our specification.

Information search adds another dimension
to our econometric analysis.5 Following CGCB,
we link search to guesses by taking a procedural
view of decision-making, in which a subject’s
type determines his search and guess, possibly
with error. Each of our types is naturally asso-
ciated with algorithms that process information
about targets and limits into decisions. We use
those algorithms as models of subjects’ cogni-
tion, making conservative assumptions about
how it is related to search that allow a tractable
characterization of types’ search implications.
The types then provide a kind of basis for the
enormous space of possible guesses and
searches, imposing enough structure to make it
meaningful to ask if they are related in a coher-
ent way.

Our design separates types’ search implica-
tions much more strongly than previous de-
signs, while making them almost independent
of the game. This allows some subjects’ types to
be read from their searches alone (on-line Ap-
pendix E; CGC); but most subjects’ searches
less clearly identify their types. We therefore
generalize our error-rate analysis to reestimate

subjects’ types using search as well as guesses.
Taking both into account, 55 of 88 subjects are
reliably identified as one of our types, 45 of
them non-Equilibrium (Table 1). This analysis
reaffirms the absence of significant numbers of
types other than L1, L2, Equilibrium, or hybrids
of L3 and/or Equilibrium. These results are con-
sistent with previous analyses, but significantly
refine and sharpen them.

Thus, to the extent that our subjects’ devia-
tions from equilibrium can be predicted, they
appear to be based almost entirely on level-k
thinking. Given the definitions of level-k types,
our results strongly affirm subjects’ rationality
and ability to comprehend games and reason
about others’ responses to them. Although they
challenge the use of equilibrium as a universal
model of initial responses to games, the sim-
plicity of the alternative nonequilibrium model
they suggest should help to allay the common
fear that if equilibrium is not assumed, “any-
thing can happen.”

I. Experimental Design

To test theories of strategic behavior, an ex-
perimental design must identify clearly the
games to which subjects are responding. This is
usually done by having a “large” subject popu-
lation repeatedly play a given stage game, with
new partners each period to suppress repeated-
game effects, viewing the results as responses
to the stage game. Such designs allow subjects
to learn the structure from experience, which
reduces noise; but they make it difficult to

5 A companion paper, Costa-Gomes and Crawford
(2007; “CGC”), will analyze our subjects’ search behavior
in more detail, studying the relations between cognition,
search, and guesses.

TABLE 1—SUMMARY OF BASELINE AND OB SUBJECTS’ ESTIMATED TYPE DISTRIBUTIONS

Type

Apparent
from

guesses

Econometric
from

guesses

Econometric from
guesses,

excluding random

Econometric from
guesses, with

specification test

Econometric from
guesses and
search, with

specification test

L1 20 43 37 27 29
L2 12 20 20 17 14
L3 3 3 3 1 1
D1 0 5 3 1 0
D2 0 0 0 0 0
Eq. 8 14 13 11 10
Soph. 0 3 2 1 1
Unclassified 45 0 10 30 33

Note: The far-right-hand column includes 17 OB subjects classified by their econometric-from-guesses type estimates.
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disentangle learning from cognition, because
even unsophisticated learning may converge to
equilibrium in the stage game. Our design, by
contrast, seeks to study cognition in its purest
form by eliciting subjects’ initial responses to
16 different games, with new partners each pe-
riod and no feedback to suppress repeated-game
effects, experience-based learning, and experi-
mentation. This section describes the overall
structure of our design, the games, and how they
are presented.

A. Overall Structure

Our sessions were run at the University of Cal-
ifornia, San Diego (UCSD) Economics Experi-
mental and Computational Laboratory (EEXCL)
or the University of York Centre for Experimen-
tal Economics (EXEC). Subjects were recruited
from undergraduate and graduate students, with
completely new subjects for each session.6 Ta-

ble 2 summarizes the overall structure of our
experiment, which included four Baseline ses-
sions, B1–B4, with a total of 71 UCSD subjects;
one Open Boxes session, OB1, with 17 UCSD
subjects; and 15 Robot/Trained Subjects ses-
sions, R/TS1–R/TS15, with a total of 148 sub-
jects, 37 UCSD and 111 York.

All treatments used the same 16 games, pre-
sented in the same randomized order (Table 3).
The games consist of eight pairs that are symmet-
ric across player roles, so that subjects can be
paired without dividing them into subgroups. One
pair consists of two symmetric games.

We first describe the Baseline and then ex-
plain how our other treatments differed. After
the instructions and an understanding test,
groups of 13 to 21 subjects were randomly
paired to play the 16 games, with new partners
each period.7 Subjects received no feedback

6 On-line Appendix A gives instructions and Appendix B
describes our pilots and how they influenced the design. To
reduce noise, we sought subjects in quantitative courses; but
to avoid subjects with theoretical preconceptions, we ex-
cluded graduate students in economics, political science,
cognitive science, or psychology, and disqualified subjects
who revealed that they had participated in game experi-

ments or (except for a few who had been briefly exposed in
an undergraduate course) studied game theory. We allowed
roughly four nonfaculty university community members.

7 Some pairings among the 13 subjects in session B1
were repeated once, in a game unknown to them. The games
took subjects 1 to 3 minutes each. Adding 11⁄2 to 2 hours for
checking in, seating, instructions, and screening yielded
sessions of 21⁄4 to 23⁄4 hours, near our estimate of the limit
of subjects’ endurance for a task of this difficulty.

TABLE 2—OVERALL STRUCTURE OF THE EXPERIMENTAL DESIGN

Session Date Location Subjects

B1 1/31/2002 UCSD 13
B2 4/19/2002 (a.m.) UCSD 20
B3 4/19/2002 (p.m.) UCSD 17
B4 5/24/2002 (a.m.) UCSD 21
OB1 5/24/2002 (p.m.) UCSD 17
R/TS1 2/1/2002 UCSD 13: 4 L1, 5 L2, 4 Equilibrium
R/TS2 5/20/2002 (a.m.) UCSD 5 Equilibrium
R/TS3 5/20/2002 (p.m.) UCSD 8 D1
R/TS4 5/23/2002 UCSD 11: 3 L1, 4 L2, 3 D1, 1 Equilibrium
R/TS5 4/25/2003 York 10 L3
R/TS6 4/30/2003 York 11: 2 L3, 9 D2
R/TS7 5/1/2003 York 11: 3 L2, 2 L3, 1 D1, 2 D2, 3 Equilibrium
R/TS8 5/6/2003 York 8: 3 D1, 2 D2, 3 Equilibrium
R/TS9 5/9/2003 York 12: 1 L2, 1 L3, 3 D1, 1 D2, 6 Equilibrium
R/TS10 5/14/2003 York 12: 2 L2, 5 D1, 1 D2, 4 Equilibrium
R/TS11 5/21/2003 York 10: 3 L1, 4 L2, 3 D1
R/TS12 5/23/2003 York 5 L1
R/TS13 5/28/2003 York 8: 4 L1, 4 L2
R/TS14 5/30/2003 York 12: 3 L1, 2 L2, 2 L3, 2 D1, 3 D2
R/TS15 6/10/2003 York 12: 3 L1, 2 L2, 1 L3, 2 D1, 1 D2, 3 Equilibrium
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during play and could proceed independently at
their own pace, but were not allowed to change
their guesses once confirmed. Although these
features suppress experience-based learning, in-
trospective learning may still occur. Tests reveal
no significant difference, however, between
subjects’ pooled guesses in the symmetric game
when played third and twelfth in the sequence,
suggesting that the effects of introspective
learning were limited (on-line Appendices C
and D).8 Accordingly, we analyze subjects’
guesses as initial responses to each game, with-
out considering order of play.

To control subjects’ preferences, they were
paid for their game payoffs as follows. After the
session, each subject returned in private and
was shown his own and his partners’ guesses
and his point earnings in each game. He then
drew five game numbers randomly and was paid

$0.04 per point for his payoffs in those games.9

With possible payoffs of 0 to 300 points per
game, this yielded payments from $0 to $60,
averaging about $33. Including the $8 fee for
showing up at least five minutes early (which
almost all subjects received) or the $3 fee for
showing up on time, this made Baseline (OB)
subjects’ average total earnings $41.21 ($40.68).
Subjects never interacted directly, and their
identities were kept confidential.

The structure of the environment, except the
games’ targets and limits, was publicly an-
nounced via instructions on subjects’ handouts
and computer screens. During the session, sub-
jects had free access, game by game, to their
own and their partners’ targets and limits via a
MouseLab interface (Figure 6, p. 1753). This
made the games’ structures effectively public

8 Even so, our analysis of clusters (on-line Appendix F)
suggests introspective learning by two of our 88 Baseline
and OB subjects, who appear to have switched from L1 to
L2 after the first few games.

9 It is theoretically possible to control risk preferences
using the binary lottery procedure, in which a subject’s
payoff is his probability of winning a given monetary prize.
We avoid this complication because payment directly in
money usually yields similar results, and risk preferences do
not affect iterated dominance or pure-strategy equilibrium.

TABLE 3—STRATEGIC STRUCTURES OF THE GAMES

Game ij
Order
played Targets Equilibrium

Rounds of
dominance

Pattern of
dominance

Dominance
at both ends

1. �2�1 6 Low Low 4 A No
2. �1�2 15 Low Low 3 A No
3. �1�2 14 Low Low 3 A Yes
4. �2�1 10 Low Low 2 A No
5. �4�3 9 High High 2 S No
6. �3�4 2 High High 3 S Yes
7. �3�3 12 High High 5 S No
8. �3�3 3 High High 5 S No
9. �1�4 16 Mixed Low 9 S/A No

10. �4�1 11 Mixed Low 10 S/A No
11. �2�3 4 Mixed Low 17 S/A No
12. �3�2 13 Mixed Low 18 S/A No
13. �2�4 8 Mixed High 22 A No
14. �4�2 1 Mixed High 23 A Yes
15. �2�4 7 Mixed High 52 S/A No
16. �4�2 5 Mixed High 51 S/A No

Notes: Game identifiers: limits � for 100 and 500, � for 100 and 900, � for 300 and 500, or � for 300 and 900; targets 1 for
0.5, 2 for 0.7, 3 for 1.3, 4 for 1.5. Low targets are �1; high targets are �1; mixed targets are one �1, one �1. High
equilibrium is determined by players’ upper limits; low equilibrium is determined by players’ lower limits. Rounds of
dominance refers to the number player i needs to identify his equilibrium guess. Alternating dominance (A) occurs first for
one player, then the other, then the first, etc.; simultaneous dominance (S) occurs for both players at once; and simultaneous
then alternating dominance (S/A) is simultaneous in the first round and then alternating. Dominance at both ends refers to
whether guesses are eliminated near both of a player’s limits.
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knowledge, and so we compare the data with
predictions that assume complete information.10

Subjects were taught the mechanics of look-
ing up targets and limits and entering guesses,
but not information-search strategies. The in-
structions took care to avoid suggesting partic-
ular guesses or decision rules. Subjects were
given ample opportunity for questions, and
were then required to pass an Understanding
Test to continue. Subjects who failed were dis-
missed, and the remaining subjects were told
that all subjects remaining had passed.11 Before
playing the 16 games, subjects were also re-
quired to participate in four unpaid practice
rounds, after which they were publicly shown
the frequencies of subjects’ practice-round
guesses in their session and told how they could
use them to evaluate the consequences of their
own practice-round guesses.12 After playing the
16 games, subjects were asked to fill out a
debriefing questionnaire, in which they were
asked how they decided what information to
search for and which guesses to make.

Our OB treatment addresses the concern that
making subjects look up the targets and limits
might distort their responses, reducing compa-
rability between our results and those from
more conventional designs. The OB treatment is
identical to the Baseline, except that the games
are presented with the targets and limits con-
tinually visible, in “open boxes.” We find in-
significant differences between Baseline and
OB subjects’ guesses (on-line Appendix C).13

Accordingly, we pool the data from the Base-
line and OB treatments, except when search is
involved.

Our R/TS treatments address the concern
that we might fail to recognize an empirically
important decision rule simply because of
subjects’ cognitive limitations or unfamiliar-
ity with the setting. For example, a subject
who regularly uses equilibrium logic to make
strategic decisions in the field, but has trouble
applying it in our abstract decision problems,
might not show up as an Equilibrium subject.
Our R/TS treatments are identical to the Base-
line, except that each subject plays against a
“robot” (framed as “the computer”) and the
computer plays according to a prespecified
decision rule. The subject is given the stan-
dard Baseline instructions and is informed of
the computer’s rule, trained to identify the
guesses it yields in our games, and motivated
by being paid for the game payoffs deter-
mined by his own guesses against the com-
puter’s. There are six different kinds of R/TS
treatment, in each of which a subject is
trained and motivated to follow one of our
leading types: L1, L2, L3, D1, D2, or Equi-
librium. In an L2 R/TS treatment, for in-
stance, a subject is informed that the
computer makes L1 guesses (as in L2’s be-
liefs) and is trained to identify them. In an
Equilibrium R/TS treatment, a subject is in-
formed that the computer makes Equilibrium
guesses and is trained to identify them.14 To

10 The possible values of the targets and limits were
not revealed, in order to strengthen subjects’ incentives
to look up the ones they thought relevant to their guesses.
Even so, free access still makes the structures public
knowledge.

