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RESEARCH Open Access

Exploiting the noise: improving biomarkers
with ensembles of data analysis methodologies
Maud HW Starmans1,2*, Melania Pintilie3, Thomas John4, Sandy D Der3, Frances A Shepherd5, Igor Jurisica3,6,7,8,
Philippe Lambin2, Ming-Sound Tsao3 and Paul C Boutros1,6*

Abstract

Background: The advent of personalized medicine requires robust, reproducible biomarkers that indicate which
treatment will maximize therapeutic benefit while minimizing side effects and costs. Numerous molecular
signatures have been developed over the past decade to fill this need, but their validation and up-take into clinical
settings has been poor. Here, we investigate the technical reasons underlying reported failures in biomarker
validation for non-small cell lung cancer (NSCLC).

Methods: We evaluated two published prognostic multi-gene biomarkers for NSCLC in an independent 442-
patient dataset. We then systematically assessed how technical factors influenced validation success.

Results: Both biomarkers validated successfully (biomarker #1: hazard ratio (HR) 1.63, 95% confidence interval (CI)
1.21 to 2.19, P = 0.001; biomarker #2: HR 1.42, 95% CI 1.03 to 1.96, P = 0.030). Further, despite being underpowered
for stage-specific analyses, both biomarkers successfully stratified stage II patients and biomarker #1 also stratified
stage IB patients. We then systematically evaluated reasons for reported validation failures and find they can be
directly attributed to technical challenges in data analysis. By examining 24 separate pre-processing techniques we
show that minor alterations in pre-processing can change a successful prognostic biomarker (HR 1.85, 95% CI 1.37
to 2.50, P < 0.001) into one indistinguishable from random chance (HR 1.15, 95% CI 0.86 to 1.54, P = 0.348). Finally,
we develop a new method, based on ensembles of analysis methodologies, to exploit this technical variability to
improve biomarker robustness and to provide an independent confidence metric.

Conclusions: Biomarkers comprise a fundamental component of personalized medicine. We first validated two
NSCLC prognostic biomarkers in an independent patient cohort. Power analyses demonstrate that even this large,
442-patient cohort is under-powered for stage-specific analyses. We then use these results to discover an
unexpected sensitivity of validation to subtle data analysis decisions. Finally, we develop a novel algorithmic
approach to exploit this sensitivity to improve biomarker robustness.

Background
The perfect medical treatment would start with instanta-
neous diagnosis, proceed rapidly to a treatment that offered
complete cure with no side effects, and of course would
incur minimal costs to the healthcare system. This dream
scenario, while distant, has been made more plausible by a
rapid reduction in the cost of molecular assays. Molecular
profiling of clinical specimens offers hope in two ways.
First, new candidate therapeutic targets are being identified
[1,2]. These may lead to new treatments that cure diseases

more reliably and rapidly, and have fewer side effects than
existing approaches. Second, molecular profiling is leading
to the development of biomarkers that can identify the
optimal therapy for an individual patient [3]. Together,
these two trends are enabling molecularly personalized
medicine: biomarkers are used to select optimal treatments
from a large repertoire.
Unfortunately, the field of biomarker development has

not reached its translational potential. Despite numerous
reports of molecularly derived biomarkers to diagnose
disease [4], predict prognosis for individual patients [5],
and forecast response to therapy [6], the majority of bio-
markers do not reach clinical use. The reasons for this
are numerous. Some groups have made major statistical
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errors in deriving their biomarkers [7,8]. Others have
failed to adjust for key clinical information, such as
stage, or have failed to demonstrate their approaches are
superior to existing, non-molecular methodologies
[9-11]. Sometimes, external validation studies are
entirely missing. But hundreds of biomarkers have been
developed avoiding these concerns, but still fail in exter-
nal validation studies [12]. This has long been thought
to reflect the high dimensionality and complexity of bio-
marker space [13,14].
The management of resectable non-small cell lung

cancer (NSCLC) would particularly benefit from the
development of new prognostic tools. Despite improve-
ments in staging, surgical methodologies, chemotherapy
regimens and the addition of adjuvant therapies, 30 to
50% of patients with resectable NSCLC suffer relapse
and die within 5 years [15-17]. In fact, assessments of
tumor size and spread (TNM staging) are still the pre-
dominant prognostic variables in use. Several groups,
including our own, have employed transcriptome profil-
ing of surgically excised tumor samples to develop
multi-gene prognostic biomarkers (sometimes called
prognostic signatures or classifiers) [5,6,9,10,18,19].
However, there is minimal gene-wise overlap between
these multi-gene biomarkers [20], and challenges exist
in the datasets and analyses used to generate them [12].
Given the clinical need for a robust prognostic bio-

