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Abstract 

Background: Gene expression may be regulated by the DNA methylation of regula-
tory elements in cis, distal, and trans regions. One method to evaluate the relation-
ship between DNA methylation and gene expression is the mapping of expression 
quantitative trait methylation (eQTM) loci (also called expression associated CpG loci, 
eCpG). However, no open-source tools are available to provide eQTM mapping. In addi-
tion, eQTM mapping can involve a large number of comparisons which may prevent 
the analyses due to limitations of computational resources. Here, we describe Torch-
eCpG, an open-source tool to perform eQTM mapping that includes an optimized 
implementation that can use the graphical processing unit (GPU) to reduce runtime.

Results: We demonstrate the analyses using the tool are reproducible, 
up to 18 × faster using the GPU, and scale linearly with increasing methylation loci.

Conclusions: Torch-eCpG is a fast, reliable, and scalable tool to perform eQTM map-
ping. Source code for Torch-eCpG is available at https:// github. com/ kordk/ torch- ecpg.

Keywords: DNA methylation, Gene expression, Transcriptional regulation, Expression 
quantitative trait methylation, eQTM, eCpG, GPU, Tensor

Background
Gene expression is regulated, in part, by epigenetic mechanisms. A major unanswered 
question in genomics research is the functional contribution of epigenetic variation on 
gene expression [1, 2]. One method to evaluate for the potential functional effect of a 
methylation variation is to test for an association between levels of methylation and gene 
expression from the same samples. These expression-associated quantitative trait meth-
ylation (eQTM) loci may contribute to the regulation of gene expression (also called 
expression associated CpG loci, eCpG). These associations may be local (e.g., methyla-
tion located in the promoter region of a gene) or remote (e.g. methylation loci in a dis-
tant enhancer regions of a gene or on a different chromosome). There is growing interest 
in the integration of these data modalities and evaluating for eQTMs. For example, in 
terms of clinical research, recent studies have identified eQTMs from a variety of tissue 
types and outcomes [3–7].

*Correspondence:   
kord.kober@ucsf.edu

1 School of Nursing, University 
of California San Francisco, San 
Francisco, CA, USA
2 Helen Diller Family 
Comprehensive Cancer Center, 
University of California San 
Francisco, San Francisco, CA, USA
3 Bakar Computational Health 
Sciences Institute, University 
of California San Francisco, San 
Francisco, CA, USA

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-024-05670-4&domain=pdf
https://github.com/kordk/torch-ecpg


Page 2 of 9Kober et al. BMC Bioinformatics           (2024) 25:71 

Recent advances in high throughput molecular methods allow for the collection of 
complementary methylation and gene expression data from the same sample in large 
numbers. Although an increasing number of recent studies have provided eQTM data-
sets [3, 8], there are no open-source tools currently available to investigators to imple-
ment these analyses on their own.

Given the increase in the availability of complementary datasets and the biologi-
cal utility of identifying eQTMs, analytic tools must be made available, free to use, and 
able to scale to handle thousands to millions of samples (e.g., patients or single cells). 
Current methylation array datasets provide hundreds of thousands of loci (e.g., Infin-
ium MethylationEPIC, Illumina, San Diego, CA) and RNA-sequencing and microarray 
methods provide expression levels for tens of thousands of genes. An exhaustive eval-
uation of these datasets would result in tens of billions of tests for hundreds or thou-
sands of samples, quickly outreaching the computing capacity of a desktop computer 
and requiring larger workstations, clusters, or cloud computing [9]. Future datasets will 
likely include more loci for evaluation and larger sample sizes. This need for computa-
tional resources will also require improvements in efficiency. Graphical processing units 
(GPUs) have provided major improvements in computation efficiency (i.e., runtime) for 
many bioinformatic software tools [10]. Readily available open source libraries imple-
ment numerous general-purpose methods and mathematical primitives that allow for 
major improvements in computational efficiency at relatively lower costs as compared to 
CPUs [11].

Given the analytic utility of evaluating for eQTMs to identify relationships between 
gene expression and epigenetic changes, a lack of an available open-source tool to imple-
ment an eQTM analysis, and the performance benefits of utilizing a GPU, the objec-
tives of this project were to develop an open source, general-use tool for eQTM mapping 
and evaluate for performance increases of a GPU implementation. Here, we present the 
Torch-eCpG tool (tecpg).

