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ABSTRACT OF THE DISSERTATION 
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by 
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Professor Alex Anh-Tuan Bui, Co-Chair 

Professor William Hsu, Co-Chair 

 
 
 Glioblastoma multiforme (GBM) is the most common type of primary brain tu-

mor, characterized by a short survival period after diagnosis. As with most other cancers, 

treatment and follow-up decisions are made largely based on observed changes in tumor 

size and appearance during imaging studies.  

The quantification of tumor measurements is problematic due to the systematic 

variability introduced while attempting to quantify tumor characteristics in uncertain 
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regions. This issue is primarily observed around the tumor boundary, where it is often 

hard to differentiate whether a given region is part of the tumor (e.g., active, necrotic, 

edema, etc.) or part of normal brain tissue (e.g., grey matter, white matter). This problem 

has significant implications because this uncertainty can affect ensuing quantita-

tive/computational analyses. Current approaches for the segmentation of glioblastoma 

multiforme still face multiple challenges, often failing to consistently identify the tumor 

region so as to be clinically useful and reliable; moreover, these different techniques tend 

to produce results that differ significantly from each other (i.e., measurement variability).  

 To address these problems, this dissertation describes a framework to help char-

acterize factors that influence variability in brain tumor boundaries and to optimize their 

performance through methods that calculate an estimate of expected variability arising 

from different automated segmentation approaches, setting the bases for the develop-

ment of better knowledge-based methods. Additionally, a novel automated method was 

developed to generate more robust brain tumor segmentations by taking into consider-

ation the inherent variability of brain tumors and statistical priors that provide context-

relevant information about the different brain and tumor tissues. 

 Altogether, this dissertation project provides further understanding of the sources 

of variability that arise in GBM across different image analysis methodologies and the 

integration of these insights into the development of tumor variability maps that can 

provide a better characterization of tumors.  
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Chapter 1: Introduction 
 
1.1 Problem definition 

Primary brain tumors are one of the most aggressive human cancers, making im-

provements in treatment and monitoring techniques one of the current top challenges 

in neuro-oncology. The most aggressive type (highest grade) of brain tumors is known 

as Glioblastoma Multiforme (GBM).  

Despite current advances in therapy, the outcome for patients with high-grade 

gliomas remains poor, with a median survival of 14–18 months [1-2] following diagno-

sis. Ninety percent of patients die after 18 months and only 3.3% live longer than 5 years 

after diagnosis [2]. This dire course is due in part to the lack of characteristic symptoms 

during early stages of tumor development, and a paucity of effective non-invasive detec-

tion methods [3-4].  

In GBM and other types of cancers, treatment and follow-up decisions are largely 

made based on observed changes in size and appearance following imaging, including 

magnetic resonance imaging (MRI) studies. Currently, for GBM this characterization in-

cludes different MRI sequences (e.g. T1 pre/post-contrast, FLAIR, etc.) to identify and 

characterize the tumor and its different subparts (e.g., enhancement, necrosis, edema); 

however, such characterization is affected by variability in the subsequent analysis pro-

cess. This problem becomes evident when different raters (e.g. expert neuro-radiologists, 
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automated or semi-automated algorithms.) characterize the same lesion and produce 

different results that can vary significantly from one another. More importantly, these 

differences can have a measurable effect on downstream analyses and clinical decisions.  

Measurement variability, which, for the purposes of this dissertation, is defined 

as the uncertainty associated with the object’s (e.g. tumor) 3D boundary.  Such variations 

can be attributed to:  1) poor boundary distinction due to biological tissue heterogeneity; 

2) inaccuracies in the characterization process (manual or automated); and/or 3) varia-

bility in image acquisition (e.g. signal levels, cross-sectional views, and noise).  Although 

different manual and semi-automated methods exist to help the neuroradiologist char-

acterize a GBM (e.g., computing tumor volume and change over time), they do not con-

sider the error bounds of the tumor boundary in the final measurement, and do not 

produce a metric that informs the clinician about significant characteristics of brain tu-

mors (e.g., variability, change). 

The problem of inconsistent and inaccurate measurements in GBM segmentation 

originates in part because such tumors tend to have irregular shapes, discontinuous bor-

ders, and a high degree of border variability.  These problems contribute to the challeng-

ing task of developing discriminative classification methods that can measure and char-

acterize variability in high-grade brain tumors. Given the importance of imaging in diag-

nosis and treatment of this disease, developing methods that can consistently quantify 
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and subsequently characterize GBMs has the potential to enable new insights regarding 

disease progression, and ultimately improve patient outcomes. 

Understanding, characterizing, and reducing measurement variability can lead to 

more accurate and consistent segmentations, resulting in improved quantitative results 

and ultimately increased assurance in the clinical MRI assessments and definition of 

changes over time.  

Additionally, the investigation of this problem can characterize the root causes of 

tumor heterogeneity (defined as the diversity of biological entities that can be found 

while analyzing an image) observed during the brain tumor characterization so that this 

work in measurement of image variability can be considered and integrated into future 

processing frameworks and algorithms. 

 
1.2 Contributions 
 
 

This dissertation presents a framework to characterize the factors that influence 

variability in brain tumor boundaries, developing methods to optimally calculate and 

define the expected variability that arises from different segmentation approaches. This 

provides the bases for the development of better statistical- and knowledge-based meth-

ods that use prior information about cerebral tissue properties. This work is structured 

around three fundamental research contributions: 
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1. Understanding the sources of variability that arise in GBM tumor segmentation. 

Characterization of the tumor boundary using different segmentation approaches 

(algorithms) leads to the identification of factors (i.e., parameters affecting algo-

rithm performance); and their optimization can lead to a reduction of the differ-

ences observed between methods. 

2. Development of a new automated tumor segmentation algorithm to determine 

overall tumor boundary as well as its different sub-regions. A combination of sta-

tistical- and knowledge-based methodologies can help obtain a more accurate 

characterization of the tumor boundary at the pixel-level using Tumor Variability 

Maps (TVMs). 

3. Evaluating the impact of segmentation variability metrics in the assessment of 

medical images. Hypothesizing that these measurements contribute towards a re-

duced uncertainty during radiological evaluation. This evaluation also includes 

the development of a novel end-to-end imaging pipeline with a user interface that 

generates the tumor variability metrics. 

 
These insights are integrated into the development of segmentation algorithms 

that produce variability maps (confidence maps), which can provide improved character-

ization and understanding of medical images. 
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1.3 Organization of the dissertation 

 
This dissertation is organized into six chapters, including this introductory chap-

ter. Figure 1.1 presents a diagram with the sequence and connections of the information 

presented in the different chapters. 

Chapter 2 provides background about the different aspects that affect the charac-

terization of brain tumors, including biological and algorithmic aspects, to bring context 

and relevance to the work subsequently described. This chapter also includes current 

clinical standards available for brain tumor characterization, their relevance to patient 

assessment, as well as their disadvantages. Also, the imaging techniques in terms of 

acquisition and current methods for automated tumor segmentation are covered in this 

chapter. 

Chapter 3 covers the majority of the Research Contribution 1, expanding on the 

calculation of tumor variability in different segmentation approaches, leading to the gen-

eration of Tumor-measurement Variability Maps (confidence maps). This chapter also 

includes the optimization experiments for several tumor segmentation approaches, and 

the framework to automatically evaluate and reduce sources of variability. 

Chapter 4 centers on Research Contribution 2, including the design and develop-

ment of a statistical and knowledge-based algorithm to segment brain tumors. The chap-

ter covers the development of the method, the addition of prior information into the 
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segmentation process to automate the definition of the tumor location, and a metric 

representing the degree of variability found for each case. The method is evaluated using 

two large databases of brain tumors with reference annotations obtained from UCLA 

and TCGA/MICCAI (The Cancer Genome Atlas and the Medical Image Computing and 

Computer Assisted Intervention society, respectively). 

Chapter 5 explores the clinical utility of variability metrics (Research Contribu-

tion 3), exploring the interpretation of variability metrics when assessing tumors at a 

determined time (single time point), or tumor volume change in cases with multiple 

follow-ups. A utility study and a retrospective analysis were conducted on a subset of 

patients to determine the effect of these newly developed metrics on the assessment by 

neuro-radiologists. 

Finally, Chapter 6 summarizes the findings, the technical problems and limita-

tions identified during this project, and possible future directions that could follow the 

results presented in this dissertation. 
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Figure1.1: Organization of the dissertation. 
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Chapter 2: Understanding Sources of Variability 

 
This chapter discusses the potential sources of variability in tumor segmentation 

and the need for measurements of quantification error (i.e., variability) in order to guide 

reliable clinical assessments. The chapter is organized into three parts: 1) an overview of 

how treatment assessment of GBM patients is performed today; 2) the sources of bio-

logical heterogeneity that influence the appearance of tumors, and; 3) the sources of 

image variability due to acquisition parameters and post-processing methods. A litera-

ture review is then provided of current methods for tumor segmentation and variability 

characterization, followed by metrics for measuring agreement between segmentations 

and a reference standard. 

2.1 Characterization of treatment response using imaging 

Various multi-institutional efforts have created clinical guidelines or standards to 

aid the neuroradiologist in the task of characterizing brain tumor images [5]. Some of 

the most used guidelines for tumor structural characterization are: 

 

• Visually Accessible Rembrandt Images (VASARI): This controlled terminology 

for describing the magnetic resonance (MR) features of human gliomas was de-

vised based upon prior work (REMBRANDT project). It consists of a comprehen-

sive feature-set of 24 observations familiar to neuroradiologists to describe the 
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morphology of brain tumors in routine contrast-enhanced MRI. These guidelines 

exclude advanced MRI techniques such as dynamic susceptibility contrast (DSC), 

magnetization transfer (MT), magnetic resonance spectroscopy (MRS), diffusion 

tensor imaging (DTI) and perfusion/permeability characteristics [6]. Some draw-

backs of these guidelines include the poor inter-reader agreement when different 

clinicians evaluate the same studies [7]. Table 2.1 summarizes the suggested im-

age features for tumor structural characterization. 

• Response Evaluation Criteria in Solid Tumors (RECIST):  RECIST is a set of pub-

lished rules that assess tumor burden to provide an objective assessment of ther-

apy response (updated to RECIST1.1 in 2009) [8]. It is based on linear measure-

ments along the longest axis of the tumor, and registers response in four catego-

ries: full response is defined as the disappearance of all target lesions; partial re-

sponse as a decrease of 30% on total lesion size; progressive disease as 20% in-

crease (compared to baseline) on the measurable lesions or a 5mm absolute in-

crease in total measurements (progression can be identified by visually evident 

progression in the number or size of non-measurable lesions); finally, if there is 

not enough growth or shrinkage of the lesions, then status is defined as stable 

disease. The main drawback of this set of rules is that it considers only one-di-

mensional measurements. This terminology characterizes tumors as measurable 

versus non-measurable and target versus non-target (Table 2.2). 
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• Response Assessment in Neuro-Oncology (RANO) criteria: This set of criteria is 

an update of the McDonald criteria, which is based on two-dimensional measure-

ments of the enhancing component of the tumor [9]. In recognition that contrast 

enhancement is nonspecific and may not always be a true surrogate of tumor re-

sponse, and the need to account for the non-enhancing component of the tumor, 

these new criteria were developed to permit accurate assessment of imaging stud-

ies. These guidelines are under constant evolution to adapt to current clinical 

needs and advancements [10]. A brief description of the parameters that are con-

sidered to assess tumor response to treatment is summarized in Table 2.3. 

 
These different structural features play an important role in determining the grade 

of a brain tumor and treatment selection [7,11]; however, when these standards are ap-

plied in the clinic, there is a tendency to obtain metrics that are highly variable due to 

the heterogeneous characteristics of the tumor, making it difficult to predict future de-

velopment [7].  

In most clinical centers the current measuring standard is the RANO criteria, but 

the current recommendations for defining tumor change and the basis of a one-dimen-

sional metric on the largest axis of the tumor is in most cases not an appropriate repre-

sentation of the lesion, leading to misinterpretations and errors (Figure 2.1). The VA-

SARI guidelines provide a more complete set of imaging markers to characterize the 
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lesion, but in many cases the characterization is broad and qualitative, relying on the 

observer to make the judgment and arising variability issues. Additionally, these metrics 

are sometimes skipped in clinical practice because of the time and effort it takes to make 

these characterizations, motivating the need for an automated way to generate these 

measurements. 

 

RECIST criteria 

Feature Description 

Non-measurable 
lesions 

Series of binary values, positive if the feature is identifiable (but 
not measurable) 

- Lesions smaller than 10mm.     - Skeletal metastases. 

- Leptomeningeal disease.           - Cystic or necrotic lesions. 

- Tumor lesions situated in previously irradiated regions. 

Measurable lesions Defined in the same way as the non-measurable lesions but the 
longest diameter exceeds 10mm.  

Target lesions Definition of targeted organs (e.g. brain, lymph nodes, etc.) to 
center treatment on, in case more than one is found (selected 
on the basis of size). 

Non-target lesions Lesions that do not need to be quantified, characterized as total 
disappearance, continued presence, and unequivocal progres-
sion. 

 

Table 2.2. Summary of structural imaging components described by the RECIST guide-
lines towards tumor characterization. Note: Lesions that are not directly related to brain 
tumor characterization were excluded (e.g. abdominal masses) [12]. 
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VASARI guidelines 

# Name Description / possible values 

f 01 Tumor Location Frontal, temporal, insular, parietal, occipital, brain-
stem. 

f 02 Side of lesion center Right, center/bilateral, left. 

f 03 Eloquent brain Speech motor, speech receptive, motor, vision. 

f 04 Enhancement quality None, minimal/wild, marked/avid. 

f 05 Proportion enhancing Percent of enhancing tumor compared to total volume. 

f 06 Proportion nCET Percent of non-enhancing tumor compare to total vol-
ume. 

f 07 Proportion necrosis Percent of necrotic tumor compared to total volume. 

f 08 Cysts Positive if well-defined regions of bright T2 signal and 
low T1 with very thin and regular enhancing walls are 
found. 

f 09 Multifocal  

(multicentric) 

Multifocal, multicentric, gliomatosis. 

f 10 T1/FLAIR ratio Expansive (FLAIR = T1), mixed (FLAIR >= T1), 

infiltrative (FLAIR > T1). 

f 11 Thickness of  

enhancing margin 

None, thin (<3mm), thick/nodular (=> 3mm), solid. 

f 12 Definition of the  

enhancing margin 

None, well-defined, poorly-defined. 

f 13 Definition of the  

non-enhancing margin 

None, well-defined, poorly-defined. 

f 14 Proportion of edema Percent of edema compared to total volume. 
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f 16 Hemorrhage Positive if intrinsic hemorrhage in the tumor matrix is 
found, intrinsic foci have low T2 signal and high T1 
signal. 

f 17 Diffusion 

characteristics 

Facilitated, restricted, mixed. Based on ADC map. 

f 18 Pial invasion Positive if enhancing of pia next to the tumor is 
observed.  

f 19 Ependymal extension Positive if tumor adjacent ependymal regions are 
invaded. 

f 20 Cortical involvement Positive if cortex near tumor is no longer 
distinguishable. 

f 21 Deep white matter 
invasion 

None, Internal capsule, brainstem, corpus callosum. 

f 22 nCET crosses midline Positive if nCET crosses to contralateral hemisphere 
through white matter commissures. 

f 23 CET crosses midline Positive if CET crosses to contralateral hemisphere 
through white matter commissures. 

f 24 Satellites Positive if enhancing region is observed near dominant 
tumor but there are no continuous connections. 

f 25 Calvarial remodeling Positive if erosion of inner side of the skull is observed. 

 
Table 2.1. Summary of structural imaging components described by the VASARI guide-
lines for tumor characterization. nCET = non-contrast-enhanced Tumor, CET = con-
trast-enhanced tumor. Note: Feature 15 was omitted by the authors because of unknown 
reasons [6]. 
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RANO criteria for disease assessment 

Response      Criteria 

 

Complete  

response 

- Complete disappearance of all enhancing measurable and non-meas-
urable disease sustained for at least 4 weeks. 

- No new lesions. 
Stable or improved non-enhancing (T2/FLAIR) lesions. 

- Patients must be off corticosteroids. 
- Clinical status defined as stable or improved. 

 

 

 

 

Partial  

response 

- ≥ 50% decrease compared with baseline in the sum of products of 
perpendicular diameters of all measurable enhancing lesions sus-
tained for at least 4 weeks. 

- For volumetric assessments, ≥ 50% decrease in unidimensional 
metrics corresponds to a ≥65% decrease in volumetric change. 

- No progression of non-measurable disease. 
- No new lesions. 
- Stable or improved non-enhancing (T2/FLAIR) lesions on same or 

lower dose of corticosteroids compared with baseline scan. 
- Corticosteroid dose at the time of the scan evaluation should be no 

greater than the dose at the time of baseline scan. 
-  Clinical status defined as stable or improved. 

 

Stable  

disease 

- Does not qualify for complete response, partial response, or progres-
sion. 

- Stable non-enhancing (T2/FLAIR) lesions on same or lower dose of 
corticosteroids compared with baseline scan. 

 

 

Progres-
sion 

- ≥ 25% increase in the sum of the products of perpendicular diame-
ters of enhancing lesions compared with the smallest tumor meas-
urement obtained either at baseline (if no decrease) or best re-
sponse, on stable or increasing doses of corticosteroids. 

- For volumetric assessments, ≥ 25% increase in unidimensional 
metrics corresponds to a ≥40% increase in volumetric change 

- Significant increase in T2/FLAIR non-enhancing lesion on stable or 
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increasing doses of corticosteroids compared with baseline scan or 
best response after initiation of therapy not caused by comorbid 
events. 

- Any new lesion. 
- Clear clinical deterioration not attributable to other causes apart 

from the tumor (e.g. seizures, medication adverse effects, complica-
tions of therapy, cerebrovascular events, infection, and so on). 

- Changes in corticosteroid dose. 
- Failure to return for evaluation as a result of death or deteriorating 

condition. 
- Clear progression of non-measurable disease.  

 

Table 2.3. Summary of different requirements to assess disease response to treatment 
according to the RANO criteria. [13]. 

 
 

 
 

Figure 2.1. Example of where current one-dimensional measurement can fail to charac-
terize tumors. The left side shows a tumor and resection cavity before going through 
therapy, the right side presents a scan after the therapy had concluded with a decrease 
in the enhancing margin surrounding the resection cavity; however, by the current anal-
ysis metrics, the major axis measurements do not represent the real effect of the therapy, 
misclassifying the case as stable disease instead of partial response. 
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2.2 Sources of Tumor Variability 

Imaging has a critical role in understanding disease extent, progression and, mak-

ing treatment decisions; However, tumors often have a mixture of diverse morphological 

features, such as discontinuous borders, non-uniform and unpredictable shapes, and dif-

ferent tissues mixed throughout the overall mass. These factors together hinder the abil-

ity of clinicians and computational approaches to determine the extent of the disease. 

Although this problem regarding heterogeneity was first described as an issue long ago 

[14], it continues to pose challenges for biological and algorithmic aspects.  

Regarding biological aspects, the heterogeneous characteristics of GBMs can be 

observed at different levels (macroscopic, cellular, molecular), and is an important factor 

when trying to understand tumor progression, treatment resistance, metastatic poten-

tial, recurrence probability, and other features [7, 15]. For instance, different types of 

tissues can be found within the tumor (e.g. different types of cellular populations) and 

different tumors within the same organ can have independent origins and present differ-

ent morphological and physiological behaviors. For example, one brain tumor can be a 

primary tumor and the other a result of metastatic development originating from another 

anatomical region.  

These differences observed at the macroscopic level are likely to reflect differences 

in deeper aspects of the tumor including (genetic components, metabolism, proliferation 
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rate, and vascular activity.) that may be used to determine the most appropriate treat-

ment. Figure 2.2 shows different examples of how this biological heterogeneity is ob-

served in imaging studies. 

 

 
 

Figure 2.2. Adjacent tumors can present different characteristics between each other, 
and thus, different responses to treatment. Not considering these differences can lead to 
unsatisfactory response and an increased likelihood of relapse. Examples of tumor vari-
ability include differences in multifocal tumors with different overall appearance (A) and 
the different regions or tumor sub-components that are observed under different con-
trasts (active tumor versus necrotic tumor on B and tumor versus edema on C).  
 

This inherent tumor variability manifests as variations in image characterization, 

including sharp/ill-defined borders, intensity variations between different sub-regions, 
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and smooth (unclear) edges observed on images that can potentially be found by apply-

ing different image analysis methods such as different mathematical approaches, differ-

ent parameters of the segmentation methods, measurement assumptions and others. 

These methods aim to segment the tumor boundary by measuring this image variability, 

and determine the tumor boundary, allowing one to differentiate between normal and 

tumor tissue as well as hyper-intense areas that appear when contrast agents are used 

(in comparison to  non-enhancing regions); zones of decreased intensity inside the over-

all tumor mass (necrosis); or morphological distortions along the white matter tracts 

that might correspond to edema surrounding the solid tumor. 

Given that identifying different sub-regions of a tumor is a clinically significant 

task and is often a source of quantification error [16], this work focuses on the charac-

terization of the different sub-regions that compose the total tumor mass. 

Undoubtedly, variability and error in tumor characterization arise from different 

sources throughout the entire imaging process and subsequent analysis, ranging from 

sources of error during acquisition to quantitative feature extraction and analysis.  

 
2.3 Variability in the imaging process 

Variability in measurements affects different aspects of the medical image analysis 

process. In the imaging aspect, it is of critical importance to know that many subsequent 

radiomic features (e.g., volume, change over time, texture) are segmentation-dependent. 
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Additionally, the interpretation of these imaging features has been observed to improve 

when precision metrics are provided with them [17].  

Furthermore, having knowledge of the distribution of a feature obtained through 

separate measurements can increase the probability of a correct classification when there 

is only a single measurement, it is easier to make incorrect judgments as there is no 

information about the distribution or variability associated with that measurement.  

Moreover, pixel distribution for different structures (e.g., among normal tissues 

or between normal and pathologic tissues) can be complicated when it comes to group-

ing them, since there is overlap in pixel distribution, and the same pixel can belong to 

different possible classifications (tissues) (Figure 2.3). 

 

Figure 2.3. The curves exemplify the probability distributions of the intensity value for 
normal and tumor tissues and the tumor boundary in the intersection between them. 
Knowledge of the distribution of possible places where the tumor boundary is located 
(shown in red) obtained through separate measurements can increase the probability of 
a correct classification into one appropriate category -normal or tumor tissue. 
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Uncertainty and measurement errors are a problem that is not only present in the 

image analysis process or the tumor segmentation stage. Measurement variability can be 

found in many other aspects of the imaging process, such as acquisition (machine char-

acteristics, patient-induced artifacts) and other processing that happens before the study 

can be interpreted by the clinician (image reconstruction, registration, homogenization 

of image parameters, etc.).  

When different measurements are available, it is possible to add a confidence in-

terval, allowing for a more informed decision. The sources of inhomogeneity throughout 

the imaging process, and the way these the different sources of variability influence the 

imaging process are presented in Table 2.8. 
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Sources of error in image analysis 

 Process Examples of the source of error 

 

 

 

 

Object 
to image 

Scanner physical  

properties  

Field inhomogeneity, maximum gradient ampli-
tude, Modulation Transfer Function (MTF), 
quality and calibration of detectors. 

Spatial  

resolution 

One voxel represents thousands of cells and dif-
ferent processes, depending on scanner matrix 
size, the field of view and slice thickness. 

Imaging  

artifacts 

Motion artifacts, sampling artifacts, reconstruc-
tion inaccuracies, RF noise, chemical shift arti-
facts. 

Signal quality Signal to noise ratio, optimized tissue contras t, 
imaging sequence parameter standardization.  

 

 

 

Image to 
feature 

Noise and mo-
tion correction 

SNR and CNR of the images, motion correction 
algorithms, bias field correction, etc. 

Image  

registration 

Accuracy of alignment, data interpolation, tem-
poral registration, algorithm parameters. 

Tumor  

segmentation  

Algorithm used for total tumor sub-compart-
ments, algorithm parameters, accuracy of the 
output ROI, reproducibility and robustness of 
measurements. 

Temporal 
change tracking 

Temporal uniformity, significant estimation of 
change, parameter standardization, missing in-
formation. 

Table 2.8. Summary of the different sources of image uncertainty and error during the 
imaging process. The variability sources that are going to be explored as part of the pro-
ject mainly belong to the “image to feature” process. SNR = Signal to noise ratio, CNR 
= Contrast to noise ratio, ROI = Region of interest. 
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2.4 Current approaches in GBM segmentation 
 

Given the necessity of obtaining an improved characterization of tumor and re-

sponse to treatment, there have been numerous efforts in the domain of imaging infor-

matics and computer science to try to overcome this problem. Some of the most recent 

approaches are briefly described in Table 2.4 [18]. These efforts are driven by the desire 

to generate accurate segmentations automatically in real-time.  

Nevertheless, the segmentation of brain tumors remains a challenging task for 

several reasons, including that GBMs tend to exhibit unclear and irregular boundaries 

with discontinuities (biological tissue heterogeneity); automated systems are hard to 

train given the distinct morphological appearance of tumors; and training sets of anno-

tated data are hard to develop and subject to annotation variability.  