marker for NSCLC and the technical challenges that
confounded prior studies, a multi-institute effort was
undertaken. The Director’s Challenge NSCLC study was
an attempt to provide a large, sufficiently powered data-
set to discover reproducible multi-gene biomarkers [21].
This consortium integrated four independent datasets of
adenocarcinomas named according to the institutions at
which they were generated: UM, HLM, MSK and CAN/
DF. Each analysis group was blinded to the validation
cohort, and developed independent biomarkers that
were compared to the appropriate clinical end-points. In
2008 the Director’s Challenge team reported the surpris-
ing finding that none of the multi-gene biomarkers
tested were validated for the primary end-point of stage
I survival, supporting the idea that large validation
cohorts are required. More recently, Subramanian and
Simon [12] performed a critical review of a number of
prognostic multi-gene biomarkers for NSCLC. They
attempted to validate several previously published bio-
markers on the Director’s Challenge dataset, and again
found that no prognostic biomarker validated in this
large (442-patient) independent cohort.
This study begins with an attempt to replicate the

results of Subramanian and Simon [12]. Surprisingly, we
are unable to do so: by following the exact procedures
used in the original studies we show that both prognos-
tic biomarkers tested actually validate in the Director’s

Challenge cohort [21]. This is an unexpected positive
finding that led us to systematically evaluate the reasons
for this discrepancy. We first show that even this large
cohort is underpowered for stage-specific analyses. We
then find that relatively subtle changes in data-analysis
greatly confound biomarker validation. By exploring this
phenomenon we show that this is a general feature of
multiple datasets and biomarkers. Finally, we show that
the ‘noise’ caused by changes in analysis protocols is
actually an important source of information about the
robustness of a biomarker and provide a novel algorithm
that exploits it.

Materials and methods
Classifier evaluation
All analyses were performed in the R statistical environ-
ment (v2.11.1). The Director’s Challenge datasets [21]
were used to validate two previously published biomarkers,
one containing three genes [20] and the other containing
six genes [13]. Data pre-processing and patient classifica-
tion were performed exactly as in the original studies
[13,20]. The Director’s Challenge consists of four indepen-
dent datasets; UM, HLM, MSK and CAN/DF. Because
Shedden et al. [21] reported high inter-group variability,
these datasets were pre-processed separately with the
RMA algorithm [22] (R package: affy v1.28.0).
On the microarrays used for the Director’s Challenge

study every gene is represented by a set of 25 bp oligo-
nucleotides, called a ProbeSet. ProbeSet annotation was
done with Affymetrix provided annotation (R packages:
hgu133aprobe v2.6.0 and hgu133acdf v2.6.0). The exact
ProbeSets used in the original study were evaluated
(Table S1 in Additional file 1). Median scaling and
housekeeping gene normalization (to the geometric
mean of ACTB, BAT1, B2M and TBP levels) on biomar-
ker genes was performed before statistical modeling to
generate normalized expression values, as for the origi-
nal classifiers [13,20].
The three-gene classifier contains the genes CCR7,

HIF1A and STX1A. The normalized expression values
for these genes were subjected to statistical scaling and
then median-dichotomized, as outlined in Lau et al.
[20]. A risk score was then calculated from the scaled,
normalized expression as:

RiskScore = 4 × STX1Aexpr + 3 × HIF1Aexpr − 3 × CCR7expr

In this equation STX1Aexpr for a patient is set to one if
their STX1A signal intensity (after all pre-processing) is
above the median for all patients in the dataset and zero
otherwise. Values for HIF1Aexpr and CCR7expr are calcu-
lated analogously. Patients were classified into risk groups
based on their risk score: patients with a score ≤ 2 were
predicted to have good prognosis, whereas those with
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scores above 2 were predicted to have poor prognosis, as
in the original report of this biomarker [20].
For the six-gene classifier, Euclidean distances to the

training cluster centers computed and reported in the
original study were calculated to classify each patient
[13]. Briefly, the distance between a patient’s profile and
the cluster center was calculated separately for each
cluster. The ratio of these two distances was then
assessed: if it was between 0.9 and 1.11, the patient-clas-
sification was deemed ambiguous. These patients were
left unclassified and were ignored in downstream ana-
lyses. All other patients were classified into the nearer
of the two clusters. These procedures are identical to
those originally reported for this classifier [13].
Prognostic performance of both classifiers was evaluated

