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Abstract: X-ray tomography is widely used for three-dimensional structure determination in
many areas of science, from the millimeter to the nanometer scale. The resolution and quality
of the 3D reconstruction is limited by the availability of alignment parameters that correct for
the mechanical shifts of the sample or sample stage for the images that constitute a scan. In
this paper we describe an algorithm for marker-free, fully automated and accurately aligned
and reconstructed X-ray tomography data. Our approach solves the tomographic reconstruction
jointly with projection data alignment based on a rigid-body deformation model. We demonstrate
the robustness of our method on both synthetic phantom and experimental data and show that our
method is highly efficient in recovering relatively large alignment errors without prior knowledge
of a low resolution approximation of the 3D structure or a reasonable estimate of alignment
parameters.

© 2022 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

X-ray tomography is a non-destructive technique to image the three-dimensional (3D) structure
of a wide variety of materials [1–3]. The technique relies on solving an inverse problem to
reconstruct the 3D volume of an unknown object from its two-dimensional (2D) projections
as the object is rotated about one or more axes. A fundamental underlying assumption in the
reconstruction process is that the relationship between the measured projections and the paths
of the X-rays intersecting the object are known exactly, and that there are no unaccounted for
additional motions of the object. For nano-scale tomography, however, the projections may be
misaligned due to imperfections in the rotation stage or drifts in the illuminating radiations,
which if left uncorrected introduce reconstruction artifacts and lead to a loss in resolution.
For tomography at longer length scales, there can be other sources of misalignment–such as
temperature drifts–especially for longer scans.

A number of approaches have been proposed to align projections in both X-ray and electron
tomography. These methods can be roughly classified into two classes: (i) methods based on
tracking fiducial markers and features, and (ii) automated, markerless alignment methods. The
marker-based methods involve tracking the path of markers such as small gold beads or silica
spheres [4–6] that are either mounted on a sample’s container (e.g. a capillary) or directly
in or on the sample. While highly accurate, fiducial-based methods suffer from the cost of
more complicated sample preparation and introduce extra density due to the markers in the 3D
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reconstruction that need to be removed for characterizing the sample, and in many cases require
significant human time and effort to manually identify the positions of each fiducial on each 2D
image. Feature tracking methods employ regions of high contrast in the projections as markers
that are identified by various feature detection techniques. The applicability of these methods
is limited to cases where a given feature is visible in a range of projections, and even then, the
overlap of a large number of features makes the method challenging.

The most common markerless approach for projection alignment is based on the use of
cross-correlation between projections acquired at two consecutive rotation angles [7–9] or
correlation of the center-of-mass of the sample [10]. The method is successful in determining
accurate shot-to-shot jitter, but leads to an overall accumulation of errors resulting in poor
alignment of the common axis of rotation. Over the past few decades a new class of alignment
algorithms, called projection matching or iterative re-projection, has been introduced [11,12].
These methods aim to simultaneously align the projections and reconstruct the unknown 3D
object, and are based on minimizing the inconsistencies between the measured 2D projections
with the systematically generated projections from the current guess of the reconstruction. The
comparison of the measured (data) and calculated (model) projections can be implemented
via cross-correlation of re-projected and measured images [13–15] or minimization of a cost
function by quasi-Newton [16] or Levenberg-Marquardt [17,18] schemes. The method in [13,15]
based on maximizing cross-correlation of the measured and re-projected images can correct only
for translational misalignments, while the method in [14] relies on the projection of the tube
holding the sample for pre-alignment of the angle between the actual rotation axis and the optical
axis followed by iterative correction of the translation and tilt angle by cross-correlation. The
method in [18] corrects only for translations and uncertainty in the tomographic angle. Both
[16,17] correct for translations and rotations, but the algorithm in [16] is designed for structure
refinement in the final stages of single-particle reconstruction in electron microscopy and is
based on the assumption that a low quality reconstruction and reasonable guesses for orientation
parameters are available. In [19], the authors demonstrate a hybrid iterative approach based on
applying several image registration algorithms, with the sequence of application dependent upon
the particular experiment.