There are other difficulties that pertain to the image acquisition process. For in-

stance, time differences between the uptake of contrast agent and actual image acquisi-

tion can influence the appearance of the enhancing tumor. The images frequently contain 

regions that in reality correspond to tumor tissue but are not different from the other 

structures [16]. 
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Author 

 

Approach 

Segmentation accuracy 
(Dice coefficient) 

Whole Core Active 

 Bauer [19] Integrated hierarchical random forest 
classification and CRF regularization. 

68 48 57 

 Buendia [20] A grouping artificial immune network for 
tumors. 

57 42 45 

 Cordier [21] Patch-based tissue segmentation ap-
proach. 

68 51 39 

 Doyle [22] Hidden Markov fields and variational EM 
in a generative model. 

74 44 42 

 Festa [23] Random forest classifier using neighbor-
hood and local context features. 

62 50 61 

 Geremia [24] Spatial decision forests with intrinsic hi-
erarchy. 

62 32 42 

 Guo [25] Semi-automatic segmentation using ac-
tive contours. 

74 65 49 

 Hamamci [26] “Tumorcut” method. 72 57 59 
 Meier [27] Appearance- and context-sensitive fea-

tures with a random forest and CRF. 
69 50 57 

 Menze (II) [28] Generative-discriminative lesion seg-
mentation model. This method consists 
of an improvement of the Menze (1) seg-
mentation method. 

78 58 54 

 Menze (I) [29] A generative lesion segmentation model 
for multimodal brain tumor segmenta-
tion. 

69 33 53 

 Reza [30] Texture features and random forests  70 47 55 
 Riklin-Raviv [31] Generative model with latent atlases and 

level sets. 
74 50 58 

 Shin [32] Hybrid clustering and classification by lo-
gistic regression.  

30 17 05 

 Shubbanna [33] Hierarchical MRF approach with Gabor 75 70 59 
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features. 
 Taylor [34] “Map-Reduce Enabled” hidden Markov 

models. 
44 28 41 

 Tustison [35] Random forest classifier using the open 
source ANTs/ANTsR packages.  

75 55 52 

 Zhao (I) [36] Learned MRF on supervoxels clusters.  82 66 49 
 Zhao (II) [37] Learned MRF on supervoxels clusters 

with updated unary potential. 
76 51 52 

 Zikic [38] Context-sensitive features with a deci-
sion tree ensemble.  

75 47 56 

 Average result of all methods. 67 48 49 
 
Table 2.4. A survey of different approaches for automated brain tumor segmentation 
submitted to the MICCAI brain tumor segmentation challenge [18]. Note the range of 
Dice similarity coefficient across methods and tumor regions. The best performing 
method is underlined. 
 

One way to address this issue has been by using a multi-modal approach, which 

refers to the use of different imaging “contrasts” that together allow a better visualiza-

tion of differences and boundaries between healthy and abnormal tissue (Figure 2.4). 

Tumor sub-regions (Table 2.5) can be better identified more accurately when several 

modalities or imaging sequences are combined. Also, the combination of these different 

imaging sequences entails the use of image pre-processing techniques (such as skull-

stripping, registration, etc.).  
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Tumor  

region 
MRI appearance Clinical Interpretation 

Enhancing 
tumor 

Hyper-intense region in T1 
weighted image with contrast 
agent. 

Active viable tumor with micro-
vascular proliferation, poor blood-
brain barrier. 

Necrotic 

tumor 

Hypo-intense regions in T1 
weighted images with or without 
contrast agent. 

Pool of dead cells that are no 
longer active due to insufficient 
blood supply. 

Non-en-
hancing 

tumor 

Regions that are visible as abnor-
malities in T1 weighted images 
but do enhance when the contrast 
agent is injected. 

Tumor suggestive of a lesion that 
may progress to a higher grade en-
hancing lesion. May also be indic-
ative of lower-grade glioma, corti-
cal dysplasia or part of an inflam-
matory process. 

Edema 

region 

Hyper-intense region in images 
with T2 contrast such as T2 maps, 
FLAIR images or T2 weighted im-
ages. 

Extension of edematous regions 
outside the boundaries of the tu-
mor. Likely to contain migrating 
tumor cells. 

 
Table 2.5. Different areas of interest related to brain tumor image characterization. These 
parts combined form the total tumor mass (total lesion). 
 
 

Some of the recently developed algorithms that have been tested as part of the 

MICCAI [18] tumor segmentation competition use multimodal approaches. In this com-

petition, each participant generates a segmentation of the tumor area by using a specific 

algorithm developed by each team. Then, the results drawn from the different models 

are evaluated to determine which has the most similarity with the manually labeled 
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dataset and is the most consistent (repeatable). In the most recent results published 

from this competition [18-39], it can be observed that the algorithm based on Markov 

Random Fields (MRF) developed by Zhao [38] performed best for segmentation of total 

tumor, but results were not consistent when evaluating sub-regions of the tumor such 

as core and enhancing tumor regions—a task on which Shubbanna (MRF with Gabor 

Features) [33] and Festa (Random Forest) [23] performed the best. Additionally, the 

agreement with the manual reference standard measured using the Dice coefficient 

reached an average of 49% on enhancing tissues, demonstrating that further improve-

ment in this domain is needed. A complete description of these approaches can be found 

in Table 2.4 and Figure 2.5. Table 2.6 summarizes the methodology (i.e., algorithm) that 

was utilized for the development of these segmentation approaches. Finally, Table 2.7 

shows the distinct kinds of imaging features that are considered by these approaches in 

modeling the variable boundaries of brain tumors. 
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Figure 2.4. Two cases that illustrate the advantages of multimodal imaging for the seg-
mentation of tumor subcomponents. Each row shows a FLAIR and post-contrast T1 
scans (A, B and D, E respectively) and the output segmentation of the different tumor 
regions (C). 
 
 

A brief description of the properties (features) used by the algorithms that have 

been published as part of the mentioned tumor segmentation competition is listed be-

low, categorized by the types of features that are used. A more detailed description of 

the algorithms utilized on the segmentation challenge is found in the supplementary 

materials for this chapter found at the end of the dissertation. 
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Figure 2.5. The box plot shows the Dice coefficients for different methods on the seg-
mentation of active tumors. Results were obtained from a sample of 100 datasets from 
the Medical Image Computing and Computer Assisted Intervention Society (MICCAI) 
brain tumor segmentation competition for the last two years [18]. 
 
 

• Pixel intensity: Pixel intensity is used in most (if not all) image processing ap-

proaches as one of the most important means to classify objects or structures of 

interest. In MR images, the intensity captured in each pixel has a direct correlation 

to the magnetization properties of different tissues. Thus, this property can be 

used to identify or group different structures with similar intensities. Pixel inten-

sity can be considered on a pixel-wise basis or in conjunction with the local neigh-

borhood as image patches. Although pixel intensity is one of the default features 

to use, some disadvantages include the sensitivity to image artifacts and noise, 
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partial volume effects (different structures being represented in a single pixel), 

boundary definition in smooth images, and problems differentiating different ob-

jects with similar intensities. 

• Pixel neighborhood: Information about the pixel surroundings can help contextu-

alize the image intensity observed for a given pixel, so considering the adjacent 

regions to it has become general practice in image analysis methods. This aims to 

reduce the effect on fine intensity fluctuations originated from noise or image 

artifacts, often performing the pixel classification by considering the normalized 

(average) value of the pixel with its neighbors instead of the single pixel value. 

This can be performed on a pixel-wise basis or on image patches using, uniform 

grids of a defined size or image superpixels. Finally, pixel neighborhood can be 

considered in two dimensions by looking at the 8-pixel neighborhood around the 

pixel or in three dimensions by considering the adjacent slices similar to a region-

growing approach). Disadvantages include the high sensitivity to preprocessing 

techniques such as noise reduction filters and intensity normalization, a decreased 

capability of finding fine structures similar to an erosion, and the increase of the 

complexity while implementing multiple neighbor comparisons. 

• Textural patterns: Textural metrics are used to identify patterns or specific ar-

rangements in the images that can lead to a better definition of the boundary ob-

served between two objects. Common textural features include mean, variance, 
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co-occurrence matrices, kurtosis, uniformity, compactness and many others. 

These features are often used in learning-based methods to significantly increase 

the information space to characterize the images during the training phase. 

Additional advantages include a rather straightforward implementation, and the 

capacity to detect semi-repetitive patterns in the images, which are otherwise 

difficult to find. Disadvantages include the difficulty in understanding the 

biological meaning of many of those features (e.g. the role of the inverse kurtosis 

for the boundary detection), the fact that the classification performance changes 

depending on the scale at which the features are obtained, and the possible 

introduction of incorrect correlations or false-positives (type 1 errors) given the 

non-specificity of these features. 

• Edge detection: Edge detection techniques include the calculation of the image 

gradient. Magnitude and phase maps show the direction on which the image in-

tensity varies, and different kinds of filters can be used to enhance certain image 

properties such as high-low-band pass filters and Gabor filters. Edge detection 

methods are made to detect regions where sharp changes in intensity occur, 

improving classification capacity by finding the optimal boundary location and 

reducing the effect of random noise. Some difficulties are manifested in image 

regions that are highly variable or have blurry edges. Their performance is also 
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significantly dependent on the filter parameter selection including kernel size and 

shape. 

• Image symmetry: A normal brain has approximate bilateral symmetry, allowing 

for comparisons with the contralateral hemisphere to locate potential abnormal 

regions. This is one of the most discriminating features radiologists use when 

assessing brain images. The presence of a tumor and other conditions that 

influence brain anatomy such as stroke or traumatic brain injury often distort 

brain anatomy, making morphological symmetry comparisons useful when trying 

to detect these anomalies. This is based on the assumption that normal areas have 

a high correlation with the contralateral elements [97]. Some challenges arise 

when the lesion is located on the symmetry plane used to make the comparison, 

or when there is a large abnormality that introduces morphological distortions on 

both sides of the image. Image realignment or registration is often performed to 

correct for rotations or translations which occurs during acquisition, potentially 

making symmetry analysis difficult. 

• Atlas-based labels: These features are based on the use of images previously an-

notated by an expert, generating labels that correspond to different brain struc-

tures such as different tissues, pathways or functional organization. This infor-

mation is then extrapolated to a test image to provide knowledge and context 
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about the location of the different structures. This helps to identify abnormal re-

gions in cases when there is low contrast, noise, or situations that can be ambig-

uous or difficult to classify using intensity analysis. A similar approach can be 

used to create custom databases (dictionaries) for a specific situation. For exam-

ple, the creation of labels that contain examples of healthy and pathological tis-

sues can be compared with a test set of images. Challenges include the need for 

image registration to match the atlas. In some cases, large deformations (big tu-

mors) make it difficult to match the structures (labels) with the atlas (usually 

normal brains), and structure correspondence is barely achieved. 

 

Another way to reduce the variability in segmentation includes the measurement of sev-

eral ROIs for each case and generation of a “consensus” result that is obtained from 

these different approximations to better represent the real tumor boundary. Figure 2.6 

shows an example of how different methodologies can derive different results for the 

same case. Figure 2.7 shows an example of how these different boundary approximations 

can derive variability maps that represent tumor likelihood (confidence maps). These 

ideas of multimodal image analysis and determination of tumor boundary are explored 

in subsequent chapters (Chapter 3 and Chapter 4). 

 



 

 33 

Author Method used 

  Ran-
dom 

Forest 

CRF Dic-
tionary 
match 

Label 
propa-
gation 

HMRF Log   
Regres-

sion 

Graph-
cut 

method 

Bauer X X      

Cordier   X X    

Doyle     X   

(Cont..) Ran-
dom 

Forest 

CRF Dic-
tionary 
match 

Label 
propa-
gation 

HMRF Log   
Regres-

sion 

Graph-
cut 

method 

Geremia X       

Meier X X      

Shin   X   X  

Shubbanna     X   

Taylor     X   

Zhao(I)     X  X 

Zhao (II)     X  X 

 Ran-
dom 

Forest 

Region-
based 

Edge-
based 

Cell 
Autom-

ata 

EM            
algo-
rithm 

AIN ICA 

Buendia      X  

Festa X       

Guo  X X     

Hamamci    X    

Menze (I) X  X     

Menze (II)     X   

Reza X       
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Riklin-Rav.   X     

Tustison X      X 

Zikic X       
 
Table 2.6. Different methods that each approach use to find tumor boundaries. Abbrevi-
ations: CRF = Conditional Random Field, HMRF = Hidden Markov Random Field, EM 
= Expectation Maximization, AIN = Artificial Immune Network and ICA = Independent 
Component Analysis. References to these publications can be found in Table 2.4. 
 

	
	
Figure 2.6. Example of different ROIs generated by different methodologies for the same 
object. Columns on the left show a T2-weighted FLAIR study and columns on the right 
show a T1 with contrasts study. Images a) and b) show the input images with and without 
the segmentation results, respectively. The binary images c)-f) show the individual results 
of the segmentation methods. 
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Figure 2.7. Example of a possible tumor likelihood distribution map generated using 
different segmentation methods to represent variability on a FLAIR MRI. Row A shows 
a small tumor with seemingly clear margins (left) and the different margins found by. 
Row B shows a bigger tumor with more complex margins that result in less agreement 
among the segmentation approaches due to increased tumor variability in hyper-inten-
sity ranges and shape. The color bar indicates the agreement among segmentation results 
as a probability estimate. 
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        Author Input imaging features 

  Pixel 
Intensity 

Pixel 
neighbor-

hood 

Texture  
patterns 

Edge  
detec-
tion 

Image  
sym-
metry 

Atlas-
based la-

bels 

 Bauer X X X X   

 Buendia X  X    

 Cordier X X    X 

 Doyle X X X    

 Festa X X X  X  

 Geremia X      

 Guo X   X   

 Hamamci X X     

 Meier X  X X X X 

 Menze (II) X  X    

 Menze (I) X     X 

 Reza X  X    

 Riklin-Raviv X   X   

 Shin X     X 

 Shubbanna X X  X   

 Taylor X X     

 Tustison X X   X X 

 Zhao (I) X X     

 Zhao (II) X X     

 Zikic X  X   X 
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Table 2.7. Summary of the types of imaging features that are used by the tumor segmen-
tation approaches described by the tumor MICCAI tumor segmentation competition 
[18]. For this table: Pixel intensity refers to features dependent on the intensity proper-
ties observed by a pixel or group of pixels. It is directly correlated with the type of tissue 
and with the acquisition parameters used while on the scanner. Pixel neighborhood 
information refers to distance metrics from a given pixel or image patch to its neighbors 
or a reference area. Textural patterns refer to first order image features such as mean, 
variance, and co-occurrence matrices. Edge detection refers to the use of filters and im-
age gradients to find the image boundary. Image symmetry refers to comparisons on 
different axes to identify local differences under the assumption that both sides should 
be similar in anatomically. Atlas-based labels refer to the use of previously developed 
maps that integrate knowledge about a standardized location of cerebral structures. Ref-
erences to these publications can be found in Table 2.4. 

 
 2.5  Statistical metrics to evaluate segmentation performance 

 
To obtain objective and accurate measurements of how good a given method per-

forms compared to current standards (i.e., reference standard), different statistical eval-

uations are often utilized. These metrics that can help verify if the results from a pro-

posed segmentation method are close to the measurements obtained manually by trained 

radiologists, allowing a quantitative comparison, and helping identify cases or situations 

where improvements need to be made. Some of the most common metrics include: 

• The Dice coefficient: A measure frequently used in image processing to compare 

binary images, and is the most used metric for validation of segmentation meth-

ods [40]. It is calculated by the intersection (“AND” operator) of the input images 
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divided by the total number of pixels contained inside each mask according to the 

following expression: 

𝐷𝑖𝑐𝑒 = 	
2	 𝐴 ∩ 𝐵
𝐴 + 𝐵 	= 	

2	𝑇𝑃
2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 	=

2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙  

where A and B represent the two input binary images (in this case the reference 

segmentation and the automated result generated by an algorithm). TP refers to 

the true positives. FP refers to false positives, and FN  to false negatives. 

• Hausdorff distance: Refers to the maximum spatial distance (in voxels) between 

two finite points between input volumes A and B. It is defined as follows [40]: 

𝐻𝐷 𝐴, 𝐵 = max ℎ 𝐴, 𝐵 , ℎ 𝐵, 𝐴  

where h(A,B) is called the directed Hausdorff distance and is defined as: 

	ℎ 𝐴, 𝐵 = 	max
>∈@

min
C∈D

𝑎 − 𝑏  

and || a – b || is the norm between these two points (e.g., Euclidean distance). 

• Jaccard index: Is an overlap metric defined as the intersection between the two 

images, divided by their union. It is defined as [40]: 

𝐽𝑎𝑐𝑐𝑎𝑟𝑑 = 	
𝐴 ∩ 𝐵
𝐴	 ∪ 	𝐵 	= 	

𝑇𝑃
𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 

The Jaccard index is similar to the Dice coefficient, one can be transformed into 

the other as follows: 

𝐽𝑎𝑐𝑐𝑎𝑟𝑑 = 	
𝐷𝐼𝐶𝐸

2 − 𝐷𝐼𝐶𝐸	 
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• Precision: This measure refers to the fraction of selected pixels that are relevant. 

It is also called positive predictive value and is defined as: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 	
𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 

• Recall: This measure refers to the fraction of relevant pixels that are retrieved 

with respect to the total number of relevant pixels. It is also called sensitivity 

and is defined as: 

𝑅𝑒𝑐𝑎𝑙𝑙 = 	
𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒	𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 

 

Although these metrics have the goal of evaluating the performance of a test segmenta-

tion against a reference standard, they have different means to achieve this purpose. The 

Dice coefficient is, by general consensus [40], the most used metric in research papers 

on image segmentation. The Jaccard coefficient is a similar metric to the Dice coefficient 

in that it also measures overlap and thus can be transformed into the Dice coefficient. 

The Hausdorff distance measures the maximum distance between the pixels from the 

two images and thus is different from the overlap metrics (Dice and Jaccard). It is useful 

to determine the outliers of the results produced by the system. This distance will be 

significantly large when a region far away from the target is identified as a lesion (false 

positive). Finally, precision and recall are common statistics used broadly in informatics 

and computer science. As defined above, these metrics combine to give information of 
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how much relevant information is left out from the final result, and how much irrelevant 

information was included as part of the results (false positives and false negatives). This 

provides insights into how well a system is trained (loose-fit vs over-fit) and suggests 

the next steps needed to improve the performance of the system. 

 Although the Dice coefficient is the standard metric for evaluation of segmenta-

tion methods and many other applications in image analysis and is the standard metric 

for replicability studies, it also has some limitations. Some of them include the limited 

insights about outliers that can be detected by distance-based metrics such as the 

Hausdorff metric, the consideration of similarity that occurs by chance (Kappa coeffi-

cient), and that this score does not capture other sources of variability between the re-

gions other than overlap (e.g., variation of intensity) given that it only considers binary 

inputs. 
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Chapter 3: Development of tumor measurement variability maps 
 
3.1 Overview 
 

 
This elaborates on the relevance of accurate segmentation of diagnostic medical 

images for the delineation of ROIs and the generation of meaningful quantitative fea-

tures. Problems in image segmentation that arise from the non-uniform appearance of 

tissues and other factors such as differences in image acquisition hardware and protocols 

are discussed. This chapter explores the methods for determination of variability metrics 

in regions of interest, and how differences in algorithms and input parameters impact 

segmentation performance in brain imaging studies. Different approaches that exist for 

the determination of the tumor boundary can be optimized at the algorithm level to 

improve results that can be generalized to brain tumor segmentation. 

We developed a framework that evaluates the robustness and reliability of differ-

ent segmentation approaches by systematically evaluating the performance of each 

method through a range of input parameters. This process adaptively determined the 

range of parameters to test, and then optimizes the selection of parameters. 

The following subsections include the characterization of the datasets utilized for 

this work, followed in Section 3.5 by a review of the different segmentation methods to 
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provide intuition about the influence of each parameter. Section 3.6 describes the opti-

mization framework and parameter-selection process as well as the results obtained for 

the different algorithms. Finally, a discussion of key findings is provided in Section 3.7. 

 

3.2 Input datasets 
 

To achieve a robust characterization of and quantification of variability and seg-

mentation error, a large dataset of GBM imaging studies was utilized in the experiments 

described in this chapter and the rest of the dissertation. This multimodal imaging data 

was provided from two different sources: a set of 300 subjects from the UCLA Neuro-

Oncology Program (through the UCLA Brain Tumor Imaging Laboratory), and a set of 

220 subjects from The Cancer Genome Atlas (TCGA) [41] curated by the Medical Imag-

ing Computing and Computer Assisted Interventions society (MICCAI). This data from 

the TCGA/MICCAI is a subset of the larger TCGA dataset that was manually annotated 

as part of the MICCAI 2016 tumor segmentation challenge [18, 42]. 

The dataset characteristics for the input datasets are provided in Table 3.1, with 

a more specific characterization of sequence parameters shown in Table 3.2. Standard 

acquisition parameters are presented in Table 3.3 for reference. 

The other dataset used as a training set for the system is the publicly available 

data from the TCGA/MICCAI brain tumor segmentation challenge [18]. This dataset 
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consists of 220 multimodal MRI scans (resolution of 240 x 240 x 154 pixels) as well as 

manually generated contours of the brain tumor region (whole tumor and sub-compo-

nents). The available imaging sequences include T1-weighted, T1-weighted with con-

trast enhancement, T2-weighted, and FLAIR and were acquired according to standard 

parameters described in Table 3.3. 

 

Element Description 

UCLA TCGA/MICCAI 

Total number of cases 300 220 

Number of follow-ups 18 ± 13 (minimum 2, max-
imum 17) 

Only baseline scan was       
available 

Sequence availability T1+C: 90%      T1: 90% 

FLAIR: 70%     T2: 90% 

T1+C: 100%      T1: 100% 

FLAIR: 100%     T2: 100% 

Field Strength 1.5T = 88%     3.0T = 12% No information available 

Reference standard Available for total tumor Available for total tumor and 
the different sub-components 

 
Table 3.1. General information about UCLA and TCGA datasets.  
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 T1+C FLAIR T2 T1 

Slice thickness [mm] 3.24 ± .92 3.99 ± .90 3.42 ± .78 3.36 ± .88 

Echo time [ms] 12 ± 04 111 ± 16 82 ± 25 12 ± 6 

Repetition time [ms] 638 ± 298 8345 ± 
853 

4202 ± 
768 

630 ± 341 

Inversion time [ms] 948 ± 245 2228 ± 
207 

N/A 961 ± 242 

Frequent sequence ex-
ample 

MPRAGE FLAIR TSE MPRAGE 

 
Table 3.2. Parameter characterization of input MRI data (UCLA dataset). It was not pos-
sible to obtain acquisition parameters information for the TCGA/MICCAI dataset (as 
DICOM header was removed from the data) but was assumed to be similar to the stand-
ard parameters for brain tumors. 

 
 

 T1+C FLAIR T2 T1 

Slice thickness [mm] 1 3 3  1 

Echo time [ms] Minimum 100 – 140 80 – 120 Minimum 

Repetition time [ms] < 800 > 6000  > 2500 < 800 

Inversion time [ms] 1100 2500 N/A 1100 

Frequent sequence ex-
ample 

MPRAGE TSE TSE MPRAGE 

 
Table 3.3. References for the standard parameters utilized in brain tumor MRI structural 
sequences [43]. 
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3.2.1 Creation of a reference standard 

Two sources of reference segmentations were used for two sources of data 

utilized in this work. 

3.2.1.1 MICCAI/TCGA 

The MICCAI/TCGA dataset consists of a set of newly diagnosed preoperative 

brain tumor cases with multi-parametric MRI, including T1-weighted (axial 2D acquisi-

tion with 1-6 mm slice thickness), T2weighted (axial 2D acquisition with 2–6 mm slice 

thickness), Fluid Attenuated Inversion Recovery [FLAIR (axial 2D acquisition with 2–6 

mm slice thickness) and post-contrast T1-weighted images (3D acquisition using gado-

linium and 1mm isotropic voxel size) for all subjects. The reference standard was defined 

based on the manual tumor segmentations generated for each case by up to seven raters. 

The final segmentation was assigned by consensus [18,42].  

3.2.1.2 UCLA 

Reference standards for tumor masks are generated manually by trained experts 

using a semi-automated approach that included intensity thresholding. The overall pro-

cess included generation of a manual region of interest, followed by a user-defined 

threshold applied on the three-dimensional volume, and a final manual correction to 

ensure the resulting ROI was correct. This process was performed using AFNI software 

[44]. Although these annotations were generated by trained professionals, there is vari-
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ability associated with the different masks that are produced, which impacts the assess-

ment of the automated approaches and evaluation of the tumor-measurement variability 

maps (confidence maps). 

To measure the variability associated to these annotations, a sample of 50 cases 

(sample determined as detailed in Table 3.5) was contoured by three different experts, 

and each rater segmented the same tumor twice to generate independent measurements. 

