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Simple Summary: Hypoxia, or low oxygen levels within tumor tissue, presents a significant challenge
for the management of hepatocellular carcinoma (HCC). Hypoxic microenvironments can induce
changes in gene expression and cellular metabolism that promote tumor growth, metastasis, and
resistance to chemotherapy and radiation therapy, making the cancer cells more aggressive and
difficult to treat. Targeting hypoxia in HCC has emerged as a promising strategy for improving
treatment outcomes. The aim of this review is to summarize the current knowledge on the role and
biochemical pathways of hypoxia in the progression of HCC. This review also discusses the potential
therapeutic options for targeting hypoxia for the management of HCC.

Abstract: Hypoxia-inducible factor 1 alpha (HIF-1α) is a transcription factor that regulates the cellular
response to hypoxia and is upregulated in all types of solid tumor, leading to tumor angiogenesis,
growth, and resistance to therapy. Hepatocellular carcinoma (HCC) is a highly vascular tumor, as well
as a hypoxic tumor, due to the liver being a relatively hypoxic environment compared to other organs.
Trans-arterial chemoembolization (TACE) and trans-arterial embolization (TAE) are locoregional
therapies that are part of the treatment guidelines for HCC but can also exacerbate hypoxia in tumors,
as seen with HIF-1α upregulation post-hepatic embolization. Hypoxia-activated prodrugs (HAPs) are
a novel class of anticancer agent that are selectively activated under hypoxic conditions, potentially
allowing for the targeted treatment of hypoxic HCC. Early studies targeting hypoxia show promising
results; however, further research is needed to understand the effects of HAPs in combination with
embolization in the treatment of HCC. This review aims to summarize current knowledge on the role
of hypoxia and HIF-1α in HCC, as well as the potential of HAPs and liver-directed embolization.

Keywords: hypoxia; hypoxia-activated prodrugs; hepatocellular carcinoma; HIF-1α; tirapazamine;
trans-arterial embolization

1. Introduction

Hepatocellular carcinoma (HCC) is the most common primary malignancy of the liver
and is the sixth most common malignancy globally [1]. The incidence of HCC is rapidly
increasing, and it is currently the third most common cause of cancer-related mortality [1,2].
Several treatment options have been established for HCC, and they are categorized as
either curative-intent or palliation. Curative options include surgical resection, ablative
therapy, potentially radiation segmentectomy, and liver transplantation. At the time of
diagnosis, less than 30% of patients are eligible for curative therapy. Palliative options
include trans-arterial embolization (TAE), radioembolization, targeted therapies as mono-
therapies or in combination with immunotherapies, and radiation. Cytotoxic chemotherapy
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has a limited role in the treatment of HCC due to the underlying hepatic dysfunction
and chemoresistance properties of HCC [3–7]. Despite advancements in diagnostic and
therapeutic modalities, the prognosis for HCC patients remains poor, necessitating the
identification of novel molecular targets for effective intervention [8].

Tumor hypoxia, or the inadequate oxygenation of solid tumors, is a common condition
that occurs in all types of solid tumor, including HCC [9]. Recent studies have shown that
hypoxia has been linked to poor prognosis and is a major contributor to the development
and progression of HCC [10–19]. Hypoxia can have various causes, including decreased
oxygen delivery to tissues, increased oxygen consumption by tissues, or a combination of
both. Hypoxia leads to the activation of hypoxia-inducible factors (HIFs), which play a
critical role in promoting tumor growth and angiogenesis [11,12,16,19]. HIF-1α, a subunit of
HIF-1 and an integral transcription factor that modulates cellular responses to hypoxia, has
emerged as a critical player in HCC progression [20]. Elevated HIF expression and serum
HIF-1α levels have been associated with poor clinical outcomes, as well as reduced overall
survival [20]. HIFs also contribute to drug resistance and the ability of cancer cells to invade
and metastasize [13,14,16,17]. In addition, acute hypoxic cells are considered resistant to
chemotherapy and radiation therapy, rendering these therapies ineffective at destroying
cancerous cells [17,21,22]. This can contribute to the development and progression of HCC,
making it a significant treatment challenge.

