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ABSTRACT OF THE DISSERTATION 
 

Three Essays on Teacher Quality and Educational Production 
 
 

by 
 
 

Cory Robert Koedel 
 

Doctor of Philosophy in Economics 
 

University of California, San Diego, 2007 
 

Professor Julian Betts, Chair 
 
 

 This dissertation consists of three essays on teacher quality and educational 

production.  As opposed to the larger body of research on teacher quality, which 

measures quality primarily by observable qualifications, these essays measure teacher 

quality in terms of student outcomes.  Chapters 1 and 2 of the dissertation measure 

the effects of teacher quality on test-score outcomes, focusing on teacher value-

added, and chapter 3 examines graduation outcomes.  The dissertation addresses both 

elementary- and secondary-school teachers.  One theme common to all three papers is 

that although teacher qualifications are only weakly related to student performance, 

strong differences in teacher quality emerge when quality is measured in terms of 

student outputs.  That is, student performance can be significantly affected by 

 xiii



distributional shifts in teacher quality.  In all three chapters, considerable attention is 

paid to the methodology behind estimating teacher effects based on student outcomes.  

Finally, this research also considers the practical application of outcome-based 

measures of teacher quality for teacher evaluation or accountability. 

 xiv



Chapter 1 
Teacher Quality and Educational  
Production in Secondary School 

 
 

This study uses administrative data linking students and teachers at the 

classroom level to evaluate teacher quality and joint production in secondary 

school.  Teacher quality is measured by value-added to student test scores in 

math and reading.  Although empirical research has struggled to link 

observable teacher qualifications to student achievement, teacher quality 

measured by student performance varies significantly and has important 

effects on educational outcomes.  I identify which teacher inputs affect which 

test-score outputs in secondary school and find strong evidence of joint 

production.  The results from this study are applicable to incentive design and 

teacher accountability.  

 

I would like to thank Andrew Zau and many administrators at San Diego 

Unified School District, in particular Karen Bachofer and Peter Bell, for assistance 

with data issues.  I also thank Julian Betts, Julie Cullen, Yixiao Sun, Nora Gordon, 

and participants at the UCSD applied lunch seminars for useful comments and 

suggestions and the Spencer Foundation for research support.  The underlying project 

that provided the data for this study has been funded by the Public Policy Institute of 

California and directed by Julian Betts. 

1 
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I.I. Introduction  
 

In the 2002-2003 school year alone, nearly 388 billion dollars was spent on 

U.S. elementary and secondary education with 238 billion dollars going to teacher 

salaries.1  Despite this large expenditure afforded to provide teachers, there is 

relatively little research available that quantifies the extent to which variation in 

meaningful (outcome-based) measures of teacher quality determine student 

performance.  Furthermore, within the relatively small body of literature that does 

address this issue, there is an even greater dearth of studies that focus on educational 

output in secondary school.2   

 

Secondary-school educational production is quite different than elementary 

production, specifically with respect to teachers.  While elementary students typically 

have just one teacher per year, secondary-school students are taught by multiple 

teachers each year.  As would be the case in any joint-production setting, standard 

concerns associated with the assignment of productivity to individual inputs are 

relevant.  For example, there has not been any research to identify which teacher 

types (i.e., math, English, science, etc.) affect which educational outputs in secondary 

school.  Similarly, the extent to which teachers across subjects are complements or 

substitutes in the production function is also unknown.   

 
                                                 
1 From "Revenues and Expenditures for Public Elementary and Secondary Education: School Year 
2002–2003" by Frank Johnson and Jason Hill, U.S. Department of Education.  
2 There is only one published study on outcome-based teacher quality in secondary school - Aaronson, 
Barrow and Sander (2007).  Their study focuses on ninth grade math test scores and (predominantly 
on) math teachers in Chicago public schools. 
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These unanswered questions are of particular importance in the context of 

educational accountability.  Because we lack empirical evidence linking teacher 

quality in the various secondary-school subjects to student performance, and because 

we do not know the relative importance of teacher quality across subjects insofar as it 

determines achievement, we would be proceeding blindly if we attempted to create 

performance-based incentives for teachers.  For example, teacher quality in some 

subjects may spill over into student performance in others.  These spillover effects 

should perhaps be incorporated into teacher evaluations, but only for relevant teacher-

subject matches and only if they are properly weighted.  Otherwise, teachers’ 

incentives would be poorly aligned with performance and free-riding opportunities 

could be enhanced.   

 

I measure teacher quality by value-added to student test scores in math and 

reading.  In each tested subject, I estimate teacher effects for four different teacher 

types: math, English, science and social studies.  The primary contribution of the 

paper is that it allows for a full treatment of the joint-production environment in 

secondary school.  Although the teacher-quality literature has generally assumed that 

same-subject teacher quality influences student performance (i.e., math teachers 

affect math performance and English teachers affect reading performance), it has also 

implicitly assumed that off-subject teacher quality does not (i.e., math teachers do not 

affect reading performance).  This latter assumption lacks empirical support and by 

relaxing it, I find strong evidence of joint production in secondary school.  In each 



 4

tested subject, distributional shifts in teacher quality for both same-subject and off-

subject teachers can have large effects on student performance.3

 

This analysis also provides a unique opportunity to compare the effects of 

distributional shifts in teacher quality at elementary and secondary schools.4  This 

comparison offers insight into the teacher-quality allocation problem across schooling 

levels.  By a sizeable margin, the influence of variation in teacher quality on student 

performance is larger at the elementary level.  

 

I.II. The Educational Production Function 
 

I evaluate teacher quality based on secondary-school students’ test-score 

outcomes in math and reading.  Student achievement in any given year is the result of 

a cumulative set of inputs from families, peers, communities and schools.  Because 

data on the complete histories of students are unavailable, researchers have focused 

on estimating educational production in terms of value added.  The general value-

added framework explains current performance as a function of current inputs while 

controlling for past performance:5

 

( 1) 1 2( , , , , , , , ,..., )isjt isj t i it s it it j j KjY f Y a X S Cδ θ θ θ−=  

                                                 
3 Performance in math and reading depends on multiple teacher inputs; however, all four teacher types 
do not belong in each specification.   See Section V for details. 
4 Through comparison with Koedel and Betts (2007), which focuses on elementary-level educational 
production. 
5 A specific form of the general value-added model is the gainscore model in which researchers 
subtract past performance from current performance and treat the gain in performance as the outcome 
of interest.  
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Here, Yisjt represents the educational outcome of interest for student i at 

school s with teacher-set j in year t, αi represents observed and unobserved time-

invariant student characteristics, Xit is a vector of time-varying observable student 

characteristics, δs represents observed and unobserved time-invariant school 

characteristics, Sit is a vector of observed time-varying school characteristics, Cit is a 

vector of time-varying observable classroom characteristics, and θkj measures the 

quality of teacher k (who is part of teacher-set j).  The above formulation incorporates 

a vector of teacher effects representing the inputs of multiple teachers per year and 

the subscript j corresponds to a set of teacher effects.6

 

I empirically examine three important questions relating teacher quality to 

student performance based on the production function above.  First, to what extent is 

secondary-school educational output the result of multiple teacher inputs?  Second, 

which teacher inputs are most important in the production of which outputs?  Third, 

in cases where educational output is produced by multiple teacher inputs, how does 

teacher quality across subjects interact in the production function?  For this latter 

question, I initially assume that teacher quality across subjects does not interact at all.  

Later, I relax this assumption and evaluate the potential for teacher interactions to 

influence student performance. 

 

                                                 
6 In the elementary case, this set would consist of just one teacher. 
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Consider four teacher types: math, English, science and social studies.7  Index 

math teachers from j = 1,…,J; English teachers from p = 1,…,P; science teachers 

from q = 1,…,Q; and social studies teachers from r = 1,…,R.  For student i who has 

the jth math teacher, the pth English teacher, the qth science teacher and the rth social 

studies teacher; the set of teacher effects influencing her performance can be defined 

as ( jθ , pθ , qθ , rθ ) where jθ  indicates the quality of math teacher j, pθ indicates the 

quality of English teacher p, and so on.  I focus on the effects of these four teacher 

types in determining student test-score performance on math and reading standardized 

tests.   

 

I estimate teacher fixed effects using a within-school and student value-added 

specification in the reduced form: 

 

(1)  ( 1)
jpqr jpqr school

ist i is t it it S it itTestScore TestScore X D S Cα ψ γ δ ρ−= + + + + + η  

( ) ( ) ( ) ( )J math P eng Q sci R soc
it J it P it Q it R itD D D Dθ θ θ θ+ + + + ε+

                                                

 

 
Teachers are indexed by subject as indicated above and denoted by 

superscripts.  All of the explanatory variables are defined above and a detailed list of 

the sets of controls in each vector is in Table 1.1.  Vectors of indicator variables for 

schools and teachers are denoted by a “D” and are appropriately labeled.  This 

 
7 These four teacher types are the most common in San Diego high schools and arguably most relevant 
for evaluating cognitive performance.  Among the remaining teacher types that are omitted from this 
analysis, some of the more common teachers include language teachers and art teachers.  The class-
taking behavior of my student sample is detailed in Section IV.   
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specification allows for joint production among teachers in high school by allowing 

for multiple teachers to affect student outcomes in both math and reading.8   

  

On the one hand, the within-school and student specification in equation (1), 

which includes school- and student-level indicator variables, minimizes omitted 

variables bias due to unobserved heterogeneity in school quality and student ability.  

However, on the other, it ignores any between-school variation in teacher quality.  To 

the extent that teachers vary in quality across schools, the within-school and student 

estimates will understate the total variance of high school teacher quality.  In 

Appendix 1.D, I evaluate the sensitivity of my estimates to alternative specifications 

that allow for between-school variation in teacher quality.9   

 

To control for the variety of different types of classes that students take in 

high school, the vector of classroom controls (Cit) includes indicator variables for the 

subjects and levels of subjects that each student takes in each year (e.g., algebra or 

geometry, regular or honors English, etc.).  This prevents variation in subject material 

from being attributed to variation in teacher quality and means that teacher quality is 

measured within subject and subject level.  To address the issue of peer effects, the 

model includes controls for the year (t-1) achievement of classroom-level peers for 

                                                 
8 However, the model in (1) does not allow for complementarities between teachers as would be the 
case if the various teacher indicator variables were interacted.  I evaluate the importance of teacher 
interactions below. 
9 Appendix 1.D shows that between-school variation in teacher quality among San Diego high schools 
may be non-negligible.  Therefore, I expect my analysis to understate variation in teacher quality in 
secondary school to some degree. 
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each student’s math and English classrooms.10  Also, note that the effects of any 

systematic ability grouping experienced by students will be largely absorbed at the 

student level because the student fixed effect will pick up the average peer effect 

experienced by a given student over the course of the panel.  Finally, I control for 

class size to prevent variation in class size from being misinterpreted as variation in 

teacher quality.11  

 

I adopt the method of Anderson and Hsiao (1981) to estimate the model in (1).  

This method involves first differencing to remove the student fixed effects, and then, 

to account for correlation between the first-differenced lagged dependent variable and 

the first-differenced error term, estimating this model using 2SLS, instrumenting for 

 with .  The key assumption 

required for this instrumentation to be valid is that the error terms in equation (1) are 

serially uncorrelated.  Although this assumption is not directly verifiable using 

equation (1), I use the first-differenced error terms within students to test for serial 

correlation between the ε

( 1) ( 2)( )jpqr jpqr
is t is tTestScore TestScore− −− ( 2)( )jpqr

is tTestScore −

                                                

it’s and find that this primary assumption is upheld.12  The 

first-differenced version of equation (1) is detailed below: 

 
10 I also run models that include peer and class-size effects for social studies and science classrooms, 
although these models are complicated by the fact that not all students take science and social studies 
classes in each year.  Regardless, the inclusion of these additional controls has a negligible effect on 
results. 
11 Controls are included for math and English class sizes only.  Class-size controls have a negligible 
effect on teacher quality estimates. 
12 The white noise assumption for the error term is verified by evaluating the level of serial correlation 
between the first-differenced error terms, within students, in the first-differenced version of equation 
(1) below.  The individual εit’s are serially uncorrelated if the first-differenced error terms are serially 
correlated with a magnitude of approximately -0.5.   For students in which more than one first-
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( 1) ( )jpqr jpqr
ist is tTestScore TestScore −− =  ( 1) ( 2)( ) ( jpqr jpqr

i i is t is tTestScore TestScore )α α ψ− −− + −  

( 1) ( 1) ( 1) ( 1)( ) ( ) ( ) (school school
it i t it i t S it i t it i tX X D D S S C C )γ δ ρ− − −+ − + − + − + − η−

)
 

( ) ( ) ( ) ( ) ( ) ( )
( 1) ( 1) ( 1)( ) ( ) (J math J math P eng P eng Q sci Q sci

it i t J it i t P it i t QD D D D D Dθ θ θ− −+ − + − + − −

)

                                                                                                                                          

 

( ) ( )
( 1) ( 1)( ) (R soc R soc

it i t R it i tD D θ ε ε− −+ − + −  

 
The second term in parentheses on the right hand side is the fitted value for the 

test score change from the first stage of the 2SLS procedure.13  This first-differenced 

model will produce unbiased coefficient estimates while at the same time accounting 

for a wide set of covariates.14   

 
 

I.III. Methods 
 

Because my analysis includes over 1000 high school teachers, tables 

displaying individual coefficient estimates for teachers would be difficult to interpret.  

Instead, I describe the variance of the teacher-quality distribution.  First, I perform 

Wald tests for the joint significance of the sets of teacher fixed effects using different 

versions of equation (1).  These tests evaluate the statistical significance of variation 

in teacher quality as a determinant of educational output and are of the form:15

 
differenced equation is estimated, I estimate that the serial correlation between the first-differenced 
error terms to be -0.45. 
13 The period (t-2) test-score level is a powerful instrument: t-statistics on the period (t-2) test-score are 
greater than 50 for each of the first-stage models. 
14 Robust standard errors for all 2SLS coefficients in this model were used.  In addition, the differenced 
error terms are serially correlated for students with more than one first-differenced equation in the 
model (that is, at least 4 test-score records) per the previous footnote.  I structurally enforced this 
property of the error term in the variance-covariance matrix for relevant students.   
15 The examples in this section are for math-teacher effects per the previously defined notation.  
Statistical analysis for all other teacher types is similarly performed. 
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       0 1 2: ... JH θ θ θ θ= = = =  
 

(2)    
1ˆ ˆˆ( ) ( ) ( )J J JW Vθ θ θ θ−′= − −  

 
 

In the above formulation, θ̂  is the Jx1 vector of estimated teacher fixed 

effects, θ  is the sample average of the ˆ 'j sθ , ĴV  is the JxJ portion of the estimated 

variance matrix corresponding to the teacher effects being tested and J  is a Jx1 

vector of ones.16  Under the null hypothesis, W is distributed . 2
( 1)Jχ −

 

Although the Wald test allows for the identification of statistical significance, 

it does not provide an estimate of the magnitude of the variance of teacher quality.  

To determine economic significance, I empirically estimate the variance of teacher 

quality.  First, I calculate the total fixed-effects variance for each teacher type from 

the models of student achievement for math and reading.  For math teachers, this 

variance is: 

 

(3)   
( ) ( )

1 1

1ˆ ˆ ˆ( ) [ (1/ ) ( )]
1

( )
J J

math math
j j

j j
Var J

J
θ θ θ

= =

= −
− ∑ ∑ 2

j

  

 
Each fixed-effect coefficient is comprised of two components - one consisting 

of the true signal of teacher quality and the other of estimation error, ˆ
j jθ θ λ= + .  

                                                 
16 The variance matrix used in my Wald tests is the diagonal of the full variance-covariance matrix for 
the relevant set of teacher coefficients.  Substituting the full variance-covariance matrix for the 
variance matrix has virtually no effect on my results. 
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Equation (3) overstates the variance of teacher quality because it includes the 

variance of the estimation error.  I define the estimation-error variance as Var( )λ  and 

the variance of the teacher-quality signal, the outcome of interest, as ( )Var θ .  To 

separate the estimation-error variance from the variance of the teacher-quality signal, 

I first assume that Cov( , )θ λ = 0 .17  This allows for the total variance of teacher fixed 

effects to be decomposed as follows: 

 

(4)  ˆ( ) ( ) + ( )Var Var Varθ θ λ=  

 
Next, I scale the Wald statistic and use it as an estimate of the ratio between 

the total fixed-effects variance and the error variance: 

 

(5)  
11 ˆ ˆ ˆˆ*[( ) '( ) ( )] ( ) / ( )

1
( ) J J JV Var

J
Varθ θ θ θ θ−− − ≈

−
λ

                                                

 

 
Equation (5) weights the total fixed-effects variance by the estimation error variance 

on a coefficient-by-coefficient basis.  See Appendix 1.B for more detail. 

 

The magnitude of the variance of the teacher-quality signal can be estimated 

by combining equations (4) and (5).  For example, if the scaled Wald statistic is 

 
17 This assumption is not directly verifiable because both θ  and λ  are unobserved.  If for some 
reason the signal and error components of teacher fixed effects were negatively correlated then the 
results presented here would understate the variance of teacher quality.  If the converse were the case, 
the estimates would be overstated. 
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estimated to be A then the magnitude of the variance of the teacher-quality signal is 

estimated by: 

 

(6)   ˆ ˆ( ) ( ) - ( ( ) / )Var Var Var Aθ θ θ=

 
I use the estimates of ( )Var θ  from the quality distributions of the different teacher 

types to evaluate the effects of distributional shifts in teacher quality on student 

performance. 

 
 

I.IV. Data 
 

This study uses panel data from the San Diego Unified School District 

(SDUSD) following high school students and teachers over time.18  SDUSD is the 

second largest school district in California (enrolling approximately 141,000 students 

in 1999-2000) and the student population is approximately 27 percent white, 37 

percent Hispanic, 18 percent Asian/Pacific Islander and 16 percent black.  28 percent 

of the students at SDUSD are English Learners, and 60 percent are eligible for meal 

assistance.  Both of these shares are larger than those of the state of California as a 

whole.  As far as standardized testing performance, students at SDUSD trailed very 

slightly behind the national average in reading in 1999-2000.  On the contrary, 

SDUSD students narrowly exceeded national norms in math.19

 

                                                 
18 The data used for the dropout analysis will be discussed separately below. 
19 District characteristics summarized from Betts, Zau and Rice (2003). 
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The test-score data are from the Stanford 9 test spanning the school years 

from 1997-98 through 2001-02.  Students are tested from the eighth through the 

eleventh grade.20  Students and teachers are linked at the classroom level and an 

extensive set of school, student and classroom characteristics is available.  Table 1.1 

details the data used in this analysis. 

 

There are 16 standard high schools at SDUSD and a handful of other schools 

that offer secondary-level instruction (either charter schools or schools of an atypical 

grade structure - for example, grades 7 – 12 or K – 9).  Among these 16 standard high 

schools, enrollment in 1999-2000 ranged from 849 to 2,945 students.  Among the 

charter and atypical schools, secondary-level enrollment ranged from 26 to 1,039 

students.  The data for this study are based primarily on students from the standard 

high schools at SDUSD.  However, some students from atypical or charter schools 

are also included.21

 

The modeling structure in equation (1) requires that all students used in this 

analysis have at least three contiguous test-score records at SDUSD (which covers a 

geographically large area).  Students who do not satisfy this criterion are omitted 

from this study.  Appendix 1.A provides summary statistics showing that the final 

student sample is slightly advantaged relative to the entire student population at 

                                                 
20 Eighth-grade test-scores are used only as (t-2) explanatory variables in the final models. 
21 Data were not available for all charter and atypical schools.  The model includes school fixed effects 
to control for heterogeneity in school types. 
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SDUSD but is generally representative.  In subsequent analysis, I will show that the 

omission of student fixed effects from the student-achievement specification results in 

inaccurate estimates of teacher fixed effects, justifying the approach.   

 

I also require that each student have both a math and English teacher in each 

year in which his or her data are used.  This facilitates a straightforward comparison 

between math and English teachers - it ensures that they are evaluated using the same 

student set.  The benefit of being able to directly compare the relative importance of 

these separate educational inputs seems to outweigh the cost of lost data due to this 

restriction because the sample size remaining after imposing this restriction is still 

quite large.22  Table 1.2 details the class-taking behavior of my student sample by 

grade level. 

 

Despite the restrictions imposed on the student sample, the data still include 

over 53,000 test-score records from over 15,000 different students.  Because my 

student sample is likely to be more homogeneous than the general student population, 

my results may understate the variance of teacher quality.23   

 

                                                 
22 I exclude 3.8 percent of the student sample because they are not assigned to a math class in at least 
one year and 8.7 percent of the student sample because they are not assigned to an English class in at 
least one year.  The latter group is peculiar because the general high school curriculum is such that 
each student should take English each year, including English learners.  Some of these omissions may 
reflect students moving in and out of the district over time.  Others may be due to missing data.  
23 Appendix Table 1.A.1 shows that the student sample used here is generally representative of the 
student population at SDUSD.  The primary difference is that the student population used here 
outperforms the entire population in terms of test scores. 
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I also impose participation restrictions on teachers.  By analogy to Kane and 

Staiger’s analysis of school quality (2002), I expect sampling variation to have a 

significant impact on estimated teacher effects.  Thus, I require that teachers have at 

least 20 student-years of data to be included in the analysis.24  After imposing this 

restriction, just over 1000 high school teachers are included.25  Appendix 1.A 

provides summary statistics for the teacher sample used in this analysis. 

 
 

I.V. Results – Statistical Significance of Teacher Effects 
 

I perform Wald tests for the statistical significance of variation in teacher 

quality as a determinant of student outcomes.26  The results from these tests indicate 

which teacher inputs affect which test-score outputs in secondary school.  Tables 1.3 

and 1.4 present results from these tests for the math and reading models, respectively, 

based on the student-achievement specification in equation (1).  In both cases, I begin 

with basic models that include only same-subject teachers and subsequently consider 

the inclusion of all possible teacher combinations. 

 

Tables 1.3 and 1.4 show that variation in teacher quality among same-subject 

teachers is a statistically significant determinant of students’ test-score outcomes in 

                                                 
24 That is, 20 student-years of data from the restricted pool of students.  The results presented in this 
paper are not sensitive to a reasonable range of adjustments to this threshold.  
25  I estimate effects for 346 English teachers, 269 math teachers, 202 science teachers and 184 social 
studies teachers. 
26 The magnitudes of the variances of math and reading test scores are very similar.  The raw standard 
deviations of the math and reading test-score distributions are 35.7 and 37.2, respectively.  The 
standard deviations of the residuals after taking out the within school and student variation are 15.0 
and 13.6 for math and reading. 
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both math and reading for all relevant specifications.27  In the reading models, 

variation in math-teacher quality is also always a significant determinant of student 

outcomes.  However, the same is not true for variation in English-teacher quality in 

the math models.  Finally, whereas variation in teacher quality among social studies 

teachers seems to generally affect student outcomes in both math and reading, 

variation in teacher quality among science teachers does not affect performance in 

either subject.   

 

Recall that the teacher effects enter into equation (1) linearly.  However, 

teacher quality across subjects may interact in the production function.  Based on the 

results from the Wald tests above, I test to see if teacher-interaction effects belong in 

the math and reading models.  For math production, I add interaction terms between 

math and social studies teachers to model (4) in Table 1.3.  For reading, I add 

interactions between English and math teachers, English and social studies teachers, 

and math and social studies teachers to model (5) in Table 1.4.28   

 

For math output, the Wald test for the joint significance of the set of 

interaction terms between math and social studies teachers indicates that these 

interactions do not belong in the model (the p-value from this test is 0.70).  Similarly, 

for reading output, interactions between English and social studies teachers and math 
                                                 
27 The exception to this is in the math models that include English-teacher indicator variables.  In each 
of these models the set of math-teacher coefficients is jointly insignificant.  However, the set of 
English-teacher indicator variables clearly does not belong in the math-achievement model. 
28 To maintain consistency in my data inclusion restrictions, I require teacher interactions to affect at 
least 20 students to be included into the model. 
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and social studies teachers are also jointly insignificant (p-values of 0.95 and 0.97 

respectively).  However, interactions between English and math teachers in the 

reading model are significant at the 1 percent level of confidence.  Furthermore, the 

inclusion of the math and English teacher interactions into the reading model lowers 

the Wald statistic for the joint significance of the social studies teacher indicator 

variables to the point where they are no longer identified as statistically significant 

determinants of reading performance.29  Therefore, the final reading-achievement 

specification is not model (5) in Table 1.4, but instead includes indicators for just 

math and English teachers as well as interaction terms between these two teacher 

types.  It excludes both science and social studies teachers.  Table 1.5 details this final 

reading-achievement specification. 

 
   

I.VI. Results –The Magnitude of the Variance of Teacher Quality 
 
  VI.A Math Analysis 
 

In this section teacher quality is measured strictly in terms of student math 

performance regardless of each teacher’s primary subject of instruction.  I start with 

the “basic” math model that ignores the possibility of joint production among teachers 

and includes only math-teacher effects (model (1) in Table 1.3).  To the extent that 

                                                 
29 The p-value on this new Wald statistic for the inclusion of the social studies teacher indicator 
variables is approximately 0.90.  This result is maintained even if all interactions involving social 
studies teachers are removed from the model (that is, it is the inclusion of the English-math teacher 
interactions that causes the Wald statistic to fall to the point of statistical insignificance).  It may be 
that, given a five- or six-class schedule, students’ social studies teachers are strong predictors of their 
math and English teacher combinations.  Because of this, I also test for the statistical significance of 
math and English teacher interactions in the math model despite the results from the Wald tests in 
Table 1.3.  These interaction effects are jointly insignificant in the math specification and the social 
studies teacher indicator variables retain their statistical significance. 
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students are non-randomly assigned to social studies teachers, this basic model will 

produce biased estimates of teacher fixed effects.  Therefore, I also estimate the full 

model of student math achievement that includes fixed effects for social studies 

teachers (model (4) in Table 1.3). 

