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Abstract of the Dissertation

Restoration of Images in the Presence of Rician Noise

and in the Presence of Atmospheric Turbulence

by

Melissa Yin Tong

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2012

Professor Luminita Aura Vese, Chair

This thesis is divided into two parts. In the first part, we will discuss the problem of restoring

magnetic resonance (MR) images corrupted by blur and Rician noise. We discuss the formation

of MR signals and how Rician noise is introduced into these images as a result of the MR

acquisition process. Information about the Rician probability distribution and motivation for

our proposed variational restoration model is then given. We show the existence of a minimizer

and a comparison result. We also perform numerical experiments and comparisons using L2

and H1 gradient descent schemes to show the validity of our proposed model. This leads to a

related second model that denoises High Angular Resolution Diffusion Imaging (HARDI) data,

which is a modality of MR data that is used in reconstructing fiber pathways in the brain.

HARDI data is vectorial data of dimension equal to the number of diffusion directions. This

data can be used as input to calculate fractional anisotropy (FA) or orientation distribution

functions (ODFs) which in turn are used to track fibers in the brain. Having denoised data

may lead to more accurate fiber extractions. We test our proposed HARDI denoising model on

various data sets, and various metrics are used to gauge improvements after denoising. In the

second part of this thesis, we study the problem of restoring images distorted by atmospheric

turbulence. Geometric distortions and blur are the two main components of degradations due to

atmospheric turbulence, and prior work has been done to address these components separately.

We propose a joint variational deblurring and geometric distortion correction model and give

preliminary results.
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Restoration of Magnetic Resonance

Images Corrupted by Blur and Rician

Noise
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CHAPTER 1

Introduction and Background

1.1 Introduction and Motivation

Images arise in many applications in society. From digital art to video surveillance, images

are used in a wide range of applications. With the invention of new image acquisition devices,

many different types of images corresponding to different types of information may be collected.

In addition, advances in computing allow for large amounts of data to be processed. For

example, in medical imaging, image acquisition techniques include computerized tomography

(CT), X-rays, and magnetic resonance (MR) imaging. These techniques have been invaluable

in advancing our understanding of different phenomena in many medical-related fields.

The advent of this wealth of information in the form of images is often coupled with a need

to process and analyze this data; this falls under the field of image processing. Image processing

techniques include image segmentation, compression, super-resolution, and restoration such as

denoising and deblurring.

One type of image acquired in medical imaging is magnetic resonance (MR). MR images

are used to visualize the internal features of the body, for example the brain. These images

may help detect abnormalities in a patient such as a tumor in the brain or aid doctors in

evaluating the success of a brain surgery. Unfortunately, MR images are often corrupted with

noise and possibly other types of degradation such as blurring effects. One goal of medical

image processing is to design algorithms that decrease this noise, making certain features in

MR images easier to see.

The type of noise present in MR images is known to follow a Rician distribution [GP95,

Hen85, Ric44, Lat83, BFW06]. This type of noise may severely alter MR images, leading to

2



incorrect interpretation of important structural information. For example, High Angular Reso-

lution Diffusion Imaging (HARDI) [TWB99, TRW02] is a modality of MR imaging used in re-

constructing fibers in the brain, and HARDI data is often contaminated with noise. More specif-

ically, HARDI data is a collection of diffusion weighted MR images (DW-MRI), meaning that

for each diffusion direction considered, we have a corresponding MR image. The angular resolu-

tion of fiber pathways increases as the number of diffusion directions imaged increases, but the

introduction of noise during the data collection process will likely change important characteris-

tics measured from the HARDI data such as fractional anisotropy (FA) [PB96, And01, SLN00]

of the fiber pathways. Therefore, it may be beneficial to design algorithms to reduce this noise

in hopes of obtaining more accurate information from the data.

During the MR data collection process, a complex valued signal is collected and its mag-

nitude forms the MR signal. Since the real and imaginary parts of this raw complex signal

is corrupted by Gaussian distributed noise, the resulting magnitude signal will have Rician

distributed noise [GP95, Hen85, Ric44, Lat83, BFW06]. In the next section, we take a closer

look at Rician distributed noise and how it arises in MR data.

1.2 MR Signals and Rician Distributed Noise

An underlying clean signal ν is said to be corrupted with Rician distributed noise if the resulting

noisy signal r follows a Rician probability distribution, which is given by

P(r; ν, σ) =
r

σ2
exp

(
−(r2 + ν2)

2σ2

)
I0

(rν
σ2

)
, (1.1)

where r, ν, σ > 0, I0 is the zeroth-order modified Bessel function of the first kind, and σ is the

standard deviation of the noise. In other words, if at a particular pixel or voxel, the underlying

clean signal has value ν, then Pr(r; ν, σ) gives the probability of getting a noisy signal with

value r. Rician probability density functions for given ν and σ = 1 are presented in Fig. 1.1.

In general, a random variable R is said to be Rician distributed with standard deviation σ

about ν, denoted R ∼ Rician(ν, σ), if it has probability distribution given by (1.1). If we take

two independent normal random variables X ∼ N(ν cos θ, σ2) and Y ∼ N(ν sin θ, σ2) (for any

3
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0 1 2 3 4 5 6 7 8

0

0.2

0.4

0.6

0.8

ν = 0

ν = 1
ν = 2 ν = 3 ν = 5

Figure 1.1: Rician probability density function for given ν and σ = 1.

θ ∈ R), then the resulting magnitude of the two random variables R =
√
X2 + Y 2 has Rician

distribution, R ∼ Rician(ν, σ). An application in which Rician distribution arises in this way

is the formation of MR signals.

As mentioned earlier, an MR signal is formed by taking the magnitude of the raw complex

valued signal collected by an MR imaging machine. If the collection process is perfect, then we

start with the machine collected complex valued signal

z = zreal + izimag = ν cos(θ) + iν sin(θ)

where ν is the magnitude of z and θ is the phase of z. The resulting MR signal is simply the

magnitude ν. However, in real applications, the collection process corrupts z with noise. More

specifically, the real and imaginary components of z are corrupted with Gaussian distributed

noise with some standard deviation σ [GP95, Hen85, Ric44, Lat83, BFW06]:

z = zreal + izimag → (zreal +G(σ)) + i(zimag +G(σ)).

The corrupted MR signal is the magnitude of the corrupted complex valued signal:

magnitude =
√

(zreal +G(σ))2 + (zimag +G(σ))2.

As a result, an MR signal is the magnitude of two independent normal random variables, with

4



distributions N(ν cos θ, σ2) and N(ν sin θ, σ2). It is easy to see from the discussion above that

the resulting MR signal is corrupted by Rician distributed noise.

noisy, ν = 0, σ = 1 noisy, ν = 5, σ = 1

Figure 1.2: Comparison of Gaussian and Rician noise with σ = 1 on input values ν = 0 (left

square) and ν = 5 (right square). Left of each square: additive Gaussian noise; right of each

square: Rician noise. For ν = 0, mean of Gaussian: -0.0041, mean of Rician: 1.2550. For ν = 5,

mean of Gaussian: 5.0155, mean of Rician: 5.1066.

In Fig. 1.2, we start with two squares of constant intensity ν = 0 and ν = 5. We add

Gaussian noise to the left half of the squares and Rician noise to the right half of the squares,

where the standard deviation of the noise σ = 1 in all cases. We note that for input values ν

that are small compared to the standard deviation σ, we see a difference between Gaussian and

Rician noise. In addition, the images corrupted with Rician noise have a larger mean than the

images corrupted with Gaussian noise. We compare the probability distributions for these two

cases in Fig. 1.3. When the standard deviation σ of the Rician probability distribution is small

compared to ν (e.g. ν > 2σ), the Rician probability distribution is approximately Gaussian.

This case occurs when the signal to noise ratio (SNR) is high (low noise level). However, when

σ is larger or on the order of the value of ν (e.g. ν ≤ σ), the Gaussian probability distribution

is a bad approximation to the Rician one. This occurs when the SNR is low and the noise level

is high. Therefore, a Gaussian distribution is a good approximation to the Rician distribution

in areas corrupted with small amounts of noise but not in areas corrupted with large amounts

5



r

−3 −2 −1 0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

ν = 0

ν = 5

1

Figure 1.3: Comparison of Rician (blue) and Gaussian (red) probability distribution functions

for given ν and standard deviation σ = 1.

of noise.

In some cases, the standard deviation of the noise σ is unknown. Since σ appears in

our denoising algorithm, we must find an estimation for this parameter. As in [SDD98], we

approximate σ by using the equation

E(X2) = ν2 + 2σ2 (1.2)

for the second moment of a Rician distributed variable X. Here, E(X2) is the expected value of

X2 and ν is the true signal. For regions of a data set where we expect ν = 0 (e.g. background),

we can use

σ ≈
√
E(X2)/2 (1.3)

where E(X2) is simply the average value of the square of the noisy signal over the region where

the true signal is expected to be zero.

1.2.1 Bessel Functions

The Rician probability density (1.1) involves the modified Bessel function I0, so developing a

Rician noise model entails manipulating I0 and its derivatives. The modified Bessel functions
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are the solutions of the modified Bessel differential equation

t2
d2y

dt2
+ t

dy

dt
− (t2 + n2)y = 0. (1.4)

where t ∈ R, and n is a constant that is not necessarily an integer. This equation has two linearly

independent solutions In(t) and Kn(t), which are respectively the modified Bessel functions of

the first and second kind of order n.

t

0 1 2 3 4
0

1

2

3

I0
I1

I2
I3

I4

t

0 1 2 3 4
0

1

2

3

K0K1 K2 K3 K4

Figure 1.4: Modified Bessel functions shown for t ≥ 0.

For t ≥ 0, the functions In(t) are exponentially increasing while Kn(t) are exponentially

decreasing, see Figure 1.4. For integer n, some properties (from [AS65, Boa83]) of In(t) include

In(t) = i−nJn(it)

=
1

π

∫ π

0

et cos θ cos(nθ) dθ

= (1
2
t)n

∞∑
k=0

(1
4
t2)k

k!(n+ k)!
,

d
dt
I0(t) = I1(t),

d
dt
I1(t) = I0(t)− 1

t
I1(t),

where Jn(t) denotes the nth order Bessel function of the first kind. Furthermore, a property

that we will use is that the ratio I1(t)/I0(t) is bounded by 1, see Fig. 1.5.
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Figure 1.5: The function I1(t)/I0(t).

1.3 Bayesian Model Incorporating Rician statistics

Bayesian statistical inference is a powerful technique used in image processing. Following the

discussion in [CS05], conceptually, a set of data Q can be thought of as generated by a feature

set F . The goal is to find the most likely feature variable from F to have generated a given

observed sample of Q using both information about the feature set F and information about

how data Q is generated from F .

For our application, consider F to be a set of underlying true images, and Q to be a set

of observed data generated by F through a degradation process involving Gaussian blur and

Rician noise. More specifically, let f denote an observed degraded image. A Bayesian statistical

inference technique called maximum a posteriori (MAP) estimation may be used to design a

denoising and deblurring method to recover the u from the set F that is most likely to have

generated the degraded image f . As in [BFW06], we utilize the MAP estimation technique to

denoise images corrupted by Rician distributed noise.

In general, with f the degraded image, and u the underlying true image, the MAP estimate

of u is the u that is most likely to have generated the given f :

û = arg max
u

P(u|f). (1.5)
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An application of Bayes’ Theorem gives

max
u

P(u|f) = max
u

{
P(u)P(f |u)

}
= min

u

{
− log P(u)− log P(f |u)

}
. (1.6)

The first factor P(u) is called a prior on u which is a distribution that incorporates information

on what u is likely to be, restricting the possible admissible images. In addition, it acts as a reg-

ularization term. The second factor P(f |u) is the data model, which describes the degradation

process that generated f from u.

