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Dynamic Restarting Schemes F~r Eigenvalue Problemst 

Kesheng Wu+ HQrst D. Simon+ 

March 10, 1999 

Abstract 

In studies of restarted Davidson method, a dynamic thick-restart scheme was found 
to be excellent in improving the overall effectiveness of the eigenvalue method. This 
paper extends the study of the dynamic thick-restart scheme to the Lanczos method 
for symmetric eigenvalue problems and systematically explore a range of heuristics and 
strategies. We conduct a series of numerical tests to determine their relative strength 
and weakness on a class of electronic structure· calculation problems. 

The Lanczos method is an effective method for computing extreme eigenvalues and the 
corresponding eigenvectors of large matrices. In order to limit the maximlim memory usage 
and reduce arithmetic operations per iteration, it is often restarted: In this case, the user 
specifies a maximum number of Lanczos vectors to be used, say m. After m Lanczos vectors 
are generated, the approximate solutions are computed and evaluated. If they are not 
acceptable, a restarting scheme is used to extract the most important information and the 
information is used in the Lanczos iterations to again generate m Lanczos vectors. The most 
straightforward way to start the Lanczos algorithm is to give it one starting veCtor. Earlier 
restarting schemes are derived based on this observation. Variations of this scheme include 
restarting with one Ritz vector, restarting with a linear combination of Ritz vectors and so 
on [12]. A much more effective scheme named the implicit restarting scheme was discovered 
by Sorensen in 1992 [13]. One important characteristics of this scheme is that it allows an 
arbitrary number of vectors to be saved at restart. Another restarting scheme with similar 
features is the thick-restart scheme [15] whose history can be traced back to earlier versions 
of the Davidson method [6]. However, this feature of restarting with arbitrary number of 
starting vectors are not fully exploited until recently. To contrast with the implicit restarting 
scheme, the thick-restart scheme is often called an explicit restarting scheme. 

Both the implicit restarting scheme and the explicit restart scheme allow one to improve 
the effectiveness of a restarting method. The choice of exactly what and how many vectors to . 

tThis work was supported by the Director, Office of Science, Office of Laboratory Pblicy and Infrastructure 
Management, of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098. 

This research used resources of the National Energy Research Scientific Computing Center, which is 
supported by the Office of Science of the U.S.' Department of Energy. 

tLawrence Berkeley National LaboratoryjNERSC, Berkeley, CA 94720. Email: {kwu, 
hdsimon}@lbl.gov. 
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save is one of the determining factors in the overall effectiveness of the eigenvalue methods. 
The restarting schemes discussed in this paper refer the strategies of making this choice. _ 
More specifically, this paper studies a number of heutistics for deciding what and how many 
vectors to save in the thick-restart Lanczos method for symmetric eigenvalue problems [16]. 
Because the strategies can not be compared analytically, we have chosen to compare them 
using a small set of test p~oblems. Through this set of tests, we are going to identify 
some efficient schemes for' a type of eigenvalue problem arise from the electronic structure 
calculations. Through our effort, we also hope to identify clearly unsound choices and narrow 
the search range for future users. 

This paper is organized as follows. We start by describing the thick-restart Lanczos 
method in Section 1. The test problems used are described in Section 2. Section 3 contains 
the basic rationale behind the different restarting strategies and give a brief overview of what 
analytical tools are available for devising restarting strategies. The main body of the text, 
sections 4 and 5, contains the details of how to implement the four main restarting strategies 
and how to modify them in order to achieve better performance. In section 6, we summarize 
the observations made in sections 4 and 5, suggest how the four main strategies should be 
implemented and demonstrate their effectiveness on a large test problem. 

1 Thick-restart Lanczos method 

Many well known methods for eigenvalue problems, s~ch as the Lanczos method [10], the 
Arnoldi method [12], and the Davidson method [5], have to be restarted in large scale appli
cations either to reduce the computer memory usage or to reduce the arithmetic operations 
per iteration. For convenience of discussion, an iteration of the restarted method is this 
paper includes all operations associated with one matrix-vector multiplication. One conse
quence of restating these methods is that the restarted versions may take considerably more 
iterations to reach convergence compared to their non-restarted counterparts. An effective 
restarting strategy is crucial to reduce the number of iterations. In this paper, we will limit 
ourselves to study only real symmetric or complex Hermitian eigenvalue problems for which 

, the Lanczos method is the most effective method. Previously, the implicit restarting scheme 
has been used with the Lanczos method [1, 2]. In this paper, we will study the thick-restart 
Lanczos method. For convenience of discussion, we briefly describe the the two major com
ponents of the thick-restart Lanczos method, the Lanczos iterations to extend the basis and 
the restarting procedure. 

Given a matrix A, its eigenvalue A and the corresponding eigenvector x are defined by 
equation Ax = AX. The Lanczos method computes approximate values to A and x which are 
also called A and x. If there are m Lanczos vectors, they will be denoted by Ql, ... , Q~. 'In the 
process of computing m Lanczos vectors, the algorithm will also compute Qi, f3i, i= 1, ... ,m 
which are used later in the Rayleigh-Ritz p~ojection. Here is a brief description of the 
algorithm. 

Initialization 

To start solving a new eigenvalue problem, take a starting vector, normalize it and 
store the resulting vector as Ql. Set k to zero. 
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· When restarting, k is set by the the restarting procedure which also provides qb' .. ,qk, qk+b 
aI, ... ,ak, and 131, ... ,13k' 

Iterate 

For i = k + 1, ... , m, 

1. qi+l +- Aqi, 

2. ai +- qT qi+b 

3. If i = k+ 1, 

else 

k 

qi+l +- qi+l - aiqi - L f3jqj, 
j=l 

This short description captures the essence of the algorithm. We have ignored the details 
for dealing with finite precision arithmetic in particular the re-orthogonalization procedure 
[16] because they are not directly relevant to the restarting strategies to be discussed. The 
following equations summarize the relation among the Lanczos vectors produced by this 
algorithm, (Qi = [ql, ... , qi]) 

AQi - QiTi + {3iqi+l ei, (i> k) (1) 
al f31 

ak 13k 

Ti 
f31 13k ak+i f3k+1 

f3k+1 ak+2 f3k+2 
(2) 

f3i-2 ai-l f3i-1 
f3i-1 ai 

At the initialization step, i.e., (i = k), the following relation must be satisfied, 

(3) 

The value k in the above formula is called the thickness in this paper. The simplest way 
to satisfy this relation is to supply the algorithm with one starting vector ql (k = 0). In 
the thick-restart Lanczos method, the restarting procedure produces k orthogonal vectors 
satisfying the above equation which allows it to use arbitrary number of starting vectors. 
The main steps of the restarting scheme can be described as follows. 
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1. Compute an eigen-decomposition of Tm, Tm - Y DyT. As in the Rayleigh-Ritz pro
jection, the diagonal elements of D are the eigenvalues of T m and the approximate 
eigenvalues (the Ritz values) of A. 

If we only want to perform convergence test, it is possible to only compute the last row 
of Y, which will reduce the need of both the memory and the arithmetic operations. 

2. Based on available information, decided what and how many Ritz values are to be 
saved. In our program, we order the eigenvalues of T m in ascending order and the 
entire decision reduces to pick two integers k1and kr which indicate that dl,l, ... , dkz,kl 
and dkr +1,kr+1, . .. ,dm,m are to be saved. This paper is about how to choose kl and kr 
such that the whole eigenvalue program takes the least amount of time. 

3. Let k = kl + m - kr . Denote the Ritz values to be saved as aI, &2, ... , &k, and 
the corresponding columns of Y as Yl, ... , Yk. The Ritz vectors can be computed 
as iiI = QmYl, ... , iik = QmYk, and ilk+1 = qm+1· In addition, ~l = f3mYm,l, ... , 

~k = !3mYm,k. 