 

For each teacher type and in each model, I report the unadjusted raw variance 

of teacher fixed effects and also the adjusted variance of teacher quality as estimated 

by equation (6).  For ease of interpretation, results are presented as the ratio of the 

standard deviation of the teacher quality distribution to the weighed average of the 

within-grade standard deviations of test scores (where the weights correspond to the 

sample size in each grade).30  For example, in the basic model, Table 1.6 indicates 

that a one-standard-deviation increase in math-teacher quality (adjusted) corresponds 

to a 0.08 average within-grade standard deviation improvement in student test scores. 

 

The results from the full math achievement model in Table 1.6 indicate the 

tradeoffs in teacher quality across subjects required to maintain a given level of 

achievement growth.  Because the achievement-growth isoquants of the math 

educational production function are roughly linear in teacher-quality space (per the 

interaction-effect Wald tests in the previous section), it is straightforward to calculate 

their slope (the marginal rate of technical substitution).  For example, an equivalent 

                                                 
30 This metric is chosen because it allows for the most straightforward comparison of results across 
studies.  However, it may be slightly misleading because the model specification in equation (1) does 
not allow across-school or across-student variation in teacher quality while this metric measures 
teacher quality relative to the total variation in test-scores.  Nonetheless, the estimates are sizeable. 
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gain in math test-scores can be achieved by either a one-standard-deviation increase 

in math-teacher quality or a 1.05-standard-deviation increase in social studies teacher 

quality. 

 

Table 1.6 indicates that the tradeoff in teacher quality between math and 

social studies teachers required to maintain a given level of achievement growth, 

measured by standard deviations of each teacher-type’s respective quality 

distribution, is roughly one-to-one.  However, this does not mean that teacher quality 

across subjects measured in levels, which I cannot observe, will trade off at the same 

rate.  For example, if we assume that math-teacher quality is more important in 

determining math outcomes than is social studies teacher quality, Figure 1.1 may 

simply reflect the fact that there is more heterogeneity in quality among social studies 

teachers.  In this case, a one-standard-deviation improvement in teacher quality 

among social studies teachers would represent a larger absolute change.  There is 

suggestive evidence from the credentialing process indicating that math teachers may 

indeed be a more homogenous group than social studies teachers.  For example, the 

first time pass rate for the math-credentialing exam in California is just 29.2 percent.  

For the social studies exam, the pass rate is over 62 percent.31, 32

                                                 
31 Passing rates from Report on Passing Rates of Commission-Approved Exams for 2000-01 to 2004-05 
from the California Commission on Teacher Credentialing released in April 2006 and are for 
California as a whole.  Reported passing rates are from July 2003 through July 2005 and therefore are 
not directly applicable to the teacher set used here.  However, other sources confirm a similar 
relationship between passing rates on the different exams in the 1990s.   
32 Another factor that may explain the results in Table 1.6 is differences in the rigidity of curriculums 
across math and social studies teachers.  For example, a high-school economics teacher can teach a 
mathematical economics class or a non-mathematical economics class, whereas a math teacher has less 
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I consider the extent to which the variation in math-teacher quality estimated 

in Table 1.6 is linked to observable teacher qualifications by running another 

regression in which I omit all of the teacher indicator variables and instead include 

controls for math teachers’ experience, credentialing, education levels and whether or 

not each math teacher has an undergraduate degree in mathematics.33  None of these 

observable teacher qualifications have statistically significant effects in the model.34  

Additionally, the effects implied by the point-estimates on these variables are very 

small. 

 

The aggregated effect of a one-standard-deviation improvement in teacher 

quality across both relevant teacher types in math is equivalent to a 0.13 within-grade 

standard deviation improvement in test scores.35  Compared to estimates of the effects 

of other educational inputs on secondary-school output throughout the literature, this 

implies that teacher quality is likely to be the most effective policy-relevant tool at the 
                                                                                                                                           
discretion in curriculum.  Variation in curriculums across social studies classes will be captured by the 
teacher effects, perhaps rightfully so. 
33 For experience, I estimate models that allow experience to enter linearly (up to 10 years of 
experience) and also models that include indicator variables for teachers with two or less years of 
experience.  I also control for whether teachers have a master’s degree and whether they are fully 
credentialed. 
34 The highest p-value for any of these coefficients is 0.26 and is for the coefficient on the new-teacher 
indicator variable. 
35 The estimates here are somewhat smaller than estimates reported by Aaronson, Barrow and Sander 
(2007).  This may have to do with differences in the testing instruments employed to estimate teacher 
effects in the two studies.  Aaronson, Barrow and Sander report that in their study, student test-score 
growth differs substantially by students’ initial achievement levels and that high-achieving students 
experience much larger test-score gains from 8th to 9th grade (the grades studied by these authors).  In 
the presence of positive student-teacher matching, this would be expected to inflate the variance of 
their estimated teacher effects.  Nonetheless, my estimates confirm the general result from Aaronson, 
Barrow and Sander (2007) that variation in teacher quality is an important determinant of student 
outcomes in secondary school. 



 21

disposal of administrators.36  For example, one of the more popular policy 

interventions discussed within the educational community is class-size reduction.  

Results from independent studies by Betts, Zau and Rice (2003) and Rivkin, 

Hanushek, and Kain (2005) indicate that variation in class size has no effect on 

student achievement as students move beyond elementary school.37   

 

VI.B Reading Analysis 
 

In this section teacher quality is measured exclusively in terms of student 

reading performance.  I begin with the basic reading model in which joint production 

among teachers is ignored and student performance is attributed solely to variation in 

English-teacher quality.  Next, I estimate the complete reading achievement model as 

described in model (9) in Table 1.5. 

 

Similarly to the math analysis, the results from the full reading achievement 

model in Table 1.7 indicate the tradeoffs in teacher quality across subjects required to 

maintain a given level of achievement growth.  However, unlike for math, the reading 

production function is not strictly linear in teacher-quality inputs.   

 

The nonlinearity between math- and English-teacher quality may represent 

some combination of the effects of teacher cooperation and teacher matching, or the 

                                                 
36 The body of literature that estimates the effects of observable educational inputs on student outputs 
is vast.  See Hanushek (1986, 1996) for literature surveys.  
37 Estimates from my analysis confirm these authors’ findings. 
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effect of the compounding of quality across subjects (i.e., increasing or diminishing 

returns).  Because the data do not contain direct information on teacher quality, these 

effects are difficult to disentangle.38  However, by examining the interaction effects 

for teachers of different estimated quality levels, it is possible to at least partially 

identify the extent to which the teacher interactions reflect increasing or decreasing 

returns to teacher quality inputs.  

 

To evaluate the returns to scale of teacher-quality inputs across subjects I start 

by dividing the English- and math-teacher coefficients from the full reading model 

into two separate vectors. Within each vector, I rank teachers from 1 to P and 1 to J, 

respectively, based on their value-added coefficients and assign them to quintiles 

based on their rankings, where quintile-5 teachers are those with the highest value 

added.  Table 1.8 shows the average interaction effect experienced by students whose 

teachers are from any given quintile set, where a quintile set is defined by the pair of 

quintile rankings for each student’s English and math teachers (i.e., the set (1,4) 

would indicate an English-teacher quintile ranking of “1” and a math-teacher quintile 

ranking of “4”).  The results in Table 1.8 are presented in terms of the same weighted 

average of within-grade test-score standard deviations as the results in Table 1.7.39

 

                                                 
38 Teacher quality is estimated from the student-achievement specifications based entirely on student 
outcomes.   
39 Because Table 1.8 displays average effects, the estimates are not “adjustable” as are the variance 
estimates in Table 1.7.  However, if the estimation error for the teacher-interaction coefficients is 
independent of teachers’ quintile rankings, the estimation error in the reported interaction averages in 
each cell of Table 1.8 should be zero, on average. 
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The estimates in Table 1.8 show that one source of the nonlinearity in the 

reading model is diminishing returns to teacher quality inputs across subjects.  For 

example, the table shows that students who are taught by high-quality teacher sets, on 

average, do not experience the full performance gain that would be implied by the 

simple sum of their teachers’ effects.   

 

Because the production of reading output is characterized by diminishing 

returns to teacher quality inputs (and possibly teacher cooperation and/or teacher 

matching as well), estimating the effect of an improvement in teacher quality on 

student performance is less straightforward than in the math analysis.  However, 

generally speaking, the estimates in Tables 1.7 and 1.8 indicate that the effect of a 

one-standard-deviation improvement in math- or English-teacher quality can have a 

substantial effect on student performance.  For example, for a student being taught by 

a 3rd-quintile teacher in both English and math, the effect on performance of a one-

standard-deviation improvement in teacher quality in either subject (to the 5th 

quintile) would be equivalent to the full effect detailed in Table 1.7.   

 

Finally, I evaluate the extent to which variation in English-teacher quality can be 

explained by observable teacher qualifications.  In the basic model, I omit all English-

teacher indicator variables and instead include controls for English teachers’ 

experience, credentialing, education levels and whether or not each teacher has an 

undergraduate degree in English.  Only the coefficient on the indicator variable for 
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whether an English teacher has a master’s degree is statistically significant and the 

implied effect is quite small.40  As in the math analysis, compared to the larger 

educational production literature that considers the effects of observable inputs such 

as spending per pupil and class-size reductions on student performance, the reading 

analysis indicates very large teacher-quality effects that are virtually unrelated to 

observable teacher qualifications. 

 

I.VII. The Superstar Teacher Hypothesis 
 

Sections V and VI show that math teachers affect both math and reading 

achievement.  Does this imply that some math teachers are so great that they 

positively affect both math and reading performance, the proverbial “superstar 

teacher” effect, or so bad that they negatively affect performance in both subjects?  

Or does this instead imply that math teachers are making tradeoffs that influence their 

effectiveness in math and reading and that, generally speaking, performance in one 

subject is obtained at a cost in the other?  This question can be addressed by 

analyzing the correlation of math-teacher effects across subjects.   A strong positive 

correlation would confirm the superstar teacher effect. 

 

Define θ m  as the vector of estimated math-teacher coefficients from the full 

math model and θ r  as the vector of estimated math-teacher coefficients from the full 

                                                 
40 Having an English teacher with a master’s degree is estimated to improve performance by .01 
within-grade standard deviations of the test. 
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reading model.  The correlation between these two vectors is 0.31.  However, this 

correlation defines the relationship between (θ m +λm ) and (θ r +λ r ), not θ m  and θ r  

(where λm  and λ r  represent estimation error).  Furthermore, the relationship 

between λm  and λ r  is unclear a priori.  Following Rockoff (2004), by assuming that 

the correlation of true teacher quality across subjects is the same for all teachers, I can 

get an idea of the direction of the bias introduced by the measurement error.  

Measurement error will be smaller for teachers with a greater number of student-year 

observations.  Therefore, I compare the correlation coefficient between θ m  and θ r  

for a subset of teachers who have a relatively high number of students to that of the 

entire teacher sample to get an idea of the direction of the bias from λm  and λ r  on 

the initial quality-correlation estimate.  The estimated correlation coefficient from the 

selected subset of teachers is higher than its counterpart from the full teacher set.  

Thus, measurement error is biasing the estimate of the correlation of teacher quality 

across subjects toward zero and the initial estimate of the correlation between θ m  and 

θ r , 0.31, can be treated as a lower-bound estimate of the correlation of math-teacher 

quality across subjects.   

 

To estimate an upper bound on the correlation of math-teacher quality across 

subjects, I estimate the correlation between θ m  and θ r  under the assumption that the 

true correlation between λm  and λ r  is zero (See Appendix 1.C for details).  This 

upper-bound estimate does not exclude the possibility that the correlation of math-
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teacher quality across subjects is equal to 1.  The bounded estimate of the correlation 

of math-teacher quality across subjects (0.31 to 1.00) provides support for the 

superstar teacher hypothesis.41   

 
 

I.VIII. Specification Checks  
 

I now examine the robustness of the teacher fixed effect estimates to various 

alternative models.  Table 1.9 shows four separate value-added specifications for the 

model of student achievement.  The first column shows the full model estimated in 

equation (1) and columns 2 through 4 show restricted models.  Wald tests for the 

completeness of the restricted models against the full model indicate that the 

restricted models in columns 2 and 3 are underspecified.42   

 

The models used in Table 1.9 are of the “basic” form (corresponding to the 

first vertical panels of Tables 1.6 and 1.7), meaning that only same-subject teachers 

                                                 
41 The identification of the mechanism by which math teachers affect reading performance is beyond 
the scope of this project.  It may be that math teachers directly influence reading skills through their 
teaching (e.g., by focusing on word problems that improve reading comprehension).  Alternatively, it 
may be that math teachers are particularly important to student confidence and motivation.  In the 
education literature, there is a term for the distress to students caused by math – “Mathematics 
Anxiety” (see, for example, Hembree, 1990).  Additionally, popular media has argued that algebra is a 
particularly devastating subject for some students’ confidence levels (Helfand, 2006). 
42 P-values from Wald tests of the null hypothesis that the coefficients on the omitted variables in the 
restricted models are zero are less than 0.01 for all student-level covariates and the set of school-level 
covariates and school fixed effects in each specification (variable groups B and C in Table 1.9).  I do 
not run tests for the statistical significance of the student fixed effects because of the computational 
demands of such tests.  Furthermore, the large-N, small-T structure of my panel dataset implies that the 
results from these tests would be rather uninformative (lacking power).  However, student fixed effects 
have a strong theoretical justification for inclusion in the model.  For further discussion, see Harris and 
Sass (2006).  Finally, note that all of my major findings are generally robust to models of student 
achievement that are not first-differenced (see Appendix 1.D for more details). The decision about 
whether to first-difference the value-added specification seems to be most important in determining 
teachers’ value-added rankings (as indicated by Table 1.9) and merits additional attention in future 
research. 
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are included into the specification for both math and reading.43  For each restricted 

specification, I estimate the vector of teacher fixed effects for the relevant teacher 

type (math or English) and compare it to its analog from the complete specification in 

column 1 by reporting the correlation between the vectors.  This is one measure of the 

magnitude of the effect of the omitted variables bias in the different models insofar as 

this bias affects the estimated teacher coefficients.  The lower the correlation between 

the two vectors of teacher fixed effects, the larger the omitted variables bias.  

 

Columns 2 through 4 of Table 1.9 show that it is important to include each 

major variable group in the model of student achievement in order to obtain unbiased 

estimates of teacher fixed effects.  However, estimating the variance of teacher 

quality in the absence of some of the variable groups in Table 1.9 may be of interest 

in some cases.  For example, the set of school- and classroom-level variables may be 

strong predictors of student performance, but one source of their predictive power 

may be teacher sorting.  To the extent that this is the case, we may be interested in 

teacher-quality variance estimates from models that exclude these variables in order 

to capture between-school as well as within-school variation in teacher quality.  In 

Appendix 1.D, I consider the sensitivity of the previously reported estimated 

variances of teacher quality to the alternative specifications detailed in Table 1.9, and 

also to an equivalent set of specifications based on test-score levels.  This analysis 

indicates that between-school variation in teacher quality across San Diego high 

                                                 
43 An analogous exercise using the full math and reading models with all relevant teachers offers 
qualitatively similar results. 
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schools may be non-negligible and because of this, the estimates presented in this 

study potentially understate the total variance of secondary-school teacher quality. 

 
 

I.IX. Test Scores and Teacher Accountability in Secondary School 
 

The degree to which value-added modeling can be used as a tool for 

determining teacher accountability in secondary school may be the most timely 

policy-related question in this analysis.  I address two accountability-based issues 

here.  First, how much information about outcome-based teacher quality can be 

obtained from noisy teacher-fixed-effect estimates?  Second, and specifically relevant 

for the high school setting, how do decisions regarding which teacher-types (i.e., 

math, English, science, social studies) to include in the model of student achievement 

affect teacher rankings based on value added? 

 

To evaluate the precision of the individual teacher coefficients, I consider the 

portion of these coefficients that, on average, represents the true signal of teacher 

quality.  The greater the signal portion of these coefficients, the more useful they will 

be for teacher evaluation.  Section III proposes that the signal and noise components 

of the variance for any set of estimated teacher coefficients can be separated.  If the 

individual teacher coefficients, on average, are representative of the entire group, I 

can evaluate the average signal-to-noise ratio that characterizes each of these 

individual coefficients. 
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In the full math achievement model described in Table 1.6, the variance 

decomposition in equation (6) indicates that 23 percent of the total fixed-effects 

variance for math teachers represents the signal of true teacher quality suggesting 

that, on average, the individual math-teacher coefficients are themselves 23 percent 

signal.  Similar estimates imply that the individual social studies teacher coefficients 

from the same model are 35 percent signal.  In the complete reading model from 

Table 1.7, the English and math-teacher coefficients are, on average, 32 and 35 

percent signal respectively.  On the one hand, the average signal portions of the 

individual teacher coefficients seem low, suggesting that the incorporation of value-

added modeling into teacher evaluations should be cautiously approached.  However, 

on the other, value-added estimates may still represent a marked improvement over 

the measures most commonly used to determine teacher recruitment, retention and 

salaries (e.g., teachers’ education levels, credentials and experience).44   

 

If policymakers were to incorporate value-added estimates into the 

evaluations of secondary-school teachers, the strategy for modeling student 

achievement would be a second relevant concern.  For example, in the calculation of 

value added for math teachers, should the model of student math achievement include 

the effects of only math teachers or should it include the effects of social studies 

                                                 
44 For example, my analysis in Section VI shows that observable teacher qualifications are almost 
entirely unrelated to student performance in both math and reading.  For additional evidence see 
Aaronson, Barrow and Sander (2007), Angrist and Guryan (2003), Betts (1995), Betts, Zau and Rice 
(2003), Hanushek (1986, 1996), Kane, Rockoff and Staiger (2006), Koedel and Betts (2007). 
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teachers as well (per model (4) in Table 1.3)?45  Because such a decision may involve 

political as well as economic considerations, the more important question is perhaps 

whether such a choice will make a significant difference in determining teacher 

rankings. 

 

I consider the hypothetical example of an accountability system in which math 

teachers are evaluated based on their ranking in terms of math value added and 

English teachers are evaluated based on their ranking in terms of reading value 

added.46  First, for math teachers, I estimate the basic model that assumes only math 

teachers affect student math performance (Table 1.6, panel 1).  I keep the vector of 

math-teacher coefficients and rank them from 1 to J, 1 being the lowest and J being 

the highest.  Next, I estimate the full model of student math achievement that also 

allows for social studies teachers to also affect math performance (Table 1.6, panel 2).  

From this model, I keep just the vector of coefficients for math teachers and again 

rank them from 1 to J.   

 

For each vector of math-teacher coefficients, I divide teachers into quintiles 

based on their value-added rankings, where quintile-5 teachers are those with the 
                                                 
45 A related question is:  How should we determine which teachers will be held accountable for gains 
in student achievement in which subjects?  The empirical results presented above indicate that multiple 
teachers do appear to play roles in determining both math and reading achievement for students.  
However, the benefits of cross-subject accountability would have to be weighed against the costs 
which may come in the form of subject material tradeoffs.  For example, if social studies teachers were 
to be rewarded for student math performance, would they displace important social studies material to 
improve math test scores?  An additional concern is the introduction of free-riding opportunities. 
46 I will assign each teacher an overall quality measure despite the fact that performance is measured 
within schools.  If there is significant between-school sorting in terms of teacher quality, the rankings I 
assign will be less comparable across schools.  
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highest value added.  Table 1.10 compares the “stability” of these quintile 

assignments across the different models of student achievement.  Each cell entry in 

Table 1.10 indicates the percentage of teachers who fall into a given quintile set, 

where a quintile set is defined by the pair of quintile-rankings for a given teacher in 

both models.  The vertical dimension represents teachers’ quintile rankings from the 

basic model and the horizontal dimension teachers’ rankings from the full model.  

The correlation between the two vectors of math-teacher coefficients is 0.95.   

 

If math teachers’ value-added coefficients were independent of social studies 

teachers’ value added and if the inclusion of the social studies teacher indicator 

variables into the model did not introduce any additional noise, the diagonal entries of 

Table 1.10 would all equal 100 percent and the off-diagonal entries would all equal 

zero.  Although this is certainly not the case in the center of the matrix, the corners of 

the matrix indicate that the best and worst math teachers are generally identified 

regardless of whether the social studies teacher indicator variables are included or 

not.  Importantly, it is precisely these teachers who we would expect to target in an 

accountability system.  Thus, for relevant teachers, Table 1.10 implies a relatively 

low omitted variables bias generated by the omission of social studies teachers in the 

basic model of student math achievement and indicates that a simple teacher-

accountability system that rewarded math teachers based on such a model should 

perform relatively well.  Put differently, Table 1.10 shows that objections to the 

assignment of teacher accountability in high school based on the contamination of 
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teacher effects across subjects, at least among the highest- and lowest-ranked 

teachers, would be largely misguided. 

 

Next, I perform an analogous exercise for English teachers in the reading 

achievement specification.  In this case, I compare the basic model that assumes that 

only English teachers affect student reading performance to the full model detailed in 

Table 1.5 (including English and math teachers as well as interactions between the 

two).  The quintile stability results are displayed in Table 1.11.  For this analysis, the 

correlation between the two vectors of English-teacher coefficients is 0.87. 

 

The results in Table 1.11 are quite similar to those in Table 1.10.  For English 

teachers, switching between the models of student achievement has a slightly larger 

effect on teachers’ rankings.  However, the best and worst teachers are still 

consistently identified.  As in Table 1.10, teachers ranked in the top and bottom 

quintiles in the basic model are particularly likely to be ranked in the same quintile in 

the full model.  Furthermore, for top- and bottom-quintile teachers as identified by the 

basic model, 93 and 98 percent, respectively, are identified as being in the top or 

bottom two quintiles in the full model. 

 

The evidence here supports previous work indicating that value-added 

modeling is most consistent in identifying the best and worst teachers regardless of 

the type of distortion introduced for comparison (e.g., adjustments in time, student 
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sample, or in this case, model completeness).47  Value-added modeling will be most 

useful in an accountability system that focuses on these types of teachers, which is 

what seems most reasonable.48  Finally, note that value-added estimates may be better 

suited as part of a larger and more comprehensive system of teacher accountability as 

opposed to a stand-alone measure of quality.  Specifically, incorporating value-added 

estimates with other measures of teacher quality that would be expected to have 

uncorrelated errors will improve the quality signal.  For example, evaluations based 

on classroom observation and/or principals’ recommendations (not test-score based) 

may represent prime candidates to combine with value-added modeling to reduce 

erroneous rewards or sanctions. 

 
 

I.X. The Effects of Variation in Teacher Quality Across Schooling Levels  
 

A question of great practical importance to the educational production 

literature is whether teacher quality is more valuable as a resource at the elementary 

or secondary level.  Unfortunately, I cannot directly observe the effects of absolute 

teacher quality.  However, I can observe student-performance responses to variation 

in teacher quality and answer a related question:  Does variation in teacher quality 

have larger effects in elementary or secondary school?   

 

                                                 
47 Also see Koedel and Betts (2007) and Aaronson, Barrow and Sander (2007) 
48 For example, a system that rewards teachers ranked around the 60th percentile seems much less 
practical than one that rewards teachers ranked around the 80th or 90th percentile in terms of 
performance. 
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A note of caution in this analysis is warranted.  We lack important information 

about the heterogeneity in teacher quality across schooling levels.  There is 

suggestive evidence that the elementary-level teacher population is a more 

heterogeneous group than the secondary-level population, particularly when looking 

within-subject in secondary schools.  For example, the pass rates for credentialing 

tests are much higher for elementary-school teachers than they are for subject-specific 

secondary-school teachers (particularly math teachers).  Also, elementary teachers are 

much more likely to have general undergraduate degrees (e.g., education, social 

science).  Although the subjects of teachers’ undergraduate degrees are, at best, 

weakly linked to student performance, the presence of a large population with general 

degrees may imply more heterogeneity in the group as a whole.  Because the reported 

variance estimates incorporate heterogeneity, we should perhaps expect more 

variation in teacher quality among elementary teachers from the outset regardless of 

any differential student responses to differences in teacher quality across schooling 

levels. 

 

Table 1.12 compares estimated variances of teacher quality for elementary- 

and secondary-school teachers in math and reading.  The elementary-level results are 

from Koedel and Betts (2007) and are particularly relevant for comparison here 

because they are generated using the same standardized test (the Stanford 9), the same 

timeframe, the same school district and the same general value-added specification as 
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the results from this analysis.49  Note that elementary-school teachers have the same 

students for the entire day whereas secondary-school teachers have each student for 

just one hour.  Therefore, for secondary school, I present two different sets of 

estimates.  The first column of secondary-school estimates shows the effect of a one-

standard-deviation change in teacher quality for same-subject teachers.  The second 

column of secondary-school estimates shows the aggregated effect of a one-standard-

deviation change in teacher quality in each subject in which variation in teacher 

quality is relevant.  For reading, where interaction effects enter into the model, I show 

results as if the interaction effect was zero.  Table 1.8 shows that the interaction effect 

will be negative, implying that the comparison in Table 1.12 overstates the aggregate 

effect of a distributional shift in secondary-school teacher quality in reading. 