in three ways: Kaplan-Meier survival curves, stage-adjusted
Cox proportional hazard ratio modeling followed by the
Wald test (R package: survival v2.35-8) and binary classifi-
cation measures. Overall survival was used as the primary
endpoint; therefore, survival was truncated at five-years for
these analyses, since death due to other causes increases
considerably after 5 years in lung cancer survivors: if an
event occurred after 5 years, it was ignored and the survival
time was set to 5 years. For binary classification perfor-
mance, patients assigned to the poor prognosis group were
considered true positives (TP) if they died within 5 years,
whereas if these patients survived longer than 5 years they
were called false positives (FP). Likewise, patients alive at
5 years and classified in the good prognosis group were
considered true negatives (TN); however, if they died within
5 years they were considered false negatives (FN). Patients
with data censoring before 5 years were disregarded for
these analyses (84 patients). These numbers were used to
calculate sensitivity, specificity and accuracy in the usual
ways.

Power analysis
A power analysis [23] was performed to estimate the
likelihood that differences could be identified in stage-
dependent patient subgroups (R package: Hmisc v3.8-2).
For power calculations we assume equal numbers of
patients in each risk group, as previously observed for
the three-gene marker [20]. Power was calculated as a
function of the number of events (NE), in this case
deaths, hazard ratio (HR) and the significance level (a)
as derived by Schoenfeld [23]:

zpower =

√
NE × log(HR)

2
− z

1−
α

2

The probability of finding a specific HR given a certain
NE and using a significance level of a is calculated from
Zpower. For our analysis we set a = 0.05 and evaluated the
Director’s Challenge cohort as a whole (442 patients;

236 events) or by only considering stage IA (114 patients;
38 events), stage IB (162 patients; 73 events), stage II
(95 patients; 64 events), or stage III patients alone
(68 patients; 60 events). We calculated the power for
each cohort at a range of HRs from 1 to 2.5 in 150 incre-
ments of 0.01.

Dataset pre-processing sensitivity assessment
To assess the influence of different pre-processing sche-
dules on signature performance, the Director’s Chal-
lenge datasets were pre-processed in 24 different ways
and both classifiers were evaluated in each of these data-
sets. We considered four separate factors. Here we out-
line each of the pre-processing options evaluated.
First pre-processing for the four datasets was either

done for all datasets separately or for all combined.
When datasets were treated separately, pre-processing
was performed independently for each of the four data-
sets. Patient groups were then predicted separately for
each cohort: patients predicted as having good prognosis
(independent of the dataset they originated from) were
pooled into one group and those predicted as having
poor prognosis (again, independent of dataset) were
pooled into another group. Alternatively, when all data-
sets were combined the raw data were merged for a sin-
gle pre-processing.
Second, four different, commonly used pre-processing

algorithms were applied: RMA [22], GCRMA [24],
MAS5 [25,26] and MBEI [27] (R packages: affy v1.26.1,
gcrma v2.20.0). Table S2 in Additional file 1 gives a
brief description of each of these algorithms.
Third, while RMA and GCRMA provide data in log2-

transformed space, MAS5 and MBEI provide data in
normal space. It is common, but not universal, to log2-
transform MAS5 and MBEI pre-processed data. We
therefore tested these two algorithms in both normal
and log2-space.
Fourth, the annotation of individual ProbeSets has

changed significantly as our understanding of the
human transcriptome has evolved. Modern microarray
analyses typically address this by using updated ProbeSet
annotations, such as those created by Dai et al. [28]. We
evaluated the effect of using these alternatives to stan-
dard annotation procedures. ProbeSet annotation was
done with both ‘default’ (R packages: hgu133aprobe
v2.6.0 and hgu133acdf v2.6.0) and updated Entrez Gene-
based ‘alternative’ annotations [28] (R packages:
hgu133ahsentrezgprobe v12.1.0 and hgu133ahsen-
trezgcdf v12.1.0).
We re-processed the data using all possible methods.

This meant that we conducted 24 separate analyses, once
for each possible combination of 6 (4 without log2-trans-
formation + 2 with log2-transformation) pre-processing
algorithms, 2 ProbeSet annotation techniques and 2 dataset
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handling approaches. When the default Affymetrix gene-
annotation was applied, the corresponding Affymetrix Pro-
beSets from the original study were used. When the alter-
native Entrez Gene ID ProbeSet annotation was utilized,
matching was performed based on Entrez Gene ID. Table
S1 in Additional file 1 lists the specific ProbeSets used for
each gene according to each annotation protocol. Addi-
tional file 2 and Additional file 3 give the key clinical data
for each patient, along with the good/poor classifications
for the three-gene and six-gene classifier in each of the
pre-processing methods. These data allow complete reca-
pitulation of all analyses presented here.
To test the generality of our findings, this procedure