This algorithm generates Ritz pairs as in the standard Rayleigh-Ritz projection. The 
difference is in what Ritz values are actually computed. In the standard Rayleigh-Ritz 
projection, the number of Ritz pairs to be computed is the number of eigenpairs wanted. 
If the smallest eigenvalues are wanted, than the smallest Ritz values are saved. If the 
largest eigenvalues are wanted, than the largest Ritz values are saved. In the thick-restart 
procedure, we typically save some largest ones and some smallest ones no matter which end 
of the spectrum we are interested in, and usually more Ritz pairs are saved than the standard 
case. 

Because the matrix Tm is not tridiagonal in the thick-restart Lanczos algorithm, more 
arithmetic operations are need to compute an eigenvalue decomposition for it. If .the basis 
size m is relatively small, the extra amount of arithmetic will be negligible compared to other 
operations in the restarted Lanczos algorithm. For this reason, we will not discuss this issue 
further. 

2 Test problems 

Through out this paper we will use a small' number of test problems repeatedly. They are 
described in this section. 

The three test problems listed in Table 1 come from two sources. The matrix si4 and 
si6 are from simulation of electronic properties of silicon atom clusters [3, 4]. These two 
real symmetric matrices are generated from the first. step of the Self-Consist Field (SCF) , 
iterations. They are relatively small so we can perform a large number of tests without 
consuming significantly amount of computer time. During our tests, we always compute 
the 12 smallest eigenvalues and the corresponding eigenvectors of si4 test problem and the 
16 smallest eigenvalues and the corresponding eigenvectors for si6 test problem. Test prob
lem InGaAs9k is generated from simulation of a 9000-atom InAs quantum dot in an GaAs 
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NAME 
si4 
si6 
InGaAs9k 

Table 1: Information about the test problems. 

N 
4451 
7949 

137919 

NNZ Comment 
84918 Ab Initio simulation of a four-silicon cluster 

151524 Ab Initio simulation of a six-silicon cluster 
(full) empirical pseudopotential simulation of an 

InGaAs quantum dot 

surrounding [17]. This test problem has a complex Hermitian matrix which is not stored ex
plicitly. The matrix-vector multiplication is performed through Fast Fourier Transformations 
(FFT). 

These three test problems are chosen because the authors are involved in projects that 
produce similar matrices. The selection of the test problems is small. However, by restricting 
to these problems, we are able to perform a more thorough analyses of the different restarting 
strategies which may ultimately reveal more about the restarting strategies. 

Since all test problems compute the smallest eigenvalues, we describe the restarting strate
gies based on finding the smallest eigenvalues. It should be straightforward to extended it 
to the case of finding the largest eigenvalues. When computing the smallest eigenvalues, the 
simplest thing to do is to always save a fixed number of the smallest Ritz pairs. This simple 
restarting scheme is called the fixed-thickness scheme in this paper. To measure the dynamic 
restarting schemes, we will conduct a series of tests to determine the optimal thickness for 
the fixed-thickness scheme. The tests are run with the starting vector [1,1, ... , IV. The Ritz 
pairs are declared converged if their residual norms are less than JEIIAII, where E is the unit 
round off error which is about 2.2 x 10-16 , and the norm of the matrix (IIAII) is estimated 
by the largest (absolute) Ritz value ever computed in the Lanczos method. All future tests 
will be performed using the same starting vector and convergence tolerance. 

For the two smaller test problems, si4 and si6, we have conducted the tests with three 
different basis size m --:- 20,50,100. The optimal thickness based on either the time or the 
number of matrix-vector multiplications are listed in Table 2. In the table, the number 
of matrix-vector multiplications is denote by MATVEC. The top half of Table 2 shows 
results that use the minimal number of matrix-vector multiplications and the bottom half 
of the table shows results that use the minimal amount of computer time. These results are 
obtained by trying all possible values of k under each given m (neig ::; k ::; m - 3). We would 
like to devise a set of strategies that can automatically choose an appropriate thickness that 
performs no worse than results achieved here. 

The timing results in Table 2 are measured on a SGI Onyx 2 running at 195 MHz. All 
tests involving si4 and si6 are run on this machine. Tests involving the quantum dot problem 
will be run on a Cray T3E parallel machine to provide a different prospective. 

We ~ave conducted similar experiment with the quantum dot test problem to compute 
the five smallest eigenvalues and the corresponding- eigenvectors. Figure 1 shows the time 
and the number of matrix-vector multiplications used to solve the InGaAs9k test problem 
with different fixed thickness. A basis size (m) of 25 is used in this test. The timing results 
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Table 2: The' minimal time and number of matrix-vector multiplications used to solve two 
silicon cluster test problems using thick-restart Lan~zos method with fixed thickness (k = 
kl ) kr = m). 

minimal number of MATVEC 
m-=20 m=50 m=JOO 

MATVEC k MATVEC, k MATVEC k 
si4 488 16 274 34 268 44a 

si6 1621 16 274 22 271 43 
-minimal time (seconds) 

m=20 m=50 m= 100 
time k time k time k 

si4 5.18 12 3.19 19 4.59 14 
si6 50.0 16 7.90 16 . 11.9 42 

G268 MATVEC is also used when k is 58 and 72. 

are obtained on 32 processors of a Cray T3E 900. The optimal thickness in this case is 
. 12 which achieves both minimal number of matrix-vector multiplications (1806) and the 
minimal amount of CPU time (179.6 sec). This is a much large test problem than the two 

~,~ .. 
silicon "cluster ones and the matrix-vector multiplications take up a much large portion of 

. \' 

the total time too. Because the matrix-vector multiplications dominate the overall time, 
minimizing the number of iterations also minimizes the total time for this test problem. 

Now that we have established the performance target for the test problems, next we will 
exam what can be used to guide our choice of restarting strategies .. 

3 Rationale for the heuristics 

In. our version of the thick-restart scheme, see page 3, the decision to be made is to choose 
. two integers kl and kr, see also Figure 2. This section will review the theoretical tools that 

can guide us in making this decision. We will see how they are used and why additional 
heuristics are needed. 

There are two theoretical tools that can be used to analyze the choices, the polynomial 
filter and the approximate deflation. The bases vectors generated by the implicitly restarted 
Arnoldi method and the thick-restart Lanczos method are always orthogonal bases of some 
Krylov subspace, K(A, v) [13, 16]. The starting vector v ,changes after each restart. The 
polynomial filter refer to the relationship between these starting vectors where the vector 
v before and after a restart is related by a polynomial of the form II~lk (A - lSJ). The 
scalar values lSi are cailed the shifts. In the impllcitly restart Lanczos method, they can be 
arbitrarily chosen. In the thick-restart Lanczos'method, they are the Ritz values discarded 
during restart. Based on this polynomial relation, the optimal choice for the shifts are 
the Leja points [1]. The polynomial filter argument has strong theoretical foundation and 
programs based on this mechanism are found to be effective in practice [1]. However, this 
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Figure 1: The time (seconds) and number of matrix-vector multiplications used by the thick
restart Lanczos method to find the five smallest eigenvalues of the InGaAs9k test problem 
with different fixed thickness (m = 25). 

discard 

save save 

KI Kr 

Figure 2: Schematics of selecting decision during thick-restart. 

analysis does not give an clear indication of exactly how many shifts to apply or how many 
vectors to save when more than one eigenvalue is computed. 

Another theoretical tool that can be used to guide the design of dynamic restarting 
heuristics is the approximate deflation feature of the Ritz vectors [9]. To compute eigenvalues 
near 0", the Ritz values near 0" should be saved. Morgan's analyses indicate that the saved Ritz 
vectors approximately deflate the spectrum, increase the effective separation between the 
wanted eigenvalues and the rest of the spectrum, and consequently increase the convergence 
rate of the restarted method [9]. The, dynamic thick-restart scheme used in the dynamic 
thick-restart Davidson method is successful example of using this argument [15]. 