1.1. New approach

With ever increasing achievable resolution in tomography (e.g. nanoscale tomography), experi-
mental misalignments are comparable to the imaging resolution and have a greater impact on
the quality and interpretability of reconstructions. Hence, the need for a generic yet robust
algorithm that can automatically correct errors due to mechanical instability becomes important.
In this paper we present a robust implementation of the projection matching algorithm that aims
to correct for full 3D rigid body motions (rotations and translations) of the sample. Current
existing methods based on projection matching employ gradient-based optimization for parameter
estimation, but use forward difference approximation for the calculation of derivatives with
respect to alignment parameters, thereby compromising accuracy and automation. The difference
in the sensitivity of the optimization problem to the magnitudes of the errors in rotations and
translations, necessitates different step sizes for the different parameters for accurate computation
of derivatives. At the same time, the step sizes must also be varied as the resolution of the
reconstruction improves with increasing iterations.

In this paper, we exploit a projection matching approach to build an algorithm that corrects for
full 3D rigid body motions (rotations and translations) of the sample. We describe a new scheme
to calculate the forward projection matrix which allows us to derive analytical expressions for
derivatives of the cost function with respect to alignment parameters (rotations and translations).
Our method is fully automated in that it does not require pre-alignment or determination of
an optimal step-size for computation of derivatives, nor does it rely on exploiting any special
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symmetry in the geometry of the experiment. While the analysis and results presented in this
paper are for tomography in the parallel-beam setup, our formulation is completely general and
can be easily modified for a different experimental geometry, such as cone-beam tomography
(CBT).

We demonstrate the robustness of our method to misalignments through a series of simulations
on phantom data with increasing degree of misalignments, and establish a limit on the amount of
error that can be handled with our approach. Finally, we describe a multi-resolution approach
for joint alignment and reconstruction, and demonstrate its effectiveness on two experimental
datasets: a biological sample collected at the Advanced Light Source (ALS), and a solid-state
battery material collected at the Stanford Synchrotron Radiation Lightsource (SSRL).

2. Methods

2.1. Alignment parameters

We model the motions of the sample/stage as 3D rigid-body transformations consisting of three
rotations (α about x-axis, β about y-axis, and ϕ about the z-axis), and three translations (∆x,
∆y, and ∆z along the x-, y-, and z-axes, respectively, as shown in Fig. 1(a)). The axis along
which the incident X-rays travel is called the optical axis, and the axis about which the object is
rotated is called the tomographic axis. Here, the the y-axis is the optical axis and the z-axis is
the tomographic axis. Since in this work we only consider the parallel-beam setup, under the
assumption that the incident beam is perpendicular to the plane of the detector, motions along the
optical axis can be ignored. As such there are 5 degrees of freedom (DOF) for each projection,
represented as a single vector Θ = [α, β, ϕ,∆x,∆z]. The rigid body transformation is defined
by a linear affine function that implements rotations and translations applied in an order such
that motions along the optical axis do not alter the projections. The action of the affine map T is
given as

Tx = Ry
βRx

αRz
φx + t, (1)

where x are points on which the 3D object f is sampled, t = [∆x,∆y,∆z] is the vector of
translations, and Rµ

δ is the matrix for rotation by angle δ about axis µ. Alternatively, instead
of applying transformations to the 3D object, we can apply the inverse of the affine map T to
points on the source and detector to trace x-rays through the object. Given untransformed pairs
of points ps and pd on the source and detector, respectively, and step size ∆s, the ray-tracing path
is characterized by the set of points pj

pj = T−1ps + j∆sr̂ (2)

with
r = T−1pd − T−1ps,

r̂ = r|︁|︁pd − ps
|︁|︁ .

Here r is the ray-vector connecting the points on the source and the detector, r̂ is the unit
ray-vector, and we have exploited the fact that our affine map consists of rotations and translations
only.

2.2. Optimization problem

The joint alignment and reconstruction of tomographic data is formulated as a nonlinear
least-squares minimization problem of the form

(f ∗,Θ∗) = arg min
f ∈Rn,Θ∈[Θmin,Θmax]

1
2
| |A(Θ)f − p| |22 + λR(f ), (3)
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where f is the vector containing voxel values, Θ is the vector of alignment parameters, A is
the forward projection matrix that implements a line-integral for each ray r̂, p is the vector of
tomographic measurements, and R(f ) is a term enforcing regularization with weight factor λ.