11 The dismissal rates (including a few voluntary with-
drawals) were 20 percent for Baseline subjects, 11 percent
for OB subjects, and 20 percent overall for R/TS subjects.

12 The practice rounds used two player-symmetric pairs
of games, in an order that made their symmetries nonsalient,
so that the guess frequencies could be generated within each
session. The variation in frequencies across sessions appears
to have had a negligible effect on subjects’ behavior in the
16 games. The practice games had a balanced mix of struc-
tures, with different targets and limits than in the 16 games,
to avoid implicitly suggesting guesses.

13 There are, nonetheless, hints that OB subjects made
high numbers of types’ exact guesses less often: OB sub-
jects made up 19 percent of the subject pool, but only 11

percent of those who made 14 to 16 exact guesses and 7
percent of those who made 10 to 13. Possibly our design,
which makes models of others easy to express as functions
of the targets and limits, more strongly encourages Baseline
than OB subjects to substitute such models for less struc-
tured strategic thinking.

14 Equilibrium subjects were taught each of the three
main ways to identify equilibrium guesses: direct checking
for pure-strategy equilibrium, best-response dynamics, and
iterated dominance. The R/TS treatments also replace the
Baseline’s practice rounds with a second Understanding
Test of how to identify the assigned type’s guesses. Subjects
were paid an extra $5, or £2.50, for passing this test, and
those who failed were dismissed. York R/TS subjects were
paid early and on-time show-up fees of £2 and £1, but only
£0.02 rather than $0.04 per point, 70 percent of the UCSD
rates. The average total earnings figures were $45.22,
$62.03, $51.74, and $50.93 for UCSD R/TS L1, L2, D1, and
Equilibrium subjects who finished the experiment, and
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the extent that Equilibrium R/TS subjects
make their own equilibrium guesses, there is
reason for confidence that our Baseline sub-
jects’ failures to make equilibrium guesses
are due not to cognitive limitations or the
unfamiliar setting, but to nonequilibrium beliefs
or other factors (possibly including lack of train-
ing).

CGC’s (2007) analysis of our R/TS data
confirms that a large majority of subjects can
identify the guesses of any of our leading
types, including Equilibrium, when they are
trained and motivated to do so. However, Lk
types appear to be cognitively far less difficult
than Equilibrium, and Equilibrium appears
less difficult than Dk types. These differences
are probably part of the reason Lk types pre-
dominate among Baseline subjects’ nonequi-
librium responses.

B. Two-Person Guessing Games

Our guessing games have two players, i and j
(for “not i”), who make simultaneous guesses,
xi and x j. Each player i has a lower limit, ai,
and an upper limit, bi, but players are not
required to guess between their limits;
guesses outside the limits are automatically
adjusted up to the lower limit or down to the
upper limit. Player i’s adjusted guess, yi �
R(ai, bi; xi) � xi if xi�[ai, bi], yi � ai if xi �
ai, or yi � bi if xi � bi. Each player i also has
a target, pi, and his payoff is higher, the
closer his adjusted guess is to his target times
his partner’s adjusted guess. Writing ei �
�R(ai, bi; xi) � piR(a j, b j; x j)� for the dis-
tance between player i’s adjusted guess and
his target times player j’s adjusted guess,
player i’s point payoff, si, is given by:

(1) si � max�0, 200 � ei�

� max�0, 100 � ei/10�.

With or without adjustment, the payoff func-
tion in (1) is quasiconcave in player i’s guess for
any given distribution of player j’s guess; and
without adjustment the payoff function is sym-
metric about ei � 0.15 The relationship between
a player’s guess and point payoff is not one to
one because guesses that lead to the same ad-
justed guess yield the same outcome. We deal
with this ambiguity by using a player’s adjusted
guess as a proxy for all guesses that yield it, and
we call a prediction essentially unique if it im-
plies a unique adjusted guess.16

We vary the targets and limits independently
across players and games within this class of
games to make the design as informative as
possible, given the need for a balanced mix of
strategic structures with no obvious patterns.
Table 3 summarizes our games, ordered in a
way that emphasizes their structural relation-
ships; it also lists the randomized order in which
subjects played the games. We identify a play-
er’s lower and upper limits by: � for 100 and
500, � for 100 and 900, � for 300 and 500, and
� for 300 and 900; and a player’s target by: 1 for
0.5; 2 for 0.7; 3 for 1.3; and 4 for 1.5. The
combination �1�2, for example, identifies the
game in which player i has limits 100 and 900
and target 0.5, and player j has limits 300 and
500 and target 0.7.

The games in our design are dominance-
solvable in 3 to 52 rounds. Observation 1

£23.00, £29.76, £28.50, £27.08, £24.12, and £27.65 (with
the pound averaging $1.63) for York R/TS L1, L2, L3, D1,
D2, and Equilibrium subjects who finished the experiment.

15 Thus, unlike in Nagel’s and HCW’s games, a player’s
guess determines a continuous payoff rather than whether
he wins an all-or-nothing prize, as a function of his partner’s
guess rather than a group average. Like Nagel’s and HCW’s
games, ours limit the effects of altruism, spite, and risk
aversion. The point payoff function is not concave in player
i’s guess because the weight on ei in the second term is
smaller in absolute value than in the first term; this strength-
ens payoff incentives near i’s best response while keeping
them positive elsewhere, despite a lower bound of 0 on a
game’s payoff. In exceptional cases like game �4�1 (Ta-
ble 3), it is theoretically possible for a player to guess more
than 1,000 units from his target times the other’s guess, in
the flat part of his payoff function.

16 This ambiguity could be eliminated by requiring play-
ers to guess between their limits. We do not do so because
automatic adjustment enhances the separation of types’
search implications. With quasiconcave payoffs, a subject
can enter the ideal guess that would be optimal given his
beliefs, ignoring his limits, and know without checking his
limits that his adjusted guess will be optimal; our instruc-
tions explain this, and most subjects understood it (CGC).

1745VOL. 96 NO. 5 COSTA-GOMES AND CRAWFORD: COGNITION AND BEHAVIOR



characterizes their equilibria, assuming com-
plete information.17 If, as in our design, players’
limits and targets are positive and pipj 	 1, their
equilibrium adjusted guesses are determined by
their lower limits when pipj � 1, or their upper
limits when pipj � 1. (The equilibrium correspon-
dence is discontinuous when pipj � 1, in which
case there are multiple equilibria.) In game �2�4,
for instance, the product of targets is 0.7 
 1.5 �
1.05 � 1, player i’s equilibrium guess is at his
upper limit 500, and player j’s is at his best re-
sponse to 500 of 750, below his upper limit. In
game �2�3, the product of targets is 0.7 
 1.3 �
0.91 � 1, player i’s equilibrium guess is at his
lower limit 300, and player j’s is at his best re-
sponse to 300 of 390, above his lower limit.

OBSERVATION 1: Unless pipj � 1, each
guessing game in the class above has an essen-
tially unique equilibrium, in pure strategies,
with adjusted guesses as follows:

If pipj � 1,

(a) yi � R(ai, bi; xi) � ai if piaj � ai, and yi �
min{piaj, bi} if piaj � ai; and

(b) yj � R(aj, bj; xj) � aj if pjai � aj, and yj �
min{pjai, bj} if p jai � aj.

Further, although i’s ideal guess is piy j and j’s
is pjyi, when pipj � 1, i can enter piaj, or j can
enter pjai, in lieu of his ideal guess, and still be
sure that his adjusted guess will be optimal.

If pipj � 1,

(c) yi � R(ai, bi; xi) � bi if pibj � bi, and yi �
max{ai, pibj} if pibj � bi; and

(d) yj � R(aj, bj; xj) � bj if pjbi � bj, and yj �
max{aj, pjbi} if p jbi � bj.

Further, although i’s ideal guess is piy j and
j’s is p jyi, when pip j � 1, i can enter pib j, or
j can enter p jbi, in lieu of his ideal guess, and
still be sure that his adjusted guess will be
optimal.

Observation 1 can be verified by direct
checking or by noting that if, say, pipj � 1,
iterating best responses drives adjusted guesses
down until one player’s adjusted guess hits his
lower limit and the other’s is at or above his
lower limit. We give a formal proof in on-line
Appendix H, where the details play an impor-
tant role in our analysis of Equilibrium’s infor-
mation search implications.

Table 3 summarizes the games’ structural rela-
tionships, which add greatly to the power of our
design. For instance, the only important difference
between the games �2�4 (game 13 in Figures
1–5) and �2�3 (game 11) is whether the product
of targets is greater or less than one. Observation
1 shows that Equilibrium responds strongly to this
subtle difference, but low-level Lk or Dk types,
whose guesses vary continuously with the targets,
respond much less. Further, games with mixed
targets (games 9 to 16 in Figures 1–5) are espe-
cially well suited to separating types’ guesses, and
help us diagnose the causes of some subjects’
deviations from equilibrium (Section IIA). Fi-
nally, moving some of Equilibrium and other
types’ guesses away from the limits and the other
structural variations in Table 3 stress-test types’
predictions, and with our games’ large strategy
spaces, allow us to “reverse-engineer” some devi-
ations and thereby distinguish cognitive errors
from “random” behavior (on-line Appendix F).
For example, Figure 7 (p. 1754) shows the pattern
of iterated dominance and how it converges to
equilibrium in game �4�3, where the product of
targets is 1.5 
 1.3 � 1, player i’s equilibrium
guess is at his upper limit 500, and player j’s
equilibrium guess is at his best response to 500 of
650 (below his upper limit). Here, dominance for
player j occurs initially at both his limits, which
stress-tests Equilibrium and Dk types. None of
these features is shared by the games of Nagel,
HCW, SW, or CGCB.

17 Guesses are in equilibrium if each player’s guess maxi-
mizes his expected payoff, given the other player’s. A player’s
guess dominates (is dominated by) another of his guesses if it
yields a strictly higher (lower) payoff for each of the other
player’s possible guesses. A player’s guess is iteratively un-
dominated if it survives iterated elimination of dominated
guesses. A round of iterated dominance eliminates all dominated
guesses for both players. A game is dominance-solvable (in k
rounds) if each player has a unique iteratively undominated
adjusted guess (identifiable in k rounds of iterated dominance).
Those iteratively undominated adjusted guesses are players’
unique equilibrium adjusted guesses. We distinguish the num-
bers of rounds players need to identify their own iteratively
undominated adjusted guesses; the number of rounds in which
the game is dominance-solvable is the higher of these numbers.
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FIGURE 1. “FINGERPRINTS” OF 20 APPARENT L1 SUBJECTS

Notes: Only deviations from L1’s guesses are shown. Of these subjects’ 320 guesses, 216 (68
percent) were exact L1 guesses.
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Observation 2 simplifies the characterization of
types’ adjusted guesses. It shows that for guessing
games in the class, a player’s best responses to
uniform beliefs on an interval like those in the
definitions of types L1, D1, and D2, and indirectly
L2 and L3, equal his target times the midpoint of
the interval, adjusted if necessary to lie within his
limits. This certainty-equivalence result is inde-
pendent of risk preferences, but it depends on
symmetry and uniform beliefs.18

OBSERVATION 2: Suppose the point payoff
function of a guessing game in the class is a
symmetric, continuous, almost everywhere dif-
ferentiable function s(x � pz) that is weakly
decreasing in �x � pz�, where x is a player’s
guess; p is his target; and z, his partner’s guess,
is a random variable uniformly distributed on
[a,b]. Then, for any player with a continuous,

18 Observation 2 shows that in our games, Lk guesses are
k-point-rationalizable (Bernheim, 1984), but it also shows

that our design is not well-suited to distinguishing k-point-
rationalizable types from those that are k-rationalizable in
the usual sense, which allows nondeterministic beliefs.

FIGURE 2. “FINGERPRINTS” OF 12 APPARENT L2 SUBJECTS

Notes: Only deviations from L2’s guesses are shown. Of these subjects’ 192 guesses, 138 (72
percent) were exact L2 guesses.
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almost everywhere differentiable von Neumann–
Morgenstern utility function u� that values
only money (risk-neutral, risk-averse, or risk-
loving), his expected-utility maximizing choice
is x* � pE(z) � p(a � b)/2, and his expected-
utility maximizing choice s.t. x � [c, d] is R(c, d;
p(a � b)/2).