Since the Lanczos method is only effective in computing the extreme eigenvalues, our 
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implementation of the thick-restart scheme only save some largest Ritz values and some 
smallest Ritz values. When computing the smallest eigenvalue, the effective gap ratio used 
to devise the dynamic thick-restart scheme is [15] 

)..k/ - )..1 
'Y = ---'-

)..kr - )..1 
(4) 

. Based on the approximate deflation argument, saving more nearby Ritz vectors will 
result in faster convergence rate for the smallest Ritz value. Obviously the maximum gap 
ratio is achieved when kl is kr - 1. However, in this case, the effective gap rat~o is a wild . 
overestimate of its actual value. In addition, when kl = kr - 1, an iteration of the restarted 
Lanczos algorithm is expensive because the Rayleigh-Ritz projection is performed after every 
matrix-vector multiplication and it always computes m - 1 Lanczos vectors. Figure 1 clearly 
indicates that as k approaches m both CPU time and the number of iterations increase. 
Similar to the polynomial filter argument, the approximate deflation argument does not 
suggest an effective choice of how many Ritz pairs to saved either. The innovation of this 
paper is to augment these theoretical arguments with heuristics to make effective choices 
during restart. 

To reduce the time and iterations in the dynamic thick-restart Davidson method, the 
developers of the dynamic thick-restart Davidson method require that kr ?: kl + 3 [15]. 
Because the function 'Y is a monotonic function of kl and kr, if no Ritz values are exactly 
equal to each other, this requirement leads to 3 Ritz pairs being discarded at every restart. 
The choice of always discarding :3 Ritz pairs and saving m - 3 is somewhat arbitrary. One 
way to remove this arbitrariness is to develop an empirical formula for deciding how many 
Ritz vectors should be saved. After each iteration, the residual norm is expected to decrease 
by a factor proportional to e-'Y by the definition of 'Y [9]. Maximizing 'Y is equivalent to 
maximizing the residual norm reduction for each iteration. An alternative is to minimize the 
residual norm at the end of an entire restarted loop. If k Ritz pairs are saved, after m - k 
iterations, the residual norm will decrease by a factor proportional to e-(m-kh. Minimizing 
the residual norm at the next restart is equivalent to maximizing the quantity J.l = (m - k)"(. 
It is clear that J.l is not a monotonic function unless the Ritz values are exponential functions 
of their indices. Therefore maximizing J.l should provide appropriate choices for kl and kr· 

These approximate deflation based heuristics are relatively simple. Next we will see how 
well they actually work. There are also obvious limitations on these schemes. For example, 
the effective gap ratio are only meaningful if the saved Ritz values are close to the actual 
eigenvalues. Typical at least some of the saved Ritz values are not accurate, it might be 
helpful to take their errors into account. We will explore this and related issues in section 5 
in order to enhance the robustness of our restarting strategies. 

4 Implementing the heuristics 

This section describes the details ofllow to implement the heuristics as actual computer 
programs. More specifically, we will concentrate on restarting choices based on individual 
heuristics. Here is a list of four heuristics that we plan to use. 
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1. Index based scheme - develop an empirical formula for deciding what are the appro
priate values for k, and kr . 

2. Residual norm based scheme - save Ritz pairs that are near the wanted ones and also 
have relatively small residual norms. 

3. Maximizing the gap ratio 'Y. 

4. Maximizing progress, i.e., finding k, and kr that maximize the value J.l = (m - kh. 

Typically, the restarted Lanczos algorithm is used to compute a number of eigenvalues 
at a time. Most of the heuristics require one Ritz pair being identified as the one currently 
being computed. This idea is similar to targeting in the Davidson method and we will also 
call the selected Ritz pair the target in this paper. When computing a number of smallest 
eigenvalues, the target is the smallest Ritz value that does not satisfy the convergence criteria. 
Clearly, other choices are possible. However, this simple choice appears to work reasonably 
well for the test problems. We will be using this choice throughout the rest of the discussion. 

When deciding the parameters needed to make these heuristics into programs, we will use 
the two smaller test problems, si4 and si6. The objective of tuning these restarting schemes 
is to achieve the performance listed in Table 2. 

4.1 Index based scheme 

The rationale for this scheme is to save Ritz pairs near the wanted eigenvalues. The key 
here is to develop an reasonable formula that can achieve good overall performance. For 
simplicity, if the smallest eigenvalues are wanted, we only save the smallest Ritz values and 
their corresponding Ritz vectors. Using the simple formulae considered here, if there is 
only one eigenvalue to compute, this scheme will revert back to the fixed-thickness scheme. 
These formulae are based on the number of Ritz pairs already converged nc , the number of 
eigenvalues wanted neig, and the basis size m. It differs from other three dynamic schemes 
in that it does not use information about the Ritz values or the residual norms. Given a 
maximum basis size m, if the thickness k is kept constant, the optimal value of k is often 
near m/2 for moderate size neig and m, see for example Figure 1. Based on this observation, 
our first formula for choosing k is 

(5) 

MATVEC time (sec) 
m=20 m=50 m= 100 m=20 m=50 m= 100 

si4 536 282 301 4.65 3.29 7.21 
si6 1561 282 .403 34.9 8.18 18.7 

The above table shows the iterations and time used by the thick-restart Lanczos method 
using this restarting strategy. Compared with the results in Table 2, the number of iterations 
(matrix-vector multiplications) and the time are close to the optimal values achieved with 
fixed thickness for basis sizes of 20 and 50. However, when the basis size is 100, significantly 
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more time is used in this case. From the last column of Table 2 we see that k = 40 seems to 
be a good choice for both test problems. Base on this observation, we proposed to gradually 
vary k from m/2 to 2m/5 as m/neig increases, for example, 

( )(
2 neig 

k = nc + m - nc. 5" + 10m)' (6) 
, \ 

The time and iterations used by the thick-restart Lanczos method with this scheme of choos
ing k are .' 

MATVEC . time (sec) 
m=20 m=50 m= 100 m=20 m=50 m= 100 

si4 548 304 275 4.80 3.38 5.86 
si6 1561 279 276 35.1 7.82 11.9 

From this table, we see that choosing the thickness according to Equation 6 leads to better 
performance compared to using Equation 5 for si6, but not for si4. The iterations and time 
used by this choice of thickness are comparable to the results shown in Table 2 for most 
cases. Only in one case, solving si4 test problem with m = 100, the time used is significantly 
more than in the optimal fixed thickness case. Since the value of k that achieves minimal 
time is very close to neig for si4 test problem. We decide to test the following formula as well 

(7) 

The results of using this choice is as follows, 

MATVEC time (sec) 
m=20 m=50 m= 100 m=20 m=50 m = 100 

si4 456 297 298 5.27 3.09 4.58 
si6 1741 277 416 44.7 7.44 16.1 

We see that this choice work well for m = 50 but not so well for smaller m and it also 
causes more time to be used for si6 test ptoblemwith m = 100. We have tested many other 
choices to predict the optimal k based on ndg, n c , m and param,eters other then Ritz values 
or residual norms. None of them can consistently generate better performance than using 

. Equation 6. We believe this is because one formula can not predict the optimal k values 
for the two test problems. This suggests that a robust strategy must take the spectrum 
information into consideration. For the moment, we accept Equation 6 as the formula to 
implement this strategy. 

4.2 . Mimicking ARPACK 

The eigenvalue package ARPACK has an implementation of the implicitly restarted Lanczos' 
method for symmetric eigenvalue problems [8]. The restarting scheme in ARPACK also 
determines how many vectors in a similar manner as described in previous subsection. Here 
we will briefly examine the scheme used in ARPACK and see how Equation 6 works in 
ARPACK. 
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Table 3: The time and number of matrix-vector multiplications used by ARPACK to solve. 
the si4 and si6 test problems. 