The optimization problem (3) in {f ,Θ} is generally difficult to solve due to the nonlinear
coupling between the unknown 3D object f and alignment parameters Θ and ill-conditioning due
to differences in the scales of f and Θ. The problem is commonly solved by iteratively alternating
between two simpler sub-problems [14,16,17]:

(1) Regularized tomographic reconstruction at current estimate of alignment parameters Θ

f k = arg min
f

{︃
1
2
| |A(Θk−1)f − p| |22 + λR(f )

}︃
. (4)

(2) Estimation of alignment parameters by projection-matching which minimizes discrepancies
between the measured projections and calculated projections from current estimate of the
reconstruction f

Θ
k = arg min

Θ

1
2
| |A(Θ)f k − p| |22 . (5)

Splitting the problem in this way makes it possible to use various existing reconstruction
techniques to solve the tomography sub-problem, and at the same time independence of alignment
parameters for different projections enables parallelization of the projection-matching step.

In our implementation of tomographic reconstruction our regularization term is a sparse prior
defined in terms of the total variation (TV), which yields improved reconstructions for noisy and
incomplete measurements. The minimization problem is given by

f ∗ =
1
2

arg min
f

{︁
| |A(Θ)f − p| |22 + λ | |f |TV =: g(f ,Θ) + h(f )

}︁
. (6)

Here the regularization term is the isotropic total variation of f

| |f | |TV =

√︂|︁|︁Dxf
|︁|︁2 + |︁|︁Dyf

|︁|︁2 + |︁|︁Dzf
|︁|︁2

with the Djf giving the finite difference approximation to the gradient of f . We solve this problem
by using the fast iterative shrinkage/thresholding algorithm (FISTA) [20]

u(k) = proxh

(︂
f k−1 − λ̃∇g(f k−1)

)︂
; λ̃ =

λ

LA
; LA = | |A| |22

t(k) =
1
2

(︂
1 +

√︁
1 + 4t2,(k−1)

)︂
; t(0) = 1

f (k) = u(k) +
t(k−1) − 1

t(k)
(︂
u(k) − u(k−1)

)︂
.

(7)

where proxh(x) is the proximal mapping of h : R→ R given by

proxh(x) = arg min
u∈R

{︃
h(u) + 1

2
| |u-x| |22

}︃
for any x ∈ R.

Non-negativity of f (k) can be imposed by setting negative values to zero at the end of each
FISTA iteration.
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2.3. Forward projection

Our forward projector is a generalization of the Joseph’s algorithm [21,22], but instead of using
the length of intersection of the rays with the object pixels, we use interpolation to compute the
contribution of the object pixels to the forward projection (Fig. 1(b)). The action of the forward
projector on the 3D object can be written as

A(Θ)f =
∑︂

j

∑︂
xg

f (xg)k(pj − xg), (8)

where k(x) is an interpolation kernel, f is sampled over a uniform grid xg, and the points pj
are uniformly sampled on the rays passing through the object from the source to the detector.
Throughout this work we use trilinear interpolation for which the interpolation kernel is given as

k(x) = k(x)k(y)k(z), (9)

where x = (x, y, z), and

k(x) =

{︄
1 − |x| if|x| ∈ [0, 1]
0 otherwise.

The derivative of (8) with respect to Θ is given as

∇ΘA(Θ)f =
∑︂

j

∑︂
xg

f (xg)∇Θk(pj − xg)

=
∑︂

j

∑︂
xg

f (xg)
∂pj

∂Θ
·

(︂
∇k(pj − xg)

)︂T
.

(10)

Using Eqs. (1) and (2), the derivatives of points pj with respect to Θ can be exactly computed.
For example, the derivative of point pj with respect to the tomographic angle ϕ can be written as

∂pj

∂ϕ
=
∂T−1

∂ϕ

(︄
ps + j∆s

pd − ps|︁|︁pd − ps
|︁|︁
)︄

,

where
∂T−1

∂ϕ
=
∂Rz

−φ

∂ϕ
Rx
−αRy

−β

is a 3 × 3 matrix. The derivatives with respect to all other parameters can be calculated
similarly. Since our interpolation kernel is also differentiable, the gradients in Eq. (10) can be
computed exactly. We note that this formalism can be extended to more general and higher order
interpolating kernels of the form k(pj, xg).

The cost function for projection matching is

g(Θ) =
1
2
| |A(Θ)f − p| |22, (11)

and its derivative with respect to the alignment parameters are given by

∇Θg(Θ) = (∇ΘA(Θ)f )T · (A(Θ)f − p). (12)

The optimization of alignment parameters which was solved via quasi-Newton methods (BFGS,
L-BFGS-B) [23].
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3. Results

Our results on simulated and experimental data have been obtained using an in-house implemen-
tation of the forward and backward projection operators that allow for full 3D rigid body motion.
For fast evaluation of the X-ray transform, the ray-tracing was implemented in Fortran. Linear
algebra operations for reconstruction were implemented using scipy’s sparse matrix package, and
quasi-Newton optimization was performed using scipy’s optimization library [24].