For example, consider the Rudin-Osher-Fatemi (ROF) restoration model [ROF92, RO94]

min
u∈BV (Ω)

{∫
Ω

|Du|+ λ

2

∫
Ω

(Ku− f)2dx
}
, (1.7)

where Ω ⊂ Rn is open and bounded. The observed image f is assumed to be generated by an

unknown restored image u (belonging to the space of functions of bounded variation, BV (Ω))

by the degradation process

f = Ku+ n, (1.8)

where K is a linear blurring operator and n is white Gaussian noise. ROF can be seen to be a

MAP estimate using the prior

P (u) = exp(−α
∫
|Du|) (1.9)

and data model

P (f(x)|u(x)) =
1√

2πσ2
exp

(
− (f(x)−Ku(x))2

2σ2

)
. (1.10)

Therefore, we have

− log P(f |u) = −
∫

Ω

log P
(
f(x)|u(x)

)
dx

= −
∫

Ω

log

[
1√

2πσ2
exp

(−(f(x)−Ku(x)
)2

2σ2

)]
dx

=
1

2σ2

∫
Ω

(f(x)−Ku(x)
)2
dx+ |Ω|

2
log(2πσ2),

so that with λ = 1/(σ2α) we recover (1.7),

max
u

P(u|f) = min
u

{
− log P(u)− log P(f |u)

}
= min

u

{
α

∫
Ω

|Du|+ 1

2σ2

∫
(Ku− f)2 dx

}
.

9



Through this connection between ROF and MAP estimates, ROF can be reformulated to

use other degradation models. Specifically, with a degradation model consisting of blurring with

blur kernel K and followed with the addition of Rician noise, we employ the Rician probability

distribution (1.1) to arrive at data model

P(f |u) =
f(x)

σ2
exp

(
− (Ku(x))2 + f(x)2)

2σ2

)
I0

(
f(x)Ku(x)

σ2

)
(1.11)

and thus

− log P(f |u) =

∫
Ω

[
− log

f

σ2
− log I0

(
f(Ku)

σ2

)
+
f 2 + (Ku)2

2σ2

]
dx. (1.12)

Using the same prior on u (1.9) as in the ROF model and incorporating everything into (1.6) as

before, we arrive at our proposed variational denoising deblurring model incorporating Rician

statistics

inf
u∈BV (Ω)

{
F (u) =

∫
Ω

|Du|+ λ

∫
Ω

[
− log

f

σ2
− log I0(

f(Ku)

σ2
) +

f 2 + (Ku)2

2σ2

]
dx
}
. (1.13)

In the next section, we give a brief review of the space of functions of bounded variation, which

is the space in which we look for our solution.

1.3.1 Review of the Space of Functions of Bounded Variation

Here, we give a brief review of some properties of the space of functions of bounded variation

that are relevant to image processing. We refer the reader to [ABM06, AK06, CS05] for more

details.

The space of functions of bounded variation is important in image modeling because of its

admission of functions with jumps or edges, which are important features that often appear in

images. The well-known work by Rudin-Osher-Fatemi [ROF92, RO94] provides an example of

a denoising scheme using total variation regularization.

First, we give the definition of total variation and the space of functions of bounded variation.

Then we give relevant properties of this space as well as canonical example functions. Lastly,

we provide a proof of a property that will be used in the existence proof for our variational

Rician denoising model.
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Definition. Let Ω ∈ RN and u ∈ L1(Ω). The total variation (TV) of u is defined as∫
Ω

|Du| = sup

{∫
Ω

udivφ dx;φ = (φ1, φ2, ..., φN) ∈ C1
0(Ω)N , |φ|L∞(Ω) ≤ 1

}
, (1.14)

where divφ =
∑N

i=1
∂φi
∂xi

(x) is the divergence of φ, dx is the Lebesgue measure, and C1
0(Ω)N is

the space of continuously differentiable functions with compact support in Ω and

|φ|L∞(Ω) = sup
x

√√√√ N∑
i=1

φ2
i (x). (1.15)

Definition. Let BV (Ω) denote the space of functions of bounded variation.

BV (Ω) =
{
u ∈ L1(Ω);

∫
Ω

|Du| <∞
}
. (1.16)

In other words, a function u belongs to BV (Ω) if it belongs to L1(Ω) and has bounded variation∫
Ω
|Du| <∞.

Two canonical examples are the following. First, if u is differentiable (i.e. u ∈ C1(Ω)), then∫
Ω
|Du| =

∫
Ω
|∇u(x)|dx. Second, if we take A = B(0, 1) ∈ R2 to be the interior of the unit disc

centered around 0, and u = χA to be the characteristic function of the subset A defined by

χA(x) =


1 for x ∈ A

0 for x ∈ R2\A,
(1.17)

then
∫

Ω
|Du| = Perimeter(B(0, 1)) = 2π. This corresponds to the jump in value from 0 to 1 at

the boundary of the disc.

It can be shown that if u ∈ BV (Ω), then its distributional gradient Du is a vector-valued

Radon measure. Furthermore, Du can be decomposed into an absolutely continuous part and

singular part

Du = ∇udx+Dsu, (1.18)

where dx is the N -dimensional Lebesgue measure, ∇u = d(Du)
dx

(x) ∈ L1(Ω) is the absolutely

continuous part, and Dsu ⊥ dx where Dsu is the singular part. The singular part can be

decomposed further into a “jump” part Ju = (u+ − u−)nuH
N−1
|Su

and “Cantor” part Cu.

Du = ∇udx+ (u+ − u−)nuH
N−1
|Su

+ Cu, (1.19)
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where Hd denotes the d-dimensional Hausdorff measure. Furthermore,

u+(x) = inf

{
t ∈ [−∞,∞]; lim

r→0

dx({u > t} ∩B(x, r))

rN
= 0

}
u−(x) = inf

{
t ∈ [−∞,∞]; lim

r→0

dx({u < t} ∩B(x, r))

rN
= 0

}
, (1.20)

and the jump set Su is given by

Su =

{
x ∈ Ω; u−(x) < u+(x)

}
, (1.21)

with nu(x) denoting a normal vector to Su.

Ju and Cu are mutually singular, which implies that the support of the Cantor part Cu has

Hausdorff dimension strictly greater than N − 1 and strictly less than N . This leads to the

decomposition of the total variation∫
Ω

|Du| =
∫

Ω

|∇u|(x)dx+

∫
Su

|u+ − u−|dHN−1 +

∫
Ω−Su

|Cu|. (1.22)

Revisiting our two canonical examples, we see that with example 1, u has no discontinuities

since u ∈ C1(Ω), so the last two terms of the decomposition disappear and we again have∫
Ω
|Du| =

∫
Ω
|∇u(x)|dx. With example 2, u = χB(0,1), |∇u| = 0 a.e. with respect to the

Lebesgue measure so the first term of decomposition is 0. The only discontinuity is a jump

discontinuity along the boundary of B(0, 1) so the last term is 0. With |u+ − u−| = 1, the

second term is simply, again, the perimeter of B(0, 1).

The space BV (Ω) has norm

|u|BV (Ω) = |u|L1(Ω) +

∫
Ω

|Du| (1.23)

but due to the lack of good compactness properties with this topology, the BV −w∗ (BV weak*

topology) is used where convergence is defined by

uj ⇀
BV−w∗

u (1.24)

if and only if

uj −→
L1(Ω)

u and

∫
Ω

φDuj →
∫

Ω

φDu, ∀φ ∈ C0(Ω)N . (1.25)
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A compactness property that follows is that any uniformly bounded sequence uj ∈ BV (Ω) is

relatively compact in Lp(Ω) for 1 ≤ p < N
N−1

for N ≥ 1. Furthermore, there is a subsequence ujk

and u ∈ BV (Ω) that converges in the BV-w* topology to u. In addition, BV (Ω) is continuously

embedded in Lp(Ω) with p = +∞ if N = 1 and p = N
N−1

otherwise.

In addition, we have the following two useful properties.

Lower semi-continuity of TV: For a sequence uj ∈ BV (Ω) and uj → u strongly in

L1(Ω), then ∫
Ω

|Du| ≤ lim inf
j→∞

∫
Ω

|Duj|. (1.26)

Coarea Formula With u ∈ BV (Ω), then for a.e. t ∈ R, the level set Et = {x ∈ Ω : u(x) >

t} of u is a set of finite perimeter in Ω and

Du(Ω) =

∫ ∞
−∞

DχEtdt

|Du|(Ω) =

∫ ∞
−∞

∫
Ω

|DχEt |dt. (1.27)

It will be useful to define the following extension of BV (Ω) to L
N

N−1 (Ω),

J(u) =


∫

Ω
|Du| if u ∈ BV (Ω)

+∞ if u ∈ L
N

N−1 (Ω)\BV (Ω).

(1.28)

The following property that involves this extension is used in the proof of the existence of a

minimizer of the Rician denoising model [Cha04, Giu94]

J(max {u, v}) + J(min {u, v}) ≤ J(u) + J(v) (1.29)

where J is defined in (1.28).

Furthermore, for u ∈ BV (Ω), we show∫
Ω

|D|u|| ≤
∫

Ω

|Du|. (1.30)

Indeed, let u ∈ BV (Ω), then

J(|u|) = J(max {u(x), 0} −min {u(x), 0})

≤ J(max {u(x), 0}) + J(min {u(x), 0}) ≤ J(u) + J(0)

= J(u), (1.31)
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where the second line is an application of (1.29).
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CHAPTER 2

TV-Regularized Restoration with Rician Noise Model

2.1 Prior Works

The main approaches for denoising MR images fall into one of two categories. In representation

based approaches, the goal is to represent the noise free signal as a linear combination of a

small number of elements of a fixed basis. This approach uses information about the type of

signal to be reconstructed (e.g. MR signals of the brain) to recover a noise free signal from a

noisy signal. A second approach is to model explicitly the type of noise that is present in MR

images. In this case, information about the noise statistics is used. We will work within this

latter framework.

Prior works in MR image denoising include the following. In [WZ06], Wang and Zhou

use a TV and wavelet based regularization and assume that the noise found in MR images is

Gaussian. In addition, they propose an automatic stopping criterion for the time evolution

equation associated with their proposed variational denoising model. This stopping criterion

helps avoid an over-smoothed solution. In the works by Descoteaux et al. [DWP] and Wiest-

Daessle et al. [WPC], a non-local means filter adapted for Rician denoising is proposed and

experiments are performed on diffusion tensor MR images (DT-MRI). The work most related

to ours is by Basu et al. [BFW06]. In their work, a maximum a posteriori (MAP) estimate

incorporating Rician statistics and a prior based on the Perona-Malik energy functional is used,

and experiments are performed on DT-MRIs. For our model, instead of a prior based on the

Perona-Malik energy functional, we use a prior based on total variation.

In this chapter, we give first our proposed variational restoration model and the existence

of a minimizer and comparison result. Then, we give the numerical implementation to solve
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the minimization problem and numerical results. We end with a brief discussion of our results.

2.2 Proposed Variational Restoration Model

Let Ω be an open, bounded, and connected subset of Rn, f and u be functions from Ω → R,

and K be a linear operator (blur). We propose the following minimization method

inf
u∈BV (Ω)

{
F (u) =

∫
Ω

|Du|+ λ

∫
Ω

[
− log

f

σ2
− log I0(

f(Ku)

σ2
) +

f 2 + (Ku)2

2σ2

]
dx
}
, (2.1)

where λ > 0 is a tuning parameter.