The 50 cases included 15 small tumors (≈3k to 9k µL), 18 medium-sized tumors (≈25k 

to 33k µL) and 18 large tumors (≈90k to 150k µL). Subsequently, an inter- and intra-

rater correlation using a kappa statistic (with a probability of chance agreement of zero) 

obtained using the Dice similarity coefficient was performed for all the combinations 

between raters as well as against the same rater. 

The intra-rater agreement refers to how well the same person agrees with his/her 

own results when doing repeated measures of the same object, while inter-rater agree-

ment refers to the comparison between measures of the same object obtained by differ-

ent raters. The values of these two metrics will be high (close to one hundred percent) 

when there is little variation between the results of each measure and will decrease as 

the difference between the two inputs increases. 

Also, a similar experiment was performed to evaluate the variability in the regions 

of the tumor mass where the most variability is found (e.g., the edges). To evaluate this, 

the same algorithm to evaluate variability was performed on the manual tumor masks 
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with the difference that the region of the tumor where all raters agreed was removed (a 

logical AND operation between the tumor masks). The result of both experiments is 

presented in Table 3.4. 

Metric Rater agreement 

Inter-rater agreement (overall) 91% ± 2% 

Intra-rater agreement (overall) 93% ± 1% 

Intra-rater agreement (rater 1) 93% ± 3% 

Intra-rater agreement (rater 2) 95% ± 1% 

Intra-rater agreement (rater 3) 93% ± 3% 

Inter-rater agreement (edges only) 55% ± 8% 

Intra-rater agreement (edges-only) 60% ± 7% 

 
Table 3.4. Intra- and inter-rater agreement on a sample set of brain tumor manual seg-
mentations (complete tumor mask and only-edges tumor masks).  
 

3.2.2 Sample size calculations 

 
Throughout the different experiments and trials made in the subsequent subsec-

tions, a minimum sample size was defined to ensure the results have sufficient statistical 

relevance (power). These calculations were performed using a power analysis of one pro-

portion as it helps to assess whether a population proportion is significantly different 

from hypothesized value. For the purposes of the experiments performed in this disser-

tation and under the general hypothesis that attempts to compare where a given tumor 
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segmentation is similar or not to a manual standard generated by the clinician, we aimed 

to have less than 15% error rate (80% power) and significance level of 0.05, since this 

margin of error is based on clinical standards for GBM evaluation [6,45]. Finally, the 

statistical tests that aid calculation of the appropriate sample size includes tests of non-

inferiority and Receiver Operating Characteristic (ROC) curve power analysis. The for-

mer is used to determine if automated segmentation can produce results that are not 

inferior to the ones produced by the reference method (manual expert segmentation). 

The latter is performed to evaluate the performance of a diagnostic test -clinical assess-

ment by a neuroradiologist - in terms of its false-positive and true-positive ratios with 

respect to the reference clinical assessment which was assumed to be correct [46]. The 

specific results obtained for the different experiments and datasets are summarized in 

Table 3.5.  
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Source Total size 
(# of cases) 

Subset 
(# of cases) 

Purpose 

 

UCLA 

 

300 

 
 

≥ 233a 

- Validation of knowledge-based segmen-
tation method (Chapter 5). The reported 
results include a test on 260 subjects. 

- A secondary sample of 31c cases was uti-
lized for clinical evaluation (Chapter 6) 

 
≥ 50b 

- Used for validation of optimization re-
sults using segmentation algorithms 
(Chapter 3) 

 

 

TCGA 

/MICCAI 

 

 

220 

 

 

≥ 50b 

- Used for the main optimization experi-
ment using segmentation algorithms 
(Chapter 3) 

- This sample was expanded to 84 while at-
tempting to balance the dataset in terms 
of tumor sizes and border properties 
(Chapter 3) 

 

136 

- Remaining cases that were used for train-
ing the multimodal segmentation ap-
proach developed in Chapter 5. Consid-
ering that only the TCGA/MICCAI da-
taset contained labels for the different tu-
mor components. 

 
Table 3.5. Sub-divisions of input datasets and statistical considerations regarding sample 
size for the different studies and experiments described in Chapters 3, 4 and 5. Super-
script “a” indicates a power analysis test of non-inferiority of one mean (t-test). Super-
script “b” indicates a power analysis of one proportion. Superscript “c” indicates a ROC 
curve power analysis test. All tests were performed aiming to obtain 80% power, with a 
15% error range and a significance level of .05. 
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3.3 Data preprocessing  

 
Before the optimization and segmentation processes, a series of pre-processing 

steps encompassing image registration, intensity normalization, image denoising, and 

removal of non-cerebral tissues (skull-stripping) took place. The following steps were 

implemented to reduce possible sources of error such as motion, intensity anomalies, 

and removal of unwanted skull tissue: 

- Image registration. Image registration of all selected sequences to a normalized 

space (i.e., MNI_152_1mm atlas) was accomplished using the FMRIB Linear Im-

age Registration Tool (FLIRT) [46-48], a fully automated, robust, and accurate 

tool for linear (affine) intra- and inter-modal brain image registration. Registra-

tion helps to correct variations in the different scans (rotations, translations, 

slight deformations, etc.) and allows the visualization and measurement of tumor 

subcomponents in all MRI sequences, for instance visualizing areas of edema in 

post-contrast T1-weighted images. 

- Image denoising and bias correction. Image correction was done using a noise 

reduction filter and the bias correction tool implemented in the Statistical Para-

metric Mapping (SPM) toolbox [49]. MR images often are corrupted by a smooth, 

spatially varying intensity modulation (bias). These artifacts, although not usually 

a problem for manual visual inspection, can impede automated image processing, 
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affecting image intensity distribution and textural patterns. The SPM algorithm 

models the bias field as a multiplicative n-dimensional random vector with zero 

mean Gaussian prior probability density, allowing the bias field to be treated as 

an additive artifact, calculated from the maximum intensity projection [50]. 

- Intensity normalization. The pixel values of the input files are adjusted to modify 

the original histogram distribution to a normalized scale. Normalization is used 

often when comparing across subjects (or time), and when the pixel intensity it-

self is not as relevant for the analysis compared to the interactions with the other 

elements or the location on image grid [49]. This adjustment in the intensity dis-

tribution was performed using the non-parametric non-uniform intensity normal-

ization (N3) algorithm, a popular method for MRI processing [51]. 

- Skull stripping. Intracranial segmentation (or skull-stripping) removes non-cere-

bral tissues such as skull, eyeballs, and skin. Out of the several options tested 

(e.g., BET, SPM, 3DSkullStrip), the 3DSkullStrip approach was selected. This au-

tomatic tool is part of the AFNI package [44] and is a modified version of BET 

[52]. It uses the spherical surface expansion paradigm and includes adjustments 

to avoid eyes and ventricles, reduce leakage into the skull and use data outside 

the surface to guide the surface evolution. Even though the registration step par-

tially allows for the use of a default brain mask, this step helps to obtain better 
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overall results including better-defined brain margins. and use cases with signifi-

cant deformities that are harder to fit with a general brain mask such as tumor 

recurrence cases with resection cavities. 

 
3.3.1 Evaluation of Registration Error 

 
Although the main objective of this project is to evaluate the variability observed 

when using different approaches to measure the tumor boundary and evaluate the clini-

cal implications of tumor segmentation variability, the processes that take place before 

the segmentation (e.g., image registration) are also susceptible to variation and error 

(Table 2.8).  

An experiment was performed to evaluate registration error influences on the tu-

mor boundary obtained from the segmentation process. The overall process is illustrated 

in Figure 3.1. An exploratory random sample of ten subjects from the UCLA dataset (five 

FLAIR and five T1 with contrast enhancement volumes) were selected to undergo image 

registration [47] using different parameter combinations, obtaining a total of 80 differ-

ent combinations per subject (Table 3.6). After all the registration results were obtained 

(a total of 800 different results), a tumor mask for each of these volumes was generated 

and, by using the inverse transformation matrix obtained at the registration step, the 

tumor masks were transformed back into the original space before the registration oc-

curred. 
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After the masks were warped to the original space, the similarity between those 

results and an initial reference was measured using the Dice coefficient. Given that the 

segmentations were verified to be accurate in each case, the differences observed in the 

similarity evaluation were assumed to be due to the different registration parameters 

used for each case. 

 

	
	
Figure 3.1. The overall process followed for the evaluation of registration variability. The 
input volumes are registered using different registration parameters, then a tumor mask 
is obtained for each case and transformed to the original image space (tumor mask’). 
Finally, these tumor regions were compared with a reference standard to obtain variation 
metrics. The differences observed from each tumor mask with respect to the reference 
indicates the error introduced by the registration process. 
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Parameter Parameter options 

Degrees of freedom 
(model) 

12 (affine), 9 (traditional), 7 (global rescale),         
6 (rigid body). 

Cost function 
Correlation ratio, mutual information, normal-
ized mutual information, normalized correlation 
and least squares. 

Interpolation Tri-linear, nearest neighbor, spline, sinc. 

 
Table 3.6. Different parameters for image registration. These parameters control how 
the registration algorithm evaluated the goodness of fit for a certain solution, the degree 
of deviation the different images can have between each other (similarity), and the 
method used to produce the missing locations on the image volume when resampling to 
the new image space.	
 

This evaluation using Dice coefficients helped characterize the in-plane variation 

(observed as displacement on the x- or y-axis) measured as the overlap of the ROIs on 

each slice, and the through-plane variation (slight shifts on the z-axis) as the similarity 

is evaluated in three-dimensions. 

The average similarity observed overall in these different experiments was 94.9%; 

therefore, the measured variability due to image registration is 5 ± 1%. The variability 

observed only for the FLAIR sequences was 5 ± 3% and for post-contrast T1 6 ± 2%. 

Although there is a measurable amount of error added from the registration process of 

the imaging volumes, the amount of variation observed in these experiments was less 

than 15%, defined according to clinical guidelines as discussed in Section 3.2.2. Addi-

tionally, the registration step is not a component of the segmentation methodologies as 
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they do not require spatially aligned images as input.  Registration error was not consid-

ered for the remainder of this work, although other considerations about the role of 

registration in the imaging pipeline are further discussed in Chapter 6. 

 

3.4 Experiment set-up 
 

Distinguishing tumor from surrounding normal tissue is frequently challenging 

in imaging studies given tumor variability, discontinuous borders and, fuzzy tissue 

boundaries. As a result, both computational approaches and even experienced radiolo-

gists can have difficulty achieving consistent and accurate segmentation and classifica-

tion results [7, 53]. As a consequence, if automated segmentation is to yield reliable 

boundaries from which meaningful quantitative features can be extracted, the choice of 

algorithm and input parameters needs to be adapted for specific types of images and 

segmentation tasks [16-54]. 

This study presents a framework to discover the optimal segmentation method 

and parameters to use given a set of input images with objects of interest with non-

uniform boundaries. This evaluation was accomplished by performing a sensitivity anal-

ysis for each algorithm, finding the parameter ranges that achieve the most accurate and 

consistent segmentation result using the Dice similarity coefficient compared to the 

manual labeling of the input data. 
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The process described in this section is illustrated in Figure 3.2. The development 

of this framework included a sample of 84 subjects. This subset of the TCGA/MICCAI 

dataset was selected based on the statistical power calculations shown in Table 3.5.  This 

dataset was utilized given that a manual reference standard for all different tumor sub-

components was available. This sample reflects a range of tumor sizes (from 9.3 cm3 to 

388.9 cm3 total tumor volume, including edema, and morphological characteristics 

(smooth, irregular margins). Cases were split into 80% for training and 20% for testing. 

The input images are preprocessed as described in the previous section and seg-

mented using different existing algorithms. Each of the segmentation methods was eval-

uated and optimized on the annotated training examples, and compared based on the 

degree of variability observed in the segmentation results given the utilized parameters. 

 

 
Figure 3.2 Overall steps in the pipeline processing scheme from the data input to the 
generation of the final tumor mask, and the optimal combination of segmentation pa-
rameters. The dotted line indicates a repeated process (i.e., a for loop). 
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Evaluations 1 and 2 are iterative steps in which different parameter values are 

fully evaluated. Evaluation 3 uses a popular optimization algorithm to provide an alter-

native to the complete parameter search. Comparison of results and processing time is 

commented on in the discussion section. Finally, a five-fold cross-validation was used to 

obtain the optimized parameters for each method. 

The contribution of this section is a generalizable process for identifying the seg-

mentation approach that produces accurate and consistent tumor boundaries across the 

input dataset. As with all supervised learning methods, this framework requires an initial 

set of reference annotations from which the optimal algorithm and set of parameters can 

be determined; nevertheless, the process of discovering the optimal approach is fully 

automated, including the definition of a seed point/region [55] and the selection of 

which parameter values to test. 

 

3.5 Evaluation of variability in different segmentation approaches 
 

For this section, four different types of segmentation methods were evaluated: 

region-based, edge-based, level-set, and multilevel segmentation approaches. These 

methods have been applied in a variety of medical image-analysis tasks including brain 

tumor segmentation [56-62]. Besides their widespread use, these methods were selected 
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because each has a set of parameters that employ different imaging aspects to modify 

the algorithm behavior and influence the output ROI. In the following sub-sections, we 

briefly describe these selected methods. 

 

3.5.1 Region-based Segmentation 

 
This method detects the tumor boundaries based on energy, area, and length 

measurements to maximize the difference between the inside and outside of an object 

[63]. During the original development of this algorithm, an initial ROI defined as a 

bounding box is required. The algorithm then evolves the ROI guided by calculating an 

energy metric (minimal partition problem) [64] based on the gradient of the objects 

inside the initial ROI. This process was repeated several times (curve evolution) using 

the “mean-curvature flow evolution method.”  

This edge detection method relies on minimizing the internal and external energy 

found inside the polygon, which is seen in practice as the ROI moving inward or outward 

according to the algorithm parameters a, b, and l (smoothness, rigidness, and object-

attracting force, respectively) [65]. The energy minimization considers the image (u0) 

average intensity values on the regions contained inside and outside the contour C, as 

defined in the equation below. The algorithm converges when the average intensity be-

tween both sides is the most different and the individual regions are homogeneous. Then 
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the following fitting term is applied [64]: 

𝐸 𝐶, 𝑐Q, 𝑐R = 	𝜇 ∙ 𝐿𝑒𝑛𝑔𝑡ℎ 𝐶 + 	𝜏 ∙ 𝐴𝑟𝑒𝑎 𝑖𝑛𝑠𝑖𝑑𝑒 𝐶 																																

+ 𝜆Q 𝑢X 𝑥, 𝑦 − 𝑐Q R𝑑𝑥	𝑑𝑦
	

[\][^_(a)
+ 𝜆R 𝑢X 𝑥, 𝑦 − 𝑐R R𝑑𝑥	𝑑𝑦

	

cde][^_(a)
 

where the energy functional E is the calculated energy value for any C curve at any iter-

ation, c1 and c2 are the average intensity values located inside and outside of the current 

contour, and l1 and l2 are regularization terms. Also, µ and t  are regularization terms 

length and area respectively. If the average intensity of the object is very similar to the 

background in the object region, the method will have more trouble finding the correct 

boundary. 

3.5.2 Edge-based segmentation 

This technique is based on the minimization of the distance measured in geodesic 

maps, formed according to intrinsic geometric image measurements [66-68]. It also con-

siders a measure of image energy as the contour evolves that is calculated in a distinct 

manner compared to the previous approach. In general, this approach finds the curve 

that minimizes the measured geodesic distance (the local shortest paths between points 

in space) as well as the curve energy. This energy (active contour component) helps to 

locate the boundaries that are defined on the gradient originating from the image, and 

the geometric aspect allows for stable boundary detection when their gradients suffer 
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from large variations, also allowing it to divide or merge as needed. The model for bound-

ary detection is defined in the following way [68-69]: 

𝜕𝛼
𝜕𝑡 = 𝑔 𝐼 ∇𝛼 div

∇𝛼
∇𝛼 + 𝜀𝑔 𝐼 ∇𝛼 = 	𝑔(𝐼)(𝜀 + 𝜅) ∇𝛼  

where a is defined as a = (e+k)|∇a|, and e changes in function of e = (E(t) / N) - k, 

where E(t) is known as the Euclidean heat flow, N is the normal inward to the curve and 

k is known as the Euclidean curvature; ∇a attracts the curve to the boundaries of the 

object, and g(I) is the stopping function defined by the force of the external regions of 

the image. The main goal of g(I ) is to stop evolving the curve when it arrives at the 

object’s boundaries. The curve stops evolving when the measured distance equals zero 

or when the maximum number of iterations is reached. 

The curve evolution in this method is independent of the image topology, mean-

ing that there is no need to know the structure of the solution to be able to run this 

method. It also allows detection of objects in the image without requiring information 

about their number or shape characteristics. It can also handle situations where the 

boundary has high gradient variations or small gaps (frequent in real images) [70-71]. 
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3.5.3 Distance Regularized Level-Set Evolution 

The distance regularized level-set evolution method (DRLSE) is a contour evolv-

ing algorithm that allows for cusps, corners, and automatic topological changes. It starts 

with an initial ROI in the input image, and it changes automatically to adjust to the 

optimal boundary of the object of interest. Different from the standard level-set method, 

the DRLSE does not need a reinitialization step throughout the process [72-74]. This 

method was formulated as a gradient flow that minimizes an energy measurement with 

the addition of a distance regularization term, and an external energy term that drives 

the motion of the initial level set toward the locations of the edges. The distance regu-

larization term has a potential function (a signed distance profile near its zero-level set) 

that aides the level-set function to reach its minimum points, stabilizing the shape of the 

level-set function. 

The mechanism used by the DRLSE method to maintain numerical stability with-

out reinitialization is described as an energy minimization with distance regularization, 

x(f), as follows [74]: 

x 𝜙 = 	s𝑅n 𝜙 + x_oe(𝜙) 

where Rp(f) is the level set regularization term; s is a positive constant (similar to a 

weighting factor of the regularization term), and xext is the external energy that reaches 
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a minimum when the level set is located on the object boundary or edge. The overall role 

of Rp(f) is to maintain the distance property of the level-set function, defined as: 

𝑅n 𝜙 = 	 𝑝( ∇𝜙 )𝑑𝑥
	

q
 

where p represents the energy density function or potential function (p>0), this function 

often has a smoothing effect but also maintains the signed distance property (∇f) that 

ensures an accurate computation during the curve evolution. 

3.5.4 Multilevel Segmentation 

This approach is based on segmentation by the weighted aggregation (SWA) al-

gorithm [75], which is a fast and effective approach that uses the concept normalized 

cuts [76] to achieve image segmentation. It also includes the use of a class of models 

using a Bayesian approach to represent the different characteristics of the object of in-

terest [77]. 

The SWA algorithm aims to extract multi-scale segments that are classified using 

a decision tree algorithm based on the calculation of affinities between regions of the 

image. The incorporation of a model for classification develops a modified SWA algo-

rithm that can use class-based probabilities that integrates the classes of the model with 

the affinity measurements 
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To define the weighted aggregation segmentation, a graph with different levels 

(pyramidal approach) is used to represent a multimodal intensity vector for every voxel 

in the image. In this pyramidal model, the finest layer was produced by taking every pixel 

in the lattice individually, and then the next levels are calculated by evaluating the affin-

ity of each pixel using a six-neighbor connectivity scheme. The node affinities are calcu-

lated as a saliency coefficient [78], which is defined as: 

Γ 𝑅 =
𝑣 ∉ 𝑅tuv	

d∈w

𝑅tuv	
d,x∈w

 

where G is the saliency coefficient, u and v are the nodes defined in the image R and w 

is the weight that represents the affinity between two nodes. This affinity w is normally 

defined as w = exp(-D(su, sv, q)), where D is a non-negative distance and theta is a prede-

termined parameter that controls the saliency parameter, and su and sv denote the current 

property or statistic being measured at graph nodes u and v. 

Subsequently, the SWA algorithm proceeds by iteratively producing the different 

levels by reducing the complexity of the image using the following approach: 
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Pseudocode 3.1. Multilevel segmentation of brain images 
 
1. Initialize at time t0 preliminary grid on finest level 
2. Define nodes defined by the voxel neighbors 
3. Choose a representative set of nodes such that 𝑤dx	

x∈w 	≥ 	𝛽 𝑤dx	
x∈|  

4. Define graph Gt+1 = (Vt+1 , et+1): 
a. Compute interpolation weights 𝑃 = 	𝑤d} 𝑤d|	

x∈x~
 

b. Accumulate statistics to current coarse level and interpolate affinity from 
finer level 

c. Use coarse affinity to modulate the interpolated affinity                                  
w = exp(-D(su, sv, q)) 

d. Create an edge et+1 between U ¹ V Î Vt+1 when Wuv ¹ 0. 
5. Increase t to t+1 
6. Repeat steps 2 through 4 until V =1 or e=0 

______________________________________________________________________________ 

The parameter β in step two governs the amount of coarsening that occurs at each 

layer in the graph (empirically defined as 0.2). During step three, the affinity parameter 

w includes the finer level (scale) affinities which are interpolated to the more general 

level; a similar process is followed for all the regions of the image. 

Finally, to extract the object of interest from the pyramid, a class likelihood function 

is computed using the Bayesian affinity model. For each voxel, the most likely class is 

computed at each level in the pyramid. Node memberships for the more general pyramid 

levels are calculated by the SWA interpolation weights so that at the end every voxel is 
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labeled as the class for which it is part of at the biggest number of levels along the pyra-

mid. Examples of results generated by this algorithm can be observed in Figure 3.8. 

Figure 3.8. Example of the output of the multilevel segmentation algorithm. The differ-
ent levels and clusters in each of them are dependent on the affinities that are calculated 
among pixels and the input parameters to the algorithm 

 

3.6 Methods and results 
 
3.6.1 Parameter Evaluation 
 

The robustness of each segmentation method was assessed by systematically eval-

uating the different parameter combinations for each algorithm, and then finding the 

optimal parameter values. The optimization process proceeded in three parts. First, a 

broad parameter search to identify the plausible range for each parameter, considering 

the influence of the parameter on the final ROI (Evaluation 1). Second, a more granular 

search of the parameter space was conducted to determine the optimal value for each of 

the test parameters (Evaluation 2). Third, in parallel, we also explored an optimization 

algorithm as a faster alternative to find the optimal parameter values. We compared the 
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results and parameters identified using this method versus doing a full search (Evalua-

tion 3).  

These evaluations were performed separately in the T2-weighted input images 

(FLAIR and T2) and T1-weighted images (T1 with contrast enhancement) to assess dif-

ferences in parameter optimization findings given the imaging contrast parameters. T2-

weighted sequences are used often to measure total tumor extent with edema regions, 

while T1 with contrast is used to delineate enhancing and necrotic tumor regions (also 

known as core-tumor) [2,17]. 

To begin the optimization, the initial parameter values were set either to their 

default values defined in reference publications [64, 67, 68, 73, 74, 77] or to neutral non-

contributing values according to the mathematical definition. Table 3.7 shows the pa-

rameters that were identified within each algorithm and were used in the described op-

timization experiments. It is worth noting that for the multilevel segmentation the num-

ber of levels was not a parameter to optimize. Since all the output levels were generated 

and tested when defining the output boundary, it is possible to check all levels for the 

cases as it is computationally efficient.  

The resulting ROI from each segmentation test was compared to the reference 

standard using the Dice similarity coefficient. As previously discussed, the Dice coeffi-

cient was used as it provides a direct comparison between the automatic and ground 
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truth segmentations, and normalizes the number of true positives to the average size of 

the two segmented areas. 

Finally, the input dataset of 84 subjects was stratified based on tumor volume and 

tumor boundary characteristics. The categorization by size included a division of input 

cases in three equally-sized groups based on the total tumor volume, including the region 

of edema. The mean tumor volume was 49.2 ± 20.1 cm3 for small tumors, 98 ± 14.3 cm3 

for medium-size tumors, and 187.6 ± 63.7 cm3 for large tumors. For the classification of 

tumor boundaries, two groups were defined: smooth and irregular. The groups were 

found by splitting the total number of subjects into two groups according to a surface-

to-volume ratio calculation used as a proxy for surface smoothness (also known as sphe-

ricity) [79]. A threshold value of 0.63 was defined in order to have equally sized groups 

(for both T1- and T2-weighted sequences). To evaluate for statistically significant differ-

ences in segmentation performance between the different methods and the different sub-

groups, we used a one-way analysis of variance (ANOVA) test. 
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Algorithm Parameter Description 

 
 

Region-
based 

segmenta-
tion 

Foreground 
weight 

Weight inside contour currently being evolved. 

Background 
weight 

Weight outside contour currently being evolved. 

Smooth factor Gaussian filter (smoothing filter) that affects the de-
tails observed on edges. 

Contraction 
bias 

A coefficient that biases the evolving contour towards 
a shrinking or expanding behavior.  

 
 
 

Geodesic 
segmenta-

tion 

Advection 
weight 

Controls the sensitivity to the local gradient direction. 
It is a component of the calculation of the speed or 
rate of change parameter.  

Exponent Exponent used in the calculation of the stopping func-
tion.  

Smooth factor Gaussian filter (smoothing filter) that affects the de-
tails observed on edges.  

Contraction 
bias 

A coefficient that biases the evolving contour towards 
a shrinking or expanding behavior. 