PROOF:
We show that x* � p(a � b)/ 2 solves

maxx �a
b u(s( x � pz)) dz (ignoring the posi-

tive factor [1/(b � a)]). The integral in the
maximand is differentiable because u(s( x �
pz)) is continuous. Its derivative with respect
to x, evaluated at x*, is (ignoring points of

FIGURE 3. “FINGERPRINTS” OF THREE APPARENT L3 SUBJECTS

Notes: Only deviations from L3’s guesses are shown. Of these subjects’ 48 guesses, 23 (48
percent) were exact L3 guesses.

FIGURE 4. “FINGERPRINTS” OF EIGHT APPARENT EQUILIBRIUM SUBJECTS

Notes: Only deviations from Equilibrium’s guesses are shown. Of these subjects’ 128 guesses,
69 (54 percent) were exact Equilibrium guesses.
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nondifferentiability),

(2) �
a

�a�b/ 2

u��s�x* � pzs��x* � pz dz

	�
�a�b/ 2

b

u��s�x* � pzs��x* � pz dz 
 0,

where the equality holds for x* � p(a � b)/2 by
symmetry. Because u� is increasing and s� is
weakly decreasing in �x � pz�, raising x above x*
lowers the derivative below 0, and lowering x
below x* raises it above 0; thus, the integral in the
maximand is quasiconcave in x. Because x* �
p(a � b)/2 satisfies the first-order condition for
maximizing the integral, x* is optimal, ignoring
the constraint x � [c, d], and R(c, d; p(a � b)/2)
is optimal, respecting the constraint.

In deriving our types’ implications, we as-
sume that each player maximizes the expected
utility of his total money payment over the 16
games. Each type then implies an essentially
unique adjusted guess in each game, which
maximizes its expected payoff given beliefs
based on some model of others’ decisions.19

The key to the derivations is a type’s ideal
guess, the one that would be optimal given its
beliefs, ignoring its limits. A type’s ideal
guess determines its adjusted guess in a game
via the adjustment function R(ai, bi; xi) �
min{bi, max{ai, xi}}. We estimate Sophisti-
cated’s ideal guesses as risk-neutral best re-
sponses to the pooled distribution of Baseline
and OB subjects’ adjusted guesses, game by
game, rounded to the nearest integer for sim-
plicity.20 Equilibrium’s ideal guesses follow
immediately from Observation 1, and L1’s,

19 A type’s adjusted guesses are all that matters about its
choices, and all that our types determine. Because a player’s
total payment is proportional to his point payoffs in five

randomly chosen games, a first-order stochastic dominance
argument shows that when guesses have known conse-
quences, the player must maximize his point payoff in any
given game. When guesses have uncertain consequences,
risk preferences are potentially relevant. But Observation 1
shows that our games have essentially unique equilibria in
pure strategies, so risk preferences do not affect Equilibrium
adjusted guesses. And Observation 2 shows that best re-
sponses to uniform beliefs are certainty-equivalent, so risk
preferences do not affect L1, D1, or D2 adjusted guesses, or
the best responses that define L2 or L3 adjusted guesses. For
Sophisticated adjusted guesses, which may best respond
to nonuniform beliefs and so are not covered by Observa-
tion 2, we must assume that players are risk-neutral to
justify the statement in the text. Even so, Sophisticated
adjusted guesses are only generically unique because their
beliefs allow ties in optimal guesses.

20 Because we also rounded subjects’ guesses to the
nearest integer, and few subjects made exact Sophisticated
guesses, this does not lead to misclassification.

FIGURE 5. SEPARATION OF TYPES’ PREDICTED GUESSES ACROSS GAMES
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L2’s, L3’s, D1’s, and D2’s follow immedi-
ately from Observation 2.

The left-hand side of Table 4 lists the general
formulas for types’ ideal guesses as functions of
the targets and limits. Table 5 lists types’ ad-
justed guesses and the guesses that survive one
to four rounds of iterated dominance in each
game. Figure 5 summarizes the separation of
types’ adjusted guesses in the 16 games. No two
types are separated in fewer than eight games;
the number of games in which two given types
are separated averages 11 2⁄3 out of 16 (73 per-

cent), which is hard to improve upon within a
simple overall structure like ours; and L2 and
D1 are separated in 13 games, much more
strongly than in any previous experiment (on-
line Appendix G).

The right-hand side of Table 4 lists types’ min-
imal implications for information search, which
are used in Section IIE’s econometric analysis,
in general notation and in the box numbers in
which searches are recorded. Our derivation of
these implications in on-line Appendix H and
CGC (2007) is based on a procedural view of

TABLE 4—TYPES’ IDEAL GUESSES AND RELEVANT LOOK-UPS

Type Ideal guess Relevant look-ups

L1 pi[aj � bj]/2 {[aj, bj], pi} � {[4, 6], 2}
L2 piR(aj, bj; pj[ai � bi]/2) {([ai, bi], pj), aj, bj, pi} � {([1, 3], 5), 4, 6, 2}
L3 piR(aj, bj; pjR(ai, bi; pi[aj � bj]/2)) {([aj, bj], pi), ai, bi, pj} � {([4, 6], 2), 1, 3, 5}
D1 pi(max{aj, pjai} � min{pjbi, bj})/2 {(aj, [pj, ai]), (bj, [pj, bi]), pi} � {(4, [5, 1]), (6, [5, 3]), 2}
D2 pi[max{max{aj, pjai}, pjmax{ai, piaj}}

� min{pjmin{pibj, bi}, min{pjbi, bj}}]/2
{(ai, [pi, aj]), (bi, [pi, bj]), (aj, [pj, ai]), (bj, [pj, bi]), pj, pi}

� {(1, [2, 4]), (3, [2, 6]), (4, [5, 1]), (6, [5, 3]), 5, 2}
Eq. {ai if piaj � ai or min{piaj, bi} if piaj � ai} if

pipj � 1 or {bi if pibj � bi or max{ai, pibj} if
pibj � bi} if pipj � 1

{[pi, pj], aj} � {[2, 5], 4} if pipj � 1 or {[pi, pj], bj}
� {[2, 5], 6} if pipj � 1

Soph. [no closed-form expression; Sophisticated’s
search implications are the same as D2’s]

{(ai, [pi, aj]), (bi, [pi, bj]), (aj, [pj, ai]), (bj, [pj, bi]), pj, pi}
� {(1, [2, 4]), (3, [2, 6]), (4, [5, 1]), (6, [5, 3]), 5, 2}

Notes: The most basic operations are represented by the innermost look-ups, grouped within square brackets; these can appear
in any order, but may not be separated by other look-ups. Other operations are represented by look-ups grouped within
parentheses or curly brackets; these can appear in any order, and may be separated by other look-ups. Equilibrium’s minimal
search implications are derived not directly from Equilibrium’s ideal guesses, but from piaj when pipj � 1 and pibj when
pipj � 1 via Observation 1 (see on-line Appendix H).

TABLE 5—TYPES’ ADJUSTED GUESSES AND GUESSES THAT SURVIVE ITERATED DOMINANCE

Game

Player i’s guess for type Range of iteratively undominated guesses

L1 L2 L3 D1 D2 Eq. Soph. 1 round 2 rounds 3 rounds 4 rounds

1. �2�1 350 105 122.5 122.5 122.5 100 122 100, 500 100, 175 100, 175 100, 100
2. �1�2 150 175 100 150 100 100 132 100, 250 100, 250 100, 100 100, 100
3. �1�2 200 175 150 200 150 150 162 150, 250 150, 250 150, 150 150, 150
4. �2�1 350 300 300 300 300 300 300 300, 500 300, 300 300, 300 300, 300
5. �4�3 500 500 500 500 500 500 500 450, 500 500, 500 500, 500 500, 500
6. �3�4 520 650 650 617.5 650 650 650 390, 650 585, 650 650, 650 650, 650
7. �3�3 780 900 900 838.5 900 900 900 390, 900 507, 900 659.1, 900 856.8, 900
8. �3�3 780 900 900 838.5 900 900 900 390, 900 507, 900 659.1, 900 856.8, 900
9. �1�4 150 250 112.5 162.5 131.25 100 187 100, 250 100, 250 100, 187.5 100, 187.5

10. �4�1 500 225 375 262.5 262.5 150 300 150, 500 150, 375 150, 375 150, 281.27
11. �2�3 350 546 318.5 451.5 423.15 300 420 300, 630 300, 630 300, 573.3 300, 573.3
12. �3�2 780 455 709.8 604.5 604.5 390 695 390, 900 390, 819 390, 819 390, 745.29
13. �2�4 350 420 367.5 420 420 500 420 300, 500 315, 500 315, 500 330.75, 500
14. �4�2 600 525 630 600 611.25 750 630 450, 750 450, 750 472.5, 750 472.5, 750
15. �2�4 210 315 220.5 227.5 227.5 350 262 100, 350 105, 350 105, 350 110.25, 350
16. �4�2 450 315 472.5 337.5 341.25 500 375 150, 500 150, 500 157.5, 500 157.5, 500
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decision-making in which the algorithms that
can be used to process payoff information into a
type’s guesses determine its searches as well.
Types’ minimal search implications are based
on their ideal guesses, because (with our qua-
siconcave payoffs) a subject can enter his ideal
guess and know that his adjusted guess will be
optimal without checking his own limits. As
suggested by our R/TS treatments and CJ’s and
CGCB’s experiments, we assume that subjects
perform the most basic operations needed to
identify the ideal guess one at a time via adja-
cent (consecutive in the sequence) look-ups, in
any order, remembering their results, and oth-
erwise relying on repeated look-ups rather than
memory. Basic operations will then be repre-
sented by adjacent look-up pairs that can appear
in any order, but cannot be separated by other
look-ups. Other operations will be represented
by the associated look-ups, in any order, possi-
bly separated by other look-ups. We call a
minimal look-up sequence that satisfies these
requirements for a type the type’s relevant
look-ups.

We close this subsection by discussing the
strength of our subjects’ incentives to follow
particular types. Given the enormous set of
possible types in our design, we approach this
issue by estimating how costly it would be for
a subject of a given type, with its beliefs, to
behave according to a different type if he still
had the given type’s beliefs. By this standard,
Equilibrium, L2, and L3 subjects all have
strong incentives to make their type’s guesses
(on-line Appendix G). Equilibrium’s ex-
pected earnings would be $46.05 in our 16
games if its partners made equilibrium
guesses, $12.05 more than its earnings would
be with L3 guesses, and even more than its
earnings would be with our other types’
guesses. The analogous earnings differences
for L2 and L3 are $10.25 and $6.90. But our
other leading types have weaker incentives:
analogous differences of $1.29 for D2, $1.22
for L1, $0.85 for D1, and $0.46 for Sophisti-
cated.21

C. Using MouseLab to Present Guessing
Games

The games were displayed on subjects’
screens via a computer interface called Mouse-
Lab.22 To suppress framing effects, a subject
was called “You” and his partner was called
“S/He,” etc. A subject could look up a payoff
parameter by using his mouse to move the cur-
sor into its box and left-clicking; in Figure 6 the
subject has opened the box that gives his own
(“Your”) lower limit, 100. Before he could open
another box or enter his guess, he had to close the
box by right-clicking; a box could be closed after
the cursor had been moved out of it. Thus, both
opening and closing a box required a conscious
choice. Subjects were not allowed to write during
the main part of the experiment. A subject could
enter and confirm his guess by moving the cursor
into the box labeled “Keyboard Input,” clicking,
typing the guess, and then moving the cursor into
the box at the bottom of the screen and clicking. A
subject could move on to the next game only after
confirming his guess; after an intermediate screen,
the cursor returned to the top-center. MouseLab
automatically records subjects’ look-up sequences,
look-up durations, and guesses.

II. Analysis of Subjects’ Guesses and
Information Searches

This section analyzes subjects’ guesses and
information searches, starting with those of our
subjects whose types are apparent from guesses
alone, and continuing with all subjects’ compli-
ance with iterated dominance and equilibrium,
an econometric analysis of subjects’ guesses
and specification test, and an econometric anal-
ysis of their guesses and information search.23

21 Among our types, only L1 and Equilibrium are not
fairly close substitutes for Sophisticated, given its beliefs.

22 MouseLab was developed to study individual decisions
(John Payne et al., 1993, Appendix; and http://www.cebiz.
org/mouselab.htm). CJ pioneered the use of MouseLab in
games by studying backward induction in alternating-offers
bargaining games in which subjects could look up the sizes of
the “pies” in each period. CGCB used MouseLab to study
matrix games in which subjects could look up their own and
their partners’ payoffs.

