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Sexual dimorphism of physical activity on cognitive aging: Role 
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Abstract

Objective.—Exercise is one of the most potent strategies available to support cognitive health 

with age, yet substantial variability exists. Sexual dimorphism is evident for brain and immune 

functioning, the latter being implicated as important pathway for exercise. We examined the 

moderating role of sex on the relationship between physical activity and systemic inflammatory 

and brain health outcomes in support of more personalized approaches to behavioral interventions.

Methods.—Our discovery cohort included 45 typically aging women matched on age (±5y) and 

education (±2y) to 45 men (mean age=72.5; Clinical Dementia Rating=0) who completed self-

reported current physical activity (Physical Activity Scale for Elderly), blood draw, 

neuropsychological evaluation, and brain MRI. An independent sample of 45 typically aging 

women and 36 men who completed the same measures comprised a replication cohort. Plasma 

was analyzed for 11 proinflammatory cytokine and chemokine markers via MesoScale Discovery.

Results.—Discovery cohort: Reported physical activity did not differ between sexes (150 vs. 

157, p=0.72). There was a significant interaction between sex and physical activity on chemokine 

markers MDC, MIP-1b, MCP-4, and eotaxin-3 (ps<0.03), with a similar trend for MCP-1 and 

INFγ (ps<0.09). Men who reported greater activity demonstrated lower inflammatory markers, an 

effect attenuated-to-absent in women. An interaction between sex and physical activity was also 

observed for parahippocampal volumes (p=0.02) and cognition (processing speed and visual 

memory; ps<0.04). Again, the beneficial effect of physical activity on outcomes was present in 

men, but not women. Replication cohort analyses conferred a consistent effect of sex on the 

relationship between physical activity and immune markers; models examining neurobehavioral 
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outcomes did not strongly replicate. Across cohorts, post-hoc models demonstrated an interaction 

between sex and activity-related inflammatory markers on total gray matter volume and visual 

memory. Men with higher inflammatory markers demonstrated poorer brain structure and 

function, whereas inflammatory markers did not strongly relate to neurobehavioral outcomes in 

women.

Conclusions.—Greater physical activity was associated with lower markers of inflammation in 

clinically normal older men, but not women - an effect consistently replicated across cohorts. 

Additionally, men appeared disproportionately vulnerable to the adverse effects of peripheral 

inflammatory markers on brain structure and function compared to women. Immune activation 

may be a male-specific pathway through which exercise confers neurobehavioral benefit.

Keywords

exercise; inflammation; gender; cognitive aging; brain aging; lifestyle; chemokines

INTRODUCTION

Dementia is a quarter trillion-dollar public health problem with no disease modifying 

treatments currently available, highlighting the need to carefully examine readily available 

alternate approaches1. Physical activity is one such target that has demonstrated some of the 

largest effect sizes on neurobehavioral outcomes, including age-related cognition2–5, white 

matter integrity6–8, and even gray matter growth9,10. For example, one recent study 

demonstrated an 88% reduced risk of dementia in adults with high midlife fitness compared 

to their less fit peers4. Yet, as noted in the 2017 National Academy of Medicine, other data 

are mixed and evidence is not yet sufficient to indicate that exercise can prevent dementia11. 

In fact, one recent large-scale trial in patients with mild-to-moderate dementia showed 

statistically significant functional declines after a 12-month exercise treatment12. A major 

gap in this literature is that we do not fully understand the mechanisms of how exercise may 

exert protective effects on the brain in order to identify who may stand to benefit the most.

Biological sex is not only an important moderator of brain and cognitive aging, but also of 

immunological functioning, and this latter system is posited as an important pathway 

through which exercise may benefit the brain13. While men demonstrate steeper memory 

declines in typical aging14,15 and “older” appearing markers of brain epigenetics and 

metabolism16,17, up to 2 out of 3 patients with Alzheimer’s disease (AD) are women1. 

Women also harbor higher levels of AD pathology and, clinically, appear to be 

disproportionately affected by AD risk factors (e.g., APOEε4, cerebral amyloid)18–20. 

Interestingly, converging whole genome studies highly implicate innate immune dysfunction 

in the development of AD21–23, and there is also evidence for sexual dimorphism of the 

immune system. For example, there are clear sex differences in the prevalence immune- 

mediated diseases (e.g., 80% of autoimmune diseases are in women)24. Women generally 

mount a stronger immunological response to a pathogen or injury (e.g., TBI, ischemia) 

particularly at younger ages compared to men, including increased transcription of toll-like 

receptor ligands following an immune challenge and bigger antibody production following 

vaccination24–26. The endocrine environment also plays a potent regulating role as both 

androgen and estradiol response elements are present on innate immunity genes27 and 
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expressed in various lymphoid tissues, lymphocytes, macrophages, and dendritic cells. 