 

Table 1.12 shows, quite convincingly, that elementary-level student 

performance is more heavily influenced by variation in teacher quality than is 

secondary-level student performance. 

 
 

I.XI. Conclusion 
 

The teacher quality literature has generally assumed that off-subject teachers 

in secondary school do not affect student performance (e.g., math teachers do not 

affect reading outcomes).  By relaxing this assumption, I show that educational 

production in secondary school is characterized by joint production among teachers 

                                                 
49 I use one additional year of data here. 
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and that these previously-ignored, off-subject teachers can have important effects on 

student achievement.  In math, I show that math and social studies teachers influence 

test scores.  In reading, both English and math teachers affect performance.  In both 

subjects and for each teacher type, distributional shifts in teacher quality can have 

important effects on student outcomes.   

 

The results from this analysis are directly applicable to incentive design and 

teacher accountability.  First, I show that the presence of joint production in 

secondary school should not be viewed as an obstacle to the development of 

performance-based incentives for teachers.  In math, although student achievement is 

the result of inputs from multiple teachers, estimated value-added coefficients for the 

best and worst math teachers are largely unaffected by the degree to which joint 

production is modeled in the student-achievement specification.  This result is 

replicated for English teachers in the reading model.  Therefore, objections to the use 

of value-added modeling for the assignment of teacher accountability in secondary 

school based on the potential for contamination of teacher effects across subjects, at 

least among the highest- and lowest-ranked teachers, would be largely misguided. 

 

The more relevant questions concerning teacher accountability in secondary 

school are (1) whether value-added estimates provide enough information about 

actual teacher quality to be useful for teacher evaluations and (2) how to determine 

which teachers should be evaluated based on student performance in which subjects.  
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In regard to the former question, although teacher value-added coefficients are quite 

noisy, they may still represent a reasonable improvement over the current methods 

that are most commonly used to determine teacher recruitment, retention and 

salaries.50  Furthermore, employing teacher-fixed-effect coefficients in conjunction 

with other measures of teacher quality that are unlikely to have correlated 

measurement errors (for example, principals’ evaluations that are not based on test 

scores) should diminish the impact of these errors and increase the visibility of the 

true signal of teacher quality.   

 

As for the latter question, this paper provides insight into which teacher types 

affect student performance in which subjects in secondary school.  To the extent that 

this information can be properly incorporated into teacher incentives, total 

educational output could be increased.51  However, the incorporation of student 

achievement across multiple subjects into teacher evaluations should be carefully 

approached.  One concern is that teachers may respond to incentives across subjects 

by taking focus away from important material in their own subject.  Another is that 

cross-subject incentives, if improperly implemented, could increase free-riding 

opportunities.   

 

                                                 
50 The weak link between student performance and the teacher qualifications upon which career 
decisions are generally made is well documented in the literature.  See, for example, Aaronson, Barrow 
and Sander (2007), Angrist and Guryan (2003), Betts (1995), Betts, Zau and Rice (2003), Hanushek 
(1986, 1996), Kane, Rockoff and Staiger (2006), Koedel and Betts (2007). 
51 These incentives could potentially illicit more effort from teachers.  Also, in the long run, providing 
more performance-based incentives to teachers could increase production by altering the pool of 
workers that select into teaching. 
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Finally, this analysis offers a unique opportunity to evaluate the effects of 

distributional shifts in teacher quality across schooling levels.  Although variation in 

teacher quality plays a significant role in determining student outcomes at both the 

elementary and secondary levels, its influence is larger at the elementary level by a 

sizeable margin. 
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Chapter 1 Figures 
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Figure 1.1.  Math Production Isoquant in Math and Social Studies Teacher-

Quality Space 
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Chapter 1 Appendix Figures 
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Figure 1.E.1. Achievement Gains by Decile – Math
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Figure 1.E.2. Achievement Gains by Decile – Reading
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Chapter 1 Tables 
 

Table 1.1. Description of Key Data Elements 
Time-Varying 
Student 
Characteristics 

Indicators for grade level, parental education, whether 
student is EL (EL = English Learner), re-designated from 
EL to English proficient, switched schools, accelerated a 
grade, held back a grade, new to the district, number of 
school days attended. 
 

Time-Varying 
School 
Characteristics 

Controls for the racial makeup and heterogeneity of 
school, school size, whether school is year round, 
whether school is charter or atypical, percent of school 
on free lunch, percent of school EL, percent of school 
that changed schools, percent of school new to district 
 

Time-Varying 
Classroom 
Characteristics 

Class size, peer achievement in year (t-1) - both subject-
specific; subject and level of classes taken (for example, 
algebra or geometry, English or honors English, etc.) 
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Table 1.2. Class-Taking Behavior of the Student Sample by Grade Level 
 Ninth Grade Tenth Grade Eleventh Grade 
Classes Taken    
Math 100% 100% 100% 
English 100% 100% 100% 
Science 45% 88% 83% 
Social Studies 82% 24% 99% 
Science and Social Studies 27% 17% 82% 

Note:  Students are not tested in the twelfth grade at SDUSD. 
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Table 1.3.  P-Values from Wald Tests for the Joint Significance of Teacher 
Indicator Variables in the Model of Student Achievement, by Teachers’ Subject 

Classifications - Dependent Variable: Math Test Scores 
 Statistical Significance for Teacher 

Indicator Variables by Subject 
Teachers Included by Model Mathematics English Science Social 

Studies 
1. Mathematics Only <0.01** - - - 
2. Mathematics and English  0.19 0.87 - - 
3. Mathematics and Science <0.01** - 0.33 - 
4. Mathematics and Social Studies <0.01** - - <0.01** 
5. Mathematics, English and Science 0.19 0.98 0.44 - 
6. Mathematics, English and Social 
Studies 

0.46 0.95 - 0.01** 

7. Mathematics, Science and Social 
Studies 

<0.01** - 0.51 <0.01** 

8. Mathematics, English, Science 
and Social Studies 

0.15 0.98 0.48 0.08 

Notes:  ** indicates significance with p-value ≤ 0.01 
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Table 1.4.  P-Values from Wald Tests for the Joint Significance of Teacher 
Indicator Variables in the Model of Student Achievement, by Teachers’ Subject 

Classifications - Dependent Variable: Reading Test Scores 
 Statistical Significance for Teacher 

Indicator Variables by Subject 
Teachers Included by Model Mathematics English Science Social 

Studies 
1. English Only - <0.01** - - 
2. English and Mathematics  <0.01** <0.01** - - 
3. English and Social Studies - <0.01** - <0.01** 
4. English and Science - <0.01** 0.27 - 
5. English, Mathematics and 
Social Studies 

<0.01** <0.01** - <0.01** 

6. English, Mathematics and 
Science 

<0.01** <0.01** 0.34 - 

7. English, Social Studies and 
Science 

- <0.01** 0.59 <0.01** 

8. English, Mathematics, Social 
Studies and Science 

<0.01** <0.01** 0.27 <0.01** 

Notes:  ** indicates significance with p-value ≤ 0.01 
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Table 1.5.  Final Reading Achievement Model and Associated P-Values from 
Wald Tests 

 Statistical Significance for Teacher Indicator 
Variables by Subject 

Teachers Included by Model 
Mathematics English English-Mathematics 

Interactions 
9. English, Mathematics and 
English-Mathematics Teacher 
Interactions 

<0.01** <0.01** <0.01** 

Notes:  ** indicates significance with p-value ≤ 0.01 
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Table 1.6.  Estimated Effects of a One-Standard-Deviation Change in Teacher 
Quality on Student Math Achievement 

 Teachers Indicator Variables Included, by Model 
 

 Model 1: 
Math Teachers Only

 Model 2:  
Math and Social Studies 

Teachers 
 

 Unadjusted Adjusted Unadjusted Adjusted
     

Math Teachers 0.147 0.080 0.142 0.068 
     
Social Studies 
Teachers 

  0.110 0.065 
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Table 1.7.  Estimated Effects of a One-Standard-Deviation Change in Teacher 
Quality on Student Reading Achievement 

 Teachers Indicator Variables Included, by Model 
 

 Basic Model: 
English Teachers Only

 Full Model:  
English, Math and 

English-Math Teacher 
Interactions 

 
 Unadjusted Adjusted Unadjusted Adjusted
     

English Teachers 0.138 0.092 0.151 0.086 
     
Math Teachers   0.131 0.078 
     
English-Math 
Teacher Interactions 

  0.166 0.096 

      
 



 49

Table 1.8.  Average Interaction Effects on Reading Achievement for Interactions 
Between English and Math Teachers by the Quintile Assignment of Each 

Teacher Type in their Respective Quality Distributions 
  Quintile Assignments for Math Teachers 

 1 2 3 4 5 (best) 
1 0.03 0.14** 0.15** 0.01 0.05 
2 0.13** 0.10** 0.10** -0.03 -0.02 
3 0.04 0.09** -0.05* 0.00 -0.03 
4 0.03* -0.01 -0.02 -0.03 -0.01 

 
Quintile 

Assignme
nts for 
English 

Teachers 5 (best) -0.01 -0.10** -0.04* -0.23** -0.12** 
Notes:  **Significant at 1% level of confidence. 

*Significant at 5% level of confidence. 
The results in this Table are based on 493 interactions between math and English teachers that 
affected at least 20 students in the dataset.  The number of observations per cell ranges from 5 
to 31.  Estimates in just two cells are based on less than 10 observed interactions.  Quintile-5 
teachers are those with the highest value added, quintile-1 teachers the lowest. 
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Table 1.9. Estimated Correlation Coefficients Relating Teacher Fixed Effect 
Estimates from Restricted Models to Estimates from the Full Specification. 

 (1) (2) (3) (4) 
Included Explanatory Variables     
(A)  Lagged Test Score Yes Yes Yes Yes 
(B)  Student-Level Covariates  Yes No Yes Yes 
(C)  School- and Classroom-Level  

Covariates, School and Subject Fixed 
Effects 

Yes No No Yes 

(D)  Student Fixed Effects (First 
Differenced) 

Yes No No No 

     
Correlation Coefficient – Basic Math Model 
(Math Teachers Only) 

1 0.26 0.28 0.63 

     
Correlation Coefficient – Basic Reading 
Model (English Teachers Only) 

1 0.13 0.22 0.71 

Notes:  Correlation coefficients compare teacher effects weighted by their standard errors.  All models 
include indicator variables for students’ grade levels.  Column 1 shows the full specification to which 
the restricted specifications in columns 2 through 4 are compared.  Wald tests reject each of the 
restricted models against the full model in columns 2 and 3.  In columns 2 through 4, the model was 
estimated without first differencing.  For the specifications that omit student fixed effects, additional 
time-invariant student-level characteristics are included (specifically, information on race and gender) 
and errors are clustered at the student level.   
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Table 1.10.  Stability of Math-Teacher Value-Added Coefficients Going From 
the Basic to the Full Model of Student Math Achievement 

  Teacher Quintile Assignments from the Full Model 
 1 2 3 4 5 (best) 

1 87% 9% 4% 0% 0% 
2 11% 60% 26% 2% 0% 
3 0% 27% 47% 24% 2% 
4 2% 2% 25% 58% 13% 

 
Teacher 
Quintile 

Assignments 
from the 

Basic Model 5 (best) 0% 0% 0% 17% 83% 
Note:  The basic math model includes just math-teacher indicator variables, the full math model 
includes both math and social-studies-teacher indicator variables. 
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Table 1.11.  Stability of English-Teacher Value-Added Coefficients Going From 
the Basic to the Full Model of Student Reading Achievement 

  Teacher Quintile Assignments from the Full Model 
 1 2 3 4 5 (best) 

1 78% 20% 1% 0% 0% 
2 19% 49% 22% 7% 3% 
3 3% 20% 41% 25% 12% 
4 1% 9% 29% 36% 25% 

 
Teacher 
Quintile 

Assignments 
from the 

Basic Model 5 (best) 0% 1% 6% 32% 61% 
Note:  The basic reading model includes just English-teacher indicator variables, the full reading 
model includes both English and math-teacher indicator variables. 
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Table 1.12.  Effects of a One-Standard-Deviation Change in Teacher Quality 
(Adjusted) in Elementary and Secondary School, Measured in Standard 

Deviations of the Test. 
  
 Elementary 

School 
 

 Secondary School 
(Subject Specific) 

 Secondary School 
(Aggregated) 

Subject      
Math 0.26  0.07  0.13 
      
Reading 0.19  0.09  0.16 
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Chapter 1 Appendix Tables 
 
 

Table 1.A.1.  Key Differences Between the Entire SDUSD High School Student 
Sample and the Final Sample Used for Estimation 

 
 All Students Students with 3 + Years 

of Data 
 
Race 
   % White 
   % Black 
   % Asian 
   % Hispanic 
    
% English Learners 
 
SAT 9 Math Score* 
SAT 9 Reading Score* 
 
Avg. Percentage of School 
on Free Lunch 
 

 
 

31% 
16% 
22% 
31% 

 
14% 

 
0 
0 
 

44% 

 
 

30% 
13% 
29% 
27% 

 
10% 

 
0.19 
0.20 

 
41% 

 

Notes: My final sample includes 15,877 unique students with at least 3 consecutive years of test-score 
data out of a possible 44,846 students who could have potentially been eligible to be included based on 
the year that they started 9th or 10th grade.  The majority of the omitted students are omitted because 
they do not have three contiguous years of test-score data. 
*Test score performance is measured in average standard deviations from the “All Students” mean (by 
grade).  The “all students” group includes all students at SDUSD over the entire course of the panel 
who had at least one completed test-score record in 9th, 10th or 11th grade. 
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Table 1.A.2.  Key Differences Between the Entire SDUSD Teacher Sample and 
the Final Sample Used for Estimation – Math. 

 
 All Teachers Who Taught at 

Least 50 Students in Math 
Math Teachers in the 

Final Sample 
 
Years Experience 
 
% Fully Credentialed 
% With Masters Degree 
 
BA Major: 
  Math 
  Education 
  Any Science 
  Social Science 

 
10.8 

 
93% 
49% 

 
 

22% 
22% 
8% 
18% 

 
14.4 

 
95% 
53% 

 
 

54% 
9% 
7% 
9% 
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Table 1.A.3.  Key Differences Between the Entire SDUSD Teacher Sample and 
the Final Sample Used for Estimation - English 

 
 All Teachers Who Taught at 

Least 50 Students in English 
English Teachers in the 

Final Sample 
 
Years Experience 
 
% Fully Credentialed 
% With Masters Degree 
 
BA Major: 
  English 
  Education 
  Social Science 
 

 
11.0 

 
97% 
48% 

 
 

37% 
17% 
21% 

 

 
13.9 

 
97% 
52% 

 
 

61% 
5% 
15% 
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Table 1.A.4.  Key Differences Between the Entire SDUSD Teacher Sample and 
the Final Sample Used for Estimation - Science 

 
 All Teachers Who Taught at 

Least 50 Students in Science 
Science Teachers in the 

Final Sample 
 
Years Experience 
 
% Fully Credentialed 
% With Masters Degree 
 
BA Major: 
  Biology 
  Chemistry 
  GeoScience 
  Physics 
  Math 
  Education 
  Social Science 
 

 
10.2 

 
98% 
49% 

 
 

32% 
5% 
4% 
4% 
3% 
14% 
13% 

 
13.9 

 
97% 
52% 

 
 

48% 
12% 
6% 
7% 
3% 
5% 
4% 
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Table 1.A.5.  Key Differences Between the Entire SDUSD Teacher Sample and 
the Final Sample Used for Estimation – Social Studies 

 
 All Teachers Who Taught at 

Least 50 Students in Social 
Studies 

Social Studies Teachers 
in the Final Sample 

 
Years Experience 
 
% Fully Credentialed 
% With Masters Degree 
 
BA Major: 
  Social Science 
  Education 
  English 
 

 
12.7 

 
97% 
52% 

 
 

43% 
20% 
11% 

 
13.9 

 
97% 
55% 

 
 

67% 
6% 
8% 
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Table 1.D.1.  Sensitivity Checks for Adjusted Variance Estimates in the Basic Math and Reading Student-Achievement 
Specifications. 

 Test-Score Levels  Value-Added 
 

 (1) (2) (3) (4)  (5) (6) (7) (8) 
Included Explanatory Variables          
(A)  Lagged Test Score No No No No  Yes Yes Yes Yes 
(B)  Student-Level Covariates  No Yes Yes Yes  No Yes Yes Yes 
(C)  School- and Classroom-Level  

Covariates, School and Subject Fixed 
Effects 

No No Yes Yes  No No Yes Yes 

(D)  Student Fixed Effects No No No Yes  No No No Yes 
          
Adjusted Variance of Math-Teacher Quality – 
Basic Math Model (Standard Deviation in 
Parenthesis) 

407.1 
(20.2) 

226.5 
(15.1) 

9.6 
(3.1) 

5.1 
(2.3) 

 36.5 
(6.0) 

29.7 
(5.4) 

5.7 
(2.4) 

8.3 
(2.9) 

          
Adjusted Variance of English-Teacher 
Quality – Basic Reading Model  (Standard 
Deviation in Parenthesis) 

432.6 
(20.8) 

192.3 
(13.9) 

16.9 
(4.1) 

12.4 
(3.5) 

 21.2 
(4.6) 

16.8 
(4.1) 

9.2 
(3.0) 

11.6 
(3.4) 

Note:  For the specifications that omit student fixed effects, additional time-invariant student-level characteristics are included into the models 
(specifically, information on race and gender) and errors are clustered at the student level.  All models include indicator variables for students’ grade 
levels. 
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Appendix 1.A 
Data Restrictions 

 
Section II illustrates the statistical model that seems most appropriate for 

accurately describing student test-score performance.  This model accounts for 

numerous sources of variation in student achievement including variation due to 

student fixed effects, all within the value-added framework.  The structure of the 

model requires at least three contiguous test scores per student for full identification.  

This data inclusion restriction reduces the available sample of students. 

 

Additionally, I require that each student have both a math and English teacher 

in each year in which his or her data are used, as discussed in the text.  Together, the 

data restrictions imposed on the student sample may bias the estimated variances of 

teacher quality downward by reducing student heterogeneity.  Table 1.A.1 details the 

differences between the final sample of students used in my analysis and the general 

high school population at SDUSD. 

 

As would be predicted, my final student sample is slightly advantaged relative 

to the SDUSD high school population as a whole.  However, it is still quite diverse 

and generally representative of the demographics at SDUSD.  The biggest difference 

between the two student populations is in terms of testing performance.  Note that the 

“all students” sample includes students who are movers in the sense that they do not 

have three contiguous test scores.  Thus, Table 1.A.1 is consistent with the well-
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documented negative relationship between student mobility and performance (see, for 

example, Rumberger and Larson, 1998; or Ingersoll, Scamman and Eckerling, 1989). 

 

With respect to teachers, I also impose participation restrictions.  Kane and 

Staiger (2002) show that sampling variation has a significant impact on the outcomes 

of incentive systems based on school-level mean performance measures.  Particularly, 

they find that schools with the smallest populations are considerably more likely to 

receive a reward or to be sanctioned based on student performance because the 

variance of the average of students’ test scores from year to year is highest in these 

schools.  A magnified version of this problem arises in my teacher analysis.  In an 

effort to reduce the impact of sampling variation, I require that teachers have at least 

20 student-years of data from my student sample to be included in the analysis.52   

 

Tables 1.A.2 through 1.A.5 detail key differences between the entire SDUSD 

high school teacher population and the sample used in this study, by subject.  In these 

comparisons, it was not clear how to assign the excluded teachers to a given subject.  

Specifically, it was unclear how many classes a teacher should have to teach in a 

given subject to constitute assignment to that subject.  Ultimately, I included teachers 

into the “all teachers” sample for a given subject if, in aggregate, they taught at least 

50 student-years in that subject over the course of the data panel (in this case, student 

years were counted for all students).  This number was chosen as it corresponds to 

                                                 
52 The results presented in this paper are not sensitive to a reasonable range of adjustments to this 
threshold. 
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roughly 2 class periods of students.  For each of the tables below, as I increase the 

student-years threshold for the “all teachers” samples, these samples begin to look 

more and more like the final samples used in this analysis because many teachers 

included in the “all teachers” samples are not full-time teachers in the given subject.   

 

Because of the imprecision in the assignment of teachers to specific subjects, 

Tables 1.A.2 through 1.A.5 may not reflect an “apples-to-apples” comparison.  The 

samples used in the analysis are much more likely to reflect teachers who specialize 

in a specific subject.  It seems intuitive that students who are taught by less 

specialized teachers would be subjected to more variation in teacher quality.  This 

indicates another source of downward bias in the variance estimates presented in this 

paper.  Unfortunately, this understatement is unavoidable given the requirements 

necessary to control for student fixed effects in the model of student achievement and 

the fact that teacher effects become less and less precisely estimated as the number of 

student observations per teacher falls.  

 

Finally, note that Tables 1.A.2 through 1.A.5 may reflect some overlap.  For 

example, if a regular science teacher taught a handful of math classes for one year due 

to a math-teacher shortage in that year, she would show up in the “all teachers” 

samples for both math and science teachers (or possibly in the “all teachers” sample 

for math teachers and in the “final sample” for science teachers). 
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Appendix 1.B 
Variance Decomposition 

 
 

Because the weighting matrix that I use for the Wald statistic is diagonal: 
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Thus, scaling this summation by the number of teachers returns an estimate of the 

average ratio of the total fixed-effects variance to the total error variance weighted on 

a coefficient-by-coefficient basis.   
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Appendix 1.C 
Estimating an Upper Bound on the Correlation 

of Teacher Value-Added Across Subjects 
 

I generate an upper bound on the correlation of math-teacher quality across 

subjects, corr m r( , )θ θ , under the assumption that the correlation coefficient reported 

in Section VII is understated because corr m r( , )λ λ = 0 and this is suppressing the 

initial estimate of .  Consider the following: corr m r( , )θ θ

 
(C.1) corr m r m m r r m m r r( , ) {cov( , ) / { var( ) * var( )}θ θ θ λ θ λ θ λ θ λ= + + + +   

 
The correlation coefficient of interest in this analysis is corr m r( , )θ θ .  To 

obtain an upper-bound estimate, I assume that cov( , )θ λm r = 0, cov( , )θ λr m = 0, and 

cov( , )λ λm r = 0 (these conditions also imply that cov( , )θ λm m = 0  and 

cov( , )θ λr r = 0  because I know that cov( , )θ θm r ≠ 0 ) and expect that none of these 

covariance terms would be negative.53  Given these conditions I can rewrite equation 

(C.1) as: 

 

                                                 
53It is the non-negativity assumption that insures that I am generating an upper bound by setting the 
covariance of the estimation errors to zero. I justify this assumption by noting that although it is 
conceivable that there would be a positive correlation between estimation errors for the same students 
but different subjects, it would be hard to imagine a scenario in which these estimation errors would be 
negatively correlated.     
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(C.2)  corr m r m r m m r r( , ) {cov( , ) / { var( ) * var( )}θ θ θ θ θ λ θ λ= + +  

 
By definition, the correlation coefficient of interest is defined as: 

 
(C.3)  corr m r m r m r( , ) cov( , ) / { var( ) * var( )}θ θ θ θ θ θ=     

 
Combining C.2 and C.3, I can write: 

 
(C.4)  corr corrm r m r m m m r r r( , ) ( , ) * ( var( ) / var( ) ) * ( var( ) / var( ) )θ θ θ θ θ λ θ θ λ θ= + +  

 
Which can once again be re-written as: 

 
(C.5)  corr corrm r m r m fe m true r fe r true( , ) ( , ) * ( / ) * ( / ), , , ,θ θ θ θ σ σ σ σ= 2 2 2 2  

 
Here,  represents the total variance of teacher fixed effects and  

represents the variance of teacher quality by subject as indicated.  I can plug in values 

for the above variance components using estimates from Section III.  This generates 

an upper bound estimate of the correlation of teacher effectiveness across subjects of 

approximately 1.09.  Because the correlation coefficient is bounded between zero and 

one, we know that the correlation between the vectors of estimation errors of the 

math-teacher coefficients (

σ− , fe
2 σ− ,true

2

λm  and λ r ) cannot be zero.  Nonetheless, the correlation 

coefficient relating math-teacher quality across subjects can be bounded from above 

at one. 
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Appendix 1.D 
Sensitivity Analysis 

 
This appendix considers the sensitivity of the previously-reported estimated 

variances of teacher quality to the alternative specifications detailed in Table 1.9, and 

also to an equivalent set of specifications based on test-score levels. 

  

The estimates reported in column 1 of Table 1.D.1 show the adjusted variance 

(per equation (6)) in average test-score levels, conditional on students’ current grade 

levels, across teachers at SDUSD.  These estimates incorporate not only teacher 

quality, but also any sorting of students and teachers throughout SDUSD across 

schools and classrooms.  Column 2 shows that when student-level variables are 

included in the model, the estimated variance of the conditional teacher means 

declines by approximately 50 percent for both math and reading.  This indicates that 

these variables control for a sizeable portion of the district-wide sorting that is 

contributing to the variance estimates in column 1.  In column 3, the set of school- 

and classroom-level covariates and school fixed effects are added to the student-

achievement specification.  On the one hand, these variables control for bias in the 

estimated teacher effects that may result from student sorting across schools and 

classrooms, or from the omission of important determinants of student achievement 

from the model (e.g., peer quality).  However, the inclusion of these controls will also 

reduce the estimated variance of teacher quality by removing any between-school 

differences in teacher performance.  Finally, the estimates in column 4 incorporate 
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student ability measured in terms of test-score growth.  The differences in the teacher-

quality variance estimates between columns 3 and 4 reflect the fact that, conditional 

on the extensive list of controls in the model, teachers and students are positively 

matched within schools at SDUSD based on test-score levels.  