23 On-line Appendix D graphs the aggregate game-by-
game frequency distributions of subjects’ adjusted guesses.
Appendix E gives the complete data on subjects’ guesses and
the orders (but not durations) of their look-up sequences.
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Table 1 summarizes each phase’s conclusions
regarding the numbers of subjects of each esti-
mated type, and Tables 7A and 7B summarize
the results subject by subject.

A. Subjects Whose Types Are Apparent from
Guesses Alone

Figures 1–4 graph the actual against predicted
adjusted guesses of the 43 subjects whose types
are apparent from guesses alone, with games or-
dered to emphasize structural relationships, as in
Table 3. Figures 1 to 3 graph 20 apparent L1
subjects, 12 apparent L2 subjects, and 3 apparent
L3 subjects, each with Equilibrium guesses for
comparison; and Figure 4 graphs 8 apparent Equi-
librium subjects, with L3 guesses for comparison.
Only deviations from subjects’ apparent types are
shown; the 20 L1 subjects in Figure 1, for exam-
ple, who made a total of 320 guesses in 16 games,
deviated from L1 guesses a total of 104 times,
each identified by the subject’s mark.

Section IIC’s econometric analysis con-
firms that in likelihood-based type inferences,
subjects’ rates of exact (within 0.5) compli-
ance with types’ guesses are far more impor-

tant than the magnitudes of their deviations.
Thus, the most important message of Figures
1 to 4 is that these 43 subjects’ rates of exact
compliance were very high, despite our large
strategy spaces. A second message is that
these subjects’ guesses usually varied only
slightly across the two symmetric games, 7
and 8, suggesting that the effects of introspec-
tive learning were limited.

There are systematic differences between
subjects’ responses to games with (9–16, right
sides of Figures 1–4) and without (1–8) mixed
targets: Apparent L2, L3, and Equilibrium sub-
jects all deviate from their types’ predictions
much more often in games with mixed targets.
This is surprising, because L2 and L3 guesses
are determined by simple formulas in which a
subject’s own and his partner’s targets play
similar roles (Table 4) and all of the standard
methods for identifying Equilibrium decisions
(direct checking, best-response dynamics, and
iterated dominance) work equally well with
and without mixed targets. Apparent L1 sub-
jects, whose ideal guesses do not depend on
their partner’s target, making the distinction
between games with and without mixed targets

FIGURE 6. SCREEN SHOT OF THE MOUSELAB DISPLAY
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irrelevant, do not deviate more often in games
with mixed targets.24

The details of apparent Equilibrium and L3
subjects’ guesses deepen the puzzle. Our 8 ap-
parent Equilibrium subjects’ 44 deviations from
Equilibrium when it is separated from L3 (out of
a possible 72 � 9 games 
 8 subjects), are all
in the direction of (and sometimes beyond) L3
guesses. And our apparent L3 subjects’ devia-
tions from L3 when it is separated from Equi-
librium are usually in the direction of
Equilibrium and often coincide with it—even in
game 1, our only such game without mixed
targets. Thus, many of these subjects appear to
be using hybrid rules that blend Equilibrium
(especially in games without mixed targets)
with L3. This illustrates the potential empirical
importance of the subtlety of identifying equi-
librium decisions in our games.

B. Subjects’ Compliance with Iterated
Dominance and Equilibrium

Table 6 reports Baseline and OB subjects’
compliance with 1 or more, 2 or more, 3 or
more, and 4 or more rounds of iterated domi-
nance—equivalently, levels of k-rationalizabil-
ity—and exact compliance with Equilibrium,

overall and game by game, with random com-
pliance as a benchmark.25 Subjects make un-
dominated guesses at a rate well above random
in each of the 13 games in which subject i has
any dominated guesses, with an overall rate of
90 percent, typical for initial responses and far
higher than random (62 percent). Only 14 sub-
jects make undominated guesses in less than 80
percent of the games, which suggests that the
behavior of a large majority of our subjects was
coherent. Compliance with iterated dominance
is almost always higher than random when this
is possible, and usually far higher. It varies
widely across games, but with no clear effect of
structure beyond what determines random com-
pliance. Compliance with Equilibrium is lower
in games with mixed targets but otherwise
shows no clear effect of structure. Because our
games with mixed targets coincide with those
with many rounds of iterated dominance, in this
respect our results correspond to those for
CGCB’s (2001, Table II) matrix games.

C. Econometric Analysis of Baseline and OB
Subjects’ Guesses

Although 43 of our 88 Baseline and OB sub-
jects’ types are apparent from their guesses, the
remaining 45 subjects’ types are not immedi-
ately clear. In this subsection we estimate all 88
subjects’ types econometrically, via a maximum

24 There are no clear patterns in the magnitudes of de-
viations or other aspects of the games’ structures. Only one
of our 29 Equilibrium R/TS subjects came close to the
apparent Equilibrium subjects’ patterns in the Baseline; the
rest made just as many exact guesses with as without mixed
targets (Appendix E; CGC, 2007).

25 The differences between Baseline and OB subjects are
unimportant here. On-line Appendix G’s tables give the
analogous results for types other than Equilibrium.

FIGURE 7. ITERATED DOMINANCE AND EQUILIBRIUM IN GAME �4�3

Note: R(k) is the set of guesses eliminated in round k of iterated dominance.
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likelihood error-rate analysis of their guesses.
Our goals are to summarize the implications of
the data in a comprehensible way, to assess the
strength of the evidence in favor of our types,
and to identify those subjects whose guesses are
not well explained by our types and guide the
search for better explanations of their behavior.

We assume that each subject’s behavior is
determined, possibly with error, by a single
type, which determines his guesses and searches
in all games. The types we allow were chosen a
priori from general principles of strategic deci-
sion-making that have played important roles in
the literature, with the goal of specifying a set
large and diverse enough to do justice to the
heterogeneity of subjects’ behaviors but small
enough to avoid overfitting. We include L1, L2,
L3, D1, D2, and Equilibrium as defined in the
Introduction, and add CGCB’s Sophisticated to
test whether any subjects have a prior under-
standing of others’ decisions that transcends
these simple rules. In theory, Sophisticated best
responds to the probability distributions of its
partners’ decisions; but those distributions are
part of a behavioral game theory that is not yet
fully developed. We therefore operationalize
Sophisticated using the best available predic-

tions of those distributions in our setting: the
population frequencies of our own subjects’
guesses.26

Index types k � 1, ... , K and games g � 1, ... ,
G. In game g, denote subject i’s lower and upper
limits ag

i and bg
i , his unadjusted and adjusted

guess xg
i and Rg

i (xg
i ) � min{bg

i , max{ag
i , xg

i }}, and

26 An ad hoc type could perfectly mimic a subject’s
decision history, but would have no explanatory power. It is
hard to dispense with a priori specification because the
space of possible types is enormous and the leading types
have no simple, unifying structure. Further, there are mul-
tiple rationales for any given history of guesses, but we link
guesses and search via a procedural model whose implica-
tions depend not only on what guesses a type implies, but
also on why. Our L1 corresponds to SW’s Level 1 or
CGCB’s Naı̈ve, and is related to Level 1 or Step 1 in Nagel,
HCW, and CHC. Our L2 (L3) corresponds to CGCB’s L2
(L3), and is related to L2 (L3) in SW, Nagel, HCW, and
CHC. Earlier work suggests that types beyond L3 or D2 are
empirically unimportant, and there is no evidence of them in
our data. We also omit three types CGCB found empirically
unimportant: Pessimistic (maximin), Optimistic (maximax),
and Altruistic. Pessimistic and Optimistic do not distinguish
clearly among guesses in our games; and we judged the
effects of own guesses on others’ payoffs too weak and
nonsalient for Altruistic to be plausible.

TABLE 6—BASELINE AND OB SUBJECTS’ AGGREGATE COMPLIANCE WITH ITERATED DOMINANCE AND Equilibrium

Game
(# rounds of
dominance)

Respects 1 or
more rounds
of dominance

Respects 2 or
more rounds
of dominance

Respects 3 or
more rounds
of dominance

Respects 4 or
more rounds
of dominance

Equilibrium
exact compliance

All games 90 (62) 75 (41) 53 (34) 40 (26) 18 (0)

1. �2�1 (4) 100 (100) 34 (19) 34 (19) 13 (0) 13 (0)
2. �1�2 (3) 78 (19) 78 (19) 16 (0) — (—) 16 (0)
3. �1�2 (3) 73 (13) 73 (13) 10 (0) — (—) 10 (0)
4. �2�1 (2) 100 (100) 44 (0) — (—) — (—) 44 (0)
5. �4�3 (2) 81 (25) 69 (0) — (—) — (—) 69 (0)
6. �3�4 (3) 88 (43) 35 (11) 26 (0) — (—) 26 (0)
7. �3�3 (5) 97 (85) 91 (66) 70 (40) 26 (7) 24 (0)
8. �3�3 (5) 95 (85) 94 (66) 68 (40) 20 (7) 20 (0)
9. �1�4 (9) 70 (19) 70 (19) 34 (11) 34 (11) 5 (0)

10. �4�1 (10) 100 (88) 56 (56) 56 (56) 31 (33) 3 (0)
11. �2�3 (17) 86 (55) 86 (55) 81 (46) 81 (46) 5 (0)
12. �3�2 (18) 97 (64) 92 (54) 92 (54) 69 (44) 1 (0)
13. �2�4 (22) 100 (100) 97 (93) 97 (93) 94 (85) 20 (0)
14. �4�2 (23) 88 (38) 88 (38) 84 (35) 84 (35) 8 (0)
15. �2�4 (52) 90 (63) 90 (61) 90 (61) 90 (60) 11 (0)
16. �4�2 (51) 98 (88) 98 (88) 94 (86) 94 (86) 6 (0)

Notes: Compliance percentages are rounded to the nearest integer, with random compliance percentages in parentheses.
Guesses that respect k or more rounds of dominance are k-rationalizable.
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type k’s adjusted guess tg
k. Write xi � (x1

i , ... , xG
i )

and Ri(xi) � (R1
i (x1

i ), ... , RG
i (xG

i )).
We analyze the data subject by subject.27

Interpreting a pattern of deviations from types’
guesses requires an error structure. We assume
that, conditional on a subject’s type, his errors
are independent across games. Because our sub-
jects so often made types’ exact guesses, we use
a simple “spike-logit” error structure in which,
in each game, a subject has a given probability
of making his type’s guess exactly, and other-
wise makes guesses that follow a logistic dis-
tribution over the rest of the interval between
his limits. Thus, in game g a type-k subject
makes a guess that leads to type k’s adjusted
guess tg

k within 0.5 with probability 1 � �; but
with probability � � [0, 1], his error rate, his
adjusted guess has error density dg

k(Rg
i (xg

i ), �)
with precision �.28

In describing how payoffs affect the error
density, for simplicity we assume that subjects
are risk-neutral. Let y be subject i’s partner’s
adjusted guess and Sg(Rg

i (xg
i ), y) be i’s own

expected monetary payoff in game g, where the
expectation is taken only over the random se-
lection of games that subject i is paid for. All of
our types best respond to some beliefs; let the
density f g

k(y) represent type k’s beliefs. Subject
i’s expected payoff in game g for type k’s be-
liefs can then be written:

(3) Sg
k�Rg

i �xg
i  ��

0

1000

Sg�Rg
i �xg

i , yf g
k�y dy.

Let Ug
ik � [tg

k � 0.5, tg
k � 0.5] � [ag

i , bg
i ], the

set of subject i’s possible adjusted guesses in
game g that are within 0.5 of type k’s adjusted
guess tg

k, and let Vg
ik � [ag

i , bg
i ]/Ug

ik, the comple-

ment of Ug
ik relative to [ag

i , bg
i ]. The density

dg
k(Rg

i (xg
i ), �k) then satisfies

(4) dg
k�Rg

i �xg
i , � �

exp��Sg
k�Rg

i �xg
i �

�
Vg

ik

exp��Sg
k�z� dz

for Rg
i �xg

i  � Vg
ik, and 0 elsewhere.

The precision � is inversely related to the
dispersion of a subject’s erroneous guesses: as
� 3 � they approach a noiseless best response
to his type’s beliefs, and as � 3 0 they ap-
proach uniform randomness between his limits,
excluding exact guesses. For a given value of �,
the dispersion declines with the strength of pay-
off incentives, evaluated for the type’s beliefs.