While estradiol appears to have a bipotential effect with low doses enhancing inflammatory 

cytokine production and high levels reducing their production, androgens, including 

testosterone, generally suppresses immune activity in men, potentially contributing to 

pathogen toxicity28,29. As a result, women demonstrate faster pathogen clearance, wound 

healing, and return to immunological quiescence following an injury, but may ultimately be 

more susceptible to low grade inflammation and autoimmune diseases, while men are at risk 

of greater pathogen toxicity due to an insufficiently mounted immunologic response24·25. 

Given that 1) there is compelling evidence for sexual dimorphism across brain and 

immunologic functioning, and 2) physical activity has been linked with both of these 

systems30–35, our overarching goal was to examine the effect of biological sex on the 

relationship between physical activity and these age-related outcomes.

Despite these links and the surge in exercise-related brain health literature, relatively few 

studies have directly explored this question. In humans, there appear to be sex differences in 

the relationship between exercise and brain integrity and cognitive outcomes, though the 

exact pattern is less clear. In one of the few prospective analyses, Barha and colleagues 

(2019) examined the relationship of self-reported walking on 10-year cognitive and brain 

volume trajectories stratified by sex in the Health ABC cohort of non-demented older 

adults36. In women, walking was associated with more optimal dorsolateral prefrontal 

volume and processing speed trajectories, while in men, walking was linked to better 

hippocampal volume trajectories. On the other hand, in a randomized trial of physical 

activity in older adults with small vessel ischemic disease, aerobic training was associated 

with slowed white matter hyperintensity growth in men, but not women37. Regarding 

cognition, several randomized trials of aerobic activity have also demonstrated specific 

beneficial effects of physical activity on processing speed and executive functioning only in 

women38, while others show benefits on memory only in men39,40. Notably, the study 

cohorts included in these reviews were cognitively heterogenous, including a mix of both 

typical aging and mild cognitive impairment adults. Given that disease state may critically 

modulate sex effects of cognitive aging (e.g., men may decline more quickly in states of 

health, women may decline more quickly in states of AD), it is difficult to fully disentangle 

these effects. Additionally, there are fairly consistent demographic cohort differences 

between sexes, with women tending to be younger and less well educated, potentially 

reflecting generational effects on factors known to relate to cognitive aging.

In this study, we evaluated the moderating effect of biological sex on the relationship 

between physical activity and brain health related outcomes among typically aging older 

adults. Our outcomes included cognition, gray matter volume, and plasma markers of 

immunologic functioning between the sexes. To address cohort issues, we matched women 

and men on demographic factors shown to vary by sex and be related to brain health 

outcomes – namely, age and education. Careful characterization of the individuals who stand 

to benefit the most from behavioral interventions are critically needed to support 

personalized health approaches, shape risk-stratification techniques for clinical trials, and 

inform our fundamental understanding of brain health development.
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METHODS.

Participants.

All participants were drawn from the larger Hillblom Aging Network at University of 

California, San Francisco, an ongoing study characterizing the neurobehavior of typical 

aging. Participants represent a community-dwelling, convenience sample of the Bay Area 

collected between 2000 and 2019, recruited via advertisements, flyers, community outreach 

events, word of mouth, and through family members of patients affected by 

neurodegenerative disease. At screening, participants completed comprehensive 

neurological, and neuropsychological evaluation, including a study partner interview, all of 

which are reviewed at interdisciplinary case conferences, and determined to be within 

normative standards by board certified neurologists and neuropsychologists. Evaluation 

measures included detailed neurobehavioral and medical interview with participant and an 

informant, motor and physical exam, brain MRI review, informant-based Clinical Dementia 

Rating Scale, and standardized well-described neuropsychological measures covering 

episodic memory, executive functions, processing speed, language, visuospatial skills, and 

mood described in details elsewhere (see for detailed measures and further cohort 

description14,41–43). Inclusion criteria: 1) no diagnosed memory or neurological condition 

(e.g., epilepsy, large vessel stroke), 2) no major medical (e.g., active neoplasm, HIV, 

dialysis), psychiatric disorder (e.g., schizophrenia), or active substance use disorder, and 2) 

no functional decline operationalized as Clinical Dementia Rating (CDR) of 0 via study 

partner interviews. This approach yields a cohort of older, functionally intact subjects who 

are heterogeneous in terms of cognition, and common chronic age-related vascular risk 

factors and general health conditions.

Discovery cohort.—120 typically aging older adults completed the Physical Activity 

Scale for the Elderly (PASE) and blood draw with plasma analyzed for immune activation 

markers in one analytic batch. Men and women were matched on age (±5 years) and 

education (±2 years) via case control matching (IBM Corp. SPSS; Case Control Matching, 

Hayes package), resulting in 45 matches (N=90 total).

Replication cohort.—We identified an additional cohort of 90 independent older adults 

(36 male, 45 female) from the Hillblom Aging Network who also completed the PASE and 

blood draw with plasma analyzed for immune markers (on the same analytic platform) in a 
separate analytic batch and who served as a validation sample. The goal of a replication 

cohort was to increase the rigor of our clinical study by testing the reliability of the 

evaluated relationships. Models demonstrating similar effect directionality and size across 

both cohorts may therefore be interpreted as more generalizable and robust. We opted to not 

match this cohort in order to optimize sample size, and instead statistically adjusted for 

demographic factors that differed between sexes.