- MATVEC time (sec) 
m=20 m=50 m= 100 m=20 m=50 m= 100 

si4 523 308 343 10.1 7.0 11.5 
si6 3373 421 ·471 '155.6 20.7 31.0 

In version 2.4 (dated 07/31/96) of ARPACK, if there is no eigenvalue with zero residual 
norm, the selection of number of vectors to save is based on the following formula, 

k = neig + min(ne, (m - neig)/2) .. (8) 

In addition to the above formula, there is also a special case when neig = 1. Since we always 
compute more than one eigenvalue, the special case is not relevant to our test problems. 
By selecting k using the above equation, the thick-restart Lanczos method uses following 
iterations and time to solve the two silicon cluster test problems. 

MATVEC time (sec) 
m=20 m=50 m= 100 m=20 m=50 m = 100 

si4 402 299 293 4.43 3.21 4.79 
si6 2280 283 405 66.4 7.87 15.9 

This imitation of ARPACK has very similar performance to the scheme depicted by 
Equation 7. The actual performance of ARPACK is shown in Table 3. Because of differ
ences in the convergence test, our restarted Lanczos method does not use the same time or 
iterations1. When computing neig smallest eigenvalues, during convergence test, ARPACK 
performs the test on all neig smallest Ritz values and ne is the count of how many have 
satisfied the convergence criteria. In our implementation of the restarted Lanczos method, 
we perform the convergence test on one Ritz pair at a time until one fails the test or all 
wanted ones have satisfied the convergence criteria. In other words, ne is the size of the lead
ing group of Ritz pairs that are converged. Because of this difference, the two convergence 
tests will report different ne even if all the Ritz pairs are exactly the same. This difference 
causes the different number of Ritz pairs to be saved and ultimately causes the two method 
to behave differently. 

To demonstrate that our restarting schemes can be easily used in ARPACK, we modify 
ARPACK (dsaup2.f) to use Equation 6 instead of Equation 8. The iterations and time 
used by this modified version of ARPACK are 

IBoth ARPACK and our thick-restart Lanczos program (TRLAN) are compiled with the same flags 
(-mips4 ~64 -Ofast=IP27 -OPT:alias=restrict) and linked with the same libraries (-L/usr/lib64 
-lcomplib. sgimath). The matrix-vector multiplications of the Compressed Sparse Row (CSR) matrices 
use the same function from SPARSKIT [11]. Examining the hardware event counters through perf ex re
veals that both TRLAN and ARPACK run 'at about the same speed (45MFLOPS for si4 m = 100) but 
ARPACK uses more floating-point operations (ARPACK 5.06 x 108 FLOP, TRLAN 2.41 x 108 FLOP, si4, 
m = 100). 
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MATVEC time (sec) 
m=20 m=50 m= 100 m=20 m=50 m= 100 

si4 450 308 I 343 -6.47 6.01 10.2 
si6 1338 427 471 45.6 18.3 28.4 

In this test, the number of iterations used by ARPACK is significantly reduce when the 
basis size is small, see Table 3. When the basis size is large, the difference is small because the 
number of restarted loops are the same before and after the modification. Each ARPACK 
restarted loop builds a basis of size m before performing convergence test, a number of 
unnecessary matrix-vector multiplications were used before the last convergence test. 

In this paper, we use the thick-restart Lanczos method to demonstrate that a good 
restarting scheme is useful. The brief digression here demonstrates that a good restarting 
scheme will benefit the implicitly restarted Lanczos method as well. In fact, this should be 
true for all restarted methods. 

4.3 Save nearly converged Ritz pairs 

This strategy tries to save the Ritz pairs that are close to the wanted eigenvalues and are 
also closer to convergence than an average Ritz pair. The main design choice here is what 
residual norms are small enough to be saved. To make the comparison concrete, we need to 
have reference values. One natural reference value is the maximum residual norm. Those 
Ritz pairs with similar residual norms probably should be ignored. As the reference value 
for what should be saved, we use the residual norm of the target Ritz pair. We have decided 
not to use the convergence criteria to determine this reference value because the convergence 
criteria may not' always include an explicit condition on the residual norms, and even there 
is one the actual residual norms may always be significantly larger than the residual norm 
tolerance. With two reference values, now we can try to establish a formula for determining 
what residual norms are small enough to be saved. 

Let rmax denote a residual vector with the largest norm and rt be the residual vector 
of the target where t is its index. As usual, the Ritz values are in ascending order. When 
computing the smallest eigenvalues, we will save Ritz pairs 1, ... , kl (kr = m) if IIrill < s, 
(i = t + 1, ... , kl ). The values of s is determined as 

(9) 

The value of s is usually Jrmaxrt. To ensure that at least one additional Ritz pair beyond 
the target is saved, we added the term 2rt+1' During the actual search for kl' we also make 
sure that kl ~ m- 3. In addition, s must be less than IIrmaxli. There are two cases where s 
is greater or equal to IIrmaxll,llrtll = IIrmaxll or 211rt+111 ~ Ilrmaxll. In either case, we revert 
back to the strategy described-in subsection 4.l. 

We encapsulate all above conditions in a short program and use it in the thick-restart 
Lanczos method. The following table displays the time and matrix-vector multiplications 
used to solve the two smaller test problems. 
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MATVEC time (sec) 
m=20 m=50 m= 100 m=20 m=50 m= 100 

si4 548 304 275 4.87 3.37 6.02 
si6 1561 279 276 35.1 7.74 12.1 

The time and number of matrix-vector multiplications used to solve the two test problems 
are close to those using Equation 6. Solving si4 test problem with m = 100 again uses 

, \ 

considerably more time than the optimal time shown in Table 2, it indicates that this residual 
norm based scheme has similar shortcomings as the previous one. 

, We attempted to use different formulae to compute s, however, none of them can vary the 
test results significantly. Thus, we decide to use Equation 9 for implementing this strategy. 

4.4 Maximizing the effective gap ratio 

The most straightforward way of implementing this strategy is to evaluate the gap ratio 'Y 
for all pairs of kl and kr and then select one pair that gives the maximum 'Y. Since 'Y is a 
monotonic function of kl and kr' there is no need to search through all possible combinations. 
In the implementation used for the dynamic thick-restart Davidson method, kr is required 
to be larger than or equal to kl + 3. In this case, we only need to compare different gap 
ratios by always setting kr = kl + 3, which significantly reduces the number of comparisons 
needed. The following table lists the time and matrix-vector multiplications used with this 
choice of kl and kr· 

MATVEC time (sec) 
m= 20 m=50 m= 100 m=20 m=50 m= 100 

si4 407 293 280 5.65 10.6 61.1 
si6 1522 347 271 44.9 25.7 51.5 

Similar to what is observed in dynamic thick-restart Davidson method, this particular 
implementation of dynamic thick-restart scheme is effective in reducing the number ofmatrix-'
vector multiplications but is not very effective in reducing the execution time of whole 
eigenvalue method. Table 4 shows the minimal time and iterations achieved' if we first 
determine the determine the thickness then maximize 'Y. In this case, the minimal iterations 
are achieved with about the same thickness as those in Table 2 and the minimal times are 
achieved with slightly smaller k than those in Table 2. Needless to say, the optimal results 
achieved by using different k is considerably better than always save m - 3. The only 
exception is using m = 20 to compute 16 eigenvalues of si6 where both schemes save 17 Ritz 
vectors. In addition to first pick the thickness before maximizing 'Y, there are many ways to 
enhance the effectiveness of this strategy and we will consider them in the next section. 