3.1. Simulated data

We test our joint alignment and reconstruction algorithm on a phantom of size 128 × 128 × 128
made up of spheres, ellipsoids, and cuboids of random dimensions and centers. We generate
noiseless tomographic projections for a parallel beam setup at 90 projection angles ϕ equally
spaced between [0◦, 180◦]. To demonstrate the robustness of the algorithm, we present results on
four simulated datasets with increasing degree of misalignments as follows:

Dataset 1. In-plane and axial translations uniformly distributed between ±2 pixels (1.5% linear
dimension), α and β normally distributed with σ = 0.25◦ (maximum offset = 0.6◦), and
∆ϕ uniformly distributed between ±0.25◦.

Dataset 2. In-plane and axial translations uniformly distributed between ±8 pixels (6.25% linear
dimension), α and β normally distributed with σ = 1.5◦ (maximum offset = 2.7◦), and no
perturbation in the tomographic angle ϕ.

Dataset 3. In-plane and axial translations uniformly distributed between ±16 pixels (12.5%
linear dimension), α and β normally distributed with σ = 3.0◦ (maximum offset = 7.5◦),
and no perturbation in the tomographic angle ϕ.

Dataset 4. In-plane and axial translations uniformly distributed between ±40 pixels (31.2%
linear dimension), α and β normally distributed with σ = 4.0◦ (maximum offset = 13.8◦),
and no perturbation in the tomographic angle ϕ.

Since the tomographic angle is calibrated to high precision in most experimental setups, we
do not perturb this parameter in simulations with large angular and translational misalignments.
In Table 1 we also show results for the same parameters as dataset 1, but without jitter in the
tomographic angle (dataset 1∗). In appendix A and B we show results for simulated datasets with
only translational and only rotational misalignments, respectively.

Table 1. Alignment errors for simulated datasets in terms of L1-norm and
maximum value of the difference between the ground truth and recovered

parameters.

(max., mean)
|︁|︁∆xgt − ∆x

|︁|︁ |︁|︁∆zgt − ∆z
|︁|︁ |︁|︁αgt − α

|︁|︁ |︁|︁βgt − β
|︁|︁ |︁|︁φgt − φ

|︁|︁
(pix.) (pix.) (deg.) (deg.) (deg.)

Dataset 1 0.08, 0.04 0.003, 0.002 0.006, 0.002 0.006, 0.002 0.02, 0.008

Dataset 1∗ 0.03, 0.01 0.002, 0.0006 0.004, 0.002 0.005, 0.002 −−

Dataset 2 0.11, 0.06 0.01, 0.005 0.02, 0.004 0.08, 0.006 −−

Dataset 3 0.35, 0.12 0.24, 0.08 0.09, 0.04 0.08, 0.03 −−

The joint alignment and reconstruction scheme was run for 30 - 50 outer iterations, and
within each iteration we alternated between tomographic reconstruction and alignment. The
initial guesses for f and Θ were set to zero. For tomographic reconstruction, we use λ=1 for
dataset 1, and λ = 10 for all other datasets. In general, it is possible to continuously vary the
regularization parameter during the iterative scheme, starting with a high value of λ and gradually
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reducing it as the alignment parameters converge. At every outer iteration, the reconstruction is
terminated either when the maximum number of reconstruction iterations is reached (fixed at
250) or when semi-convergence is reached (rk>rk−1 where rk = | |Af k − p| |2). For optimization
of alignment parameters, we use the quasi-Newton L-BFGS method with bound constraints on
all alignment parameters. The alignment iteration for individual projections is terminated if the
relative reduction in cost is less than 10−7 or the maximum value of the projected gradient is less
than 10−5.

