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Machine learning-based unfolding has enabled unbinned and high-dimensional differential cross section
measurements. Two main approaches have emerged in this research area; one based on discriminative
models and one based on generative models. The main advantage of discriminative models is that they learn
a small correction to a starting simulation while generative models scale better to regions of phase space
with little data. We propose to use Schrödinger bridges and diffusion models to create SBUNFOLD, an
unfolding approach that combines the strengths of both discriminative and generative models. The key
feature of SBUNFOLD is that its generative model maps one set of events into another without having to go
through a known probability density as is the case for normalizing flows and standard diffusion models. We
show that SBUNFOLD achieves excellent performance compared to state of the art methods on a synthetic
Z þ jets dataset.

DOI: 10.1103/PhysRevD.109.076011

I. INTRODUCTION

Correcting detector effects in spectra—called deconvo-
lution or unfolding—is the central statistical task in
differential cross section measurements in particle,
nuclear, and astrophysics. Classical unfolding methods
are based on histograms, which result in binned measure-
ments in a small number of dimensions. These methods
are usually a variation of regularized matrix inversion,
where the (response) matrix describes migrations from
particle level to detector level. A number of reviews
covering binned unfolding methods can be found in
Refs. [1–7] are the most widely used approaches.
Machine learning has the potential to revolutionize

differential cross section measurements by enabling
unbinned and high-dimensional measurements. A number
of machine learning-based unfolding techniques have been
proposed [8–22] (see also Ref. [23] for an overview) and

the OMNIFOLD method [12,16] has recently been applied to
studies of hadronic final states with data from H1 [24–27],
LHCb [28], CMS [29], and STAR [30].
State-of-the-art machine learning-based unfolding meth-

ods fall into two categories; discriminative and generative.
Discriminative models learn corrections to a starting
simulation while generative models enable sampling from
the unfolded result. A key benefit of discriminative
models is that if the starting simulation is close to the
unfolded result, only a small correction must be approxi-
mated. In contrast, generative models need to map random
numbers, often drawn from a Gaussian distribution, into
the data. When the data are far from a standard normal
distribution, then generative models have to learn a big
correction. A key benefit of generative models is that their
performance does not degrade with limited data statistics.
In contrast, discriminative models suffer when there is
little data for learning density ratios. We propose a new
machine learning-based unfolding method that integrates
the best of both approaches. Our technique is called
SBUNFOLD and is based on generative models, using a
technique called a Schrödinger bridge, but only learns a
small correction to the starting simulation.
This paper is organized as follows. Section III introduces

Schrödinger bridges and Sec. IV describes how this can be
used for unfolding. Numerical results from the OMNIFOLD

public Z þ jets dataset are presented in Sec. V. The paper
ends with conclusions and outlook in Sec. VI.
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II. UNBINNED UNFOLDING

Let X represent1 an event at detector-level and Z
represent the same event at particle level. The goal of
unfolding is to infer the most likely density pdataðzÞ using
simulated pairs ðZ;XÞ and observations x from data. In
classical approaches, X and Z are discretized and unfolding
proceeds via regularized matrix inversion to approximate
the maximum likelihood solution. The likelihood is a
product of Poisson probability mass functions, although
most measurements do not directly maximize this like-
lihood. For example, one of the most common classical
unfolding algorithms is called Lucy-Richardson deconvo-
lution [31,32] (also known as iterative Bayesian unfolding
[33]) which uses an expectation-maximization (EM) algo-
rithm to converge to a maximum likelihood estimator.
In the unbinned case, the likelihood is not known. One

solution is to use the EM algorithm, which is at the core of
two maximum-likelihood machine learning approaches.
The first is OMNIFOLD, starting from events with an initial
set of event-level weights ω0ðxÞ and ν0ðxÞ proceeds as
follows2:

E step: ωiþ1ðxÞ ¼ pdataðxÞ=p̃simðxÞ
p̃simðxÞ≡ R

dz psimðx; zÞνiðzÞ;
M step: νiþ1ðzÞ ¼ p̄simðzÞ=psimðzÞ

p̄simðzÞ≡ R
dxpsimðx; zÞωiþ1ðxÞ.