Because unadjusted guesses that lead to the
same adjusted guess yield the same payoffs, the
error structure treats them as equivalent, and the
likelihood can be expressed entirely in terms of
a subject’s adjusted guesses. For subject i, let
Nik be the set of games g for which Rg

i (xg
i ) �

Vg
ik, and nik be the number of games in Nik, so

that the number of games for which Rg
i (xg

i ) �
Ug

ik is G � nik. For a type-k subject i in game g,
the probability of observing an adjusted guess
Rg

i (xg
i ) � Ug

ik is (1 � �), the probability of
observing an adjusted guess Rg

i (xg
i ) � Vg

ik is �,
and the conditional density of an adjusted guess
in Vg

ik is then dg
k(Rg

i (xg
i ), �) as in (4).29 Because

errors are independent across games, the density
of a sample with adjusted guesses Ri(xi) �
(R1

i (x1
i ), ... , RG

i (xG
i )) for a type-k subject i is:

(5) dk�Ri�xi, �, �

� �1 � ��G � nik�nik �
g�Nik

dg
k�Rg

i �xg
i , �,

where products with no terms (if nik � 0 or G)
are taken to equal 1. Letting p � (p1, ... , pK)
denote the vector of prior type probabilities,

27 CGCB (2001) used an aggregate mixture model that
imposed stronger restrictions on subjects’ type distributions,
and studied cognition at the individual level by conditioning
on individual histories. CGCB (1998) estimated subject by
subject using the same dataset, with similar results. Esti-
mating subject by subject seems better suited to studying
cognition and more robust to misspecification; but the re-
sults are unlikely to differ much from a mixture model.

28 In our design, entered guesses are restricted to the
interval [0, 1000], which includes all possible limits. There
is no need to allow the error rate and precision to depend on
type, because all three are estimated jointly.

29 The conditional density could be allowed to extend to
Ug

ik as well as Vg
ik, but our specification is simpler, and

approximately equivalent given the near-constancy of pay-
offs within the narrow interval of exact guesses Ug

ik.
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weighting by pk, summing over k, and taking
logarithms, yields subject i’s log-likelihood:

(6) Li� p, �, ��Ri�xi

� ln� �
k � 1

K

pkdk(Ri(xi), �, �)�.

It is clear from (6) that the maximum likeli-
hood estimate of p sets pk � 1 for the (generi-
cally unique) k that yields the highest dk(Ri(xi),
�, �)), given the estimated � and �. The maxi-
mum likelihood estimate of � can be shown
from (5) to be nik/G, the sample frequency with
which subject i’s adjusted guesses fall in Vg

ik.
The maximum likelihood estimate of � is the
standard logit precision, restricted to guesses
in Vg

ik.
The maximum likelihood estimate of subject

i’s type maximizes the logarithm of (5) over k,
given the estimated � and �. When nik is be-
tween 0 and G, the maximand is

(7) ln dk�Ri�xi, �, � � �G � nikln�G � nik

� nikln�nik 	 �
g�Nik

ln dg
k�Rg

i �xg
i , �

� G ln G.

When nik � 0, the maximand reduces to 0;
and when nik � G, the maximand reduces to the
sum over g on the right-hand side of (7).

The likelihood takes the separation of
types’ guesses across games into account, fa-
voring a type only to the extent that it ex-
plains a subject’s guesses better than other
types. It treats a guess as stronger evidence
for a type the closer it is to the type’s guess,
because the payoff function is quasiconcave
and the logit term increases with payoff; and
it treats a guess that exactly matches a type’s
guess as the strongest possible evidence for
the type, discontinuously stronger than one
that is close but not within 0.5. If nik is near
0 for only one k, that k is usually the esti-
mated type. If nik is nearly the same for all k,
the estimated type is mainly determined by
the logit term; and if nik is near G for all k, the

type estimate is close to the estimate from a
standard logit model.

Table 1 (column 3) reports the aggregate fre-
quencies of subjects’ type estimates based on (7).
Table 7A reports each Baseline or OB subject’s
number of dominated guesses and the estimates of
his type k, precision �, and number of exact type-k
guesses (� 16(1 � �), where � is the error rate),
with subjects ordered by type, in decreasing order
of likelihood within type. The joint restriction � �
1 and � � 0, which approximates a completely
random model of guesses, cannot be rejected at
the 5-percent (and 1-percent) level for 10 subjects
(6 estimated L1, 2 D1, 1 Equilibrium, and 1 So-
phisticated, with type indicators superscripted † in
Table 7A); Table 1 (column 4) reports the aggre-
gate type frequencies excluding these subjects as
“unclassified.”

Likelihood ratio tests reject the hypothesis � �
1, which approximates a standard logit model, at
the 5-percent (1-percent) level for all but 7 (2) of
our 88 subjects (110 and 213 at the 1-percent
level, plus 109, 113, 212, 421, and 515 at the
5-percent level), so the spike in our specification is
necessary.30 The hypothesis � � 0 is rejected at
the 1-percent (5-percent) level for the 21 (34)
subjects whose estimates are superscripted ** (*)
in Table 7A, so the logit model’s payoff-sensitive
errors significantly improve the fit over a spike-
uniform model such as CGCB’s for only about a
third of our subjects. This suggests that many of
our subjects’ deviations are due to cognitive errors
rather than insufficient motivation or lack of ef-
fort; and this view is reinforced by on-line Appen-
dix F’s analysis of clusters.

D. Specification Test and Analysis

As explained in the introduction, our a pri-
ori specification might omit empirically rele-
vant types and/or include irrelevant ones, and
this leaves some room for doubt regarding our
45 subjects whose types are not apparent from
their guesses. To learn whether any of their

30 We report these tests only as a simple way to gauge
the strength of the evidence provided by our data. Their
standard justifications are unavailable, here and below, be-
cause the null hypotheses involve boundary parameter val-
ues. We approximated the test for � � 1 using a
nonboundary value of � just below one.
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TABLE 7A—SUBJECT-BY-SUBJECT GUESSES-ONLY AND SEARCH-ONLY ECONOMETRIC TYPE ESTIMATES AND RESULTS OF

SPECIFICATION TEST

ID Dom.

Guesses only Search only

ln L k Exact � ln L k �H �M

513 0 0.00 L1 16 — — — — —
118 0 �9.62 L1 15 1.85 �7.41 L1e 0.88 0.06
101 1 �10.27 L1 15 0.55 �9.94 L1e

‡ 0.69 0.31
104 0 �16.63 L1 14 2.20* �3.74 L1e 0.00 0.94
413 0 �17.81 L1 14 0.88 �6.03 L1l 0.13 0.88
207 0 �17.96 L1 14 0.42 0.00 L1e 1.00 0.00
216 1 �25.41 L1 13 1.06 �11.25 L3e 0.75 0.19
402 0 �30.93 L1 12 5.65* �9.00 L1e 0.00 0.75
418 0 �42.23 L1 10 21.22** �7.41 L2e 0.88 0.06
301 1 �45.84 L1D 10 0.00 �3.74 L1e 0.06 0.94
508 0 �46.19 L1D 10 2.05 — — — —
308 3 �47.34 L1 10 0.00 �9.63 L3e 0.81 0.13
102 4 �47.63 L1 10 0.00 �9.63 L2e 0.81 0.06
415 1 �53.64 L1 9 0.88 �16.38 D1e 0.31 0.50
504 1 �56.97 L1 8 1.68** — — — —
208 6 �61.62 L1 8 0.00 �3.74 L1l 0.06 0.94
318 0 �62.61 L1 7 3.18* �3.74 L1e

‡ 0.00 0.94
512 0 �63.33 L1 7 1.56 — — — —
502 1 �64.55 L1 7 1.01 — — — —
516 1 �64.93 L1C 7 1.10* — — — —
409 0 �73.59 L1E 4 9.90** �10.59 L1l 0.00 0.38
106 0 �75.82 L1 5 1.19* �7.72 Eqe 0.00 0.19
305 3 �79.89 L1 5 0.37 �6.03 L1e 0.88 0.13
411 1 �80.58 L1 4 1.45** 0.00 L3e 1.00 0.00
509 1 �81.81 L1 4 0.86 — — — —
203 4 �83.90 L1 4 0.00 �9.94 Eqe 0.00 0.31
505 4 �84.13 L1 4 0.43 — — — —
317 3 �86.58 L1 3 0.92* �3.74 L1e 0.94 0.06
416 1 �86.74 L1† 1 4.48** �3.74 L1e

‡ 0.00 0.94
217 3 �87.12 L1 3 0.68 �10.59 L1e 0.00 0.38
219 3 �87.32 L1� 3 0.89* �7.72 L1e 0.00 0.81
501 1 �87.93 L1† 0 4.38** — — — —
410 3 �89.18 L1 2 1.53** �7.72 L1el

‡ 0.00 0.19
510 5 �89.60 L1 3 0.00 — — — —
420 2 �89.68 L1� 2 1.25** �3.74 Eql 0.00 0.06
408 2 �89.71 L1� 2 1.09* �6.03 L1e 0.00 0.88
201 3 �90.26 L1� 2 1.21** �3.74 L1e

‡ 0.00 0.94
105 2 �90.58 L1� 2 1.29** �9.00 Eqe 0.25 0.75
103 3 �90.61 L1� 2 1.12* �6.03 L1e 0.00 0.13
213 2 �95.57 L1†� 0 1.19* �3.74 L2e 0.94 0.00
515 4 �95.68 L1†� 1 0.60 — — — —
113 5 �96.61 L1†� 1 0.07 �9.63 L3el

‡ 0.81 0.06
109 8 �97.31 L1†� 1 0.00 — — — —
309 0 0.00 L2 16 — �9.94 L2el

‡ 0.69 0.00
405 0 0.00 L2 16 — �13.30 L3e 0.69 0.13
206 0 �10.07 L2 15 0.79 �7.41 L2e 0.88 0.06
209 0 �25.51 L2 13 0.96 �9.00 L1e 0.00 0.75
108 0 �25.88 L2 13 0.45 0.00 L2e

‡ 1.00 0.00
214 2 �35.30 L2 11 2.73** �3.74 L1e 0.00 0.94
307 1 �38.88 L2 11 1.04* �7.72 Eqe 0.00 0.19
218 0 �40.54 L2 11 0.60 �7.72 L1e 0.00 0.81
422 2 �55.79 L2 9 0.22 0.00 L1e 0.00 1.00
316 1 �58.43 L2 8 0.73 �10.97 Eqe

‡ 0.00 0.44
407 0 �60.98 L2C 8 0.44 �6.03 L2e

‡ 0.88 0.13
306 2 �68.48 L2 7 0.18 �3.74 L1l 0.00 0.06
412 0 �69.43 L2 6 1.05** 0.00 L2e

‡ 1.00 0.00
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guesses could be better explained by omitted
types, or whether any of their type estimates
are due to accidental correlations with in-
cluded irrelevant types, we conduct a new
specification test.

To understand the logic of the test, imagine
that we had estimated subjects’ types as be-
fore, but using a specification that omitted an

empirically relevant type, say L2. Then, the
patterns of guesses across games of subjects
whose behavior is best described by L2 would
tend to resemble one another more than any
included type. We search for such clusters of
subjects by reestimating Section IIC’s model,
subject by subject, with the original list of
possible types augmented by 88 pseudotypes,

TABLE 7A—Continued.

ID Dom.