 
 

Distance 
regularized 

level set 

Weighted 
length coeffi-

cient 

Coefficient that weights the length of current contour 
to control curve evolution.  

Weighted area 
coefficient 

Coefficient that weights the total area inside current 
contour to control curve evolution.  

Width of the 
Delta function 

Refers to the alpha coefficient on delta function used 
while updating contour.  

Scale of Gauss-
ian kernel 

Controls the lambda coefficient on Gaussian kernel, 
used as smoothing factor.  

 
 
 

Cut salient seg-
ment coeffi-
cient (CSSC) 

Binary indicator that controls the method to follow 
when dealing with the edges between the different 
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Multilevel 
segmenta-

tion 

sections of the image (to cut-off the edges or to keep 
them). 

Fine affinity 
coefficient 

(FAC) 

This coefficient has a parameter (defined as Theta on 
the affinity formula w= q|iu-iv|). Works as a weight 
and it usually takes a value of 10. 

 

Strongly con-
nected coeffi-
cient (SCC) 

Parameter referred as beta on the weighted aggrega-
tion segmentation. It is usually set as two. 

Interpolant cut 
coefficient 

(ICC) 

The percentage of total volume an edge needs to have 
from a fine node to be connected to the coarser node. 
The higher this value, the fewer connections in the fi-
nal result. 

 

Table 3.7 A summary of the parameters that can be varied for each algorithm and a short 
description of the role of that variable on the behavior of the segmentation approach. 
 

3.6.1.1   Evaluation 1: Broad parameter search 

The initial evaluation was aimed to determine the range of permissible values for 

each parameter from which the optimal parameter can be found. The goal is to discover 

the range of input values that yield meaningful results that are not grossly over- or under-

segmented. Initially, a coarse sampling of the parameter combinations was performed to 

establish a more constrained interval on which a more granular investigation of optimal 

parameter combinations could be performed. The initial interval was defined by itera-

tively testing different parameter values and constraining the interval according to the 

similarity values obtained using the Dice coefficient. If the Dice coefficient was found to 
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be 0 (i.e., no overlap between the segmentation and the reference standard), that param-

eter value was assumed to be invalid. 

Two examples are provided to illustrate the results of a broad parameter search. 

The contraction bias parameter in the region-based approach helps modulate the ROI 

evolution to shrink or expand more rapidly. While the parameter may be any value be-

tween −1 to 1 (i.e., a positive or negative proportion), the broad parameter search further 

narrows this range from -0.5 to 0.35. Similarly, in the DSLRE segmentation method, the 

kernel width parameter can have a wide range of real values and its tuning directly affects 

how the ROI edges are defined. For this dataset, the broad parameter search narrowed 

this range from any integer to values ranging from 1 to 11. 

 

3.6.1.2   Evaluation 2: Refined parameter search 

 
After the broad parameter search identified the minimum and maximum values 

for each parameter to test, a refined search was performed using more granular steps. 

The selection of what additional parameters to test was made adaptively based on the 

magnitude of change in Dice similarity coefficients. Based on the prior results of tested 

parameters, additional values were selected according to the trend (gradient) observed. 
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The different parameter combinations were tested using permutations without 

repetition. Each parameter was tested and optimized one at a time, varying and evaluat-

ing the performance of one parameter at a time while leaving the others constant, but at 

the end testing all possible values. If the best performing parameter combination (the 

combination that achieved the highest Dice coefficient) included a parameter value that 

existed on the boundary, the initial interval was expanded to cover additional parameter 

values in that direction until the global optimum was found. The parameter value that 

achieved the optimal segmentation result varied across cases; hence, the selected param-

eter was determined to be the most frequent value of the different optimum values ob-

tained across all training subjects. 

 

3.6.1.3   Evaluation 3: Optimized parameter search 

 
The simplex method [80] is a popular optimization method that searches through pos-

sible different solutions (i.e., combinations) until the optimal feasible solution is ob-

tained based on comparison with an objective function, in this case, the Dice coefficient 

as described in [81]. This method has been used on a variety of image processing ap-

proaches, with good performance and reduced computation time for each iteration [82]. 

Specifically, we used the dual-simplex approach, which represents an improvement of 

the original algorithm that produces more robust results. It adds more constraints to the 
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possible solution set and avoids possible infinite cycles that can occur in some cases. The 

objective function was to minimize the error observed in the segmentation methods (i.e., 

similarity coefficient expressed in terms of true positives and true negatives). The input 

conditions were given by the different parameter combinations. The optimal set of pa-

rameters was discovered based on the optimal performance (minimum error) provided 

as output from the algorithm. Table 3.8 shows the results obtained for this evaluation. 

We also evaluated whether the simplex approach achieved the same results as the ex-

haustive search (Evaluations 1 and 2). 

It is important to note that the Simplex algorithm was utilized as an example of 

one of the many optimization algorithms that have been developed. It was selected be-

cause of its interpretability, speed of calculation and also because of its good performance 

on other medical image analysis applications. Other approaches like gradient descent or 

other stochastic optimization methods can be utilized in this framework to obtain the 

same results.  
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 Parameter FLAIR 

(M±SD) 

T2  

(M±SD) 
T1+C 

(M±SD) 
Simplex 
(M±SD) 

Default 
(M±SD) 

 
 
 
 

Region-
based 

segmen-
tation 

Smooth        
factor 

0 ± 0 0.6 ± 0 0 ± 0 0 ± 0 0 ± 0 

Contraction 
bias 

0 ± 0 -.25 ± .1 0 ± 0 0 ± 0 0 ± 0 

Foreground 
weight 

8 ± 0 8 ± 0 8 ± 1 6 ± 2 1 ± 0 

Background 
weight 

4 ± 0 8 ± 1.7 4 ± 0 4 ± 0 1 ± 0 

Dice coefficient 
across all test sets  

.75 ± .05 .73 ± .02 .61 ± .08 .72 ± .03 .70 ± .01 

 
 
 
 
 
 

Edge-
based 

segmen-
tation 

Smooth       
factor 

1 ± 0 5 ± 0 1 ± 0 3 ± 0 1 ± 0 

Contraction 
bias 

-0.25± .1 -0.25± .1 0.5 ± 0 -0.25 ± 0 .3 ± 0 

Advection 
weight 

8 ± 1.7 8 ± 0 8 ± 0 5 ± 2.3 1 ± 0 

Exponent 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0 

Dice coefficient 
across all test sets 

.80 ± .01 .78 ± .02 .72 ± .05 .73 ± .07 .52 ± .02 

 
 

Distance-
regular-

ized 
level-set 

Length weight 8 ± 0 8 ± 0 8 ± 0 8 ± 0 5 ± 0 

Area weight -2 ± 0 -4 ± 1.6 -8 ± 1.6 -4 ± 0 -3 ± 0 

Delta width 1 ± 0 1 ± 0 5 ± 0 1.2 ± 0 1.5 ± 0 

Kernel width 1 ± 0 1 ± 0 1 ± 0 1 ± 0 8 ± 0 

Dice coefficient 
across all test sets 

.74 ± .27 .67 ± .18 .78 ± .30 .68 ± .32 .35 ± .16 
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Multi-
level seg-
menta-

tion 

Fine affinity 
coeff. (FAC) 

1 ± 0 1 ± 0 1 ± 0 1 ± 0 10 ± 0 

Strongly conn. 
coeff. (SCC) 

0.3 ± 0.1 0.2 ± 0.1 0.5 ± 0.3 0.2 ± 0.2 0.2 ± 0 

Interpolant cut 
coeff. (ICC) 

0.6 ± 0.1 0.4 ± 0.2 0.7 ± 0.1 0.6 ± 0.3 0.4 ± 0 

Cut salient   
coeff. (CSSC) 

1e-6 ± 0 1e-6 ± 0 1e-6 ± 0 1e-6 ± 0 1e-6 ± 0 

Dice coefficient 
across all test sets 

.82 ± .07 .78 ± .16 .76 ± .21 .68 ± .17 .71 ± .23 

 
Table 3.8 Results from optimization and cross-validation experiments. Showing param-
eter ranges for each method on first four rows (mode ± standard deviation across all 
folds) and the associated Dice coefficient for each case on the fifth row. Results for 
FLAIR, T2, simplex, and default values are measured with respect to the total tumor 
(core tumor and edema region) and the results for T1+C only include the core tumor 
(enhancing and necrotic regions) 
 
 
3.6.2 Performance across different MRI sequences  

 
Evaluations and cross-validation were performed on all subjects, automatically 

testing 108,948 different combinations for each segmentation approach (region, edge, 

and level-set) and sequence (T1+C, FLAIR, T2). 

The results in test cases represent an improvement compared to the results ob-

tained using the default parameters, showing the largest improvement on the level-set-

based algorithm and demonstrating that the optimization on methods parameters trans-

lated to a sensible improvement in segmentation performance (Table 3.8). The optimized 
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parameters found on the T2-weighted sequences (T2 and FLAIR) presented some simi-

larity but were not the same, suggesting that other factors besides image intensity—such 

as overall tumor size or tumor border variability— may be influential to define whether 

a segmentation method is able to delineate the tumor boundary reliably. 

The number of high-performing combinations defined as a Dice similarity coeffi-

cient > 0.9 across all methods ranges from 56 (level-set based) to 412 (edge-based), 

representing only 0.05% and 0.38% respectively of the parameter combinations that 

were tested. The mean Dice coefficient for region-, edge-, level-set-based and multilevel 

segmentation methods on the T2-weighted sequences were 0.772 (0.743–0.801; 95% 

CI), 0.809 (0.788–0.830), 0.803 (0.782–0.823), and 0.762 (0.722–0.834), respectively. 

In the same way, the mean Dice coefficient on the T1-weighted sequences were 0.538 

(0.485–0.591), 0.619 (0.570–0.668), 0.630 (0.582–0.678), and 0.659 (0.614–0.704), re-

spectively. These lower values on T1 sequences are believed to have occurred because 

the combination of hyper- and hypo-intense tumor components (enhancing and necro-

sis) contribute towards increased boundary variability (more information about it can be 

found in the discussion section for this chapter). The edge-based approach had the larg-

est proportion of combinations (n=412) with a high performance, suggesting that the 

edge-based approach is more robust (i.e., less sensitive) to parameter perturbations, and 

is, therefore, likely to provide better results in datasets with highly variable appearance. 

Figures 3.3a and b show some examples of the output segmentations for each approach.  
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Table 3.9 summarizes the parameters that appeared most frequently in the high-

est-performing cases or the lowest-performing cases. The parameters that produced the 

lowest overall performance may be related to differences in the imaging aspects consid-

ered by the segmentation method. For example, although the mathematical definition of 

the edge-based approach indicates that the “exponent” parameter can take a value of 1 

or 2, this second value does not perform better than a value of 1 in most cases. This 

observation could be because more complex terms might trigger bigger changes that 

affect the curve evolution process. Table 3.10 shows the correlation coefficients calcu-

lated for the different pairs of parameters for each segmentation method. No highly cor-

related parameters were discovered.  

 

3.6.3 Performance comparison between default and optimized parameters 

 
The results presented in Figure 3.4 show the difference in performance using a 

five-fold cross-validation when comparing each segmentation based on their default ver-

sus optimized parameters stratified by MRI sequence used. For the T2-weighted images, 

we found a statistically significant improvement on the edge-based (0.480–0.553 vs 

0.788–0.830, 95% CI; p = 0.012), level-set-based approaches (0.202–0.320 vs 0.782–

0.823, 95% CI; p = 0.034), and multilevel segmentation (0.492–0.631 vs 0.714–0.823, 

95% CI; p = 0.011). We observed that the region-based approach produced the best 
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mean segmentation accuracy when using the default parameters. Results improved only 

marginally after the optimal parameters where utilized (0.711–0.771 vs 0.743–0.801, 

95% CI; p = 0.829). Although we found differences between the optimal and default 

parameter values, especially in the foreground and background weights, they were not 

influential in defining the final tumor boundary. 

The same trends were observed in the T1-weighted images. The Dice coefficients 

obtained with the T1-weighted images are lower overall than in the T2-weighted case 

for the region (0.454–0.553 vs 0.743–0.801, 95% CI), edge (0.385–0.479 vs 0.788–0.830, 

95% CI), level-set methods (.387-.478 vs .782-.823, 95% CI), and multilevel segmenta-

tion (0.540–0.682 vs 0.573–0.724, 95% CI). The lower performance in the post-contrast 

T1-weighted scans may be due to the attempt to quantify enhancing and necrotic tumor 

components (and non-enhancing tumor in-between) simultaneously. The variability be-

tween these different tumor parts could cause the algorithms to struggle to find the best 

boundary. The degree of variability of the enhancing regions is more challenging for seg-

mentation methods to delineate than the smoother, lobulated edges that are observed 

on T2-weighted images representing regions of edema (Figure 3.4). This trend on lower 

performance in post-contrast T1 was observed in other previous studies [18]. 
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Method Criteria Name Interval 

 
 

Region-
based seg-
mentation 

 
Recurrent parameters in high-

performance cases 

Smooth factor 
Contraction bias 

Foreground weight 
Background weight 

[0,0.6] 
[-.1, .1] 

[7,8] 
4, 8 

 
Recurrent parameters in low-

performance cases 

 
Background weight 

 
0 
 

 
 

Edge-
based seg-
mentation 

 
Recurrent parameters in high-

performance cases 

Smooth factor 
Contraction bias 
Advection weight 

Exponent 

[1,5] 
[-.5, 0] 
[4,8] 

1 
 

Recurrent parameters in low 
performance cases 

Contraction bias 
Exponent 

[-.6, -.2] 
2 

 
Distance-

regularized 
Level-set 

 
Recurrent parameters in high-

performance cases 

Length weight 
Area weight 
Delta width 
Kernel width 

[7, 8] 
[-10, -2] 

[1, 5] 
[1, 3] 

Recurrent parameters in low-
performance cases 

Delta width [7,9] 

 
Multilevel 
segmenta-

tion 

Recurrent parameters in high-
performance cases 

Fine affinity coeff. 

Cut salient coeff. 

[1] 

[1e-6] 

Recurrent parameters in low-
performance cases 

Fine affinity coeff. 

 

[15, 20] 

 
Table 3.9 Parameters and parameter values that were part of the combinations that pro-
duced the best performing results and also the ones that produced the lowest similarity 
coefficients  
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Figure 3.3a Comparative example (T1+C) of resulting ROIs obtained for one subject, 
comparing the default (left) and optimized (right) parameters. 
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Figure 3.3b Comparative example (FLAIR) of resulting ROIs obtained for one subject, 
comparing the default (left) and optimized (right) parameters. 
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3.6.3 Performance across different tumor morphology 

 
Figure 3.5 and Table 3.11 depict the results obtained for the test datasets stratified 

by tumor size (small, medium, and large as described in Section 3.2). When default pa-

rameters are utilized, the region-based approach produced results that were significantly 

better in all three tumor sizes than the other two methods shown in Figure 3.5 (For large 

tumor sizes: 0.711-0.771 vs 0.480-0.553, 95% CI, p = 0.016 and 0.711-0.771 vs 0.202-

0.320, 95% CI; p = 0.003). When optimized parameters were used, an improvement was 

observed across all four methods and was especially noticeable in large tumor sizes for 

the region (0.816-0.853, 95% CI, p = 0.347), edge (0.815-0.858, 95% CI, p = 0.002), 

level-set (0.800-0.845, 95% CI, p = 0.001), and multilevel segmentation (0787.-0.834, 

95% CI, p = 0.116) methods. Notably, the most marked improvement was seen for the 

level-set and the edge-based approaches.  

Additionally, Table 3.12, with Figures 3.6a and 3.6b (T1-weighted and T2-

weighted contrasts, respectively), show the results obtained while analyzing the results 

stratified by tumor boundary. The cases with smoother margins pointed toward less 

overall variability in segmentation results. The use of the optimized parameters im-

proved performance in both smooth and irregular boundaries. We found that the region-

based algorithm had the best performance when the standard parameters were used 

(0.723-0.805 for smooth borders and 0.673-0.763 for irregular borders, 95% CI) while 
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the edge-based approach performed the best when the optimized parameters where uti-

lized (0.819-0.869 for smooth borders and 0.742-0.806 for irregular borders, 95% CI). 

Statistical significance between the results obtained using the default parameters and 

the optimized set was found for the edge-based (0.479-0.599 vs 0.819-0.869, 95% CI; p 

= 0.046), level-set-based (0.194-0.376, 95% CI vs 0.816-0.865, 95% CI; p = 0.032), and 

multilevel segmentation algorithms (0.371-0.532, 95% CI vs 0.691-0.785, 95% CI; p = 

0.022). 

In summary, for the evaluated dataset, the segmentation algorithms achieved a 

higher accuracy in tumors that were larger and more spherical in shape. The cases with 

the lowest Dice coefficients were those that were characterized as small tumors, having 

multiple tumors, having varying pixel intensities across the tumor border, or having 

higher necrosis proportions (greater hypo-intense regions on post-contrast T1). 
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Region-based 
segmentation 

 Smooth 
factor 

Contrac-
tion bias 

Fore-
ground 
weight 

Back-
ground 
weight 

Smooth factor 1 0.041 0.302 0.021 

Contraction 
bias 

0.151 1 -0.36 -0.022 

Foreground 
weight 

0.200 0.167 1 0.299 

Background 
weight 

0.030 0.190 0.170 1 

 
 
 
 

 
Edge-based 

segmentation 

 Smooth 
factor 

Contrac-
tion bias 

Advection 
weight 

Exponent 

Smooth factor 1 0.195 0.272 -0.059 

Contraction 
bias 

0.131 1 -0.026 0.230 

Advection 
weight 

0.174 0.039 1 -0.189 

Exponent 0.025 0.219 -0.147 1 

 
 
 

Distance-reg-
ularized 
Level-set 

 Length 
weight 

Area 
weight 

Delta 
width 

Kernel 
width 

Length weight 1 0.292 0.233 0.115 

Area weight 0.344 1 0.228 0.279 

Delta width -0.014 -0.048 1 0.198 

Kernel width -0.032 -0.162 0.242 1 

 
Table 3.10 Pearson correlation results to identify dependencies between parameters. Un-
derlined results are statistically significant. Values on lower diagonal correspond to re-
sults in T2-weighted sequences (FLAIR and T2) and values on the upper diagonal to 
post-contrast T1-weighted. This test was not performed for the Multilevel Segmentation. 
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Segmenta-
tion 

method 

 

Parame-
ters uti-

lized 

Dice coefficient 

All Small Medium Large 

T1w T2w T1w T2w T1w T2w T1w T2w 

Region-
based seg-
mentation 

Default .503 .741 .347 .615 .489 .786 .675 .822 

Optimized .538 .772 .377 .667 .528 .816 .708 .835 

Edge-
based seg-
mentation 

Default .432 .516 .311 .449 .436 .535 .549 .565 

Optimized .619 .809 .489 .739 .672 .851 .697 .836 

Distance 
regularized 

level-set 

Default .417 .261 .333 .319 .370 .239 .549 .222 

Optimized .630 .803 .506 .742 .687 .844 .697 .822 

Multilevel 
segmenta-

tion 

Default .622 .561 .468 .729 .553 .645 .472 .589 

Optimized .659 .762 .691 .802 .781 .817 .676 .793 

 
Table 3.11 Results showing the Dice coefficient for each segmentation method for all 
cases, cases separated by lesion size groups (as defined in the reference segmentation) 
and type of MRI sequence, T2-weighted (FLAIR and T2 obtained similar results) and 
T1-weighted (T1 with contrast enhancement). 
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Segmenta-
tion 

method 

 

Parame-
ters uti-

lized 

Dice coefficient 

All Smooth margins Irregular margins 

T1w T2w T1w T2w T1w T2w 

Region-
based seg-
mentation 

Default .503 .741 .497 .764 .510 .718 

Optimized .538 .772 .533 .800 .542 .744 

Edge-
based seg-
mentation 

Default .432 .516 .449 .539 .415 .493 

Optimized .619 .809 .660 .844 .578 .774 

Distance 
regularized 

level-set 

Default .417 .261 .357 .285 .477 .237 

Optimized .630 .803 .675 .841 .584 .765 

Multilevel 
segmenta-

tion 

Default .622 .561 .430 .561 .507 .432 

Optimized .659 .762 .783 .812 .539 .744 

 
Table 3.12 Results showing the Dice coefficient for each segmentation method for all 
cases, cases separated by margin type (defined by a measure of tumor sphericity) and 
type of MRI contrast, T2-weighted (FLAIR and T2 obtained similar results) and T1-
weighted (T1 with contrast enhancement). 
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Figure 3.4 Boxplot that compares the performance distribution of the test cases (five-
fold cross-validation) before and after the parameter optimization. The boxplot on top 
shows results for the T2-weighted sequences (FLAIR and T2) and the one on the bottom 
the results for the T1-weighted sequence (post-contrast T1). A paired t-test shows a 
significant improvement (p<0.05) for the edge-based and level-set-based algorithms. 
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Figure 3.5 Boxplot that compares the performance distribution by tumor size (small, 
medium and large tumors). Improvement noticed on all three categories, being specially 
marked on the case where large tumors were analyzed. A paired t-test shows a significant 
difference (p<0.05) for the edge-based and level-set-based algorithms in all cases  
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Figure 3.6a Boxplot that compares the performance distribution in the T1-weighted im-
ages (Post-contrast T1 sequence) by tumor boundary characteristics (smooth vs irregular 
edges). Cases with better-defined margins tend to present less variability in results, com-
pared to the ones with diffuse margins. We observed that all methods improved when 
testing the cases using the optimized parameters (being statistically significant for the 
edge-based and level-set-based methods). 
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Figure 3.6b Boxplot that compares the performance distribution in the T2-weighted im-
ages (FLAIR and T2) by tumor boundary characteristics (smooth vs irregular edges). 
Cases with better-defined margins tend to present less variability in results compared to 
the ones with diffuse margins. We can observe that all methods improved when testing 
the cases using the optimized parameters (being statistically significant for the edge-
based and level-set-based methods). 
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3.6.4 Influence of seed point selection in resulting ROI 

 
We evaluated the effect of perturbations of seed point placement in the final ROI 

in the region-, edge- and level-set based algorithms. The multilevel segmentation was 

not subject to this source of variability. The experiment included varying the initial co-

ordinates by 3–6% in each direction. The outputted ROI had high similarity (Dice coef-

ficient of 0.93 to 0.98) with respect to the results obtained using the original input ROI, 

concluding that small perturbations on the initialization points did not have a major 

effect in the resulting segmentation.  

The variability observed when introducing small perturbations (difference in Dice 

coefficient ranging from 3% to 6%) to the input seed regions is presented in Table 3.13. 

The resulting tumor segmentations obtained high Dice similarity scores, obtaining re-

sults that are 93% to 98% and are similar to the results obtained without the variation 

in the seed region 

 
 T2-weighted images T1-weighted images 

Region-based segmentation 0.95 ± 0.01 0.95 ± 0.02 

Edge-based segmentation 0.96 ± 0.01 0.94 ± 0.00 

Distance regularized level-set 0.98 ± 0.02 0.93 ± 0.02 
 
Table 3.13 Seed point variability observed when introducing small perturbations on the 
initial region of interest. This experiment was not performed on the Multilevel Segmen-
tation algorithm. 
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3.6.5 Validation of optimization framework using a different dataset 

 
To assess the validity of the proposed framework, a subset of the UCLA dataset 

was utilized to determine whether the results remained consistent when applied to a 

different dataset. A sample of 50 cases was selected to achieve a statistical power greater 

than 85% with a significance level of 0.05 (Table 3.5). The same parameter optimization 

was performed using the four methods previously described in Section 3.6 (edge based, 

region, level-set-based and multilevel segmentation). The optimization occurred only in 

post-contrast T1 cases given that for this dataset, manual segmentation (reference stand-

ard) only exists for tumor core (enhancing plus necrotic). 