Both the expectation (E) and maximization (M) steps are
achieved in practice by training classifiers and interpreting
the resulting score as the target likelihood ratio, e.g., take
samples from pdata and from p̃sim. (samples from psim
weighted by ν) and train a classifier to distinguish them for
the E step. The final result is the set of simulated events
weighted by ν with probability density psimðzÞνðzÞ in the
continuum limit. An alternative approach to CINNcalled
ICINN [18] is instead based on generative models:

E step: piðzjxÞ ∝ psimðxjzÞνiðzÞ;
M step: νiþ1ðzÞ ¼ p̌simðzÞ=psimðzÞ

p̌simðzÞ≡ R
dxpiðzjxÞpdataðxÞ.

The E step of the ICINN is achieved by training a generative
model (a normalizing flow [34]) to emulate psimðxjzÞνiðzÞ
while the M step uses a classifier as in OMNIFOLD. The
foundation for ICINN was laid in Ref. [14], which focused
on the E step, as have other papers using normalizing flows
[15], diffusion models [21], and generative adversarial
networks [9,13]. Comparing both the E and M steps of
OMNIFOLD and the ICINN, one can see that they are formally
the same and thus the EM proof in Ref. [12] applies to both

approaches. While formally both algorithms achieve the
same EM algorithm step by step, they have complementary
strengths in practice. One of OMNIFOLD strengths is that it
starts from an existing simulation and if that simulation is
close to nature, then the neural networks only have to learn
a small correction. In contrast,3 the normalizing flows in
ICINN have to map a known probability density (e.g., a
multidimensional Gaussian) to the data and these can be
quite different. However, the E step of OMNIFOLD trains
directly on data and thus its performance degrades when
there are not many events. In contrast, the E step of the
ICINN is trained using simulation and so can better handle
the case of fewer events.
We propose an approach called SBUNFOLD that incor-

porates strengths of both OMNIFOLD and the ICINN. We
employ a technique called a Schrödinger bridge (SB) using
a diffusion model to learn the generative model in the ICINN

workflow. In contrast to a normalizing flow or standard
diffusion model, a Schrödinger bridge learns to map one
dataset into another without needing to know the proba-
bility density of one of the datasets. Thus, the Schrödinger
bridge should ideally learn a small correction while also
preserving the E step learning with simulation and not data.
The latter property means that SBUNFOLD should outper-
form OMNIFOLD when there are few events in data. Since
OMNIFOLD and the ICINN differ only in the E step, we focus
exclusively on the E step of the first iteration for all
methods and will refer to ICINN as CINN for disambiguation.

III. SCHRÖDINGER BRIDGE AND THE
CONNECTION WITH DIFFUSION MODELS

Diffusion models have become popular choices for
generative modeling due to their large degree of flexibility,
stable training, and often competitive results compared to
other approaches. The core idea is to design a time-
dependent perturbation process that slowly perturbs data
towards a tractable noise distribution. The goal of the
generative model is to then reverse this process, starting
from a noise sample and denoising towards new data
observations. From a fixed choice of stochastic differential
equation (SDE),

dx ¼ fðx; tÞdtþ gðtÞdw; ð1Þ

described by parameters fðx; tÞ∈Rd and gðtÞ∈R, the
evolution over time of the data observation x∈Rd is
determined. The same initial data point can undergo
different paths due to the additional stochastic term

1Upper case letters denote random variables and lower case
letters correspond to realizations of those random variables. We
will use X=x and Z=z to refer to both real and synthetic data;
probability densities are labeled as ‘sim.’ or ‘data’ to distinguish
the two.

2This integral format is a continuum limit representation. In
practice, the integrals are replaced with sums over examples.

3This is true for normalizing flows and traditional diffusion
models. Generative Adversarial Networks (GANs) [35] do not
require a tractable noise distribution, but are less stable.
Reference [17] used a physical latent space for a varitional
autoencoder (VAE), but VAEs are not state of the art in generative
modeling.
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identified by the Wiener process, or Brownian motion,
wðtÞ∈Rd, often sampled from a normal distribution with
the same dimension as the data. The reverse process follows
the reverse SDE equation that reads,

dx ¼ ½fðx; tÞ − gðtÞ2∇ logpðx; tÞ�dtþ gðtÞdw̄: ð2Þ

The only unknown term in the Eq. (2) is the score function,
∇ logpðx; tÞ, which can be approximated using denoising
score matching [36] and minimizing the loss function,