The UCSF Committee on Human Research approved the study protocol, and per their 

guidelines, all subjects provided written informed consent.
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Reported Physical Activity.

Participants completed the Physical Activity Scale for the Elderly (PASE), a self-reported 

measure of physically-demanding activities in the past 7 days. The PASE was developed and 

has been well-validated to capture physical activities common in older adults, including 

quantification of duration, frequency, and exertion level. A total composite score was 

calculated according to the manual (New England Research Institutes, Inc, 1991) with 

higher scores indicating higher levels of physical activity (possible range 0 to 400+).

Immune Activation Markers.

Venous blood was drawn in the morning following a 10+ hour fasting interval in EDTA-

containing tubes and plasma continuously stored at −80°C. Samples were gradually brought 

to room temperature and analyzed via Meso Scale Discovery (Rockville, MD, USA) V-Plex 

proinflammatory cytokine and chemokine kits, according to manufacturer guidelines. 

Analytes quantified included interleukin (IL)-6, IL-10, tumor necrosis factor-alpha (TNF-α), 

monocyte derived chemokine (MDC/CCL22), macrophage inflammatory protein-alpha and 

beta (MIP1a/CCL3 and MIPip/CCL4), monocyte chemoattractant protein 1 and 4 (MCP-1/

CCL2, MCP-4/CCL13), and interferon gamma (INFγ), eotaxin-1 and −3. Samples were run 

in two separate analytic batches using antibodies from two different manufacturer lots at 

different time points; given that discrepant analytic lots and time points are commonly not 

directly comparable44, we elected to split the sample into independent Discovery and 

Replication cohorts based on batch analysis. All samples were run in duplicate and those 

with coefficients of variance (CV) >20% were excluded from analyses. Final values were 

also examined for extreme outliers and samples with values >5× the upper interquartile 

range were also excluded. Due to positive skew, all markers were log transformed to achieve 

normality prior to analysis.

Cardiovascular Health.

Other measures of cardiovascular health included height and weight (body mass index 

calculated), blood pressure (systolic and diastolic), and serum-based clinical laboratory 

measures of blood sugar (hemoglobin A1C) and insulin resistance (Homeostatic Model 

Assessment of Insulin Resistance, HOMA-IR) (Quest Diagnostics; Seacaucus, NJ).

Neuroimaging.

Participants also completed a 3T Magnetom Vision TIM Siemens Trio brain magnetic 

resonance imaging (MRI) within 180 days of their neuropsychological evaluation and blood 

draw. T1-weighted magnetization prepared rapid acquisition GRE structural scan was 

acquired (acquisition time 8 minutes, 53 seconds), sagittal orientation, field of view 160 × 

240 × 256 mm and isotropic voxel resolution of 1 mm3 (repetition time = 2300ms, echo time 

= 2.98 ms, time inversion = 900 ms, and flip angle = 9). Before processing, all images were 

visually inspected for quality and those with excessive motion or other image artifact 

excluded. Magnetic field bias was corrected using the N3 algorithm45. Tissue segmentation 

was performed using the unified segmentation procedure in SPM1246. Each participant’s 

T1-weighted image was warped to create a study-specific template using Diffeomorphic 

Anatomical Registration using Exponentiated Lie algebra (DARTEL)47; subsequently, the 
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images were normalized and modulated in the study-specific template space using nonlinear 

and rigid-body registration. Images were smoothed using an 8-mm Gaussian kernel with 8-

mm full width half maximum. For registration with a brain parcellation atlas, linear and 

nonlinear transformations between DARTEL’s space and ICBM space were applied48. 

Quantification of volumes in specific brain regions at each time point was accomplished by 

transforming a standard parcellation atlas into ICBM space and summing all modulated gray 

matter within each parcellated region49. Total intracranial volume was estimated for each 

subject in MNI space.

A priori selected gray matter regions of interest (ROIs) included total gray matter volume, 

bilateral substructures of the medial temporal lobe (hippocampus, parahippocampus, 

entorhinal), and bilateral dorsolateral prefrontal cortex (caudal and rostral middle frontal 

gyrus), given previously reported sensitivity of these structures to exercise9,10. Total 

intracranial volume was statistically regressed out of each ROI prior to analyses.

Neuropsychological evaluation.

We selected measures of processing speed, episodic memory, and executive functions given 

their known changes in aging and previous reported associations with physical activity43,50. 

Spatial processing speed was measured using a well-validated, experimental computerized 

battery of visually (e.g., Dot Counting, Flanker) mediated reaction-time tasks, developed by 

Kerchner and colleagues (2011 )51. Tasks within each domain are averaged into a composite 

z-score, reflecting reaction time (higher values indicating slower performance) of participant 

performance compared to young adults. Verbal episodic memory was measured via the 

California Verbal Learning Test, second edition52; total long delay (20-30 minute) free recall 

scores were the primary metric of interest (range 0-16). Visual episodic memory was 

quantified by delayed (10-minute) free recall of a complex figure (modified Benson Figure). 