As shown in Table 3.14, the results obtained for this experiment are different in 

only some instances from to the ones obtained previously. Except for two parameters 

(contraction bias for the edge-based segmentation and delta width for the level-set 

method), these new results for optimal parameters are equal or within the intervals for 

optimal performance previously reported (median ± standard deviation). The most dif-

ference was the delta-width parameter (level-set-based segmentation). It is hypothesized 

that this is because it is part of a regularization term because it defines the size of the 

kernel to be applied during the segmentation process, it is possible that the average large 

size of tumors may play role in the increase of the value of this parameter with respect 

to its original value. 
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 Parameter Default   
parameters 

Optimization 1 
(Section 3.6) 

Experiment 2 
(new results) 

 
 

Region-based 
segmentation 

Smooth factor 0 ± 0 0 ± 0 0 ± 0 
Contraction bias 0 ± 0 0 ± 0 0 ± 0 

Foreground weight 1 ± 0 8 ± 1 8 ± 0 
Background weight 1 ± 0 4 ± 0 4 ± 0 
Dice coefficient across 

all test sets 
.70 ± .01 .61 ± .08 .64 ± .26 

 
Edge-based 

segmentation 

Smooth factor 1 ± 0 1 ± 0 1 ± 0 
Contraction bias .3 ± 0 0.5 ± 0 0.45 ± .11 
Advection weight 1 ± 0 8 ± 0 8 ± 0 

Exponent 1 ± 0 1 ± 0 1 ± 0 
Dice coefficient across 

all test sets 
.52 ± .02 .72 ± .05 .68 ± .02 

 
Distance-reg-

ularized 
level-set 

 
 

Length weight 5 ± 0 8 ± 0 8 ± 0 
Area weight -3 ± 0 -8 ± 1.67 -7 ± .32 
Delta width 1.5 ± 0 5 ± 0 4 ± .44 
Kernel width 8 ± 0 1 ± 0 1 ± 0 

Dice coefficient across 
all test sets 

.35 ± .16 .78 ± .30 .73 ± .41 

 
 
 

Multilevel 
segmentation 

Fine affinity coeff 10 ± 0 1 ± 0 1 ± 0 

Strongly conn coeff. 0.2 ± 0 0.5 ± 0.3 0.5 ± 0.10 

Interpolant cut coeff 0.4 ± 0 0.7 ± 0.18 0.6 ± 0.14 

Cut salient coeff 1e-6 ± 0 1e-6 ± 0 1e-6 ± 0 

Dice coefficient across 
all test sets 

.71 ± .23 .76 ± .21 .63 ± .35 

 
Table 3.14 Table that shows the parameter optimization results (tumor core measured 
in post-contrast T1 in the UCLA dataset) compared to the results found in previous 
experiments (TCGA/MICCAI dataset). Results show that the framework for parameter 
optimization can achieve consistent results when using different datasets. 
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This additional experiment demonstrated that although there is some expected 

variation in the results that were encountered, this framework can consistently find the 

best performing parameters for different algorithms in a specific domain using different 

datasets and different across domains (stroke, lung nodules). 

 
 
3.6.6 Application of multiple algorithms to represent tumor boundary variability 

 
One of the practical applications of having diverse optimized algorithms for tumor 

segmentation is the potential to automatically characterize the tumor boundary and ob-

tain multiple measurements about the likely location of the tumor boundary. Having 

different measurements is statistically useful to determine differences between groups 

(as performed in previous sections) and can be carried over into the measurement of 

different tumor biomarkers until the clinical decision-making process. 

This section covers the creation of tumor measurement variability maps at the 

algorithm-level using different approaches. The next chapter goes more in-depth to ex-

amine the pixel-level variability that arises from image intensity distribution. 

Figures 3.7 a and b show examples of tumor measurement variability maps gen-

erated using five different segmentation algorithms. The first four are the segmentation 

approaches covered in this chapter (region-based, edge-based, level-set-based, and mul-
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tilevel segmentation). The fifth algorithm is a statistical classifier (Support Vector Ma-

chine) that has been previously trained and independently optimized [19] for brain seg-

mentation of high-grade gliomas. Section 3.6.6.1 has a brief description of this method-

ology. 

 

3.6.6.1 Segmentation using a statistical classifier 

 
This segmentation combines a Support Vector Machine (SVM) [83] classifier us-

ing intensity-based and texture-based image features followed by a hierarchical regular-

ization based on conditional random fields (CRFs). This regularization using CRFs in-

troduces spatial constraints to the classification by making the assumption that voxels 

are independent of their neighbors [84]. The hierarchical approach works by applying a 

regularization step, assuming that the data is evenly distributed, at different stages of 

the classification [19,85], improving the robustness and speed of the model and its ac-

curacy by considering neighbor relationships. This method was tested in the brain tumor 

data during the MICCAI segmentation competition [18]. 

During the SVM training step, imaging and textural features are extracted from 

the input imaging data. Among those features, the most important ones are the ones 

derived from image intensity in the different image contrasts. A group of first-order tex-
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ture features (mean, variance, skewness, kurtosis, energy, entropy) are extracted to sup-

port the classification. In the end, this model is trained using a 28-dimensional feature 

vector which is formed by the voxel-wise concatenation of the intensity and texture fea-

tures obtained for each voxel.  

When the features from the training phase have been extracted, this discrimina-

tive classifier attempts to find a boundary that can separate the feature space into differ-

ent categories. This separation of the different features is obtained by a minimization of 

a hyperplane that divides the feature space as boundary curves in a 2D feature map. The 

optimization process is defined by: 

min
1
2𝑤

�𝑤 + 𝐶 𝜀[
�

[�Q
 

where w is the normal vector of the separating hyperplane, C is a penalty parameter for 

the classification variable e found by solving the expression 1-e < yi(wTf(xi)), where x 

and y are the instance-label pairs of the dataset. The regularization is done in two differ-

ent stages using a conditional random field method obtained by using the following en-

ergy minimization model:  

𝐸 = 	 𝑉 𝑦[ +
	

[
𝑤 𝑦[, 𝑦�, 𝑥[, 𝑥� 𝐷n�(𝑦[, 𝑦�)

	

[�
 

The expression is based on graph-cuts and primal-dual decomposition [86]. E is 
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the data energy at the current point, V is the unary potential function, w describes the 

neighborhood relationships and Dpq is a distance function for the pairwise potentials 

calculated directly from the voxel-wise grid. The potential V is defined as V(yi) = c(1-

d(ÿ1,y1)) where c is a constant to adjust the weight on the pairwise potentials, d is the 

Kronecker function and ÿi is the new label after the regularization. 

As the last step in the algorithm, after image pixels have been classified, a sec-

ondary 2D neighborhood regularization is applied by considering the neighborhood 

structure (8 neighbors in 2 dimensions). This step allows for overall smoother and more 

accurate results.   

 

3.6.6.2 Evaluation of variability maps derived from multiple algorithms 
 
 

In summary, this section puts together a set of different algorithms (region-based, 

edge-based, level set based, multilevel segmentation, and statistical classifier) to gener-

ate Tumor-measurement Variability Maps (confidence maps) (Figures 3.7 a and b). The 

determination of which algorithm was more likely to produce the most accurate bound-

ary was determined by assigning a weight that is proportional to the algorithm’s perfor-

mance observed during the optimization/cross-validation experiments described in sec-

tion 3.6.1.  
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Corresponding weights were defined proportionally according to the performance 

observed when working individually in the full dataset (84 subjects). Results are shown 

in Table 3.15. 

 

 

Figure 3.7a. Examples (FLAIR) of tumor measurement variability maps generated using 
different algorithms. The first two columns on the left show the input image and result-
ing tumor variability map. The other columns on the right show the individual compo-
nents of the variability map provided by the different algorithms. 
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Figure 3.7b. Examples (T1+C) of tumor measurement variability maps generated using 
different algorithms. The first two columns on the left show the input image and result-
ing tumor variability map. The other columns on the right show the individual compo-
nents of the variability map provided by the different algorithms.  
 
 Region-

based 
Edge-
based 

Level-Set 
based 

Multi-
level seg-

ment. 

Statisti-
cal clas-

sifier 

Dice coeffi-
cient (on 
test set) 

Weight on T2 
sequences 

20.13% 21.09% 20.93% 19.86 19.96% 0.782 

Weight on T1 
sequences 

17.83% 20.52% 20.88% 21.85% 18.89% 0.659 

 

Table 3.15. Different weight for the ensemble of algorithms and their performance when 
evaluating performance on full dataset (84 subjects). 
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3.7  Discussion 

 
We presented a generalizable framework to define and evaluate segmentation al-

gorithms and their input parameters when attempting to analyze imaging datasets with 

objects of interest of non-uniform boundary characteristics. The framework assesses the 

performance of each approach using a parameter search that automatically defines the 

input seed region and the testing interval for each of the algorithm parameters. We iden-

tified the set of optimized parameters that produce the best results for each algorithm 

based on the test dataset. We additionally explored the variability in results by control-

ling for tumor size and margin. Improvements in segmentation accuracy ranged from 7-

51% when comparing between default and optimized parameter values. While demon-

strated in the domain of brain cancer, our approach can be adapted to other areas as well. 

The edge-based segmentation algorithm achieved consistently higher Dice coeffi-

cient compared to the other algorithms. The region-based approach usually had the best 

performance when using the default parameters. Although performance increased using 

the optimized parameter set, results did not improve significantly. The level-set-based 

segmentation was observed to have the largest differences before and after optimization, 

showing large ranges of variability given the input parameters, and making a marked 

improvement when the new optimized parameters were utilized. Finally, the multilevel 

approach showed a particular reduction in the error intervals (Figure 3.6 and Figure 3.5) 
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when the optimized parameters are used compared with the default parameters, demon-

strating that segmentation parameters can be a significant source of segmentation vari-

ability at the algorithm level. 

Algorithm performance was lower in tumors with smaller volumes and was lower 

in tumors with variable borders. Smaller tumors were more influenced by the selection 

of the seed region. In addition, the intensity ranges within the region are smaller, result-

ing in a narrower range of parameter values that achieve high Dice similarity coefficients. 

Variable borders tend to represent an overlap between normal and abnormal tissue, re-

ducing the contrast between the two regions and creating “gray areas” that make it dif-

ficult for the algorithm to determine if they are part of the intended object to segment 

or part of what is being classified as the background. On brain tumor images. these areas 

can correspond to a non-enhancing tumor or transition areas between tissues with 

edema and normal brain tissue). 

Limitations of this work include the computational power and time that are re-

quired to evaluate all possible parameter combinations. The data processing was distrib-

uted across three workstations with 2.5-3.4GHz Intel Core i7 processors and 16–64 GB 

of memory. An individual iteration of each segmentation approach took at least 1.5 

minutes, but thousands of iterations were needed to fully evaluate the parameter space. 

Although the simplex method reduces the amount of time and parameter combinations 

needed to evaluate, as noted in Table 3.8, the approach does not always find the set of 



 

 101 

parameter values that achieve the highest accuracy. Furthermore, the framework is most 

effective when trained in a large dataset that represents the level of variability of the 

domain of interest. We selected a representative sample of patients from the MIC-

CAI/TCGA dataset that contained tumors with different characteristics, including cases 

with different tumor sizes, smooth and irregular margins, simple and complex shapes, 

different degrees of tissue hyper-intensity, and some cases with imaging artifacts. Addi-

tionally, because of the complexity of the segmentation task, inherent variability exists 

in the reference standard as well. The reported intra- and inter-rater agreement for these 

tumor segmentation methods ranges between 74% and 85% [18].  

Future work can include the development of a framework that is not dependent 

on an annotated dataset, generating the comparison standard by inter-method consen-

sus, or by using an additional statistical or knowledge-based prior. Additionally, In these 

experiments for the generation of the ensemble method we selected the individual 

weight of each algorithm as well as the optimal parameters by training the algorithms 

separately. Although we produced results that far outperform the base parameters for 

each algorithm, a version of this ensemble approach that optimizes each method based 

on the performance with respect to the other methods can be done by using a multivar-

iate approach. An example can include training one algorithm to work better in cases 
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where the other approaches are known to perform worse by using the principal compo-

nent analysis (PCA). This is part of our future work to potentially improve and further 

advance the ensemble segmentation maps.  

The development of methods to increase precision and reduce the variability of 

measurements on imaging data is of high relevance to distinguish between the biological 

heterogeneity of the tumor. Suboptimal selection of algorithms and parameters can lead 

to inconsistent delineations of ROIs, which can lead to incorrect conclusions whether 

interpreted by human readers or machine learning algorithms. This problem is com-

pounded when analyzing groups of subjects or individuals at different time points since 

each measurement can vary the algorithm performance. 

While our framework was optimized to produce segmentations that mimic ones 

generated by trained radiologists using the Dice method as an objective function, it might 

be desirable to optimize based on some other criteria such as which segmentation 

method results in the most consistent and precise prognosis. Arguably, for automated 

methods to reach their full potential, they should be able to provide information beyond 

what is achieved by traditional manual analysis, not simply replicate existing findings.  

Notably, while our results depend on these choices of objective functions, our 

overall approach to optimization does not. When a larger scale of relevant patient-ori-

ented measures such as outcome or survival measurements become available in the pa-

tient records, it could be possible to use them as part of the optimization criteria and 
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develop a global optimization from which trends and meaningful observations can be 

extracted: from the choice of imaging parameters through to the segmentation software. 

Other notable prior efforts have explored the use of different segmentation meth-

ods to obtain an improved ROI. Huo et al. [87] tested an ensemble approach on a series 

of postoperative post-contrast T1 magnetic resonance (MR) imaging scans. The authors 

concluded that collective segmentation produces a better result compared to the one 

obtained by an individual method. Our work differs in that we focus on reducing the 

segmentation variability of the algorithm by performing a comprehensive evaluation of 

its segmentation parameters and testing each method on a larger sample of multi-chan-

nel brain tumor data. Another paper by Warfield et al. [88] demonstrated how using 

multiple segmentation methods can generate an estimate of the true segmentation. 

While they also explored variability in segmentation, their method was aimed at finding 

an optimized ROI to be used as a reference when manual annotations were unavailable. 

While they did not attempt to improve the individual performance of each algorithm, 

this framework systematically evaluates and optimizes segmentation methods to max-

imize performance and achieve more consistent, accurate and robust results. 

 

 

 

 

 



 

 104 

3.7.1 Summary of findings 

 
In this chapter, we attempted to determine a measurement of tumor boundary 

variability by looking at the different border calculations obtained by using multiple seg-

mentation approaches. We demonstrated that these methods can be optimized for the 

purpose of brain tumor segmentation by training and updating parameter values on a set 

of training data, and provided an automated framework that obtains the optimal param-

eter values. Finally, the developed framework is able to determine which segmentation 

can have the most stable (i.e., robust) results across a set of data, and which ones tend 

to present more variability in results depending on the type of data that is presented to 

them (homogeneous borders vs. heterogeneous border, etc.). 

The following chapter elaborates on the development of a new approach that aims 

to determine the variability of not only the overall tumor boundary, but from the differ-

ent tumor components (edema, enhancing, etc.) and uses prior information on cerebral 

tissue sample to determine the most likely intensity ranges on which the tumor bound-

ary can be located. A clinical evaluation is performed to evaluate the utility of the varia-

bility metrics that were discussed throughout this chapter. 
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Chapter 4: Automated quantitative tumor evaluation 

4.1 Overview 

 
This chapter describes a new approach for automated tumor segmentation using 

multimodal MR images. It is particularly burdensome for clinicians to manually review 

imaging studies. In addition to increased labor and expense, manual measurements can 

have a high degree of measurement variability [17] due to the inconsistency and diversity 

of MRI acquisition parameters (e.g., echo time, repetition time, etc.) and strategies (2D 

vs. 3D), along with hardware variations (e.g., field strength, gradient performance, etc.) 

that change the appearance of the tumor [7].  

This chapter addresses the hypothesis that the inherent variability in tumor vol-

ume measurements can be leveraged to provide a more accurate assessment of tumor 

burden and produce an estimate of tumor segmentation variability in the form of Tumor-

measurement Variability Maps (TVMs). These represent a measure of uncertainty along 

the tumor boundary (image variability). Different from the other methods that were de-

scribed in previous sections, this new algorithm considers the variability that arises from 

the intrinsic tumor variability (e.g., different tumor components) and segmentation error 

(e.g., poorly detected tumor edges) to derive the tumor boundary and produce an esti-

mate of segmentation error [87]. Additionally, it incorporates the calculation of a prior 

probability distribution of the different brain tissues, characterization of morphological 
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features using a super-pixel-based approach, and localization of the tumor ROI using a 

learning approach that captures morphological characteristics of previously false-positive 

classifications. 

The relevance of this work lies in the calculation of segmentation error across the 

tumor boundary, a type of metric that is largely unexplored [19], and that is increasingly 

obtaining more attention [10, 87, 89] given that variability in measurements can directly 

affect assessment of medical images, treatment planning, and clinical monitoring that 

may potentially result in erroneous treatment decisions or conclusions about potential 

therapeutic benefits. 

 

4.2 Multimodal knowledge-based tumor segmentation 

 
We developed a processing pipeline to automate the segmentation from the raw 

MRI images to create tumor variability maps (confidence maps) that indicate tumor ex-

tent. This pipeline is illustrated in Flowchart 4.1 and Pseudo Code 4.1. As the first step, 

the algorithm selects all MR modalities of interest, including pre-contrast T1-weighted 

images, post-contrast T1-weighted images (T1+C), T2-weighted images, and T2-

weighted fluid-attenuated inversion recovery (FLAIR). Preprocessing steps performed to 

normalize and register the studies were discussed in Section 3.3. 
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() 
 

 
Pseudo Code 4.1: Brain Tumor segmentation through estimation of variability 
 
for each follow up: d = {d1,… dt-1, dt} 
        // Data preprocessing                                       
        Read directory and load MRI Sequences  à FLAIR, T1, T1+C, T2 
        Register and skull strip all volumes; 
        Normalize and denoise all volumes; 
        Calculate tissue probability masks for white and gray matter à WM, GM 
        Obtain Subtraction map T1+C - T1 à DeltaMap 
        // Preliminary ROI identification 
        for sequences: m = {FLAIR, T2, DeltaMap} 
            for orientations x = {axial, coronal, sagittal} 
                Obtain brain tissue distributions(WM,GM) 
                Cluster volume using SLIC (input volume(m,x), k=10) à Vol. superpixels 
                Extract image features(m,x) à Histogram, Symmetry, Inhomogeneity 
                Find tumor preliminary ROI by using extracted features à 3DtumorROI 
            end 
        end 
        // Tumor segmentation 
        for tumor regions: z = {Edema, Enhancing, Necrosis} 
            Get tissue distribution inside ROI (3DtumorROI, WM, GM) 
            Evaluate rate of change in region z à top regions of intensity variation (t(i)) 
            Apply thresholds at intensity t(i) in ROI(z) à Tumor subregion variability map 
        end 
        Obtain binary tumor masks by obtaining mask consensus in variability maps 
        Locate unclassifed regions inside tumor area à Non-enhancing tumor 
        Warp back all volumes to original scan space 
end 
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The system is divided into a series of preprocessing strategies, followed by the proposed 

tumor segmentation algorithm. This approach finds an approximate tumor ROI by using 

a knowledge-based approach that considers the prior distribution of brain tissues de-

scribed in the next section. The intensity variation observed in the approximate tumor 

ROI is then analyzed to find the possible tumor boundaries for the TVM. This approach 

was evaluated using the 2015 Multimodal Brain Tumor Image Segmentation Benchmark 

(BRATS) dataset [18]. 

 

 
 

Flowchart 4.1. Overall segmentation process from input multimodal MRI, feature ex-
traction, preliminary tumor ROI calculation by supervoxel classification, and a tumor 
histogram variability analysis to generate segmentation error estimates for the overall 
tumor boundary and different tumor components. The process is repeated for all time-
points available for an input subject. The output variability maps are a graphical repre-
sentation that reflects the likely location of a variable tumor boundary. 
 

4.3 Definition of the tumor ROI using statistical priors 

 
The selection of an initial tumor ROI to initiate the segmentation was performed 

by obtaining a statistical prior distribution of the normal cerebral tissues to determine 
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an approximate location of the tumor area (Figure 4.1). This process was performed for 

the T1- and T2-weighted images. We adapted the method described in [90], which mod-

els image intensities as a mixture of k Gaussian distributions. The value of k is selected 

based on the number of tissues, such as gray matter, white matter and cerebrospinal fluid 

where each Gaussian cluster is modeled by its mean (µk), variance (sk) and a mixing 

proportion. Bayes rule is employed to produce the posterior probability of each tissue 

class. The probability of observing an element with intensity yi on the kth Gaussian is 

given by: 

 

𝑃 𝑦[ 𝑘 = 𝑘, 𝜇�, 𝜎� =
1
2𝜋𝜎�R

exp −
(𝑦[ − 𝜇�)R

2𝜎�R
 

 
Finally, the probability is maximized by minimizing the cost function: 

 

𝜀 = 	− log 𝑃 𝑦 𝜇, 𝜎, 𝛾 = 	− log
	𝛾�
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where K is the total number of Gaussian distributions (one for each tissue), and I is the 

total number of image elements. The update of the mixture proportion (gk) is performed 

by the expectation maximization (EM) algorithm and generates pixel-wise probability 

maps for cerebral gray matter (GM), white matter (WM), cerebrospinal fluid (CSF), and 

soft tissue [90-91]. Finally, these maps are used in our framework to generate an initial 

ROI to initialize the segmentation methods by selecting the intensity regions of high 
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probability for the different normal brain tissues. Main areas of low probability are de-

fined as likely to be part of tumor tissue, allowing for detection of multiple distinct le-

sions in the image volumes. Implementation of this approach permitted us to evaluate 

the influence of seed point selection on the resulting ROI. 

 

Figure 4.1. The overall process followed to obtain the preliminary tumor ROI using prior 
information encoded in brain tissue pixel probability maps. 
 

4.4 Tumor segmentation 
 

After this step is completed, using the information provided by the tissue distri-

bution probability maps as well as imaging features from each MR volume, an initial 

tumor ROI is obtained. This process involves the partition of the images into superpixels 

by using the SLIC algorithm [92]. This method implements an adaptation of the k-means 

clustering approach that provides an efficient and fast segmentation of an input image 

while combining color and spatial proximity to generate the superpixels. By default, in a 

simple implementation of the SLIC algorithm, only one parameter has to be set (the 
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number of superpixels to be extracted) before being able to use it. We modified the 

approach to automatically select the number of clusters based on the histogram distri-

bution of the input imaging volume (3D) [93], setting an initial histogram partition pa-

rameter k at ten.  This was based on the type of normal and tumor tissues present on 

the input images -gray matter, white matter, cerebrospinal tissue, soft normal tissue, 

bone tissue, enhancing tumor, necrotic tumor, non-enhancing tumor, edema and empty 

spaces/air. It is worth noting that this parameter represents the starting point for parti-

tioning the input image. Its value does not influence the output ROI as it can contain as 

many of the different clusters of pixels generated in this step depending on the output 

of the previous step (ROI generation using prior tissue information). 

A preliminary tumor ROI is obtained by selecting the superpixels that represent 

the regions with the lowest probability of being normal brain tissue according to the 

information provided by the described distribution probability maps for normal cerebral 

tissues (including gray matter, white matter, and cerebrospinal fluid) [90]. This process 

is iterated under different orientations (axial, coronal, sagittal) to increase the accuracy 

of the initial ROI, hypothesizing that different tumor shapes may be easier for the algo-

rithm to identify if visualized under different perspectives. For instance, a u-shaped tu-

mor might be visualized as two different small structures in the axial view, but as a 

continuous and more defined mass in the coronal view, as shown in Figure 4.2. The 
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preliminary tumor ROI is then obtained by taking the union of all regions generated 

across different perspectives, resulting in a single volumetric ROI. 

 

 
 

Figure 4.2. To have multiple estimates of the tumor boundaries, multiple rotations are 
found along the tumor major axes so at the end of this process these measurements can 
be aggregated into the measurement variability map. In this work, the segmentation oc-
curs on the three main tumor axes and ten random rotations on each axis. 
 

4.5  Multimodal tumor boundary selection 

 
The next step involves identifying a set of tumor boundaries for the total tumor 

mass as well as for the tumor sub-regions (i.e., edema, necrosis, enhancing and non-

enhancing tumor) using the preliminary tumor ROI defined in the previous step. This 

approach represents the tumor variable boundary by performing multiple measurements 

and then combining them into a TVM to quantify the uncertainty associated with seg-

mentation boundaries. 
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The specific tumor boundaries are obtained as follows: A single definition for T2 

abnormality was used to define a “T2 abnormal ROI” using the preliminary ROIs found 

in the FLAIR and T2 contrast images. Regions of edema were extracted by ranking the 

intensity rate of change on the preliminary tumor ROI histogram, defining boundaries 

as the locations where the highest total variation across the histogram corresponding to 

the tumor region are found. The tumor variability map is produced by aggregating the 

different binary ROIs obtained at each of these identified values on the tumor histogram. 

The same process is followed to locate the enhancing and necrotic regions, but 

using the post-contrast T1 sequence or a subtraction map, (defined as T1+c - T1 vol-

umes) [94]. Similarly, the TVM for these regions was then obtained by aggregating these 

different approximations of the tumor boundary (Figure 4.8). A binary representation of 

the tumor mask was obtained by using the following expression for majority agreement 

using the TVM as input: 

𝐼 = 	
𝑃[,� 	≥ 	

𝑛
2
				 ∴ 			 𝐼[,� = 1

𝑃[,� 	< 	
𝑛
2
				 ∴ 		 𝐼[,� = 0

					 

where I is the output binary image, Pi,j is the intensity at pixel location i, j of the TVM P 

and n is the number of discrete probability levels defined in the variability map. The 

output is a set of masks that represent the tumor extent and the different sub-regions 

with the possibility to calculate variability metrics (e.g., agreement ratio, standard devi-

ation, statistical change measurement, and others).  
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4.5.1 False-positives identification and correction 

Although tumor variability can be characterized from different points of view in-

cluding different segmentation methods, variability from parameters and, variability in 

tumor boundary, it is still a possibility to obtain results where an incorrect region is 

selected as tumor region (i.e., false positives). 