LSGM ¼ 1

2
Ext;tkϵθðxt; tÞ − σt∇xt logqðxtjxÞk22; ð3Þ

where a neural network with trainable parameters θ is
optimized to approximate the score function of data that
have been perturbed by a Gaussian distribution with time-
dependent parameters αt and σt. For this Gaussian pertur-
bation, qðxtjxÞ ¼ N ðxt; αtx; σ2t IÞ, requiring fðx; tÞ to be
affine with respect x and resulting in a Gaussian noise at the
end of the diffusion process. For an arbitrary noise distri-
bution, the corresponding choice of fðx; tÞ cannot be easily
identified, often restricting the family of distributions one is
allowed to choose for the diffusion process. A more general
framework that allows the mapping between general dis-
tributions corresponds to the solution of the SB problem.
Initially proposed by Erwin Schrödinger [37], the problem
concerned the inference of the trajectories from particles
undergoing a diffusion process where experimental obser-
vations of the particle’s trajectory are available only at
specific time values, fixing the boundary conditions of the
problem. The connection with diffusion generative models
becomes more clear by considering the following forward
and backward SDEs,

dx ¼ ½fðx; tÞ þ gðtÞ2∇ logΨðx; tÞ�dtþ gðtÞdw; ð4aÞ

dx ¼ ½fðx; tÞ − gðtÞ2∇ log Ψ̂ðx; tÞ�dtþ gðtÞdw̄: ð4bÞ

The wave functions Ψ and Ψ̂ satisfy

∂Ψðx; tÞ
∂t

¼ −∇Ψðx; tÞ⊺fðx; tÞ − 1

2
gðtÞ2ΔΨðx; tÞ;

∂Ψ̂ðx; tÞ
∂t

¼ −∇ · ðΨ̂ðx; tÞfðx; tÞÞ þ 1

2
gðtÞ2ΔΨ̂ðx; tÞ;

withΨðx; 0ÞΨ̂ðx; 0Þ ¼ pAðxÞ andΨðx; 1ÞΨ̂ðx; 1Þ ¼ pBðxÞ
for densities pAðxÞ and pBðxÞ. Compared to Eq. (2), the
presence of an additional nonlinear term to the drift function,
gðtÞ2∇ log Ψ̂ðx; tÞ, enables the diffusion between densities
that are not necessarily represented by a standard normal
distributions at the end of the diffusion process. Additionally,
∇ log Ψ̂ðx; tÞ no longer represents the score function of the
perturbed data, but is related to it since

Ψðx; tÞΨ̂ðx; tÞ ¼ qðx; tÞ; ð5Þ

hence,

∇ logΨðx; tÞ þ∇ log Ψ̂ðx; tÞ ¼ ∇ log qðx; tÞ: ð6Þ

While the equations describing the general SB problem
have similarities with the standard framework for diffusion
generative models, a general strategy to solve the problem
is not immediately obvious. The authors of Ref. [38]
propose a tractable solution named I2SB, by considering
the presence of pairs of observations in the dataset such that
pðxa;xbÞ ¼ pAðxaÞpBðxbjxaÞ. This assumption also holds
for the unfolding methodology where pairs of particle
collisions before and after detector interactions are always
available in the simulation. With this approximation, the
authors of Ref. [38] have shown that by setting the linear
drift term fðx; tÞ ≔ 0, the posterior of Eq. (4), qðxjxa;xbÞ,
has the analytic form,

qðxjxa;xbÞ ¼ N ðxt; μtðxa;xbÞ;ΣtÞ; ð7Þ

μt ¼
σ̄2t

σ̄2t þ σ2t
xa þ

σ2t
σ̄2t þ σ2t

xb; Σt ¼
σ2t σ̄

2
t

σ̄2t þ σ2t
· I; ð8Þ

with σ2t ≔
R
t
0 g

2ðτÞdτ and σ̄2t ≔
R
1
t g

2ðτÞdτ. From this
expression, given pairs ðxa;xbÞ, we can directly determine
xt ¼ μt þ Σtϵ, ϵ ∼N ð0; 1Þd for any time step t. The loss
function is then identified similar to Eq. (3) as

LI2SB ¼ 1

2
Ext;t

����ϵθðxt; tÞ −
xt − x0

σt

����
2

2

; ð9Þ

where the right term of the loss function approximates the
score function of the backward drift ∇ log Ψ̂ðx; tÞ, which
can then be used during sampling to transport samples from
pB to pA.
During sampling, standard recursive samplers like

