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Studies on electroencephalography have revealed pointers for repetitive phase transitions in neocortex
at frame rates in the theta and alpha bands. Phase transitions are the first step for frame emergence.
Within the frame, brain activity is synchronized and amplitude and phase modulation pattern materialize.
The phase patterns have radial symmetry resembling a cone. Cone fitting has been used to detect and
study frames in different brain states, including task, awake, sleep and transition into epileptic seizure,
revealing signs of disorganization before the seizure episode started. In this paper a new methodology
to detect frames is presented. It is faster than the cone fitting previously used to study frames. The
results are compared with frames obtained from cone fitting in awake, task, sleep and seizure states.
The frames detected by cone fitting and the new method showed high levels of coincidence in time. The
disorganization signs observed between pre-ictal period and normal brain state were also observed in
the frames detected with the new method. Finally amplitude modulation patterns related to the different
behavioral states were clearly distinguishable using the new method frames as time markers for pattern
extraction.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Studies on animal and human electroencephalographic signals
with a high density electrode array have shown that spatial–
temporal patterns often occurs in cerebral activity [1–4]. These
patterns usually have chaotic carrier waves in beta or gamma
range, which are spatially modulated in amplitude (AM) and phase
(PM) [5–8]. They are described as frames which recurs at rates in
theta or alpha band [6,9]. They emerge after sudden jumps in cor-
tical activity called phase transitions.

Different approaches, such as the Fourier transform (FFT) and
the Hilbert transform (HT), have been used by Freeman and his
colleagues to detect cerebral activity patterns [1,5,8,10,11]. Using
HT two main structures are revealed in analytic signals. One, in
time domain, is called “coordinated analytic phase differences”
(CAPD) and it is used to bracket the time samples having sta-
ble phase increment, which means a nearly constant frequency [1,
6]. The other, in spatial domain, is called “phase cone” [1,6–8,10].
When a phase cone persists over certain time samples, it defines a
frame. Those structures often prelude to emergence by phase tran-
sitions of AM patterns that relate to behavior [2,5,9,12,13].

* Corresponding author at: CEETI, Central University of Las Villas, Santa Clara,
Villa Clara, 54830, Cuba.

E-mail address: yuselyr@uclv.edu.cu (Y. Ruiz).

In previous works, cone fitting is the procedure employed to
detect frames and estimate instantaneous gradient [7,8,10]; but
cone fitting is a time consuming tool. The reduction of the process-
ing time to study brain electrical activity patterns is an important
research goal [13–16]. The reduction in the processing time may
allow the implementation of programs in real time to be applied
on brain computer interfaces (BCI), neuroprosthetics devices, pre-
diction of abnormal brain activity and so on [17–24].

In this work we developed a new technique to detect frames
and estimate the instantaneous gradient. The instantaneous gradi-
ent was estimated by line fitting instead of cone fitting, in order
to reduce the processing time. The cone fitting method is a more
complex fitting process than line fitting. The former requires the
optimization of 4 parameters and it is carried out two times for
the phase structure on each time sample [1,8,10]; while the lat-
ter requires the optimization of 2 parameters and it is carried out
only one time on each time sample.

The coincidence level in time of the frames detected using the
cone fitting method and the new method was high. The disor-
ganization signs observed on the frames detected by cone fitting
methods during the pre-ictal periods [7,8] were also observed with
the new method. Additionally classification of brain patterns re-
lated to three different behavioral states (task, awake and sleep)
were made using frames as the time marker of pattern emergence.
Higher classification rates were achieved based on the frames de-
tected using the new method than using the cone fitting method.

1051-2004/$ – see front matter © 2011 Elsevier Inc. All rights reserved.
doi:10.1016/j.dsp.2011.09.002
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2. Materials and methods

2.1. Experimental subject and ECoG recordings

The electrocorticograms (ECoG) were recorded from a 34-year-
old woman with a history of medically refractory complex partial
seizures who was a candidate for surgical therapy. Before surgery
the patient gave informed consent for placement of the clinical
electrode and the high-density electrode array. The high-density
array (8 × 8 electrodes separated 1.25 mm) was placed at the
same time that the clinical electrodes onto the surface of the right
inferior temporal gyrus. The Cz and Pz scalp locations were re-
spectively the reference and the ground. The data were collected
in the EEG and Clinical Neurophysiology Laboratory of Harborview
Hospital, University of Washington, Seattle. The data collection and
management were governed by protocols approved by Institutional
Review Boards in the institution.