2.2.1 Existence and Comparison Result

Although we deal with a nonconvex data fidelity term in (2.1), we obtain the following existence

and comparison results in the purely denoising case (K = I).

Inspired by the work of G. Aubert and J.-F. Aujol in [AA08], we show the existence of a

minimizer for (2.1) with K = I.

Theorem 1. Assume that infΩ f(x) = α > 0, and f ∈ L∞(Ω). Then the minimization problem

(2.1) for K = I admits at least one solution u ∈ BV (Ω) satisfying

0 ≤ u ≤ sup
Ω
f. (2.2)

Proof. Let {un} ⊂ BV (Ω) be a minimizing sequence for (2.1). Such a sequence exists since

F (u ≡ 1) = C < ∞. Therefore, without loss of generality, we can assume that F (un) ≤ C for

all n.

We denote the integrand of the Rician fidelity term by

G(u) = − log
f

σ2
− log I0(

fu

σ2
) +

f 2 + u2

2σ2
, (2.3)

and its derivative by

G′(u) = −
I1(fu

σ2 )

I0(fu
σ2 )

f

σ2
+

u

σ2
. (2.4)
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Step 1 : We show that without loss of generality, 0 ≤ un ≤ supΩ f ≡ β can be assumed for all

n.

This is shown by demonstrating that the sequence {φ0,β(|un|)} satisfies

F (φ0,β(|un|)) ≤ F (un), (2.5)

where φ0,β : R→ [0, β] is a cut-off function defined by

φ0,β(y) =


β for y > β

y for 0 ≤ y ≤ β

0 for y < 0.

(2.6)

Replacing un with φ0,β(|un|) results in an equal or more optimal energy. Therefore, {φ0,β(|un|)}

is a minimizing sequence in [0, β] that we may use in place of the original minimizing sequence

{un}.

First, we can and should consider only non-negative minimizing sequences {un}. Intuitively,

one expects to have ∫
Ω

|D|un|| ≤
∫

Ω

|Dun|, (2.7)

which is shown in [Giu94] and see (1.31). Since I0(fu/σ2) is an even function in u (see [Boa83]),

G is also an even function, so ∫
Ω

G(|un|)dx =

∫
Ω

G(un)dx. (2.8)

Together with (2.7), this gives for each n

F (|un|) ≤ F (un). (2.9)

Hence, we can consider only non-negative minimizing sequences.

Now we show F (φ0,β(|un|)) ≤ F (|un|). Noting that |I1(t)/I0(t)| < 1 (Fig. 1.5) for all t ∈ R,

we obtain

G′(u) ≥ 1

σ2
(−β + u) (2.10)
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for any value of u ∈ R. Since G′(u) > 0 for u > β, we can conclude that G is increasing on the

interval (β,∞). From this fact, it is easy to see that

G(min(|un(x)|, β)) ≤ G(|un(x)|) (2.11)

for any x ∈ Ω. This gives

G(φ0,β(|un(x)|)) ≤ G(|un(x)|), (2.12)

and therefore ∫
Ω

G(φ0,β(|un(x)|))dx ≤
∫

Ω

G(|un(x)|)dx. (2.13)

In addition, we expect ∫
Ω

|Dφ0,β(|un|)| ≤
∫

Ω

|D|un|| (2.14)

to hold for un ∈ BV (Ω); a proof of a general form of this result can be found in Appendix C of

[KDA99]. Combining this with (2.13) and our previous result gives for each n

F (φ0,β(|un|)) ≤ F (|un|) ≤ F (un). (2.15)

Step 2 : Let {un} be a minimizing sequence; we can assume that 0 ≤ un ≤ β thanks to Step 1.

Also, as mentioned previously, we can assume that F (un) ≤ C <∞ for all n. Hence,∫
Ω

|Dun|+ λ

∫
Ω

G(un)dx ≤ C. (2.16)

In addition,

G(un) = − log
f

σ2
− log I0(

fun
σ2

) +
f 2 + u2

n

2σ2
≥ − log(

β

σ2
)− log I0(

β2

σ2
) = C ′ > −∞, (2.17)

which allows us to conclude that ∫
Ω

|Dun|dx ≤ C ′′ <∞, (2.18)

for all n. Thus, {un} is a uniformly bounded sequence in BV (Ω), and there exists a subsequence

{unk
} and u ∈ BV (Ω) such that unk

→ u in BV −w∗ and unk
→ u in L1(Ω) ([EG92]). Hence,

we must have u ∈ [0, β], and by the lower semi-continuity property of the total variation and

Fatou’s lemma, we obtain

F (u) ≤ lim inf F (unk
). (2.19)
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Therefore, we can conclude that u is a solution of (2.1). �

Remark: For the deblurring problem, we can obtain existence of a minimizer by restricting

u to [0, β]. In other words, we consider the modified problem

inf
u∈BV (Ω),0≤u≤β

∫
Ω

|Du|+ λ

∫
Ω

[
− log

f

σ2
− log I0(

f(Ku)

σ2
) +

f 2 + (Ku)2

2σ2

]
dx, (2.20)

where K is a blurring kernel. With the usual properties on K (a smoothing kernel, such as

Gaussian or average kernel), it is easy to conclude that Ku ∈ [0, β]. Thus, a proof of existence

is obtainable using the ideas in step 2.

Using again techniques from G. Aubert and J.-F. Aujol’s work in [AA08], we obtain the

following comparison theorem.

Theorem 2. Let f1 and f2 be L∞(Ω) functions such that 0 < α1 ≤ f1 ≤ β1 < ∞ and

0 < α2 ≤ f2 ≤ β2 < ∞. If we assume f1 < f2, then u1 ≤ u2 where u1 and u2 are solutions to

(2.1) with K = I corresponding to f = f1 and f = f2 respectively.

Proof. First, denote

J(u) =


∫

Ω
|Du| if u ∈ BV (Ω)

+∞ if u ∈ L
n

n−1 (Ω)\BV (Ω).

(2.21)

The solutions u1 and u2 exist thanks to Theorem 1. Since u1 and u2 are minimizers for their

respective problems, it should be easy to see that

J(min(u1, u2)) +

∫
Ω

[
− log I0

(
f1 min(u1, u2)

σ2

)
+

(min(u1, u2))2

2σ2

]
dx

≥ J(u1) +

∫
Ω

[
− log I0

(
f1u1

σ2

)
+

u2
1

2σ2

]
dx, (2.22)

and

J(max(u1, u2)) +

∫
Ω

[
− log I0

(
f2 max(u1, u2)

σ2

)
+

(max(u1, u2))2

2σ2

]
dx

≥ J(u2) +

∫
Ω

[
− log I0

(
f2u2

σ2

)
+

u2
2

2σ2

]
dx. (2.23)
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Adding these two inequalities, we get

J(min(u1, u2)) + J(max(u1, u2))

+

∫
Ω

[
− log I0

(
f1 min(u1, u2)

σ2

)
− log I0

(
f2 max(u1, u2)

σ2

)]
dx

+

∫
Ω

[(min(u1, u2))2

2σ2
+

(max(u1, u2))2

2σ2

]
dx

≥ J(u1) +

∫
Ω

[
− log I0

(
f1u1

σ2

)
+

u2
1

2σ2

]
dx

+ J(u2) +

∫
Ω

[
− log I0

(
f2u2

σ2

)
+

u2
2

2σ2

]
dx. (2.24)

Rearranging terms and using the property J(min(u1, u2)) + J(max(u1, u2)) ≤ J(u1) + J(u2)

(see [Cha04] and [Giu94]), we obtain∫
Ω

[
log

I0

(
f2u2
σ2

)
I0

(f1 min(u1,u2)
σ2

) − log
I0

(f2 max(u1,u2)
σ2

)
I0

(
f1u1
σ2

)
+

(max(u1, u2))2

2σ2
− u2

1

2σ2
+

(min(u1, u2))2

2σ2
− u2

2

2σ2

]
dx

≥ J(u1) + J(u2) − (J(min(u1, u2)) + J(max(u1, u2))) ≥ 0. (2.25)

Consider Ω+ = {x ∈ Ω, u1(x) > u2(x)}, then from above, we arrive at∫
Ω+

−

(
log

I0(f2u1
σ2 )

I0(f1u1
σ2 )
− log

I0(f2u2
σ2 )

I0(f1u2
σ2 )

)
dx ≥ 0. (2.26)

We have that

g(y) = log
I0(c2y)

I0(c1y)
= log I0(c2y)− log I0(c1y) (2.27)

is a monotonically increasing function for y ≥ 0 if c2 > c1 > 0 since

g′(y) = c2
I1(c2y)

I0(c2y)
− c1

I1(c1y)

I0(c1y)

= c1

(
c2

c1

I1(c2y)

I0(c2y)
− I1(c1y)

I0(c1y)

)
> c1

(
I1(c2y)

I0(c2y)
− I1(c1y)

I0(c1y)

)
> 0 (2.28)

for y > 0. The last inequality is true because I1(z)
I0(z)

is a monotonically increasing function for

z ≥ 0 (see Fig. 1.5).

Hence, the integrand must be negative, implying that the Lebesgue measure of Ω+ is 0, and

therefore u1 ≤ u2 on Ω. �
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2.3 Numerical Implementation

For numerical purposes, we consider an approximation

Fε(u) =

∫
Ω

√
ε2 + |∇u|2 dx+ λ

∫
Ω

[
− log

f

σ2
− log I0(

f(Ku)

σ2
) +

f 2 + (Ku)2

2σ2

]
dx (2.29)

to the energy F (u) to remove the singularity of |∇u| = 0 encountered in the Euler-Lagrange

equation of F (u). Here, ε is a small positive number.

In order to solve the proposed minimization problem in practice, we use the L2 and Sobolev

(H1) gradient descent methods (see [Neu97]). It has been shown in [Neu97, Ren06] that for cases

where the derivatives of u appear in the energy functional, the L2 gradient is not guaranteed to

be in L2, but the Sobolev (H1) gradient exists in H1. The use of the Sobolev (H1) gradient has

been shown to give improved results in terms of quality and time in certain image processing

applications [SYM07, CMP07, DMN08, BS08, Ric08, JCS09]. For this reason, we implement

the Sobolev (H1) gradient descent method in addition to the more standard L2 gradient descent

method.

In general, gradient descent methods involve the evolution problem

∂u(x, t)

∂t
= −∇Fε(u), (2.30)

where ∇Fε(u) is dependent on the function space considered. We consider the L2 and Sobolev

(H1) spaces and denote the gradients by ∇L2Fε(u) and ∇H1Fε(u) respectively. These gradients

are defined by

F ′ε(u)v = 〈∇L2Fε(u), v〉L2 , ∀v ∈ L2 (2.31)

and

F ′ε(u)h = 〈∇H1Fε(u), h〉L2 , ∀h ∈ H1, (2.32)

where F ′ε(u)v and F ′ε(u)h are the directional derivatives of Fε at u in the direction of v ∈ L2

and h ∈ H1 respectively.

Furthermore, it can be shown in [Neu97] that the L2 and H1 gradients are related in the

following way

∇H1Fε(u) = (I −4)−1∇L2Fε(u) (2.33)
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or equivalently

(I −4)∇H1Fε(u) = ∇L2Fε(u). (2.34)

In the following we give the implementation details for these gradient descent methods.

2.3.1 L2 Gradient Descent

For our application, the L2 gradient descent method used to compute the minimizer involves

the partial differential equation

∂u

∂t
= −∇L2Fε(u)

= λ

(
− K∗Ku

σ2
+K∗

(
I1(fKu

σ2 )

I0(fKu
σ2 )
· f
σ2

))
+∇ · ∇u√

ε2 + |∇u|2
.