DDPM [39] can be used with the prediction of the denoised
data xθ

0 ¼ xnþ1 − σnþ1ϵθðxnþ1; nþ 1Þ at time step n < N
defined as

xn ∼ qðxnjxθ
0;xnþ1Þ; xN ∼ pB: ð10Þ

The stochastic solver is able to produce different
observations given the same exact inputs, which can then
be used for different coverage tests regarding the validity of
the generated outputs. A second option is to consider the
deterministic case where the posterior distributions are
effectively replaced by their means. This particular case is
described by the solution of the following ODE:

dxt ¼ vtðxtjx0Þdt ¼
βt
σ2t

ðxt − x0Þdt; ð11Þ
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which describes an optimal transport plan [40]. In our
studies, we observe similar sample quality between the
stochastic and deterministic settings and report the results
based on the deterministic case for simplicity.
We set fðx; tÞ ≔ 0 and gðtÞ ¼ ffiffiffiffiffiffiffiffi

βðtÞp
, with βðtÞ the

triangular function,

βðtÞ ¼
�
β0 þ 2ðβ1 − β0Þt; 0 ≤ t < 1

2
;

β1 − 2ðβ1 − β0Þðt − 1
2
Þ; 1

2
≤ t ≤ 1:

ð12Þ

with β0 ¼ 10−5 and β1 ¼ 10−4.

IV. EXPERIMENTAL SETUP

We test SBUNFOLD using the public dataset from
Ref. [12], available on Zenodo [41] and briefly summarized
in the following. Proton-proton collisions producing a Z
boson are generated at a center-of-mass energy offfiffiffi
s

p ¼ 14 TeV. A nontrivial test of unfolding requires at
least two datasets, one that acts as the ‘data’ and one that is
the ‘simulation’. For the ‘data’, collisions are simulated
with the default tune of Herwig 7.1.5 [42–44]. We only
make use of the reconstructed events from Herwig as would

be the case with real data. The Herwig particle-level events
are only used when evaluating the performance of different
methods. For the ‘simulation’, events are simulated with
Tune 26 [45] of PYTHIA 8.243 [46–48]. Detector distortions
are simulated with DELPHES 3.4.2 [49] and the CMS tune
that uses a particle flow reconstruction. In future work, we
will investigate the performance of SBUNFOLD on the full
phase space of particles (particle level) and particle flow
objects (detector level). For this study, we focus on a fixed
set of six observables that serve as the benchmark for fixed-
dimension unfolding. These observables are computed
from the substructure of the leading jet. The jets are
clustered using all particle flow objects at detector level
and all stable non-neutrino truth particles at particle level.
They are defined by the anti-kT algorithm [50] with radius
parameter R ¼ 0.4 as implemented in FasJet 3.3.2 [51,52].
The Z bosons are required to have pT > 200 GeV in order
to render acceptance effects negligible.4 Each dataset
consists of about 1.6 millon events.
The noise prediction model of SBUNFOLD is implemented

using a fully-connected architecture incorporating multiple

FIG. 1. Comparison between different unfolding algorithms for six different physics observables unfolded. All observables are
unfolded simultaneously without binning, with histograms shown only for evaluation. Results are evaluated over 600,000 pseudodata
points. Statistical uncertainties are shown only in the ratio panel. Pseudodata and simulation are described by PYTHIA.

4See Ref. [16] for how to include acceptance effects.
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skip connections. Specifically, the model employs four
RESNET [53] blocks, where each residual layer is connected
to the output of a single-layer network through a skip
connection. The activation function used is LEAKYRULE

[54] with a slope of α ¼ 0.01, and all layer sizes are set to
32. The implementation of the model is carried out using
PyTorch [55]. The generation is carried out by starding from
data observations at reconstruction level and using the SB
to move towards the generator level events using 1000 time
steps to improve accuracy. The CINN implementation uses
the normalizing flow model presented in Ref. [14] while the
first step of the first iteration of OMNIFOLD uses a fully-
connected model with three hidden layers, RELU activation
function, and node sizes set to 50, 150, 50, before the
output layer with a single node and SIGMOID activation
function. Both CINN and OMNIFOLD are implemented in
TENSORFLOW [56]. For all models, the number of trainable
parameters are kept similar at around 13 k. The initial
learning rate is set to 10−3 and all models are trained for 30
epochs with batch size of 128. A total of 1M training events
are used to train all models taken from the PYTHIA

simulations. The pseudodata used to evaluate the perfor-
mance of the unfolding is taken from HERWIG. Both
SBUNFOLD and CINN do not have access to the data during
training while OMNIFOLD uses a total of 2M training events
(1M from PYTHIA and 1M from HERWIG). We investigate
the impact of the pseudodata training size in Sec. V when
determining the unfolded results. All trainings are carried
out using the Perlmutter supercomputer with a single
NVIDIA A100 GPU.