Executive functions were quantified via a composite index of digit span backwards, 

modified Trail Making Test, Stroop Inhibition, lexical fluency (D-words/60”), and design 

fluency (DKEFS Condition 1) performances; this battery of measures is described in detail 

elsewhere43,53.

Statistical Analyses.

Discovery cohort analyses.

In the age- and education-matched sample, independent Student’s t-tests were conducted to 

examine possible remaining demographic and clinical differences between sexes. Next, to 

evaluate the moderating effect of sex on the relationship between reported physical activity 

and neurobehavioral outcomes of interest, we conducted linear regression models entering 

both main effects and the interaction term between sex*physical activity. Given that we 

captured 11 immunological markers, in order to reduce multiple comparisons, we first 

conducted a multivariate linear regression with all 11 markers entered as the dependent 

variable; follow-up analyses then evaluated each individual immune marker separately. 

Parallel multivariable linear regression models also evaluated the interaction of sex*physical 

activity on a priori selected cardiovascular (blood pressure, HOMA-IR, hemoglobin A1C), 

brain structure (total GMV, medial temporal lobe subregions, dorsolateral prefrontal cortex), 
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and cognitive (verbal/visual episodic memory, processing speed, executive functions) 

outcomes. To better capture the specific effect of current physical activity on outcomes of 

interest, all models covaried for BMI as an indicator of overall fitness/metabolic differences. 

Models with interaction terms reaching α<0.05 were further probed by testing effects of 

physical activity on immune/neurobehavioral outcomes stratified by sex. Standardized beta 

values are reported across all models.

Replication Analyses.

In the unmatched replication cohort, Student’s t-tests were conducted to again evaluate 

demographic and clinical differences between sexes. This cohort demonstrated significant 

differences on education, BMI, and heart rate between males and females; as such, these 

measures were included as covariates in all subsequent models. To streamline analyses and 

avoid multiple comparisons, we replicated regression models (described above) that 

demonstrated small- to-medium effect sizes (interaction term parameter: β >0.30) in the 

discovery cohort54.

Post-Hoc Models.

After determining that the most replicable sex-specific effect was observed on the 

relationship between physical activity and peripheral inflammatory markers, we aimed to 

explore how these exercise-related immune markers may relate to markers of central nervous 

system functioning (brain structure and function) in our cohorts. To do so, we first created an 

inflammatory composite (z-score) within each cohort that included only the chemokine 

markers demonstrating at least small-to-medium (β >0.30) sex-exercise effects across 

cohorts: MCP4, eotaxin-3, and MIP1b. Collapsing across cohorts to increase sample size, we 

then examined the possible moderating role of sex on the relationship between our exercise-

related immune composite and markers of brain structure and cognition. Multivariable linear 

regression models therefore tested the interaction between sex*exercise-related immune 

composite on gray matter volume and cognition, adjusting for age, education, and BMI.

Results.

Discovery Cohort.

Sample Characteristics.—Demographically-matched men and women did not 

statistically differ on overall reported physical activity levels, BMI, blood pressure, 

hemoglobin A1C, or HOMA-IR. Regarding inflammatory markers, men and women did not 

differ across most, though women showed lower IL-6 (p=0.03) and higher INFγ (p=0.04).

Immune Activation Outcomes.—The omnibus multivariate regression modeling 

sex*physical activity against all 11 immune markers reached statistical significance (F(42, 

67)=2.16, p=0.0018). In individual models, sex significantly moderated the relationship 

between physical activity and several proinflammatory chemokine markers, including MDC 

(p=0.03), MIP1-b (p=0.02), eotaxin-3 (p=0.007), and MCP-4 (p=0.02; Table 3, Figure 1). 

Models examining MCP-1 (p=0.09) and INFγ (p=0.06) approached, but did not reach, 

statistical significance. In all models, greater reported physical activity was consistently 

associated with lower inflammatory markers among men, but not women (Men: β range: 
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−0.59 to −0.27, all p-values <0.07; Women: β range: −0.15 to 0.19, all p-values >0.21). 

There were no statistically significant sex by physical activity interactions on 

proinflammatory cytokine markers examined (e.g., IL-6, TNFα).

Brain Structural Outcomes.—Sex also significantly interacted with physical activity on 

parahippocampal volumes (p=0.02; Table 4; Figure 3). Greater physical activity 

demonstrated a medium, positive relationship with parahippocampal volume in men 

(β=0.43, p=0.01), but not in women (β=0.03, p=0.86). Interaction parameters were in the 

same direction but did not reach statistical significance for entorhinal (β=−0.31, p=0.35), 

hippocampal (β=−0.41, p=0.19), total gray matter (β=−0.41, p=0.19) or dorsolateral 

prefrontal cortex (β=−0.19, p=0.53; Table 4).