The recordings were made during epochs of NREM sleep (be-
havioral sleep accompanied by large slow waves in the EEG and
not with rapid eye movements, sleep stage), epochs of resting
wakefulness (wake stage), the subject naming objects presented as
visual images (task stage) and the subject going into an epileptic
seizure episode (seizure stage).

A Nicolet BMSI 5000 system having a fixed amplification of
1628× and analog filters set at 0.5 Hz high pass and 120 Hz
low pass was used to record the signals. The ADC gave 12 bits
with the least significant bit of 0.9 uV and maximal range of
±2048 × 0.9 uV. Data were digitized at 420 Hz and down-sampled
to 200 Hz.

2.2. Signal processing

Four segments of one minute during task, wake and sleep state
and during typical seizure were selected as the dataset to per-
form the comparison between the cone fitting method and the
new method to detect frames. Three minutes of signal during task,
awake and sleep states were chosen for classification.

The ECoG signals from each behavioral state were preprocessed
by subtracting the channel means of every entire recording seg-
ment to remove channel bias and by dividing all 64 ECoGs by
the global standard deviation of each segment to normalizing to
unit standard deviation. A spatial low pass filter with the cutoff
at 0.2 c/mm was applied to remove channel noise and a tempo-
ral band pass filter was applied to get the band of interest, in this
work 12–30 Hz following the results obtained in Refs. [7,8]. The
Hilbert transform was applied to ECoG signals to study both the
analytic amplitude (square root of the sums of the analytic sig-
nal real and imaginary parts squares A j(t)) and the analytic phase
(arctangent of the analytic signal imaginary part to the analytic
signal real part ratio ϕ j(t)) [7,8,10,25,26].

Each time the ECoG signal goes to zero, the analytic phase
jumps from π to −π . It makes the analytic phase waveform look
like a sawtooth. These jumps can be eliminated adding π to the
analytic phase every time when the ECoG signals go to zero giving
a waveform similar to a ramp. This procedure is called unwrapping
[6,25–27]. After unwrapping the analytic phase, the instantaneous
frequency was estimated as the successive differences of the un-
wrapped analytic phase divided by the digitizing step and 2π (see
Eq. (1)) [7,8,25], were N represents the electrode number.

Fi = unwrap(ϕN(t)) − unwrap(ϕN(t − 1))

2π�t
(1)

A new technique to estimate instantaneous gradient based on the
phase differences among electrodes was used in this report. The
instantaneous gradient was estimated as the slope of the line fit-
ted to the differences between every analytic phase value and the
other phase values for each interelectrode distance.

2.3. Frames detection

There are some theories and clinical evidences suggesting that
cortical dynamics in perception operates in steps that resembles
frames in cinema [9,28–30]. Spatial patterns take place in discrete
time step separated by phase transition [29,31,32]. The spatial pat-
terns formation occurs in a sequence of phase re-initialization of
the carrier wave, emergence of a coherence domain and stabiliza-
tion of the AM pattern [1,31,33]. In this paper the coherence do-
main materialization was studied using the covariance over the 64
values of analytic phase and analytic amplitude, with the covari-
ance calculated using the covariance function “cov” in Matlab. Co-
herence domain manifestation at one frequency can be expressed
by a decrease in phase variance over multiple channels recorded
simultaneously [26,34,35]. Before AM pattern stabilization, analytic
amplitude also changes in order to form or transit to a new pat-
tern. It will induce an increment on analytic amplitude covariance.

Initially some technical criterion for selecting a time period
phase as frame candidate was applied as follows. Thresholds for
each covariance, te1 for the analytic phase covariance (APC) and te2
for the analytic amplitude covariance (AAC) were set and a time
sample was considered as frame candidate if the APC was lower
than te1, the AAC was higher than te2, the sign of the instanta-
neous gradient did not change from one sample to the next and
the instantaneous frequency was within the temporal band used.