V. RESULTS

We evaluate the performance of SBUNFOLD compared to
other unfolding methodologies by first looking at unfolded
distributions where both pseudodata and samples used to

FIG. 2. Pairwise correlation plot between all unfolded variables using the CINN (left) or SBUNFOLD (right) algorithms compared to the
expected distributions from PYTHIA events (truth).

TABLE I. Comparison of the earth mover’s distance (EMD)
and triangular discriminator between different algorithms. EMD
is calculated over unbinned distributions while triangular dis-
criminator uses histograms as inputs. Uncertainties from EMD
are derived using 100 bootstraps with replacement taken from the
unfolded data. Uncertainties from triangular discriminator are
taken from 100 histogram variations within the statistical un-
certainty of the prediction. Results are evaluated using
600,000 pseudodata points sampled from PYTHIA. Quantities
in bold represent the method with best performance.

EMD(×10)/Triangular discriminator(×103)

Model CINN SBUNFOLD

Jet mass 1.4� 0.2 0.70� 0.06
0.27� 0.05 0.28� 0.04

Jet width 0.013� 0.002 0.0029� 0.0005
0.22� 0.05 0.04� 0.01

N 2.3� 0.8 0.57� 0.04
0.08� 0.03 0.84� 0.22

log ρ 1.1� 0.3 0.27� 0.01
0.60� 0.18 0.61� 0.12

zg 0.095� 0.003 0.009� 0.001
7.5� 1.3 1.7� 0.3

τ21 0.2� 0.1 0.016� 0.001
0.60� 0.20 0.20� 0.06
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train the different unfolding methods originate from the
PYTHIA simulation. The results showing the unfolded dis-
tributions are shown in Fig. 1. In Appendix A, we also
provide the comparison of the results obtained by a standard
diffusion model. We investigate the same set of observables
used in previous studies in this dataset. The first four
observables are the jet mass m, constituent multiplicity M,

the N-subjettiness ratio τ21 ¼ τðβ¼1Þ
2 =τðβ¼1Þ

1 [57,58], and the

jet width w [implemented as τðβ¼1Þ
1 ]. The remaining two

observables are the jet mass ln ρ ¼ lnm2
SD=p

2
T and momen-

tum fraction zg after soft drop grooming [59,60] with zcut ¼
0.1 and β ¼ 0. Many of the observables are computed with
FASTJET CONTRIB 1.042 [61].
We observe a good agreement with the expected dis-

tributions from PYTHIA at generator level and the responses
of the generative models for unfolding. We omit the
OMNIFOLD results since the weighting function becomes
trivial when both data and simulation are statistically
identical. We also investigate the distribution of the pair-
wise correlation between each pair of unfolded features to
verify that SBUNFOLD is also capable of learning the correct
correlations between distributions. The results are shown
in Fig. 2.

TABLE II. Comparison of the earth mover’s distance (EMD)
and triangular discriminator between different algorithms. EMD
is calculated over unbinned distributions while triangular dis-
criminator uses histograms as inputs. Uncertainties from EMD
are derived using 100 bootstraps with replacement taken from the
unfolded data. Uncertainties from triangular discriminator are
taken from 100 histogram variations within the statistical un-
certainty of the prediction. Results are evaluated using
600,000 pseudodata points sampled from Herwig. Quantities
in bold represent the method with best performance.