To combat the effects of hypoxia in HCC, various strategies for targeting hypoxia
are being explored. These strategies include hypoxia-activated cytotoxic agents, HIF
inhibitors, angiogenesis inhibitors, and hyperbaric oxygen therapy [23–26]. TAE has
emerged as a crucial treatment modality for unresectable HCC; however, TAE-induced
hypoxia may paradoxically promote HCC progression by upregulating HIFs. By leveraging
this artificial amplification of hypoxia, the combination of TAE with hypoxia-activated
prodrugs is currently being explored in early clinical trials [27,28]. In this review, we will
describe the relationship between hypoxia and hepatocellular carcinoma, with a focus on
the mechanisms by which hypoxia contributes to tumor progression and the potential
therapeutic strategies that exploit tumor hypoxia using hypoxia-activated cytotoxic agents.

2. The Role of Hypoxia in Tumor Progression

Understanding the relationship between tumoral microenvironments and hypoxia is
crucial to understanding the latter’s therapeutic implications in HCC. Tumoral microen-
vironments consist of physical and biochemical factors that interact with cancer cells and
influence their behavior. These factors include the extracellular matrix, cytokines, growth
factors, and oxygen tension [19,29–32]. The microenvironment within a tumor can vary
greatly, with areas of high oxygen tension and low oxygen tension (hypoxia) existing
simultaneously within the same tumor [29,30].

Due to its blood supply, the liver is one of the organs that is most vulnerable to
hypoxia, as oxygenated blood from the hepatic artery provides 25% of the blood supply, and
deoxygenated blood from the portal vein supplies the remaining 75%. The levels of influent
and effluent oxygen tension in the hepatic sinusoids are 60–65 mmHg and 30–35 mmHg,
respectively [29,30]. This contrasts with other tissue capillaries with oxygen tensions of
74–104 mmHg and 34–46 mmHg [29]. Additionally, there is an oxygen demand mismatch
due to the relatively slow blood flow through the hepatic sinusoids and the relatively high
metabolic rate of hepatocytes. This is exacerbated in cirrhotic patients, in whom hypoxemia
ranges from 10–40%, depending on the degree of hepatic dysfunction [30]. As such, solid
tumors such as HCC are exposed to three types of hypoxia: chronic diffusion hypoxia from
oxygen demand mismatch, acute/intermittent perfusion hypoxia from abnormal vascular
flow dynamics due to disorganized angiogenesis, and anemic hypoxia from hypoxemia
in the setting of hepatic dysfunction [19]. This oxygen tension is pronounced with larger
tumor size, with chronic diffusion hypoxia occurring when tumor cells are beyond 70 µm
from the blood supply and cellular necrosis occurring when the distance expands beyond
180 µm [17–19,32].
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Hypoxia plays a significant role in the development and progression of tumors. Tu-
mors are characterized by rapid cell proliferation, which leads to an increased demand
for oxygen. To meet this demand, tumoral angiogenesis ensues, with new blood vessels
supplying the tumor. However, due to the disorganization of new blood vessel develop-
ment, there are areas of the tumor that are not well-perfused with oxygen. These areas
of hypoxia lead to a series of molecular adaptations that allow cancer cells to survive in
low-oxygen environments. This results in the further growth and spread of tumors through
the activation of HIFs, the promotion of genetic mutations in cancer cells, and the inhibition
of cellular apoptosis, as well as resistance to chemotherapy and radiation therapy in acute
hypoxic cells.

3. Molecular Pathways of Hypoxia

The molecular response to hypoxia is mediated by HIFs, which are activated in re-
sponse to low oxygen levels [19,30–32]. HIFs are composed of two subunits: HIF-1α
and HIF-1β. Under normoxic conditions, HIF-1α is hydroxylated by prolyl hydroxy-
lase enzymes (PHDs) and marked for degradation by the ubiquitin–proteasome path-
way [19,30–32]. However, under hypoxic conditions, the activity of PHDs is downregu-
lated, allowing HIF-1α to accumulate within the cell nucleus and form a complex with
HIF-1β [19,30–32]. This HIF complex binds to hypoxia-responsive elements (HREs) in the
promoter regions of target genes, such as vascular endothelial growth factor (VEGF), tumor
protein p53 (p53), and B-cell lymphoma 2 (Bcl-2), leading to transcriptional activation
(Figure 1) [19,25,30,33,34].