4.5 Maximizing f.-l 

There is no free parameter in determining the maximum Jl. We use a brute-force searching' 
scheme to compare all pairs of kl and kr to find a pair that maximizes Jl. In our implemen
tation, we have the following restriction on kl and kr, neig :::; kl :::; kr - 3. The following table 
lists the test results of using this scheme. 
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Table 4: The minimal time and number of matrix-vector multiplications used to solve the 
two silicon cluster test problems by first deciding how many Ritz pairs to save and then 
choose those that maximize the effective gap ratio. 

minimal number of MATVEC 
m=20 m=50 m= 100 

MATVEC k MATVEC k MATVEC k 
si4 443 17 288 36a 268 44b 

si6 1522 17 274 32 271 43c 

. minimal time (seconds) 
m=20 m= 50 m= 100 

time k time k time k 
si4 4.57 13 3.13 19 4.53 14 
si6 44.9 17 7.87 22 11.8 43 

aThe k value of 43 can also achieve the minimum number of matrix-vector multiplications. 
bThe k value of 58, 72, 76, 79, 86, 88, 92, 93, 96 can also achieve the minimum number of matrix-vector 

multiplications. 
cThe k value of 81,91, 97 can also achieve the minimum number of matrix-vector multiplications. 

MATVEC time (sec) 
m=20 m= 50 . m = 100 m=20 m=50 m= 100 

si4 413 295 285 5.31 4.34 9.49 
si6 1495 488 403 42.3 18.9 23.4 

Compared to the previous case of maximizing the effective gap ratio with k = m - 3, 
this scheme uses more matrix-vector multiplications but less time. However, the results are 
not as good as the optimal results shown in Tables 2 or 4. We believe the main reason for 
this mediocre performance is that the effective gap ratio defined by the Equation 4 is not 
accurate when the saved Ritz values are far from the corresponding eigenvalues. For this 
reason, most of techniques used to enhance the scheme of maximizing 'Y can also be used to 
enhance this one. 

5 Combining different schemes 

In: previous section, we have examined how to implement-the four heuristics. Tests show 
that the individual heuristics works fairly well by themselves but they do not always lead to 
the "optimal" performances. The objective of this section is to explore a number of ways of 
combing the different heuristics to generate more robust strategies. 
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Figure 3: The residual norms of the Ritz pairs at the first three restarts when solving the 
si4 test problem_ 

5.1 Whether to save unwanted eigenvalues 

Figure 3 shows the distribution of the residual norms against the Ritz values when solving 
silt test problem. When restarting for the first time, the residual norms corresponding to 
the largest Ritz values are about the same size as those for the smallest ones. Since the 
Ritz pairs with largest Ritz values are discarded during the restart, the largest Ritz values 
computed from the second restarted loop are smaller than those computed from the first 
one and their corresponding residual norms are much large as well. However, after the third 
restarted loop, the largest Ritz values and their corresponding residual norms are almost 
exactly the same as those from the first. Since we don't want the largest eigenvalues, this 
repeated computation appears to be a waste of computing effort. A simple alternative to 
discarding them is saving them. The goal of this subsection is to find out whether or not it 
is worthwhile to save these unwanted Ritz values. 

The schemes presented in subsections 4.1 and 4.3 only save the Ritz pairs near the wanted 
eigenvalues. Our first set of tests extend these schemes to save the largest Ritz values as 
well. The choices considered are: saving only the converged ones, saving a fixed number of 
them, and saving nearly converged ones. 

Ta limit the numbers of tests, we start by varying the scheme described in section 4.l. 
. The first test performed is to save the largest eigenvalues that are converged. The value of kl 
is defined by Equation 6. The time and the iterations used to solve si4 and si6 test problems 
are 
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MATVEC time (sec) 
m=20 m=50 m= 100 m=20 m=50 m= 100 

si4 548 304 272 4.87 3.52 5.86 
si6 1561 279 276 35.0 7.82 11.9 

From this simple test we see that saving only converged unwanted eigenvalues does not 
significantly alter the overall performance of the restarted Lanczos method. There is only 
one case where the modified scheme reduces the number of matrix-vector multiplications, 
however, more time is used in the same case. , 

Part of the reason that savirig only converged unwanted Ritz values does not work well is 
that the unwanted ones are not computed to high accuracy in the restarted Lanczos method. 
This is especially true when the basis size m is relatively small. One scheme to overcome 
this problem is to always save a fixed number of unwanted Ritz pairs. The next table is 
generated by always saving one unwanted Ritz pair. 

MATVEC time (sec) 
m=20 m=50 m= 100 m=20 m=50 m= 100 

si4 548 304 272 4.87 3.52 5.86 
si6 1561 279 276 35.0 7.82 11.9 

The time and the iterations' in this table are fairly close to those of the unmodified scheme 
shown in subsection 4.1. Because of this, we decided to save two unwanted Ritz pairs instead. 
The iterations and time used with this modification are 

MATVEC time (sec) 
m=20 m=50 m= 100 m=20 m=50 m = 100 

si4 539 285 267 5.24 . 3.26 5.84 
si6 2468 413 432 79.4 11.9 19.7 

Saving two unwanted Ritz pairs in addition to a number of wanted Ritz pairs reduces the 
number of matrix-vector multiplications when solving si4 test problem. However, more time 
were used in most cases. A more flexible scheme is needed to decide how many unwanted 
Ritz pairs to save. The rationale behind the scheme described in subsection 4.1 is to save a 
nurriber of unconverged ones in addition to the converged ones. Next we consider a similar 
scheme for the unwanted Ritz pairs. Let nu denote the number of unwanted Ritz values that 
have converged. We save nu + 1 unwanted Ritz values in the next set of tests. The number 
of iterations and time are listed in the following table. 

MATVEC time (sec) 
m=20 m=50 m= 100 m=20 m=50 m= 100 

si4 527 292 268 ·5.16 3.33 5.98 
si6 3407 423 271 111.2 12.1 11.8 

This modification reduces the matrix-vector multiplications used when the basis size is 50 
and 100, but it does not always reduce the time even when the numbers of iterations are 
reduceq.. The following are results of applying the same modification to the scheme of saving 
nearly converged wanted Ritz values, see subsection 4.3. 
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MATVEC time (sec) 
m=20 m=50 m= 100 m=20 m=50 m= 100 

si4 527 292 268 5.08 3.33 5.96· 
si6 3407 423 271 "113.1 12.1 11.8 

For the two heuristics that do not initially save unwanted Ritz pairs, saving unwanted 
ones are helpful in reducing number of matrix-vector multiplications in some cases. Since 
more Ritz pairs are saved, an iteration on average uses more arithmetic operations than 
before, therefore the modified schemes often uses more time overall. 

The schemes described in sections 4.4 and 4.5 save a number of unwanted Ritz values by 
design. Is there a benefit to not saving those unwanted ones? By discarding the unwanted 
Ritz pairs, the number of vectors saved will be smaller than before. This may reduce the 
cost of restarting and reduce the overall execution time. The following table records the 
iterations and the time used to solve the test problems with a scheme that first maximizes 
'Y (k = m - 3) and then reset kr to m, 

MATVEC time (sec) 
m=20 m=50 m= 100 m=20 m=50 m= 100 

si4 390 298 269 4.01 5.15 23.0 
si6 2134 444 399 66.9 17.6 33.1 

This modification to the scheme of maximizing gap ratio reduces the execution time of the 
restarted Lanczos method, but increases the number of iterations in most test cases. Similar 
modification is also applied to the scheme of maximizing /-L, see subsection 4.5. The time 
and the iterations used to solve the two test smaller problems are 

MATVEC time (sec) 
m=20 m=50 m = 100 m=20 m=50 m= 100 

si4 618 305 277 6.04 3~72 7.32 
si6 1819 466 389 55.5 15.0 19.3 

We see that more iterations are used with this modification compared to the original scheme 
shown in subsection 4.5 when the basis size is relatively small (m = 20,50). Less time is 
used when the basis size is larger, (m = 50,100). However, even with this modification, the 
scheme of maximizing /-L is not able to achieve the optimal performance shown in table 2. 