EMD(×10) and Triangular discriminator(×103)

Model OMNIFOLD Step 1 CINN SBUNFOLD

Jet mass 6.1� 0.1 10.1� 1.2 9.0� 0.1
1.5� 0.5 2.4� 0.7 3.2� 0.9

Jet width 0.06� 0.001 0.05� 0.003 0.02� 0.001
1.2� 0.3 0.7� 0.2 0.17� 0.04

N 1.7� 0.1 6.1� 4.0 3.0� 0.1
0.12� 0.03 0.12� 0.03 0.9� 0.2

log ρ 1.35� 0.03 3.1� 2.1 0.4� 0.1
1.1� 0.4 0.9� 0.2 0.8� 0.2

zg 0.086� 0.001 0.3� 0.1 0.049� 0.001
1.2� 0.3 9.4� 2.0 2.2� 0.4

τ21 0.23� 0.02 0.7� 0.4 0.12� 0.02
4.6� 1.4 3.5� 1.1 1.4� 0.45

FIG. 3. Comparison between different unfolding algorithms for six different physics observables unfolded. All observables are unfolded
simultaneously without binning, with histograms shown only for evaluation. Results are evaluated over 600,000 pseudodata points.
Statistical uncertainties are shown only in the ratio panel. Pseudodata is taken from Herwig while PYTHIA is taken as the main simulator.
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We again observe a good agreement between the
generated distributions and expected distributions from
the simulation for both generative models, with
SBUNFOLD showing improved description compared to
the CINN for a few distributions such as zg vs log ρ and
zg vs τ21. The distribution of zg shows a sharp cutoff at
zg ¼ 0 which is hard to reproduce with generative models.
Since the same sharp distribution is observed at recon-
structed level events, SBUNFOLD can take advantage of the
reconstructed prior when starting the diffusion process,
contrary to the CINN that always requires samples from the
standard normal distribution for the prior transformation.We
also quantify the agreement between unfolded distributions
with expected values derived from PYTHIA by calculating
both the triangular discriminator metric [62–64] over histo-
grams5 as presented in Fig. 1, as well as using the Earth
mover’s distance (EMD) directly on the marginalized

one-dimensional features generated by the unfolding meth-
ods. The results are listed in Table I.
For all distributions we observe significantly lower EMD

values for SBUNFOLD compared to CINN with four out of six
also showing lower values of the triangular discriminator.
Uncertainties from the EMDcalculation are derived from the
standard deviation of 100 bootstraps with replacement taken
from the unfolded data. We observe the EMD uncertainties
fromCINN to be often higher than SBUNFOLD,which points to
improved stability from SBUNFOLD due the more informa-
tive prior.
Next, we keep the same unfolding methodology from

SBUNFOLD and ICINN trained over PYTHIA samples but
instead use reconstructed events from HERWIG as the data
representative. We compare the unfolded results between
the different distributions in Fig. 3.
We observe improved agreement in all unfolded distri-

butions compared to the distributions of reconstructed
events, while systematic shifts are observed in all unfolding
methodologies for the jet mass and τ21 distributions. These
features highlight the prior dependence of all models which
cannot be excluded without the presence of the M step and

FIG. 4. Comparison between different unfolding algorithms for six different physics observables unfolded. All observables are
unfolded simultaneously without binning, with histograms shown only for evaluation. Results are evaluated over 1,000 pseudodata
points, the same number was used to train OMNIFOLD while other algorithms only rely on simulation. Statistical uncertainties are shown
only in the ratio panel. Pseudodata is taken from Herwig while PYTHIA is taken as the main simulator.

5The triangular discriminator d is calculated for each bin i as
d ¼ 1

2

P
wi

ðxi−yiÞ2
xiþyi

, for histograms containing entries xi and yi
counts and bin width wi.
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additional iterations. In Table II we calculate the EMD and
triangular discriminator using the unfolded distributions
with HERWIG as pseudodata.
Once again we observe a good performance of

SBUNFOLD, achieving the lowest EMD values for four
out of six distributions and lowest triangular discriminator
values for three of the six. We also observe OMNIFOLD

achieving similar performance for all observables, in
particular OMNIFOLD shows improved performance for
the particle multiplicity, which is not a continuous distri-
bution and hence harder for generative models to determine
precisely. We also study how SBUNFOLD corrects physics
observables back to generator level events by calculating
the migration matrix between reconstructed and unfolded
observables. Results showing that SBUNFOLD learns to
apply small corrections to reconstructed events are shown
in Appendix B.

OMNIFOLD is also the only algorithm that uses the
statistical power of the data to determine the unfolded
distributions. We investigate how the unfolding results
change when the available number of data entries is
reduced to only 1,000 instead of the 600,000 thousands
we used previously. For both SBUNFOLD and CINN this
change only modifies the number of generated samples
from the trained model while OMNIFOLD only has access to
the 1,000 data examples during training while the number
of PYTHIA samples is not changed and kept at 1,000,000.
The unfolded results are shown in Fig. 4.