Figure 1. Schematic representation of hypoxia-inducible factor (HIF) signaling under differing oxygen
tensions. Under normoxic conditions, HIF-1α is hydroxylated by prolyl hydroxylases (PHD1-3) and
factor-inhibiting HIF (FIH). The hydroxylated HIF-1α is ubiquitinated by von Hippel–Lindau (pVHL)
E3 ubiquitin ligase, resulting in proteasomal degradation. Under hypoxic conditions, PHD and FIH
activity is inhibited. The stabilized HIF-1α is translocated into the nucleus, where it dimerizes with
HIF-1β. This HIF complex interacts with co-activators Cbp/p300 and binds to hypoxia response
elements (HREs), resulting in activation of the transcription of the HIF target genes involved in
metastasis, cell survival, metabolism, and immune response. A self-regulating negative feedback
loop eventually hydroxylates and ubiquitinates HIF-1α, with resultant degradation [34].

HIFs play a role in the regulation of several genes that are important for cellular
adaptation to hypoxia. HIFs promote the metabolic reprogramming of HCC from oxidative
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phosphorylation to anaerobic glycolysis through the activation of glucose transporters
1 and 3 (GLUT-1 and GLUT-3) (the Warburg effect), facilitating survival under hypoxic
conditions [19,25]. Cellular proliferation, however, is slowed or halted in acute hypoxic
conditions and grants cancer cell resistance to chemotherapy and radiotherapy, which
target rapidly proliferating cells [19,25]. A preclinical study of HCC rat models reported a
decrease in tumor cell proliferation in acute hypoxia [35]. However, as tumors outgrow
their blood supply over time, chronic hypoxia develops, with paradoxical adaptive cellular
responses through the stabilization of HIFs and the resumption of transcriptional activation
of genes involved in angiogenesis, cellular proliferation, and cell survival [20,36,37]. The
upregulation of HIF-1α and VEGF in the setting of chronic hypoxia was observed in a
preclinical study of HCC rat models, resulting in tumor growth [38,39]. Additionally,
upregulating the expression of anti-apoptotic genes, such as B-cell lymphoma 2 (Bcl-2),
desensitizes HCC cells to apoptosis [19,25].

4. Significance of Serum HIF-1α Levels in the Biology of HCC

Serum HIF-1α is upregulated in HCC, with elevated levels associated with a poor
prognosis [11–16]. High tissue HIF-1α levels are associated with increased microvessel
density through the upregulation of VEGF and other angiogenic factors [25,33,40]. Several
studies have shown that high HIF-1α levels are associated with larger tumor size, higher
tumor grade, decreased overall survival, and resistance to chemotherapy and radiation
therapy [11–16]. The overexpression of HIF-1α has also been observed to induce the
epithelial-to-mesenchymal transition (EMT), enabling tumor cells to acquire a mesenchymal
phenotype, which facilities invasion, migration, and dissemination from the primary
tumor site [13,14,16,19,41]. Preclinical studies have reported the suppression of EMT
and decreased metastatic potential of HCC cells through the inhibition of HIF-1α [11–16].
Targeting HIF-1α is a potential therapeutic strategy for HCC.