We show the results of our algorithms for simulated datasets 1, 2, and 3 in Figs. 2, 3, and
4, respectively. The first two rows show plots of the ground truth (blue circles) and fitted
(orange triangles) alignment parameters, and the mean-squared errors (MSE) of the projections
(green solid) and reconstruction (red dashed) calculated as | |xrec−xgt | |

2
2

| |xgt | |
2
2

. The MSE for projections
(labelled as data error in plots) is computed between the measured data and reprojections from the
current estimate of the reconstruction. The third and fourth rows show orthogonal slices through
the unaligned and aligned reconstructions and the central measured and calculated sinogram,
respectively. The severity of the misalignments for the different datasets is evident from the
degree to which the unaligned reconstruction is blurred. For example, for dataset 1 with minimal
perturbations, the features in the phantom are easily visible in the unaligned reconstruction,
whereas for dataset 3 with relatively large perturbations, the unaligned reconstruction is rather
featureless. For all three cases, we observe that the alignment parameters are recovered with
sub-pixel accuracy in translations and up to 0.05 degrees accuracy in rotations, as seen from
Table 1. An observation from the MSE plots is that the error decreases rapidly over the first
20 iterations and plateaus thereafter, showing that once a sufficient number of projections are
aligned correctly, there is not a significant effect on the final reconstruction. It is worth noting
here that the projections are invariant to a global affine transformation of the 3D object due to
motions such as a constant shift of the center-of-rotation (perpendicular to the tomographic axis),
constant axial translation (along the tomographic axis), and constant tilt of the tomographic axis
[25]. For the simulated datasets, these global shifts are determined using an extension of the
orthogonal Procrustes analysis [26] which yields an overall global transformation that is applied
to the recovered alignment parameters before computing alignment and reconstruction errors.

Fig. 1. (a) Setup for parallel beam tomography with 5 degrees of freedom modeled as rigid
body transformations. (b) Ray-tracing through a 2D object: Source-detector pair (p̃si , p̃di )

represent affine transformed points on the source and detector for ith ray. The object is
sampled over a uniform grid xg and linear interpolation is used to compute the pixel intensity
at points pj along the rays.
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Fig. 2. Recovered parameters and reconstruction for dataset 1 with smallest misalignments
corresponding to a maximum of 2 pixels (1.5%) offset in translations and 0.6◦ degrees in
rotations. Ground truth and recovered parameters are displayed as empty blue circles and
solid orange triangles, respectively.

Through a series of simulations we find that the magnitude of the translation error has a greater
impact on parameter recovery. Keeping the magnitude of translation error fixed at 12.5%, we
varied the angular error by σ = 3.0, 3.5, 4.0 in three separate simulations and found that we were
able to recover the angles to within 0.1◦ accuracy and the translations to within 0.1 (0.25), 0.1
(0.3) and 0.2 (0.5) pixels accuracy, respectively. Here the values in brackets denote the maximum
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Fig. 3. Recovered parameters and reconstruction for simulated dataset 2 with moderate
misalignments corresponding to a maximum of 8 pixels (6.25%) offset in translations and
2.7◦ degrees in rotations. Ground truth and recovered parameters are displayed as empty
blue circles and solid orange triangles, respectively.

difference between ground truth and found parameters. On the other hand, keeping the angular
error fixed with σ = 3.0 we varied the translation error by 12.5%, 20%, and 31.2% and found that
the angular parameters are recovered to within 0.1◦ (∼ 0.8◦), while the translation parameters
are found to within 0.1 (0.25), 0.4 (1.0), and 1.25 (3.5) pixels, respectively. This shows that the
parameters are recovered well for moderate translation misalignment, even for a high angular
error. Finally, we note that we reach the breaking point for our alignment algorithm for dataset
4 with translation errors as large as 40 pixels (31.2% of linear dimension) and rotation errors
normally distributed with σ = 4.0 (maximum error ∼ 14◦). In this extreme case, and in the
absence of pre-alignment or a low resolution prior, we were unable to reach convergence for



Research Article Vol. 30, No. 6 / 14 Mar 2022 / Optics Express 8907

Fig. 4. Recovered parameters and reconstruction for simulated dataset 3 with severe
misalignments corresponding to a maximum of 16 pixels (12.5%) offset in translations and
7.5◦ degrees in rotations. Ground truth and recovered parameters are displayed as empty
blue circles and solid orange triangles, respectively.

enough projections so as to obtain the correct reconstruction, suggesting that there is an upper
limit to the amount of error that our algorithm can tolerate.