was applied identically to the Bild dataset [29] (R
packages: affy v1.28.0, gcrma v2.22.0). This dataset con-
sists of 2 batches; therefore the same 24 pre-processing
schedules were applied. Default and alternative ProbeSet
annotation were performed with the appropriate R
packages (default: hgu133plus2probe v2.7.0, hgu133-
plus2cdf v2.7.0; alternative: hgu133plus2hsentrezgprobe
v13.0.0, hgu133plus2hsentrezgcdf v13.0.0). The specific
ProbeSets used for each gene according to each annota-
tion protocol are listed in Table S1 in Additional file 1.
Additional file 4 gives the key clinical data for each
patient, along with the good/poor classifications for the
three-gene classifier in each of the pre-processing
methods.
Finally, to determine whether our observations were a

function of the classification algorithm, we performed uni-
variate analysis relating the signal intensity of each Probe-
Set in the Director’s Challenge dataset to patient outcome.
Each individual ProbeSet was used to median-dichotomize
the patient cohort and prognostic performance was evalu-
ated with an unadjusted Cox proportional hazard ratio
modeling followed by the Wald test. This was repeated
again for the 24 different procedures noted above.

Visualizations
All plotting was performed in the R statistical environ-
ment (v2.15.1) using the lattice (v0.20-6), latticeExtra
(v0.6-19), RColorBrewer (v1.0-5) and cluster (v.1.14.2)
packages.

Results
Validation of two NSCLC prognostic biomarkers
We first sought to replicate and extend the results of Sub-
ramanian and Simon [12], who reported that two prognos-
tic biomarkers for NSCLC, including a three-gene one
[20], did not validate in the 442-patient Director’s
Challenge cohort [21]. Following the exact procedures
described in the original studies, we attempted to validate
both this three-gene biomarker and another six-gene [13]
prognostic biomarker in the Director’s Challenge cohort.
These two biomarkers were derived using distinct

methodologies: one using a linear risk-score analysis and
the other using gradient-descent-based optimization.
Neither used the Director’s Challenge datasets for training.
We assessed performance using stage-adjusted Cox

proportional hazards models. Both the three-gene bio-
marker (Figure 1a; HR 1.63, 95% CI 1.21 to 2.19, P =
1.18 × 10-3, Wald test; 54% accuracy) and the six-gene
biomarker (Figure 1b; HR 1.42, 95% CI 1.03 to 1.96, P =
3.01 × 10-2, Wald test; 46% accuracy) identified poor-
prognosis patients in a stage-independent manner, albeit
with modest effect sizes. This is an exciting result: it
reflects the second and third large, independent valida-
tions of any NSCLC prognostic biomarkers [5] and, to
the authors’ knowledge, the first two biomarkers to clas-
sify the Director’s Challenge cohort into high- and low-
risk groups that supplement pathological stage.
We then proceeded, as did Subramanian and Simon,

by performing sub-group analysis on individual stages,
with a focus on stage IB patients (who might derive
benefit from additional treatment) and stage II patients
(who might be over-treated). Both biomarkers were inef-
fective at classifying stage IA patients (three-gene bio-
marker (Figure 2a): HR 0.86, P = 0.710, 52% accuracy;
six-gene biomarker (Additional file 5): HR 0.69, P =
0.42, 50% accuracy). The three-gene biomarker did vali-
date in stage IB (Figure 2b; HR 2.05, P = 1.41 × 10-2,
58% accuracy) and stage II patients (Figure 2c; HR 1.95,
P = 2.11 × 10-2, 60% accuracy), although not in stage III
patients (Figure 2d). The six-gene biomarker showed a
trend for stage IB patients, successfully stratified stage II
patients, and failed for stage III patients (Additional file
5b-d; Table S3 in Additional file 1). These results sug-
gest that each of the biomarkers shows promise in the
clinically relevant sub-groups, but with stage-specific
trends. Notably, effect sizes are largest for the clinically
critical stage IB and II patients.

A large, mixed-stage cohort is under-powered for sub-
stage analysis
Next, to determine if the strong stage-specific trends
observed are biologically meaningful, we performed a
power analysis to estimate the likelihood that real differ-
ences could be identified in each group. Figure 2e shows
the power (y-axis) as a function of the HR for each stage
of the Director’s Challenge cohort. The overall 442-patient
cohort is robustly powered to identify biomarkers with a
HR of 1.5, or higher. By contrast, most of the sub-stage
analyses are marginally powered. For example, there is
only a 57% chance of detecting a real hazard ratio of 2.0 in
stage IA patients. This immediately rationalizes the stage-
dependence of biomarker validation (Figures 2a-d): both
biomarkers failed to stratify the two least-powered stages
(IA and III - there are only 68 stage III patients), but were
successful in the two better-powered stages (IB and II)
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and in the overall cohort. Importantly, stages IB and II are
the most clinically relevant group for prognostic biomar-
kers for NSCLC.