Secondly, at the time period that phase structures were selected
as frame candidates frame frequency and frame gradient were cal-
culated using Eqs. (2) and (3) [7,8,10]

F N = 1

n

n∑
2π wi(tn) (2)

γN = 1

n

n∑
γ (tn) (3)

where n is the time step number across which a frame candidate
had been defined, wi is the instantaneous frequency (Eq. (1)) and
γ is the instantaneous gradient (from line fitting).

Other frame parameters derived from frame frequency and gra-
dient, including temporal wavelength (ms/rad), spatial wavelength
(mm/rad), phase velocity (m/s) and diameter (mm), were calcu-
lated using Eqs. (4)–(7) [7,8,10].

Wt = 1000

2π F N
(4)

W x = 1

|γN | (5)

B = W x

Wt
(6)

Dx = π

2
W x (7)

Finally, supplemental anatomical and physiological evaluations
were made of the acceptable parameter rank in order to ex-
clude spurious frames from the analysis. The frame velocity has
to be within the range of conduction velocities of cortical axons
(1–10 m/s), duration should be larger than 6 ms and diameter
has to be smaller than the width of the cerebrum (200 mm) [7,8].
Frame duration was given by the number of digitizing steps over
which the frame candidate was detected multiplied by the digitiz-
ing step.

Two parameters were defined in order to evaluate the frames
detection process and select values for covariance thresholds that
allow obtain higher overlap between frames detected with the new
method and cone fitting method. The first parameter was the coin-
cidence rate (CR) between frames detected with new method (NLF )
and frames detected with cone fitting method (NCF ) (see Eq. (8)).
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The second parameter, Q , was defined as the ratio of the coincided
frame number obtained with the new method and the cone fitting
method (NCLF ) to the total frame number obtained with the new
method (see Eq. (9)).

CR = NCLF

NCF
(8)

Q = NCLF

NLN
(9)

Fig. 1. Frames detected by cone fitting method occur at the time intervals with
low APC and high AAC (black line—AAC, dash light line—APC, “+”—stable phase
structure).

One frame from the new method was considered as coincident
with a frame from cone fitting methods if (a) the frame from the
new method begin or end close to the time sample that the frame
from the cone fitting begin, (b) the frame from the new method
begin or end close to the time sample that the frame from the
cone fitting end, (c) the frame from the new method happen at the
same time samples that the frame from the cone fitting method
but is duration is shorter, (d) the frame from the new method hap-
pen at the same time samples that the frame from the cone fitting
method but is duration is longer. The differences between the be-
gin or the end of the frames for (a) and (b) should be lower than
4 samples (see Appendix A).

2.4. Feature selection and classification

Three minutes ECoG during task, awake and sleep were pro-
cessed and the frames were detected. The time series in each
behavioral state were partitioned in segments of 10 s. There was a
total 54 segments, 18 for each behavioral state.

The frames in each segment were used as the time marker
for feature extraction. Features were composed by the root mean
square (rms) of the analytic amplitude normalized to zero mean
and unit standard deviation during the time period that frames
where detected. Feature vectors have 64 × 1 dimensions, one value
per ECoG channel.

Features were extracted using the frames detected by cone fit-
ting method and new method. Then Euclidean Distance (ED) was
used to perform the classification. The objective was to compare
the separability of the features extracted from the frames de-
tected by both methods. In the same way, Sammon maps were
used to transform the high-dimensional space (here 64) to low-
dimensional space (here 2) and display the clusters of points that

Fig. 2. Coincidence rate changes with different covariance thresholds (te1 threshold for analytic phase covariance and te2 threshold for analytic amplitude covariance).
(a) Performing a simply task, (b) awake resting, (c) sleeping, (d) transition into seizure.
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Fig. 3. Relation between number of frames that have coincidence with frames from cone fitting method and frames total quantity (Q ) at different covariance thresholds (te1
threshold for analytic phase covariance and te2 threshold for analytic amplitude covariance). (a) Performing a simply task, (b) awake resting, (c) sleeping, (d) transition into
seizure.

represent the differing spatial patterns corresponding to each be-
havioral state [2,9,36,37].