Implementation
Association analyses

Two methods are available to test for the associations between CpG methylation and 
gene expression (eCpGs). First, a Pearson correlation can be computed between the 
methylation level and gene expression level. Second, a multivariate linear regression 
(MLR) method can model the relationship between gene expression and methylation 
level while including while adjusting for covariates (e.g., age, batch, cell type composi-
tion, population structure). Although more complex mapping approaches are available 
[3], this approach is commonly used and the methods are easily accessible [4, 8, 12]. 
Future versions of the tool may include additional mapping approaches. We tested for 
an association between methylation at CpG j and the expression level of transcript k, by 
fitting the model

where yk is a vector of log expression levels at gene k with length m, Mj is a size n vector 
of methylation values (i.e., Beta scores) at CpG j, m is the number of covariates, and X is 
a n × m matrix of covariates.

(1)yk = Mjajk + Xbjk , j = 1, .., n, k = 1, ..,m
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Given the PyTorch toolkit does not currently include a function to estimate the cumu-
lative distribution function (CDF) for the Student’s t-distribution, and thus it is not 
easily possible to compute a p-value based on the t-distribution, we used a Gaussian 
distribution CDF to estimate p-values. The Gaussian distribution converges to the Stu-
dent’s t-distribution as the degrees of freedom (e.g., the number of samples) increases. 
For smaller sample sizes (e.g., < 20 samples) the difference between the t and the Gauss-
ian distributions may have a noticeable impact. The MLR feature of tecpg is optimized to 
increase performance for large input datasets. Optimizations include the minimization 
of repeated calculations, parallelizing tasks, memory use management, data chunking, 
and selective use of tensors on the GPU.

Gene expression, methylation, and phenotypic (i.e., covariate) data are provided as 
comma-separated value (CSV) files. Gene expression and methylation data are provided 
with samples in columns and loci in rows. Sample metadata (i.e., phenotypic) are pro-
vided with the covariate in the columns and samples in rows. Gene and methylation loci 
genomic region annotations are provided as browser extensible data (BED) files [13]. 
Examples of annotation files are provided for the HumanMethylation450 (n = 349,220 
CpG loci) and HumanHT-12 (n = 39,353 expression probes) arrays. For evaluation, the 
tool can either create simulated random data (i.e., `tecpg data dummy`) or download 
and format data from the Grady Trauma Project (GTP) [Gene Expression Omnibus 
(GEO) accession numbers GSE72680, GSE58137] (i.e., `tecpg data gtp`).

Four eCpG mappings modalities are implemented:

• Cis-eCPG: associations between all methylation loci-gene expression pairs within a 
specified window (default + 1 Mb) around the transcript start site for genes.

• Distal-eCpG: associations between all methylation loci-gene expression pairs outside 
of a specified window (default 50 Kb) from the transcript start site for genes, but on 
the same chromosome.

• Trans-eCpG: associations between all methylation loci-gene expression pairs. The 
computation is performed for each chromosome using methylation loci on all other 
chromosomes. To reduce output size, only associations below a given p value thresh-
old (default 1 ×  10–5) are stored.

• All-by-all: associations between all methylation loci-gene expression pairs across 
all regions. To reduce output size, only associations below a given p value threshold 
(default 1 ×  10–5) are stored.

Numerous user-friendly features are provided. The tool will attempt to auto-
matically detect a CUDA supported GPU. If a supported GPU is not available, or 
upon user request, the analyses will be performed using a CPU. The number of 
CPU threads is configurable and threaded CPU processing is available. In the case 
where data sizes exceed the CPU or GPU memory, the tool can be set to batch the 
analyses into chunks of gene expression and/or methylation data. Torch-eCpG can 
chunk the data for analysis as requested by the user through the settings. For users 
needing guidance to select settings, an option is available to estimate the number of 
gene expression loci per chunk. Chunking of the data was used for the evaluations 
described below. Finally, to limit the size of the output and associated time writing 



Page 4 of 9Kober et al. BMC Bioinformatics           (2024) 25:71 

the file out, the user can set a p-value threshold to filter the reported analyses and 
can select the columns of the MLR analyses to report.