Neuropsychological Outcomes.—Lastly, there was also a significant sex by physical 

activity interaction on visual episodic memory (p=0.04) and processing speed (p=0.027; 

Table 4; Figure 4). Among men, greater reported physical activity demonstrated a medium, 

positive association with visual memory and processing speed performances, but this effect 

was attenuated in women (Men: memory β=0.25, speed β=−0.37, p-values<0.12; Women: 

memory β=−0.18, speed β=0.04, p-values<.82). The interaction term did not reach 

significance for executive functions or verbal episodic memory (all p-values>0.15).

Replication Sample (Unmatched).

In the replication sample, men and women were comparably aged, though women were less 

well educated (16.9 vs 18.3 years, p=0.008; Table 1). Men and women in the replication 

sample did not differ on reported levels of physical activity, blood pressure, hemoglobin 

A1C, or HOMA-IR, though women had higher heart rates (68.2 vs. 63.5, p=0.02) and lower 

BMIs (24.5 vs. 27.1, p=0.007) compared to men; we adjusted for education, heart rate, and 

BMI in all analyses.

Only models that demonstrated small-to-medium effect sizes (β >0.30)54 in the discovery 

cohort were tested in the replication cohort. Inflammatory markers examined included: 

MCP-4, MCP-1, eotaxin-3, MDC, MIP1 b, and INFγ; cardiovascular markers included 

systolic and diastolic blood pressure; brain volume regions included total GMV and all 

medial temporal subregions; and cognition included visual episodic memory and processing 

speed.

Adjusting for education, BMI, and heart rate, we continued to observe medium effect size 

interactions between sex by physical activity for select pro-inflammatory chemokine 

markers, MCP-4 (β=0.42, p=0.029), MCP-1 β=0.27, p=0.17), eotaxin-3 β=0.41, p=0.016), 

and MIP1b β=0.36, p=0.07). Again, the beneficial relationship between physical activity and 

immune markers in men (MCP-4 β= −0.29, p=0.11; MCP-1 β=−0.23, p=0.21; eotaxin-3 β=

−0.30, p=0.29; MIP1b β=−0.30, p=0.12) was notably attenuated in women (MCP-4 β=0.08, 

p=0.63; MCP-1 β=0.01, p=0.92; eotaxin-3 β=0.14, p=0.63; MIP1b β=0.02, p=0.90). The sex 

by activity interaction effect on other inflammatory markers was small to negligible (β 
range= −0.27 to 0.03, all p-values>0.87). Regarding gray matter volumetries, sex by 

physical activity interaction terms demonstrated small benefits favoring males, but also did 

not reach statistical significance (GMV β= −0.26, p=0.31; parahippocampal β= −0.15, 
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p=0.54; hippocampal β=−0.17, p=0.51); the sex by activity interaction term examining 

entorhinal volumes favored females but did not reach statistical significance (β= 0.17, 

p=0.51). Lastly, sex did not appear to meaningfully moderate the relationship between 

physical activity and cognition in the replication cohort (visual memory β=0.03, p=0.87; 

processing speed β=0.17, p=0.46).

Post-hoc: How does activity-related peripheral inflammation relate to brain and cognitive 
outcomes across sexes?

Adjusting for age, education, and BMI, we observed a sex by inflammatory composite 

(MCP-4, eotaxin-3, MIP-1b) interaction on total gray matter volume (inflammation*sex 

β=0.27, p=0.029) and visual memory (inflammation*sex β=0.24, p=0.02; Figure 5). In both 

models, there was a stronger inverse relationship between the exercise-inflammatory 

composite and brain health related outcomes only in men, but not women (Men: β= −0.38, 

p=0.01 (GMV); β=−0.22, p=0.11 (visual memory); Women: β=0.04, p=0.73 (GMV); 

β=0.10, p=0.44 (visual memory)). Models exploring sex by inflammatory interactions on 

medial temporal subregions or DLPFC volumes did not reach significance 

(inflammation*sex β range=0.14 to 0.17, all p-values<0.28), nor did models examining 

executive functions, processing speed, and verbal memory (inflammation*sex β range=0.03 

to 0.09, all p-values<0.92) - however, all models demonstrated the same directionality (i.e., 

tighter relationship between inflammation and neurobehavioral outcomes in men versus 
women).

Discussion

Using demographically-matched and replication samples, we show that physical activity is 

disproportionately related to better markers of peripheral inflammation in typically aging 

men, and these activity-related inflammatory proteins disproportionately associate with brain 

and cognitive outcomes in men (Figure 5). In our discovery cohort, men showed a tighter 

relationship between reported daily physical activity and lower concentrations of MCP4, 

MCP1, MDC, MIP1b, INFγ, and eotaxin-3, larger parahippocampal volumes, and better 

visual memory and processing speed that appeared to be attenuated or absent in women. 

When replicated in an independent unmatched cohort, we observed similar effect sizes, 

particularly for plasma inflammatory markers MIP1b, MCP4, and eotaxin-3, though less 

consistently for neurobehavioral outcomes. Across cohorts, we then found that lower 

concentrations of these exercise-related inflammatory proteins were disproportionately 

associated with larger total gray matter volume and better visual memory in typically aging 

men compared to women. Taken together, our data suggest that immune regulation may be a 

sex-specific pathway by which men reap benefit from exercise on brain health. These data 

add to the emerging literature suggesting that exercise may differentially impact age-related 

neurological outcomes in men compared to women, and extends these works by implicating 

the immune system in contributing in sex-specific pathways.