Our code is parallelized using the Message Passing Interface (MPI) standard. Simulations
were run with 30 MPI ranks on 3 nodes with a 2.3 GHz Intel Xeon “Haswell” processor. Both
the reconstruction and alignment were parallelized over projections, resulting in every MPI
rank handling 3 projections (each dataset consists of 90 projections). On average, a single joint
alignment-reconstruction iteration took less than 5 minutes.
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Fig. 5. Comparison of sinogram and orthoslices through the reconstruction for the ALS
biological dataset for unaligned data, data aligned with cross-correlation, the iterative
reprojection algorithm described in [15] and the multi-resolution alignment algorithm
proposed in this paper. Note the difference in the sinogram for cross-correlation and 3D
alignment due to an offset in the center-of-rotation.

3.2. Experimental data

To demonstrate the full potential of our method, we now present results on alignment of two
experimental datasets: (1) biological cell in a cylinder collected at the soft x-ray tomography
beamline at the ALS [27], and (2) XANES data (single energy) of an NMC battery cathode
particle collected at the SSRL and publicly available in TomoBank [28] (ID 00089). The first
row of Figs. 5 and 7 shows the central sinogram and slices through the unaligned reconstruction
for the two datasets. For both these data we compare the alignment by cross-correlation, iterative
reprojection method detailed in [15] and the method proposed in this paper. However we note
that [15] uses a different forward operator and regularization scheme, which may impact the
quality of the final reconstruction.

For the experimental data, we employ a multi-resolution [11,18] approach to reduce the
computational time and memory requirements by going from a coarse to a fine sampling of the
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projections. Lowering the resolution results in smoothing of the projection data, which also serves
as a regularization of the optimization problem, thereby reducing the low frequency components
of the alignment error. In our observation the translation parameters are well determined at
relatively coarse resolutions, while the determination of the angular parameters improves at fine
resolutions when smaller features in the projections can be resolved. For both the experimental
datasets, we align only in-plane and axial translations at the coarsest resolution.

We first show results for the biological dataset. The measured data consists of a full rotation
series with 93 projections of size 1024×1024. At the coarsest resolution, the images were binned
to size 64×64, and alignment and reconstruction was done up to an image size of 256×256. In
Fig. 5 we show the central sinogram and orthoslices through the reconstruction before alignment
(top row), after alignment using the cross-correlation method (second row), the algorithm in [15]
(third row), and with the method proposed in this paper (fourth row). The recovered alignment
parameters are shown in Fig. 6. Because of the cylindrical nature of the experimental setup, we
expect the capillary tube-wall to be circular once the data is well-aligned, with misalignments
manifesting in the form of distorted or discontinuous circle. As seen in Fig. 5 the reconstruction
with cross-correlation alignment and the alignment method in [15] shows a non-circular tube-wall
as well as blurred features inside the cell, while the reconstruction with our proposed method
yields a nearly circular tube and clearly visible sub-cellular organelles. The improvement in the
quality of reconstruction obtained by our proposed method compared to that in [15] shows that in
this particular case alignment of both rotations and translations is important.

Fig. 6. Recovered alignment parameters for biological dataset collected at the ALS for
projections of size 256 × 256.

Next, we show results for the XANES dataset collected at the SSRL. This dataset consisted of
a full rotation series with 180 projections of size 1024×1024. The projections were first cropped
to size 640×640, and then sequentially aligned and reconstructed starting with the coarsest
resolution of image size 80×80 and the final resolution of image size 320×320. In Fig. 7 we show
the central sinogram and orthogonal slices through the reconstruction before alignment (top row),
after alignment using the cross-correlation method (second row), the algorithm in [15] (third
row), and with the method proposed in this paper (fourth row). The corresponding recovered
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alignment parameters are shown in Fig. 8. A qualitative comparison of the reconstruction slices
shows that while both our method and the method in [15] yield reconstructions with sharper
boundaries as compared to the reconstruction with cross-correlation alignment, our method
produces a reconstruction with better contrast and features.

Fig. 7. Comparison of sinogram and slices through the reconstruction for the SSRL XANES
dataset for unaligned data, data aligned with cross-correlation, the iterative reprojection
algorithm described in [15] and the multi-resolution alignment algorithm proposed in this
paper.
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Fig. 8. Recovered alignment parameters for XANES dataset collected at the SSRL for
projections of size 320 × 320.

4. Conclusions and outlook

The results presented here show that our proposed joint iterative reconstruction and 3D alignment
algorithm is able to recover accurate rigid body motions that the sample/stage may undergo during
an x-ray tomography experiment. We have described the details of the forward projection operator
that takes into account full 3D rigid motions. The analytic computation of derivatives with respect
to alignment parameters eliminates the need to choose a step size for calculating the Jacobian
matrix using the finite difference method as proposed in [17,18]. Results based on simulations as
well as experimental data show that the algorithm performs well even when the misalignments
are large. In future work, we aim to optimize the convergence and computational efficiency of
the algorithm through a GPU implementation [29] and use of higher order interpolation schemes
for the projection operator.