For ED classifier, the segments were divided in two subsets,
one for training and the other for testing. The centers of gravity
of each class were calculated for the training set. Classification
was performed by calculating the distance of each feature vec-
tor to the centers of gravity. The classification was ‘correct’ when
the distance to its center of gravity was shorter than the distance
to the other centers of gravity. The two subsets were then re-
versed in cross validation. The Sammon map iteratively mapped
the location of points defined from a high-dimensional space to
low-dimensional space, preserving the relative distances between
points [2,9,36,37].

3. Results

3.1. Detecting frames by the new method and cone fitting

Frames were detected by cone fitting method following
Refs. [7,8]. The frames detected by cone fitting methods usually
showed up at the time intervals with low APC and high AAC (see
Fig. 1). The thresholds of covariance were varied from low covari-
ance values up to around 4% of the maximal covariance or 45% of
the mean covariance and the coincidence rate (CR) and Q value
calculated (see Figs. 2 and 3).

On one hand for te1 values higher than 0.20 the coincidence
rate became almost constant. On the other hand for te2 values
higher than 0.00075 the coincidence rate was lower. Values of CR

between 70% and 95% were obtained when te1 and te2 were prop-
erly selected. However the Q value was around 0.5 because the
number of frames detected with the new method was almost twice
the number obtained using the cone fitting method.

Fig. 4 shows some examples of the phase structures of the
frames detected with the new method which were not detected
with the cone fitting method. Those phase structures were also
smooth and similar during the frame, they could be rejected by
the cone fitting method due to its technical constraints.

Choosing te1 = 0.175 and te2 = 0.00065 the coincidence per-
cent was higher than 80% for task, awake and seizure and around
65% for sleep and the Q value around 0.5 for all behavioral states.
Frame parameter analyses and classification were performed using
the former threshold values.

3.2. Study on frame parameters

The frame parameters were studied during task, awake, sleep
states and during transition into seizure. Frame parameters were
calculated in each state from 12 five second segments using the
cone fitting method and the new method.

Frame parameters estimated using both methods for task,
awake and sleep states are shown in Tables 1 and 2. Frequency
and temporal wavelength values were very similar for both cases.
Gradients estimated by new method were lower, provoking an in-
crement in spatial wavelength, diameter and velocity values but
they still have fractal properties. Duration of the cones obtained
using the improved method was also higher. Mean and standard
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Fig. 4. Examples of frames detected with the new method that are not detected with the cone fitting method. (a) Phase structure for all the time samples of the frame,
(b) phase structure for one time sample of the frame.

Table 1
New method frame parameters (mean ± SD).

State NLF F N γN Duration

Task 323 15.37 ± 2.33 0.0267 ± 0.0098 29.92 ± 13.52
Awake 329 15.10 ± 2.34 0.0266 ± 0.0106 30.46 ± 14.94
Sleep 421 14.36 ± 2.25 0.0247 ± 0.0103 35.38 ± 19.36

State Wt W X D X B

Task 10.7 ± 1.9 49.4 ± 21.8 77.6 ± 34.2 4.662 ± 1.989
Awake 10.9 ± 2.0 51.1 ± 23.6 80.2 ± 37.2 4.701 ± 2.046
Sleep 11.5 ± 1.8 57.5 ± 26.7 90.3 ± 41.9 5.043 ± 2.215

Table 2
Cone fitting frame parameters (mean ± SD).

State NCF F N γN Duration

Task 251 15.95 ± 2.43 0.0622 ± 0.0217 23.67 ± 10.36
Awake 263 15.45 ± 2.42 0.0618 ± 0.0225 23.54 ± 9.77
Sleep 376 14.63 ± 2.25 0.0520 ± 0.0217 25.51 ± 13.05

State Wt W X D X B

Task 10.3 ± 1.8 19.4 ± 9.4 30.5 ± 14.7 1.943 ± 0.941
Awake 10.6 ± 1.7 20.2 ± 11.3 31.6 ± 17.7 1.971 ± 1.104
Sleep 11.2 ± 1.8 24.9 ± 14.5 39.1 ± 22.8 2.242 ± 1.299

deviations of task and wake states were similar. Slightly lower
frequency and gradient values were obtained for sleep. The param-
eters of seizure state were comparable to those of task, awake and
sleep states in some segments but higher gradient values showed
up in others, especially at the frames started from 5th and 30th
seconds before seizure. Those high gradient values reflect a de-
crease in velocity and diameter (see Fig. 5 and Table 3). The similar
changes in frame parameters were observed using the cone fitting
method [7].