It is difficult to determine from our observational design if these data indicate a lessened 
benefit in women or if typically aging men represent a high-risk group with greater benefit, 

particularly when it comes to immunologic health. Supporting the latter, females mount 
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generally larger and faster innate and adaptive immune responses to pathogens or injury 

resulting in more rapid clearance, repair and wound-healing, and efficacy of vaccines across 

species24. Indeed, women show greater upregulation of immune-related transcriptional 

factors (e.g., TLR) following an immune challenge or vaccine, greater phagocytic activity of 

neutrophils and macrophages, and more effective antigen- presenting activity compared to 

men27,55. Given that exercise is linked to maintenance of immune homeostasis34,35, perhaps 

the more tightly coupled effects observed between both physical activity and peripheral 

inflammation, and between peripheral inflammation and neurobehavior in our older adult 

men reflect this male risk bias. That is, older men may need exercise to a greater degree than 

women to keep either their vulnerable immune systems in check and/or mount an 

appropriate immunologic response, whereas low physical activity is simply less detrimental 

to women’s already robust immune system. Further supporting this line of thinking and as 

related to the brain, we found a stronger relationship between activity-related inflammation 

and brain structure and function in men compared to women. These data suggest that 

immune dysregulation may be particularly detrimental to the aging male brain. Taken 

together, in states of health, perhaps women’s more inherently robust immune system is less 

important for and/or confers a female-specific resilience to the effects of typical brain aging, 

whereas men need greater support (in the form of exercise) to maintain the same level of 

immune and cognitive functioning.

On the other hand, although converging lines of evidence clearly indicate that females 

benefit from exercise4·56, it is possible that the degree or pattern may differ, and/or that 

women require a larger amount of exercise to gain the same benefits as men. In female 

ovariectomized mice, Berchtold and colleagues (2001) showed that not only was estrogen 

loss associated with reduced voluntary exercise, but the beneficial effect of exercise on 

hippocampal neurotrophic expression (i.e., mRNA BDNF) was significantly attenuated in 

the absence of estrogen57. Importantly, estrogen replacement resulted in improved exercise-

induced BDNF levels in female hippocampi, though the effect was not entirely restored to 

baseline levels. Other studies additionally show greater hippocampal long-term potentiation 

and improved memory following voluntary exercise in male compared to female mice58,59. 

Consistent with our findings, these data suggest that men may show greater neurobehavioral 

benefits following exercise, but the effects may be (at least in part) hormone- mediated.

Other clinical and animal studies have been less clear and perhaps indicate network-

specificity to the observed sex-exercise effects on the brain. Though certainly not the case in 

all studies, there may be an emerging pattern suggesting a female-specific relationship 

between physical activity and dorsolateral prefrontal cortices and speeded/executive 

functioning tasks, with men demonstrating greater hippocampal and related memory-specific 

benefits36,58,60. This network specificity may be consistent with the reported relative 

abundance of estrogen receptors not only in the hippocampus but also particularly, the 

prefrontal cortex (i.e., up to 50% of ER?? receptors)61–63. Our data recapitulate 

disproportionate effects of physical activity on medial temporal and memory functioning in 

men compared to women; yet, we did not observe a female-specific effect on prefrontal or 

executive/speeded tasks, or any other outcomes. One major study design difference was our 

utilization of demographic matching which aimed to remove sex-specific variance in age and 

educational differences that were not directly controlled for in other studies that used 
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stratified modeling (i.e., developed models in males and females separately versus direct 

testing of sex- specific slopes)36. Additionally, we intentionally captured a cognitively 

homogeneous cohort of high- functioning, typically aging older adults, which differs from 

some previous works that included individuals with mild cognitive impairment. This 

cognitive homogeneity may be advantageous given the known differential sex effects on 

brain aging (i.e., women demonstrating more optimal trajectories in states of health but more 

precipitous declines in states of disease (e.g., Alzheimer’s disease); nonetheless, it will be 

critical to parse out disease state specific effects of exercise by sex.

Regarding the specific inflammatory markers, we found that MIP1b, MCP4, and eotaxin-3 

and to a lesser extent, MCP1, demonstrated the most consistent sex-specific relationships 

with physical activity across cohorts. Although it is difficult to draw pathway-specific 

interpretations from circulating protein levels, we do note that each of these markers are C-C 

motif chemokines involved in monocyte, granulocyte, and lymphocyte recruitment, 

migration, and activation64,65. Interestingly, plasma levels of MCP1 have been linked to risk 

of AD diagnosis and longitudinal memory-specific declines in clinically normal adults by 

our group66,67, and CSF (but not plasma) MCP1 has been shown to predict conversion from 

MCI and AD dementia in older adults68. Additionally, we have also demonstrated that, 

among a larger panel of inflammatory markers, peripheral MIP1b concentrations were 

among the most closely associated with cerebrospinal fluid levels in healthy older adults 