 

The second vertical panel of Table 1.D.1 (columns 5 through 8) shows that the 

inclusion of lagged test-score performance in the student-achievement model removes 

much of the sorting bias (both students and teachers) in the teacher fixed effect 

estimates.  For example, the adjusted variance of the grade-level conditional teacher 

means in the value-added specification is less than 10 percent of that in the levels 

model for both math and reading (see columns 1 and 5).   

 

The inclusion of the student- and school-level variables in groups (B) and (C) 

in Table 1.D.1 have qualitatively similar effects in the value-added specification as 

they do in the levels specification.  However, as in the levels specification, the source 

of the effects of these controls is unknown.  It may be that they reduce omitted 

variables bias in the student-achievement model or they may simply remove between-

school variation in teacher quality.54  For example, the school- and classroom-level 

controls in variable-group (C) include measures for school-level racial composition 

                                                 
54 To no avail, numerous attempts were made to disentangle the source of the effects of the sets of 
student-, school- and classroom-level variables.  For example, school fixed effects were added 
separately from the other school and classroom level covariates, both before and after these covariates.  
The primary issue is that teachers may sort themselves into schools in ways that are aligned with the 
student-, school- and classroom-level covariates.  Therefore, the effects of the educational inputs and 
environmental controls across schools cannot be separated from the effects of teacher sorting. 
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and peer effects.  Although these measures may have a direct effect on student 

performance, they may also be highly correlated with teachers’ preferences because 

teachers may prefer to work in certain socioeconomic environments and with higher-

achieving students.  It is possible that the best teachers are the most successful in their 

efforts to teach in such environments which would result in teacher sorting along 

these dimensions.  If the differences in the adjusted-variance estimates reported in 

moving between columns 6 and 7 (or even 5 and 7) were entirely the result of 

between-school teacher sorting, estimates from column 6 (or column 5) would 

represent the sum of within-school and between-school variation in teacher quality. 

 

Column 8 highlights a seemingly counterintuitive empirical result.  It shows 

that conditional on all of the controls from the otherwise fully-specified value-added 

model, the inclusion of student fixed effects actually increases the estimated variance 

of teacher quality.  This implies that the omission of student ability, measured by 

student test-score growth, is biasing the teacher coefficients from the model in 

column 7 downward.  Initially, this result seems quite unlikely if students and 

teachers are expected to be positively matched.  However, Koedel and Betts (2007) 

show that when the testing instrument used to measure teacher value added exhibits a 

test-score ceiling, negative sorting of teacher quality and student test-score 

performance, measured in growth, is possible.   
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Test-score ceiling effects are characterized by students experiencing 

systematic declines in test-score gains as they advance in the test-score levels 

distribution.55  Importantly, these effects may be felt by students throughout the test-

score distribution.  In the presence of a test-score ceiling and under the assumption 

that students and teachers are positively matched, students assigned to the most 

effective teachers (the most able students) will experience restricted gains in 

achievement while students assigned to the least effective teachers will, relative to 

their high-ability peers, experience larger gains.  In the absence of student fixed 

effects that control for students’ test-score trajectories, value-added estimates for 

high-quality teachers will be understated due to positive student-teacher matching 

while for low-quality teachers, value-added estimates will be overstated.  Overall, 

teacher value-added coefficients will be biased toward zero because of student sorting 

among teachers.  In turn, this will lead to an understatement of the variance of teacher 

quality.56  The test-score ceiling properties of the standardized exams used in this 

study are documented in Appendix 1.E.  They are consistent with the findings in 

Table 1.D.1. 

 

Regardless of the direction of the effect, the inclusion of student fixed effects 

into the student-achievement specification reduces omitted variables bias from 

student-teacher matches based on unobserved student characteristics.  In this case, the 

                                                 
55 This relationship can exist in the absence of a test-score ceiling due to regression to the mean.  
However, a test-score ceiling would magnify this relationship and, most importantly, limit the ability 
of the testing instrument to convey important information about human capital growth. 
56 For a more detailed discussion, see Koedel and Betts (2007). 
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direction of the bias is toward zero, indicating that estimates from the model in 

column 7 may understate the degree of within-school variation in teacher quality in 

secondary school.   

 

Overall, the within-school and student variance estimates reported throughout 

this paper are from the most complete model of student achievement available.  

However, between-school variation in teacher quality across San Diego high schools 

may be non-negligible and because of this, the estimates presented in this study may 

understate the total variance of high school teacher quality by their omission of this 

between-school variance.  For example, in math, if the between-school variance 

estimates in column 6 did not suffer from any omitted variables bias and were simply 

a reflection of the within-plus-between variance of math-teacher quality, estimates 

from the basic math model reported in Table 1.6 would understate the effect of a one-

standard-deviation improvement in high school teacher quality (within plus between) 

by approximately 46 percent.  For the basic reading model, such a scenario would 

imply a similar understatement of roughly 17 percent. 

 



 71

Appendix 1.E 
Quantitative Properties of the  

Stanford 9 Exams in High School 
 

This appendix details the quantitative properties of the math and reading 

Stanford 9 exams administered to high school students at SDUSD.  Specifically, it 

focuses on the extent to which these exams are characterized by test-score ceilings, as 

test-score ceiling effects can play a significant role in the estimation of the variance of 

outcome-based teacher quality (see Koedel and Betts, 2007). 

 

As indicated in Appendix 1.D, a test-score ceiling is characterized by a 

consistent decline in test-score gains as students make progress in the test-score levels 

distribution.  Importantly, students need not be “at the ceiling” to be affected by it.  

Hanushek, Kain, O’Brien and Rivkin (2005) and Koedel and Betts (2007) discuss the 

importance of test-score ceiling effects in the estimation of teacher value added in 

great detail.  The more pronounced the test-score ceiling, the more limited is the exam 

in terms of measuring the value added of schooling inputs. 

 

Because of regression to the mean, it is difficult to test for pure ceiling effects 

by plotting test-score gains in period (t) versus test-score levels in period (t-1) 

because regression to the mean should ensure a negative relationship between the two 

regardless of whether a test-score ceiling exists.  Therefore, I group all students into 

achievement deciles based on their raw test-score level in period (t-2).  I then look to 
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see if the average test-score gains for students in period (t) are lower for students in 

higher deciles.  Figures E.1 and E.2 detail these results for math and reading, 

respectively.   

 

For math, the distribution of test-score gains across the test-score-levels 

deciles is quite odd.  On the one hand, a strong test-score ceiling is implied for 

students in the lower achievement deciles.  However, test-score gains among students 

in the upper achievement deciles show no indication of a ceiling and in fact; their test 

scores imply an effect that is the opposite of a ceiling effect.  One explanation for the 

relationship outlined in Figure E.1 is that the Stanford 9 math exam focuses on 

subject material in a way that causes “average” students to be less likely to experience 

gains because of the classes that they happen to be taking.  The model of student 

achievement used in this study controls for such a scenario by including a vector of 

subject indicators (i.e., indicators for whether a student took algebra, geometry, etc.) 

for each student in addition to the student fixed effects.   

 

At first glance, the implied effect of the quantitative properties of the math 

portion of the Stanford 9 exam on the estimated variance of teacher quality is 

ambiguous.  If we assume positive student-teacher matching in terms of ability (even 

within-subject) as is the norm, Koedel and Betts (2007) show that the relationship 

between test-score gains and test-score levels documented for students in the bottom 

deciles implies that the omission of student fixed effects in the student-achievement 
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model will lead to an understatement of the estimated variance of teacher quality.  On 

the other hand, the same relationship in the upper deciles implies that the variance of 

teacher quality will be overstated in the absence of controls for student ability.  A 

comparison of columns 7 and 8 of Table 1.D.1 indicates that the former effect is 

stronger.  One explanation for this result is that the degree of student-teacher sorting 

is higher for students in lower achievement deciles.57

 

For reading, a relatively mild test-score ceiling is present for students in the 

lower deciles of the test-score levels distribution, but this ceiling disappears for 

students in deciles five through ten.  The effects of this mild test-score ceiling can be 

seen in the teacher-quality variance estimates in columns 7 and 8 of Table 1.D.1. 

 
 

                                                 
57 This would be the case if, for example, there is more variation in unobserved student ability among 
lower-achieving students or more variation in teacher quality among teachers who teach lower-
achieving students. 
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Chapter 2 
Re-Examining the Role of Teacher Quality  

In the Educational Production Function  
 

 
This study uses administrative data linking students and 

teachers at the classroom level to estimate teacher value-added to 

student test scores.  We find that variation in teacher quality is an 

important contributor to student achievement – more important than 

has been implied by previous work.  This result is attributable, at 

least in part, to the lack of a ceiling effect in the testing instrument 

used to measure teacher quality.  We also show that teacher 

qualifications are almost entirely unable to predict value-added.  

Motivated by this result, we consider whether it is feasible to 

incorporate value-added into evaluation or merit pay programs. 
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II.I. Introduction 

It has been well established that education plays an important role in 

determining both economic growth and individual life outcomes (for example, see 

Katz and Murphy, 1992).  This has led to an ongoing interest in the determinants of 

student achievement, including teacher quality. However, researchers have 

historically struggled to capture the role of teacher quality in the educational 

production function. Given the importance of education and the undeniable role 

played by teachers, how much does variation in teacher quality affect student 

performance?   

 

The vast majority of the empirical work on teacher quality has relied on 

observable teacher qualifications to measure teacher quality.  As a whole, this body of 

research suggests that these qualifications are only weakly related to student 

performance.1  Therefore, we shift our focus away from teacher qualifications and 

instead measure teacher quality by value-added to student test scores.2  Although 

value-added has been criticized by some, it continues to gain traction among both 

researchers and policy makers.  In fact, proposals to base teacher evaluations on 

                                                 
1 For reviews of this literature, see Hanushek (1986, 1996).   
2 There is a small literature that has shifted its focus to teacher value-added.  Recent studies include 
Rivkin, Hanushek and Kain (2005), Hanushek et al. (2005), Aaronson, Barrow and Sander (2007), 
Nye, Konstantopoulos and Hedges (2004), McCaffrey et al. (2003), Harris and Sass (2006) and Koedel 
(2007). 

 



 78

value-added, sometimes involving pay incentives, are becoming increasingly 

common.3   

 

We analyze teacher value-added to student performance on math and reading 

standardized exams using micro-level data from San Diego elementary schools 

linking students and teachers at the classroom level.  Our results indicate that 

variation in teacher quality, measured by value-added, is considerably larger than 

previous research has implied.  Our larger variance estimates are attributable, at least 

in part, to the lack of a ceiling effect in the testing instrument that we use to measure 

teacher quality.  Test-score ceilings inhibit students’ performance gains as test-score 

levels rise.  These ceilings are quite common in practice and have two important 

implications for value-added analysis.  First, in the presence of a test-score ceiling, 

estimating teacher effects from a typical value-added specification can lead to an 

understatement of the variance of teacher quality and, in turn, of the importance of 

teacher quality as an educational resource.  Second, a test-score ceiling will influence 

individual teachers’ value-added estimates.  This latter issue is of particular concern if 

value-added is to be used to evaluate teacher performance.  

 

We relate our value-added measures of teacher quality to the qualifications 

that primarily determine teacher recruitment, retention and salaries.  Our results 

                                                 
3 For example, see Gordon, Kane and Staiger (2006).  Other examples include non-profit groups like 
Battelle for Kids in Columbus, OH, which has set up a three-year pilot program that uses value-added 
as an evaluation tool for teachers in Ohio and the state of Florida, which will begin linking teacher pay 
to student performance in 2007. 
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support previous research indicating that these qualifications are poor predictors of 

teacher performance.  Even upper-bound estimates of the ability of observable teacher 

qualifications to predict variation in outcome-based teacher quality are very small.  

Similarly, teachers’ salaries are virtually uncorrelated with their value-added to 

student test scores. 

 

Motivated by the weak link between teacher performance and teacher 

qualifications, and the growing interest in value-added more generally, we consider 

the role that value-added estimates might play in determining teacher accountability.  

When compared to the current standards by which most teachers are judged 

(observable qualifications), a value-added approach offers a significant improvement 

in terms of rating teachers based on their contributions to actual student performance.  

However, in both math and reading, estimation error constitutes a considerable 

portion of the individually estimated teacher effects.  Therefore, value-added 

modeling may be better suited as just one component of a more comprehensive 

system of teacher evaluation. 
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II.II. Empirical Strategy 
 

We estimate teacher fixed effects from a value-added model of student 

achievement in the reduced form:4

(1)  ( 1)ijkst i ijks t it it it itTestScore TestScore ZipCode X Z Cα ψ β γ ρ− η= + + + + +  

( ) ( ) ( )J teacher K grade S school
it it it itD D Dθ π δ+ + + ε+  

 
Equation (1) describes the test-score performance of student i taught by teacher j in 

grade k at school s in year t.  The model controls for heterogeneity in student ability 

by including student fixed effects (denoted by iα ).5  The vectors Xit, Zit and Cit 

contain time-varying student-, school- and classroom-level characteristics, 

respectively.  The variables included in these vectors are listed in Table 2.1.  Vectors 

of indicator variables for teachers, grade levels and schools are also included in the 

student-achievement specification.   

 

In addition to student fixed effects, our model includes school and zip-code 

fixed effects.  Together, these sets of fixed effects ensure that the model evaluates 

variation in teacher quality within schools, ignoring any between-school variance.  

Our methodology is supported by previous empirical work indicating that most of the 

                                                 
4 Value-added is often modeled in terms of test-score gains.  The gainscore specification is a specific 
case of the general value-added specification in equation (1).  We do consider gainscore models in our 
analysis.  As would be expected, teacher-effect estimates from a gainscore model that is analogous to 
equation (1) are highly correlated with our estimates. 
5 Students and teachers in San Diego are non-randomly assigned to classrooms within schools, 
highlighting the importance of controlling for student ability in the model of student achievement.  In 
an omitted exercise that is available from the authors upon request, we reject the hypothesis that, 
within schools and grades, current teachers do not predict previous test-score performance.  This result 
additionally implies that students may be sorted along dimensions that are unobserved. 
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variation in teacher quality occurs within schools as opposed to between schools 

(Hanushek et al., 2005; Nye, Konstantopoulos and Hedges, 2004).  This is likely to be 

the case because the degree of sorting of teacher quality across schools, which would 

drive any between-school variation in teacher quality, is largely dependent on the 

success of schools in identifying and hiring the best teachers.6  The empirical 

evidence suggests that schools may find it very difficult to identify the best teachers 

and that even if they do, they may choose not to hire them.7  In our model-sensitivity 

analysis in Section V, we show that essentially all of the variation in teacher quality 

in San Diego elementary schools exists within schools.   

 

The potential influence of peer effects is possibly the most worrisome 

confounding factor in any analysis of teacher quality.  To address this issue, our 

model controls for the year (t-1) achievement of classroom-level peers.  We also note 

that the effect of any systematic ability grouping experienced by students will be 

largely absorbed at the student level because the student fixed effect will pick up the 

average peer effect experienced by a given student over the course of the panel.  

Similarly, we control for class size to prevent variation in class size from being 

misinterpreted as variation in teacher quality.  
                                                 
6 Teachers’ preferences for better schools could also affect teacher sorting.  However, hiring 
restrictions imposed by the labor contract between San Diego Unified School District and the teacher’s 
union should substantially limit the effects of teachers’ preferences on teacher sorting.  This will be 
discussed in more detail in Section V. 
7 Section VIII of this paper shows that observable teacher qualifications are virtually uncorrelated with 
outcome-based teacher quality.  In addition, numerous studies have documented the weak link between 
observable teacher qualifications and student performance.  See, for example, Aaronson et al. (2007), 
Angrist and Guryan (2003), Betts (1995), Betts, Zau and Rice (2003), Hanushek (1986, 1996), Kane, 
Rockoff and Staiger (2006).  Also, Ballou (1996) argues that schools may choose not to hire the most 
qualified teachers even when given the opportunity. 
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As it is written, the model in (1) will produce biased estimates of the 

coefficients of interest because the demeaned error term will be correlated with the 

demeaned lagged dependent variable.  Therefore, we adopt the method of Anderson 

and Hsiao (1981) to estimate the equation.  The method involves first-differencing to 

remove the student fixed effects, and then, to account for correlation between the 

first-differenced lagged dependent variable and the first-differenced error term, 

estimating this model using 2SLS, instrumenting for 

 with ( .  The key assumption 

required for this instrumentation to be valid is that the error terms in equation (1) are 

serially uncorrelated.  Although this assumption is not directly verifiable using 

equation (1), we use the first-differenced error terms to test for serial correlation 

between the ε

( )( ) ( )TestScore TestScoreijks t ijks t− −−1 2 )( )TestScoreijks t−2

)

it’s and find that this primary assumption is upheld.8  The first-

differenced version of equation (1) is detailed below: 

 
(2)  ( 1) ( 1) ( 2) ( ) ( ) (ijkst ijks t i i ijks t ijks tTestScore TestScore TestScore TestScoreα α ψ− −− = − + − −

)

 
 

( 1) ( 1) ( 1) ( 1)( ) ( ) ( ) (it i t it i t it i t it i tZipCode ZipCode X X Z Z C Cβ γ ρ− − −+ − + − + − + − η−

)ε ε −

                                                

 
 

( ) ( ) ( ) ( ) ( ) ( )
( 1) ( 1) ( 1) ( 1)( ) ( ) ( ) (J teacher J teacher K grade K grade S school S school

it i t it i t it i t it i tD D D D D Dθ π δ− − −+ − + − + − + −  
 

 
8 The white noise assumption for the error term is verified by evaluating the level of serial correlation 
between the first-differenced error terms, within students, in the first-differenced version of equation 
(1) below.  The individual εit’s are serially uncorrelated if the first-differenced error terms are serially 
correlated with a magnitude of approximately -0.5.   For students in which more than one first-
differenced equation is estimated, we estimate that the serial correlation between the first-differenced 
error terms to be -0.47. 
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The second term in parentheses on the right-hand side is the fitted value for the test 

score change from the first stage of the 2SLS procedure.9  We evaluate the effects of 

teacher quality on student performance in both math and reading using equation (2). 

 

II.III. Data  

This study is based on panel data from the San Diego Unified School District 

(SDUSD), following elementary school students and teachers over time.  We use 

student test-score data from the Stanford 9 standardized test for both math and 

reading from the 1998-99 school year through the 2001-02 school year.  Our analysis 

is based on test-score data from over 16,000 students and we evaluate the effects of 

over 1,000 elementary school teachers at SDUSD.  Students and teachers are linked at 

the classroom level and an extensive list of school, student and teacher characteristics 

is available.  

 

The Stanford 9 standardized test is psychometrically scaled such that a one-

point gain in student performance at any point in the schooling process is meant to 

correspond to the same amount of learning.  A related characteristic of the Stanford 9 

test is that, unlike some other standardized tests, it does not exhibit a pronounced test-

score ceiling in math or reading performance (through the 5th grade).10  This feature 

                                                 
9 Robust standard errors for all 2-stage-least-squares coefficients in this model were generated with one 
important adjustment.  The differenced error term in equation (2) is serially correlated among students 
with more than one equation in our model.  We structurally enforced this property of the error term 
into the variance-covariance matrix for relevant students.   
10 To check for the presence of a test-score ceiling in our data, we group all students into deciles based 
on their raw test score level in year (t-2). We then check whether the average test-score gains of 
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of the test makes it a particularly useful tool for measuring the effects of teacher 

quality on student outcomes throughout the entire range of student achievement as 

will be discussed in further detail in Section VI. 

 

SDUSD is the second largest school district in California and is quite diverse.  

The student population is approximately 27 percent white, 37 percent Hispanic, 18 

percent Asian/Pacific Islander and 16 percent Black.  28 percent of SDUSD students 

are English learners, and some 60 percent are eligible for meal assistance.  Both of 

these shares are larger than those of the state of California as a whole.  As far as 

standardized testing performance, students in SDUSD trailed very slightly behind 

national reading averages in 1999-2000.  On the contrary, SDUSD students narrowly 

exceeded national norms in math.11  

 

This study focuses on elementary school students because they have the same 

teacher for the entire day.  This removes potentially confounding effects such as 

teacher spillovers that may be present at the high school level.  Because students are 

tested in 2nd through 5th grade (6th grade is part of middle school at SDUSD), we have 

up to four years of test scores for each student in the panel.  Table 2.1 details the 

controls available for students, teachers, classrooms and schools in this study.  

Appendix 2.A provides additional details about the data used for this project. 

                                                                                                                                           
students in year (t) are lower for students in higher deciles.  In math, there is no relation.  However, in 
reading there is a mild but persistent decline in test score gains as students make progress in the test-
score levels distribution.  See Appendix 2.F for more details. 
11 District characteristics summarized from Betts et al. (2003). 
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II.IV. Results – The Variance of Teacher Quality 

 
In this section we evaluate the importance of variation in teacher quality as a 

determinant of student performance in math and reading.  Table 2.2 reports Wald 

statistics generated under the null hypothesis that all teacher effects are equal.  

Variation in teacher quality is shown, quite convincingly, to be a statistically 

significant determinant of student achievement for both math and reading in 

elementary school. 

 
Although the results in Table 2.2 indicate that variation in teacher quality is a 

statistically significant determinant of student achievement, they do not provide 

information about economic significance.  To analyze the economic importance of 

variation in teacher quality as a determinant of student outcomes, we empirically 

estimate the magnitude of the variance of teacher quality.12  This will allow us to 

evaluate the effects of distributional shifts in teacher quality on student performance.  

We start by calculating the sample variance of the estimated teacher coefficients: 

(3)         Var  =( )θ 2

1 1

1 ˆ( ) [ (1/ ) ( )
1

J J
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j j
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J
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Each fixed-effect coefficient is comprised of two components - the true signal 

of teacher quality and estimation error, ˆ
j jθ θ λ= + .  Equation (3) overstates the 

variance of teacher quality because it includes the variance of the estimation error.  
                                                 
12 We follow the method of Koedel (2007) to estimate the magnitude of the variance of teacher quality. 
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We define the estimation-error variance as Var( )λ  and the variance of the teacher-

quality signal, the outcome of interest, as ( )Var θ .  To separate the estimation-error 

variance from the variance of the teacher-quality signal, we first assume that 

Cov( , )θ λ = 0 .13  This allows for the total variance of teacher fixed effects to be 

decomposed as follows: 

 
(4)   ˆ( ) ( ) + ( )Var Var Varθ θ= λ     
  
 

Next, we scale the Wald statistic and use it as an estimate of the ratio between 

the total fixed-effects variance and the error variance:14

 

(5)  11 ˆ ˆ ˆˆ*[( ) '( ) ( )] ( ) / ( )
1

( ) J J JV Var
J

Varθ θ θ θ θ−− − ≈
−

λ  

 

In the above formulation, θ̂  is the Jx1 vector of estimated teacher fixed 

effects, θ  is the sample average of the ˆ 'j sθ , ĴV  is the JxJ portion of the estimated 

variance matrix corresponding to the teacher effects being tested and J  is a Jx1 

vector of ones.15  Equation (5) weights the total fixed-effects variance by the 

                                                 
13 This assumption is not directly verifiable because both θ  and λ  are unobserved.  If for some 
reason the signal and error components of teacher fixed effects were negatively correlated then the 
results presented here would understate the variance of teacher quality.  If the converse were the case, 
the estimates would be overstated. 
14 In the variance matrix that we use for our Wald statistics we set all covariance terms to zero.  This 
covariance restriction has a negligible effect on our results and allows for a straightforward calculation 
of the magnitude of the variance of teacher quality.  See Appendix 2.B for details. 
15 The variance matrix used in the Wald tests is the diagonal of the full variance-covariance matrix for 
the relevant set of teacher coefficients.  Substituting the full variance-covariance matrix for the 
variance matrix has virtually no effect on the results. 
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estimation error variance on a coefficient-by-coefficient basis.  See Appendix 2.B for 

details.  

 

The magnitude of the variance of the teacher-quality signal can be estimated 

from equations (4) and (5).  For example, if the scaled Wald statistic is estimated to 

be A then the variance of the teacher-quality signal can be estimated by: 

 
(6)    ˆ ˆ( ) ( ) - ( ( ) / )Var Var Var Aθ θ θ=

  
To facilitate the interpretation of our results, we convert our estimates of the 

variance of the teacher-quality signal obtained from equation (6) into units of within-

grade standard deviations.16  For math, we estimate that the effect of a one-standard 

deviation change in teacher quality on student performance is equivalent to 0.26 

average within-grade standard deviations of the test.  For reading, we estimate an 

analogous effect of 0.19 average within-grade standard deviations.  These results are 

detailed in the first column of Table 2.3.17

 

                                                 
16 To do this we divide the predicted effect on test scores from having a one-standard-deviation 
increase in teacher quality by the weighted average (across grades) of the standard deviation of end-of-
year scores within each grade.  The weights are our sample size in each grade.  The resulting ratio 
provides one estimate of the average impact on student performance of a one-standard deviation move 
upwards in the teacher quality distribution.   
17 The estimates in Table 2.3 are presented in average within-grade standard deviations of the test that 
are calculated using all students at SDUSD who have a test-score record.  An alternative would be to 
use only students in our final sample to calculate the average within-grade standard deviations of the 
test.  Estimated within-grade standard deviations based only on students in our sample will be smaller 
because students used in our sample are more homogeneous than the entire sample at SDUSD (due to 
the requirements of the fixed effects specification, see Appendix 2.A for details).  We ultimately 
present our estimates using the within-grade standard deviation estimates from the all-student sample 
because these estimates are likely to be more comparable to others in the literature.   
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The second column in Table 2.3 shows the predicted effects of a one-

standard-deviation change in teacher quality expressed as a proportion of average 

annual test-score gains.18  In math, the effect of a one-standard deviation change in 

teacher quality is equivalent to 0.41 student-years.  In reading, we estimate an effect 

of 0.31 student-years. 