Guesses only Search only

ln L k Exact � ln L k �H �M

205 0 �72.81 L2 6 0.01 0.00 L1e 0.00 1.00
220 1 �72.96 L2 6 0.32 0.00 L1e 0.00 1.00
403 0 �73.60 L2 6 0.50 �6.03 Eql

‡ 0.00 0.13
517 0 �73.70 L2 5 0.98** — — — —
503 3 �88.21 L2� 3 0.00 — — — —
414 4 �89.00 L2 2 0.78* �7.72 L1e 0.00 0.19
110 3 �92.51 L2� 2 0.00 �9.00 L1l 0.00 0.75
210 0 �51.13 L3B 9 0.92* �10.59 L1e 0.00 0.38
302 0 �61.46 L3B 7 1.11** �6.03 Eqe 0.00 0.13
507 0 �63.23 L3 7 0.94** — — — —
313 0 �79.12 D1E 3 2.68** �6.03 L1e

‡ 0.00 0.88
312 0 �80.45 D1† 1 5.85** �3.74 L2e

‡ 0.94 0.06
204 2 �84.86 D1E 3 1.22** 0.00 L1e

‡ 0.00 1.00
115 1 �86.10 D1 2 1.74** �9.94 Eqe 0.00 0.31
401 2 �91.99 D1†� 0 1.58** �6.03 Eql 0.00 0.13
310 0 �41.69 Eq 11 0.00 �9.94 L1l 0.00 0.31
315 0 �41.80 Eq 11 0.00 0.00 L3e

‡ 1.00 0.00
404 1 �54.69 Eq 9 0.03 �9.00 Eqe

‡ 0.00 0.75
303 0 �59.93 Eq 8 0.41 �3.74 Eqe

‡ 0.00 0.06
417 0 �60.52 EqA 8 0.30 �10.97 L1e 0.00 0.44
202 0 �60.78 EqA 8 0.10 �9.94 Eqe 0.00 0.31
518 0 �66.38 Eq 7 0.61 — — — —
112 2 �66.39 Eq 7 0.00 �16.64 L2e 0.25 0.25
215 0 �73.85 Eq 6 0.55 �3.74 L1e 0.00 0.06
314 5 �78.06 Eq 5 0.52 �9.94 Eqe 0.00 0.69
211 3 �79.14 Eq 5 0.00 �7.72 Eqe 0.00 0.19
514 8 �85.98 Eq 4 0.00 — — — —
406 2 �86.73 Eq 3 0.59 �6.03 L1l 0.00 0.13
212 5 �96.62 Eq†� 1 0.00 �6.03 L1e 0.00 0.88
506 0 �82.10 So 3 1.26** — — — —
304 5 �93.29 So� 2 0.25 0.00 Eqe 0.00 1.00
421 4 �96.78 So† 1 0.31 �10.59 Eqe 0.00 0.38

Notes: A guesses-only type identifier superscripted † means the subject’s estimated type was not significantly better than a random
model of guesses (� � 0, � � 1) at the 5-percent (or 1-percent) level. A guesses-only type identifier superscripted � means the
estimated type had lower likelihood than 12 or more pseudotypes, more than expected at random. A guesses-only type identifier
superscripted A, B, C, D, or E indicates membership in a cluster. A guesses-only type identifier in bold indicates that the subject
is classified as that type in Table 1, column 5, by the criteria stated in the text. An estimated � superscripted ** (*) means that � �
0 is rejected at the 1-percent (5-percent) level. A type-style identifier subscripted el indicates that both styles have equal likelihoods
and �c. A search-only type-style identifier subscripted ‡ indicates that there are alternatives with different types and/or �c: L1l for
subjects 101 and 404; L2e and L3e for 318 and 204; L3e for 416 and 201; L2l for 113; L1e and L3el for 309; L1e and L3e for 108;
L1e for 316, 407, 403, and 315; L1e, L3e, and Eqe for 412 and 312; L1l, D2el, and Soe for 313; and D1e for 303. No search estimates
are reported for subject 109, who had zero search compliance in eight or more games for every type.
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TABLE 7B—SUBJECT-BY-SUBJECT GUESSES-AND-SEARCH ECONOMETRIC TYPE ESTIMATES

ID

Guesses and search

ln Lt ln Lg ln Ls k exact � �H �M

513 — — — — — — — —
118 �17.03 �9.62 �7.41 L1e 15 1.85 0.88 0.06
101 �20.21 �10.27 �9.94 L1e

‡‡ 15 0.55 0.69 0.31
104 �20.37 �16.63 �3.74 L1e 14 2.20 0.00 0.94
413 �23.84 �17.81 �6.03 L1l 14 0.88 0.13 0.88
207 �17.96 �17.96 0.00 L1e 14 0.42 1.00 0.00
216 �38.69 �25.41 �13.29 L1e 13 1.06 0.31 0.63
402 �39.93 �30.93 �9.00 L1e 12 5.65 0.00 0.75
418 �52.16 �42.23 �9.94 L1e 10 21.22 0.00 0.69
301 �49.58 �45.84 �3.74 L1e

D 10 0.00 0.06 0.94
508 — — — — — — — —
308 �60.65 �47.34 �13.30 L1el 10 0.00 0.19 0.69
102 �57.57 �47.63 �9.94 L1e 10 0.00 0.00 0.69
415 �107.28 �90.90 �16.38 D1e

� 2 0.76 0.31 0.50
504 — — — — — — — —
208 �65.37 �61.62 �3.74 L1l 8 0.00 0.06 0.94
318 �66.36 �62.61 �3.74 L1e 7 3.18 0.00 0.94
512 — — — — — — — —
502 — — — — — — — —
516 — — — — — — — —
409 �84.18 �73.59 �10.59 L1l

E 4 9.90 0.00 0.38
106 �85.75 �75.82 �9.94 L1l 5 1.19 0.00 0.31
305 �85.92 �79.89 �6.03 L1e 5 0.37 0.88 0.13
411 �86.61 �80.58 �6.03 L1e 4 1.45 0.13 0.88
509 — — — — — — — —
203 �94.49 �83.90 �10.59 L1e 4 0.00 0.00 0.63
505 — — — — — — — —
317 �90.32 �86.58 �3.74 L1e 3 0.92 0.94 0.06
416 �90.48 �86.74 �3.74 L1e 1 4.48 0.00 0.94
217 �97.71 �87.12 �10.59 L1e 3 0.68 0.00 0.38
219 �95.04 �87.32 �7.72 L1e

� 3 0.89 0.00 0.81
501 — — — — — — — —
410 �96.90 �89.18 �7.72 L1el 2 1.53 0.00 0.19
510 — — — — — — — —
420 �94.26 �90.52 �3.74 Eql

� 3 0.19 0.00 0.06
408 �95.74 �89.71 �6.03 L1e

� 2 1.09 0.00 0.88
201 �94.00 �90.26 �3.74 L1e

� 2 1.21 0.00 0.94
105 �102.56 �93.56 �9.00 Eqe

� 2 0.11 0.25 0.75
103 �96.63 �90.61 �6.03 L1e

� 2 1.12 0.00 0.13
213 �100.34 �96.60 �3.74 L2e

� 0 0.62 0.94 0.00
515 — — — — — — — —
113 �108.49 �98.86 �9.63 L3el

� 4 0.00 0.81 0.06
109 — — — — — — — —
309 �9.94 0.00 �9.94 L2el 16 0.00 0.69 0.00
405 �14.40 0.00 �14.40 L2e 16 0.00 0.63 0.25
206 �17.49 �10.07 �7.41 L2e 15 0.79 0.88 0.06
209 �35.45 �25.51 �9.94 L2l 13 0.96 0.69 0.31
108 �25.88 �25.88 0.00 L2e 13 0.45 1.00 0.00
214 �41.33 �35.30 �6.03 L2e 11 2.73 0.88 0.13
307 �48.51 �38.88 �9.63 L2l 11 1.04 0.81 0.13
218 �53.84 �40.54 �13.30 L2l 11 0.60 0.69 0.19
422 �61.82 �55.79 �6.03 L2e 9 0.22 0.88 0.13
316 �72.26 �58.43 �13.84 L2l 8 0.73 0.06 0.38
407 �67.00 �60.98 �6.03 L2e

C 8 0.44 0.88 0.13
306 �75.68 �71.94 �3.74 L1l 6 0.71 0.00 0.06
412 �69.43 �69.43 0.00 L2e 6 1.05 1.00 0.00
205 �75.80 �75.80 0.00 L1e 4 3.27 0.00 1.00
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one constructed from each of our subject’s
guesses in the 16 games.31 We then compare
the likelihood of each subject’s original type

estimate with the likelihoods of the 87 other
subjects’ pseudotypes. Define a cluster as a
group of two or more subjects such that: (a)

31 We are grateful to Jerry Hausman for suggesting the
idea of this test. We allow spike-logit errors for pseudotypes
to avoid biasing the tests against them. The logit term’s
dependence on expected payoffs means that to define a
pseudotype’s error density we must infer beliefs, because
pseudotypes do not come with built-in models of others. We

do this as simply as possible, by assuming that the
pseudotypes’ guesses are best responses and inferring point
beliefs, game by game, from their subjects’ guesses. For a
dominated guess, or a guess at a limit that is a best response
to multiple beliefs, we infer the beliefs that bring the
pseudotype’s guess closest to maximizing payoff.

TABLE 7B.—Continued.

ID

Guesses and search

ln Lt ln Lg ln Ls k exact � �H �M

220 �76.70 �72.96 �3.74 L2e 6 0.32 0.94 0.06
403 �86.91 �80.88 �6.03 Eql

� 4 0.84 0.00 0.13
517 — — — — — — — —
503 — — — — — — — —
414 �102.56 �92.62 �9.94 Eqe

� 2 0.36 0.00 0.31
110 �107.03 �98.03 �9.00 L1l

� 0 0.56 0.00 0.75
210 �68.44 �51.13 �17.32 L3e

B 9 0.92 0.38 0.25
302 �71.14 �65.12 �6.03 Eqe

B 7 1.11 0.00 0.13
507 — — — — — — — —
313 �90.93 �84.90 �6.03 L1e

‡‡E 3 3.28 0.00 0.88
312 �84.74 �81.00 �3.74 L2e 1 1.37 0.94 0.06
204 �88.47 �88.47 0.00 L1e

�E 3 1.59 0.00 1.00
115 �107.99 �98.05 �9.94 Eqe

� 0 0.39 0.00 0.31
401 �104.35 �98.32 �6.03 Eql

� 0 0.32 0.00 0.13
310 �56.84 �41.69 �15.15 Eqel 11 0.00 0.13 0.31
315 �50.80 �41.80 �9.00 Eqe 11 0.00 0.00 0.75
404 �63.69 �54.69 �9.00 Eqe 9 0.03 0.00 0.75
303 �63.68 �59.93 �3.74 Eqe 8 0.41 0.00 0.06
417 �73.80 �60.52 �13.29 Eqe

A 8 0.30 0.31 0.63
202 �70.72 �60.78 �9.94 Eqe

A 8 0.10 0.00 0.31
518 — — — — — — — —
112 �106.23 �89.60 �16.64 L2e

� 3 0.00 0.25 0.25
215 �81.57 �73.85 �7.72 Eqe 6 0.55 0.00 0.19
314 �87.99 �78.06 �9.94 Eqe 5 0.52 0.00 0.69
211 �86.86 �79.14 �7.72 Eqe 5 0.00 0.00 0.19
514 — — — — — — — —
406 �99.17 �86.73 �12.44 Eql 3 0.59 0.06 0.25
212 �104.34 �96.62 �7.72 Eqe

� 1 0.00 0.00 0.81
506 — — — — — — — —
304 �97.31 �97.31 0.00 Eqe

� 1 0.00 0.00 1.00
421 �109.34 �98.38 �10.97 L1e

� 0 0.43 0.00 0.56

Notes: A guesses-and-search type identifier superscripted � means the estimated type had lower likelihood than 12 or
more pseudotypes, more than expected at random. A guesses-and-search type identifier superscripted A, B, C, D, or E
indicates membership in a cluster. A guesses-and-search type identifier in bold indicates that the subject is classified as
that type in Table 1, column 6, by the criteria stated in the text. An estimated � superscripted ** (*) means that � �
0 is rejected at the 1-percent (5-percent) level. ln Lt, ln Lg, and ln Ls refer to total, guesses-only, and search-only
likelihoods. ln Lt refers to total guesses-and-search likelihood. A type-style identifier subscripted el indicates that both
styles have equal likelihoods and �c. A guesses-and-search type-style identifier subscripted ‡‡ indicates that there are
alternatives with different �c: L1l for subjects 101 and 313. No search estimates are reported for subject 109, who had
zero search compliance in eight or more games for every type.
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each subject’s original estimated type has
smaller likelihood than the pseudotypes of all
other subjects in the group; and (b) all sub-
jects in the group make “sufficiently similar”
guesses.32 Finding such a cluster should lead
us to diagnose an omitted type, and studying
the common elements of its subjects’ guesses
may help to reveal its decision rule. Con-
versely, not finding a cluster suggests that
there are no empirically important omitted
types.33

Similarly, we can diagnose overfitting via
accidental correlations with included irrelevant
types if a subject’s estimated type performs no
better than random against the pseudotypes
other than his own. For a pseudotype to have
higher likelihood than the subject’s estimated
type, it must come first among our seven pos-
sible types, plus itself. If the likelihoods of the
subject’s estimated type and of our types and
pseudotypes are approximately independent and
identically distributed (i.i.d.), this has probabil-
ity approximately 1⁄8 . We therefore diagnose
overfitting if a subject’s estimated type does not
have higher likelihood than all but at most 87/
8 � 11 of the pseudotypes.