(r=0.55) and were associated with higher CSF p-tau levels69, suggesting that the 

relationships observed here may have implications for central nervous system inflammation 

and neurodegeneration. Additionally, eotaxins have increasingly been implicated in aging 

and neurodegenerative disease65. Both in serum and CSF, eotaxin-3 levels relate to age70, 

differ between normal and cognitively impaired patients,68,71 and serum concentrations have 

been proposed as a potential adjunct biomarker for AD72; yet other studies of peripheral 

eotaxin-3 levels have failed to find group differences across cognitively impaired 

cohorts67,68,73. Similarly, MCP-4 is known to increase with age and relate to chronic 

inflammatory diseases in the periphery, though CSF and peripheral levels have not tracked 

closely with cognition in older adults66,68. Taken together, these peripheral proteins appear 

to show some relevant signals to age-related CNS function and AD risk, suggesting that 

systemic immune cell activation and recruitment may be pathway through which exercise 

relates to cognitive aging. Nonetheless, these are observational, clinical data, and future 

mechanistic works are greatly needed to parse out the immune-specific pathways (likely via 

network-based proteomics) represented in the periphery that may be moderated by exercise 

and driving CNS age-related health.

Although we are among the first to directly implicate the immune system as a potential sex- 

specific pathway between exercise and brain health, our understanding of other mechanisms 

driving this relationship are nascent and ultimately a complex interplay among 

chromosomal, hormonal, metabolic, and psychosocial contextual (e.g., health-seeking 

behavior, exposure) factors are likely implicated. A limitation to our study is that these 

retrospective data did not capture menopausal status or hormone replacement therapy, 

though the majority of women in our study were likely in postmenopausal stages (>94% of 

cohort were 60+ years old). As noted previously, estrogen availability may be a critical 

moderator of how the female brain gains benefits of exercise57. Additionally, estradiol 
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importantly moderates immune responses with heightened inflammation at low levels but 

attenuated inflammation at high levels24. On the other hand, androgen levels, including 

testosterone, also decline with age, and their decreases are associated with more adverse 

brain and cognitive outcomes74–76 and also (given their immunosuppressive role) greater 

states of age-related chronic inflammation24. In-depth characterization of how sex hormone 

levels, including menopausal state and hormone replacement therapy, and age interact with 

physical activity and the immune system to impact the aging male and female brain are 

ongoing but clearly a high-need area of research. Furthermore, sex chromosomes are known 

to directly impact immune functioning77–79 and recent elegant experiments manipulating sex 

organs across sex chromosomal genotypes indicate that the X chromosome may drive 

female-linked longevity80 and cognitive resilience in wildtype and AD mouse models, 

independently of sex hormones81,82. Careful exploration of the synergistic and divergent 

effects of sex-relevant biologies (e.g., hormonal and chromosomal) is critically needed to 

disentangle these important emerging brain, behavior, and immune relationships.

Another major limitation of our study was the use of self-report for physical activity that did 

not explicitly differentiate activity intensity (e.g., aerobic vs resistance training). We cannot 

know if sex differences in reporting bias exist or impact our findings. That is, it is certainly 

possible that either women overestimated their activity resulting in an apparent greater male 

benefit at seemingly similar activity levels, or that men are engaged in more intensive 

physical activities that are not qualitatively captured on our self-report measure (e.g., 

jogging at the same frequency but a faster speed). We also did not systematically capture 

common medication regimens known to target immune-mediated processes (e.g., NSAIDs, 

corticosteroids, TNF inhibitors)83–85, and may be an important confounder to evaluate in 

future works. Additionally, the observational design of the study inherently limits 

determination of causality, as it is possible that older adults with poorer overall functioning 

(e.g., poorer immune, cardiovascular, neurobehavioral health) are engaging in less physical 

activity. Lastly, although we utilized an independent-sample replication design, the sample 

sizes were small, making it difficult to meaningfully test more complex models (e.g., 

mediating effects). Future large cohort studies and, ultimately, randomized controlled trials 

that include fluid biological markers as well as neurobehavioral outcomes are critically 

needed to begin to parse out these mechanistic relationships.

Our data suggest sexual dimorphism influences how physical activity confers effects on the 

body and the brain. Namely, the beneficial effect of physical activity on brain health 

indicators may be more closely related to regulation of immune functioning for men, but not 

women. These data underscore the importance of personalized medicine approaches to 

better understand how and in whom certain behavioral interventions may be most 

efficacious. The critical role of biological sex on the development of the peripheral and 

central nervous systems develop and risk for disease with age is an exciting area of study 

that will likely lead to highly fruitful avenues of understanding both disease risk and 

resiliency more broadly.
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Highlights

• Exercise relates to better immune and brain aging, and both systems evidence 

sexual dimorphism.

• Greater physical activity related to lower peripheral chemokine markers only 

in aged men.

• Lower chemokine markers related to better brain structure and function only 

in aged men

• Inflammation may be a male-specific pathway through which exercise confers 

neurobehavioral benefit.
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Figure 1. 
Men demonstrate a stronger relationship between reported physical activity and peripheral 

inflammatory markers compared to women (Discovery cohort models).