To increase the sensitivity (true positive rate) of this approach, a database dic-

tionary was developed that accumulate sets of previously identified examples and infor-

mation about their location (coordinates in two and three dimensions), mean intensity, 

and shape characteristics. For example, thin, elongated shapes may correspond to vascu-

lar structures that are indicative of false positives. When analyzing a new case, a com-

parison against this database is performed (comparing intensity, morphology/shape, and 

location), and the regions with high correlation with respect to the previously observed 

example are eliminated. Examples of cases when this approach is particularly useful in-

clude cases when regions of the skull failed to be eliminated and are close to the tumor. 

Enhancing vessels close to the tumor, and normal brain structures, especially in the cer-

ebellum, that usually appears brighter than other brain regions but is not a tumor. 

The construction of the database of false positives was created using a set of 50 

training subjects in three MR sequences (post-contrast T1, FLAIR and T2) that were a 
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representative sample of tumor of different sizes and boundary characteristics as de-

scribed in Chapter 3. Annotations were corroborated by a trained neuro-radiologist to 

verify that cases represented false positives.   

 

4.6 Evaluation, validation and results 

 
4.6.1 Performance of tumor ROI detection 
 

During the first step of the multimodal segmentation, the initial tumor mask was 

obtained using the supervised learning approach defined above. We wanted to evaluate 

if this method was a feasible and reliable choice for the generation of the initial ROI. 

For this purpose, the input preliminary ROIs from the UCLA dataset (n = 260) 

were analyzed and compared to the reference standard (core tumor measured in post-

contrast T1 sequences), displaying a precision of 53% and recall of 73%. The precision 

metric helps determine what proportion of the pixels included into the ROI are indeed 

part of the tumor, while recall determines the proportion of pixels that were accurately 

included into the ROI, with respect to the total number of pixels that compose the tumor 

region. These results indicate that the preliminary tumor ROI usually generated a loose 

region that tended to contain the majority of the tumor but also tended to overextend to 

regions that are no longer tumor, consisting of only normal tissue. The large recall can 

be interpreted as a large ROI that contained most of the interesting pixels. The small 
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precision value indicated that regions selected preliminarily as tumor also include many 

other regions that are not a tumor. 

A discussion of the instances where this method failed to find the overall tumor 

region (7 cases) appears below in the discussion session for this chapter (Table 4.7). A 

discussion of the results obtained after the segmentation algorithm was completed can 

be found in Section 4.6.4. 

 
4.6.2 MRI phantom experiments 

 
This validation experiment evaluated to what degree the results generated by the 

image segmentation method match the real dimensions observed on the real object that 

is being scanned (i.e., the measured area/volume match). This experiment was per-

formed by scanning an imaging phantom (a physical object with known characteristics) 

and evaluating the segmentation error found on the measurements performed on the 

images and the phantom’s real dimensions. 

The phantom experiments help quantify how much variation captured in the seg-

mentation results correspond to other factors (e.g., noise, scanner variations or contrast 

artifacts). By measuring the boundary variation when an object of stable characteristics 

(no variability associated) is segmented, the error associated with other factors besides 

tumor variability can be quantified (these variations are thought to be small). 
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The overall procedure includes using the MRI machine to characterize different 

image phantoms, including a commercially available phantom as well as other tailored 

phantoms that serve the purpose of evaluating variability in segmentation. The experi-

ments presented in the following subsections used the standard image acquisition se-

quence used in standard brain tumor scans including spin echo, gradient echo, and in-

version recovery MRI sequences. The segmentation error evaluation using the Dice co-

efficient was performed using the Dice similarity coefficient, trying to prove the hypoth-

esis that calculated volume does not significantly differ from the real physical volume of 

the object. 

4.6.2.1 ADNI phantom 

The Alzheimer’s Disease Neuroimaging Initiative (ADNI) [95] phantom is a 

sphere that contains spheres of different sizes and locations. Some of these spheres were 

segmented and compared to the volume reported by the manufacturer. Table 4.1 sum-

marizes results from this experiment. Figure 4.3 and Figure 4.4 present the segmenta-

tion results in the different sections of the phantom. 

ADNI phantom 
Real volume 

[mL] 
Calculated volume [mL] 

Mean ± SD 

Large (6cm diameter) sphere (n = 1) 113.1 112.77 ± 0 

Medium (3cm diameter) spheres (n = 4) 14.14 13.51 ± 0.42 

Small (1 cm diameter) spheres (n = 108) 0.52 0.48 ± 0.03 
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Table 4.1 Segmentation results using the ADNI phantom. The variability in the medium-
sized sphere comes from different results obtained for each of the four spheres. For the 
small spheres, five different measurements were made. There was no variability associ-
ated with the single large sphere. 

 

	
 

Figure 4.3 Example of the segmentation produced on the different spheres in the ADNI 
phantom. 

 
	

					 	
	

Figure 4.4. The ADNI phantom and 3D visualization of output segmentation that shows 
some of the false positives and false negatives that influenced the volume calculation. 
The false positive voxels are indicated with a red shadow. These are small pixel regions 
that do not correspond to the sphere.). Image obtained from www.phantom-
lab.com/magphan-adni/ 
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4.6.2.2 Latex phantom 

The purpose of this latex phantom was to determine the performance of the algo-

rithm in cases with irregular shapes and contours. A shape of a glove was utilized for its 

complicated shape and slight similarity to a common morphological “finger-like” char-

acteristic of infiltrative edema in brain tissues. To fix the sample into the container, a 

high-density colloidal suspension that changes its molecular configuration with changes 

in temperature was utilized (i.e., Jell-O). A much higher concentration was used inside 

the glove to observe different contrasts in the two different regions of the phantom. Ta-

ble 4.3 summarizes results from this experiment. Figure 4.5 displays the phantom and 

the segmented result. 

	
	
Figure 4.5. Output segmentation of the Latex phantom. Images on the left show the 
boundary selected for the phantom, and the images on the right show the different esti-
mates calculated based on intensity differences through the image volume. 
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4.6.2.3 Organic tissues 

Similar to the previous phantom, a final experiment was performed with biologi-

cal tissues (i.e., raw meat) to simulate the heterogeneity of different organic tissues, and 

their different relaxation characteristics when in the presence of a magnetic field. Two 

different phantoms were created for this purpose, one with meat in a spherical shape 

and another with flattened meat. Table 4.2 summarizes results from this experiment.  

Figure 4.6 displays the phantom and the segmented result. From these results, we can 

observe that in general, the segmentation on T1 produced results that in general over-

estimated (meatball) or underestimated (burger) the real volume while the results seg-

mented on FLAIR produced the most accurate results. Reasons for this difference in 

performance might be related to the different physical properties of the protein/fat/wa-

ter content of the sample that affect the contrast observed under the different sequences, 

being more easily processed on FL and T2 sequences in this case. 

 

Phantom Real volume [mL] FLAIR [mL] T2 [mL] T1 [mL] 

Latex phantom  Total = 500 mL 495.1±5.1 492.5±4.4 488.7±6.2 

 

Organic tissue 
phantom 1 
(meatball) 

 

Total = 324 mL 327.8±9.3 317.9±1.2 367.3±7 

Large = 165 mL 169.1±7.4 153.4±6.1  175.5±8.0 

Medium = 105 mL 100.4±2.8 98.6±3.5 116.1±4.6 

Small = 54 mL 58.2±2.5 55.8±1.4 75.7±2.5 
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Organic tissue 
phantom 2 

(hamburger) 
 

Total = 217 mL 214.1±2.1  219.1±2.7 200.3±4.7 

Piece 1 = 117 mL 112.7±1.5 116.8±2.1 105.8±4.3 

Piece 2 = 100 mL 101.3±2.5 102.2±3.3 94.5±5.2 

 
Table 4.2. Assessment of the different tested phantoms, comparing real volume and 
measured volume on the image scans using the proposed segmentation algorithm. The 
estimates of variability were obtained by performing additional segmentation tests on 
the objects. The result shown in bold indicate the results that are significantly different 
(using a Student’s t-test) from the real volume measurement. 
 
 

	
	
Figure 4.6 Output segmentation of the organic tissue phantoms. The phantom with 
spherical shapes appears on the left, and phantoms with a flattened appearance on the 
right. There is a distinctive tissue heterogeneity in these phantoms, different from the 
homogeneous characteristics observed on the ADNI or glove phantoms. 
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4.6.3 Evaluation of MICCAI 2015 data 
 

This approach was validated in all 220 cases of the BRATS 2015 dataset, segment-

ing three components: whole tumor, tumor core (enhancing and necrotic components), 

and active tumor (enhancing component). 

The Dice coefficient for total tumor mass of 0.74 (median: 0.77, 1st quartile: 0.66, 

3rd quartile: 0.84), 0.54 for the tumor core (median: 0.57, 1st quartile: 0.37, 3rd quartile: 

0.75), and 0.54 for the active tumor (median: 0.60, 1st quartile: 0.29, 3rd quartile: 0.76). 

Figure 4.7 displays the Dice coefficient as well as the Hausdorff distance metric for this 

dataset.  

Figure 4.8 displays examples of input images and the output tumor variability 

maps (confidence maps) for edema, enhancing and necrotic regions of the tumor, as well 

as the representation of these tumor compartments overlaid on the image as binary 

masks. This binary representation of the TVMs (as previously described) is performed 

with the purpose of similarity computations against the binary reference. This facilitates 

easy integration with other processing pipelines (evaluation of clinical variables, genetic 

algorithms, etc.) or statistical approaches that require a binary input (Figure 4.9). 
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Figure 4.7. Box-plots showing the proposed method’s performance for the BRATS 2015 
dataset. It plots the Dice similarity coefficient on the left (higher is better) and Hausdorff 
distance on the right (lower is better) when comparing a binarized tumor mask gener-
ated by the proposed approach and a segmentation reference standard. Label “Total” 
refers to all tumor components (edema, enhancing, necrosis and non-enhancing tumor), 
“Core” refers to the tumor core (excluding regions of vasogenic edema), and ‘Enhancing’ 
refers to active tumor cells with microvascular proliferation. 
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Figure 4.8. Segmentation results for different subjects. First and second rows represent 
the input post-contrast T1 and FLAIR scans for each subject (columns). Rows three to 
five show different boundary estimations represented as variability maps in each sub-
component (edema, enhancing, and necrosis respectively). The color bar represents the 
pixel-wise probability for each case. The bottom row displays a color-coded binary mask 
for tumor sub-components: enhancing (red), edema (blue) and necrosis (green). 
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Figure 4.9. Examples of brain tumor segmentation results for total tumor mass in three 
different cases. The first row shows one of the four imaging sequences that are used to 
perform the tumor segmentation. FLAIR is used in this example for the examples on the 
left and right and T1+c is used for the example on the center. The tumor variability map 
is displayed for a total tumor in the second row, highlighting in red the regions where 
the algorithm is almost certain that there is an abnormality in that pixel region. Other 
color intensities indicate decreased belief in tumor abnormality according to the color 
bar located on the right. The third row shows the binarization of the variability map, 
according to a majority agreement of the different estimates using a threshold of 0.5. 
This enabled comparison with binary reference standards to evaluate the accuracy and 
also allowed for other more standard metrics and use of results generated by other pro-
cessing pipelines. 
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4.6.4 MICCAI BRATS2016 segmentation competition 

The Multimodal Brain Tumor Image Segmentation (BRATS) benchmark was ini-

tiated in 2012 as part of the Medical Image Computing and Computer Assisted Interven-

tions (MICCAI) conference. The purpose of this competition included the analysis of 

several segmentation methods with a common dataset to objectively evaluate the perfor-

mance of each. a second objective was to define which quantitative evaluation could bet-

ter adjust to a reference standard annotated and agreed to by seven different raters. The 

BRATS image data and manual annotations are publicly available through an online eval-

uation system as an ongoing benchmarking resource. Advantages of the participation in 

this competition include having the algorithm evaluated by an external evaluation group, 

and having access to a large set of annotated data. This dataset contained different ex-

amples of non-enhancing tumor cases, which were not common in other datasets utilized 

(UCLA), providing a comprehensive set of training data to improve the algorithm clas-

sification of non-enhancing tumor tissues. Figure 4.10 displays some of these cases. 

As an external validation of our method, we participated in the 2016 segmentation 

challenge using our proposed method. Similar to other years, the competition centered 

on the accuracy in identification and delineation of the overall tumor boundaries and 

different subcomponents -binary boundaries without consideration of segmentation var-

iability. New cases added for 2016 included cases with more than one scan, adding a 
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temporal component into the challenge. The extra task determined if the tumor had pro-

gression, remission, or was unchanged based on the tumor volume change over time.  

The dataset comprised 220 training cases with a reference standard provided for 

each case, and 191 test cases. Similar to the dataset described in Chapter 3 (Table 3.1), 

the set included all four image sequences, and input images had a resolution of 240 x 

240 x 154 pixels. 

Results for this competition had not been published at the time of the publication 

of this dissertation. Preliminary results indicated that our approach had a mean Dice 

coefficient of 0.75 (total tumor), with an approximate variability range of 0.60 to 0.85.  

Preliminary results are shown in Figure 4.11. It was observed that as in previous 

years (Figure 2.3) there was a wide variability in results achieved by the different ap-

proaches, ranging from less than 0.40 (worst performance) to more than 0.80 (best per-

formance). Figure 4.12 displays some of the results obtained for this dataset. 
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Figure 4.10. Examples of non-enhancing tumor tissues in the 2016 MICCAI dataset. 

 

	
Figure 4.11. Results for the BRATS tumor segmentation competition 2016. Adapted 
from Menze et al. from the Neural Information Processing Systems (NIPS) conference 
2017 and MICCAI tumor segmentation competition 2016 [96]. Full results of this com-
petition, including the temporal assessment, had not been released at the time this dis-
sertation was completed. The submission shown in solid blue indicates the result 
achieved by our team in the test data with respect to other participants. 
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Figure 4.12. Examples of results obtained in the test set for the 2016 MICCAI dataset. 
Note that the input images were preprocessed, and the reference segmentation was not 
available for these examples. 
 

4.6.5 Evaluation of UCLA dataset  

The knowledge-based algorithm was evaluated using a large set of tumor cases 

provided by the neuro-oncology program at UCLA. The dataset consisted of 300 different 

cases. A complete characterization of this dataset was described in Section 3.2. 

A unique feature about this dataset was that several of the cases had a temporal 

component (i.e., more than one follow-up), thus allowing analysis of progression and 

clinical assessment for these cases. Section 5.3 elaborates on the clinical applicability of 

the variability maps using data obtained from this dataset. The segmentation reference 
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standard from this dataset was manually generated by expert annotators, as previously 

described in Section 3.2.1.  

The total sample included 260 cases drawn from the 300 cases from this dataset. 

Section 3.2.2 presented detailed characteristics of this dataset and the sample size calcu-

lations. Table 4.3 summarizes cases that were successfully processed, as well as the 

causes for cases that were not able to go through the complete pipeline.  

 Table 4.4 presents the performance of the proposed knowledge-based segmenta-

tion approach compared with the multiple segmentation methods tested in Chapter 3. It 

is evident that using the UCLA dataset (which was used mainly for testing purposes) 

our proposed method had a better overall performance with respect to other approaches.  

However, when measuring the performance on the TCGA/MICCAI dataset, the edge-

based and multilevel algorithms had a higher Dice similarity coefficients. Reasons for 

this can include that the output ROIs produced by these methods were able to be tailored 

more specifically for the current dataset and that the output ROI was more in agreement 

compared to the other methods (number of false positives vs number of false negatives 

inside the output mask). This highlights the utility of having an ensemble of models that 

attempt to delineate tumor boundaries.  

Lastly, the knowledge-based method outperformed (on both datasets) the ensem-

ble output generated by aggregating other five methods (section 3.6.6.2), which can be 
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an indication that pixel-level variability is better suited to characterize the variability 

observed in brain tumors. 

Similarly, Figure 4.13 displays the overall performance of cases from the UCLA 

cohort compared with the previous cases that were obtained from the MICCAI/TCGA 

dataset Chapter 3), and Figures 4.14 a-c display the tumor variability maps as well as the 

binary masks obtained for some of the cases. Examples of the temporal component of 

this dataset are shown in Section 5.3. 

 

4.6.6 Evaluation of the utility of T2-weighted sequences for brain tumor segmentation 

The MRI sequences routinely used for brain tumor segmentation include two T2-

weighted sequences, FLAIR, and T2. These two sequences provide similar insights about 

tumor extent, mainly the infiltrative edema. 

Given that it is important to reduce scan time and optimize the time under which 

the patient is examined, this experiment aims to evaluate the contribution of these se-

quences towards accurate segmentation results (together and individually). Conse-

quently, an assessment of a random sample of 30 different cases (10 small tumors, 10 

medium sized tumors, and 10 large tumors) was drawn from the TCGA/MICCAI dataset 

(because all sequences where available) and was reanalyzed to observe differences when 

one sequence was removed from the analysis. 
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Results are presented in Table 4.5. The combination of both sequences proved to 

be ideal for improved performance; but in case only one was utilized, the FLAIR sequence 

outperformed T2. A major reason for this change is the characteristic of such sequence 

to null the signal from fluids such as cerebrospinal fluid and water that can be classified 

as the tumor (infiltrative edema). Also, the increased contrast observed in FLAIR be-

tween normal cerebral tissue and hyper-intense edema with respect to the T2 can play a 

role in the improved performance of FLAIR over T2. 

4.6.3 Concluding remarks 

 
 In this chapter, we presented a novel algorithm to determine the tumor boundary 

as well as an estimate of its variability evaluated from the pixel-level perspective. This 

was accomplished by using a combination of statistical approximations to the normal 

brain tissues, the characterization of the intensity differences observed near the bound-

aries of the different tumor components, and a system that provides a way to reduce the 

rate of false-positives by comparing the current cases with previously observed examples.  

 This method was tested using phantoms with different physical characteristics 

and diverse ranges of variability to determine how accurate the results can approach the 

real object. Finally, we evaluated this method in both the UCLA and TCGA/MICCAI 

datasets, including an external evaluation that occurred during the BRATS segmentation 

competition held in 2016.  
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Number of 
cases 

Processing outcome Comment 

 
260 

(86.66%) 

Completed            
successfully 

Tumor variability maps and binary maps were 
successfully generated. All steps completed 
without error. 

 
 

 
 

6 
(2%) 

 
 
 
 
Error while generat-
ing prior brain tissue 

probability maps 
 

Two different causes were identified for this 
problem. One includes abnormalities in the 
intensity distribution (due to artifacts, 
inappropriate sequence that causes images 
overly bright or dark) of input images (since 
acquisition). Another problem is the missing 
point of origin in the three- dimensional vol-
ume (usually the anterior commissure). The 
proposed pipeline has a built-in automated 
method to assign the origin to this cerebral 
structure that worked in several of cases suc-
cessfully processed. 

 
 
 

23 
(7.66%) 

 
 
 

Image registration 
failed to complete. 

Due to extreme anatomical deformation that 
brain tumors can cause, sometimes the regis-
tration can produce images that are empty or 
that contain erroneous shifts, rotations, and 
deformations on the output images. 

Although the registration of the images is 
critical for the adequate identification of tu-
mor sub-regions and visualization of tumor 
progression through time), a downside is that 
this process has to work for all input se-
quences, which is not always the case. Ways 
to fix it include the implementation of the 
processing framework with an additional reg-
istration algorithm done one time. 



 

 134 

 
7 

(2.33%) 

Error while obtaining 
tumor initial region 

of interest 

When the initial tumor ROI from the ex-
tracted imaging features and prior tissue dis-
tribution maps is not found (empty image), 
the subsequent process cannot be completed. 
Methods to solve this issue include the seg-
mentation under different planes and orien-
tations built-in into the program too.  

 
4 

(1.33%) 

 
Tumor reference and 

automated result 
cannot be compared 

properly. 

This error occurred when the segmentation 
process completed successfully but the trans-
formation to the original space (inverse reg-
istration) in order to compare it to the refer-
ence was not completed. Reasons include the 
automated and tumor ROIs do not match 
(different sizes) due to an incorrect inverse 
registration, or the manual reference could 
not be found. 

Total = 300  
 
Table 4.3. Summary of results for the UCLA dataset, showing the number of cases that 
were successfully processed and the cases that did not complete the process. 
 
 Knowledg

e-based 
Methods 
ensemble 

Region-
based 

Edge-
based 

Level-set 
segment. 

Multilevel 
segment. 

Statistical 
classifier 

UCLA             
dataset 

(n = 260) 

 
0.636 

 
0.572 

 
0.528 

 
0.585 

 
0.609 

 
0.594 

 
0.522 

TCGA/MIC-
CAI dataset 

(n = 85) 

 
0.738 

 
0.711 

 
0.614 

 
0.721 

 
0.789 

 
0.760 

 
0.631 

 
Table 4.4. Performance of segmentation algorithms in different datasets. The reported 
Dice coefficients correspond to core tumor (enhancing + necrosis components). Results 
for TCGA/MICCAI row are the same as the ones reported in Chapter 3. The sample size 
was determined according to results presented in Table 3.5 
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Figure 4.13. The overall performance of the knowledge-based segmentation method in 
the UCLA dataset (260 cases) compared to the TCGA/MICCAI 2015 cases (131 cases). 
Note that the only tumor core was assessed for this analysis because a manual reference 
was not available for the other tumor subcomponents. It can be seen that performance 
of the segmentation approach for core tumors was better in the UCLA set. Some possible 
reasons include a bigger sample size in the UCLA set and higher proportion of non-
enhancing tumors difficult to segment for all state-of-the-art methods in the 
TCGA/MICCAI datasets. 
 
 
	 Both	inputs						

(FLAIR	&	T2)	
FLAIR	only	 T2	only	

Small	tumor	sizes	 .695	 .678	 .633	
Medium	tumor	size	 .714	 .708	 .671	
Large	tumor	size	 .742	 .712	 .704	

Table 4.5. A pilot study to evaluate the value of information provided by T2 and/or 
FLAIR to the segmentation of total tumor. It can be concluded by the results that the 
contribution of the FLAIR sequence is greater than that provided by T2. Tumor sizes 
were considered based on total tumor volume according to the information found on 
table 3.6.3. 
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Figure 4.14a. Example 1 of the output segmentation from the UCLA dataset showing 
three different views of the same patient to visualize the three-dimensional result. The 
different tumor components displayed using different colors. The “Tumor” and “Enhanc-
ing” masks are the binary results derived from the Tumor Variability Maps. 
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Figure 4.14a. Example 2 of the output segmentation from the UCLA dataset showing 
three different views of the same patient to visualize the three-dimensional result. The 
different tumor components displayed using different colors. The “Tumor” and “Enhanc-
ing” masks are the binary results derived from the Tumor Variability Maps. 
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Figure 4.14a. Example 3 of the output segmentation from the UCLA dataset showing 
three different views of the same patient to visualize the three-dimensional result. The 
different tumor components displayed using different colors. The “Tumor” and “Enhanc-
ing” masks are the binary results derived from the Tumor Variability Maps. 
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Chapter 5: Impact in the Clinical Setting 

 

5.1 Overview 

 
In this chapter, we describe our efforts to incorporate the segmentation methods 

described in prior chapters into a prototype neuro-oncology workstation with the goal of 

providing insights about the utility and applicability of the developed tumor variability 

metrics into clinical practice. We describe the workstation (Glioview) followed by sub-

sequent (prospective) evaluations of the workstation.  

First, we introduce the user interface that implements the segmentation algo-

rithm introduced in the previous chapter, explaining how it is structured, and detailing 

its overall contribution of displaying the segmentation variability estimate as part of the 

visualization and clinical assessment. 

Then we perform two evaluations, the first being a study that aims to determine 

the overall utility and understanding of the different visualizations to represent boundary 

variability. A second more clinical study is then presented in which a series of retrospec-

tive cases are analyzed to determine if a more quantitative determination of change can 

lead to more informed decision making. 
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We conclude the chapter detailing the results found in both evaluations, with em-

phasis on the opinions generated by the neuroradiologists with respect to its potential 

in a clinical setting. 

 

5.2 Glioview: An application to visualize boundary variability. 

An important component of the experiment covered in this chapter includes the 

use of an appropriate method to display the temporal progression, variability estimates, 

and segmentation results to the user (i.e., neuroradiologist). For this purpose, a new 

visualization interface (Glioview) was developed, on which the different imaging studies, 

as well as the visualization of variability estimates are displayed.  

As shown in Figure 5.1 and Figure 5.2, Glioview is able to load the desired images 

and run the automated segmentation approach described in Chapter 4. Additionally, it 

has diverse tools that aid the neuroradiologist to interpret and understand the variability 

metrics generated after the computations have been completed. Some of these visual aids 

include a boxplot with variability estimates, a timeline with variability estimates, a bar 

plot with the calculated volume for each of the tumor components and, most im-

portantly, the tumor variability maps that display the degree of boundary variability 

across the tumor volume. 

A demonstration of the functionality of this application can be found on the fol-

lowing YouTube permanent link (https://www.youtube.com/watch?v=MhhqCOkOlHM). 
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Figure 5.1. Glioview user interface. This is the main interface where the user can load, 
process, and visualize the different contrasts for a given time point. A description of the 
overall functionality is provided for each component of the interface. 
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Figure 5.2. Additional windows generated by Glioview for temporal evaluation and as-
sessment. The top image displays the tumor variability maps as discussed in Chapter 4 
for each of the follow ups available for this case. The figure in the middle display the 
derived binary maps (contours over the image volumes). The bottom image shows a 
timeline with the estimated volume and associated variability for each of the cases, to-
gether with an automated assessment for each transition. 
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5.2.1 Radiological utility study 

 

To assess the utility of Glioview for the practicing clinician, a utility study was 

conducted among neuroradiologists to evaluate whether our computer-aided system for 

automated image analysis can alleviate the challenges of image interpretation in a subset 

of GBM patients. 