 
The estimates of the variance of teacher quality presented in Table 2.3 provide 

strong evidence of the value of teacher quality as a resource in the educational 

production function and are considerably larger than previous empirical estimates.  

For example, our estimate of the effect of a one-standard deviation improvement in 

teacher quality on student math performance is approximately 67 percent larger than 

an analogous estimate from Hanushek et al. (2005).19  In both math and reading, we 

find that significant gains in student performance can be obtained through 

improvements in teacher quality. 

 
 

II.V. Specification Checks and Sensitivity Analysis 
 

The value-added specification of the student-achievement model that we 

employ, which includes student fixed effects to control for differences in students’ 

test-score trajectories, is unique in the literature.  In this section, we evaluate the 

                                                 
18 We weight the gains across grades by the sample size in each grade to obtain a weighted average. 
19 The 67 percent figure reported in the text is arrived at by taking the raw-gains-scaled estimates from 
Hanushek et al. (2005) as reported by the authors and comparing them to our estimates.  There is an 
even greater difference between our estimates and those found in Rockoff (2004) and in Rivkin et al. 
(2005).  At the opposite extreme, when compared to estimates from Nye et al. (2004), who use a 
residual-variance approach that does not correct for sampling variation, our estimates are somewhat 
smaller.   
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model in more detail and consider the sensitivity of our variance estimates to 

alternative specifications.   

 

Table 2.4 documents four different value-added specifications for the model 

of student achievement from which teacher fixed effects can be estimated.  The first 

column shows the full model estimated in equation (2).  Columns 2 through 4 show 

three different restricted models.  More detail is added to each specification moving 

from column 2 to column 4.  Wald tests for the completeness of the restricted models 

against the full model indicate that the restricted models in columns 2 and 3 are 

underspecified.20

 

For each restricted model in Table 2.4, the bottom two rows of the table 

compare the vectors of teacher fixed effects estimated from our full model to the 

given restricted model by reporting the correlation between the vectors.  This exercise 

is performed for the math and reading specifications.   

                                                 
20 P-values from Wald tests of the null hypotheses that the coefficients on the omitted variables in the 
restricted models are zero are less than 0.01 for all omitted variable groups except student fixed effects.  
We do not run tests for the statistical significance of the student fixed effects because of the 
computational demands of such tests.  Furthermore, the large-N, small-T structure of the panel dataset 
implies that the results from these tests would be rather uninformative (lacking power).  However, 
student fixed effects have a strong theoretical justification for inclusion in the model.  For further 
discussion, see Harris and Sass (2006).  Finally, note that all of our major findings are generally robust 
to models of student achievement that are not first-differenced (see Table 2.5). The decision about 
whether to first-difference the value-added specification seems to be most important in determining 
teachers’ value-added rankings (as indicated by Table 2.4) and merits additional attention in future 
research. 
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Why do estimates of teacher quality change so much when we fail to control 

for unobserved student heterogeneity?  One explanation is that teachers are assigned 

to groups of students in non-random ways based on unobservable student 

characteristics.21  Any model that does not control for this will mistakenly attribute 

inter-student variation in achievement gains to individual teachers.  The strong 

explanatory power associated with student-specific factors implies that models that do 

not control for these factors may produce biased estimates. 

 

Another explanation is that moving from the between-school specification to 

the within-student and within-school specification alters the comparison groups for 

teachers.  If there are significant differences in teacher quality across schools at 

SDUSD, we may wish to compare teachers between as well as within schools.  To 

evaluate this issue we consider the sensitivity of our variance estimates to alternative 

specifications, including models that exclude both school and student fixed effects.  

Table 2.5 shows eight different models from which we estimate the variance of 

teacher quality using the variance decomposition in equation (6).22  The table 

                                                 
21 Students do appear to be assigned to classrooms in non-random ways at SDUSD (for example, see 
Table 2.5 or footnote 5). 
22 Beyond evaluating the sensitivity of our variance estimates to alternative specifications, we also 
consider the possibility that our variance estimates are inflated because class-size reductions in 
California have increased the number of inexperienced teachers at SDUSD relative to other non-
California locales.  To do this, we separately estimate the variance of teacher quality among experience 
groups with more/less than two years, more/less than three years, and more/less than 5 years of 
experience.  In line with our findings in Section VIII of this paper, we find that differences in teacher 
experience explain just a small portion of the variance of teacher quality.  For example, the variance of 
quality among teachers with a sample-average of three years of experience or less is just 5 percent 
larger than the variance of teacher quality across the entire sample.  Ultimately, our interest is in the 
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indicates that the vast majority of the variation in teacher quality among elementary 

school teachers at SDUSD occurs within schools. 

 

The first vertical panel of Table 2.5 (columns 1 – 4) evaluates teacher effects 

estimated from a test-score-levels specification.  Changes in the variance estimates 

moving from left to right in this panel show the importance of the various 

components of the student-achievement model in removing sorting bias based on test-

score levels.  The second vertical panel evaluates teacher effects estimated from our 

value-added specification.   

 

We start by estimating the variance of average test-score levels, conditional on 

students’ current grade levels, across teachers at SDUSD.  These estimates are 

presented in column 1 of the table and incorporate not only teacher quality, but also 

any sorting of students and teachers throughout SDUSD across schools and 

classrooms.  In moving from column 1 to column 2, we add our set of student-level 

variables to the test-score-levels specification.  The variance estimates fall by 

approximately 50 percent for both the math and reading models.  This indicates that 

observable student-level variables control for a sizeable portion of the district-wide 

sorting that is contributing to the variance estimates in column 1.  In moving from 

column 2 to column 3, the inclusion of the set of school- and classroom-level 

covariates and school and zip-code fixed effects further reduces the estimated 

                                                                                                                                           
total variation in teacher quality experienced by students and because of this we do not control for 
teacher experience directly in our models. 
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variance of teacher quality.  One possible explanation for this effect is that test-score-

levels sorting bias is reduced.  That is, student sorting across schools that is aligned 

with test-score performance, in levels, is removed by the inclusion of these controls.  

Another possibility is that variation in teacher quality due to teacher sorting across 

schools is removed from the total variance estimates.  Finally, we add student fixed 

effects to the levels specification in column 4 to control for any within-school sorting 

of students and teachers that is not captured by observables.  The estimates in column 

4 show that there is a significant degree of positive student-teacher matching within 

schools based on students’ test-score levels.  The inclusion of student fixed effects 

significantly reduces the estimated variance of the conditional teacher means at 

SDUSD by removing upward bias generated by this matching. 

 

We also estimate the variance of the estimated teacher effects across models 

within the value-added framework.  These results are presented in columns 5 – 8.  

The pattern of adjustments in the variance of the conditional teacher means when 

moving across models in the value-added framework is quite similar to the pattern 

displayed in the levels specifications with two important exceptions.  First, in both 

math and reading, school-level variables do not affect the magnitude of the estimated 

variance of teacher quality in the value-added framework.  This implies that although 

teachers may sort themselves based on observable student characteristics, there is 

virtually no sorting of teacher quality across schools at SDUSD conditional on these 

observable student characteristics. This lends strong support to our empirical 
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approach that estimates teacher value-added within schools and students.  Second, in 

the value-added reading model, the inclusion of student fixed effects into the 

otherwise fully specified model leads to a very mild increase in the estimated 

variance of teacher quality.  Given positive student-teacher matching, we would 

expect the opposite effect.  

 

Estimates from columns 6 and 7 in Table 2.5 indicate that there is virtually no 

between-school variation in teacher quality, measured by value-added, across San 

Diego elementary schools.  The lack of between-school variation in teacher value-

added is likely to be largely the result of the inability of schools to identify and hire 

the best teachers.  In Section VIII, we show that the observable teacher qualifications 

most commonly linked to teacher recruitment, retention and salaries are almost 

entirely unable to predict teacher value-added.23  Furthermore, Ballou (1996) shows 

that even when schools are able to hire seemingly superior teachers, they often choose 

not to.  Finally, schools at SDUSD are further limited in their ability to select the 

most effective teachers by the labor contract between SDUSD and the teachers’ 

union.  This contract requires that schools with an open position choose from the five 

teachers with the most district seniority who apply for the position and meet the stated 

qualifications, restricting each school’s pool of potential applicants.24  Overall, the 

results from Table 2.5 suggest that the conventional wisdom that there is significant 

                                                 
23 For additional evidence, see Aaronson et al. (2007), Angrist and Guryan (2003), Betts (1995), Betts 
et al. (2003), Hanushek (1986, 1996) and Kane et al. (2006). 
24 Empirical evidence suggests that experience beyond the first few years of teaching is, at most, 
marginally related to teacher value-added. 
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variation in teacher value-added between schools at the elementary level may be quite 

inaccurate.25

 

Column 8 of Table 2.5 shows that the inclusion of student fixed effects in the 

value-added model of student achievement does not significantly inflate the 

magnitude of the estimated variance of teacher quality in either subject.  In fact, for 

math, moving to the student-fixed-effects specification results in a decrease in the 

estimated variance of teacher quality.  This is intuitive because this specification 

reduces the bias generated by positive student-teacher matching within schools.  

Nonetheless, previous researchers who have estimated outcome-based teacher quality 

have tended to exclude student fixed effects from the value-added specification, 

presumably because of a belief that the student-fixed-effects model artificially inflates 

the estimated variance of teacher quality by adding noise to the model of student 

achievement.  A comparison of our math and reading results in Table 2.5 provides 

insight into this concern.  We find that the student-fixed-effects specification can lead 

to inflated variance estimates (for example, mildly in our reading specification), but 

that this apparently counterintuitive effect is easily explainable.  In both math and 

reading, controls for student ability remove omitted variables bias in teacher fixed 

effects generated by positive student-teacher matching.  However, in our reading 

analysis, properties of the testing instrument used to measure teacher quality are such 
                                                 
25 This conventional wisdom is likely borne from differences in observable teacher qualifications 
across schools that are easily documented.  However, the link between these observable teacher 
qualifications and actual teacher value-added is so weak that differences across schools along this 
dimension provide no information about differences across schools in terms of actual teacher quality as 
measured by value-added. 
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that the bias created by this matching is downward.  The next section explores this 

issue in detail. 

 

II.VI. Estimating the Variance of Teacher Quality and the Testing 
Instrument 

 
The use of the Stanford 9 standardized exam at SDUSD is a fortuitous 

circumstance for our evaluation of teacher quality.  Unlike other testing instruments 

that have recently been used to estimate outcome-based teacher quality, the Stanford 

9 exam is not a minimum competency test.  Minimum competency tests are likely to 

exhibit strong ceiling effects characterized by students experiencing systematic 

declines in test-score gains as they advance in the test-score levels distribution.26  

Importantly, a test-score ceiling may affect more than just the highest achievers.   

Appendix 2.F details the test-score ceiling properties of the Stanford 9 standardized 

exam at SDUSD and shows that the math portion of the Stanford 9 does not exhibit a 

test-score ceiling at all.  For reading, the Stanford 9 exhibits a mild test-score ceiling.  

 

Test-score ceilings are a major consideration in the estimation of outcome-

based teacher quality because they restrict the capacity of the testing instrument to 

capture the full extent of students’ human capital development.  Hanushek et al. 

(2005) report that in their analysis of one large Texas school district, gains in test 

scores are strongly negatively related to previous performance.  They show that 

                                                 
26 Such a relationship will exist for any testing instrument due to regression to the mean.  However, in 
addition to any effects from regression to the mean, minimum competency tests should exert additional 
downward pressure on test-score gains as students make progress in the test-score levels distribution. 
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approximately two-thirds of the students in their sample (those at the top of the test-

score levels distribution) are at a level of achievement such that the average annual 

test-score gain of students in their same achievement-level decile is negative.27  

Rockoff (2004) does not examine test-score ceiling effects in his analysis in great 

detail, but does indicate that 3 to 6 percent of students in his study have test scores 

that are at the maximum attainable score.28  Other studies fail to address this 

important issue altogether.   

 

To illustrate how a test-score ceiling can affect estimates of the variance of 

outcome-based teacher quality, consider a simple example.  Teacher effects are 

estimated using the value-added framework, but suppose that the modeling strategy 

does not control for unobserved student ability in gains.  Assume, as is the norm, that 

students and teachers are positively matched in terms of ability within schools and 

that the most able students tend to have larger test-score gains and therefore, higher 

test-score levels.  First, consider a testing instrument given to students that does not 

exhibit a test-score ceiling.  That is, the average gain for high-achieving students is 

not structurally restricted to be lower than the average gain for low-achieving students 

by the test.  In the absence of controls for student ability, positive student-teacher 

matching in this scenario will result in a bias away from zero for all teacher fixed 

                                                 
27 The strength of the negative relationship reported by these authors implies that ceiling effects, in 
addition to any regression to the mean, are a relevant concern in their analysis. 
28 For comparison, just 0.09 and 0.077 percent of students in our math and reading samples 
respectively scored at the top score possible for their grade. 
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effect estimates.29  This is because the best teachers will be matched with the 

brightest students (those with the highest gains) and the worst teachers with the 

students for whom gains are most difficult.  This will inflate the estimated variance of 

teacher quality.  

 

Second, consider the same scenario of positive student-teacher matching in 

terms of ability but instead imagine a testing instrument that exhibits a test-score 

ceiling.  In this case, lower-performing students will be able to achieve higher test-

score gains, on average, simply because of the structure of the test (an example of 

such a test would be a minimum competency test).  Again, the best teachers will teach 

the most able students but instead of generating an upward bias in teacher effects, 

these teachers will instead be penalized by the test because their students’ gains will 

be suppressed.  Similarly, the worst teachers will be rewarded by the test because 

their students’ gains will be, relatively speaking, overstated.  In this scenario, the 

variance of teacher quality will be understated because both the best and worst 

teachers will have coefficient estimates that will be biased toward zero as a result of 

positive student-teacher matching. 

 

Now consider the inclusion of controls for student ability in the model of 

student achievement in both of the above scenarios.  In the first scenario, where there 

is not a test-score ceiling, the inclusion of student fixed effects will remove the 

                                                 
29 Assuming that the distribution of teacher effects is centered around zero.  More generally, the bias 
will be away from the center of the teacher-effect distribution, increasing the variance. 
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upward bias in the teacher fixed effects and reduce the estimated variance of teacher 

quality.  This effect can be seen in moving from column 7 to column 8 in Table 2.5 

for the math analysis, where we find no evidence of a test-score ceiling at SDUSD 

(see Appendix 2.F).  In the second scenario, where a test-score ceiling is present, the 

inclusion of student fixed effects will again remove bias associated with positive 

student-teacher matching.  However, we will observe the opposite effect on the 

estimated variance of teacher quality because positive student-teacher matching 

creates bias toward zero in the teacher fixed effects.  The inclusion of student fixed 

effects removes this bias and the estimated variance of teacher quality actually 

increases.  This effect can be seen in moving from column 7 to column 8 in Table 2.5 

for the reading analysis, where we find evidence of a test-score ceiling at SDUSD 

(see Appendix 2.F).30  Although the effect of the inclusion of student fixed effects on 

the estimated variance of teacher quality works in opposite directions in these 

different scenarios, it removes bias from the same source in both cases – positive 

student-teacher matching.  Finally, note that the ceiling effects in our reading analysis 

are quite mild.  In a minimum competency testing environment, a test-score ceiling 

could have an effect that is significantly more pronounced. 

 

                                                 
30 Relative to other studies, the test-score ceiling present in the reading analysis here is very weak, 
which in turn explains why its effect on our variance estimates is small. However, the very fact that the 
estimated variance of teacher quality, measured in terms of reading performance, does not decline 
when student fixed effects are added to the value-added model is an indication of the ceiling effect. 
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II.VII. Correlation of Teacher Effectiveness Across Subjects:  Math & 
Reading 

 
Using the teacher coefficients estimated from the models of student 

achievement for math and reading, we examine the correlation of teacher quality 

across subjects.  Because elementary school students typically stay with the same 

teacher for the entire day, this question is of particular relevance for this study.   

 

We estimate the correlation coefficient between θ m  and θ r  (the vectors of 

teacher coefficients estimated from the math and reading specifications, respectively) 

to be 0.35.  However, this correlation defines the relationship between (θ m +λm ) and 

(θ r +λ r ), not θ m  and θ r  (where λm  and λ r  represent estimation error).  

Furthermore, the relationship between λm  and λ r  is unclear a priori.  Following 

Rockoff (2004), if we assume that the correlation of true teacher quality across 

subjects for all teachers is the same, we can get an idea of the direction of the bias 

introduced by the measurement error in the estimated teacher fixed effects.  

Measurement error will be smaller for teachers with a greater number of student-year 

observations.  Therefore, we compare the correlation coefficient between θ m  and θ r  

for a subset of teachers who have a relatively high number of students to that of the 

entire teacher sample to get an idea of the direction of the effect of the correlation 

between λm  and λ r  on our initial correlation estimate.  The estimated correlation 

coefficient from our selected subset of teachers is higher than its counterpart from the 

full teacher set.  Thus, measurement error is biasing our estimate of the correlation of 
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teacher quality across subjects toward zero.31  We present our estimate of the 

correlation between θ m  and θ r , 0.35, as a lower-bound estimate of the correlation of 

teacher quality across subjects.   

 

To estimate an upper bound on the correlation of teacher quality across 

subjects, we estimate the correlation between θ m  and θ r  under the assumption that 

the correlation between λm  and λ r  is zero (See Appendix 2.C for details).  Our 

upper-bound estimate of the correlation coefficient relating teacher quality across 

subjects is 0.64.  Overall, our bounded estimate (0.35 to 0.64) indicates that the 

ability to be an effective teacher, at least at the elementary level, does not appear to be 

strongly subject-specific.   

 

II.VIII. Teacher Fixed Effects and Observable Teacher Qualifications 
 

Because variation in outcome-based teacher quality has been shown to be 

such an important contributor to student achievement, it is of interest to identify 

observable teacher qualifications that are strong predictors of teacher performance.  

We use a second-stage regression to evaluate the ability of a rich set of observable 

teacher qualifications to predict teacher value-added as estimated by our empirical 

model.  Many of the observable qualifications used in this analysis are important 

determinants of teacher recruitment, retention and salaries.     

 

                                                 
31 Our finding in this regard is in accordance with Rockoff (2004). 
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The SDUSD dataset includes over 50 unique observable teacher qualifications 

that may predict teacher value-added.  However, running the “kitchen sink” model 

yields limited information due to collinearity among these qualifications.  Therefore, 

we initially include only key observable qualifications that are unlikely to be highly 

collinear in our model.  We report results using both the smaller model and the model 

containing all of the observable teacher qualifications available in the dataset (for a 

listing of the controls used in the richer model, see Table 2.1).   

 

Consider the following second-stage regression that we would like to 

estimate:  

(7)  θ α βj jX= + je+    
 
Here, θ j  is the true measure of teacher quality for teacher j in either subject,  is a 

vector of observable teacher qualifications, α is an intercept and e  is the unobserved 

error term.  However, in the second stage, our dependent variable is a statistical 

estimate and thus is measured with error.   

X j

j

(8)  ˆ
j j jθ θ λ= +    

 
The estimation error, jλ , will appear in the second-stage error term.  We would like to 

estimate α  and β  from equation (7) above.  However, because of the estimation 

error in the dependent variable, we must estimate the following equation: 

(9)  j j j
ˆ =  + X  +  + eθ α β λ j  
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Here, jλ  and e  are assumed to be uncorrelated and j jλ  may be non-symmetric.  The 

appropriate estimation strategy for efficient estimates of α  and β  under these 

circumstances is WLS.  The appropriate variance-covariance matrix to use for 

weighting, following Borjas and Sueyoshi (1994), is: 

Ω = Iσ e
2

J +  V
 
where J is the number of teacher coefficients and  is a diagonal matrix whose 

elements are from the diagonal of the estimated variance-covariance matrix 

corresponding to the teacher coefficients from equation (2).   estimates the variance 

matrix of 

V

V

jλ .   can be estimated following Borjas (1987).  Table 2.6 reports our 

FGLS coefficient estimates from the weighted regression.

σ e
2

32,33

 

Rather than focusing on causality, we instead consider the overall power of 

observable teacher qualifications to predict variation in outcome-based teacher 

quality.  Although the FGLS estimates presented in Table 2.6 are efficient given the 

estimation error in the teacher fixed effects, R2 statistics generated from GLS models 

have an unclear interpretation (for example, these statistics are not bounded on the 

interval [0,1]).  Therefore, to provide an in-depth answer to the question of how much 

                                                 
32 Regressors for our second-stage analysis are averaged within teachers where relevant. 
33 Despite empirical evidence indicating that teacher experience is non-linearly related to effectiveness, 
we model it linearly here.  This is because the linear experience term maximizes the R2 from the OLS 
analog to the GLS model presented in the text.  (It maximizes the GLS R2 as well, although the GLS 
R2 is difficult to interpret).  In an auxiliary analysis available from the authors upon request, we also 
estimate our second-stage model using experience indicator variables rather than the linear term.  Our 
results from that analysis are virtually identical to those presented in the text. 
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variation in teacher quality can be explained by observable teacher qualifications, we 

use the R2 formula from the OLS analogs to the above GLS models. 

 

Following the methodology outlined in Appendix 2.D, we generate upper 

bounds on the R2 statistics for our math and reading second-stage models by 

manually removing the variation in the dependent variable due to estimation error 

from the explanatory-power calculation.  These upper bounds estimate the absolute 

maximum amount of information about variation in actual teacher quality contained 

by easily observable teacher qualifications.  For math, we estimate an upper bound on 

the true R2 from our second-stage analysis of approximately 0.057.  For reading, the 

estimated upper bound is just 0.029.  Even these upper bounds clearly show that 

observable teacher qualifications are weak predictors of variation in outcome-based 

teacher quality.   

 

We also consider an expanded version of our second-stage model that 

includes all of the observable teacher qualifications available in the data (see Table 

2.1).34  In this case, we estimate upper bounds of 0.070 and 0.068 for the math and 

reading analyses respectively.  However, we note that our upper bound results are 

more likely to be overstated with this larger model.  See Appendix 2.D for details. 

 

                                                 
34 This expanded model includes indicator variables for undergraduate minors, credential levels, 
CLAD and BCLAD ( (Bilingual) Cross-Cultural Language and Development) certifications, additional 
supplementary authorizations, additional undergraduate majors and additional advanced degrees.  We 
also include a separate variable that controls for experience at SDUSD specifically. 
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Finally, we consider the unlikely scenario that schools are already identifying 

effective teachers in ways that evade our methodology and that this identification is 

reflected in teacher salaries.  We run another second-stage regression to see how well 

teacher salaries alone predict teacher quality to test for this possibility.  We generate 

upper bounds on the percentage of variation in teacher quality explained by teacher 

salaries to be just 1.4 percent in math and 0.9 percent in reading.  This result suggests 

that teacher compensation, which in SDUSD as in most public school districts 

depends heavily on teacher tenure, highest degree and teaching credentials, bears 

almost no relation whatsoever to teaching effectiveness.   

 
 

II.IX. Teacher Fixed Effects and Teacher Evaluations 
 

The weak link between outcome-based teacher quality and the qualifications 

by which most teachers are evaluated should perhaps encourage the use of alternative 

measures of quality.  Among educational-accountability advocates, one proposal is to 

incorporate output from models similar to our own into teacher evaluations directly 

(for example, see Gordon, Kane and Staiger, 2004).35   

 

To assess the feasibility of using statistically estimated teacher coefficients for 

teacher evaluations, we first examine whether they contain a sufficiently large signal 

of actual teacher quality.  For math, our variance decomposition in Section IV 
                                                 
35 An initial concern is whether teachers should be evaluated within or between schools.  Because 
Table 2.5 shows that virtually all of the variation in teacher value-added at SDUSD occurs within 
schools and that there is a considerable degree of within-school student sorting, we use the full within-
school and within-student specification documented in equation (2) in our teacher-evaluation analysis.  
We consider the costs associated with this strategy in Tables 2.8 and 2.9 below. 
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indicates that the variance of the teacher-quality signal is roughly 60 percent of the 

total fixed-effects variance.  For reading, 50 percent of total fixed-effects variance 

represents the true signal of quality.  Because the relative magnitudes of the signal 

and noise components of the individual teacher coefficients will be reflective of the 

entire sample, on average, we use these distribution-wide estimates as estimates of the 

average signal-to-noise ratios that characterize the individually estimated teacher 

fixed effects in math and reading. 

 

On the one hand, these estimates indicate that the teacher-quality signal 

contained by the value-added coefficients represents a significant improvement over 

current methods, as discussed in the previous section.  However, the high levels of 

estimation error inherent in the individual fixed effects make their application to 

teacher evaluation or merit pay programs worthy of a cautious approach.   

 

To illustrate the potential consequences associated with the noise found in our 

estimates we examine the persistence of estimated teacher fixed effects across years.  