Evaluation

To evaluate for the replicability of the regression analyses implemented in tecpg, we 
compared our regression analyses with similar analyses using the cor() and lm() func-
tions in the stat package in R. To benchmark tecpg, we compared cis-eCpG, distal-eCpG 
and trans-eCpG mapping performance with and without a GPU. For CPU-based com-
parisons of the individual regions, computations were limited to a single core [11]. We 
also evaluated tecpg performance using a range of CPU core counts (i.e., 1, 2, 4, 8, 16, 
24). These analyses used a dataset of whole blood samples collected from 333 partici-
pants (76% female) aged 18–78 years in the GTP (GSE72680, GSE58137). To facilitate 
the evaluation of the scaling performance of the GPU implementation when mapping 
trans-eCpGs across a wide range of eCpG counts, we sampled with replacement from 
the GTP dataset to obtain a sample size of 1000. All tecpg benchmarks were conducted 
on a physical server running Linux having 28 Xeon cores (2.3 GHz), 256 GB CPU mem-
ory, and a A2 GPU with 16 GB of memory (Nvidia Corporation, Santa Clara, CA).

Results and discussion
To provide an open-source tool for eQTM mapping, we developed the Torch-eCpG soft-
ware package. To evaluate the reproducibility of the linear regression analysis, we com-
pared our results with those implemented in the lm() function in the stats package in 
R. As shown in Fig. 1, our implementation of the linear regression demonstrates high 
reproducibility.

For tecpg benchmarking, we evaluated eQTM mapping using the CPU and GPU 
implementation in tecgp for 300 patients from the GTP patient dataset (422,442 meth-
ylation loci and 17,653 genes). Across the mapping modalities, the GPU outperformed 
the CPU analysis by up to 18x. Our implementation of the cis-eCpG mapping was 
1.4 × faster on the GPU than that of the CPU (Fig. 2A). For distal-eCpG mapping, our 
implementation was 5 × faster on the GPU (Fig. 2B). Finally, for trans-eCpG mapping, 
our implementation was 18 × faster on the GPU (Fig. 2C). In terms of tecpg using addi-
tional cores, we found that major incremental improvements were realized by increasing 
the CPU core count up to 8, after which the gains were minimal (Fig. 3). Although the 
CPU performance did improve with additional cores, the GPU implementation was still 
2 × faster than the 24-core CPU implementation.

We found tecpg scales linearly across a wide range of methylation loci for a reason-
ably large sample size (n = 1000 patients) (Fig. 4). In addition, the total time to evalu-
ate 1000 patients for whole transcriptome (2 ×  104 genes) and whole methylome array 
data (8.5 ×  105) was < 15 h. The short time needed to evaluate a dataset sized to the larg-
est currently available methylation array (i.e., Infinium MethylationEPIC) highlights 
the utility of this tool to evaluate eQTM mapping of dataset of realistic size. The linear 
scaling demonstrates the memory efficiency of the chunking of genes and CpG loci for 
analysis and is concordant with the embarrassingly parallel nature of this analysis (i.e., 
all gene × CpG loci comparisons are independent). This efficiency and scaling suggest 
the tool will be useful for larger datasets in the future (e.g., > 10,000 patients) (Table 1, 
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Fig. 5) and is accessible to perform on smaller hardware setups (i.e., GPUs with smaller 
memory specifications). 

Fig. 1 Comparisons of the first 1000 CpG-transcript pair linear regression analyses results between tecpg 
and lm() function in the stats package in R for a simulated dataset generated by sampling with replacement 
(n = 1000 samples). Simulated patient data was generated from real patient data in the Grady Trauma Project

Fig. 2 Performance of GPU implementations for eQTM mapping. Comparison of runtimes for tecpg analyses 
on CPU and GPU for A cis-eCpG, B distal-eCpG, and C trans-eCpG. The analyses evaluated 340 patients from 
the Grady Trauma Project dataset and included 422,442 methylation loci and 17,653 genes
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Given the increased availability of whole genome bisulfite sequencing (WGBS) data, we 
fit a linear model to the range of methylation loci shown in Fig. 4 to estimate the time it 
would take to map larger datasets. With this model, we estimate it would take 6.35 days 
(9146.04 min) to complete an analysis of 28 million CpG loci for 20,000 genes from 10,000 
patients. To evaluate this estimate empirically, we simulated a dataset of 28 million CpG 
loci for 20,000 genes from 10,000 patients. The major resource limitation to the analysis was 
the size of the input data, which is limited by the available CPU memory. The maximum 
resident set size of dataset with 100,000 and 1 million CpGs was approximately 4.8  GB 
and 20 GB of RAM, respectively. Larger CpG datasets (e.g., all 28 million CpGs) required 
memory resources outside the assumptions of a reasonably sized workstation (i.e., > 32 GB 
RAM). To manage the CPU memory usage to store the datasets in memory prior to anal-
ysis, the total dataset was split into smaller pieces, with each split of data using approxi-
mately 20 GB of RAM to load. To manage the GPU memory during analysis, we set the 