Prognostic biomarkers are highly sensitive to data pre-
processing
The results outlined above do not validate those reported
by Subramanian and Simon [12], who reported validation
failures for the three-gene marker both in the overall
cohort and in sub-stage analyses. We sought to rationalize
the discrepancies between the two studies. After careful
analysis we identified slight differences between the data
pre-processing used by Subramanian and Simon and that
described in the original studies (and used here). We pre-
processed the data using a standard approach called
robust multi-array (RMA). Each site-specific cohort was
processed independently and patient-level results were
merged for survival analysis. By contrast, Subramanian
and Simon [12] used an alternative strategy called model-
based expression indices (MBEI), with pseudo-count addi-
tion and merging of the four datasets prior to pre-proces-
sing, along with other minor changes. We replicated the
alternative approach and found that the critical change
was the change in pre-processing strategy: neither the
three-gene biomarker (Additional file 6a; HR 1.28, P =
9.70 × 10-2; 54% accuracy) nor the six-gene biomarker
(Additional file 6b; HR 1.00, P = 0.985; 38% accuracy) vali-
dated in the overall cohort. Similarly, they failed in the cri-
tical sub-stage analyses (Additional file 6c).

We were surprised that such a small deviation would
affect biomarker validation so dramatically. To better
understand the effect of different analysis strategies, we
analyzed the Director’s Challenge dataset using a panel of
methods and evaluated both biomarkers against each. We
investigated four separate factors. First, we compared
treating the cohort as a single study or as four site-specific
datasets (the original report indicated high inter-site varia-
bility [21]). Second, we employed four diverse and com-
monly-used pre-processing algorithms [22,24-27]. Third,
we evaluated the effects of log2-transformation, a standard
operation in microarray analysis. Finally, both default Affy-
metrix gene annotations and updated Entrez Gene-based
annotations were tested [28]. We created 24 datasets by
comparing all combinations of 2 dataset handling strate-
gies, 6 (4 + 2) pre-processing algorithms and 2 annotation
methods. We tested both prognostic biomarkers on each
dataset for overall and stage-specific performance. Addi-
tional file 7 outlines this procedure; Additional files 2 and
3 give the classification of every patient using each of the
24 approaches.
This systematic analysis revealed that the validation of

multi-gene biomarkers is highly sensitive to data pre-pro-
cessing. This is especially true in stage-specific analyses:
HRs for stage IB patients range from 0.89 (95% CI 0.52 to
1.53, P = 0.672) to 2.05 (95% CI 1.16 to 3.62, P = 1.41 ×
10-2) for the three-gene classifier. Even in the overall
cohort, small changes in pre-processing led to major
changes in classification performance: sensitivity changed

Figure 1 Validation of three- and six-gene biomarkers. Previously published three-gene [20] and six-gene [13] prognostic biomarkers were
validated in the Director’s Challenge dataset [21]. (a, b) Each patient was classified into good (blue curves) or poor (red curves) prognosis
groups using the three-gene (a) and six-gene (b) biomarker, which were visualized with Kaplan-Meier curves. Hazard ratios and P-values are from
stage-adjusted Cox proportional hazard ratio modeling followed by the Wald test.
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Figure 2 Sub-stage analysis for three-gene biomarker and power analysis. (a-d) The performance of the three-gene biomarker was
evaluated in a sub-stage analysis (stage IA (a), stage IB (b), stage II (c) and stage III (d) patients). Each patient was classified into good (blue
curves) and poor (red curves) prognosis groups using the three-gene biomarker and were displayed with Kaplan-Meier curves. Hazard ratios and
P-values are from Cox proportional hazard ratio modeling followed by the Wald test. (e) Subsequently, power calculations (assuming equal-sized
groups) were performed at a range of HRs for all patients and for patients of specific stages. A threshold line is drawn for power of 0.8.
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up to 14% and specificity 19% between methods (Tables
S4 and S5 in Additional file 1). Within a single method,
validation varied by stage: Figure 3a shows the approaches
ranked by their performance in the overall cohort (three-
gene biomarker), giving the HRs and their confidence
intervals: sub-stage survival analyses are only weakly corre-
lated to overall analysis. Importantly, no algorithm leads to

validation in the under-powered stage IA group. This
result was replicated with the six-gene biomarker (Table
S6 and S7 in Additional file 1; Additional file 8a).
These differences in classifier performance are caused

by changes in the classification status of a significant
portion of patients. Figure 3b shows the classification
status of each patient according to the three-gene