Appendix F on-line summarizes the results of
our search for clusters, identifying five, involv-
ing 11 subjects, indicated in Table 7A (and 7B)
by superscript cluster labels A, B, C, D, and E
on their type identifiers. Table 7A (and 7B) also
identify 15 subjects whose estimated types have

lower likelihoods than 12 or more pseudotypes,
indicated in the tables by superscripts � on their
type identifiers. Table 1 (column 5) reports the
aggregate type frequencies excluding these 26
subjects, and 4 others previously excluded, as
“unclassified.” Each of the remaining 58 sub-
jects’ estimated types, in bold with no super-
scripts in Table 7A: (a) does better at the
1-percent level than a random model of guesses
within our specification; (b) has a higher likeli-
hood than all but at most a random number of
pseudotypes; and (c) is not a member of any
cluster.

Despite the differences between our games
and those in previous studies, our type classifi-
cation is close to those of Nagel, HCW, CGCB,
and SW. There are two main differences. We
find more Equilibrium subjects than all previous
studies except SW’s. And we find no significant
numbers of types other than L1, L2, Equilib-
rium, and L3/Equilibrium hybrids, in contrast to
SW’s (1995) classification of many subjects as
Worldly, almost to the exclusion of L2.

Our analysis also sheds light on the specifi-
cation of level-k models. We stress that the
issue here is how best to describe subjects’
decision rules empirically, not how an analyst
would model other subjects’ behavior. However
tempting it may be to assume that subjects use
sophisticated econometric specifications, it might
not be the best way to describe their behavior.

Our Lk best responds to a noiseless Lk-1,
while SW define it as best responding to an Lk-1
with decision noise—as in QRE, but with non-
equilibrium beliefs. (The issue here is not
whether subjects’ own decisions are noisy, but
whether the deterministic part of their own de-
cisions responds to others’ decision noise.)
SW’s and CHC’s definition of L1 as a best
response to uniform beliefs is identical to ours.
SW’s Worldly best responds to an estimated
mixture of L1 and a noiseless Equilibrium; and
CHC’s Lk best responds to an estimated mixture
of noiseless Lk-1 and lower-level Lk types. Our
results favor our Lk definition over SW’s Lk
with regard to decision noise, and suggest that
SW’s Worldly is misspecified. SW’s L2 best
responds to a noisy L1, which depending on the
noise parameter ranges from L0 (uniform ran-
dom) to our noiseless L1. By a kind of “median-
voter” result, our not-everywhere-differentiable

32 Not requiring significantly higher likelihood in (a)
avoids ruling out cluster candidates because their
pseudotypes offer only slight improvements in fit; few of
the comparisons are very close. The “sufficiently similar” in
(b) could be made more precise, but it is more informative
to consider possible clusters on a case-by-case basis (on-line
Appendix F). Although the logic of our definition allows
overlapping but nonnested clusters, that problem does not
arise here.

33 The qualification “empirically important” is necessary
because there may be subjects who follow rules that differ
from our types but are unique in our dataset. Such subjects
are unlikely to repay the cost of constructing theories of
their behavior, and it seems difficult to test for them. Our
test makes the search for omitted types manageable within
the enormous space of possible types, while avoiding judg-
ment calls about possible types by focusing on patterns of
guesses like those subjects actually made. Our notion of
cluster is similar in spirit to notions that have been proposed
elsewhere, but it imposes much more structure, in a way that
seems appropriate here.
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payoff function (Section IB) makes it optimal to
best respond to the median type in the popula-
tion as if it were the only type.34 Thus, in our
games, Worldly ignores Equilibrium when its
frequency is less than 0.5—as in all published
estimates—and is then equivalent to SW’s
noisy L2. Because our payoff function is quasi-
concave, SW’s L2 and Worldly guesses between
our L1 and L2—strictly except for extreme pa-
rameter values. Yet only one of our 88 subjects
made guesses between our L1 and L2 in as
many as 10 games, one in 9, and 2 in 8, while 43
made exact guesses for our L1, L2, L3, or Equi-
librium in 7 or more games (on-line Appendix
E).35

Our results are inconclusive with regard to
our Lk definition versus CHC’s definition of Lk
types as best responses to estimated Poisson
mixtures of noiseless lower-level Lk types. Be-
cause CHC’s mixture parameter depends on
others’ behavior, which subjects do not observe,
their definition implicitly assumes that subjects
have prior understandings of it; similar assump-
tions are implicit in SW’s definitions of L2 and
Worldly. CGCB (2001, sect. 3.A) argued that
the Sophisticated type tests for such prior un-
derstandings more cleanly, without imposing
structural restrictions, than types that depend on
estimated parameters like CHC’s Lk or SW’s
Worldly. More evidence on this would be use-
ful, but in our games CHC’s L2 and L3 both
make the same guesses as our L2.36 Thus, our

results do not discriminate between CHC’s and
our Lk definitions.

E. Econometric Analysis of Baseline Subjects’
Guesses and Information Searches

In this section, we generalize Section IIC’s
model of guesses to obtain an error-rate model
of guesses and information searches, and use it
to reestimate Baseline subjects’ types. The
model follows Section IIC’s model, avoiding
unnecessary differences in the treatment of
guesses and search. Our main goals are to sum-
marize the implications of the search data and to
assess the extent to which monitoring search
modifies the view of behavior suggested by
subjects’ guesses.

The assumptions about how cognition drives
information search and decisions that underlie
our econometric analysis are supported by the
search behavior of our Baseline subjects whose
types are apparent from their guesses, and of
our R/TS subjects (on-line Appendix E). The
main new issue is measuring compliance with
types’ search implications, which we propose to
define as the density of the type’s relevant look-
ups (Table 4) in the look-up sequence.

Two aspects of the look-up data (on-line Ap-
pendix E) are important here. First, many sub-
jects (e.g., 202 and 210) usually start with
“123456” or some variation, and many end with
an optional “13,” checking their own limits
even if their type does not require it (e.g., 101
and 206). We do not filter out these patterns
because subjects may use the information they
yield, and the choice of how to filter would
involve hidden degrees of freedom.

Second, subjects’ look-up patterns are heter-
ogeneous in timing: many Baseline subjects
whose types are apparent from their guesses
usually look first at their type’s relevant se-
quence and then either make irrelevant look-ups
or stop (e.g., 108, 118, and 206). A smaller
number consistently make irrelevant look-ups
first, and look at the relevant sequence only near

34 The derivative of our payoff function to the left
(respectively, right) of its peak is positive (negative), and
the two are equal in magnitude. Thus, the sign of the
expected derivative is determined by the median type in
the distribution.

35 On average, random guesses would fall in the range in
4.14 games. The three subjects with eight or nine guesses
(115, 501, and 506) gave no useful information in their
questionnaires, but the subject with 10 (517) stated a home-
made rule inconsistent with Worldly: “I took the midpt of
my bound times his/her target, avg’d that with his/her
midpt, then mult’d that number by my target, and finally
avg’d that result with my midpt.” The prevalence of OB
subjects in this group may seem significant, but there were
no OB subjects among the five subjects with seven guesses
in the range.

36 CHC’s L2 best responds to a mixture of L0 and L1 in
the proportions 1:, which for  � (�) 1 puts more weight
on L1 (L0). By the “median-voter” result above, CHC’s L2
best responds to L1 alone if  � 1, or L0 alone if  � 1.

They argue that  � 1.5 in most applications, in which case
their L2 is confounded with our L2. Their L3, which best
responds to a mixture of L0, L1, and L2 in proportions
1::2/2, is also confounded with our L2 when  � 1.5.
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the end (e.g., 413). Others repeat the relevant
sequence over and over (e.g., 101). Thus, one
can identify three styles, “early,” “late,” and
“often”; but “often” subjects are almost always
well described as either “early” or “late.” We
filter out this heterogeneity using a binary nui-
sance parameter called style, which is assumed
constant across games and modifies type in a
way that affects only search implications. We
take each subject to have style s � e for “early”
or s � l for “late.” For a given game, subject,
type, and style, we define search compliance as
the density of relevant look-ups early or late in
the sequence. If s � e, we start at the beginning
and continue until we obtain a complete rele-
vant sequence. If we never obtain such a se-
quence, compliance is 0. Otherwise compliance
is the ratio of the length of the relevant sequence
to the number of look-ups that first yields a
complete sequence. If, for instance, the relevant
sequence has length six, and the first complete
sequence is obtained after eight look-ups, then
compliance is 0.75. The definition of search
compliance is identical if s � l, but starting
from the end of the sequence. Compliance for a
given type is thus a number from 0 to 1, com-
parable across styles, games, and subjects.37

To reduce the need for structural restrictions,
we discretize search compliance as follows.38

For each game, subject, type, and style, we sort
compliance into three categories: CH � [0.667,
1.00], CM � [0.333, 0.667], and CL � [0,
0.333], indexed by c � H, M, L. We call com-
pliance c for type k and style s type-k style-s
compliance c, or just compliance c when the
type and style are clear from the context. All
products over c are taken over the values H, M,
and L.

In our model, in each game a subject’s type
and style determine his information search
and guess, each with error. We assume that,

given type and style, errors in search and
guesses are independent of each other and
across games. We describe the joint probabil-
ity distribution of guesses and search by spec-
ifying compliance probabilities and guess
error rates and precisions, given type and
style.39 Let I be an indicator variable for
style, with Is � 1 when the subject has style
s (� e or l ), and 0 otherwise. Given a sub-
ject’s type and style, let �c be the probability
that he has type-k style-s compliance c in any
given game, where ¥c �c � 1, and let � �
(�H, �M, �L). As in Section IIC, in each game
g, a subject i of type k and style s makes an
adjusted guess in Ug

ik with probability 1 � �;
but with probability � � [0, 1], his adjusted
guess in Vg

ik has conditional density
dg

k(Rg
i ( xg

i ), �) with precision �, defined as in
(4). Let Mc

isk be the set of games g for which
subject i has type-k style-s compliance c, let
Misk � (MH

isk, MM
isk, ML

isk), and let mc
isk be the

number of games in Mc
isk, so ¥c mc

isk � G. Let Nc
isk

be the set of games g for which subject i has both
type-k style-s compliance c and Rg

i (xg
i ) � Vg

ik, let
Nisk � (NH

isk, NM
isk, NL

isk), let nc
isk be the number of

games in Nc
isk, and let nik � ¥c nc

isk (for s � e or
l ) be the number of games g for which subject
i has Rg

i (xg
i ) � Vg

ik. With i.i.d. errors, the density
of a sample with compliance Misk and Nisk and
adjusted guesses Ri(xi) � (R1

i (x1
i ), ... , RG

i (xG
i ))

for a subject i of type k and style s is

(8) dsk�Misk, Nisk, Ri�xi; �, �, �

� �
c

�(�c)
mc

isk

(1 � �)mc
isk�nc

isk

(�)nc
isk


 �
g�Nc

isk

dg
k(Rg

i (xg
i ), �)�,

37 The compliance data are in on-line Appendix H. For
D1, D2, and Sophisticated, we take the relevant sequence to
have length 6, the minimum with which one could satisfy
their requirements, e.g., via “153426” for D1 with require-
ments {(4, [5, 1]), (6, [5, 3]), 2}, or for D2 or Sophisticated
with requirements {(1, [2, 4]), (3, [2, 6]), (4, [5, 1]), (6, [5,
3]), 5, 2}.

38 Compliance is inherently discrete, but our discretiza-
tion is coarser than necessary.

39 A natural generalization would allow search and guess
errors to be correlated by allowing compliance-contingent
error rates and precisions, as in CGCB. We dispense with
this for simplicity. This is a convenient place to correct a
typographical error in CGCB’s equation (4.3), where the
summation (¥) should be a product (�).
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where products with no terms are taken to equal
1. Weighting by Is and pk, summing over s and
k, and taking logarithms yields subject i’s log-
likelihood:

(9) Li� p, s, �, �, ��Misk, Nisk, Ri�xi

� ln� �
k � 1

K

pk �
s � e,l

Isd
sk(Misk, Nisk, Ri(xi); �, �, �)�.