For this analysis, we focus on student math performance.36  We break our student 

sample into two separate subsets based on the year of the differenced dependent 

variable from equation (2) in Section II.  For the first group, the dependent variable in 

                                                 
36 Dividing our student sample into two distinct student subsets and performing our analysis separately 
for each of these subsets introduces substantial noise into our teacher coefficient estimates.  In our 
math analysis, teacher coefficient estimates retained enough signal to make the split-sample analysis 
possible.  However, in reading the estimation error introduced by splitting our sample increased the 
estimation error variance so much that informative analysis was not possible because the signal-to-
noise ratio was close to zero. 
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equation (2) is the difference between spring 2002 and spring 2001 test scores.  For 

the second, the dependent variable is the difference between spring 2001 and spring 

2000 test scores.  We reference the first group as “year t” and the second group as 

“year t-1”.  After separating our sample, we independently estimate equation (2) and 

generate two separate vectors of teacher coefficients, one from each subset of student 

data.  The teacher coefficients estimated from these data subsets are based on 

different but partially overlapping groups of students.  We evaluate the effects of the 

941 teachers (out of our initial sample of 1,064) who taught students in both subsets. 

 

Following a methodology similar to that of Aaronson, Barrow and Sander 

(2007), we examine the rank-persistence of teacher fixed effects across the student 

subsets.  Within each vector of teacher fixed effects we divide teachers into quintiles 

based on their value-added rankings where quintile-5 teachers are those with the 

highest value-added.  Table 2.7 demonstrates the persistence of these quintile 

rankings across the data subsets.   

 

If teacher quality were perfectly observable through statistical estimation and 

constant over time, entries along the diagonal of Table 2.7 would all equal 100 

percent and all off-diagonal entries would all equal 0.  Clearly, this is not the case.  In 

fact, significant fractions of teachers move up or down by two quintiles or more when 
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we shift our student sample.37  However, the southeast and northwest corners of 

Table 2.7 suggest that the best and worst teachers (who are ranked in the top and 

bottom quintiles) are significantly more likely to retain their distinctions across years 

relative to other teachers in the sample.  Although this result is largely by design 

(these quintiles are open-ended), it is nonetheless an important feature of this analysis 

because it is precisely these teachers who would be targeted by a teacher-

accountability system.  Therefore, the bleak outlook portrayed in Table 2.7 may be 

somewhat mitigated when considered in the context of an evaluation system focusing 

on the identification the best and worst teachers. 

 

One concern in our split-sample analysis is that it will understate the 

persistence of teacher effects as a result of our within-school-and-student 

specification.  This is because the stability estimates from the transition matrix in 

Table 2.7 are affected by changes in teachers’ comparison groups as teachers move in 

and out of schools over time.  Although teacher movement over time would affect 

even a between-school analysis, its effects are amplified by our within-school-and-

                                                 
37 Importantly, the coefficients evaluated in Table 2.7 contain much higher levels of estimation error 
than their counterparts from our full model.  This is the result of splitting our student sample because, 
in doing so, we reduce the number of observations available to estimate each teacher coefficient.  The 
increased estimation error will lead to an understatement of the persistence of teacher effects.  An 
additional concern is that the length of our panel forces us to overlap two of the four years of student 
data to perform the split-sample analysis.  Through this overlap, the correlation between the two sets of 
teacher fixed effects may be artificially increased because the errors in the two sets of estimates may 
be positively correlated.   
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student approach because each teacher’s comparison group is smaller and therefore 

more responsive to teacher turnover.38   

 

We present two additional transition matrices analogous to the one in Table 

2.7 to evaluate this concern.  The first matrix is generated from a between-school-

and-student specification (this specification omits school-level covariates and school- 

and student-level fixed effects, see column 6 in Table 2.5) and is detailed in Table 

2.8.  The second is still based on the within-school-and-student specification but only 

uses data from a given school if the average teacher taught at that school in at least 

three out of the four years of the data panel (84 out of the 108 elementary schools 

used in this analysis were designated as “low-turnover” by this standard).  This matrix 

is detailed in Table 2.9. 

 

The tight comparisons among teachers created by our within-school-and-

student specification do appear to affect the persistence of teacher effects across the 

student subsets.  In Table 2.8 the contrast is most stark; looking between schools 

results in a large increase in the persistence of teacher effects and significantly 

reduces the percentage of teachers who move more than one quintile in either 

direction in the transition matrix.  Of course, this increased persistence reflects not 

                                                 
38 Another concern here could be that teachers’ quality levels may be changing over time with 
experience.  Although the results from Section XIII indicate that experience is only weakly related to 
value-added, we nonetheless look to see if more experienced teachers have more stable value-added 
estimates.  If experience plays a non-negligible role, we should expect relatively inexperienced 
teachers to have less stable value-added coefficients because performance has been shown to change 
most rapidly in the early years of teachers’ careers.  We do not find any evidence that more 
experienced teachers have more stable value-added estimates. 
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only the more stable comparison group for each teacher (all teachers in the district 

rather than just the teachers at a given school) but also the persistence of school-level 

effects that are correlated with teacher effects. 

 

The differences between Table 2.7 and Table 2.9, where we look at low-

turnover schools, are more subtle.  Although the sums of the diagonal elements of 

each matrix are very similar, there are significant reductions in the number of teachers 

who move more than one and more than two quintiles across the transition matrix 

when we focus our analysis on schools with lower teacher turnover.   

 

Together, the transition matrices in Tables 2.8 and 2.9 show that teacher 

turnover can play an important role in determining year-by-year teacher fixed effects 

estimated using the within-school-and-student specification.  This implies that year-

by-year value-added estimates may represent an infeasible standard for evaluating 

teacher quality. 

 
 

II.X. Conclusion 
 

We show that teachers vary in quality considerably more than previous 

research has implied.  In math, we find that the average effect on student performance 

of a one-standard deviation improvement in teacher quality in a given year 

corresponds to 0.26 average within-grade standard deviations in test scores.  In 
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reading, the same improvement in teacher quality corresponds to 0.19 average within-

grade standard deviations.  These are very large effects.   

 

Our analysis highlights the importance of the testing instrument used to 

evaluate teacher quality.  We show that when a test-score ceiling restricts students’ 

test-score gains, teacher effects can be significantly understated.  However, including 

controls for heterogeneity in student test-score growth (i.e., student fixed effects) in 

the value-added specification may at least partially mitigate this problem. 

 

Given the importance of variation in outcome-based teacher quality as a 

determinant of student achievement, we test to see if the qualifications by which most 

teachers are evaluated are related to actual performance measured by student 

outcomes.  Our empirical results strongly support earlier findings that observable 

teacher qualifications are only weakly related to outcome-based measures of teacher 

quality.  To emphasize this, we estimate upper bounds on the explanatory power of 

observable teacher qualifications and show that even at these bounds, the information 

about teacher quality contained by these observable measures is minimal.  The 

persistence of this result throughout the modern empirical literature should perhaps 

lead to long-term changes in teacher recruitment, as well as teacher credentialing and 

professional development.  Perhaps most of all, the system for setting teacher pay 

largely as a function of teacher experience, education and credentials may require 
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radical reform.  We show that teachers’ salaries can explain, at most, 0.9 to 1.4 

percent of actual variation in performance-based teacher quality.  

 

Finally, the future role of value-added as a determinant of teacher 

accountability is still unclear.  On the one hand, the signal contained by value-added 

estimates is sizeable, especially when compared to the current standards by which 

most teachers are evaluated.  However, on the other, there is also a considerable 

degree of estimation error in the teacher coefficients which suggests a cautious 

approach to their implementation for accountability purposes.  One solution would be 

to incorporate value-added into a larger system of teacher accountability.  Employing 

value-added estimates in conjunction with other measures of teacher quality that are 

unlikely to have correlated measurement errors should diminish the impact of these 

errors and increase the visibility of actual teacher quality.   
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Chapter 2 Tables 
 

Table 2.1. Description of Key Data Elements 
Time-Varying 
Student 
Characteristics 

Controls for grade levels, parental education, level of test 
score in year (t-1), EL or non-EL (EL = English Learner), 
FEP or non-FEP (FEP = Fully English Proficient), student 
was accelerated a grade, held back a grade, a school 
changer, terms attended, school days attended, student was 
re-designated FEP that year, student was new to district. 
 

Time-Varying School 
Characteristics 

Controls for the racial makeup and heterogeneity of 
schools, school size, whether school is year-round, percent 
of school on free lunch, percent of school EL, percent of 
school FEP, number of peer coaches, number of peer 
coach apprentices, percent of school that changed schools, 
percent of school new to district 
 

Time-Varying 
Classroom 
Characteristics 
 

Class size, peer achievement in year (t-1) 

Teacher 
Characteristics 

Dummy variables to control for subject of undergraduate 
degree, undergraduate minor, whether undergraduate 
institution is a top 100 university based on research 
dollars, highest level of education, subject of highest 
degree, level of credentialing, experience, salary, time at 
SDUSD, controls for any supplementary authorizations, 
emergency authorizations, and CLAD (Cross-cultural 
Language and Academic Development) or Bilingual 
CLAD certification  
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Table 2.2.  Wald Tests for the Statistical Significance of Variation in Teacher 
Quality 

  
H0:  1 2 ... Jθ θ θ θ= = = =  

Math Achievement 
 
Wald Statistic:  2,636 
P-Value:      < 0.01 

Reading Achievement 
 
Wald Statistic:  2,117 
P-Value:      < 0.01 
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Table 2.3.  Estimated Effects of Having a One-Standard-Deviation Above-
Average Teacher on Student Performance 

 Proportion of Average 
Within-Grade Standard 

Deviations 

Proportion of Average 
Annual Test-Score Gains 

 
Math 

 
0.26 

 

 
0.41 

 
 
Reading 

 
0.19 

 

 
0.31 
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Table 2.4.  Estimated Correlation Coefficients Relating Teacher Fixed Effects 
Estimates from Restricted Models to Estimates from the Full Specification 

 (1)  (2) (3) (4) 
Included Explanatory Variables      
Lagged Test Score Yes  Yes Yes Yes 
Grade-Level Fixed Effects Yes  Yes Yes Yes 
Student-Level Covariates Yes  No Yes Yes 
School- and Classroom-Level Covariates, 
School and Zip Code Fixed Effects  

Yes  No No Yes 

Student Fixed Effects (First Differenced) Yes  No No No 
      
Correlation Coefficient - Math 1  0.64 0.67 0.74 
      
Correlation Coefficient - Reading 1  0.50 0.53 0.62 

Notes:  Correlation coefficients compare teacher effects weighted by their standard errors.  Column 1 
shows our full specification to which the restricted specifications in columns 2 through 5 are 
compared.  Wald tests reject all of the restricted models against the full model we have already 
reported.  In columns 2 through 4, the model was estimated without first-differencing. 
 



 

Table 2.5.  Teacher Fixed Effects Variance Estimates, Adjusted Using Equation (4), from Various Math and Reading 
Student-Achievement Specifications 

 Test-Score Levels  Value-Added
 (1) (2) (3) (4)  (5) (6) (7) (8) 
Explanatory Variables          
Lagged Test Score No No No No  Yes Yes Yes Yes 
Student-Level Covariates No Yes Yes Yes  No Yes Yes Yes 
School- and Classroom-Level Covariates, 
School and Zip-Code Fixed Effects 

No No Yes Yes  No No Yes Yes 

Student Fixed Effects No No No Yes  No No No Yes 
          
Estimated Variance of Teacher Quality – 
Math Model (Standard Deviation in 
Parenthesis) 

527.7 
(23.0) 

290.2 
(17.0) 

259.9 
(16.1) 

86.3 
(9.3) 

 134.2 
(11.6) 

114.4 
(10.7) 

115.7 
(10.8) 

99.5 
(9.8) 

          
Estimated Variance of Teacher Quality – 
Reading Model  (Standard Deviation in 
Parenthesis) 

632.3 
(25.1) 

293.0 
(17.1) 

193.5 
(13.9) 

41.6 
(6.5) 

 67.1 
(8.2) 

57.5 
(7.6) 

56.5 
(7.5) 

62.8 
(7.6) 

Note:  For the specifications that omit student fixed effects, additional time-invariant student-level characteristics are included into the models 
(specifically, information on race and gender) and errors are clustered at the student level.  All models include indicator variables for students’ grade 
levels. 
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Table 2.6.  Dependent Variables: Estimated Teacher Coefficients from Equation 
(2) in Section II for Math and Reading 

 
Variable 
 

 
Math Analysis

 
Reading Analysis

Teacher Experience     0.29* 
(0.13) 

0.21 
(0.12) 

School Top 100 -0.98 
(1.19) 

0.04 
(1.04) 

Full Credential 4.80 
(2.94) 

-1.98 
(2.55) 

Master’s Degree 0.18 
(0.97) 

0.60 
(0.84) 

BA Education 1.78 
(0.99) 

0.40 
(0.86) 

BA Social Science    3.27* 
(1.11) 

0.46 
(0.96) 

BA English -1.67 
(1.83) 

0.16 
(1.59) 

BA Math -3.90 
(7.39) 

-3.00 
(6.41) 

Math Supplemental 
Authorization 

  7.35* 
(3.69) 

4.21 
(3.14) 

Art Supplemental 
Authorization 

2.18 
(3.21) 

4.12 
(2.78) 

Language Supplemental 
Authorization 

-0.01 
(2.81) 

3.63 
(2.43) 

   
R2 0.0341 0.0138 
Adj. R2 0.0198 -0.0007 

* Significant at 5% level of confidence. 
Standard errors in parentheses. 
Observable teacher qualifications are averaged over time within teachers where relevant. 
Teacher experience has been capped at 10 years.  That is, teachers with over 10 years of experience are input as 
having 10 years of experience.  It is a well-established fact that the returns to teaching experience decline 
significantly as experience increases.  Indeed, if teaching experience were not capped at 10 years, then experience 
would cease to significantly predict effective teachers.  
The variable ‘School Top 100’ indicates whether the undergraduate institution attended by the teacher was in the 
top 100 universities in terms of research dollars. 
Supplementary authorizations are obtained by completing a required set of college courses in the field of the 
authorization.  These authorizations are not required for any elementary school teachers. 
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Table 2.7.  Persistence of Teacher Fixed Effects Estimates across Data Subsets 
(Percentages) 

 Teacher Coefficient Quintile Ranking From Year t 
 1 2 3 4 5 (best) 
1 30 20 19 18 13 
2 23 25 13 21 18 
3 18 20 25 24 13 
4 15 16 26 20 23 

 

Teacher 
Coefficient 

Quintile 
Ranking From 

Year t-1 5 (best) 13 17 16 19 35 
Note: (N = 941).  Teachers are placed into quintiles using coefficient estimates from each data subset 
separately, quintile 5 being the best.  Rows sum to 100 percent.   
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Table 2.8.  Persistence of Teacher Fixed Effects Estimates across Data Subsets 
(Percentages) – Between-Schools-and-Students Specification 

 Teacher Coefficient Quintile Ranking From Year t 
 1 2 3 4 5 (best) 
1 43 29 14 10 4 
2 26 21 25 18 9 
3 12 21 28 25 15 
4 10 19 19 28 23 

 

Teacher 
Coefficient 

Quintile 
Ranking From 

Year t-1 5 (best) 8 11 11 19 50 
Note: (N = 941).  Teachers are placed into quintiles using coefficient estimates from each data subset 
separately, quintile 5 being the best.  Rows sum to 100 percent.   
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Table 2.9.  Persistence of Teacher Fixed Effects Estimates across Data Subsets 
(Percentages) – Within-Schools-and-Students Specification, Low-Turnover 

Schools Only 
 Teacher Coefficient Quintile Ranking From Year t 

 1 2 3 4 5 (best) 
1 35 25 16 14 11 
2 19 27 23 15 15 
3 18 20 20 25 17 
4 14 21 18 23 25 

 

Teacher 
Coefficient 

Quintile 
Ranking From 

Year t-1 5 (best) 12 9 25 24 29 
Note: (N = 824).  Teachers are placed into quintiles using coefficient estimates from each data subset 
separately, quintile 5 being the best.  Rows sum to 100 percent.   
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Chapter 2 Appendix Figures 
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Figure 2.F.1 

Achievement Gains by Decile - Math 
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Figure 2.F.2 

Achievement Gains by Decile - Reading
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Chapter 2 Appendix Tables 
 

Table 2.A.1.  Key Differences Between the Entire SDUSD Elementary Student 
Sample and the Final Sample Used for Estimation 

 All Students Students with 3 + Years of 
Data 

 
Race 
   % White 
   % Black 
   % Asian 
   % Hispanic 
    
% English Learners 
 
SAT 9 Math Score* 
SAT 9 Reading Score* 
 
Avg. Percentage of School 
on Free Lunch 
 

 
 

26% 
16% 
17% 
40% 

 
21% 

 
0 
0 
 

63% 

 
 

28% 
14% 
20% 
38% 

 
14% 

 
0.18 
0.20 

 
59% 

 

Our final sample includes 16,303 unique students with at least 3 student-years of data out of a possible 38,369 students who 
would have been eligible to be included in our model based on the year that they started 2nd, 3rd, or 4th grade.  
*Test score performance is measured in average standard deviations from the “All Students” mean (by grade). 
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Table 2.A.2.  Key Differences Between the Entire SDUSD Elementary Teacher 
Sample and the Final Sample Used for Estimation 

 All Elementary Teachers Teachers in Our Final 
Sample 

 
Years Experience 
 
% Fully Credentialed 
% With Masters Degree 
 
BA Major: 
Education 
English 
Social Science 
Math/Science 

 

 
11.08 

 
94% 
47% 

 
 

44% 
5% 
21% 
2% 

 

 
12.60 

 
98% 
54% 

 
 

39% 
6% 
26% 
2% 

 
Our final sample includes 1,064 teachers from a total of 1,560 potentially eligible teachers available for this study.  We define a 
potentially eligible teacher as a teacher who teaches at least 15 students with at least a current and a lagged test score over the 
course of the panel.  This eligibility requirement would seem to be an absolute minimum for any value-added study.  Recall that 
for our study we require teachers to teach at least 20 students with at least 3 test scores over the course of our panel. 
It is often presumed that majors in education are somewhat easier to obtain than majors in other fields (For example, see Ballou, 
1996). 
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Appendix 2.A 
Data Appendix 

  

Section II illustrates the statistical model that seems most appropriate for 

accurately describing student test-score performance.  Specifically, the model 

accounts for numerous sources of variation in student achievement including 

variation due to student fixed effects, all within the value-added framework.  The 

structure of the model excludes the use of some of the SDUSD data in that it requires 

at least three contiguous test scores per student for full identification.  However, we 

require this data restriction in order to specify the most accurate statistical model of 

student performance possible.  Because our entire analysis hinges on the soundness of 

our teacher fixed effects estimates, the importance of a properly specified model of 

student performance from which teacher fixed effects are estimated cannot be 

overstated.  Table 2.A.1 details the differences between the final sample of students 

used in our analysis and the general elementary student population at SDUSD. 

 

As would be predicted, our analysis is based on students who appear to be 

slightly advantaged relative to the SDUSD population as a whole.  However, our final 

student sample is still reasonably diverse and generally representative of the student 

population at SDUSD.  The biggest difference between the two student populations is 

in terms of testing performance.  Note that the “all students” sample includes students 

who are movers in the sense that they do not have three contiguous test scores.  Thus, 

Table 2.A.1 is consistent with the well-documented negative relationship between 
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student mobility and performance (see, for example, Rumberger and Larson, 1998; or 

Ingersoll, Scamman and Eckerling, 1989). 

 

With respect to teachers, we must also be careful about inclusion in our 

model.  Kane and Staiger (2002) find strong evidence of the significant impact of 

sampling variation on the outcomes of incentive systems based on school-level mean 

performance measures in North Carolina.  Particularly, they find that schools with the 

smallest populations are considerably more likely to receive rewards or sanctions 

based on student performance because the variance of the average of students’ test 

scores from year to year is highest in small schools.  A magnified version of this 

problem arises in our teacher analysis.   

 

By virtue of the general structure of elementary education, elementary school 

teachers teach just a small number of students each year.  Even in studies such as this 

where numerous years of data are available for each teacher, there are still relatively 

few data points with which to estimate teacher fixed effects.  Particularly in cases 

where class sizes fluctuate significantly across teachers, or drop to extremely low 

levels more generally, the impact of sampling variation can dwarf any true signal.  

Therefore, in an effort to reduce this inherent noise, we restrict our teacher sample to 

teachers with at least 20 student-years of data.  This threshold was chosen as it 

corresponds to approximately one year of teaching a full elementary classroom.  The 

mean elementary class size in our full dataset is 22.5 students with a standard 
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deviation of approximately 5.5.  Thus, a teacher with the mean number of students in 

her classroom can afford to have up to two students dropped for one reason or another 

and still be used in our study.  Furthermore, this standard removes many teachers who 

have taught particularly few students.  The mean number of student-years per teacher 

among the dropped teachers was approximately eight.  The selection of different 

student-year cutoff points from as low as 17 student-years to as high as 30 student-

years of data reveal no significant changes in our general results beyond the expected 

mild changes in the precision of teacher coefficient estimates.  

 

Again, restricting our sample of teachers restricts the population for which our 

results are relevant.  Table 2.A.2 details key differences between the entire SDUSD 

elementary teacher population and the sample used in this study.   

 
 

With respect to teachers, there is a surprisingly small difference between 

teachers used in our sample and the entire SDUSD elementary teacher population.  

Our sample still includes significant variability among teachers in key observable 

qualifications.  After removing teachers with fewer than 20 student-years of data, the 

average number of student-years of data per teacher in our sample is 37.5.   
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Appendix 2.B 
Variance Decomposition 

 
 

Because the weighting matrix that we use for the Wald statistic is diagonal: 

22 2
1 1 2

2 2
1 2

ˆˆ ˆ ( )( ) ( )ˆ ˆˆ( ) '( ) ( ) ...
ˆ ˆ ˆ

J
J J J

J

V 2

θ θθ θ θ θθ θ θ θ
σ σ σ

− −− −
− − = + + +  

Thus, scaling this summation by the number of teachers returns an estimate of the 

average ratio of the total fixed-effects variance to the total error variance weighted on 

a coefficient-by-coefficient basis.   
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Appendix C 
Estimating an Upper Bound on the Correlation 

of Teacher Value-Added Across Subjects 
 

We generate an upper bound on the correlation of teacher quality across 

subjects, corr m r( , )θ θ , under the assumption that the correlation coefficient reported 

in Section VII is understated because corr m r( , )λ λ = 0 and this is suppressing our 

estimate of .  Consider the following: corr m r( , )θ θ

corr m r m m r r m m r r( , ) {cov( , ) / { var( ) * var( )}θ θ θ λ θ λ θ λ θ λ= + + + +  (C.1) 

The correlation coefficient of interest in this analysis is corr m r( , )θ θ .  To 

obtain an upper-bound estimate, we will assume that cov( , )θ λm r = 0, 

cov( , )θ λr m = 0, and cov( , )λ λm r = 0 (these conditions also imply that 

cov( , )θ λm m = 0  and cov( , )θ λr r = 0  because we know that cov( , )θ θm r ≠ 0 ) and 

expect that none of these covariance terms would be negative.39  Given these 

conditions we can rewrite equation (C.1) as: 

corr m r m r m m r r( , ) {cov( , ) / { var( ) * var( )}θ θ θ θ θ λ θ λ= + +   (C.2) 

By definition, our correlation coefficient of interest is defined as: 

corr m r m r m r( , ) cov( , ) / { var( ) * var( )}θ θ θ θ θ θ=     (C.3) 

Combining C.2 and C.3, we can write: 

                                                 
39It is the non-negativity assumption that insures that we are generating an upper bound by setting the 
covariance of the estimation errors to zero. We justify this assumption by noting that although it is 
conceivable that there would be a positive correlation between estimation errors for the same 
classrooms but different subjects, it would be hard to imagine a scenario in which these estimation 
errors would be negatively correlated.     
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corr corrm r m r m m m r r r( , ) ( , ) * ( var( ) / var( ) ) * ( var( ) / var( ) )θ θ θ θ θ λ θ θ λ θ= + +  (C.4) 

This can once again be re-written as: 

corr corrm r m r m fe m true r fe r true( , ) ( , ) * ( / ) * ( / ), , , ,θ θ θ θ σ σ σ σ= 2 2 2 2   (C.5) 

Here,  represents the total variance of teacher fixed effects and  represents 

the variance of teacher quality by subject as indicated.  We can plug in values for the 

above variance components using estimates from Section IV.  This generates an 

upper bound estimate of the correlation of teacher effectiveness across subjects of 

approximately 0.64. 

σ− , fe
2 σ− ,true

2
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Appendix 2.D 
Upper Bound Estimates of the Percentage of Teacher 

Value-Added Predicted by Observable Teacher 
Qualifications 

 

The R2 statistics reported in Table 2.6 in Section VIII are meant to represent 

the amount of variation in the teacher coefficients explained by observable teacher 

qualifications.  However, these R2 values are potentially inaccurate due to 

measurement error in our second-stage dependent variable and because they are 

generated from a GLS regression.  Our analysis in the text proceeds under the 

assumption that the measurement error found in our teacher fixed effects coefficients 

is uncorrelated with observable teacher qualifications.40   If this is the case, basic R2 

estimates from our second stage analysis will understate the ability of our models to 

explain true teacher quality because the R2 statistics are implicitly allowing for the 

models to predict the measurement error in the dependent variable (which they do not 

do by assumption).  In this appendix, we establish upper bound estimates of the R2 

statistics from our second-stage regressions under the assumption that observable 

teacher qualifications do not predict the measurement error in our teacher 

coefficients.  If this assumption is incorrect, results from this appendix will over-state 

the predictive power of observable teacher qualifications. 