Defining

wni,j,k :=
1

h2

1√
ε2 +

(
uni+1,j,k−u

n
i,j,k

h

)2

+
(
uni,j+1,k−u

n
i,j,k

h

)2

+
(
uni,j,k+1−u

n
i,j,k

h

)2
,

we can describe the discretization we implemented by

un+1
i,j,k − uni,j,k

dt
= λ

(
−
K∗Kuni,j,k

σ2
+K∗

(
I1(

fKuni,j,k
σ2 )

I0(
fKuni,j,k

σ2 )
· f
σ2

))
− λ

σ2
(un+1

i,j,k − u
n
i,j,k)

+wni,j,k(u
n
i+1,j,k − un+1

i,j,k)− wni−1,j,k(u
n+1
i,j,k − u

n
i−1,j,k) + wni,j,k(u

n
i,j+1,k − un+1

i,j,k)

−wni,j−1,k(u
n+1
i,j,k − u

n
i,j−1,k) + wni,j,k(u

n
i,j,k+1 − un+1

i,j,k)− wni,j,k−1(un+1
i,j,k − u

n
i,j,k−1),

where h = 1 denotes the fixed space step and dt > 0 denotes the fixed timestep. We use

Neumann boundary condition ∂u
∂~n
|∂Ω = 0, where ~n is the unit normal to the boundary ∂Ω, and

we use initial condition u0 = f . Note that the second term on the right-hand-side rescales the

timestep and is added for numerical purposes. A larger timestep may be used as a result of

adding this term.
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2.3.2 Sobolev (H1) Gradient Descent

Formally, the Sobolev (H1) gradient descent method used to compute the minimizer involves

the partial differential equation

∂u

∂t
= (I − c4)−1

(
λ

(
− K∗Ku

σ2
+K∗

(
I1(fKu

σ2 )

I0(fKu
σ2 )
· f
σ2

))
+∇ · ∇u√

ε2 + |∇u|2

)
, (2.35)

for some c > 0. Note that for c = 1, the right-hand-side is equal to the negative of the Sobolev

(H1) gradient. The addition of c > 0 may lead to better results than when fixing c = 1, and

for this reason, we add this parameter.

To understand how to work with (2.35), let us define

G = −∇L2Fε(u) and W = −∇H1Fε(u). (2.36)

Then the Sobolev (H1) gradient descent method is given by

∂u

∂t
= W, (2.37)

where W solves

G = (I −4)W, (2.38)

as a result of (2.34).

Denoting

Gn
i,j,k = λ

(
−
K∗Kuni,j,k

σ2
+K∗

(
I1(

fKuni,j,k
σ2 )

I0(
fKuni,j,k

σ2 )
· f
σ2

))
+wni,j,k(u

n
i+1,j,k − uni,j,k)− wni−1,j,k(u

n
i,j,k − uni−1,j,k) + wni,j,k(u

n
i,j+1,k − uni,j,k)

−wni,j−1,k(u
n
i,j,k − uni,j−1,k) + wni,j,k(u

n
i,j,k+1 − uni,j,k)− wni,j,k−1(uni,j,k − uni,j,k−1).

we first solve (2.38) for W using the following semi-implicit scheme

W l+1
i,j,k − c

{
W l
i+1,j,k − 2W l+1

i,j,k +W l
i−1,j,k

h2
w

+
W l
i,j+1,k − 2W l+1

i,j,k +W l
i,j−1,k

h2
w

+
W l
i,j,k+1 − 2W l+1

i,j,k +W l
i,j,k−1

h2
w

}
= Gn

i,j,k,
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and denote Wi,j,k to be its steady-state solution. Since ∂u
∂t

= W ,

un+1
i,j,k − uni,j,k

dt
= Wi,j,k,

and we arrive at

un+1
i,j,k = uni,j,k + dt ·Wi,j,k

where dt > 0 denotes the fixed timestep as before and hw = 1 denotes the fixed space step

for (2.38). We use initial conditions u0 = f and W 0 = 0 for the first iteration and W 0 equal

to the previous W for all other iterations. For the boundary, we apply Neumann boundary

condition ∂W
∂~n
|∂Ω = 0.

2.4 Numerical Results

We perform restoration experiments on a synthetic T1 MRI volume (see Fig. 2.1) obtained

from BrainWeb (http://mouldy.bic.mni.mcgill.ca/brainweb). The L2 and Sobolev (H1)

gradient descent methods were implemented with Matlab using the stopping condition

|Fε(un+1)− Fε(un)| < 10−4|Fε(un)|. (2.39)

The data is restored with the same K and σ used to produce the input data. That is, we

assume that the level of blur and noise is known.

In addition, we will use root mean square error (RMSE) to quantify the difference between

two images u and v

RMSE(u, v) =

√
1

N

∑
i,j,k

(ui,j,k − vi,j,k)2 (2.40)

where N denotes the number of points of the image domain Ω. Preliminary results of this work

have been presented and published in [GTV11].

First, we demonstrate the methods when the given image is corrupted with Rician noise

but not blurred, K = I and σ = 0.08. L2 gradient descent was performed with λ = 0.1,

fixed timestep dt = 0.1, and required 33 iterations to satisfy (2.39). Sobolev gradient descent

was performed with λ = 0.15, c = 1.5, fixed timestep dt = 0.05, and required 16 iterations.
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Fig. 2.2 shows the decrease of the energy functionals versus iteration. Since different values of

λ were used, energy values are not directly comparable. Fig. 2.3 shows the results, and the

experiment computation times and RMSE results are summarized in Table 2.1. For comparison,

we give the denoising results using the Rudin-Osher-Fatemi (ROF) model [ROF92, RO94],

which was implemented with L2 gradient descent. We note that implementation of ROF using

split Bregman [GO09] reduces the computation time substantially. However, we would also like

to mention that since our proposed minimization problem is not convex, split Bregman cannot

be applied to our problem. For this denoising experiment, the Sobolev (H1) gradient descent

implementation of our proposed model performs the best in terms of RMSE. Furthermore, we

give error histograms for the noisy data and each of the denoised data in Fig. 2.4. The error

histograms corresponding to the denoised results using our proposed method are more centered

around zero, suggesting a more accurate restoration.

The next two experiments are joint denoising and deblurring problems, where the data is

both blurred with a Gaussian kernel and corrupted with Rician noise.

For the first denoising and deblurring experiment, we add a large amount of Rician noise

and a small amount of Gaussian blur. In particular, in Fig. 2.5, we show the case where

we have added Rician noise with σ = 0.08 and Gaussian blur K with standard deviation

0.6 voxels. L2 gradient descent was performed with λ = 0.2, fixed timestep dt = 0.1, and

required 21 iterations. Sobolev (H1) gradient descent was performed with λ = 0.25, c = 1.25,

fixed timestep dt = 0.05, and required 12 iterations. Fig. 2.6 shows the corresponding error

histograms, and Table 2.2 gives a comparison of the computation times and RMSE (middle

row). In this case, the Sobolev (H1) implementation of our model performs better than the L2

implementation in terms of RMSE.

For the second denoising and deblurring experiment, we show in Fig. 2.7 an experiment

with less noise and heavier blur. Here, Rician noise with σ = 0.02 and Gaussian blur K

with standard deviation 1.5 voxels was added to the clean data. L2 gradient descent was

performed with λ = 0.4, fixed timestep dt = 0.1, and required 28 iterations. Sobolev (H1)

gradient descent was performed with λ = 1.1, c = 5, fixed timestep dt = 0.001, and required 30

iterations. Fig. 2.8 shows the corresponding error histograms, and Table 2.2 gives a comparison
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Figure 2.1: Three slices of the clean synthetic T1 MRI volume.

f L2 H1 ROF

RMSE (whole) 0.093702 0.039935 0.034541 0.071503

RMSE (cube) 0.079473 0.029803 0.027669 0.031080

iterations – 33 16 14

time (s) – 1091 833 82.4

Table 2.1: Comparison of computation times and RMSE values for f , restored u using our model

with L2 gradient descent, restored u using our model with Sobolev (H1) gradient descent, and

restored u using ROF method. Noisy data is generated by applying Rician noise with σ = 0.08.

of computation times and RMSE (bottom row). For this case, the L2 implementation of our

model performs better than the Sobolev (H1) implementation in terms of RMSE.

Iteration
4 8 121620242832

Energy (×105)

−2

0

2

Iteration
4 8 12 16

Energy (×106)

−1.25

−1.00

−0.75

Figure 2.2: Energy versus iteration for denoising experiments. Left: L2 gradient descent. Right:

Sobolev (H1) gradient descent.

2.5 Discussion

TV-based restoration can be formulated for the Rician noise model as a maximum a posteriori

estimate. The Sobolev (H1) gradient descent implementation of our model seems to perform

better with denoising, and the L2 implementation of our model seems to perform better with
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f L2 H1 ROF

Figure 2.3: Denoising experiment with Rician noise with σ = 0.08 and no blur. Left to right:

noisy data, denoised data using our model with L2 implementation, denoised data using our

model with Sobolev (H1) implementation, and denoised data using ROF.

Experiment Method Time (s) RMSE

Fig. 2.3
L2 Gradient Descent 1091 0.039935

Sobolev Gradient Descent 833 0.034541

Fig. 2.5
L2 Gradient Descent 791 0.037068

Sobolev Gradient Descent 929 0.032020

Fig. 2.7
L2 Gradient Descent 950 0.024279

Sobolev Gradient Descent 1419 0.029659

Table 2.2: Comparison of computation times and RMSE values.

denoising-deblurring.

Furthermore, there is improvement in denoising using our proposed model over the ROF

model [RO94, ROF92], which is due to the fact that the Rician statistics is incorporated in

the fidelity term of our variational restoration model. The improvement is most seen in areas
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Error histogram

uexact − f
−0.25 0 0.25

Freq.
Error histogram

uexact − u
−0.25 0 0.25

Freq.
Error histogram

uexact − u
−0.25 0 0.25

Freq.
Error histogram

uexact − u
−0.25 0 0.25

Freq.

Figure 2.4: Error histograms corresponding to denoising experiment with Rician noise with

σ = 0.08 and no blur (see Fig. 2.3). Left to right: error histograms for uexact − f , uexact − u

with restored u using L2 implementation, uexact − u with restored u using H1 implementation,

and uexact − u with restored u using ROF.

clean f L2 H1

Figure 2.5: Restoration experiment with Rician noise with σ = 0.08 and Gaussian blur with

standard deviation 0.6 voxels. Left to right: clean data, noisy/blurry data, restored data using

L2 implementation, and restored data using Sobolev (H1) implementation.

where the true intensity values are small compared to the standard deviation of the noise σ.

The reason for this is, again, the fact that in these regions, the Rician distribution is no longer

well approximated using a Gaussian distribution. As seen in the purely denoising experiment

(Fig. 2.3), the dark regions (intensity values close to 0) are better reconstructed using our
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Error histogram

uexact − f
−0.25 0 0.25

Freq.
Error histogram

uexact − u
−0.25 0 0.25

Freq.
Error histogram

uexact − u
−0.25 0 0.25

Freq.