5. Intra-Vascular Liver-Directed Therapies for the Treatment of HCC

Trans-arterial liver-directed therapies (LDTs) are widely used therapeutic options for
HCC [42]. LDTs include bland trans-arterial embolization (TAE), conventional trans-arterial
chemoembolization (cTACE), drug-eluting embolic TACE (DEB-TACE), and trans-arterial
radioembolization (TARE). TAE involves the infusion of embolic materials into tumor-
feeding arteries to occlude the blood supply to the tumor, causing tumor necrosis and
a reduction in tumor size. cTACE involves the infusion of lyophilized forms of one or
more chemotherapeutic agents (e.g., doxorubicin, cisplatin, or mitomycin) mixed with
Lipiodol into tumor-feeding arteries, followed by occlusion of the tumoral vasculature with
embolic material such as beads, Gelfoam, or another embolic material. DEB-TACE involves
the administration of chemotherapy-loaded beads, typically doxorubicin or idarubicin
for HCC, into tumor-feeding arteries, resulting in occlusion of the feeding vasculature
with gradual release of the drug over time. In TARE, microspheres impregnated with the
radioisotope yttrium-90 (90Y) are selectively delivered to the tumor-feeding vasculature,
where they emit beta rays to induce DNA damage and tumor cell death.

Most chemotherapeutic agents, such as doxorubicin, rely on the presence of oxygen
to generate reactive oxygen species (ROS) and induce DNA damage, which is impeded
in hypoxic environments. As such, studies have demonstrated no significant difference
in overall survival among the TAE, cTACE with doxorubicin, or DEB-TACE embolization
techniques [43–46]. Additionally, larger tumor size was associated with a lower rate of
complete response, from 66% for HCC smaller than 4 cm to 25% in HCC greater than
5 cm [47]. Although still unclear, the success of TAE is proposed to be limited by the
presence of hypoxia within the tumoral microenvironment, which can cause resistance
to the treatment [48–50]. Hypoxia protects cancer stem cells from necrosis. Hypoxia-
induced angiogenesis results in the disorganized formation of new blood vessels that can
resupply the tumor with oxygen and nutrients, allowing cancerous cells to survive despite
embolization [26,40,51]. The addition of embolotherapy exacerbates an existing hypoxic
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microenvironment by decreasing oxygen delivery to the tumor and further activation of
the hypoxia signaling pathway (Figure 2) [52].

Figure 2. Schematic representation of effects of trans-arterial embolization on HCC with necrosis, with
selection of hypoxia-resistant tumor cells and cancer stem cells leading to embolization refractoriness
and failure.

Increases in HIF-1α levels were observed after TAE compared to before TAE in rabbit
VX2 models [15]. In vitro studies of tissues from patients with HCC led to the upregulated
expression of HIF-1α and COX-2 after cTACE, which was associated with worse overall
survival compared to patients without elevated HIF-1α and COX-2 levels [16]. Clinical
studies have also observed increased serum HIF-1α and VEGF levels after cTACE, with
levels peaking at 1–7 days before gradually decreasing post-cTACE [11,12,40,51,53]. Signifi-
cantly lower serum HIF-1α and VEGF levels were also observed in patients who achieved
a complete response compared to those who exhibited a partial response, stable disease, or
progressive disease [11]. Notably, however, serum HIF-1α and VEGF levels do not return
to baseline levels after cTACE [12]. The upregulation of HIF-1α can result in the persistent
recurrence of the tumor post-embolization. To combat this, a combination of arterial oc-
clusion with hypoxia-activated prodrugs (HAPs) has been proposed, with the rationale
of inducing a hypoxic environment to enhance the cytotoxic effects of hypoxia-activated
agents [27,28,54–56].

6. Therapeutic Strategies That Target Tumor Hypoxia

One approach to overcoming the effects of hypoxia in cancer treatment is the use of
prodrugs, which are inactive compounds that are converted into active drugs via enzy-
matic or metabolic processes within the body. Unlike traditional chemotherapy, HAPs
are advantageously designed to be activated specifically in hypoxic regions of the tumor,
where they may be more effective at treating cancer cells while minimizing damage to
healthy tissue. Additionally, HAPs may be able to bypass drug resistance mechanisms that
are commonly associated with traditional chemotherapy [25,33]. Several classes of HAPs
include nitroaryl-based prodrugs, quinones, aliphatic N-oxides, and aromatic bioreduc-
tive prodrugs [25,33]. The bioreductive prodrugs that have reached clinical trials for the
treatment of HCC are further elaborated upon in this review (Table 1).
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Table 1. Summary of selected preclinical and clinical trials using HAPs for the treatment of HCC.