Overall, saving unwanted Ritz ·pairs using the simple schemes described in this section is 
beneficial only in a small number of cases. Based on this set of tests, there is no reason to 
change the four strategies to include or to exclude unwanted eigenvalues: 

5.2 Reducing time while maximizing gap ratio 

In subsection 4.4 we pointed out the need of dynamically choosing the number vectors to save 
when maximizing the effective gap ratiQ. This section will explore combining the observations 
made in subsections 4.1 and 4.4 to automatically achieve the optimal timing results shown 
in Table 4. 
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The first test uses Equation 6 to determine the number of Ritz pairs to be saved, then 
maximize the gap ratio 'Y under the constraint that k Ritz pairs will be saved. The iterations 
and time used by the thick-restart Lanczos method 'with this restarting scheme are shown 
next. 

MATVEC time (sec) 
m=20 m=50 m= 100 m=20 m=50 m= 100 

si4 908 305 278 9.09 3.46 5.88 
si6 3159 283 278 69.7 8.02 12.1 

Clearly, when the basis size is relatively small, say m = 20, much more time is used 
with this scheme. In fact, when the basis size is small (m = 20), none of the variants of 
maximizing gap ratio uses less time than the simple index based schemes, see subsection 4.l. 
When the basis size is larger, m = 50 and m = 100, this combined scheme uses about, the 
same amount of time as shown in subsection 4.1 but more time than the oB.,timal case shown 
in Table 4. 

The second test uses Equation 7 to determine the number of Ritz pairs to be saved, then 
maximize the gap ratio T under the constrain that k Ritz pairs will be saved. The resulting 
number of iterations and time are listed in the following table. 

MATVEC time (sec) 
m=20 m=50 m= 100 m=20 m=50 m = 100 

si4 493 293 292 6.15 3.18 4.68 
si6 1335 280 403 39.0 7.78 15.7 

This set of results are again close to simply saving k smallest Ritz values, see subsection 4.l. 
Maximizing jj with a fixed k is same as maximizing 'Y. For this reason, there is no need to 

apply the same modification to the scheme of maximizing jj. However, in the implementation 
used to produce the results shown in subsection 4.5, we limited kl ::; kr - 3. When kl 
and kr are close to each other, the value of jj is significantly larger than its actual value. 
To avoid this situation, we mandate a larger separation between kl and kr, for example, 
kl ::;·kr - (m - nc)/2. The test results of using this modified version of maximizing jj are 

MATVEC time (sec) 
m=20 m=50 m= 100 m=20 m=50 m= 100 

si4 468 287 294 4.58 3.42 6.73 
si6 2024 511 403 65.0 15.2 18.7 

We see. that this choice works reasonably well for si4 test problem but not so well for si6 
test problem. Using the constraint kl ::; kr ~ (m - nc)/2, the number of Ritz pairs saved is 
guaranteed to be'less than (m + nc)/2. When the basis size is small, this leads to too few 
Ritz pairs being saved. . 

The next modification relax the search range to kl ::; kr - min(m - neig, 2(m - nc)/5). 
This change increases the limit on k'and allows more Ritz pairs to be saved. This added 
flexibility helps to reduce the time and iterations used to solve the si6 test problem as shown 
in the following table. -
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MATVEC time (sec) 
m=20 m=50 m= 100 m=20 m=50 m = 100 

si4 471 297 274 4.77 3.59 5.83 
si6 1209 456 276 32.2 13.9 13.1 

By ensuring a large separation between kl and kr' we are able to achieve much better 
performance than allowing them to be arbitrarily close. However, we have not achieved the 
performance target shown in Table 4. 

5.3 Ensuring convergence 

The schemes described in subsections 4.1, 4.2 and 4.3 do not use the Ritz values when 
deciding the thickness. One simple way of taking the Ritz values into account is to ensure 
that a reasonably large gap ratio is achieved. The goal of this modification is to ensure 
that the wanted eigenvalues can be computed within specified number of iterations. If the 
residual vector of the current target is rt, the effective gap ratio is ,,/, and the tolerance 
on residual 'norm is c, then the number of iterations required to make the target converge 
may be estimated as In{llrtll/c)/''/. If nc is the number of Ritz pairs already converged and 
nmatvec is the number of matrix-vector multiplications (iterations) used so far, the average 
number iterations to compute each pair is (nmatvec + In{lIrtll/c)/,,/)/{nc + 1). Assuming the 
rest of eigenvalues are equally difficult to compute, the total number of iterations needed to 
compute all wanted eigenvalues is 

neig ( In(lIrtll/c)) 
(nc + 1) nmatvec + "/ . 

The maximum number of iterations to be used is usually specified by' the user. From the 
above expression we can derive the desired "/ to ensure solutions are found within the specified' 
number of iterations. It is possible that the quantity nmatvecneig/(nC + 1) is larger than the 
maximum iterations allowed. In this case, the above formula will compute an invalid "/ 
b < 0). If this happens, we compute a minimal "/ that will ensure the current target will 
converge in the remaining iterations. In addition, we always make sure that at least three 
Ritz pairs are discarded during restart. 

The first test to incorporate this heuristic is implemented as a modification to the simple 
index based scheme. The number of Ritz pairs to save is first computed using Equation 6. 
Additional Ritz pairs are saved to make sure the desired minimal "/ is achieved. The follow
ing table lists the' number of iterations and time used to solve the two silicon cluster test 
problems. 

MATVEC time (sec) 
m~20 m=50 m-l00 m=20 m=50 m= 100 

si4 488 304 275 4.29 3.70 5.91 
si6 1369 279 276 32.8 7.86 11.9 

When the basis size is small. (m = 20), the performance of the restarted Lanczos method 
with this modification is better than without it, see subsection 4.1. When basis size is larger, 
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m = 50,100, the performance differences is fairly small. The reason is that with large basis 
size, Equation 6 already leads to large enough gap ratio and the modification does not change 
the thickness used. 

When the basis size m is 50 or 100; Equation 7 prescribes a smaller thickness and this 
may lead to less time being used. The next test uses the smaller value of Equation 6 and 7, 

kl = kx, kr = m, 

. _ . (( )(2 nei g ) ) . kx = nc + mm m - nc - + -- ,neig , 
. 5 10m 

(10) 

then modifies the thickness to ensure the minimal gap ratio is achieved. The test yields the 
following results. 

MATVEC time (sec) 
m=20 m=50 m= 100 m=20 m=50 m= 100 

si4 488 297 298 4.29 3.01 4.62 
si6 1369 277 416 32.8 7.40 16.0 

When the basis size is 50 or 100, the time used by this combined scheme is very close to those 
used with Equation 7 alone. This is again because the modification to ensure the minimal 
gap ratio did not change the thickness. 

The same modification can be applied to the scheme of saving nearly converged Ritz 
pairs as well, see subsection 4.3. The following table lists the test results. 

MATVEC time (sec) 
m=20 m=50 m=100 m= 20 m=50 m= 100 

si4 488 304 275 4.26 3.51 5.96 
si6 1369 279 276 32.9 7.81 12.0 

From all the above tests, we see that adding this modification is useful when the basis 
size is small. When the basis sizeis large, our ·dynamic thick-restart scheme already achieve 
the desired effective gap ratio, therefore the additional modification does not change the 
actual number of Ritz pairs saved. 

5.4 Using biased estimate 
. 

The computed effective gap ratio can be much larger than its actual value when the Ritz 
values are different from the corresponding eigenvalues. Here we will use an alternative 
formula for compute the gap ratio to see whether or not we can generate more effective 
schemes. 