Figure 2.6: Error histograms corresponding to Rician noise with σ = 0.08 and Gaussian blur

with standard deviation 0.6 voxels (see Fig. 2.5). Left to right: error histograms for uexact − f ,

uexact − u with restored u using L2 implementation, and uexact − u with restored u using H1

implementation.

clean f L2 H1

Figure 2.7: Restoration experiment with Rician noise with σ = 0.02 and Gaussian blur with

standard deviation 1.5 voxels. Left to right: clean data, noisy/blurry data, restored data using

L2 implementation, and restored data using Sobolev (H1) implementation.

proposed model than with ROF. In Fig. 2.4, we see a second bump that is skewed to the left of

zero in the error histograms corresponding to all the restored results. This error is due to the

difficulty in reconstructing the intensity values that are small compared to σ; the regularization

term will inevitably introduce some smoothing effects that lead to a reconstructed value that is
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Error histogram
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Error histogram
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Error histogram
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Figure 2.8: Error histograms corresponding to Rician noise σ = 0.02 and Gaussian blur with

standard deviation 1.5 voxels (see Fig. 2.7). Left to right: error histograms for uexact − f ,

uexact − u with restored u using L2 implementation, and uexact − u with restored u using H1

implementation.

larger than the true value since Rician noise tends to increase the intensity values on average.

However, the restored results using our model with both the L2 and Sobolev (H1) gradient

descent implementations produce error histograms that are more centered around zero than

the error histogram produced by the restored result using ROF. In addition, RMSE values

(calculated on the entire 3D volume and in a cube completely inside the brain region) are lower

for the restored results using our model than the restored result using ROF.
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CHAPTER 3

Restoration of HARDI Images

3.1 Introduction to HARDI Images

High Angular Resolution Diffusion Imaging (HARDI) [TWB99, TRW02] is a modality of Mag-

netic Resonance (MR) imaging used in reconstructing fibers in the brain. Water diffusion in

the brain causes attenuation of MR signals. Since water diffuses preferentially in the direction

of fiber pathways, MR imaging presents a method for tracking fibers in the brain.

More specifically, the Stejskal-Tanner equation [ST65] gives a relationship between water

diffusion and corresponding MR signal

S(x, θ, φ) = S0(x) exp (−b · d(x, θ, φ)) (3.1)

where S(x, θ, φ) and d(x, θ, φ) are the MR signal and corresponding diffusion at position x and

direction on the sphere given by

(cos(θ) sin(φ), sin(θ) sin(φ), cos(φ)).

d(x, θ, φ) is also known as the spherical apparent diffusion coefficient (sADC). S0(x) is the MR

signal at x when no diffusion gradient is applied, and b is a parameter used in collecting the

data.

The true MR signal cannot be larger than the MR signal when no diffusion gradient is

applied. That is we have the constraints

S(x, θ, φ) ≤ S0(x) or d(x, θ, φ) ≥ 0. (3.2)

HARDI data is a collection of diffusion weighted MR images (DW-MRI), meaning that for

each diffusion direction considered, we have a corresponding MR signal. As the number of
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diffusion directions increases, the angular resolution increases as well. The number of diffusion

directions used in typical HARDI data is ≈ 100, hence the “High Angular Resolution” part of

HARDI. For more details about HARDI, we refer to [Fra02, LCD08].

HARDI data is contaminated by Rician noise since it is a collection of diffusion weighted

MR images. The level of noise present varies as a function of the collection parameter b,

with larger b values leading to more noise but more accurate diffusivity information [CUF09].

Thus, there is a tradeoff between more accurate information and less noise. However, with

any choice of b, the introduction of noise will likely cause violations of the constraint (3.2) and

change important characteristics measured from the HARDI data such as fractional anisotropy

(FA) [PB96, And01, SLN00] of the fiber pathways. Given this knowledge, it may be beneficial

to denoise the HARDI data prior to the extraction of fibers.

In [MVO09], the authors propose a variational restoration model to denoise HARDI data

that utilizes a Gaussian probability distribution as an approximation to the Rician probability

distribution, assuming high signal to noise ratio. This leads to a simple L2 fidelity term, where

the standard deviation of the noise σ does not appear explicitly. In [KTV10, KTT09], an L1

fidelity term is utilized, which is more suitable than an L2 fidelity term while being simpler

to model than Rician noise. Again, σ does not appear explicitly in the variational denoising

model.

Recently, [MRD11, PST11] look for sparse representations of HARDI signals using spherical

ridglets and learned dictionaries, respectively. These approaches are similar to modeling HARDI

signals using high-order spherical harmonics series [DAF07] in that the goal is to represent the

HARDI signal as a linear combination of some basis functions, but differ in that a sparse

representation is sought.

Of the previous works, the most relevant to ours are [BFW06, MVO09, KTV10, KTT09].

Our proposed model is different from [BFW06, MVO09] in that we incorporate the data

acquisition model (3.1) and from [KTV10, KTT09] in that we impose a more accurate noise

model, the Rician distributed one.
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3.2 Proposed Variational Denoising Model

We propose a variational denoising model motivated by a maximum a posteriori (MAP) esti-

mate which attempts to find the most likely sADC, d = (d1, ..., dn) to have generated a given

observed noisy signal S = (S1, ..., Sn). Here, n represents the number of diffusion directions

and di and Si represent the sADC and noisy signal in direction i on the sphere. This d is the

minimizer of an energy composed of two terms:

inf
d:Ω→Rn

{
F (d) =

∫
Ω

|D(d)|+ λ

∫
Ω

n∑
i=1

(
− log I0

(
SiS0e

−P (di)

σ2

)
+

(S0e
−P (di))2

2σ2

)
dx

}
(3.3)

where λ > 0 is a tuning parameter, σ is the standard deviation of the noise, Si is the observed

noisy HARDI signal measured in the spherical direction i, and di is the denoised unknown sADC

in the same direction. We denote by ui = S0 exp(−P (di)) the recovered denoised HARDI signal

(here, we use the data acquisition model (3.1) with b = 1, which rescales d; the tuning parameter

λ accounts for this rescaling). P is a projection operator given by

P (z) =


z if z ≥ 0

0 if z < 0,

(3.4)

which is introduced to satisfy the constraint di ≥ 0, and
∫

Ω
|D(d)| is the vectorial total variation

of d defined by∫
Ω

|D(d)|

= sup

{ n∑
i=1

∫
Ω

didiv(φi)dx
∣∣ φ = (φ1, ..., φn) and φi ∈ C1

c (Ω;R3), ||φ||∞ ≤ 1

}
,

which reduces to ∫
Ω

|D(d)| =
∫

Ω

√√√√ n∑
i=1

|∇di|2dx. (3.5)

when d is differentiable.

The first term of the energy,
∫

Ω
D(d), is a prior on d which provides regularization, making

the minimization problem well-posed. As mentioned earlier, this prior is suitable for denoising

as it provides smoothing effects while preserving edges.
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The second term of the energy is the fidelity term. Up to a constant, it is equal to the sum

of − logPr(Si ; S0 exp(−P (di)), σ) over Ω and diffusion directions i = 1, ...n, where Pr(· ; ·)

is the Rician probability density function given in (1.1). This term encourages

Pr(Si ; S0 exp(−P (di)), σ)

to be large so that the contribution of

− logPr(Si ; S0 exp(−P (di)), σ)

is small. This is equivalent to finding di such that the probability of generating the noisy Si

given this di is large, assuming that the noisy signal Si is the result of an underlying clean

signal ui = S0 exp(−P (di)) corrupted with Rician distributed noise.

3.3 Numerical Implementation

To solve the minimization problem (3.3) numerically, we consider the Euler-Lagrange equations

in combination with the L2 gradient descent method. The resulting evolution equations are

∂di
∂t

= λP ′(di)

(
u2
i

σ2
−
I1(Siui

σ2 )

I0(Siui
σ2 )

Siui
σ2

)
+∇ ·

(
∇di√∑n
i=1 |∇di|2

)
(3.6)

for i = 1, ..., n. We use forward and backward differencing to discretize the second term and

take a fully explicit scheme to obtain an iterative method from (3.6). As mentioned earlier, the

projection operator P is used to help satisfy the constraint di ≥ 0. In the evolution equations

(3.6), we see that the contribution of P appears as a derivative factor, P ′, multiplying the term

in the Euler-Lagrange equation corresponding to the fidelity term of the energy. Since P is the

projection operator, then theoretically P ′ is the Heaviside function. However, for numerical

purposes, we will use a smooth approximation to the Heaviside function

P ′(z) =


1 if z ≥ a

0.5
(
1 + 1

a
z + 1

π
sin
(
π
a
z
))

if |z| < a

0 if z ≤ −a,

(3.7)
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where a is a small positive parameter. For places where di is positive, then P ′(di) = 1, and we

get both the contribution of the fidelity and regularization terms in the evolution equations.

However, if di is negative (violating the constraint that di ≥ 0), then P ′(di) = 0, and only

the regularization term appears in the evolution equations. As mentioned, the regularization

term provides smoothing; at voxels where di is negative, the value of di at these voxels will

depend on the values of the surrounding di’s in space. Considering a specific voxel where

di < 0, its new value will be determined by a “weighted averaging” of the surrounding di’s in

a small neighborhood of this voxel. If the values of the surrounding di’s are positive, then this

“weighted averaging” will influence the negative di to increase. This is the motivation for the

initial guess that we chose:

di(x) =


0.005 if Si(x) > S0(x)

− log
( Si(x)
S0(x)

)
if Si(x) ≤ S0(x).

(3.8)

The combination of a positive initial guess and the role of the projection operator P helps satisfy

the constraint di ≥ 0. Decreasing the constant 0.005 results in more violations of di ≥ 0 and

increasing it may lead to less satisfactory numerical results. As a note, using a sufficiently small

timestep in the iterative method will guarantee di ≥ 0 but will lead to a longer computation

time.

We implement Neumann boundary conditions ∂di
∂η

= 0 where η is the normal to the boundary.

Iterations are stopped when the energy F (d) decreases to a steady state.

Furthermore, for efficiency, we use a cubic rational polynomial approximation to I1/I0

(see [GTV11]):
I1(t)

I0(t)
≈ t3 + 0.950037t2 + 2.38944t

t3 + 1.48937t2 + 2.57541t+ 4.65314
. (3.9)

3.4 Numerical Experiments and Results

We perform numerical experiments on synthetic, phantom, and real data sets to demonstrate

the validity of our proposed variational denoising model. With the first two experiments, we

consider the root mean square error (RMSE) for vectorial data as well as a visualization of
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the data created by the first author of [KTV10] as metrics of evaluation of results. The aims

of these initial experiments were to understand how the different components of the model

(e.g. projection operator (P (d)), initial condition, and tuning parameter λ) affect the denoised

result. For the latter experiments, we compute orientation distribution functions (ODFs) and

fractional anisotropy (FA) to gain a better idea of the applicability of our denoising model to

real applications such as fiber tracking. In the next section, we give a brief summary of the

metrics of evaluation that we use.

3.4.1 Metrics of Evaluation

In this section, we briefly explain the metrics of evaluation that we use.

First, we use the root mean square error (RMSE) between two vectorial MR signals u1 and

u2 given by

RMSE(u1, u2) =

√√√√ 1

n ·N

N∑
i=1

n∑
j=1

(u1(xi, sj)− u2(xi, sj))2.

xi ∈ Ω, i = 1, ..., N are the points of the domain and sj, j = 1, ..., n represent the diffusion

directions.

For our initial visualizations of the vectorial MR signal, we follow [KTV10]. For an ex-

ample, see Fig. 3.1 for a visualization of exact two dimensional data provided by McGraw et

al. [MVO09]. Every third point in the spatial domain is plotted, and 81 vectors correspond to

each point. Each vector points in the direction of diffusion and its length is determined by the

magnitude of the MR signal when a diffusion gradient is applied in that direction. The tips

of the vectors trace out the surface of a morphed sphere. With the special case where all 81

vectors have equal length, we have a sphere with radius equal to the length of the vectors.