3.3. Brain state classification

The “rms” values of analytic amplitude, at the time sam-
ples when the frames were detected, were used to form a 64-
dimensional feature vectors and they were classified by Euclidean
Distance classifier. The classification rate of the features extracted
from the frames detected by cone fitting and new method was
75.93% and 85.18% respectively showing that AM patterns are bet-
ter distinguished using the new method frames as time marker for
feature extraction.

Table 3
Comparison of frame parameters with the subject going into seizure (mean ± SD).

State Time γN (rad/mm) B (m/s) D X (mm)

Task 0.0267 ± 0.0098 4.66 ± 1.99 77.65 ± 34.23
Awake 0.0266 ± 0.0106 4.70 ± 2.05 80.22 ± 37.26
Sleep 0.0247 ± 0.0103 5.04 ± 2.22 90.31 ± 41.91
Pre-1 −30 0.0370 ± 0.0095 2.86 ± 0.74 46.30 ± 10.82
Pre-2 −5 0.0293 ± 0.0107 3.94 ± 1.52 68.52 ± 34.16

Pre-1: 30 s previous seizure start.
Pre-2: 5 s previous seizure stat.

Projection of the 64-dimensional feature vectors in a 2D plane,
which was made using Sammon mapping [2,9,36,37] also shows
that the feature vectors obtained with the new method were more
clearly clustered so that they were easier to be classified (see
Fig. 6).

4. Conclusions

Using the methodology presented in this paper to detect frames
and estimate instantaneous gradient, the processing time is signif-
icantly reduced, while the coincidence level of the frames from
cone fitting method and new method is kept high.

The reduction on the processing time is achieved by two rea-
sons: (a) the time samples with high covariance in phase and
low covariance in amplitude are excluded from the fitting process,
(b) the instantaneous gradient was estimated by line fitting which
is simpler than cone fitting. Using line fitting just two parameters
are optimized, and the fitting process is carried out only one time
for the phase differences on each time sample. On the other hand
using cone fitting four parameters have to be optimized, and the
fitting process is repeated two times for the phase structure on
each time sample [7,8,10].

The striking difference between frame parameters derived from
the cone fitting and the new method is the gradient, however the
differences between brain states are maintained. The new method
can detect significant differences in velocity and diameter emerged
at the frames started from 5th and 30th second before seizure,
same as the cone fitting [7,8]. The reason for the reduction on gra-
dient values is arguably due to the discarding of some differences
in the analytic phases during the cone fitting process because just
a cone is used to represent the whole phase structure.

AM patterns were clearly distinguishable using the new method.
The use of frame detected with the new method as time markers
for patterns extraction allows achieve higher classification rates.
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Fig. 5. Five second means values of (a) phase velocity and (b) the diameter of the frame. Seizure episode started approximately at the 40th second.

Fig. 6. Sammon map of feature vectors. (a) New method, (b) cone fitting method (red “o” task, blue “∗” awake, black “�” sleep). (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

The new methodology is useful to detect frames quickly. Con-
sequently, it is a promising tool to study ECoG in real time.
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Appendix A. Frame coincidence algorithm

The following algorithm was used to determine if two frames
were coincident in time or not:

For j = 1: NLF

For i = 1: NCF

if (FLFj � FCFi − t) and (FLFj � FCFi + TCFi + t)
NCLF = NCLF + 1;

break
elseif (FLFj + TLFj � FCFi − t) and (FLFj + TLFj � FCFi + TCFi + t)

NCLF = NCLF + 1;
break

elseif (FCFi � FLFj) and (FCFi � FLFj + TLFj)

NCLF = NCLF + 1;
break

end
end

end

where NCF and NLF are number of frames detect by cone fitting
method and new method respectively, FCF and FLF are initial po-
sitions of frames (sample number) from each method, TCF and TLF
are the duration of the detected frames using each method, t an
error parameter to measure how exactly the coincidence in time is
and NCLF the number coincident frames, in our experiments t = 4
samples.
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