Figure 3 Pre-processing influences biomarker validation. (a) Results for all Cox proportional hazard ratio modeling analysis for the 24
different pre-processing schemes in the Director’s Challenge dataset [21] are summarized in Forest plots. (b) Classifications in the 24 different
schedules are visualized in a heatmap. To confirm that biomarker performance and individual patient classification are highly dependent on
dataset pre-processing, all pre-processing schedules were tested in a second dataset [29] for the three-gene biomarker. (c, d) Both biomarker
performance (c) and individual patient classifications (d) were again influenced by differences in pre-processing. For the Forest plots; boxes and
lines are the hazard ratios and 95% confidence intervals, respectively. For the heatmaps; white indicates a patient predicted to have good
prognosis and black indicates a patient predicted to have poor prognosis. Colored sidebar displays the different pre-processing schemes as
explained in the legends.
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biomarker (columns) for each schedule (rows). Patients
annotated in black are classified as poor prognosis, and
many cases are evident where different algorithms lead
to different classifications. Only 151 out of 442 patients
are classified identically by all 24 pre-processed schemes;
these are equally in the good (77) and poor (74) prog-
nosis groups. Again, the six-gene biomarker showed an
identical trend (Additional file 8b).
To generalize this trend and to demonstrate that it is

not an artifact of the Director’s Challenge cohort, we
repeated our analyses in an independent dataset [29].
The same variability across analysis methods was
observed (Figure 3c). Only 45 out of 111 patients are
classified identically across the 24 pre-processing meth-
odologies using the three-gene biomarker (Figure 3d;
Additional file 4), and there were large differences in
validation rates (Tables S8 and S9 in Additional file 1).

Univariate analyses are also susceptible to pre-processing
effects
To determine whether this pre-processing sensitivity is
generalizable, we performed univariate analyses for all
individual ProbeSets in the Director’s Challenge datasets.
This analysis was repeated for each of the 24 pre-pro-
cessing strategies (Additional file 7) [28]. The results are
consistent: only 3.5% of genes as defined using the alter-
native annotation were significant in all pre-processing
schemes (P-value Wald test ≤ 0.05). By contrast,
approximately 40% of the genes were significantly asso-
ciated with outcome in at least one pre-processing sche-
dule, independent of the gene annotation used
(Additional file 9).

Pre-processing variability improves patient classifications
These data suggest that the use of publicly available
patient cohorts for validation of both single- and multi-
gene biomarkers, a very common practice, is fraught
with challenges. The extreme sensitivity to data pre-pro-
cessing means that minor errors can lead to entirely
incorrect results. However, we wondered if statistical
techniques could be developed to take advantage of the
signals causing this variability. We reasoned that each
analysis methodology might have a distinct error-profile
and thus deviations reflect cases where small differences
can change the assignment to a specific clinical group.
As a result, they provide a measure of the robustness or
informativeness of a molecular classification.
To exploit this source of information we treated the set

of 24 pre-processing methodologies as an ensemble classi-
fier. Each patient was treated as a vector of 24 predictions
(one from each methodology), and unanimous classifica-
tions were treated as robust predictions while discordant
classifications were treated as unreliable. In the Director’s
Challenge cohort this approach improved the performance

of both the three- and six-gene biomarkers. The 151
patients with high-confidence predictions by the three-
gene biomarker separate into clinically distinct groups
(Figure 4a; HR 2.17, P = 4.00 × 10-3; 63% accuracy), while
those with more ambiguous classifications, taking risk
groups as assigned with the pre-processing schedule used
in the original study [20], show a modest effect (Figure 4b;
HR 1.52, P = 2.43 × 10-2; 55% accuracy). This trend is
exaggerated for the six-gene biomarker, where the 145
patients with high-confidence predictions show a strong
separation between good- and poor-prognosis groups,
while the remaining patients show no trend (Figure 4c ver-
sus Figure 4d, HR = 3.84 versus HR = 1.03; Table S10 in
Additional file 1). To generalize this approach, we repli-
cated it in an independent cohort using the three-gene
biomarker (Additional file 10a versus Additional file 10b;
Table S10 in Additional file 1).