We will also look at fractional anisotropy (FA) of fibers and orientation distribution functions

(ODFs) and associated Jensen-Shannon divergence (JSD). We would like to mention that FA,

ODFs and JSDs were calculated by Liang Zhan at the Laboratory of Neuro Imaging (LONI)

at UCLA, and these results were presented and published in the work [TKZ12].

Fractional anisotropy (FA) is a scalar between 0 and 1 that represents the amount of
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anisotropy of water diffusion at a particular voxel. FA value of 0 represents isotropic diffusion,

meaning equal diffusion in all directions. FA values near 1 represent a more directed diffusion,

so that diffusion occurs mostly in one direction only. FA is computed from the eigenvalues,

λ1, λ2, and λ3 corresponding to the eigenvectors of the diffusion tensor.

FA =

√
3

2

√
(λ1 − λ̂)2 + (λ2 − λ̂)2 + (λ3 − λ̂)2

λ2
1 + λ2

2 + λ2
3

, (3.10)

where λ̂ = (λ1 + λ2 + λ3)/3.

We compute the diffusion orientation distribution function (ODF), which is a probability

density function measuring the distribution of water diffusion in different directions on the

sphere; for an example, see Fig. 3.9. ODF’s are calculated using the tensor distribution function

algorithm in [LZZ09]. We will also use the Jensen-Shannon divergence (JSD) to measure the

difference between the noisy/denoised ODF and the ODF of the ground truth. JSD between

two ODFs P and Q are given by

JSD(P,Q) =
1

2
DKL(P,M) +

1

2
DKL(Q,M), (3.11)

where M = (P +Q)/2 and DKL(·, ·) denotes the Kullback-Leibler information distance between

two probability distributions [KL51]. For probability distributions P1 and P2 defined on the

sphere S2, DKL is given by

DKL(P1, P2) =

∫
S2

log
(P1(θ, φ)

P2(θ, φ)

)
P1(θ, φ)dS. (3.12)

3.4.2 Numerical Results

For our first data set, we consider two dimensional (2D) synthetic data provided by McGraw et

al. [MVO09]. It is 16×16 in spatial dimension with 81 diffusion directions (see Fig. 3.1). We add

Rician noise with standard deviation σ = 18 to create the noisy data, denoted S. Since S0 is not

available for this synthetic data, S0 is taken to be a constant 255, and initial guess is taken to

be d0 = − log(S/S0). Recall that the denoised MR signal is given by u = S0 exp (−P (d)). The

visualization of our results is given in Fig. 3.1 and the corresponding error histograms are given

in Fig. 3.2. The RMSE of the noisy data is 17.8147 and is reduced to 5.4968 after denoising
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with our model. In Table 3.1, we give a comparison of our results with the results from similar

denoising experiments found in [MVO09, KTV10]; our model gives a slight improvement in

terms of RMSE.

clean

noisy S, σ = 18 denoised u

Figure 3.1: Top: exact 2D synthetic data. Left: noisy data, corrupted by Rician noise σ = 18.

Right: restored data. Denoised data satisfies d ≥ 0.

Second, we consider real HARDI data of the brain. A healthy subject was scanned on a

4 Tesla Bruker Medspec MRI scanner with an optimized diffusion imaging sequence. DWI

parameters were: echo and repetition time, TE/TR 92.3/8250 ms, 55×2 mm contiguous slices,

field of view: FOV = 23 cm. 41 images were collected: 11 baseline (S0) images with no diffusion

sensitization (i.e., T2- weighted images) and 30 diffusion-weighted images (b-value: 1159 s/mm2)

with gradient directions evenly distributed on the hemisphere. The reconstruction matrix was

128× 128, yielding a 1.8× 1.8 mm2 in-plane resolution. The clean data was created by fitting
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Error histogram

uexact − S
−75 0 75

Freq.

Error histogram

uexact − u
−75 0 75

Freq.

Figure 3.2: Left: error histogram of noisy data, RMSE S: 17.8147. Right: error histogram of

denoised data, RMSE u: 5.4968.

RMSEdenoised/RMSEnoisy

TV+L1 fidelity denoising in u [KTV10] 5.8991/17.7079 = 0.3331

TV+L1 fidelity denoising in d [KTV10] 7.6081/17.7079 = 0.4296

FEM in [MVO09] 11.9964/17.7079 = 0.6675

FEM + TV in [MVO09] 7.6367/17.7079 = 0.4313

our model 5.4968/17.8147 = 0.3086

Table 3.1: Comparison of RMSEdenoised/RMSEnoisy ratios for different methods.

actual HARDI data to a 6th order spherical harmonic expansion, and the resulting data set is

considered to be the “ground truth” even though this is not truly correct since it has artifacts

and negative d values. The noisy data was generated by adding Rician noise with σ = 15 to

this “ground truth”. We take a subset (size 95 × 128 × 55) of the 3D volume, and use all 30

uniformly distributed diffusion directions. Fig. 3.3 gives a visualization of the 29th slice of the

clean data, and Fig. 3.4 gives S0, clean MR signal, and clean diffusion signal d corresponding

to the 10th diffusion-sensitized direction. In Fig. 3.5 and Fig. 3.6, we give visualizations of the

clean, noisy, and denoised images corresponding to 2 of the 30 diffusion-sensitized directions.

For this particular experiment, we used λ = 0.05. The RMSE of the noisy data is 10.5454

and the RMSE of the denoised data is 8.0845, showing some improvement after denoising. In

addition, the number of points where the constraint d ≥ 0 is not satisfied is reduced from

815 points in the noisy data to 52 points in the denoised data. When we reduce the tuning

parameter to λ = 0.001 to introduce more smoothing, we see that the denoised solution is
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oversmoothed (Fig. 3.7 and Fig. 3.8), but the constraint d ≥ 0 is satisfied everywhere.

Figure 3.3: Visualization of 29th slice of clean data. Complete volume size: 95x128x55, 30

diffusion directions.

S0 clean u clean d

Figure 3.4: Left to right: S0, clean u, and corresponding clean d of 29th slice, 10th diffusion

direction.

For the last three numerical experiments, we look at fractional anisotropy (FA), orientation

distribution functions (ODFs), and Jensen-Shannon divergence (JSD). In the last experiment,

we will revisit the real HARDI data set and evaluate the performance of our denoising model

with ODFs and JSD values.

We consider again 2D synthetic data. The size of the data set is 8×8 with diffusion measured

in 94 uniformly distributed directions at each spatial point. S0 in this case is assumed to be
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clean noisy, σ = 15 denoised u

Figure 3.5: Visualization of 2 of 30 diffusion-sensitized MR signals of the real HARDI brain

data. Left to right: clean, noisy, denoised data. RMSE of denoised data: 8.0845. RMSE of

noisy data: 10.5454. λ = 0.05, 35 iterations. dnoisy < 0 at 815 points, ddenoised < 0 at 52 points.

clean noisy denoised

Figure 3.6: Visualization of small portion of clean, noisy, denoised data. RMSE of denoised

data: 8.0845. RMSE of noisy data: 10.5454. λ = 0.05, 35 iterations. dnoisy < 0 at 815 points,

ddenoised < 0 at 52 points.

a constant equal to 1. We create noisy data by adding Rician noise with standard deviation

σ = 0.01, 0.02, 0.04, 0.1 and 0.2. The same σ used to create the noisy data is input as a known

parameter in our denoising model. Fig. 3.9 gives the ODFs of the clean, noisy, and denoised

data corresponding to the case σ = 0.2. In all cases, the denoised data gives lower JSD values

than those of the corresponding noisy data sets, indicating an increase in similarity to the
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clean noisy, σ = 15 denoised u

Figure 3.7: Visualization of 2 of 30 diffusion-sensitized MR signals of the real HARDI brain

data. Left to right: clean, noisy, denoised data. With λ = 0.001 and at 100 iterations, the

solution is oversmoothed. However, ddenoised ≥ 0 everywhere.

clean noisy denoised

Figure 3.8: Visualization of small portion of clean, noisy, denoised data. With λ = 0.001 and

at 100 iterations, the solution is oversmoothed. However, ddenoised ≥ 0 everywhere.

ODF of the ground truth after denoising (Table 3.2). Also, RMSE values between the denoised

and ground truth data are lower than the RMSE values between noisy and ground truth data

(Table 3.2). This suggests that we have a more accurate signal after denoising.

Next, we consider DW-MRI data of a hardware phantom containing synthetic fibers created

by Pullens et al. [PRG10] (see Fig. 3.10). The fibers (≈ 10 µm circular diameter) consist

of polyester yarns wound into bundles, which are then interdigited on top of each other and

42



ground truth

noisy denoised

Figure 3.9: Top: ODF of ground truth data. Bottom left: ODF of noisy data generated with

Rician noise with σ = 0.2. Bottom right: ODF of denoised data.

JSD RMSE

σ noisy denoised noisy denoised

0.01 0.0044 0.0004 0.0100 0.0065

0.02 0.0102 0.0008 0.0201 0.0130

0.04 0.0441 0.0133 0.0396 0.0231

0.1 0.1578 0.0431 0.0986 0.0545

0.2 0.5423 0.1736 0.1950 0.0963

Table 3.2: Jensen-Shannon divergence (JSD) values between ODF of noisy/denoised data and

ODF of ground truth data, and RMSE values between noisy/denoised data and ground truth

data.

secured with heat shrink tubes. We have two scans of this phantom using a 7T and 3T scanner.

For both these scans, the standard deviation of the noise σ is approximated using the method

described in Section 1.2.

For the data represented in Fig. 3.11, a 7T scanner was used to collect the DW-MRI data

of the phantom. The data collection was performed at the CMRR, University of Minnesota,

on a Magnex Scientific MRI scanner driven by a Siemens console, with a head gradient insert
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Figure 3.10: Hardware phantom containing synthetic fibers created by Pullens et al. [PRG10].

capable of 80 mT/m in 200 ms. Parameter settings were: 66 slices with FOV = 192 mm ×

192 mm, 1.5 × 1.5 × 1.5 mm3 voxels, TR/TE=5000/5ms, 128 DWI at b=1000 s/mm2 and 15

S0 images. The dataset has an acquisition matrix of size 128 × 128 × 84 and 100 uniformly

distributed diffusion directions, but for computational purposes, we consider the 37th to 41st

z-slices only and present the T2 (S0) and FA images for the 38th z-slice. Given that the fibers

are constructed with synthetic materials, the FA should be relatively constant along the fibers.

A goal of denoising is to decrease the standard deviation of the FA along a fiber, indicating that

the FA along a fiber lies within a smaller range of values and hence is more constant. After

denoising using our proposed model, the standard deviation of FA along a fiber drops from

0.1503 to 0.1292. However, the mean FA drops slightly, which may be a result of oversmoothing

(see Table 3.3). As a result, the denoised signal implies a less directed diffusion along the fiber.

mean standard deviation

noisy 0.2392 0.1503

denoised 0.2140 0.1292

Table 3.3: Mean and standard deviation values of FA along a fiber for noisy and denoised

phantom data.

For the data represented in Fig. 3.12, a 3T scanner was used to collect the DW-MRI data of

the phantom. Data collection was again performed at the CMRR, University of Minnesota, on a
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S0 (T2)

FA of noisy data FA of denoised data

Figure 3.11: Visualizations of 38th slice of phantom data.

Magnex Scientific MR imaging scanner driven by a Siemens console, with a head gradient insert

capable of 80 mT/m in 200 ms. Parameter settings were: 64 slices with FOV = 192× 192 mm,

2 × 2 × 2 mm3 voxels, TR/TE = 7800/82 ms, 128 DWI at b = 150 s/mm2 and 17 S0 images.