It is clear from (8) and (9) that the maximum
likelihood estimate of p sets pk � 1 and Is � 1
for the (generically unique) type k and style s with
the highest dsk(Misk, Nisk, Ri(xi); �, �, �), given
the estimated �, �, and �. The maximum likeli-
hood estimates of � and �c, conditional on type
k and style s, can be shown from (8) to be
nik/G and mc

isk/G, the sample frequencies with
which subject i’s adjusted guesses fall in Vg

ik for
that k and he has compliance c for that k and s.
The maximum likelihood estimate of � is again
the logit precision, restricted to guesses in Vg

ik.
The maximum likelihood estimate of subject

i’s type k maximizes the logarithm of (8) over k
and s, given the estimated � and �. When nik is
between 0 and G, substituting the estimated �c,
�, and � into (8), taking logarithms, using ¥c
mc

isk � G, ¥c nc
isk � nik, and �c Nc

isk � Nik (all
for s � e or l ), simplifying and collecting terms,
yields the maximand

(10) ln dsk�Misk, Nisk, Ri�xi; �, �, �

� �
c
�mc

iskln(�c) 	 (mc
isk � nc

isk)ln(1 � �)

� niskln�� 	 �
g�Nc

isk

ln dg
k�Rg

i �xg
i , ��

� �G � nikln�G � nik 	 nikln�nik

� �
g�Nik

ln dg
k�Rg

i �xg
i , �

� �
c
�mc

iskln mc
isk� � 2G ln G

�ln dk�Ri�xi, �, �

� �
c
�mc

iskln mc
isk� � G ln G,

where ln dk(Ri( xi), �, �) is the log-likelihood
of the guesses-only model defined in (7).
Thus, search adds an additively separable
term in search compliance, minus an addi-
tional term G ln G. As in Section IIC’s
model, when nik � 0 or G, ln dk(Ri( xi), �, �)
reduces to the sum over g in the third and fifth
lines of (10). When nc

isk or both mc
isk and nc

isk

� 0 for some c (mc
isk � nc

isk by definition), the
corresponding terms drop out of (8) and their
analogs are eliminated from (10).

The model now has six independent param-
eters per subject: error rate �, precision �, type
k, style s, and two independent compliance
probabilities �c. The maximum likelihood esti-
mates of �, �c, and �, given k and s, are nik/G,
mc

isk/G, and the standard logit precision. The
estimates of k and s maximize the expression in
(10), given the other estimates.

Guesses influence these estimates exactly as in
Section IIC’s model, and unless the estimated k
changes, the estimates of � and � are the same; but
now the estimated k is influenced by information
search as well as guesses. The search term in the
last line of (10) is a convex function of the mc

isk.
This favors k-s combinations for which the mc

isk

(or the estimated �c) are more concentrated on
particular levels of c, because their search impli-
cations explain more of the variation in search
patterns. Note that such combinations are fa-
vored without regard to whether the levels of c
on which the mc

isk are concentrated are high or
low. We avoid such restrictions because levels
of search compliance are not meaningfully com-
parable across types, and it would be arbitrary
to favor a type just because its compliance
requirements are easier to satisfy. Without
them, however, the likelihood may favor a type
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simply because compliance is zero in many or
all games (zero compliance is independent of
style). We deal with this as simply as possible,
by ruling out a priori types for which a subject
has zero (not just L) compliance in eight or
more games.40

The right-hand side of Table 7A and Table
7B report estimates of Baseline subjects’
types and styles, error rates, precisions, and
rates of search compliance, based on search
only in Table 7A and then on guesses and
search combined in Table 7B. For the latter,
we report separate as well as total log-likelihoods,
to give a better indication of what drives them.41

Most subjects’ type estimates based on guesses
and search reaffirm the guesses-only estimates.42

For some subjects, however, the guesses-and-
search type estimate resolves a tension between
guesses-only and search-only estimates in favor
of a type other than the guesses-only estimate.
In more extreme cases, a subject’s guesses-only
type estimate is excluded because it has 0 search
compliance in 8 or more games.43

Table 1 (column 6) reports the aggregate type
frequencies based on (10). When the guesses-
and-search type estimate differs from the guess-
es-only estimate, we favor the former but
require it to pass the analogs of the guesses-only
criteria. Under the updated criteria, we can clas-
sify 43 of our 71 Baseline subjects: 22 L1, 13
L2, and 8 Equilibrium.44 The search analysis
allows us to classify two subjects as L1 who
were previously classified as L2; and to classify
one previous L1 and one previous L2 subject
whose guesses-only estimates were inconclu-
sive. It also calls into question the classification
of four subjects: one each L1 (subject 415), L2,
D1, and Equilibrium. Each of the 43 Baseline
subjects now classified, with guesses-and-
search type identifiers in bold and with no su-
perscripts (though some have subscripts) in
Table 7B: (a) does better at the 1-percent level
than a random model of guesses and search
within our specification; (b) has a guesses-only
part of its likelihood higher than the guesses-
only likelihood for all but at most a random
number of pseudotypes; and (c) is not a member
of any cluster.45

Adding to these Baseline subjects the 12 of 17
OB subjects (seven L1, 1 L2, 1 L3, two Equilib-
rium, and one Sophisticated) previously classified,
with guesses-only type identifiers in bold in Table
7A, we have a total of 55 of 88 subjects who can
be classified: 29 L1, 14 L2, 1 L3, 10 Equilibrium,

40 The cutoff of eight is a conservative response to the
difficulty of specifying a precise model of search compliance.
A more standard but more complex approach, in the spirit of
CGCB’s use of their Occurrence assumption in defining search
compliance, would add a separate category for zero compli-
ance; estimate a subject’s probability, given type and style, of
having positive compliance; and require it to be sufficiently
greater than zero. This would have a similar effect.

41 Ties in the search-only or guesses-and-search type-
style estimates are not rare, due to our coarse categorization.
When they occur, we report the tied estimate closest to the
guesses-only estimate, indicating the others in the notes.
Most subjects’ style estimates are early but there is a size-
able minority of late estimates, suggesting that without the
style parameter, our characterization of search compliance
would distort the implications of some subjects’ searches.

42 This happens in part because the guess part of the
log-likelihood is nearly six times larger than the search part,
and so has much more weight in determining the estimates
based on guesses and search. The difference in weights
arises because our theory makes sharper predictions about
guesses than about search, which are far less likely to be
satisfied by chance. If we tried to put search on a more equal
footing by making sharper predictions, e.g., requiring more
precise levels of compliance within a finer categorization,
our subjects’ searches would rarely satisfy types’ search
implications, and the stronger restrictions would cause se-
vere specification bias.

43 This group includes subject 415, estimated L1 on
guesses (with nine exact) but (noisy) D1 on guesses and
search. Subject 415 has nine games with 0 L1 search com-
pliance due to no adjacent [4, 6]’s or [6, 4]’s (Table 4), but

his sequences are rich in [4, 2, 6]’s and [6, 2, 4]’s and L1
search compliance across games is weakly correlated with
L1 guesses (on-line Appendix E). We therefore believe that
this subject simply violated our assumption that basic op-
erations are represented by adjacent look-ups (Section IB).
This group also includes several subjects whose guesses-
only type estimates we believe were rightly excluded: 115,
204, and 401, estimated D1 based on guesses but Equilib-
rium or L1 on guesses and search; 112, estimated Equilib-
rium based on guesses but L2 on guesses and search; and
304 and 421, estimated Sophisticated based on guesses but
Equilibrium or L1 on guesses and search.

44 A guesses-and-search type estimate can satisfy the
classification criteria even if it did not satisfy the guesses-
only criteria if it does sufficiently better than random in
explaining search. But a guesses-and-search estimate may
fail the new criteria because it must have the same or lower
likelihood for guesses than the guesses-only type estimate.

45 In (b) we include OB subjects’ pseudotypes for compa-
rability with guesses-only results, so random still means 11.
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and 1 Sophisticated.46 Going beyond our criteria,
one might add subject 415 as a probable L1 and
the four subjects in clusters A and B (on-line
Appendix F) as likely hybrids of L3 and/or Equi-
librium. Either way, the search analysis refines
and sharpens our conclusions, and confirms the
absence of significant numbers of subjects of
types other than L1, L2, Equilibrium, or possibly
hybrids of L3 and/or Equilibrium. For the 28 to 33
unclassified subjects, our specification analysis
suggests that it will be difficult to improve upon a
random model.

III. Conclusion

This paper has reported an experiment that
elicits subjects’ initial responses to a series of
16 two-person guessing games, monitoring their
searches for hidden payoff information along
with their guesses. Our design yields strong
separation of the guesses and searches implied
by leading decision rules in a very large space
of possible behaviors. Many subjects’ guesses
yield clear strategic fingerprints, so that their
types can be read directly from their guesses.
Other subjects’ types can be identified via an
econometric and specification analysis. The full
analysis reveals large numbers of L1, L2, Equi-
librium, and L3 and/or Equilibrium hybrid sub-
jects, and indicates the absence of significant
numbers of other types. Thus, to the extent that
our subjects’ deviations from equilibrium can
be predicted, they appear to be based almost
entirely on level-k thinking.

Because our level-k types build in risk-neutral,
self-interested rationality and perfect models of
the game, many subjects’ systematic deviations
from equilibrium can be confidently attributed to
nonequilibrium beliefs rather than irrationality,
risk aversion, altruism, spite, or confusion. Thus,
our results affirm subjects’ rationality and ability
to comprehend complex games and reason about
others’ responses to them, while challenging the
use of equilibrium as the principal model of initial
responses. They are consistent with the results of
previous analyses, but significantly refine and

sharpen them. The surprisingly simple structure of
the alternative nonequilibrium model they suggest
should help to allay the common fear that if equi-
librium is not assumed, “anything can happen.”
Moreover, such models have already been used in
several applications, including Crawford (2003);
CHC; and Crawford and Iriberri (2005a,b).

We close by noting that the cognitive implica-
tions of our results suggest conclusions about the
structure of learning rules. Our subjects’ compre-
hension of the games and tendencies toward exact
best responses to the beliefs implied by simplified
models of others point clearly away from rein-
forcement learning and toward beliefs-based mod-
els like weighted fictitious play or hybrids like
Camerer and Ho’s (1999) experience-weighted
attraction learning. We plan, in future experi-
ments, to use information search to discriminate
among alternative theories of learning, whose
search implications are often more sharply sepa-
rated than their implications for decisions.
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cation in Experimental ‘Hide and Seek’ Games.”
University of California San Diego Discussion
Paper 2004-12R.

Crawford, Vincent P., and Nagore Iriberri. 2005b.
“Level-k Auctions: Can a Non-Equilibrium Model of
Strategic Thinking Explain the Winner’s Curse and
Overbidding in Private-Value Auctions?” University
of California San Diego Discussion Paper 2005-13.

Grosskopf, Brit, and Rosemarie Nagel. 2001. “Ra-
tional Reasoning or Adaptive Behavior? Evidence
from Two-Person Beauty Contest Games.” Har-
vard Business School, Negotiation, Organizations,
and Markets Research Paper 01-09.

Ho, Teck-Hua, Colin F. Camerer, and Keith
Weigelt. 1998. “Iterated Dominance and Iterated
Best Response in Experimental ‘p-Beauty Con-
tests’.” American Economic Review, 88(4): 947–69.

Johnson, Eric J., Colin F. Camerer, Sankar Sen,

and Talia Rymon. 2002. “Detecting Failures of
Backward Induction: Monitoring Information
Search in Sequential Bargaining.” Journal of Eco-
nomic Theory, 104(1): 16–47.

McKelvey, Richard, and Thomas Palfrey. 1995.
“Quantal Response Equilibria for Normal-Form
Games.” Games and Economic Behavior, 10(1):
6–38.

Nagel, Rosemarie. 1995. “Unraveling in Guessing
Games: An Experimental Study.” American Eco-
nomic Review, 85(5): 1313–26.

Payne, John, James Bettman, and Eric Johnson.
1993. The Adaptive Decision Maker. Cambridge:
Cambridge University Press.

Selten, Reinhard. 1998. “Features of Experimen-
tally Observed Bounded Rationality.” European
Economic Review, 42(3-5): 413–36.

Stahl, Dale O. II, and Paul W. Wilson. 1994. “Ex-
perimental Evidence on Players’ Models of Other
Players.” Journal of Economic Behavior and Or-
ganization, 25(3): 309–27.

Stahl, Dale O. II, and Paul W. Wilson. 1995. “On
Players’ Models of Other Players: Theory and
Experimental Evidence.” Games and Economic
Behavior, 10(1): 218–54.

Weibull, Jörgen W. 2004. “Testing Game Theory,”
In Advances in Understanding Strategic Behav-
iour: Game Theory, Experiments, and Bounded
Rationality: Essays in Honour of Werner Guth, ed.
Steffen Huck, 85–104. New York: Palgrave Mac-
Millan.

1768 THE AMERICAN ECONOMIC REVIEW DECEMBER 2006


	Cognition and Behavior in Two-Person Guessing Games: An Experimental Study
	I. Experimental Design
	A. Overall Structure
	B. Two-Person Guessing Games
	C. Using MouseLab to Present Guessing Games

	II. Analysis of Subjects’ Guesses and Information Searches
	A. Subjects Whose Types Are Apparent from Guesses Alone
	B. Subjects’ Compliance with Iterated Dominance and Equilibrium
	C. Econometric Analysis of Baseline and OB Subjects’ Guesses
	D. Specification Test and Analysis
	E. Econometric Analysis of Baseline Subjects’ Guesses and Information Searches

	III. Conclusion
	References