Discussion
The development of robust biomarkers is critical for the
delivery of highly personalized genomic medicine. Valida-
tion studies of biomarkers are typically under-powered
[30], and often publicly available data are used to reduce
expense and to avoid the challenge of finding patient
cohorts with suitable clinical characteristics and annota-
tion. We show here that the strategy of using public
datasets can be fraught with unexpected challenges: bio-
markers are extremely sensitive to analysis protocols.
When using author-prescribed analysis protocols

exactly, both biomarkers tested here were successfully
validated. In fact, one of the two biomarkers could sub-
classify both stage IB and stage II patients into groups
with significantly different survival properties, despite
lack of power in these cohorts. These results emphasize
the importance of continued validation on new datasets,
as even the largest existing cohorts are insufficiently
powered. Additionally, these results comprise the first
reports of successful validation on the Director’s Chal-
lenge dataset.
The surprising discordance of our results with those

of Subramanian and Simon [12] reflect differences in
analysis methodologies. They observed no validation for
stage IB (P = 0.35), leading them to suggest that current
multi-gene biomarkers lack clinical utility. We investi-
gated the origins of this discrepancy and identified dif-
ferences in microarray data pre-processing. Instead of
RMA-normalized data with each site in the Director’s
Challenge treated separately, Subramanian and Simon
[12] used MBEI quantile-normalized data with pseudo-
count addition, while treating all sites together. A
similar issue has been noted in other studies where dif-
ferences in pre-processing contributed to failed repro-
duction of drug sensitivity predictions [31,32]. Our
findings are analogous to other reports that pre-
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processing influences other downstream analyses
[22,33,34]. Observed discrepancies can be attributed to
differences in the pre-processing algorithms, but will
also likely depend on the dataset(s) and marker(s) that
are evaluated. For example, background correction is
handled completely differently using individual algo-
rithms (Table S2 in Additional file 1). Indeed, the opti-
mal pre-processing method is intrinsically dependent on
experimental design and cannot be standardized [34,35].
Yet, we also show that this sensitivity actually carries

important information. A useful biomarker ought not be
highly sensitive to small perturbations. Real clinical

samples are subject to variable and poorly controlled fac-
tors like the length of time prior to freezing or fixation
post-surgery or the degree of stromal contamination. We
show that the comparison of different analysis methodolo-
gies can be used as a measure of confidence in the predic-
tions of a biomarker. This immediately provides a
low-cost and rapid method of improving any existing bio-
marker, and will be a major boon for the more complex
biomarkers emerging from next-generation sequencing
studies.
We also show that these successful biomarkers only

performed well for a fraction of patients. For example,

Figure 4 Improved biomarker performance by accounting for classification robustness. (a-d) Marker performance improved dramatically
when differentiating patients with identical classifications across all pre-processing schemes from the patients with ambiguous classifications for
both the three-gene biomarker (a versus b) and the six-gene biomarker (c versus d) in the Director’s Challenge dataset [21]. For all Kaplan-Meier
curves; good prognosis patients are indicated by blue curves and poor prognosis patients by red curves. Hazard ratios and P-values are from
stage-adjusted Cox proportional hazard ratio modeling followed by the Wald test.
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the six-gene biomarker worked extraordinarily well for
145 of the 442 patients in the Director’s Challenge
cohort, but failed entirely on the remainder (Figure 4c,
d). Similarly, the three-gene biomarker performed very
well on 151 patients, but poorly on the others. Surpris-
ingly, classification overlap occurred in only 68 patients
between these two groups. This may suggest that a bat-
tery of multi-gene biomarkers will be required, with
each performing well on some patients but not others.
These data indicate that individualized medicine will
require personalized biomarkers.

Conclusions
We report the successful validation of two prognostic
biomarkers for NSCLC in the 442-patient Director’s
Challenge dataset. Despite using an underpowered data-
set, these biomarkers significantly prognosed clinically
relevant patient sub-groups. In the course of this valida-
tion we discovered an extreme sensitivity to the pre-pro-
cessing methodology. The importance of such an effect
goes against dogma in the field: it was recently stated
that ‘The differences in the preprocessing steps for
microarray data are immaterial... [when] the original
classifier was developed using RT-qPCR’ [36]. Our
results demonstrate that this statement is incorrect.
Instead, there is significant noise caused by pre-proces-
sing, but ensemble methods can be used to exploit this
noise to improve our ability to personalize treatment
decisions at no experimental cost.