Study Phase of
Trial

Cancer of
Interest Intervention PFS mOS ORR

Lin 2016 [54] P HCC in HBx
transgenic mice

HAL alone
DXR/HAL
TPZ/HAL

- - -

>99% necrosis in TPZ/HAL
~5% necrosis in DXR/HAL

No detectable necrosis in
HAL alone

Duran 2017 [55] P
VX2

tumor-bearing
rabbits

TH-302 alone
cTACE alone

TH-302/cTACE
- - -

Higher necrotic fraction,
tumor shrinkage, and lower

tumor growth rate in
TH-302/cTACE on day 14

compared to TH-302 or
cTACE alone (p < 0.05)

Abi-Jaoudeh
2021 [27]
(n = 27)

I HCC TPZ/TAE 80.5% at
6 months 52 months 84.0%

Tran 2021 [57]
(n = 18) Ib HCC (n = 12),

RCC (n = 6)
TH-

302/sorafenib
6.3 months

(HCC)
13.9 months

(HCC) 55.6%

Liu 2022 [28]
(n = 17) I HCC TPZ/TAE 72.6% at

6 months 29.3 months 64.7%

PFS—progression-free survival; mOS—median overall survival; ORR—overall response rate; P—preclinical;
I—phase 1; Ib—phase 1b; HCC—hepatocellular carcinoma; HBx—hepatitis B virus; HAL—hepatic artery ligation;
DXR—doxorubicin; TPZ—tirapazamine; cTACE—conventional trans-arterial embolization; TAE—trans-arterial
embolization.

6.1. Aromatic Prodrugs

Tirapazamine (TPZ) is an aromatic prodrug that has been shown to have anti-tumoral
activity for the treatment of HCC in preclinical and clinical studies [25,27,28,33,54]. TPZ
is converted to an active form by the enzyme cytochrome P450 2B1 (CYP2B1), which is
overexpressed in the hypoxic regions of tumors [25,33]. This active form of TPZ generates
reactive oxygen species that lead to DNA damage and impaired DNA repair, leading to
the death of cancer cells as well as cancer stem cells (Figure 3) [25,33]. In phase I and II
clinical trials of TPZ for the treatment of cervical, head and neck, and non-small-cell lung
cancer, treatment was well tolerated without significant toxicity and showed promising
responses and overall survival rates [33]. However, in several phase III trials, the addition
of TPZ to chemoradiation therapy regimens failed to show any response benefit [33,58–60].
This may be, in part, due to the administration of TPZ in the absence of sustained hypoxia.
The combination of TAE with tirapazamine has been investigated as a potential strategy
to overcome the resistance of HCC to TAE due to hypoxia. Intravenously administered
TPZ with subsequent hepatic artery ligation (HAL) demonstrated near-complete tumor
necrosis (>99%) of HCC in hepatitis B virus X protein transgenic mouse models, with the
sparing of normal hepatocytes [54]. This was more effective than HAL alone or HAL with
doxorubicin, which showed 0% and approximately 5% tumor necrosis, respectively [54]. In
TPZ-treated mice with multiple HCC lesions, it was also observed that lesions supplied by
the ligated hepatic artery underwent extensive necrosis, whereas those not supplied by the
ligated hepatic artery remained intact [54]. These results confirm the effectiveness of TPZ
in hypoxic microenvironments, as well as its superiority to doxorubicin.