Due to the lower number of data entries we observe
larger statistical fluctuations from the unfolded results
which still shows a good agreement compared to the
expected quantities. We evaluate further the unfolded
results by calculating the EMD and triangular discrimina-
tor, listed in Table III.
The reported results for SBUNFOLD and CINN are less

affected by the reduced data sizes, even though the
uncertainties from EMD have greatly increased due to
limited pseudodata examples. On the other hand,
OMNIFOLD shows a worse degradation compared to pre-
vious results, with EMD values often disagreeing by more
than two standard deviations.

VI. CONCLUSION AND OUTLOOK

In this paper we presented SBUNFOLD, an unfolding
algorithm that uses a Schrödinger bridge (SB) to design a
stochastic mapping between distributions. Since the SB
allows the transport between arbitrary distributions,6

SBUNFOLD does not require a tractable prior similar to
other generative models, but instead uses a diffusion
process to directly denoise physics observables from
detector effects. We have demonstrated the performance
of SBUNFOLD using synthetic Z þ jets samples and com-
pared with both state-of-the-art methods using generative
models (CINN) and reweighting (OMNIFOLD). Using differ-
ent metrics, we observe an excellent performance of
SBUNFOLD. Compared to CINN, SBUNFOLD shows improved
fidelity for distributions with sharp features and smaller
uncertainties overall likely due to more informative priors
from reconstructed level events. Compared to OMNIFOLD,
SBUNFOLD shows a more robust performance against
variations of the number of available data observations,
showing promising results for cases where the amount of
available data is reduced.
We have only investigated the expectation step of

different unfolding algorithms, leaving the maximization
step for future study. We notice that the maximization step
based on classifiers used by ICINNis also applicable for
SBUNFOLD, and would be interesting to compare how the
unfolding results improve with subsequent iterations
between both algorithms to reduce the dependence on
the initial simulation parameters.
Finally, similar to OMNIFOLD, SBUNFOLD can be readily

adapted to different data structures such as imagelike
datasets. On the other hand, the diffusion process currently
relies on the specific ordering of the features used during

TABLE III. Comparison of the earth mover’s distance (EMD)
and triangular discriminator between different algorithms. EMD
is calculated over unbinned distributions while triangular dis-
criminator uses histograms as inputs. Uncertainties from EMD
are derived using 100 bootstraps with replacement taken from the
unfolded data. Uncertainties from triangular discriminator are
taken from 100 histogram variations within the statistical un-
certainty of the prediction. Results are evaluated using
1,000 pseudodata points sampled from Herwig. Quantities in
bold represent the method with best performance.

EMD(×10)/Triangular discriminator(×103)

Model OMNIFOLD Step 1 CINN SBUNFOLD

Jet mass 8.7� 1.8 9.2� 3.0 7.7� 2.5
4.0� 2.5 3.6� 1.8 1.9� 1.2

Jet width 0.14� 0.02 0.07� 0.02 0.05� 0.02
11� 4 3.2� 1.7 0.7� 0.9

N 12� 3 5.4� 1.3 5.8� 1.6
6.7� 3.2 2.0� 1.4 2.2� 1.6

log ρ 4.0� 0.8 1.6� 0.5 1.2� 0.3
9.2� 4.0 2.1� 1.4 2.5� 1.5

zg 0.08� 0.02 0.08� 0.03 0.06� 0.01
1.9� 1.4 5.7� 2.5 6.6� 2.8

τ21 0.4� 0.07 0.2� 0.05 0.1� 0.04
12� 4 5.4� 2.6 2.8� 1.7

6Our Schrödinger bridge is not a universal function approx-
imator; it will map the distributions to each other, but may not
preserve the conditional probability density [38]. Our numerical
results indicate that this is not an issue and we expect that
monotonic detector distortions should be in the class of functions
that SBs are able to accommodate, but we leave further inves-
tigations to future work. We thank Jesse Thaler for useful
discussions on this point.
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unfolding [see Eq. (8)], making the application of
SBUNFOLD with low-level features, such as particles, not
trivial. Following studies will investigate how to accom-
modate permutation invariance within SBUNFOLD.

The code for this paper can be found at https://github
.com/ViniciusMikuni/SBUnfold.