In this exploratory study, eight experienced neuroradiologists evaluated the auto-

mated tumor segmentation application on a set of six different patients with multiple 

follow-ups, and subsequently, answered a survey that consisted of ten questions. This 

survey was created with the help of Dr. William Hsu and Dr. Mary Zide [98] specifically 

to evaluate this new interface. The questionnaire included an evaluation of the user in-

terface (intuitiveness of single and multiple data points), display (data display and ar-

rangement), understanding of data (understanding probability maps and graphs), and 

program utility (performance, work facilitation). The questions utilized in the question-

naire are shown in Table 5.1; most of the responses were recorded using a Likert scale 

(1 to 5 ranking) [99,100]. 
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Question Possible answer 

Overall, I think the application was intuitive (i.e., easy) to use. Likert scale (1-5) 

Overall, I was satisfied with the way the data is displayed. Likert scale (1-5) 

I completely understood the meaning of the tumor variability 
maps generated by the application. 

Likert scale (1-5) 

I am overall satisfied with the performance of the program. Likert scale (1-5) 

I think this application can facilitate my work (radiology). Likert scale (1-5) 

Have you used/seen another application for automated brain 
tumor segmentation before? (Yes/No answer) 

Likert scale (1-5) 

Have you used/seen another application that incorporates 
analysis of different patient follow-ups (temporal analysis) in 
the results? 

Yes / No 

Which set of results did you find to be the most informative 
(most added value) for clinical purposes? 

Bar graph with tumor 
regions 

Patient timeline 

Variability maps 

Binary masks 
 
Table 5.1. Set of questions the clinician answered after using the user interface for tumor 
variability estimation. 
 

5.2.1.1 Results for the utility study 

Results were gauged using a Likert-type scale ranging from 0 (no agreement) to 

5 (complete agreement) (bar chart below) and found high agreement (4.62 ± 0.51) re-

garding the user interface being helpful to better evaluate data, while a smaller propor-

tion indicated it would improve their diagnostic workflow (4.12 ± .99). Additionally, 
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visual aids that can display error-range in tumor measurements (e.g., timeline) were 

identified by the users (six out of eight) to be significantly helpful during the decision-

making process. Figure 5.3 and Figure 5.4 summarize the results of the questions in the 

utility study. 

 

	
	

Figure 5.3. Distribution of answers for each question divided by the number of clini-
cians that answered the questions 
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Figure 5.4. Summary of the answers by category of the questions in the utility study. 

The actual numbers are shown inside each of the bars. 
 

5.2.1.2 Discussion for the utility study 

With this exploratory utility study, we demonstrated that computer-aided ap-

proaches have a positive effect on data understanding and effective work of neuroradiol-

ogists. Volumetric analysis proved to be helpful in analyzing brain tumor cases. With the 

feedback and comments received during this evaluation, we found possible ways to im-

prove the visualization. These included the display of variability estimates for T1-

weighted and T2-weighted estimates at the same time and display of the variability range 

in the bar-chart. 
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5.3 Retrospective analysis 
	

Given that the clinical evaluation using the RANO criteria [9,45] considers tumor 

characterization from the perspective on tumor volume changes through time, this ex-

periment centered on the analysis of a sample of patients from the UCLA dataset (section 

3.2) for which temporal data was available. A retrospective analysis comparing the as-

sessment from the neuroradiologist at the time of the scan and a new assessment by 

expert neuroradiologists (Dr. El-Saden and Dr. Salamon) was performed. Given that the 

imaging scans were the same and the skill set of both clinicians was assumed to be equal, 

the critical comparison between both assessments was the availability of quantitative 

metrics for tumor boundary variability. This was provided by the segmentation algorithm 

presented in the previous chapter. The overall process to perform this experiment is 

presented in Figure 5.5. 

	

	
 
Figure 5.5. Flowchart of the process followed for the assessment in clinical practice. 
Starting from the selection of temporal cases and clinical information until the new as-
sessment was reached, and compared with the previous assessment when the variability 
for each case was available. 
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The driving hypothesis that was followed for this experiment is that the variability 

metrics generated by the approach proposed in this dissertation (Chapters 3 and 4) can 

be leveraged by the neuroradiologist towards a better understanding of cases with high 

variability over several follow-ups. The primary aim was to achieve a more objective, 

specific and accurate assessment of the case during review. 

These new assessments were compared with the previous clinical analyses, and 

with the conclusions achieved by the automated software. For the purposes of this ex-

periment, the reference standard was considered to be the automated evaluation ob-

tained by measuring the volumetric change using RANO (volumetric) criteria, taking 

into consideration the tumor volumes generated by the automated approach that were 

verified to be accurate.  

5.3.1 Study cohort  

A subset of 31 patients from the UCLA dataset was selected to perform this eval-

uation following the sample size calculation in Table 3.5 (80% power using a ROC curve 

power analysis calculation). These cases had a temporal component, having a minimum 

number of follow-up scans of two and a maximum number of follow-ups of eight. The 

total number of cases analyzed for this analysis included 93 different follow-ups. The 

inclusion criteria included randomly selected cases with multiple follow-ups, without 

resection (but including biopsy) and with previous clinical notes available (Figure 5.6) 



 

 149 

For all cases, the clinical information was also available to obtain the previous 

diagnosis. The clinical notes were accessed and manually read to generate a correlation 

between the clinical notes (free-text) with the volumetric RANO criteria. 

 
 

Figure 5.6. Inclusion criteria for the retrospective pilot clinical study. *Number of cases 
limited to 110 because of time constraints and the intensive manual nature of image 

examination. 
 

 
As discussed in previous chapters, the proposed volumetric assessment using the 

RANO criteria considers a volumetric measurement on which a decrease in overall vol-

ume greater or equal to 65% corresponds to treatment response, and an increase in over-

all volume greater or equal than 40% corresponds to progressive disease. The interval 

between these two states is classified as stable disease. From the selected cases, 55 

(59.1%) were found to be cases of progressive disease, 35 (37.6%) cases of stable dis-

ease, and 3 (3.3%) cases of treatment response. Table 5.2 presents some examples of 

how the free text of medical notes was converted into assessments using the RANO 

criteria.  
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After the imaging studies were successfully processed, and clinical data were ob-

tained for each of the subjects, the proposed retrospective studies were performed using 

Glioview. All 93 cases were manually assessed to be cases in which the tumor was still 

present in the different follow-ups, no resection occurred during the process (biopsy was 

accepted). Cases where resection happened immediately (a frequent scenario) were not 

included in the study since the objective was to evaluate the impact of variability metrics 

on tumor volume change over time. 

As mentioned, the initial (retrospective) clinical assessment was extracted from 

clinical notes and manually correlated to either progressive disease, stable disease, or 

treatment response according to the RANO criteria, this assessment was supervised by 

an expert neuroradiologist (Dr. El-Saden). Automated diagnosis with estimates of vari-

ability was then performed, and the volume change over time was assessed according to 

the same criteria. The expert neuroradiologist then performed an assessment of the cases 

that were found to have a disagreement between the automated volumetric evaluation 

and the previous analysis at the time of the study. In order to not bias the judgment of 

the new assessment, at the time of analysis the neuroradiologist did not have access to 

either the previous clinical notes or the diagnosis from the automated framework. The 

new clinical assessment was performed by looking at the variability estimated for each 

of the time points such as boxplots, timeline and variability maps overlapped in the im-

aging studies, which were not available in the previous evaluation, as well as observing 
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the different time points and different sequences side by side to evaluate change over 

time. This was not always available during the first evaluation done at the time of the 

scan (Figure 5.3). 

 
Case example 

 
Clinical text 

 
 
 

Example 1 

A ring enhancing mass centered in the left superior temporal gyrus 
has mildly increased in size. It measures 5.0 x 3.9 x 4.3 cm, (AP x TV 
x CC), previously 3.3 x 2.7 x 2.9 cm at the same level. Areas of asso-
ciated intra-tumoral hemorrhage are unchanged. Mild interval 
growth of enhancing tumor in the left temporal lobe. 

 
 

Example 2 

There has been no interval change in the size or enhancement sur-
rounding the left parietal resection cavity and no new lesions are 
identified. There has, however, been mild interval increase in the 
amount of perilesional T2 hyperintensity, likely in part related to 
vasogenic edema. 

 
 
 
 

Example 3 

The current scan demonstrates two dominant areas of heterogene-
ous enhancement with central non-enhancing regions.  The more 
posteriorly-directed rim-enhancing mass currently has a maximal di-
ameter of 21 mm.  Previously, this lesion measured 19 mm and showed less 
central necrosis.  The more anteriorly and superiorly-enhancing pro-
cess is more amorphous.  Previously, this measured 9 mm in maximal 
diameter.  Currently, it measures 18 mm in maximal diameter and has devel-
oped additional central necrosis.  A more amorphous area of enhance-
ment is noted inferior and medial to this.  When compared to the 
prior scan, therefore, there is significantly more new enhancing tissue. 

 
Table 5.2 Examples of clinical notes analyzed for this experiment that was correlated 
with a RANO diagnosis. This process was validated by the expert neuroradiologist to be 
accurate.  Note that even one-dimensional measurements were not always measured by 
the clinician, and sometimes only a qualitative assessment was conducted. Key sentences 
used to identify tumor status appear in italics. 



 

 152 

 

5.4 Evaluation and results 
 

5.4.2 Results of a retrospective study  

Of the 31 cases examined in the retrospective analysis, 26 (83%) of them were 

discovered to have the same agreement between the new analysis and the previous con-

clusion. Of the 5 cases (17%) that were discovered to be in disagreement (initial diag-

nosis and automated result), each was consequently analyzed by the expert neuroradiol-

ogist to determine which analysis was found to be more accurate, and the reasons for 

the differences. The cases in which the neuroradiologist was in agreement with the initial 

diagnosis found on the clinical record (and not the automated analysis) include: 

o Case in which a small resection cavity with hyper-intense blood products was 

classified by the algorithm as part of the tumor and not considered in the clinical 

analysis. It is known that in cases with resection cavities, these empty spaces 

sometimes are filled with blood products, that can appear hyper-intense, even 

without the use of a contrast agent. This is problematic for segmentation algo-

rithms as it may be identified as part of the enhancing tumor. Tumor T1 subtrac-

tion maps can help to discriminate between hyperintense blood and enhancing 

tissue, but in this case, the algorithm still included it in the boundary since the 

blood pool was very close to the other tumor components. 
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o A subject that had a disagreement because other clinical comments not related to 

change in tumor volume were considered to reach a final diagnosis (e.g., signifi-

cant mass-effect or morphological changes in cerebral structures between follow-

ups). Although volume change and three-dimensional characterization is the 

main biomarker used to assess tumor progression, in complex cases the neuro-

radiologist may aid his/her decision using additional factors to reach a conclusion. 

These additional features should be considered to be added to future modifica-

tions of the algorithm. 

o Case in which the clinical notes were non-specific, and were incorrectly classified 

when the initial review occurred. It was observed that as the evaluations were not 

quantitative, the assessment can be non-specific and difficult to interpret at a later 

time. 

 

The cases in which the neuroradiologist was in disagreement with the automated assess-

ment with variability estimate include (Figure 5.7): 

o A case of stable disease classified as progression. After the new analysis was con-

cluded it was found that the three-dimensional measurement with the estimate 

of variability showed an increase of volume that was not initially detected with 

one-dimensional metrics. There was a reported decrease in enhancing margins, 

and disagreement with a previous note on perilesional T2 signal in the case. Both 
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neuroradiologists were in agreement with this assessment. Figures 5.6 a and b 

present an example of this case. 

o A case of progressive disease classified as stable disease. In this case, the new 

analysis found changes in subsequent edema that were not noted in past clinical 

notes. Additionally, there was an indication of nodular enhancement. These two 

differences are an indication of disease progression. Both neuroradiologists were 

in agreement and concluded that the previous assessment did not consider the 

critical aspects noted above, possibly due to lack of a three-dimensional segmen-

tation and appropriate visualization. Figures 5.6 c and d present an example of 

this case. 

 

5.5  Conclusions 

The variability associated with imaging features (e.g., tumor volume) is a funda-

mental characteristic that must be known to make an informed tumor assessment 

[53,101]. The experiments performed in this chapter aimed to assess whether our pro-

posed methods can increase the confidence of the neuroradiologist through a more quan-

titative and better-informed image characterization of brain tumors. The ability to eval-

uate the implications of radiological interpretations and determine if volumetric assess-

ment and error measurement provide an additional benefit with respect to the current 

guidelines for tumor characterization. 
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The retrospective study that was performed, and the novel user interface that al-

lows the neuroradiologist to analyze volumetric changes and observe the variability es-

timates for each time point were determined to be effective, and have a potential impact 

in the way neuroradiologists analyze the images. This approach promotes the movement 

from one-dimensional measurements to volumetric measurements on which statistical 

analysis can be performed. 

Equivalence tests were used to determine whether the means for product meas-

urements or process measurements are close enough to be considered equivalent. Given 

that small differences between products were not always functionally or practically im-

portant (e.g., thresholds determined by clinical guidelines can determine if the tumor 

was different from the previous observations). These differences among the group mean 

can be tested by doing analyzes of the variance of the means of the different groups 

(analysis of variance for many samples or t-test for a paired groups).  

Several challenges were noted. During the analysis of clinical notes, it was ob-

served that clinicians often did not make explicit references to the RANO criteria while 

reading the imaging studies. Also, clinical notes tended to be conservative when as-

sessing change (e.g., when assigning progressive disease) and considered different as-

pects of brain anatomy (e.g., cerebral mass-effect or brain deformation) and not just tu-

mor volume as criteria to define the status of tumor progression over time (Table 5.2). 

Finally, another challenge to this study is that we did not have access to information 
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about the treatment that was being administered to the patient, possibly limiting the 

assessment that the current doctor made with respect to the previous diagnosis. 

In summary, we demonstrated that in cases where differences in tumor volume 

were not visibly different from each other, and in which the tumor boundary can be fuzzy 

and unclear, our approach provided a useful assessment of boundary uncertainty. Such 

a metric can help the neuroradiologist determine which case requires a more careful 

analysis as it can be a signal of biological heterogeneity or other important clinical fac-

tors. 
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Figure 5.7 The two different cases that were found to be in disagreement with the orig-
inal clinical assessment after a volumetric analysis that included an estimate of variabil-
ity. First two rows show Subject 1 with and without variability maps, bottom rows show 
Subject 2 with and without binary contours overlapped.  
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Chapter 6: Conclusion 

6.1  Summary of findings 

 
This dissertation centered on the understanding, characterization, optimization, 

and representation of tumor variability in medical imaging, specifically in the domain of 

GBM using magnetic resonance imaging (MRI). The contributions of this work are out-

lined in the following paragraphs, with comments on the specific theoretical or practical 

contribution that is provided in this dissertation: 

o Understanding the sources of variability that arise in GBM tumor segmentation: The 

work presented in Chapter 3 contains most of the work relevant to this point. Un-

derstanding the sources of variability was possible by analyzing different segmenta-

tion algorithms and their intrinsic parameters to determine which and to what degree 

these parameters can determine the final tumor boundary that is produced by each 

of the algorithms. A general optimization framework was created to provide an auto-

mated and reliable tool to test for the different parameter combinations that can exist 

for each algorithm. These different methodologies were applied to define tumor var-

iability maps that represent boundary variability at the algorithm-level. 

o Development of a novel and automated tumor segmentation algorithm that charac-

terizes tumor variability in its different subcomponents. Towards fulfillment of this 
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objective mainly presented in  Chapter 4), a complete and automated image pro-

cessing pipeline that combines statistical methods and knowledge-based methodolo-

gies were created. This framework characterizes the variability of the tumor boundary 

at the pixel-level by evaluating the differences in tumor and normal tissue intensities 

near the tumor boundary. Additionally, this new algorithm is capable of calculating 

a variability map for the different tumor sub-regions (edema, enhancing, necrosis) as 

well as total tumor and core tumor, all made possible by the use of a multimodal 

approach that uses different MRI contrasts. The algorithm that was developed to-

wards the fulfillment of this contribution was tested using different independent da-

tasets, including a large dataset provided by UCLA, and a public repository of GBM 

images from TCGA. This was evaluated by a team of independent researchers as part 

of the MICCAI tumor segmentation competition during 2016. This method was also 

observed to work using a set of different MRI phantoms, ranging from highly stand-

ardized phantoms to other personalized phantoms. 

o Evaluation of the impact of segmentation variability metrics in clinical image assess-

ment. For this last contribution, primarily covered in Chapter 5, an evaluation of the 

potential practical use of the tumor variability maps in a clinical setting and the work 

of the neuroradiologist was completed. To accomplish this, a retrospective clinical 

study was performed, using a set of previously analyzed tumor cases, and contrasting 

them with a new assessment by an experienced clinician when he/she has access to 
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variability metrics. As part of this study, a new user interface was developed allowing 

the clinician to visualize the images and the segmentation results, along with the 

estimation of variability and change over time represent in different ways. Results of 

this study included some cases in which a combination of variability metrics, three-

dimensional measurements and an overall better visualization (especially a progres-

sion timeline) caused the new assessment to be different from the previous assess-

ment. 

6.2  Limitations 
 

The work presented in this dissertation attempted to be comprehensive and com-

plete; nevertheless, there are always possible areas of improvement that for diverse rea-

sons were not considered at the time when this document was written.  

o Sources of variability. In this work, we attempted to characterize variability in dif-

ferent aspects of the imaging process, such as the differences found when using dif-

ferent algorithms and parameter combinations as well as the differences that could 

be found while analyzing the tumor boundary in each imaging volume at the pixel-

level. Although these two sources of variability were demonstrated to be of signifi-

cant importance for variability characterization, there are other sources of variability 

that likely have important effects on the imaging process. One example of this is the 

acquisition and initial processing (i.e., image reconstruction) of the image. Different 
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artifacts and numerical complications can arise and lead to representations of the 

object of interest (e.g., tumor) that differ from the real object. Other sources of var-

iability include acquisition sequence standardization, noise and motion correction, 

and a better determination of temporal change (tumor evolution over time). 

o Dataset size and annotations. UCLA currently has one of the biggest datasets of 

brain tumors in the country. Nevertheless, different issues such as data incon-

sistency, missing information, and availability of annotated data limit the use of 

other algorithms that require very large amounts of data to be appropriately trained 

(e.g., deep learning). Additionally, although there have been efforts to standardize 

image acquisition, there are still some variations when the data is acquired (changes 

in parameters to reduce scan time, incomplete sets of imaging sequences). Consid-

ering that many of the utilized cases for this work were originally obtained up to a 

decade ago, some even before the FLAIR sequence became a routine sequence in 

brain tumors, which occurred approximately in 2006. 

o The accuracy of segmentations. As noted in Chapter 2, brain tumor segmentation is 

a very challenging task, and different research groups in diverse locations have in-

vestigated the best possible way to find the most accurate tumor boundary. Despite 

these efforts, these approaches are still not ready to be effectively used in the clinical 

setting. In difficult cases with heterogeneous biological characteristics, segmenta-

tion methods may be able to include only a part of the total abnormality or even miss 
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it completely. As noted before, the approach that was described was tested in differ-

ent datasets (UCLA, TCGA), internally and externally (MICCAI). The results ob-

tained from these different evaluations were comparable to currently existing ap-

proaches, and were quite useful during the task of training and testing the system.  

o Working on pre-resection cases. Linked to the previous point, this work centered on 

the characterization of cases before resection occurred. Although there are many 

cases in which tumor resection does not occur (not advisable based on location, af-

fected areas or size of the tumor), many other cases do undergo resection, and an 

appropriate characterization of these cases surely can lead to meaningful clinical 

conclusions. Unfortunately, there are several hurdles to surpass including the han-

dling of resection cavities by different algorithms (skull stripping, registration) that 

normally cannot handle cases with such extreme brain deformations and related bi-

ological problems. These include the timely identification of tumor pseudo-progres-

sion or other effects that are visible in the images that are related to treatment (e.g., 

radiotherapy, immunotherapy), but not directly related to the tumor itself. 

 
6.3  Future directions 
 

Although the work presented in this dissertation has advanced our knowledge in 

tumor characterization using MRI, there is work that remains to be done. There are many 

other brain and non-brain diseases in which this work can be applied, some of them 
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including stroke, lung nodules, prostate cancer, and breast cancer. Characterization of 

the variability in measurements and the use of different metrics to find the true charac-

teristics of an object is a general idea that is applied in science. It often does not reach 

medical applications due to practical and methodological constraints related to the re-

duced speed and high accuracy required for clinicians and other such as biological het-

erogeneity and characterization variability. 

Future work can center on translating these methods into other domains and ex-

pand applicability into the clinical setting. Some ongoing efforts in this direction include 

the brain tumor division of the MICCAI society that runs the brain tumor segmentation 

competition. One outcome of this competition includes finding a combination of the best 

algorithms that can generate the most accurate segmentation and the identification of 

factors that account for the variability between them. Such aims are well aligned with 

the contributions of this work. 

Another area of opportunity includes going a step closer to the clinical setting to 

investigate the utility and impact of translating the variability estimates generated for 

tumor segmentation and apply them to the generation imaging biomarkers and radiomics 

features. This can inform neuroradiologists how precise a measurement is, and possibly 

how much importance to give to a certain biomarker depending on the ranges of varia-

bility that are being provided. 
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Additionally, in order for the algorithm to work in post-resection cases, it would 

be ideal to have labeled cases on which resection has occurred (in multiple locations and 

when the resection cavity is hypo-intense due to the presence of CSF and/or hyper-in-

tense due to the presence of blood), utilize a resection-robust method that is able to 

skull-strip the brain with a resection cavity and, possibly complimented using another 

data source (e.g., clinical information) that s information about the surgery (resection, 

biopsy). 

Instead of focusing on clinical applications, the frameworks and ideas presented 

in this work can be applied to the image acquisition process. Efforts to identify what are 

the causes of variability in the imaging process (motion, acquisition parameters, recon-

struction process), and optimizing the process so output images have better quality and 

can be adapted to different needs (children vs. adults, calcifications vs. soft tissue lesions 

are promising areas of research. 

 

6.3.1 Applicability of tumor variability maps 

Using the proposed multimodal framework for automated, probabilistic brain tu-

mor segmentation by using variability in estimates of the tumor boundary, and by ex-

ploiting tumor variability from different imaging sources, this algorithm is able to auto-

matically generate tumor probability maps. Alternatively, it adds a measure of uncer-

tainty to binary tumor segmentations. By explicitly quantifying the error associated with 
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any given segmentation, we believe that this added information is critical to understand 

and judge the actual tumor extent by a radiologist or neuro-oncologist when interpreting 

follow-up imaging data in a clinical setting. 

When comparing the results with other approaches proposed in previous years, 

our results are comparable to or surpass the mean performance of other algorithms [18] 

(Reza, Meier, Cordier, Bauer, Festa, Geremia, Buendia, Taylor, Shin) but progress still 

has to be made. One approach to improve our results exploits a classifier-based on con-

volutional neural networks (CNN) [102-103] to help in the definition of the preliminary 

tumor ROI. It can reduce the number of false positives during the tumor boundary se-

lection. Combining the result of our knowledge-based approach and the result of the 

CNN, trained to classify whether an individual voxel is part of brain tumors using an 

independent dataset, might contribute towards better results in the different tumor con-

tours. Examples where the proposed approach did not segment the tumor accurately are 

shown in Figure 6.1). 

The inclusion of variability calculations into segmentation methodologies can lead 

to improved results, and ultimately provide more meaningful data to clinicians since the 

knowledge of measurement variation is fundamental to make more objective decisions. 

Finally, additional work can include the addition of extra tumor biomarkers (tumor vol-

ume, thickness of enhancing margin, necrosis proportion), and evaluate their variability 

in brain tumor cases. Investigations should renew determination of statistical analyses, 
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together with visualizations similar to the what was presented in Chapter 5 with 

Glioview (Figure 6.2), can further aid in the medical decision-making, increasing the 

radiologist’s efficiency, accuracy, and eventual outcome at evaluating imaging studies.  

	
	

Figure 6.1. Examples where our approach did not segment the tumor appropriately. The 
first column shows an example where the tumor is under-segmented. We believe this is 
because of a miscalculation in the prior information that was obtained as a preprocessing 
step.  Only the hyper-intense edema was selected as part of the tumor, leaving the darker 
parts unselected. The second column shows a resection cavity on which the full area of 
enhancement was not captured, and the third column shows how image artifacts can 
also cause problems while trying to segment the tumor. 
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Figure 6.2. Tumor progression over time. Showing volume measurement for each time-
point with its respective error estimate. As time passes it becomes critical to evaluate if 
the action was taken at a given point in time (e.g., chemotherapy, radiotherapy) had a 
significant effect on the tumor characteristics observed in follow-up MRI scans. This ap-
proach enables clinicians to have different estimates of tumor characteristics (e.g., tumor 
volume, growth rate), and statistically define if significant change over time is observed, 
a vital task for subsequent treatment planning. 
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Altogether, this dissertation explored topics in medical informatics, MRI auto-

mated assessment, and the development of algorithms applied to neuroimaging. Con-

tributing to the improvement of the radiological assessment and patient outcome.  