If the residual vector of a Ritz pairiS r, then the actual eigenvalue is in the range of 
(A-lIrll, A+llrlD which is often called the trust region [7,10]. In fact, if we want to compute 
the smallest eigenvalue and Al is the sl}lallest Ritz value,the actual eigenvalue is most likely 
in the range of [A - IIrll, A]. In this case, we can use A - IIrll as the biased estimate of 
the eigenvalue [14]. This biased estim~te has been successfully used as the shift in for the 
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Davidson method [14]. Here we will use it as an alternative way of computing the effective 
gap ratio. 

The biased estimates can be closer to the actual eigenvalue than the Ritz values in some 
cases. We can use the biased estimates in place of the Ritz values in the formula of effective 
gap ratio 

~ ).,k,-l!rk,II-).,I+lIrlli 
"'(-

- ).,kr + IIrkrll-).,l + IIrlli' 
Because the residual norms have more complex relation with their indices, l' is no longer a 
monotonic function of kl and kr. However, both IIrk/1I and Ilrkrll may be quite small if kl and 
kr are close to m. If we use a brute-force method to search for a pair of kl and kr that gives 
the maximum l' we may reach the conclusion that thepair kl = m -1 and kr = m is the best, 
which it is obviously not. Our first implementation of this scheme uses the same restriction 
as in the dynamic thick-restart Davidson method, that is, kl S kr - 3. The following table 
shows the results of using this scheme. . 

MATVEC time (sec) 
m=20 m=50 m= 100 m=20 m=50 m= 100 

si4 699 324 280 9.94 11.3 60.9 
si6 2182 606 418 71.7 42.3 84.8 

This test shows that using l' produces roughly the same overall performance in the restarted 
Lanczos method. 

This test demonstrates that l' has similar shortcomings as "'(. Since allowing kl and kr to 
vary arbitrarily does not give the desired results, we can let them vary near some values that 
are known to be good. In previous section, we have seen that saving kx smallest Ritz values 

. works reasonably well. Now we will try to find the maximum l' near kx to see whether we 
can further enhance it effectiveness. Since this scheme only searches for a local maxim 1', we 
will avoid the pitfalls mentioned before. To constr-uct a computer program out this idea, we 
need to decide· exactly what range to search forkl . Let's first consider search in the range 
of (kx, (kx + m)/2). The test results are 

MATVEC time (sec) 
m= 20 m=50 m= 100 m=20 m=50 m = 100 

si4 575 283 274 5.84 3.72 7.26 
si6 888 285 416 23.2 9.60 21.5 

In five out of the six test cases, more time is used compared to simply setting kl to kx . Next 
we restrict the above search range with an additional condition of ).,k", S ).,k, S ).,k", + Ilrk", II. 
The following table lists the results of using this scheme to determine what Ritz pairs to 
save. 

MATVEC time (sec) 
m = 20 m=50 m -:-- 100 m=20 m=50 m= 100 

si4 517 293 298 4.45 3.03 4.59 
si6 1181 277 432 27.8 7.74 17.2 
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The time used to solve the test problems is significantly reduced compared to the previous 
implementation. The only case that more time is used than the optimal fixed thickness 
scheme is solving the si6 test problem with m = 100. Overall, this scheme leads to good 
performance for the restarted Lanczos method. 

Near the end of the previous subsection, we have tested a scheme of saving kx smallest 
Ritz values and also ensuring the minimal gap ratio is achieved. Instead of checking that 
'Y is larger than the minimal value, we can alternatively making sure l' is larger than the 
minimal value. The following table lists the test results of using this alternative scheme .. 

MATVEC time (sec) 
m=20 m -:- 50 m= 100 m=20 m=50 m= 100 

si4 474 297 298 4.27 3.04 4.55 
si6 1463 277 416 34.8 7.38 16.1 

This set of results are roughly the same as using 'Y instead of 1'. In addition, with either one 
of the modifications, the thick-restart Lanczos method uses about the same amount of time 
and iterations as simply saving kx smallest Ritz values. The main reason for this is that 
saving kx Ritz pairs already ensure the minimal gap ratio for the two test problems. 

Similar to replacing. 'Y with l' when maximizing the gap ratio, we can also replace 'Y with 
l' when maximizing IL, i.e., maximizing (m - k)i'. The following table contains the results 
of maximizing (m - k)1' under the constraint of kl < kr - min(m - neig, 2(m - nc)/5). 

MATVEC time (sec) .. 

m=20 m= 50 m= 100 m=20 m=50 m = 100 
si4 465 303 281 4.68 3.61 7.21 
si6 1786 501 279 46.6 15.2 13.1 

The correspondi~g results of maximizing (m - k) 'Y is shown in the last table of subsection 5.2. 
Comparing the two tables, we see that slightly more iterations and time are used when 
maximizing (m - k)i'. 

With the limited number of tests performed in here, we do not see a clear advantage 
of using the biased estimate when computing the effective gap ratio. We will simply use 'Y 
whenever the effective gap ratio is needed in the remaining of this paper. 

5.5 Saving degenerate Ritz pairs 

One of the heuristics not yet considered is related to degeneracies. If two Ritz values are 
nearly identical and one of them is to be saved, we should save them both. In a Lanczos 
method implemented in the floating-point arithmetic, the Ritz values corresponding to the 
degenerate eigenvalues are never exactly identical to each other. The main difficulty to 
implement this heuristic is how to determine degeneracies. The criteria we use for judg
ing whether or not two Ritz values will eventually converge to two identical eigenvalues is 
whether their trust region overlap. In this subsection we will explore a few different ways of 
implementing this strategy. 
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To limit the number o~ tests to perform, we start by using this heuristic as a modification 
to selecting k based on Equation 10. In other word, when computing the smallest eigenvalues, 
we first set kr = m and kl = kx, then modify kl to, include Ritz values that are close to 
Ak",. To determine whether Ai and Ai+l could be considered as degenerate, our first test is 
Ai > Ai+l - IIri+1l1· Using this criteria, the results of solving the two silicon cluster test 
problems are 

MATVEC time (sec) 
m=20 m=50 m= 100 m=20 m=50 m = 100. 

si4 552 292 295 5.23 3.05 4.58 
si6 1218 408 412 29.3 11.2 16.0 

The modification reduces the iterations for larger m when solve si4 test problem but the 
same is not true for si6 test problem. 

The second criteria for testing whether two Ritz values could eventually converge to the 
same eigenvalue is Ai + Ilrill > Ai+l and the time and the iterations used to solve the two 
silicon duster test problems are 

MATVEC time (sec) 
·m=20 m=50 m = 100 m=20 m=50 m = 100 

si4 600 294 297 5.47 3.07 4.64 
si6 1839 275 412 43.0 7.37 16.4 

When the basis size is 20, both above modifications increase the time and iterations used 
compared to the original scheme shown in subsection 5.3. 

The previous two· criteria for testing degeneracies are combined to form the third test. 
In this case, both Ai > Ai+l -lIri+111 and Ai + Ilrill > Ai+1 have to be satisfied in order for Ai 
and Ai+1 to be considered degenerate and the results of using this test criteria are 

MATVEC time (sec) 
m=20 m=50 m= 100 m=20 m=50 m = 100 

si4 533 294 297 4.65 3.02 4.60 
si6 1458 276 412 33.3 7.39 16.1 

Since both Ai and Ai+l are expected to decrease in the future iterations and Ih+111 is 
usually larger than Ihl!' we modified the above test to be Ai - Ilrill > Ai+l - Ilri+111 and 
Ai + IIrill > Ai+l. With this test, the trust region of Ai is completely covered by that of Ai+l. 
The resulting time and iterations used by the thick-restart Lanczos method are 

MATVEC time (sec) 
m=20 m= 50 m..:..lOO m=20 m=50 m= 100 

si4 534 296 297 4.78 3.06 4.60 
si6 1323 277 412 29.5 7.39 16.0 
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Comparing the results of using these four set of testing criteria for determining potential 
degeneracies, we see that the time and iterations used with small basis size (m = 20) have 
been steadily decreasing. However, the time and iterations used with larger basis sizes are 
almost the same. For future discussion, we will use the last set of testing criteria. 