For this particular dataset, all raw DWI’s were corrected for eddy current distortion using

the eddy correct function from the FSL toolbox (http://fsl.fmrib.ox.ac.uk/fsl) [SJB04, WJP09].

Geometric distortions due to magnetic susceptibility were then corrected using a field map

collected just prior to the DWI’s, using the FSL prelude and fugue functions. Diffusion Tensor

Imaging (DTI) tractography was conducted via the Diffusion Toolkit (http://trackvis.org/dtk/)

[WBS07] using the critical angle threshold = 20◦ and the 2nd order Runge-Kutta method

[BPP00]. The noisy and denoised fiber and fractional anisotropy visualizations of the phantom

data are displayed in Fig. 3.12. After denoising, the bottom right of the fiber is visible.

Lastly, we denoise the same real HARDI brain data that we have described earlier (Fig-

ures 3.3 and 3.4), but in this case, we use ODFs and corresponding JSDs as metrics of evaluation.

We present in Fig. 3.13 the ODFs of the “ground truth”, noisy, and denoised 30th z-slice of
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Figure 3.12: Left: noisy fiber and fractional anisotropy visualization. Right: denoised fiber

and fractional anisotropy visualization. Note that the bottom right of the fiber is visible in the

denoised data but not in the noisy data.

the real HARDI brain data. Fig. 3.14 shows the JSD between the ODF of the noisy data and

ODF of the “ground truth” data, and we see that the ODFs of the denoised data and “ground

truth” data are more similar than the ODFs of the noisy data and “ground truth” data. This

is reflected also in the drop in the mean JSD values from 0.5787 to 0.3297 after denoising.

3.4.3 Extension: Vectorial Version of Rician Denoising Model

We extend the variational denoising model proposed in Chapter 2 to the vectorial case:

inf
u∈BV (Ω)

{
F (u) =

∫
Ω

|Du|+ λ

∫
Ω

n∑
i=1

[
− log I0(

Siui
σ2

) +
S2
i + u2

i

2σ2

]
dx
}
, (3.13)

where Si and ui denote the noisy MR signal and denoised MR signal in direction i, respectively.

σ is again the standard deviation of the noise, and n is the number of diffusion directions.

We perform numerical experiments on the real HARDI brain data introduced above. Fig. 3.15

and Fig. 3.16 give visualizations of the denoising results on the same data set as in Fig. 3.5 and

Fig. 3.6. In addition to visual improvements, we see a significant reduction in the RMSE from
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ODF of clean data

ODF of noisy data ODF of denoised data

Figure 3.13: ODF visualizations of the 30th z-slice of the real HARDI brain data. Top: ODF

of “ground truth” data. Left: ODF of noisy data. Right: ODF of denoised data. The color in

this figure indicates the fiber direction: red for left-right, blue for superior-inferior, and green

for anterior-posterior.

10.5454 for the noisy data to 6.6475 for the denoised data. Table 3.4 gives a comparison of

the perfomances (in terms of RMSE) between the model proposed in [KTV10], our variational

denoising model in d (3.3), and the extension of the Rician denoising model to the vectorial
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JSD of noisy/clean data JSD of denoised/clean data

Figure 3.14: JSD between ODFs of noisy and “ground truth” data (mean = 0.5787, std. dev.

= 0.3445) and between ODFs of denoised and “ground truth” data (mean = 0.3297, std. dev.

= 0.3037) for the 30th slice of the real HARDI brain data. In the colorbar, we have values from

0 (blue) to 1 (red).

case (3.13). Though the RMSE and JSD values corresponding to (3.13) are lower than those

corresponding to (3.3), there are many places where the constraint d ≥ 0 is not satisfied when

using (3.13).

As in Fig. 3.13, we present the ODFs of the “ground truth”, noisy, and denoised (us-

ing (3.13)) 30th z-slice of the real HARDI data of the brain. Visual improvements in the ODFs

are present in Fig. 3.17 and the decrease in JSD values can be seen in Fig. 3.18.

RMSEdenoised/RMSEnoisy

TV+L1 fidelity denoising in d [KTV10] 4.7268/10.5448 = 0.4483

our model denosing in d + projection 8.2289/10.5454 = 0.7803

our model denosing in u 6.6475/10.5454 = 0.6304

Table 3.4: Comparison of RMSEdenoised/RMSEnoisy ratios for denoising real HARDI brain

data using different methods.
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clean noisy, σ = 15 denoised u

Figure 3.15: Visualization of 2 of 30 diffusion-sensitized MR signals of the real HARDI brain

data. Left to right: clean, noisy, denoised data using vectorial version of Rician model (3.13).

ddenoised < 0 in many places. RMSE of denoised data: 6.6475. RMSE of noisy data: 10.5454.

clean noisy denoised

Figure 3.16: Visualization of small portion of clean, noisy, denoised data using vectorial version

of Rician model (3.13). ddenoised < 0 in many places. RMSE of denoised data: 6.6475. RMSE

of noisy data: 10.5454.

3.5 Discussion

We have performed numerical experiments on multiple types of data and used a variety of

metrics to evaluate the performance of our proposed denoising model. We see that there are

improvements with both visualizations as well as RMSE and JSD values. The result in Fig. 3.12

is promising for the applicability of the model for fiber tracking. In addition, the use of the
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ODF of clean data

ODF of noisy data ODF of denoised data

Figure 3.17: ODF visualizations of the 30th z-slice of the real HARDI brain data. Top: ODF

of “ground truth” data. Left: ODF of noisy data. Right: ODF of denoised data. The color in

this figure indicates the fiber direction: red for left-right, blue for superior-inferior, and green

for anterior-posterior.
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JSD of noisy JSD of denoised

Figure 3.18: JSD between ODFs of noisy and “ground truth” data (mean = 0.5787, std. dev.

= 0.3445) and between ODFs of denoised and “ground truth” data (mean = 0.2523, std. dev.

= 0.2750). In the colorbar, we have values 0 (blue) to 1 (red).

projection operator seems to help enforce the constraint d ≥ 0. The extension of the Rician

denoising model to the vectorial case seems to perform better in terms of RMSE and JSD values,

but the constraint d ≥ 0 is not enforced and thus violated in many places. For future work, we

may try different regularization terms such as nonlocal regularization or learned priors.
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Part II

Restoration of Images Corrupted by

Atmospheric Turbulence
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CHAPTER 4

Joint Variational Model for Atmospheric Distortion

Correction

4.1 Introduction and Background

Atmospherically-distorted images of a static scene arise in long range imaging where the images

are distorted by turbulent geometric distortion and blurring effects during their acquisition. A

model for this degradation is presented in Frakes et. al. [FMS01, GSF04]

fi(x) = Φi(K(u(x))) + noise, (4.1)

where a static undistorted scene u(x) is distorted with blurring effects modeled by blur kernel

K and geometric distortion effects represented by the operator Φi to yield respective distorted

frames fi. The goal is to recover the static scene u from a stream of distorted image frames of

the static scene.

In the model of turbulence (4.1), the distorted image fi is generated by first blurring the

static image u and then degrading the resulting blurry image with geometric distortions. The

authors of [GDF08] study both this case and the case where the static image is first affected

with geometric distortions and then with blur (i.e. fi(x) = K(Φi(u(x)))+noise). In their work,

they use temporal filtering in combination with registration to correct for geometric distortions

and a blind deconvolution algorithm to correct for blurring effects.

In the work [LMS07], the authors formulate blind image deconvolution as a principal com-

ponents analysis (PCA) problem, and they perform restoration experiments on atmospheric

turbulence-degraded imagery. Whereas in [TLF08], the focus is more on geometric distortion

correction. The authors use a Kalman filter to recover the static scene from a series of distorted
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frames. They assume a high frame rate and use time-dependent differential equations to model

the warping of the frames.

In a different type of approach, the authors of [AVC09] present an improved “lucky-region”

fusion (LRF) approach. The LRF approach estimates the local quality of images using an image

quality map, which is often based on the gradient of the image. The image quality map selects

the best quality regions of each image, and these “lucky-regions” are fused together to give the

restored static image.

In a very recent work [LKS12], the authors propose a method that performs joint frame

sharpening with the Sobolev gradient method and temporal distortion correction using the

Laplace operator. With the reconstructed frames, they apply an approach similar to the lucky-

region fusion approach to reconstruct the static image.

In the work [MG12], the authors address specifically the geometric distortions caused by

atmospheric turbulence. They start with a reference frame that is a good approximation of

the static scene (usually the mean of the input frames) and estimate the optical flows from

this reference frame to each of the input frames. Once the optical flows are determined, they

are used to determine a new reference frame, where this new reference frame is the solution

of a variational problem involving nonlocal TV regularization. Once this new reference frame

is found, the process repeats. A geometrically corrected image results after a few iterations of

this process.

A recent approach to deblur the effects of atmospheric turbulence is proposed in [GO12],

where the authors utilize the Fried kernel [Fri66] in a framelet based deconvolution algorithm.

The Fried kernel is an analytical formulation of the atmosphere modulation transfer function

(MTF) and depends on parameters of the acquisition system and characteristics of the imaging

scene as well as a refractive index structure which reflects the turbulence level in the atmosphere.

In their work, a method to estimate this refractive index structure parameter is provided. In

the next section, we give a brief review of the Fried kernel.

The last two prior works have been combined to produce very nice results. First, the input

frames are used to produce a geometrically corrected image using [MG12]. The geometrically
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corrected result is then used as input for the deconvolution algorithm in [GO12]. This two step

process yields a deblurred and geometrically corrected image. Our goal is to combine both

the deconvolution and geometric correction into one variational restoration model. We give

preliminary results for this model.

4.1.1 Review of Fried Kernel

We give here the basic form of the MTF of the Fried kernel to illustrate its behavior as a function

of four parameters D, L, λ, and C2
n. For more details, we refer the reader to [Fri66, GO12].

In two dimensions, letting ω be the frequency modulus, Fried’s MTF MF (ω) (in the Fourier

domain) is given by

MF (ω) = M0(ω)MSA(ω) (4.2)

where

M0(ω) =


2
π
(arccos(ω)− ω

√
1− ω2 for ω < 1

0 for ω > 1,

(4.3)

and

MSA(ω) = exp

{
− (2.1X)5/3(ω5/3 − V (Q,X)ω2)

}
. (4.4)

k = 2π
λ

, r0 = 2.1ρ0 = 2.1(1.437(k2LC2
n))−3/5, Q = D√

λL
, X = D

r0
, and

V (Q,X) = A(Q) +
B(Q)

10
exp

{
− (log10(X) + 1)3

3.5

}
(4.5)

where A and B depend on Q only.

Here, D is the system entrance pupil diameter, L is the path length given by the distance

between the sensor and acquired scene, λ is the wavelength on which the imaging system is

working, and C2
n is the refractive index structure reflecting the turbulence level of the atmo-

sphere (for more information on C2
n, we refer the reader to [TTV05]). As measured in [TTV05],

C2
n is typically in the range [10−16m−2/3, 10−12m−2/3] where larger values of C2

n correspond to

stronger turbulence.
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4.1.2 Geometric Distortion Operator and Computation of Its Adjoint

For the notation of the geometric distortion operator and the computation of its adjoint, we

follow the notations and method presented in [MG12]. Let g = g(x1, x2), v1 = v1(x1, x2) and

v2 = v2(x1, x2) be functions from R2 to R. We define the geometric distortion operator Φ by

Φ : g(x1, x2)→ g(x1 + v1(x1, x2), x2 + v2(x1, x2)). (4.6)

For fixed v1 and v2, Φ is a linear operator on the space of functions from R2 to R.