Early clinical studies have tested the efficacy of HAPs in patients with HCC in combi-
nation with TAE. In a first-in-human phase I trial by Abi-Jaoudeh et al., the combination of
TPZ with TAE in treatment-naïve patients with unresectable HCC achieved a 60% complete
response rate and an 84% overall complete and partial response rate (per the modified
Response Evaluation Criteria in Solid Tumors (mRECIST) guidelines), despite a mean
tumor size of 6.53 cm ± 2.60 cm with a median of two lesions per patient (Figure 4) [27].
This contrasts with a 52% overall response rate from cTACE in a systematic review of
10,108 patients [48]. Additionally, no significant differences in response were observed
between HCC lesions smaller and greater than 5 cm, suggesting durable effectiveness of
the treatment in larger tumors [27]. Another phase I trial by Liu et al. demonstrated a 47%
complete response rate and 65% overall response rate (per the mRECIST guidelines) in an
Asian population with patients who had failed TACE [28]. There were no dose-limiting
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toxicities and no serious drug-related adverse events in either study [27,28]. In both trials,
tumor oxygenation status before and after intervention was not evaluated, which may be
an added consideration in future trials. The selection of patient populations that would
benefit from TPZ with TAE, possibly those exhibiting high expressions of HIFs or severe
tumor hypoxia, would also need to be carried out. Phase II trials investigating the effi-
cacy of TPZ with TAE combined with nivolumab in advanced-stage HCC (NCT03259867),
and comparing TPZ with TAE versus cTACE in intermediate-stage HCC, are currently
ongoing (NCT03145558).

Figure 3. Mechanism of action of tirapazamine.

Figure 4. A 78-year-old female with biopsy-proven HCC and AFP 6307. (A) Initial arterial-phase
axial MRI image demonstrates a large enhancing lesion measuring 68 mm in hepatic segment V.
(B) Portal venous-phase axial MRI image shows the corresponding lesion with venous washout.
(C) Intraprocedural cone-beam CT with navigation guidance software showing the segmented
lesion (blue). (D) Arterial-phase axial MRI image obtained 2 months after embolization with TPZ
demonstrates significant decrease in size of the nonviable segment V lesion with no enhancement,
compatible with complete treatment response. (E,F) Arterial-phase and subtraction axial MRI images
at 2.5 years shows continued decrease in size of the nonviable lesion with no enhancement, confirming
durable complete response with AFP 4.1.
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6.2. Nitro-Based Prodrugs

TH-302, or evofosfamide, is a nitro-based HAP that is activated by HIF-1α and induces
DNA damage and apoptosis in cancer cells through the generation of ROS [24,25,61].
Preclinical studies have observed significant tumor cell death, the inhibition of tumor
growth, and the increased survival of xenograft HCC mouse models with the administration
of TH-302 [62,63]. The efficacy of TH-302 was also noted to be enhanced in hypobaric
conditions and attenuated in hyperbaric conditions [63]. In another preclinical study
using rabbit VX2 models, administration of the prodrug TH-302 in addition to cTACE
demonstrated significantly smaller tumor volumes, lower growth rates, and higher necrotic
fractions when compared to cTACE [55]. In a phase I clinical trial of 18 patients with
HCC or renal cell carcinoma (RCC) treated with TH-302 combined with sorafenib, 55.6%
achieved complete, partial, or stable disease per the RECIST 1.1 criteria [57].

PR-104, a 3,5-dinitrobenzamide-2-mustard, is also a nitro-based HAP that is activated
under hypoxic conditions. Once activated, it can exert cytotoxic effects by acting as a
DNA interstrand cross-linking agent and covalently bonding two strands of DNA, thereby
preventing replication and transcription in rapidly dividing cells [25,33]. The utility of
PR-104 in combination with sorafenib for the treatment of HCC was explored in a phase I
trial; however, the study was discontinued due to dose-limiting toxicities related to throm-
bocytopenia and neutropenia, with no or only a partial response to therapy [64]. This was
attributed to poor clearance of the activated PR-104A form due to impaired glucuronida-
tion in patients with advanced HCC [64,65]. A preclinical study later demonstrated a
significant reduction in tumor growth after the administration of PR-104 in HCC xenograft
mouse models exhibiting normal glucuronidation [65]. Further investigations need to be
conducted to determine the appropriate patient population for therapy with PR-104.

6.3. Aliphatic Prodrugs

AQ4N [1,4-bis{[2-(dimethylamino-N-oxide)ethyl]amino}-5,8-dihydroxyanthracene-
9,10-dione] is an aliphatic N-oxide prodrug that is converted to an active AQ4 form under
hypoxic conditions. Once active, AQ4 strongly binds to DNA with a 1000-fold cytotoxic
effect compared to its inactive form through the inhibition of topoisomerase II [25,33].
Preclinical trials have shown slowed tumor growth using AQ4N in solid tumor-bearing
murine models, especially when combined with radiation therapy [6,66]. However, there
are no clinical trials investigating the efficacy of AQ4N in HCC to date.