Due to the non-convexity of the cost function in (3), the determination of the global minimum
of the problem is not guaranteed, which is a well known general limitation of projection matching
algorithms. The multi-resolution approach proposed here and in other work [11,18] has been
shown to be effective in avoiding local minima, as evident from our results on the experimental
data. One possible route to avoiding such local minima is to use global optimization methods
such as simulated annealing and differential evolution, but only at coarse resolutions due to their
high computational cost. However, this may not facilitate a convergence to the global minimum
for the rotations. A better approach would be to employ more efficient hybrid global and local
optimization schemes such as [30] for a few iterations at different levels of the resolutions pyramid
to guarantee fast convergence to the global minimum.

An additional key point is that another source of artifacts in tomographic reconstruction is
non-rigid deformation processes as a result of time-evolution in dynamic samples and damage
induced in radiation sensitive samples. A common approach to model sample evolution is
based on the use of deformation vector fields computed from volumes reconstructed from
two independent sets of projections from a full rotation series [31–36]. While some of these
methods require a prior knowledge of either the nature of the displacement or a template sample
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reconstruction from undeformed projections, others are based on a joint optimization framework
with a self-consistent method to model continuous deformation of the sample. Although non-rigid
deformations lead to significant loss in the quality and resolution of reconstructions, in this work
we only address the inconsistencies in projection measurements due to rigid-body motions, and
the non-rigid motions will be the subject of a future study.

Appendix A. Effect of only translation misalignment

Figure 9 shows results for simulated dataset with only translation misalignments uniformly
distributed between ±40 pixels (31.25% linear dimension). We are able to recover the parameters
to within 0.1 pixels accuracy.

Fig. 9. Recovered parameters and reconstruction for simulated dataset with only translation
misalignments uniformly distributed between ±40 pixels (31.25% linear dimension). Ground
truth and recovered parameters are displayed as empty blue circles and solid orange triangles,
respectively.

Appendix B. Effect of only rotational misalignment

Figure 10 shows results for simulated dataset with only rotational misalignments normally
distributed with σ = 4.0◦ (maximum offset = 14.0◦). We are able to recover the parameters to
within 0.05◦ accuracy.

Appendix C. Effect of correcting for translations only

Figure 11 shows results for accounting for only translation jitter in a simulated dataset with
translation misalignments uniformly distributed between ±16 pixels (6.25% linear dimension)
and rotational misalignments normally distributed with σ = 1.5◦ (maximum offset = 2.7◦). This
corresponds to dataset 2 in the main text.

Appendix D. Fourier shell correlation

Figure 12 shows the Fourier shell correlation (FSC) of the reconstructed phantom with the ground
truth for the three simulated datasets. The FSC is given as

FSC(q) =
∑︁

qi∈q F1(qi) · F∗
2(qi)√︂∑︁

qi∈q
|︁|︁F1(qi)

|︁|︁2 · ∑︁qi∈q
|︁|︁F2(qi)

|︁|︁2 , (13)
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where F1 is the Fourier transform of the ground truth volume and F∗
2 is the Fourier transform of

the reconstructed volume. For all three datasets the FSC is better than 0.9 to full resolution.

Appendix E. Non-central sinogram slices for simulated phantom

Figure 13 shows non-central unaligned and aligned sinogram slices for the three simulated
datasets.

Fig. 10. Recovered parameters and reconstruction for simulated dataset with only rotational
misalignments normally distributed with σ = 4.0◦ (maximum offset = 14.0◦). Ground truth
and recovered parameters are displayed as empty blue circles and solid orange triangles,
respectively.

Fig. 11. Comparison of reconstruction and corrected sinogram for dataset 2 (top) account-
ing for only translation misalignments, and (2) accounting for translation and rotational
misalignments. Red boxes in the top row show reconstruction artifacts.
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Fig. 12. Fourier shell correlation of the reconstructed volume with the ground truth for
simulated dataset 1 (blue), dataset 2 (orange), and dataset 3 (green).

Fig. 13. Unaligned and aligned non-central sinogram slices for the three simulated phantom
datasets.
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