 

                                                 
40 Beyond being very plausible, this assumption is also useful for generating upper bound estimates of 
the R2 statistics from our second-stage models.  If observable teacher qualifications were somehow 
predicting the measurement error in the teacher fixed effects even slightly, estimates presented in this 
appendix will be overstated. 
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The GLS estimation performed in Section VIII of the text is used to generate 

efficient estimates of our coefficients of interest.  However, because R2 statistics from 

GLS models are difficult to interpret, we proceed here with R2 statistics from the OLS 

analogs to the models described in the paper.  In order to generate an upper bound on 

the percentage of variation in true teacher quality explained by observable 

characteristics, first consider the general R2 formula that is estimated by standard 

software packages for our second-stage analysis: 

  R2 = 1 – (SSE/SST)     (D.1) 

   = 1 2

1

2

1
− − −

= =
∑ ∑[ ( ) ] / [ ( ) ]y y y yj j
j

J

j
j

J

   (D.2) 

 

The R2 formula in equation (D.2) is a consistent estimate of: 

  1 2− − −[ ( ) ] / [ ( ) ]E y y E y yj j j
2    (D.3) 

In this equation, the ’s correspond to the estimated teacher fixed effects 

coefficients from the first stage, the  are the fitted values of the estimated teacher 

coefficients from our OLS second-stage regression, and 

y j

'y sj

y  is the mean of the first-

stage estimated teacher coefficients.  The ’s can be decomposed as follows: y j

y yj jtrue j= + λ      (D.4) 

Here,  represents true teacher quality and y jtrue λ j  represents the contribution of 

estimation error.  Substituting equation (D.4) into equation (D.3) yields: 

1 2 2− + − + −[ ( ) ] / [ ( ) ]E y y E y yjtrue j j jtrue jλ λ  (D.5) 
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Because  and y jtrue λ j  are uncorrelated by assumption, the denominator of the 

second term in equation (D.5) simplifies to [ ( ) ( )Var y Varjtrue j ]+ λ .  With regard to 

the numerator, we will continue under the prior that the predictive power of 

observable teacher qualifications is being understated because observable teacher 

qualifications do not predict the estimation error in our dependent variable.  

Therefore, in the spirit of estimating an upper bound we can assume that  and y j λ j  

are also uncorrelated.  Equation (D.5) can be written as: 

1 2− − + +[ ( ) ( )] / [ ( ) (E y y Var Var y Varjtrue j j jtrue jλ λ )]  (D.6) 

 

If observable teacher qualifications do not predict the estimation error, the 

above formula adds a positive number representing the variance of the estimation 

error into both the numerator and denominator of the second term as shown in 

equation (D.6).  Because this term is subtracted from one, this results in an 

unequivocal understatement of the R2 reported from our second-stage model. 

 

We can remove the variance of the estimation error from both the numerator 

and denominator of the second term to estimate an upper bound on the true level of 

explanatory power exhibited by observable teacher qualifications: 

  1 2− − −[ ( ) ] / [ ( ) ]E y y E y yjtrue j jtrue true
2    (D.7) 
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Using our empirical results from Section IV and the  from our second 

stage regression, we estimate equation (D.7) with: 

'y sj

R2  =1 2

1

2

1
− − −

= =
∑ ∑[ ( ) ] / [ ( ) ]y y y yjtrue j
n

N

jtrue true
n

N

  (D.8) 

It is clear to see how any incidental correlation between the  and the'y sj λ j ’s will 

lead to an overstatement of this statistic, and thus it is presented as an upper bound.  

As reported in the text, our upper bound estimates on the explanatory power of 

observable teacher qualifications are 0.057 and 0.029 for math and reading 

respectively. 
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Appendix 2.E 
Teacher Quality and Different Student Types 

 

To provide a test of whether teacher effectiveness varies by initial student 

achievement, we split our student records into two groups based on initial student 

achievement.  Specifically, for each student record, we compare the student’s year (t-

2) test score to the grade-level median test score for their grade.41  The first group 

consists of students who performed at or above the median level of achievement in 

year (t-2), the second of students who performed below the median.  We assign an 

indicator variable equal to 1 if a student record belongs to the first group and 0 

otherwise. 

 

Next, we interact this achievement indicator variable with each of our teacher 

indicator variables.42  We then add this new set of interaction terms to the full 

specification outlined in Section II.  The interaction terms will pick up any 

differences in teacher quality experienced by high-achieving students relative to low-

achieving students.  That is, if teachers affect different student types differently on a 

per-teacher basis, then we should find that the set of interaction terms are jointly 

significant in explaining variation in student performance.  However, we find no 

evidence that the impact of teacher quality varies by student type.  For both math and 

                                                 
41 For example, if a student was in third grade in year (t-2), we look to see if his or her test score in 
third grade was above or below the third-grade median test score in our sample.   
42 A small percentage (less than 2% for each subject) of the teachers in our sample had all of their 
students in one achievement group or the other.  For these teachers, their interaction terms were 
dropped from the model.   
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reading, Wald tests fail to reject the null hypothesis that the coefficients on all of the 

interaction terms are zero.  For both math and reading, the p-values from these Wald 

tests are greater than 0.9. 
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Appendix 2.F 
Test-Score Ceiling Properties at SDUSD 

 

The Stanford 9 standardized test used at SDUSD does not exhibit a test-score 

ceiling in math and exhibits only a mild-test score ceiling in reading through the 5th 

grade.  As discussed in Section VI of the text, this feature of the Stanford 9 makes it a 

better instrument with which to measure the variance of teacher quality than some 

tests used in previous studies.  In this appendix, we detail the test-score ceiling 

properties of the Stanford 9 for both math and reading. 

 

Earlier work with the dataset revealed evidence of some regression to the 

mean in test scores.  This makes it difficult to test for pure ceiling effects by plotting 

test-score gains in period (t) vs. test score levels in period (t-1) because in part there 

should be a negative relationship between the two because of regression to the mean.  

Therefore, to test for the presence of a test-score ceiling in our data, we group all 

students into achievement deciles based on their raw test score level in period (t-2).  

We then look to see if the average test-score gains of students in period (t) are lower 

for students in higher deciles.  Figures 2.F.1 and 2.F.2 describe our findings.  For 

math, the Stanford 9 standardized test does not appear to exhibit a test score ceiling.   

For reading, there is a mild but persistent decline in student test-score gains as 

students move up in the period (t-2) test-score levels distribution.43  

                                                 
43 Hanushek et al. (2005) present a figure similar to figure F.1 in their analysis.  However, in their 
study, students are grouped into achievement deciles based on period (t-1) test scores, thus combining 
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any test-score ceiling effects with regression to the mean.  If we replicate our figures in this appendix 
following their methodology, we observe a negative relationship for both math and reading as would 
be expected due to regression to the mean.  However, the magnitude of the decline in average test 
score gains is significantly less in our data when we replicate their analysis and average test-score 
gains are positive for all student-achievement deciles. 
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Chapter 3 
Teacher Quality and Dropout Outcomes in a 

Large, Urban School District 
 

 
Recent research shows that variation in teacher quality has large 

effects on student performance.  However, this research is based 

entirely on student test scores.  This paper evaluates teacher quality in 

terms of another educational outcome of great interest – graduation.  

Using a unique instrumental variables approach to identify teacher 

effects, I find that differences in teacher quality have large effects on 

graduation outcomes.  Because teacher effects on graduation outcomes 

will be more pronounced for students who are on the graduation 

margin, the results imply an avenue through which high-quality 

teachers are more productive with disadvantaged students.  
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III.I. Introduction 

Recent research shows that teacher quality has large effects on student 

performance throughout the schooling process.1  However, this research relies 

exclusively on student test scores to measure teacher quality.  This paper contributes 

to the literature by evaluating teachers in terms of another educational outcome of 

great interest – graduation.  The empirical results indicate that, like test scores, 

graduation outcomes can be heavily influenced by teacher quality. 

 

Education Secretary Margaret Spellings recently referred to a small group of 

largely urban schools as "dropout factories” and did so with good reason – these 

schools are graduating less than 50 percent of their students.  In fact, Orfield et al. 

(2004) show that in almost half of the high schools in the 100 largest urban school 

districts in the country, 12th-grade classes are less than 50 percent of the size of 9th-

grade classes four years earlier.  This “graduation rate crisis,” as it has been called by 

these authors, is of great economic significance.  For example, Ashenfelter and 

Krueger (1994) estimate that an extra year of schooling corresponds to a 12 to 16 

percent increase in wages and Barrow and Rouse (2004) estimate that in 2003, high 

school graduates earned approximately 75 percent more than high school dropouts 

annually.2  Furthermore, in addition to the costs of dropping out borne by individuals, 

                                                 
1 See, for example, Koedel (2007), Koedel and Betts (2007), Rivkin, Hanushek and Kain (2006), 
Hanushek, Kain, O’Brien and Rivkin (2005), Aaronson, Barrow and Sander (2007), Rockoff (2004), 
Nye, Konstantopoulos and Hedges (2004). 
2 Rouse (1999) does a follow-up study based on Ashenfelter and Krueger and finds that these authors 
may have overstated the return to schooling and it is actually closer to 10 percent per year.  Estimates 
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high dropout rates are also associated with negative externalities.  Lochner and 

Moretti (2004) estimate that a 1-percentage-point increase in high school completion 

among men ages 20 to 60 would save the United States $1.4 billion per year by 

reducing costs associated with crime.   

 

Given that graduation outcomes are of such great economic importance and 

that teacher quality has been shown to be a significant determinant of test scores, it 

seems natural to ask whether teacher quality affects graduation outcomes.3  

Econometrically, analyzing teacher quality in terms of graduation outcomes is 

complicated by the non-random assignment of students to teachers.  In the test-score 

literature, panel datasets have been exploited to remove bias generated by this non-

random student-teacher matching.  Specifically, test-score studies have relied on 

lagged measures of performance and student fixed effects to remove sorting bias.  

However, in the analysis of graduation outcomes these methods cannot be 

implemented because graduation outcomes cannot be tracked over time as can test-

score outcomes.  At a given point in time, a student simply drops out of school or 

does not. 

 

To estimate teacher effects on graduation outcomes, I rely on an exogenous 

set of instrumental variables based on school-level staffing changes from year to year.  
                                                                                                                                           
from Barrow and Rouse incorporate the facts that high school graduates earn higher wages and work 
more hours. 
3 Loeb and Page (2000) find that teacher salary increases have a positive effect on graduation rates ten 
years later.  However, they do not evaluate the extent to which variation in teacher quality, measured at 
the micro level, affects graduation outcomes. 
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These staffing changes represent changes in the exposure of students to teachers over 

time.   I find that differences in teacher quality have non-negligible effects on 

graduation outcomes, even within schools.  Because teacher effects on graduation 

outcomes will be more pronounced for students who are on the graduation margin, 

my results imply an avenue through which high-quality teachers are more productive 

with disadvantaged students.  This finding is relevant in the debate over which types 

of students benefit more from high-quality teachers.   Whereas recent research by 

Clotfelter, Ladd and Vigdor (2006), based on student test-score performance, 

indicates that the returns to teacher quality may be higher for advantaged students, the 

evidence here shows that it is perhaps the weakest students who have the most to gain 

from improvements in teacher quality.   

 

III.II. Empirical Strategy 

Teacher selection is likely to be endogenous to students’ graduation outcomes.  

This endogeneity may manifest itself either through direct teacher selection within 

subjects, or through subject selection (i.e. choosing to take calculus) that affects 

teacher selection.  I identify teacher effects using an instrumental variables approach 

based on changes in the exposure of students to teachers over time.  Students’ 

graduation decisions and teacher-selection decisions are jointly modeled and teacher 

effects are estimated via maximum likelihood.   
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Consider the following empirical model of the student dropout decision.  Let 

*
iD  denote the net benefit to student i of dropping out of high school where:   

 
(1)   *

0 1i i i JD X T iβ β θ ε= + + +   
 

In equation (1), the vector Xi includes controls for demographics, socioeconomic 

status, English-learner status, whether or not the student switched schools during high 

school and the initial math class taken in ninth grade for each student.4  The J-

dimensional vector Ti indicates which teachers taught student i during high school 

and is endogenous to the dropout decision.  Student i’s decision to drop out, Di, is a 

zero-one indicator that is equal to one if *
iD  ≥ 0 and equal to zero otherwise. 

 

Students’ teacher-selection decisions throughout high school, Ti, can be 

similarly modeled.  The vector Ti* can be interpreted as the set of net benefits to 

student i from taking a class with each teacher j at any point in high school.5  For all j 

in which the corresponding entry in the vector Ti* ≥ 0, student i selects to be taught 

by teacher j in high school.6

                                                 
4 The initial-math-course controls provide a measure of pre-high school performance (because pre-high 
school performance determines initial math-course placement in high school) and are strong predictors 
of graduation.  These controls are loosely analogous to lagged test-score controls in value-added 
models of test-score achievement.  I considered including pre-high school test scores in the dropout 
specification but there was a substantial portion of the student sample that did not have test-score 
records for 8th grade.  This may be largely because the analysis here focuses on underperforming 
schools in San Diego which tend to have the most transient student populations (see Section III). 
5 In this general framework, the types of classes taught by teachers may also be important (see, for 
example, Rose and Betts, 2004).  Here, I focus entirely on the effects of math teachers. 
6 Net benefits are not calculated relative to other teacher choices.  Instead, they are absolute.  
Theoretically, a by-year multinomial model of teacher selection may be more complete in that, in most 
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(2)    *
1 0 1 1 2i i iT X Zα α α= + + + 1iu

2iu

u

    *
2 0 1 2 2i i iT X Zγ γ γ= + + +

     

*
0 1 2iJ i iJ iJT X Zδ δ δ= + + +  

 

Each observed Tij is a dichotomous outcome equal to one if student i had 

teacher j at any point in high school and equal to zero otherwise.  In equation set (2), 

Zij is a set of exogenous teacher and student-group-specific instrumental variables that 

are used to identify teacher effects. 

 

The error terms ε , ,…, 1u Ju  are assumed to be joint-normally distributed 

with zero mean and variance-covariance matrix Ω: 

 

                                                                                                                                           
cases, the choice of one teacher may exclude choosing others within years.  However, the parameter 
space for such a model would be so large that it would be infeasible to estimate numerically. 
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(3)  

1
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In (3), I assume the standard normalization 2
εεσ = 

1 1

2
u uσ  =…= 2

J Ju uσ  = 1.7

 

Given the equation set described in (1) and (2) and the distributional 

assumption in (3), the dropout decision is specified as a probit and teacher selection 

as a binary, endogenous determinant of graduation.   

 

The instrument set that I use for each potential student-teacher match, Zij, uses 

variation in classes taught by teachers over time to capture student exposure, by 

cohort, to teachers.  For example, consider a math teacher who teaches four classes of 

algebra and one class of geometry in one year.  In the next year, this teacher might 

teach two classes of algebra and three classes of geometry.  Furthermore, some 

teachers move in and out schools over time.  Figure 3.1 shows four examples of 
                                                 
7 In the absence of this assumption, the coefficients and error variances in (1) and (2) are only 
identified up to their proportions. 
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variation in the proportion of the total number of student semesters taught in different 

subjects over time for four different teachers used in this analysis.  This variation 

reflects changes in the exposure of students to teachers and can be used to identify 

teacher effects.  For example, depending on what year a given student happens to take 

geometry, the probability of that student being taught by teacher Tj may change 

simply because teacher Tj teaches more (or fewer) geometry classes in that year.  

Because the variation in classes taught by teachers over time is highest among math 

teachers, I focus exclusively on the role of math teachers in determining dropout 

outcomes. 

 

To create the instrument sets for the student-teacher matches, I first create 

variables reflecting the shares of student semesters taught by each teacher in each 

school-subject-year combination.8  These share variables include many zeros.  For 

example, in all years in which a teacher does not teach at a given school, does not 

teach a specific subject, or does not teach at all, the share variables are equal to zero 

for that teacher.   

  

I link students’ class schedules to the shares of students taught by teachers.  

To motivate the instruments, assume momentarily – and incorrectly – that the courses 

chosen by students during high school are uncorrelated with their dropout decisions.  

                                                 
8 I define seven subject types.  They are pre-algebra (that is, anything below algebra), algebra, 
geometry, advanced geometry, intermediate algebra, advanced intermediate algebra, advanced math 
(pre-calculus and calculus). 
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If this were the case, I could create a set of subject-year indicator variables for each 

student at each school (i.e. a student may take the following sequence over the 4-year 

high school process: algebra-geometry-geometry-intermediate algebra).  I could 

interact these with the shares of students taught by each teacher at that school in each 

subject-year to instrument for teacher selection.  For example, the instrument set for a 

student who took geometry in the 1999-2000 school year at school X would include a 

positive interaction term for each teacher who taught geometry in the 1999-2000 

school year at school X.  These interaction terms would be equal to the percentage of 

student semesters of geometry taught by the individual teachers at school X in 1999-

2000 and in this way would indicate the degree of exposure of the student to the 

teachers.  For all other teachers, the instrument set would have “zero” entries for 

1999-2000 for that student indicating that there could not possibly be a match based 

on the fact that the student took geometry at school X in that year.   

 

To illustrate, consider a student, student i, who took geometry in 1999-2000.  

Also assume that this student took algebra in 1998-1999 (the year before) and assume 

that there were the same four math teachers at her school in both years - teachers A, 

B, C and D.  In each year, teacher A taught 75 percent of the total semesters of 

algebra and Teacher B taught the remaining 25 percent.  Also in each year, teachers C 

and D each taught 50 percent of the total semesters of geometry.  In this simple 

example, the teacher selection equations for student i, including the instrument sets 

relevant for the 1998-1999 and 1999-2000 school years, would be:  
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0 1 21 22 23 24(1)*(0.75)* (0)*(0)* (0)*(0.75)* (1)*(0)*iA i iAT X uα α α α α α= + + + + + +  
0 1 21 22 23 24(1)*(0.25)* (0)*(0)* (0)*(0.25)* (1)*(0)*iB i iBT X uγ γ γ γ γ γ= + + + + + +  
0 1 21 22 23 24(1)*(0)* (0)*(0.5)* (0)*(0)* (1)*(0.5)*iC i iCT X uρ ρ ρ ρ ρ ρ= + + + + + +  
0 1 21 22 23 24(1)*(0)* (0)*(0.5)* (0)*(0)* (1)*(0.5)*iD i iDT X uψ ψ ψ ψ ψ ψ= + + + + + +  

 
The vector of student-level variables, Xi, is defined as in equations (1) and (2) 

and the instrument set for each student-teacher match consists of the probability that 

student i took either algebra or geometry in each year (in the example thus far, these 

probabilities are either zero or one because we are using student i’s actual math-

course path in the instrument set) interacted with the share of student semesters taught 

by teacher j in that subject-year.  For each teacher-selection equation there are four 

terms that comprise the instrument set, including zeros (in the equation for teacher A, 

these terms are assigned the coefficients 21 24α α− ).  The first instrument-set term is 

the interaction between an indicator for the student taking algebra in year 1 and the 

share of student semesters taught in algebra by the given teacher in year 1.  The 

second term is the interaction between an indicator for the student taking geometry in 

year 1 and the share of student semesters taught in geometry by the given teacher in 

year 1.  The third and fourth instrument-set terms are the year-2 analogs to the first 

and second terms.  If the courses chosen by students during high school were truly 

uncorrelated with their dropout decisions, my instrumental variables approach would 

be exactly as it is shown in this example. 
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However, the course choices made by students in high school are not 

exogenous to their dropout decisions.  Therefore, rather than using each student’s 

specific math-course path, I instead use each student’s entry-level math class in ninth 

grade to project her subsequent math-course path based on sample-wide averages.  

For example, for all students who took algebra in ninth grade at school X, I can map 

out the proportion who took each type of math class in subsequent years and in this 

way create an average path for all students who took algebra in ninth grade at school 

X.  I create seven math-course paths at each school based on students’ entry-level 

math courses. 9  For each student, I replace her endogenous math-course choices with 

the average math-course path that corresponds to her entry-level math course at her 

school, thereby removing the endogenous decisions of individual students from the 

instrument sets.10  These math-course paths are not year specific because teachers 

who teach a given year-cohort may also affect the math-course path of that cohort.  If 

the math-course paths were year specific, it would essentially build the effects of the 

treatments into the instruments.  

 

                                                 
9 The seven math-course paths are based on the following entry-level mathematics classifications: No 
math, pre-algebra, pre-algebra/algebra, algebra, algebra/geometry, geometry, advanced geometry.  Pre-
algebra/algebra and algebra/geometry indicate split years.  None of the (few) students who entered 
high school at a level above advanced geometry failed to graduate high school.  Therefore, these 
students were omitted from the analysis.  Recall that students’ entry-level math classes are included 
directly into the dropout equation in addition to the teacher selection equations in the empirical model. 
10 An example of the final instrument set with the substitution for students’ individual math-course 
choices is available in Appendix A.  The final instrument sets are strong predictors of teacher selection. 
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III.III. Data  
 

This study uses administrative data from the San Diego Unified School 

District (SDUSD) following high school students and teachers over time.  Students 

and teachers are linked at the classroom level.  SDUSD is the second largest school 

district in California (enrolling approximately 141,000 students in 1999-2000) and the 

student population is approximately 27 percent white, 37 percent Hispanic, 18 percent 

Asian/Pacific Islander and 16 percent black.  28 percent of the students at SDUSD are 

English Learners, and 60 percent are eligible for meal assistance.  Both of these 

shares are larger than those of the state of California as a whole.  As far as 

standardized testing performance, students at SDUSD trailed very slightly behind the 

national average in reading in 1999-2000.  On the contrary, SDUSD students 

narrowly exceeded national norms in math.11  The 4-year derived dropout rate at 

SDUSD in 1999-2000 was approximately 13 percent.12,13   

 

                                                 
11 District characteristics summarized from Betts, Zau and Rice (2003). 
12 Source:  California Department of Education.  This rate includes dropouts from some atypical 
schools at SDUSD that focus on helping at-risk students.  The empirical work here is based on data 
from just the 16 standard high schools at SDUSD.  The derived dropout rate from these 16 schools is 
somewhat lower. 
13 The dropout outcome may be measured with some error as a result of the data collection process.  
Essentially, when a student leaves, the district relies on the student’s new school to request that 
student’s transcripts to verify that the student did not drop out.  If such a request is not made, SDUSD 
will use the available contact information for the student to track him or her down and determine 
whether a dropout has occurred.  In cases where transcripts are not requested and the student cannot be 
reached, the student will generally be considered a dropout.  Hausman et al. (1998) show that probit 
estimates may be inconsistent when there is measurement error in the dependent variable.  Although I 
also considered linear system IV models, the misspecification of the multiple linear probability models 
generated counterintuitive results.  For example, in these linear SIV models at some schools, none of 
the entry-level-math-course controls were statistically significant predictors of graduation (for the 
analogous multivariate probit estimates, see Appendix Tables 3.A.1 – 3.A.4). 
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Because dropouts occur in all years of high school, it is important to observe 

each student from the ninth through (potentially) the twelfth grade.  Therefore, the 

student data consist of 4 successive year-cohorts beginning with students in ninth 

grade in 1997-1998 and ending with students in ninth grade in 2000-2001 for each 

school (this latter group entered the twelfth grade in the final year of the panel, 2003-

2004).  To be included in the analysis, students had to be enrolled at SDUSD in the 

ninth grade.   

 

SDUSD is a geographically large district with 16 standard, full-enrollment 

high schools.  However, there is considerable variation in the dropout rate across 

schools.  For example, 4-year derived dropout rates at the school level range from less 

than one percent to over 20 percent.  In fact, almost two thirds of the dropouts from 

the 16 standard high schools at SDUSD come from just 4 schools.  These across-

school differences in the dropout rate make it difficult to argue that teachers at each 

school at SDUSD are equally concerned with dropouts.  That is, teachers at low-

dropout-rate schools may not view deterring dropouts as a significant part of their job 

whereas teachers at high-dropout-rate schools, some of whom may watch one in five 

students fail to graduate, are unlikely to feel the same.  Because teachers across 

schools are faced with very different dropout environments, teacher quality measured 
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by dropout outcomes is likely to be a more relevant measure at high-dropout-rate 

schools.14

 

Because of the large differences in dropout rates across schools, I do not 

evaluate teacher quality in terms of dropout outcomes at each school at SDUSD.  