6.4. Quinone Prodrugs

Mitomycin C (MMC) is a quinone-based prodrug that has been widely established in
cancer treatments due to its DNA cross-linking properties and its prevention of replication
and transcription. One retrospective study investigating MMC in combination with cTACE
observed an overall response rate of 76%, with a 39.3% overall survival rate at 5 years [67].

While the MMC derivatives porfiromycin (POR) and apaziquone (EO9) have been
developed to exhibit greater hypoxia selectivity, these prodrugs did not show superiority
over MMC or lacked efficacy in the treatment of solid tumors in clinical trials [25,68,69].
Preclinical studies performed after these clinical trials attribute EO9’s lack of efficacy in
treatment response to poor pharmacokinetics when systemically administered, whereas
the direct intra-tumoral administration of EO9 improved anti-tumor activity, suggesting
EO9’s possible application in locoregional therapy [25,69,70]. The efficacies of POR and
EO9 in the treatment of HCC have yet to be investigated.

6.5. Other Strategies Targeting Tumor Hypoxia

Other developing therapeutic strategies for targeting tumor hypoxia include natural
agents and metformin.

Various natural agents, such as curcumin, resveratrol, sanguinarine, and ginsenosides,
have been shown to inhibit HIF-1α and VEGF expression, thereby suppressing tumor
angiogenesis in hypoxic tumors [71–75]. While these natural agents have shown effective-
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ness in targeting hypoxia in preclinical models, the clinical translation of natural agents
for targeting tumor hypoxia remains limited due to poor bioavailability profiles of these
agents [76]. To overcome these barriers, various strategies have been employed, including
the use of nanoparticles, liposomes, and prodrug formulations; however, well-designed
clinical trials are needed to establish the safety, efficacy, and optimal dosing regimens of
these natural agents [77,78].

Metformin, an antidiabetic drug, has gained attention as a potential adjunct therapy
due to its pleiotropic effects on cancer cells, including the modulation of hypoxia [79]. Met-
formin’s anticancer properties have been attributed to both direct and indirect mechanisms.
Its direct mechanisms include the suppression of HIF-1α and HIF-2α by promoting their
proteasomal degradation [80]. Indirectly, metformin suppresses HIF-1α translation, and
also reduces intracellular oxygen demand, leading to decreased HIF-1α protein levels and
decreased stabilization of HIFs under hypoxic conditions [81,82]. Combining metformin
with cTACE has shown promise in clinical studies, with improved overall survival and
time to progression in metformin users compared to non-users [83,84]. While metformin is
a promising adjunct therapy for HCC patients undergoing cTACE, randomized controlled
trials are required to elucidate the optimal dosage and timing of metformin in combination
with cTACE.

Anti-angiogenic therapy, immunotherapies, and targeted therapies are additional
strategies for targeting tumor hypoxia. Anti-angiogenic therapies target the tumor vascula-
ture and reduce intratumoral hypoxia. Immunotherapies accentuate the body’s immune
response to target cancerous cells and have been shown to be effective in some types of
cancer. Therapies targeting specific genetic mutations found in tumors have also been
shown to be effective [52,85].

7. Conclusions

Targeting tumor hypoxia with HAPs, such as TPZ and TH-302, has shown early
promise for the treatment of HCC. Tumor hypoxia can be further exploited with the
addition of TAE to enhance the efficacy of treatment with HAPs. Future directions for
these approaches include further exploring the safety and efficacy of these treatments.
Identification of the patient population that would benefit the most from this approach
would also need to be determined. Phase II trials investigating HAPs with TAE are currently
underway. Combination therapies with HAPs and other HCC treatments, such as immune
checkpoint inhibitors or targeted therapies, may also be explored to enhance the efficacy of
treatment. Overall, the development of these novel therapies has the potential to greatly
improve outcomes for patients with HCC, and continued research and innovation in this
field will be crucial to advancing the field of cancer treatment.
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