Additional material

Additional file 1:
Supplementary tables. Table S1: ProbeSet annotation
used in analyses. Supplementary Table S2: overview of
pre-processing algorithms. Supplementary Table S3:
results of binary prediction performance of the three-
gene and six-gene classifier in the Director’s Chal-
lenge dataset. Supplementary Table S4: results (stage-
adjusted) Cox proportional hazard ratio modeling
three-gene classifier for all patients and stage IB
patients in the 24 different pre-processed Director’s
Challenge datasets. Significant results (P < 0.05) are
given in bold. Supplementary Table S5: results of bin-
ary prediction performance of the three-gene classifier
in the 24 different pre-processed Director’s Challenge
datasets. Supplementary Table S6: results (stage-
adjusted) Cox proportional hazard ratio modeling six-
gene classifier for all patients and stage II patients in
the 24 different pre-processed Director’s Challenge
datasets. Significant results (P < 0.05) are given in
bold. Supplementary Table S7: results of binary pre-
diction performance of the six-gene classifier in the

24 different pre-processed Director’s Challenge data-
sets. Supplementary Table S8: results (stage-adjusted)
Cox proportional hazard ratio modeling three-gene
classifier for all patients in the 24 different pre-pro-
cessed Bild datasets. Significant results (P < 0.05) are
given in bold. Supplementary Table S9: results of bin-
ary prediction performance of the three-gene classifier
in the 24 different pre-processed Bild datasets. Sup-
plementary Table S10: results of binary prediction
performance of the two classifiers in the Director’s
Challenge and Bild datasets for unanimous and
ambiguous classified patients.

Additional file 2:
Clinical information and good/poor classification
for the three-gene classifier in each of the pre-pro-
cessing methods in the Director’s Challenge
datasets.

Additional file 3:
Clinical information and good/poor classification
for the six-gene classifier in each of the pre-pro-
cessing methods in the Director’s Challenge
datasets.

Additional file 4:
Clinical information and good/poor classification
for the three-gene classifier in each of the pre-pro-
cessing methods in the Bild datasets.

Additional file 5:
Supplementary Figure S1. (a-d) Performance of the
six-gene biomarker was evaluated in a sub-stage ana-
lysis (stage IA (a), stage IB (b), stage II (c), and stage
III (d) patients), which were visualized with Kaplan-
Meier curves. Each patient was classified into good
(blue curves) and poor (red curves) prognosis groups
using the six-gene biomarker. Hazard ratios and P-
values are from Cox proportional hazard ratio model-
ing followed by the Wald test.

Additional file 6:
Supplementary Figure S2. (a-d) Kaplan-Meier
curves for the three-gene (a: all patients; c: stage IB)
and six-gene (b: all patients; d: stage II) classifiers in
the Director’s Challenge data [21], where datasets
were merged prior to pre-processing with the MBEI
algorithm, as in Subramanian and Simon [12].

Additional file 7:
Supplementary Figure S3. Schematic overview of the
methodology used to test sensitivity to differences in
pre-processing in multi-gene biomarker performance.

Additional file 8:
Supplementary Figure S4. Results for all Cox pro-
portional hazard ratio modeling analysis for the 24
different pre-processing schemes in the Director’s
Challenge dataset [21] for the six-gene biomarker are
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summarized in Forest plots. Boxes and lines are the
hazard ratios and 95% confidence intervals, respec-
tively. Patient classifications in all schemes are visua-
lized in a heatmap. Rows represent pre-processing
schedules, columns indicate patients. White indicates
a patient predicted to have good prognosis, black
indicates a patient predicted to have poor prognosis
and gray indicates a patient that was not classified.
Colored sidebar displays the different pre-processing
schemes as explained in the legend.

Additional file 9:
Supplementary Figure S5. (a) Univariate analysis for
each ProbeSet in the Director’s Challenge dataset [21]
revealed sensitivity to differences in pre-processing;
the number of times a ProbeSet reached significance
(P-value Wald test ≤ 0.05) in Cox proportional hazard
ratio modeling analysis was highly variable. (b, c)
Heatmaps of the hazard ratios (HRs) in each pre-pro-
cessing schedule (columns) for ProbeSets (rows) with
P-value Wald test ≤ 0.05 in at least one pre-proces-
sing schedule with default (b) or alternative annota-
tion (c) also display this variance.

Additional file 10:
Supplementary Figure S6. (a, b) Marker perfor-
mance improved when differentiating patients with
identical classifications across all pre-processing
schemes from the patients with ambiguous classifica-
tions for the three-gene biomarker (a versus b) in the
Bild dataset [29]. Good prognosis patients are indi-
cated by blue curves and poor prognosis patients by
red curves in Kaplan-Meier plots. Hazard ratios and
P-values are from stage-adjusted Cox proportional
hazard ratio modeling followed by the Wald test.
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