The adjoint of Φ is denoted ΦT and is defined as the operator such that

〈h,ΦTg〉 =

∫
h(ΦTg)dx =

∫
(Φh)gdx = 〈Φh, g〉 ∀h. (4.7)

Numerically, the authors of [MG12] take h in (4.7) to be the ‘single spike function’

hy(x) =


1 if y = x

0 if y 6= x,

(4.8)

and subsequently arrive at the relation

(ΦTg)(y) = 〈hy,ΦTg〉 = 〈Φhy, g〉. (4.9)

〈Φhy, g〉 is easy to evaluate since Φhy is a simple function.

4.2 Proposed Variational Model

We propose two variations of a combined deblurring and geometric distortion correction model.

The two variations correspond to the relations

Φk(f
k) = Ku+ noise (4.10)

and

fk = Φk(Ku) + noise (4.11)

where Φk represents the geometric distortion operator corresponding to the kth frame fk.
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4.2.1 Variation 1

The first model that we propose involves the relation

Φk(f
k) = Ku+ noise. (4.12)

Using this relation, we propose the following minimization problem

min
vk1 ,v

k
2 ,u

{
E1(u, vk1 , v

k
2) = µ

numFrames∑
k=1

∫
Ω

(|∇vk1 |2 + |∇vk2 |2)dx (4.13)

+ λ
numFrames∑

k=1

∫
Ω

(Ku− Φk(f
k))2dx+ γ

∫
Ω

|∇u|dx
}
,

where fk is the kth distorted frame of a true scene, K is the blur kernel, and Φk is the linear

operator representing geometric distortions of the kth frame given by

Φk(f
k(x1, x2)) = fk(x1 + vk1(x1, x2), x2 + vk2(x1, x2)), (4.14)

where each vk1 = vk1(x1, x2) and vk2 = vk2(x1, x2), and vk = (vk1 , v
k
2) represents the turbulence

warping from fk to Ku.

The first term in E1 is an H1 regularization on vk1 and vk2 , which enforces a smooth turbulence

warping. The second term in E1 acts as a fidelity term that constrains the unknowns u, vk1 and

vk2 to adhere to (4.12), and the last term in E1 is simply the total variation (TV) regularization

in u [ROF92, RO94], which allows for the restored image u to have edges.

To minimize the energy (4.14), we use Euler-Lagrange equations and alternating minimiza-

tion in the unknowns. We give the associated gradient descent equations for u, vk1 and vk2 , where

k = 1, ..., numFrames.

For u:
∂u

∂t
= −∂E1

∂u
= λ

numFrames∑
k=1

{
− 2K∗(Ku− Φk(f

k))

}
+ γ∇ ·

(
∇u
|∇u|

)
.

For vk1 :
∂vk1
∂t

= −∂E1

∂vk1
= 2µ4vk1 + 2λ(Ku− Φk(f

k))(Φk(f
k
x )).

For vk2 :
∂vk2
∂t

= −∂E1

∂vk2
= 2µ4vk2 + 2λ(Ku− Φk(f

k))(Φk(f
k
y )).
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The above equations are discretized using finite differences, and a fully explicit scheme is used

to update the unknowns. We start with initial guess

u0 = constant = mean
(x1,x2)∈Ω,k=1:numFrames

fk(x1, x2)

and vk1 = vk2 = 0. We perform one iteration of gradient descent at each minimization step,

using the previous u, vk1 and vk2 ’s in the update process. After updating each of the unknowns,

the process is repeated until the energy E1 reaches a steady state.

4.2.2 Variation 2

Similar to the first model, the second model that we propose involves the relation

fk = Φk(Ku) + noise. (4.15)

With this relation, we propose the following minimization problem

min
vk1 ,v

k
2 ,u

{
E2(u, vk1 , v

k
2) = µ

numFrames∑
k=1

∫
Ω

(|∇vk1 |2 + |∇vk2 |2)dx (4.16)

+ λ
numFrames∑

k=1

∫
Ω

(Φk(Ku)− fk)2dx+ γ

∫
Ω

|∇u|dx
}

where again fk is the kth distorted frame of the true scene, K is the blur kernel, and Φk is the

linear operator representing geometric distortions of the kth frame given by

Φk((Ku)(x1, x2)) = (Ku)(x1 + vk1(x1, x2), x2 + vk2(x1, x2)), (4.17)

where each vk1 = vk1(x1, x2) and vk2 = vk2(x1, x2), and vk = (vk1 , v
k
2) represents the turbulence

warping from Ku to fk.

We use the same regularizations in vk1 , vk2 and u as in our first proposed model, and the

only difference between this second model and the first is that the fidelity term reflects the

relation (4.15).

To minimize (4.17), we again use Euler-Lagrange equations and alternating minimization.

We give here the associated gradient descent equations for unknowns u, vk1 and vk2 , for k =
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1, ..., numFrames.

For u:
∂u

∂t
= −∂E2

∂u
= λ

numFrames∑
k=1

{
− 2K∗ΦT

k (Φk(Ku)− fk)
}

+ γ∇ ·
(
∇u
|∇u|

)
.

For vk1 :
∂vk1
∂t

= −∂E2

∂vk1
= 2µ4vk1 − 2λ(Φk(Ku)− fk)(Φk((Ku)x))

For vk2 :
∂vk2
∂t

= −∂E2

∂vk2
= 2µ4vk2 − 2λ(Φk(Ku)− fk)(Φk((Ku)y))

We discretize the above equations using finite differences, and using a fully explicit scheme, we

update the unknowns. We start with initial guess

u0 = constant = mean
(x1,x2)∈Ω,k=1:numFrames

fk(x1, x2)

and vk1 = vk2 = 0. We perform one iteration of gradient descent at each minimization step, using

previous u, vk1 and vk2 ’s in update process. After updating each of the unknowns, we repeat the

process until the energy E2 reaches a steady state.

4.3 Numerical Experiments

In this section, we provide some preliminary numerical results. We compare the results of our

proposed variational model with the work found in [MG12] on geometric distortion correction

and [GO12] on deconvolution using Fried kernel. In all examples, only 10 frames were used in

the reconstructions.

As shown in [Gil07], applying the temporal mean or median filter on the input frames often

give a good reference image, with the temporal median producing a less blurred result than the

temporal mean. In our results, we include the temporal mean and median of the input frames

for comparison.

We begin with the simple case of K = I where the blur kernel is simply the identity, repre-

senting the case of geometric distortion only and no blurring effects. The data was generated

synthetically, and three sample frames of the geometric distortion are displayed to give the

reader a sense of the magnitude of the distortion (top row of Fig. 4.1).
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In the second case, we consider joint geometric distortion correction and deblurring, taking

K to be the Fried kernel and look at the effect of the refractive index structure C2
n on the

restored result. The data was collected by NATO SET156 (ex-SET072 RTG40) Group during

the 2005 New Mexico’s field trials. Three sample frames of each of the data sets are given

(middle and bottom rows of Fig. 4.1).

Figure 4.1: Three sample frames of distorted data.

4.3.1 Geometric Distortion Correction, Case: K = I

We begin by considering synthetic data that models turbulent geometric distortion without

blur. The true image is 256 × 256, and we consider 10 distorted frames for our reconstruc-
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tions. In Fig. 4.2, we present for comparison, the true image, the mean of the input frames,

the median of the input frames, the geometric distortion corrected image using the algorithm

in [MG12], and our restored results. Both Variation 1 and 2 of the proposed model corrects

for the geometric distortion well, but the reconstructed images are not as sharp as the true

image. The reconstruction using [MG12] is sharp, but fails to reconstruct parts of the image

as well as our proposed model (e.g. the eyes). Furthermore, Variation 2 of our proposed model

provides a sharper reconstruction than that of Variation 1. We would like to mention that the

reconstructions using [MG12] utilize the nonlocal total variation regularization [GO08], and

the reconstructions using our proposed model utilize the local total variation regularization. A

more thorough comparison will be made in the future.

Figure 4.2: Geometric distortion correction. Top, left to right: true image, mean of 10 input

frames, median of 10 input frames. Bottom, left to right: Variation 1 reconstruction, Variation

2 reconstruction, geometric distortion correction using [MG12].
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4.3.2 Joint Deblurring and Geometric Distortion Correction, K Fried Kernel

In this section, we present joint deblurring and geometric distortion correction numerical ex-

amples. We take K to be the Fried kernel. We consider two data sets (middle and bottom rows

of Fig. 4.1). In both restorations, we use only 10 frames.

With the first example, we performed two restorations; one restoration uses the measured

value of C2
n = 1.51×10−13 and the second uses the estimated C2

n = 2.5×10−13, which was found

using the algorithm in [GO12]. Recall that a larger C2
n value creates a stronger blur kernel since

it corresponds to higher levels of turbulence. Fig. 4.3 shows our joint deblurring and geometric

distortion correction results along with a comparison with the geometrically corrected image

using [MG12], and the deblurred results of the geometrically corrected image using [GO12] with

Fried kernel corresponding to the two C2
n values. The second row of Fig. 4.3 corresponds to

C2
n = 1.51 × 10−13. The restored images using Variation 1 and Variation 2 of our model are

very similar; the result using Variation 2 is slightly sharper (see the lower part of the three bars

farthest to the right). When the larger estimated value of C2
n = 2.5× 10−13 is used (see bottom

row of Fig. 4.3), no difference can be detected between the restored images using Variation 1

and Variation 2. The restored images using first the geometric distortion correction [MG12]

and then deconvolution with [GO12] give a more constant intensity along some of the bars (see

the top of the bar second from the right) but overall are similar to the restored images using

our proposed models.

With our second example, we performed restoration using the measured C2
n = 1.91× 10−13

for our joint deblurring and geometric distortion correction models. Fig. 4.4 gives our restored

images as well as a comparison with the geometrically corrected image using [MG12] and

the blind deconvolution of this result using [GO12], where the approximated value of C2
n =

1.7 × 10−13. The restored images using our proposed models are similar, with Variation 2

giving a slightly sharper restored image (the top loop of the ‘B’ in ‘ALBEDOS’). The result

using [MG12] and [GO12] performs better in certain areas (the ‘D’ in ‘ALBEDOS’ looks nicer

than in our restored images), but results using our model performs better in other areas (the

‘A’ and ‘L’ are more separated in ‘ALBEDOS’).
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Figure 4.3: Top, left to right: mean of 10 input images, median of 10 input images, geometric

distortion correction using [MG12]. Middle, left to right: reconstructions using Variation 1,

Variation 2, and framelet non-blind deconvolution of geometrically corrected image (top right)

using algorithm in [GO12]; here measured C2
n = 1.51× 10−13 is used. Bottom, left to right: re-

constructions using Variation 1, Variation 2, and blind deconvolution of geometrically corrected

image (top right) using algorithm in [GO12]; here approximated value of C2
n = 2.5 × 10−13 is

used.

4.4 Discussion

In the future, we will perform more numerical experiments to gain a better understanding of

the performance of our proposed joint deblurring and geometric distortion correction models
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Figure 4.4: Top, left to right: mean of 10 input images, median of 10 input images, geometrically

restored image using [MG12]. Bottom, left to right: Variation 1 and Variation 2 reconstructions

using measured C2
n = 1.91 × 10−13, blind Fried deconvolution of geometrically restored (top

right) using [GO12] algorithm with estimated C2
n = 1.7× 10−13.

and to see if any improvements can be achieved using a combined model. For a more equal

comparison with [MG12], we will implement the nonlocal total variation [GO08] in place of

the total variation. In addition, to increase performance speed, we will utilize the Bregman

iterative method [OBG05].
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