Since the idea of guaranteeing minimal gap ratio was found to be useful when the basis 
size is small, we try to combine· this heuristic and the above tests for degeneracy to see 
whether or not the resulting scheme is even bette~ for small basis size. The resulting time 
and iterations used by the restarted Lanczos method are 

MATVEC time (sec) 
m=20 m= 50 m = 100 m=20 m= 50 m= 100 

si4 504 296 297 4.49 3.06 4.60 
si6 1395 277 415 33.8 7.46 16.3 

The set of results are roughly the same as modifying the strategy of saving kx smallest 
Ritz pairs to ensure the minimal gap ratio is achieved, see subsection 5.3. The additional 
modification of saving those Ritz values that are potentially degenerate does not significantly 
change the overall effectiveness of the eigenvalue method. Since both modifications are very 
simple to implement, we can use both of them without significantly cost and we will do so 
in the future tests. 

The same two heuristics can also be easily applied to the strategy of saving nearly con
verged Ritz pairs, see subsection 4.3. The time and iterations used with this modified version 
of the strategy are as follows, . 

MATVEC time (sec) 
m=20 m= 50 m = 100 m=20 m=50 m= 100 

si4 504 303 274 4.38 3.40 5.87 
si6 1395 279 275 34.0 7.82 11.9 

Compared with the results without these two modifications, see subsection 4.3, the modified 
scheme is considerably more effective when the basis size is small. Compared with the scheme 
which only has the modification to guarantee tp.e minimal gap ration, see the last experiment 
of subsection 5.3, we see that the newly added modification of saving degenerate e~genvalues 
does not significantly change the overall performance. 

6 Putting it together 

In proceeding sections, we have identified four basic strategies of determining what and how 
many Ritz pairs to save for the thick-restart scheme, (1) saving a nu.mber of Ritz pairs based 
on indices; (2) saving a number of Ritz paIrs based on residual norms, (3) saving Ritz pairs to 
maximize the effective gap ratio, and (4) saving Ritz pairs to maximize Jl. We have tested 
a number of formulae for the first two, schemes and achieved a reasonably good performance 
on the test problems. In their simplest forms, the last two schemes save too many Ritz pairs 
in most test cases and are only effective in reducing the number' of iterations. Because they 
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save too many Ritz pairs, each iteration is more expensive on average. This leads to more 
time being used by the Lanczos method with these two restarting strategies. 

We have experimented with modifying the four basic strategies by (1) saving the un
wanted Ritz values in addition to the wanted one, (2) forcing the last two schemes to save 
less Ritz pairs, (3) using an alternative formula for the effective gap ratio, (4) maintaining 
a reasonable gap ratio, and (5) saving potentially degenerate Ritz pairs. When a relatively 
small portion of the Lanczos basis is saved during restarting, including additional unwanted 
Ritz pairs can reduce the number of iterations. In our tests, this happens when the basis 
size is 50 or 100. When the number of Ritz pairs saved is close to the basis size m, saving 
additional unwanted Ritz pairs generally causes more time to be used. This is the case when 
the basis size is close to the number of eigenvalues wanted. If we first choose a moderate 
size k then try to maximizing " the difference between kl and kr is fixed and the resulting 
choices often lead to better performance than allowing kl and kr to become arbitrarily close. 
Computing the gap ratio using the biased estimates of the eigenvalues do not significantly 
alter the overall effectiveness of the eigenvalue method compared to computing gap ratio 
using Ritz values. The last two modifications of maintaining a reasonable gap ratio and 
saving degenerate Ritz pairs are relatively inexpensive to implement and fairly useful when 
the basis size is close the the number of eigenvalues wanted. 

As an example of how to use all the different heuristics, we will describe our final imple
mentation of the four restarting strategies. 

1. Index based scheme When trying to find a number of the smallest eigenvalues, at 
each restart, this scheme selects 

. (( ( 2 neig )) kl = nc + mm neig, m - nc) 5" + 10m 

smallest Ritz pairs. This basic choice is modified to ensure a minimal gap ratio is achieved, 
see subsection 5.3 and potentially degenerate Ritz pairs are saved, see subsection 5.5. No 
unwanted Ritz pairs are saved in this case (kr = m). 

2. Residual norm based scheme This scheme saves Ritz pairs near the wanted eigen
values and have residual norms smaller than rs = max(2rt+1, Jrmaxrt) , see subsection 4.3. 
Two modifications are applied after the basic steps are taken, they ensure a reasonable gap 
ratio is achieved and save potentially degenerate Ritz pairs. No unwanted Ritz pairs are 
saved. 

3. Maximizing effective gap ratio This scheme first determines the number Ritz pairs 
to be saved, k = max (neig, (3m + 2nc)j5), then search.for a combination of kl and kr that 
gives the largest ,. The above formula gives the following relation for kl and kr is kl 
kr + min(m - neig, 2(m - nc)j5). No further modification is .applied. 

4. Maximizing progress This scheme search through all possible choices of kl and kr to 
maximize the value of /-1> = (m - k) * f. The constraint on kl and kr is kl ::; kr - min( m -
neig, 2(m - nc)j5). 



Table 5: Time and iterations used to compute the five smallest eigenvalues of InGaAs9k test 
problem. 
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Figure 4: The time (seconds) used to find different number of eigenvalues of the InGaAs9k 
test problem. 

Table 5 lists how these four schemes perform when computing the five smallest eigenvalues 
. of the InGaAs9k test problem. The elapsed time is measured on 32 processors of a Cray 
T3.E-900. Compared to the timing results shown in Figure 1, we see that the Lanczos method 
with restarting scheme one and four uses significantly less time than the minimal time used 
with the fixed thickness scheme. 

In many electronic structure calculations, a large number of eigenvalues and eigenvectors 
are computed. Figure 4 demonstrates how the thick-restart Lanczos method scales as the 
number of eigenvalues increases. In this test, the basis size used is always neig + 20. In 
other word, the Lanczos only need workspace to store 21 vectors, 20 for the Lanczos vectors, 
one for the residual vector. The neig vectors needed to store the eigenvectors are used by 
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the program to store Ritz vectors as well. From the plot we see that the time required to 
compute the smallest eigenvalue is almost the same as computing two smallest ones. When 
the number of eigenvalues to be computed is between 2 and 32, the last two restarting 
schemes are slightly better than the first two. Using one of the last two restarting schemes, 
doubling the number of eigenvalues, the restarted Lanczos method takes about 45 percent 
more time. When computing more than 32 eigenvalues, in other words, when neig > m/2, the 
first two restarting schemes become more competitive than the last two. In the range tested, 
the Lanczos method with the first scheme uses 65 percent more time when the number 
of eigenvalues doubles, and the Lanczos method with the second restarting scheme uses 
about 55 percent more time. No matter which restarting strategy is used, the thick-restart 
Lanczos method scales sublinearly with the number of eigenvalues. This suggests that the 
thick-restart Lanczqs method may be used to compute a large number of eigenvalues. 

In general, the behavior of the thick-restart Lanczos method is determined by the details 
of the spectrum distribution. The fact that the optimal thickness is significantly different 
for si4 and si6 test problem when m = 100 demonstrates this point clearly. Through the 
tests, we have demonstrated the importance of developing good restarting strategy and have 
showed how to implement the four different restarting schemes. Our tests shown that the 
thick-restart Lanczos using these restarting strategies is capable of efficiently computing a 
large number of eigenvalues and eigenvectors of a large matrix. 
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