ACKNOWLEDGMENTS

We thankDanielWhiteson,TilmanPlehn, and JesseThaler
for thoughtful discussions and feedback on the manuscript.
V.M., S. D., and B. N. are supported by the U.S. Department
of Energy (DOE), Office of Science under Contract No. DE-
AC02-05CH11231. G. H. L. would like to thank Evangelos
Theodorou for helpful discussions. This research used
resources of the National Energy Research Scientific
Computing Center, a DOE Office of Science User Facility
supported by the Office of Science of the U.S. Department of
Energy under Contract No. DE-AC02-05CH11231 using
NERSC Award No. HEP-ERCAP0021099.

APPENDIX A: COMPARISON WITH STANDARD
DIFFUSION MODELS

We investigate the benefits of using SBUNFOLD as
opposed to a standard diffusion model. The diffusion
model implementation follows the FPCD model proposed
in [65] for jet kinematic generation. The backbone neural
network architecture used is the same as the one used in
SBUNFOLD. Similarly, the learning rate, number of training
epochs, and training samples are kept the same between
the two models. The main conceptual difference between
the implementations is that SBUNFOLD starts from the
reconstruction level events instead of a Gaussian prior
used in FPCD. Similarly to the CINNimplementation, the
FPCD model is only conditioned on reconstruction level
events to determine the unfolded response. Results of the
unfolded distributions using PYTHIA both as pseudodata
and simulation are shown in Fig. 5.
For all distributionsweobserve a good agreement between

the unfolded results and the pseudodata. In Table IV we
calculate the EMD and triangular discriminator using

FIG. 5. Comparison between different unfolding algorithms for six different physics observables unfolded. Results are evaluated over
600,000 pseudodata points. Statistical uncertainties are shown only in the ratio panel. Pseudodata and simulation are described by
PYTHIA.
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the unfolded distributions obtained by the different
methodologies.
From the results we observe that FPCD often outperforms

the CINN in the EMD metric while still not achieving the
same level of performance as SBUNFOLD. These results
indicate that standard diffusion models may be more
expressive compared to the normalizing flow model imple-
mented in the original CINN, but still not as precise as
SBUNFOLD which leverages the more informative prior
distribution from reconstruction level objects rather than
the Gaussian prior required by both CINN and FPCD.

APPENDIX B: MIGRATION MATRIX OF
UNFOLDED EVENTS

In this appendix we investigate how SBUNFOLD maps
reconstructed level distributions back to generator level
samples by calculating the corresponding migration matrix
using Herwig as the pseudodata while the detector response
is derived from the PYTHIA simulation. The distributions are
shown in Fig. 6.
The migration matrix for all observables has a high

fraction of events present close to the diagonal, consistent
with SBUNFOLD learning to apply only a small correction to
the inputs.

TABLE IV. Comparison of the earth mover’s distance (EMD)
and triangular discriminator between different unfolding method-
ologies. EMD is calculated over unbinned distributions while
triangular discriminator uses histograms as inputs. Uncertainties
from EMD are derived using 100 bootstraps with replacement
taken from the unfolded data. Uncertainties from triangular
discriminator are taken from 100 histogram variations within
the statistical uncertainty of the prediction. Results are evaluated
using 600,000 pseudodata points sampled from PYTHIA. Quan-
tities in bold represent the method with best performance.

EMD(×10) and Triangular discriminator(×103)

Model FPCD CINN SBUNFOLD

Jet mass 0.74� 0.08 1.4� 0.2 0.70� 0.06
0.19� 0.04 0.27� 0.05 0.28� 0.04

Jet width 0.0087� 0.0006 0.013� 0.002 0.0029� 0.0005
0.88� 0.08 0.22� 0.05 0.04� 0.01

N 0.81� 0.06 2.3� 0.8 0.57� 0.04
0.14� 0.04 0.08� 0.03 0.84� 0.22

log ρ 0.34� 0.01 1.1� 0.3 0.27� 0.01
0.77� 0.16 0.60� 0.18 0.61� 0.12

zg 0.035� 0.007 0.095� 0.003 0.009� 0.001
12.4� 2.4 7.5� 1.3 1.7� 0.3

τ21 0.024� 0.002 0.2� 0.1 0.016� 0.001
0.32� 0.09 0.60� 0.20 0.20� 0.06

FIG. 6. Migration distribution between reconstructed level events and generator level distribution after unfolding with SBUNFOLD.
Results are evaluated over 600,000 pseudodata points. Pseudodata is taken from Herwig while PYTHIA is taken as the main simulator.
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