Instead, I focus on teacher effects at the four schools that account for the most 

dropouts in San Diego.  My prior is that these schools are the ones in which teacher 

quality is most likely to play a role in determining dropout outcomes.  I identify a 

given student as being a part of school X’s population if at any time in her schooling 

career she attended school X.15

 

Finally, I was unable to estimate the effects of all of the math teachers in the 

data because there were numerous teachers who taught just a small portion of the 

student sample.  When these teachers were included into the multivariate model, the 

likelihood function did not converge because the model was unable to identify teacher 

selection.  Instead, I focus on the ten teachers at each school who taught the largest 

shares of the student population.  Across the four schools, these teachers taught 
                                                 
14 There is also reason to expect teacher quality to play a differential role in affecting dropout outcomes 
across schools on the student side.  Specifically, students dropping out from low-dropout-rate schools 
are more likely to be extreme outliers whereas students dropping out from high-dropout-rate schools 
may be closer to the margin such that teacher quality may be more likely to make a difference. 
15 With regard to the instruments, the school population dynamics are built into the teacher shares.  
That is, student j who takes algebra at school Z in year 1 but then transfers to school Y and is part of 
school Y’s population will be considered to be part of school Y’s population in year 1 also. Consider 
the extreme case where student j is the only student that is in school Y’s population but is not at school 
Y in year 1. Consider teacher B who teaches all N of the students who take algebra at school Y in year 
1.  Then teacher B’s share of algebra students in year 1 at school Y will be N/(N+1), where the 
denominator reflects the total population of school Y as I’ve defined it and the numerator reflects the 
share of that population taught by teacher B. 
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between 43 and 62 percent of the total number of math-class semesters taken by 

students.16  Within each school, the teacher effects are estimated relative to the 

average effect of the omitted teachers.17

 
 

III.IV. Results 
 

The idea of an absolute “teacher effect” is inconsequential because every 

student has a teacher.  Instead, the question of interest is whether differences in 

teacher quality can influence student outcomes.  To answer this question in terms of 

dropouts, I estimate teacher effects from the dropout model in Section II for 40 

teachers at the four schools evaluated in this study.  As indicated above, these teacher 

effects are estimated relative to the average effect of the omitted teachers at each 

school where the omitted-teacher groups are comprised of the teachers who teach the 

fewest students.  The extent to which the 40 estimated teacher effects differ from the 

within-school, average-omitted-teacher effects will determine the extent to which 

differences in teacher quality influence dropout outcomes.  If teacher quality did not 

influence dropout outcomes, all teacher effects would be statistically 

indistinguishable from each other. 

                                                 
16 At each school, I estimate the effects of all teachers who taught at least 5 percent of the total 
semesters in math taken by the student sample with the exception of four teachers.  For these four 
teachers, there was insufficient variation in their classes taught to identify teacher selection.  In place 
of these teachers at their respective schools, I added the teachers who taught the next most classes.    
17 The omitted teachers will bias the coefficients for the remaining teachers to the extent that the 
variation in classes taught between the sets of included and omitted teachers are correlated.  Because of 
this, some of the individually estimated teacher coefficients may not be consistent estimates for the 
effects of their respective teachers.  However, the primary motivation in this analysis is to determine 
whether there is a margin for teachers to influence students’ dropout outcomes at all.  Therefore, 
teacher effects that are biased only though the omission of other teacher effects will still provide 
valuable insight as long as they are not systematically biased towards zero. 
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My analysis focuses on variation in teacher quality within schools.  

Throughout the larger teacher-quality literature, separating school-level factors that 

influence student performance from across-school teacher sorting has proven 

difficult.18  The primary implication of focusing on within-school variation in teacher 

quality is that my results will understate the potential magnitude of the effects of 

changes in teacher quality to the extent that quality varies across schools. 

 

I estimate teacher effects from two different specifications for each school.  

First, I run a basic probit that ignores any endogeneity between teacher selection and 

dropout outcomes.   Next, I run the multivariate probit described above in which I 

instrument for teacher selection and estimate teacher effects via simulated maximum 

likelihood.19  Tables 3.1 through 3.4 detail the estimated teacher effects at the four 

schools.20  Columns 1 and 2 in the tables report coefficient estimates from the basic 

and multivariate probit models.  Column 3 reports marginal teacher effects from the 

multivariate model.21  At schools 1 through 4 respectively, 20, 14.8, 13.5 and 9.9 

percent of the student samples ultimately drop out of school.  Coefficient estimates 

for the non-teacher components of the models are available in Appendix A. 
                                                 
18 For more on this issue see Koedel (2007), Koedel and Betts (2007), Rivkin, Hanushek and Kain 
(2006) and Hanushek, Kain, O’Brien and Rivkin (2006). 
19 I use the mvprobit module in Stata by Cappellari and Jenkins (2003) to estimate the model.  This 
module uses estimates from the individual univariate probit specifications as initial parameter values. 
20 Each school is modeled separately because the parameter space for the pooled model is large enough 
that the multivariate probit is infeasible to estimate.  The cost of not pooling the data across schools is 
that the non-teacher explanatory variables are less precisely estimated. 
21 The standard errors for the marginal effects are approximated using the delta method where the 
explanatory variables are evaluated at their sample averages within each school. 
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Across the four schools, 13 out of the 40 estimated math-teacher coefficients 

(or 33 percent) are statistically different from the average effect of the omitted 

teachers indicating that differences in teacher quality can indeed affect dropout 

outcomes.  Furthermore, the magnitudes of the estimated (marginal) teacher effects 

imply that they are economically meaningful, ranging from 4.3 percent to 13.4 

percent.  At school 3, where 13.5 percent of the student sample ultimately drops out 

of school, five teachers have marginal effects that, relative to the average effect of the 

omitted teachers, are of a magnitude greater than 6 percent.  These estimates imply a 

significant margin by which teacher quality can affect dropout outcomes.   

 

The point estimates for the teacher effects are predominantly negative.  Of the 

13 statistically significant teacher effects, 12 are negative.  Overall, 33 out of 40 

teacher effects have a negative sign.  This implies that the teachers who teach the 

most students at these schools are generally more effective at reducing dropout rates 

than those that teach the least (recall that the average-omitted-teacher effects are 

based on the teachers who teach the fewest students at each school).  There are 

numerous potential explanations for this.  One possibility is that, although experience 

has been shown to be only weakly related to teacher performance measured by test-

scores, experience with disadvantaged students may be important in deterring dropout 

outcomes.   
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Another possibility is that the results reflect selection.  On the one hand, 

teachers who teach the fewest students at these low-performing schools may do so 

because they are not offered more classes than absolutely necessary by administrators 

because administrators knows they are of low quality.  This would explain why the 

teachers who teach more students perform better than the omitted teachers.  It may 

also be that teachers who teach the most students at these schools select into teaching 

at these schools precisely because they are effective at deterring dropout outcomes.  If 

this were the case, some of these teachers may actually choose to work with the most 

disadvantaged students at these schools.  The empirical results provide some support 

for this hypothesis.  The changes in the coefficient estimates when moving from the 

endogenous specifications to the instrumental variables specifications (columns 1 and 

2 in the tables above) imply that some of the teachers who are best at deterring 

dropout outcomes are matched with students who are more likely to drop out (for 

example, see teachers 3 and 4 at school 2, teachers 1, 3, 8 and 9 at school 3, etc.).  

This may reflect a concerted effort by these teachers (and administrators) to deter 

dropouts. 

 

III.V. Conclusion 

The effects of teacher quality, or any other educational resource for that 

matter, are difficult to evaluate because student-teacher matching is non-random.  The 

outcome-based teacher quality literature, which until now has focused entirely on 

students’ test scores, has relied on panel datasets that track student progress over time 
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to remove bias generated by student-teacher sorting.  However, when analyzing the 

effects of teacher quality on other educational outcomes that cannot be tracked over 

time but are still of great importance, such as graduation outcomes, the econometric 

approaches employed in the test-score literature cannot be used.  As an alternative to 

these methods, this study relies on an exogenous set of instrumental variables based 

on school-level staffing changes from year to year to estimate teacher effects on 

graduation outcomes.  The results indicate that differences in teacher quality can play 

an important role in determining these outcomes.  Furthermore, because the analysis 

is constrained to looking within schools, it is likely to understate the significance of 

teacher quality as an educational resource. 

 

Finally, this study informs the debate over which types of students benefit 

more from high-quality teachers.  Recent work by Clotfelter, Ladd and Vigdor 

(2006), based on student test-score performance, suggests that advantaged students 

may benefit more from high-quality teachers.  However, the results here indicate an 

avenue through which high-quality teachers will be more productive with the weakest 

students. 
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CHAPTER 3 FIGURES 
 

     Figure 3.1.  Examples of Natural Variation in Classes Taught by Subject for Four Teachers Analyzed in this Study 
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CHAPTER 3 TABLES 
 

Table 3.1.  Results from School 1 - Dependent Variable:  Indicator for 
Whether a Dropout Occurred 

 
Teacher 

 
Basic Probit 

Multivariate 
IV Probit 

Multivariate IV 
Probit 

(Marginal Effects) 
Teacher 1 -0.189 

(0.077)** 
-0.101 
(0.149) 

-0.026 
(0.041) 

Teacher 2 -0.127 
(.072)* 

0.109 
(0.156) 

0.029 
(0.048) 

Teacher 3 -0.045 
(0.076) 

-0.101 
(0.163) 

-0.026 
(0.047) 

Teacher 4 -0.395 
(0.105)*** 

-0.632 
(0.182)*** 

-0.134 
(0.054)** 

Teacher 5 -0.021 
(0.073) 

-0.091 
(0.149) 

-0.023 
(0.046) 

Teacher 6 0.013 
(0.082) 

-0.012 
(0.171) 

-0.003 
(0.048) 

Teacher 7 0.210 
(0.078)*** 

0.368 
(0.169)** 

0.107 
(0.052)** 

Teacher 8 -0.213 
(0.097)** 

0.061 
(0.169) 

0.016 
(0.042) 

Teacher 9 0.109 
(0.078) 

-0.118 
(0.166) 

-0.030 
(0.048) 

Teacher 10 -0.007 
(0.082) 

0.134 
(0.174) 

0.037 
(0.056) 

Notes: Standard errors in parentheses. 
Observations 3072 3072 3072 

 ***Significant at 1% level of confidence 
**Significant at 5% level of confidence 
*Significant at 10% level of confidence 
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Table 3.2.  Results from School 2 - Dependent Variable:  Indicator for 

Whether a Dropout Occurred 
 

Teacher 
Basic Probit 

 
Multivariate 

IV Probit 
Multivariate IV 

Probit 
(Marginal Effects) 

Teacher 1 -0.154 
(0.082)* 

-0.145 
(0.139) 

-0.029 
(0.028) 

Teacher 2 
 

-0.214 
(0.087)** 

-0.045 
(0.161) 

-0.009 
(0.032) 

Teacher 3 -0.268 
(0.106)** 

-0.363 
(0.162)** 

-0.068 
(0.035)** 

Teacher 4 -0.479 
(0.112)*** 

-0.581 
(0.175)*** 

-0.100 
(0.042)** 

Teacher 5 0.164 
(0.101) 

0.169 
(0.173) 

0.037 
(0.037) 

Teacher 6 -0.107 
(0.099) 

-0.236 
(0.169) 

-0.046 
(0.035) 

Teacher 7 0.004 
(0.094) 

-0.124 
(0.170) 

-0.025 
(0.034) 

Teacher 8 -0.087 
(0.108) 

-0.214 
(0.186) 

-0.041 
(0.038) 

Teacher 9 0.116 
(0.112) 

-0.211 
(0.201) 

-0.041 
(0.041) 

Teacher 10 -0.173 
(0.111) 

-0.115 
(0.205) 

-0.023 
(0.041) 

Observations 2518 2518 2518 
Notes:  Standard errors in parentheses. 
 ***Significant at 1% level of confidence 

**Significant at 5% level of confidence 
*Significant at 10% level of confidence 

 

 



 163

 
Table 3.3.  Results from School 3 - Dependent Variable:  Indicator for 

Whether a Dropout Occurred 
 

Teacher 
Basic Probit 

 
Multivariate 

IV Probit 
Multivariate IV 

Probit 
(Marginal Effects) 

Teacher 1 -0.480 
(0.104)*** 

-0.619 
(0.158)*** 

-0.108 
(0.041)*** 

Teacher 2 -0.360 
(0.107)*** 

-0.335 
(0.180)* 

-0.063 
(0.037)* 

Teacher 3 -0.266 
(0.115)** 

-0.451 
(0.185)** 

-0.080 
(0.040)** 

Teacher 4 -0.044 
(0.094) 

-0.224 
(0.165) 

-0.043 
(0.033) 

Teacher 5 -0.060 
(0.0106) 

-0.016 
(0.178) 

-0.003 
(0.034) 

Teacher 6 0.023 
(0.107) 

0.251 
(0.185) 

0.055 
(0.039) 

Teacher 7 -0.012 
(0.122) 

0.051 
(0.176) 

0.011 
(0.035) 

Teacher 8 -0.236 
(0.103)** 

-0.406 
(0.162)** 

-0.074 
(0.035)** 

Teacher 9 -0.415 
(0.140)*** 

-0.555 
(0.185)*** 

-0.093 
(0.043)** 

Teacher 10 -0.218 
(0.138) 

-0.096 
(0.209) 

-0.019 
(0.040) 

Observations 2217 2217 2217 
Notes:  Standard errors in parentheses. 
 ***Significant at 1% level of confidence 

**Significant at 5% level of confidence 
*Significant at 10% level of confidence 

 

 



 164

 
Table 3.4.  Results from School 4 - Dependent Variable:  Indicator for 

Whether a Dropout Occurred 
 

Teacher 
Basic Probit 

 
Multivariate 

IV Probit 
Multivariate IV 

Probit 
(Marginal Effects) 

Teacher 1 -0.382 
(0.087)*** 

-0.289 
(0.140)** 

-0.043 
(0.022)** 

Teacher 2 -0.162 
(0.100) 

-0.034 
(0.170) 

-0.005 
(0.025) 

Teacher 3 -0.475 
(0.118)*** 

-0.418 
(0.157)*** 

-0.057 
(0.027)** 

Teacher 4 -0.323 
(0.096)*** 

-0.301 
(0.156)* 

-0.043 
(0.023)* 

Teacher 5 -0.496 
(0.117)*** 

-0.542 
(0.161)*** 

-0.069 
(0.028)** 

Teacher 6 -0.202 
(0.095)** 

-0.186 
(0.155) 

-0.028 
(0.025) 

Teacher 7 -0.064 
(0.088) 

-0.079 
(0.146) 

-0.012 
(0.024) 

Teacher 8 -0.082 
(0.089) 

-0.081 
(0.147) 

-0.013 
(0.022) 

Teacher 9 -0.395 
(0.134)*** 

-0.269 
(0.224) 

-0.038 
(0.026) 

Teacher 10 -0.194 
(0.118)* 

-0.114 
(0.187) 

-0.018 
(0.028) 

Observations 3779 3779 3779 
Notes:  Standard errors in parentheses. 
 ***Significant at 1% level of confidence 

**Significant at 5% level of confidence 
*Significant at 10% level of confidence 
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CHAPTER 3 APPENDIX TABLES 
Table 3.A.1.  Non-Teacher Results from School 1 - Dependent Variable:  

Indicator for Whether a Dropout Occurred 
Variable 

 
Basic Probit Multivariate IV Probit 

English Learner (EL) 0.186 
(0.063)*** 

0.205 
(0.071)** 

Re-designated from EL to non-EL 
During High School 

-0.606 
(0.118)*** 

-0.601 
(0.121)*** 

Female -0.093 
(0.054)* 

-0.085 
(0.054) 

Asian 0.016 
(0.149) 

0.006 
(0.150) 

Black -0.024 
(0.136) 

-0.038 
(0.136) 

Hispanic 0.216 
(0.133) 

0.177 
(0.133) 

Max Parental Ed = High School -0.060 
(0.126) 

-0.062 
(0.124) 

Max Parental Ed = Some College -0.241 
(0.156) 

-0.205 
(0.157) 

Max Parental Ed = College Graduate -0.101 
(0.165) 

-0.133 
(0.166) 

Max Parental Ed = Graduate School -0.853 
(0.464)* 

-0.825 
(0.456)* 

Max Parental Ed = Unknown 0.026 
(0.088) 

0.080 
(0.095) 

Student changed schools mid-year at 
some point during high school 

0.166 
(0.142) 

0.171 
(0.149) 

9th Grade Math = No Math -0.156 
(0.121) 

-0.144 
(0.126) 

9th Grade Math = Part Algebra, Part 
Pre-Algebra 

-0.159 
(0.081)** 

-0.159 
(0.082)* 

9th Grade Math = Algebra -0.183 
(0.068)*** 

-0.169 
(0.073)** 

9th Grade Math = Part Algebra, Part 
Geometry 

-0.301 
(0.178)* 

-0.338 
(0.192)* 

9th Grade Math = Geometry -0.489 
(0.198)** 

-0.393 
(0.206)* 

9th Grade Math = Advanced Geometry -0.420 
(0.210)** 

-0.258 
(0.228) 

Constant -0.771 
(0.154)*** 

-0.824 
(0.174)*** 

Observations 3072 3072 
Notes: Standard errors in parentheses.  All students who took intermediate algebra ( > advanced 
geometry) in 9th grade graduated high school.  Omitted variables are:  Indicator variables for non-
EL, non re-designated non-EL, white, parental education is high school dropout, 9th grade math 
class is pre-algebra and all teachers other than those listed in Table 3.1. 
***Significant at 1% level of confidence. 
**Significant at 5% level of confidence. 
*Significant at 10% level of confidence. 
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Table 3.A.2.  Non-Teacher Results from School 2 - Dependent Variable:  
Indicator for Whether a Dropout Occurred 

Variable 
 

Basic Probit Multivariate IV Probit 

English Learner (EL) 0.339 
(0.080)*** 

0.335 
(0.083)*** 

Re-designated from EL to non-EL 
During High School 

-0.466 
(0.099)*** 

-0.439 
(0.101)*** 

Female -0.037 
(0.067) 

-0.026 
(0.068) 

Asian -0.423 
(0.320) 

-0.453 
(0.317) 

Black -0.025 
(0.148) 

-0.029 
(0.153) 

Hispanic 0.202 
(0.130) 

0.212 
(0.129) 

Max Parental Ed = High School 0.120 
(0.153) 

0.114 
(0.152) 

Max Parental Ed = Some College 0.088 
(0.182) 

0.049 
(0.181) 

Max Parental Ed = College Graduate -0.362 
(0.224) 

-0.401 
(0.224)* 

Max Parental Ed = Graduate School -0.007 
(0.33) 

-0.011 
(0.366) 

Max Parental Ed = Unknown 0.037 
(0.114) 

-0.023 
(0.121) 

Student changed schools mid-year at 
some point during high school 

0.002 
(0.205) 

-0.098 
(0.218) 

9th Grade Math = No Math -0.546 
(0.330)* 

0.06 
(0.25) 

9th Grade Math = Part Algebra, Part 
Pre-Algebra 

-0.529 
(0.163)*** 

-0.509 
(0.165)*** 

9th Grade Math = Algebra -0.322 
(0.082)*** 

-0.246 
(0.093)*** 

9th Grade Math = Geometry -0.558 
(0.239)** 

-0.496 
(0.248)** 

9th Grade Math = Advanced Geometry -0.805 
(0.149)*** 

-0.715 
(0.165)*** 

Constant -0.773 
(0.162)*** 

-0.721 
(0.179)*** 

Observations 2518 2518 
Notes: Standard errors in parentheses.  All students who took intermediate algebra ( > advanced 
geometry) in 9th grade graduated high school.  In addition, only six students took the algebra-
geometry split at school 2 so that control is omitted from the model.  Other omitted variables are:  
Indicator variables for non-EL, non re-designated non-EL, white, parental education is high 
school dropout, 9th grade math class is pre-algebra and all teachers other than those listed in 
Table 3.2. 
***Significant at 1% level of confidence. 
**Significant at 5% level of confidence. 
*Significant at 10% level of confidence. 
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Table 3.A.3.  Non-Teacher Results from School 3 - Dependent Variable:  
Indicator for Whether a Dropout Occurred 

Variable 
 

Basic Probit Multivariate IV Probit 

English Learner (EL) 0.113 
(0.085) 

0.048 
(0.089) 

Re-designated from EL to non-EL 
During High School 

-0.367 
(0.120)*** 

-0.303 
(0.123)** 

Female -0.113 
(0.073) 

-0.111 
(0.072) 

Asian -0.036 
(0.165) 

-0.018 
(0.164) 

Black -0.127 
(0.155) 

-0.145 
(0.154) 

Hispanic 0.354 
(0.155)** 

0.343 
(0.154)** 

Max Parental Ed = High School -0.256 
(0.172) 

-0.206 
(0.171) 

Max Parental Ed = Some College -0.240 
(0.187) 

-0.188 
(0.186) 

Max Parental Ed = College Graduate -0.056 
(0.205) 

-0.046 
(0.209) 

Max Parental Ed = Graduate School -0.478 
(0.570) 

-0.394 
(0.555) 

Max Parental Ed = Unknown -0.047 
(0.118) 

0.052 
(0.124) 

Student changed schools mid-year at 
some point during high school 

0.397 
(0.195)** 

0.342 
(0.207)* 

9th Grade Math = No Math -0.134 
(0.147) 

-0.210 
(0.157) 

9th Grade Math = Part Algebra, Part 
Pre-Algebra 

-0.0878 
(0.101) 

-0.099 
(0.105) 

9th Grade Math = Algebra -0.292 
(0.117)** 

-0.369 
(0.129)*** 

9th Grade Math = Part Algebra, Part 
Geometry 

-0.380 
(0.388) 

-0.456 
(0.386) 

9th Grade Math = Geometry -0.865 
(0.356)** 

-0.956 
(0.358)*** 

9th Grade Math = Advanced Geometry -0.981 
(0.299)*** 

-1.01 
(0.304)*** 

Constant -0.713 
(0.187) 

-0.571 
(0.212) 

Observations 2217 2217 
Notes: Standard errors in parentheses.  All students who took intermediate algebra ( > advanced 
geometry) in 9th grade graduated high school.  Omitted variables are:  Indicator variables for non-
EL, non re-designated non-EL, white, parental education is high school dropout, 9th grade math 
class is pre-algebra and all teachers other than those listed in Table 3.3. 
***Significant at 1% level of confidence. 
**Significant at 5% level of confidence. 
*Significant at 10% level of confidence. 
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Table 3.A.4.  Non-Teacher Results from School 4 - Dependent Variable:  
Indicator for Whether a Dropout Occurred 

Variable 
 

Basic Probit Multivariate IV Probit 

English Learner (EL) 0.616*** 
(0.088) 

0.623 
(0.089)*** 

Re-designated from EL to non-EL 
During High School 

-0.486 
(0.131)*** 

-0.488 
(0.132)*** 

Female -0.066 
(0.061) 

-0.071 
(0.063) 

Asian -0.188 
(0.129) 

-0.196 
(0.130) 

Black 0.059 
(0.133) 

0.055 
(0.134) 

Hispanic -0.047 
(0.136) 

-0.050 
(0.135) 

Max Parental Ed = High School 0.065 
(0.142) 

0.075 
(0.142) 

Max Parental Ed = Some College -0.109 
(0.135) 

-0.110 
(0.136) 

Max Parental Ed = College Graduate -0.090 
(0.133) 

-0.090 
(0.135) 

Max Parental Ed = Graduate School 0.088 
(0.285) 

0.090 
(0.281) 

Max Parental Ed = Unknown -0.265 
(0.129)** 

-0.244 
(0.130)* 

Student changed schools mid-year at 
some point during high school 

-0.005 
(0.201) 

0.044 
(0.200) 

9th Grade Math = No Math 0.051 
(0.235) 

0.060 
(0.240) 

9th Grade Math = Part Algebra, Part 
Pre-Algebra 

0.149 
(0.165) 

0.132 
(0.167) 

9th Grade Math = Algebra -0.345 
(0.072)*** 

-0.354 
(0.076)*** 

9th Grade Math = Part Algebra, Part 
Geometry 

-0.025 
(0.701) 

-0.077 
(0.700) 

9th Grade Math = Geometry -0.296 
(0.186) 

-0.319 
(0.189)* 

9th Grade Math = Advanced Geometry -1.078 
(0.180)*** 

-1.067 
(0.193)*** 

Constant -0.588 
(0.163)*** 

-0.641 
(0.169)*** 

Observations 3779 3779 
Notes: Standard errors in parentheses.  All students who took intermediate algebra ( > advanced 
geometry) in 9th grade graduated high school.  Omitted variables are:  Indicator variables for non-
EL, non re-designated non-EL, white, parental education is high school dropout, 9th grade math 
class is pre-algebra and all teachers other than those listed in Table 3.4. 
***Significant at 1% level of confidence. 
**Significant at 5% level of confidence. 
*Significant at 10% level of confidence. 
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 Appendix 3.A 
Additional Details for the Dropout Analysis 

 

For each teacher indicator variable, the set of instrumental variables used to 

predict student-teacher matches consists of teachers’ subject-share variables 

interacted with the students’ corresponding projected math classes, matched by year.  

Returning to the example in the text, I substitute for student i’s specific math-course 

path with school-wide averages given her entry-level math class.  Because this 

student starts high school by taking algebra in ninth grade, the probability of her 

taking algebra in ninth grade is necessarily one.  In year 2, assume that 60 percent of 

students who take algebra in ninth grade at school X take geometry the following year 

and the remaining 40 percent retake algebra.  In this case, the teacher-selection 

equations for student i, including the instrument sets relevant for the 1998-1999 and 

1999-2000 school years, become: 

 
0 1 21 22 23 24(1)*(0.75)* (0)*(0)* (0.4)*(0.75)* (0.6)*(0)*iA i iAT X uα α α α α α= + + + + + +

0 1 21 22 23 24(1)*(0.25)* (0)*(0)* (0.4)*(0.25)* (0.6)*(0)*iB i iBT X uγ γ γ γ γ γ= + + + + + +

0 1 21 22 23 24(1)*(0)* (0)*(0.5)* (0.4)*(0)* (0.6)*(0.5)*iC i iCT X uρ ρ ρ ρ ρ ρ= + + + + + +

0 1 21 22 23 24(1)*(0)* (0)*(0.5)* (0.4)*(0)* (0.6)*(0.5)*iD i iDT X uψ ψ ψ ψ ψ ψ= + + + + + +
  

 
 

Tables 3.A.1 through 3.A.4 display the non-teacher coefficient estimates from 

the dropout models at schools 1 through 4, respectively. 
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