  
  

  



 

 169 

Appendix 
 
Supplementary material for Chapter 2 

Literature review for previously published methods for brain tumor segmentation 

 
Integrated hierarchical random forest classification and CRF regularization [19] 

Bauer, Wiest, et al. 

This automatic method for brain tumor segmentation is based on a statistical clas-

sification of healthy tissues and pathologic tissues. The segmentation task is modeled as 

an energy minimization problem in a conditional random field (CRF) formulation, and 

a decision forest algorithm is used to perform the final classification.  

This approach uses a more than forty features as input to the classifier, that in-

cludes intensity features, first-order textural features and other features from image gra-

dient and pixel neighborhood (a distance metric from image patches). The random forest 

classifier was trained using a five-fold cross-validation in the training dataset. The pa-

rameters of the algorithm were chosen empirically.  

The approach was compared against a classification using a Support Vector Ma-

chine (SVM) with similar image features, obtaining comparable results but the different 

regularization approach that is utilized da faster and more efficient classification. The 

method has difficulty in classifying datasets that are very different to what was observed 

during the training phase of the method.  
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Bit-grouping artificial immune network for tumor segmentation [20] 

Buendia, Taylor, et al. 

This approach uses an Artificial Immune Network to perform an automated anal-

ysis of GBM MRI images. This system recognizes the abnormal regions as “pathogenic 

image patterns”, and then process them to output the tumor region for the different 

abnormal regions observed using the different MRI imaging contrasts obtained. 

The input parameters for the detection of the abnormality include a combination 

of intensities of 2D and 3D image blocks of varying sizes for each sequence, textural 

patterns (such as mean, variance, and co-occurrence matrices). The grouping approach 

that was used (multi-bit grouping) was chosen to be groups of 2 bits for improved com-

putational efficiency and was made based on the location of each bit within the input 

image and the relevance observed when extracting the initial features. 

Before running the segmentation approach, a preprocessing pipeline was put in 

place to remove noise and some inhomogeneities from the input images, as well as 

matching the intensity histogram of the input volumes. Also, several post-processing 

options were implemented, such as finding and extracting connected components and 

performing dilation and erosion on those components to improve the accuracy of the 

final result. The system was trained using a 20-fold cross-validation on a set of high-

grade tumors from the BRATS 2013 training set. The evaluation was done for three dif-

ferent tumor sub-regions - whole tumor, tumor core and enhancing region - using the 
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Dice coefficient comparison metric. 

 

Patch-based tissue segmentation approach [21] 

Cordier, Menze, et al. 

This approach provides an automated method that was inspired using manual 

brain region labeling, and is similar to a multi-atlas label propagation method. This 

method utilizes a database of local normal image patches and another set of pathologic 

image patches. For each of the input test cases, the image patches are extracted from the 

image and compared to the ones contained in the database, enabling a labeling of test 

patches afterward.  

The comparison of the different image patches is done by performing a sum of 

squared differences comparison after a global intensity alignment. When the patches are 

being compared, this evaluation is also performed in the five image patched that are most 

similar to the patch that was retrieved using a nearest-neighbor approach. The utilized 

image features include intensity patches extracted from the different MRI sequences, 

with the addition of exponential weight to improve system performance. The most im-

portant parameter in this algorithm consists of the patch size (defined manually) and 

the number of training cases. The number of similar patches that were retrieved using 

the nearest neighbor approach had almost no effect in the output tumor region. 

This process is performed between every voxel in the test case and every training 
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image patch. For each defined label, the results are obtained by doing a weighted voting 

approach on the resulting probability-like map (50% percentile). At each step of the al-

gorithm, weighted votes are rebalanced based on label frequencies to penalize image 

patches that would be picked so often that it would introduce a systematic bias. The 

output tumor ROI is obtained by applying post-processing techniques to reduce noise in 

the resulting images and image smoothing.  

The algorithm has some problems when trying to classify thin regions of enhanc-

ing tumor. The necrotic component is sometimes missed or misclassified. The algorithm 

could use shape criteria to discriminate and ignore false positive regions located mainly 

in regions close to the occipital lobe or cerebellum. 

 

Hidden Markov fields and variational EM in a generative model [22] 

Doyle, Vasseur, et al. 

This approach for tumor segmentation works using multiple MRI sequences to 

achieve automated tumor detection. The parameters of this model that are used to dis-

tinguish the tumor components are estimated using the expectation maximization algo-

rithm with Markov random field constraints, and therefore does not have a training 

phase. 

Hidden Markov Random Field (MRF) models are able to consider general patterns 

that overall encode complex interactions. For this approach, in particular, certain tissue 
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combinations in the image neighborhood are penalized more than others to provide a 

representation of the tissue these areas represent. This is achieved by using the mean 

field principle to generate a variational approximation for tractability in the presence of 

Markov dependencies. 

The data model used for this approach included five tissue classes: white matter, 

gray matter, ventricular CSF, extraventricular CSF, and “other”. The tumor tissues were 

modeled by four different tissue classes: edema, non-enhancing, enhancing and necrotic. 

In case there is missing data and the complete interactions cannot be accurately deter-

mined, then further constraints on the model can be applied, such as consideration of 

the tumor as a single entity if there is not enough information about tissue types. 

In order for the approach to work with multiple sequences, the multiple volumes 

are registered to an existing MRI atlas, then simple morphological comparison methods 

are performed on the tumor ROI previously obtained by the MRF to achieve a final clas-

sification for the four different tissue classes. This algorithm was trained and tested us-

ing the BRATS dataset from 2012 and 2013. All parameters of this model were estimated 

iteratively during the segmentation process. 
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Random forest classifier using neighborhood and local context features [23] 

Festa, Pereira, et al. 

Similar to other approaches. this algorithm uses different MRI sequences to train 

a random forest classification model to achieve automated tumor segmentation. The pre-

processing steps to reduce sources of error were included into the process (bias field 

correction, intensity normalization, histogram marching, and in some cases cropping of 

the imaging volumes where no tumor is observed). 

As part of the training process, each brain voxel is classified based on several fea-

tures extracted from the different images. The number of trees in the forest was defined 

to be 50 with a possibility of maximum 25 levels on the branches of each tree. The ex-

tracted features included intensity measurements from the input images as well as from 

subtractions of them. These include post contrast T1 minus regular T1 image volumes; 

2D neighborhood information such as mean, median, intensity range and other texture 

information, and three-dimensional information with each pixel and their neighbors lo-

cated 3mm in each direction. 

These features are used to build the decision forest. For every test case, each pixel 

runs down this created structure and the final pixel classification is obtained based on 

majority voting, where every tree provides a classification based on the branch arrange-

ment. Finally, a post-classification step was performed to eliminate small regions (false 

positives). The approach was built for low-grade and high-grade gliomas. 
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Spatial decision forests with intrinsic hierarchy [24] 

Geremia, Menze, et al. 

This method uses a method called “Spatially Adaptive Random Forests” to auto-

matically learn and classify MRI images with brain tumors. Different from traditional 

decision tree approaches, this method introduces a multiscale 3D image representation 

plus a structured labeling system. They significantly increase the time it takes to train 

the system, but also increase the classification accuracy. 

To increase the classification speed, the hierarchy is built using coarser images 

obtained by the use of the SLIC algorithm. These simplified images are equivalent to a 

supervoxel representation. This results in the ability to work with semantic regions 

within the tree hierarchy, boosting the parsing and improving the classification accuracy. 

 

Semi-automatic segmentation using active contours [25] 

Guo, Schwartz et al. 

This semi-automated approach takes multimodal MRI brain tumor images and a 

manually defined input ROI that roughly encloses the tumor region, only on one slice. 

This algorithm combines the region- and edge-based approaches to find the tumor 

boundary inside that ROI, with the advantage that it runs very fast (under 1minute). 

The general idea of this approach is to take the user-defined ROI (defined on the 

post-contrast T1 weighted image) as a reference and propagate tumor contour through 
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the imaging volume using interpolation. Following this, the active contour approaches 

segment the total tumor mass. Enhancing and necrotic tumor components are separated 

by adaptive thresholding. A similar approach is followed on the FLAIR images to find 

the edema region, defining the total abnormality, and then subtract the tumor mass 

found on the T1-weighted sequences. 

The implemented active contour models allow for topological changes (merging 

and splitting), which is a necessary property when trying to segment regions with highly 

variable shapes, such as brain tumors. This method can also function when the complete 

set of input sequences is not available, being able to segment only the enhancing tumor 

or total mass when there is not enough data available. 

The system is built with a user interface to draw the initial ROI and show the 

segmentation results for easy visual inspection, with the possibility of manual refine-

ment in case it is needed. 

 

The Tumorcut method [26] 

Hamamci and Unal 

This is a semi-automated tumor algorithm aims to segment the gross tumor mass 

along with the sub-components of the tumor, being able to work with high-grade and 

low-grade gliomas. In addition to the MR input volumes, the method requires a manually 

drawn line through the maximum diameter observed on the tumor, as described on the 
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RECIST criteria, for each of the input volumes. 

This method uses the input line as a seed for tumor segmentations and to identify 

the final tumor boundary called cellular automata. This works by optimizes the boundary 

using grow-cut segmentation with an added sensitivity parameter that can be adjusted 

to adapt for different levels of tumor variability and regions with smooth boundaries. 

The biological approach on which the cellular automata is based on a dynamic 

system defined inside a grid, and iteratively expands by using the grow-cut algorithm. 

This algorithm aims to find the shortest paths by properly choosing among different 

transition rules to achieve tumor segmentation. These transitions rules can be adapted 

depending on the sequence that is being segmented or to account for other special sce-

narios such as the presence of resection cavities. 

 Tumor regions are selected by doing logical operations on the results obtained 

from the previous step. A smoothness constraint using level set active surfaces is im-

posed to improve result accuracy.  

 

Appearance- and context-sensitive features with a random forest and CRF [27] 

Meier, Bauer, et al. 

This approach for automatic tumor segmentation is divided into three different 

parts: feature extraction to create a feature space for the training of the random forest 
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algorithm, a classification step and finally spatial regularization. The process also in-

cludes a previous step in which the MRI input images are noise-reduced, normalized and 

bias-field corrected. The parameters of the approach (such as deepness level and a 

number of branches) are defined according to the grid search algorithm. 

The explored feature space is composed of 257 features extracted from the images, 

including intensities from the multimodality inputs, as well as first-order texture fea-

tures and information from the image gradient. Unlike other approaches, this method 

also includes context-sensitive features such as symmetry metrics and structural coordi-

nates derived from a normalized atlas.  

The classification forest uses the maximum a posteriori rule to calculate the pos-

terior probability output during the classification task. The regularization step includes 

an energy minimization of a conditional random field. The output of this step is a meas-

ure of the strength to which each pixel might be linked to each of the defined tumor 

classes, then the strongest link is selected as a final label for the pixel. The algorithm 

showed good results overall, presenting the most number of false positives in the infra-

tentorial region (cerebellum), and when making a classification between edema and non-

enhancing tumor. 
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Generative-discriminative lesion segmentation model [28] 

Menze, Geremia et al. 

The proposed method is based on a generative approach similar to a classification 

forest that is able to encode standard image intensity and textural features as well as 

information about expected physiology and pathophysiological changes. Then a classifi-

cation forest classifies the different input imaging into the different tumor classes by 

considering the association strength based on the measurement of the geodesic distance 

of each pixel to a defined tumor class. The output of the method is a probability map for 

the tumor region observed in each imaging volume.  

While the output of this segmentation method provides a better insight into the 

different pathophysiological processes that occur in the tumor. The highly specific tumor 

components such as edema, necrotic core, enhancing and non-enhancing regions, cannot 

be directly associated with the results obtained from this method. To compensate for 

this, several structural features are extracted from the resulting tumor map to further 

constrain the classification and identify tumor subcomponents. 

The model consisted of no more than 2000 samples from each input volume, gen-

erating a group of 300 trees with a level depth of 10. To improve results, some standard 

post-processing techniques were applied as well as Markov random field smoothness 

constraints on the class labels. 
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Generative lesion segmentation model [29] 

Menze, Van Leemput, et al. 

This fully automated approach for tumor segmentation implements a protocol 

that combines a standard Expectation Maximization (EM) generative model and popu-

lation priors (atlas-based) to determine tumor labels using multi-sequence data. This 

method exploits the image spatial location information to segment the normal regions 

in the brain. It includes a latent variable on each voxel to assess the probability of that 

voxel being a part of the tumor region. 

The overall process includes the use of a physiological tissue atlas with a person-

alized lesion prior, clustering of the input images using the EM algorithm into three 

different regions for healthy tissue (white matter, gray matter, and CSF), and an outlier 

class of tumor tissue. These outliers are defined as the regions more than three standard 

deviations away from the average intensity value observed in normal tissue classes. 

For a semantic interpretation that is in line with the class definitions of the seg-

mentation challenge, channel-specific segmentations are returned by the algorithm and 

transformed to the edema and tumor core classes, which includes enhancing and necrotic 

regions. Finally, a region post-processing occurs to remove the likely false-positives that 

may appear. Small regions defined as abnormal. 
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Texture features and random forests [30] 

Reza, Iftekharuddin et al. 

This fully automated algorithm achieves multi-class tumor segmentation with 

MRI images. This algorithm starts by preprocessing the data (image normalization, 

skulls-stripping and image co-registration). Two types of image features can be ex-

tracted. The first group contains intensity features from input images as well as differ-

ence images, and the second group included novel textural features such as fractals (us-

ing the PTPSA approach), “textons” (vectors that describe the human perception of tex-

ture), and first and second-order textural features. 

These features were used as input for a classical random forest classification algo-

rithm. The algorithm involves a 3-fold cross validation during the training phase. The 

samples obtained from the images were evenly divided between tumor tissue and normal 

tissue.  This combination performed better compared to other unbalanced proportions. 

The classification is done for each of the pixels on the input imaging volumes similar to 

the standard random forest algorithm description. The final label was assigned based on 

the consensus or agreement between the individual trees of the forest. 

The whole process lasts approximately one hour and a half per subject, and the 

cross-validation takes about 15 minutes (Xeon processor with 15 Gb of RAM). Once the 

labels are generated for the test images, a 3D volume is outputted for further clinical 

evaluation. This classification algorithm was trained with low grade and high-grade 
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gliomas and was tested using the testing set provided by the 2013 BRATS challenge. 

 

Generative model with latent atlases and level sets [31] 

Riklin-Raviv, Van Leemput et al. 

This joint segmentation and patient-specific approach use MRI images to find the 

tumor segmentation by using a statistically-driven level-set algorithm. This approach 

does not require a training step. It is a semi-automated approach that requires the user 

to provide one or more seed points near the centroid of the tumor so different level set 

functions can be initialized around that area, subsequently evolving to cover the entire 

tumor mass. 

The segmentation is approached as a partitioning problem, with the tumor com-

ponent seen as foreground and normal tissue as background. A joint evolution of four 

level-set functions evolves based on the gray level distribution observed in the input 

image. The individual segmentation of each scan can consider segmentation of the other 

available sequences by sharing common information to improve the overall result. This 

common information, in the form of a spatial tumor location distribution map, is created 

as the level sets evolve using an alternating minimization procedure. 

This method was tested on a series of 25 multimodal images from the BRATS 

dataset.  They also tested the performance of the results for longitudinal studies for tu-

mor evolution detection. The methodology was adapted to segment the tumor regions 



 

 183 

and different subcomponents but can be tailored for detection of other abnormalities. 

 

Hybrid clustering and classification by logistic regression [32] 

Shin et al. 

This method is an unsupervised learning approach using a logistic regression ap-

proach to segment the tumor core as well as edema regions. The preprocessing steps of 

the MRI imaging volumes included image normalization, bias correction, and image 

noise reduction. 

The algorithm works by first extracting a series of four-dimensional imaging 

patches, regions of 3x3x3 pixels on each of the available MRI sequences available. Then 

second-order polynomial features can be extracted from those patches and used as input 

for the classification step. A dictionary for the behavior of the image intensities in the 

multiple input sequences (Flair, T1, T1C, and T2) was performed by the implementation 

of a sparse autoencoder.  Image intensities in the same pixel position on the different 

image modalities are convolved with each of the dictionary entries to obtain a binary 

label that represents the pixel final classification as part of normal tissue or tumor tissue. 

This approach included two cross-validations, and no additional post-processing 

steps were applied to the result produced by the classification technique. The 

performance was assessed using real tumor data as well as synthetic data generated from 

normal brain scans to simulate brain tumors. The main limitation of this approach is 
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that it is dependent of the final pixel classification on the examples contained using the 

developed dictionary. The addition of post-processing steps might provide an improve-

ment in overall performance. 

 

Hierarchical MRF approach with Gabor features [33] 

Shubbanna, Precup et al. 

This method is a fully automated hierarchical probabilistic model adapted for 

brain tumor segmentation on multi-sequence MRI images. It is based on the application 

of multi-window Gabor filters and Markov Random Fields to identify the edges of the 

tumor. The preprocessing steps used during this approach included bias field correction, 

intra-subject registration of all the input sequences, and image volume normalization. 

This algorithm consists of two different stages. The first aims to generate an ap-

proximate tumor segmentation (whole mass and its different regions) as well as approx-

imate the distribution of normal tissue using Gabor functions. The second is a Bayesian 

framework implemented in such way that the first tumor masks are used to calculate 

probabilities of the patterns observed on the Gabor filter to be part of normal or tumor 

tissue. Once these probabilities are obtained, the coarse masks previously obtained are 

refined using a modified conditional Markov Random Field that separates the tumor 

subclasses from the different healthy tissues. 
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The implemented Markov Random Field differs from the standard implementa-

tions in that it takes intensity differences between neighboring voxels into the likelihood 

model and considers transition probabilities between neighboring voxel classes. As a 

secondary stage on the boundary refinement, local inhomogeneities are included to have 

a smoothing effect on the output results.  

This method was trained and tested on the MICCAI 2012 and 2013 datasets (for 

low and high-grade gliomas) and was evaluated for all tumor subclasses (necrotic core, 

edema, solid tumor, and enhanced tumor), as well as overall tumor mass. The method 

obtained good results compared to existing approaches (30% improvement). Disad-

vantages include having a dependency on image normalization because the Gabor filters 

directly depend on that information to generate the result. The program had encountered 

difficulties during the identification of some groups of the tumor (high-grade gliomas in 

particular). 

 

Map-Reduce Enabled hidden Markov models [34] 

Taylor, John, et al. 

This novel approach called Map-Reduce enabled the extension to hidden Markov 

Models. It enables training and segmentation of solid tumors and edema sub-regions in 

multi-modality MRI brain images. The preprocessing steps involved in this approach in-

clude removal of spatial inhomogeneities due to patient movement or machine artifacts 
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that may present difficulties for the subsequent segmentation process. It also included 

bias field correction and histogram matching. 

The training step of this approach included extraction of image features (intensity 

metrics for each of the available sequences as well as information from the neighboring 

pixels). The Map-Reduce technique involves the use these vectors to create a mapper 

function for every single training case, and then adding these expressions case-by-case 

into a hidden Markov model that updates feature vectors given each of the mappers that 

are added into it. The final model normalizes the probabilities obtained on the hidden 

Markov model and then used image classification on a test case.  

This program is fast (about a minute per subject) and can run parallel segmenta-

tions on all four MRI contrasts simultaneously. Shortcomings of the program include 

lack of atlas-based prior or advanced textural features that might improve accuracy. This 

method was tested using a subset of the 2013 BRATS dataset. 

Limitations of the current algorithm include lack of support for spatial features, 

neighborhood-based textural features, and utilization of atlas-based priors, which have 

been shown to improve segmentation accuracy. 

 

 

Random forest classifier using the open source ANTs/ANTsR packages [35] 

Tustison, Wintermark, et al. 
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This automated approach for tumor segmentation uses a random forest approach 

with the addition of the implementation of a processing package called ANTs (Advanced 

Normalization Tools). This package is implemented in R and aims to extract information 

from complex datasets on imaging datasets. This involves features derived from statisti-

cal atlases on co-registered images and image vector feature extraction for use on spectral 

decomposition approaches such as ICA. 

The segmentation algorithm consists of various preprocessing steps including: 

construction of a multivariate symmetric template using the ANTs package; image noise 

reduction techniques (normalization, bias field correction and image rescaling); and the 

generation of image features including first-order statistical features (such as mean, var-

iance and standard deviation), and geometrical feature components (eccentricity, elon-

gation, and symmetry features). These features are obtained through the use of the ANTs 

package. 

The extracted features are then utilized towards the construction of the initial 

layer that composes the random forest. The segmentation step involves the use of a max-

imum a posteriori Markov random field to obtain spatial prior probabilities used to con-

struct deeper forest levels and output labels. A final refinement step is implemented by 

using binary morphological alterations determined empirically. The processing time for 

each patient can take up to 2 hours. 
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Learned MRF on supervoxels clusters [36] 

Zhao, Corso et al. 

This method is based on an initial tumor over-segmentation (estimation of 

supervoxels), and then constrains the segmentation to refine only the image labels that 

are selected as probable tumor components by a Markov random field defined on the 

supervoxel image. 

The labeling process occurs for every tumor sub-region (edema, necrosis, en-

hancement, and non-enhancement) as well as for normal regions (cerebral tissue and 

cerebrospinal fluid, CSF). The class likelihood on the Markov random field is obtained 

by evaluating each supervoxel with the most adjacent neighbors located on a Gaussian 

mixture model, which models one Gaussian distribution for each of the possible tumor 

labels. The tumor edge is identified by assessing the boundaries of each pair of 

supervoxels using a defined smoothness term, and a subsequent boundary optimization 

by using the graph-cuts approach. 

The training phase of this approach included a two-fold validation on high- and 

low-grade gliomas, generating individual classifiers for each group. Similar to other su-

pervised methods, this approach is highly dependent on the intensity standardization 

that is performed as a preprocessing step. 
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In some cases, the method fails because of the presence of image artifacts, incom-

plete sets of MRI sequences, or preprocessing errors that interfere with the classification 

step. The method was tested using the BRATS dataset for 2013. 

 

Learned MRF on supervoxels clusters with updated unary potential [37] 

Zhao, Zarikaya, et al. 

This automated approach for tumor segmentation estimates the likelihood of pix-

els on a three-dimensional joint histogram obtained by normalizing and registering the 

different MRI input volumes, performing a voxel-by-voxel extraction. This method ini-

tially performs a tumor over-segmentation (estimation of supervoxels) and then con-

strains the segmentation to refine only the image labels that are selected as probable 

tumor components by a Markov random field defined on the supervoxel image.  

The initial steps of the program, including the normalization, registration and im-

age noise reduction are performed using an external program called SUSAN. The esti-

mation of the image supervoxels is performed using a program called SLIC 3D which 

works by evaluating intensity similarity throughout the imaging volume. Image features 

are extracted, such as region size and intensity information, and normalized by the cal-

culation of the standard z-score, normally used to group all the image vectors on the 

same scale. 
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Afterward, the class likelihood for every super-pixel is evaluated using a Markov 

random field model with the addition of Graph Cuts approach to define the optimal 

boundary on pairs of superpixels. The process was validated using a 2-fold cross-

validation, and used a subset of the BRATS segmentation challenge to evaluate the meth-

odology. The method has promising results, with the added benefit that over segmenta-

tions limited by the initial boundary defined by the supervoxel, which limits the inclu-

sion of false-positive regions adjacent to the tumor region. 

 

Context-sensitive features with a decision tree ensemble [38] 

Zikic, Glocker, et al. 

This automated method implements a random forest classification approach on 

multi-modality MRI images (T1, T2, post-contrast T1 and FLAIR images) to achieve tu-

mor segmentation of high-grade gliomas, with the novelty of the introduction of context 

sensitivity that arises from two different places. First, the construction of the trees is 

based on other additional inputs such as patient-specific tissue probabilities, rather than 

only the standard MRI input volumes as in the conventional forest classification ap-

proach. As the second component employed to add context sensitivity is the removal of 

noise from the input images and other correction techniques before the classification is 

performed (registration, bias field correction, and normalization). 
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The mentioned tissue-probabilities are computed as the posterior probability of 

the image region that belongs to a specific Gaussian distribution (one for every tissue 

label). These approximations to tissue distributions are generated during the training 

process. For all cases the images were co-registered between each subject to the T1 vol-

ume, Noise correction strategies take place, and the feature extraction and classification 

occur following a standard random forest. 

Other parameters of the decision forest include a total of 100 trees with a maxi-

mum branch level of 20 branches. The algorithm was tested using a two-fold cross-

validation on the BRATS 2012 training data. Potential areas of improvement for these 

methods are to account for highly variable boundaries, and train the approach on a bigger 

dataset of pre-surgery brain tumor cases. as Also useful would be the addition of post-

surgical cases to the training and classification steps. 
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