Note. Interaction terms for MDC, MIP-1b, MCP-4, eotaxin-3 (all p-values <0.05), and 

MCP-1 and INFγ (p-values <0.09) demonstrated small-to-medium effects (all β 
values>0.32; MCP-4, MIP-1b, eotaxin-3, and MCP-1 demonstrated similar effect sizes in 

replication
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Figure 2. 
Men demonstrate a stronger relationship between reported physical activity and brain 

volume outcomes compared to women (Discovery cohort models).

Note. Interaction terms for parahippocampal (p=0.02), hippocampal (p=0.19) and gray 

matter volume (GMV; p=0.19) demonstrated small-to-medium effects (all β values>0.41).
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Figure 3. 
Men demonstrate a stronger relationship between reported physical activity and cognitive 

outcomes compared to women (Discovery cohort models).

Note. Interaction terms for visual memory (p=0.04) and processing speed (p=0.07) 

demonstrated small-to-medium effect sizes ((all β values>0.37).
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Figure 4. 
Post-hoc models exploring the differential relationship between activity-related 

inflammatory markers (MCP4, eotaxin-3, and MIP1b) and brain structure and function 

across sexes.

Note. Interaction terms for gray matter volume (GMV; p=0.03) and visual memory (p=0.02) 

demonstrated small effect sizes (all β values>0.24).
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Figure 5. 
Summary schematic of primary study findings: (A) Initial models in the Discovery Cohort 

indicated that sex moderated the relationship between physical activity and markers of 

immune, brain and cognitive health, with men demonstrating a stronger relationship that 

appeared attenuated-to-absent in women; however, the most consistent effect reproduced in 

the Replication Cohort was demonstrated for inflammatory markers; (B) Taking together 

both the initial and post-hoc models, greater reported physical activity related to lower 

markers of inflammation in men only, and lower markers of inflammation related to better 

brain and cognitive outcomes in men only.
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Table 1.

Discovery and Replication cohort demographic and clinical characteristics.

DISCOVERY COHORT* REPLICATION COHORT

Female    Male p-value Female    Male p-value

n=45     n=45 n=45     n=36

Age 72.0 (8.0)   73.0 (8.4) 0.53 73.5 (6.6)   74.4 (7.6) 0.55

Education 17.1 (1.9)   17.7 (1.8) 0.11 16.8 (2.3)   18.2 (2.3) 0.006

MMSE 29.3 (1.2)   29.1 (1.2) 0.28 29.0 (1.1)   28.8 (1.6) 0.68

BMI 24.9 (4.6)   25.6 (3.4) 0.39 24.5 (3.8)   26.9 (4.7) 0.01

Hemaglobin A1C 5.46 (0.3)   5.44 (0.4) 0.78 5.53 (0.3)   5.51 (0.3) 0.70

HOMA-IR 1.73 (1.1)   2.04 (1.6) 0.32 2.57 (1.8)   2.94 (1.8) 0.38

Blood pressure
 Systolic
 Diastolic

129.3 (13.8)
72.0 (9.0)   132.4 (14.3)
       72.8 (8.5)

0.32
0.69

133.8 (19.7)
71.8 (7.5)   128.0 (13.7)
       73.6 (8.3)

0.14
0.32

Reported Physical Activity (PASE) 150.1 (96.7)   156.9 (83.9) 0.72 137 (75.3)   120.6 (66.5) 0.31

*
Note. Case-control matched on age (±5γ) and education (±2y). MMSE = Mini Mental Status Examination; BMI = body mass index; HOMA-IR = 

homeostatic model assessment of insulin resistance; PASE = Physical Activity Scale for the Elderly.
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Table 2.

Discovery cohort plasma inflammatory marker concentrations do not substantially differ by sex.

DISCOVERY COHORT Female (n=45) Male (n=45) p-value

CHEMOKINES

MDC 955.5 (786.5, 1123.3) 883.6 (652.0, 1073.3) 0.27

MIP1a 26.9 (14.4, 44.0) 23.2 (14.0, 41.4) 0.84

MIP1b 53.6 (44.8, 77.1) 54.8 (40.2, 64.4) 0.20

MCP-1 49.2 (40.2, 64.3) 47.2 (40.0, 72.8) 0.43

MCP-4 61.9 (49.1, 85.3) 0.97

Eotaxin-1 137.7 (120.0, 168.1) 147 (121.6, 174.8) 0.61

Eotaxin-3 36.8 (21.4, 59.7) 45.2 (20.8, 82.2) 0.23

INFγ 3.7 (2.4, 7.2) 3.0 (2.3, 4.0) 0.04

CYTOKINES

IL-10 0.26 (0.21, 0.34) 0.28 (0.23, 0.45) 0.65

IL-6 0.51 (0.40, 0.71) 0.68 (0.43, 1.1) 0.03

TNFa 3.3 (2.7, 4.0) 3.3 (2.8, 3.8) 0.75

Note. Median (interquartile range) reported.
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