Fig. 3 CPU runtimes for tecpg using 1, 2, 4, 8, 16, and 24 CPU cores. The analyses evaluated 340 patients from 
the Grady Trauma Project dataset and included 422,442 methylation loci and 17,653 genes

Fig. 4 GPU runtime of tecpg for 1000 simulated patient samples for 20,000 genes and 20 ×  103, 100 ×  103, 
250 ×  103, 450 ×  103 and 850 ×  103 CpG loci. Simulated patient data was generated from real patient data in 
the Grady Trauma Project. Data chunking was performed using 100 genes and 100,000 CpGs using 6.2 GB of 
GPU memory



Page 7 of 9Kober et al. BMC Bioinformatics           (2024) 25:71  

chunking sizes of 100 genes and 100,000 CpGs. The GPU memory usage was 6.2 GB. With 
this approach, the analysis of a simulated WGBS dataset completed in 6.75 days, similar to 
our estimated time for completion.

Table 1 Runtime performance of Torch eCpG GPU implementation for the indicated number of 
samples, CpG loci, and gene expression loci. Data are plotted in Fig. 5

Number of samples Number of CpG loci Number of genes Runtime (minutes)

100 25,000 40,000 6.29

100 500,000 40,000 121.42

100 1,000,000 40,000 241.24

100 25,000 20,000 3.06

100 500,000 20,000 62.04

100 1,000,000 20,000 123.80

1000 25,000 40,000 16.48

1000 500,000 40,000 327.85

1000 1,000,000 40,000 654.57

1000 25,000 20,000 8.35

1000 500,000 20,000 167.03

1000 1,000,000 20,000 334.29

10,000 25,000 40,000 147.18

10,000 500,000 40,000 2926.99

10,000 1,000,000 40,000 5892.98

10,000 25,000 20,000 73.57

10,000 500,000 20,000 1470.24

10,000 1,000,000 20,000 2937.30

Fig. 5 Runtime performance of Torch eCpG GPU implementation for the indicated number of samples, CpG 
loci, and gene expression loci. A n = 100 and n = 1000 samples. B n = 100, n = 1000, n = 10,000 samples. 
Simulated patient data was generated from real patient data in the Grady Trauma Project
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Conclusions
Torch-eCpG is the first freely available open-source tool to perform eQTM mapping. 
It provides a scalable and high-performance implementation that supports GPU ena-
bled systems. By reducing computing time the tool offers cost-savings on shared sys-
tems (e.g., clusters) or cloud-based computing resources that charge by units of time. 
This tool allows for individual research labs with limited computational resources to 
perform analyses on affordable computer equipment or cloud-based virtual machines.

Availability and requirements

Project name: Torch-eCpG
Project home page: http:// www. github. com/ kordk/ torch- ecpg
Operating system(s): Platform independent
Programming language: Python 3.10 or higher
Other requirements: click ~= 8.0.3, colorama ~= 0.4.4, matplotlib ~= 3.5.1, 
numpy ~= 1.24.1, pandas ~= 1.3.5, psutil ~= 5.9.4, requests ~  = 2.26.0, 
scipy ~= 1.10.0, setuptools ~= 63.3.0, torch ~= 1.13.1 + cu116
License: BSD-3-Clause
Any restrictions to use by non-academics: license needed.
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BED  Browser extensible data
CDF  Cumulative distribution function
CpG  Cytosine phosphate guanine
CPU  Central processing unit
CSV  Comma separated value
DNA  Deoxyribonucleic acid
eCpG  Expression associated CpG
eQTM  Expression quantitative trait methylation
GEO  Gene expression omnibus
GB  Gigabyte
GHz  Gigahertz
GPU  Graphical processing unit
GTP  Grady trauma project
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