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ABSTRACT: Single pores in the resistive-pulse technique
are used as an analytics tool to detect, size, and characterize
physical as well as chemical properties of individual objects
such as molecules and particles. Each object passing through
a pore causes a transient change of the transmembrane
current called a resistive pulse. In high salt concentrations
when the pore diameter is significantly larger than the
screening Debye length, it is assumed that the particle size
and surface charge can be determined independently from
the same experiment. In this article we challenge this
assumption and show that highly charged hard spheres can
cause a significant increase of the resistive-pulse amplitude compared to neutral particles of a similar diameter. As a result,
resistive pulses overestimate the size of charged particles by even 20%. The observation is explained by the effect of
concentration polarization created across particles in a pore, revealed by numerical modeling of ionic concentrations, ion
current, and local electric fields. It is notable that in resistive-pulse experiments with cylindrical pores, concentration
polarization was previously shown to influence ionic concentrations only at pore entrances; consequently, additional and
transient modulation of resistive pulses was observed when a particle entered or left the pore. Here we postulate that
concentration polarization can occur across transported particles at any particle position along the pore axis and affect the
magnitude of the entire resistive pulse. Consequently, the recorded resistive pulses of highly charged particles reflect not
only the particles’ volume but also the size of the depletion zone created in front of the moving particle. Moreover, the
modeling identified that the effective surface charge density of particles depended not only on the density of functional
groups on the particle but also on the capacitance of the Stern layer. The findings are of crucial importance for sizing
particles and characterizing their surface charge properties.

KEYWORDS: resistive pulse, concentration polarization, particles

The translocation of a molecule or particle through a
pore causes a transient change of the system resistance
observed as a transient change of the transmembrane

current, called a resistive pulse.1−9 The amplitude of resistive
pulses reflects the object’s size; however in some cases it can
also be affected by the properties of the background electrolyte.
For DNA molecules, when the detection is performed from
concentrated KCl solutions, above 0.3 M, the passage of
individual strands usually causes a current blockage.11,12 In

contrast, experiments in more diluted electrolyte solutions
revealed that the molecules’ passage can induce a current
increase compared to the baseline current of the empty
nanopore.10,11 The salt concentration dependence of the
resistive-pulse amplitude was explained by two competing
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effects: (i) volume exclusion and (ii) the presence of additional
ions that a charged particle brings to the pore to fulfill
electroneutrality. On the basis of these experiments, it is
generally assumed that resistive pulses of charged objects are
characterized by a lower amplitude compared to neutral
particles of the same size.12 Note that more complex behavior
can be observed with conically shaped pores, where the pulse
amplitude and shape are also influenced by intrinsic voltage
modulations of ionic concentrations.13−15

In DNA-detecting experiments, nanopores with openings
less than 10 nm are usually used. The surface charges of pore
walls and DNA molecules could therefore have a significant
effect on the measured current due to the comparable scales of
the Debye length and the pore dimension. If resistive-pulse
experiments are performed at conditions at which the pore and
particle diameters are significantly larger than the Debye
screening length, the pulse amplitude was found to be
independent of the particle charge. As a result, simultaneous
detection of particle size and zeta potential was possible.16 An
exception was provided by mesosized hydrogels passing
through meso- and micropores.17−19 Due to the porosity and
low density of the particles, their passage through a pore caused
a current increase above the baseline current even in solutions
of high ionic strength; the number of counterions the hydrogels
brought into the pore was higher than the number of ions
excluded by the effective hydrogel’s volume.
However, there have been very few studies on the

translocation of highly charged hard spheres through pores.
Such systems are important due to application of DNA-
modified particles in biosensing and nanotechnology.20,21

Highly charged spheres also present an intriguing physical
chemistry system, which exhibits new effects that cannot be
described by classical electrostatics. In our recent studies, for
example, we showed that translocation velocity of charged
polystyrene particles depended in a nontrivial manner on the
particle surface charge.22 Due to ion condensation23 and
nonequilibrium effect of double-layer polarization,24−26 the

passage time of highly charged particles was found to be
significantly larger than the passage time of less charged
particles. This observation was unexpected, because the
methods to measure the surface charge density and zeta
potential of particles assume that particles that have more
surface charges will move faster.16

In this article we show that the dependence of the amplitude
of resistive pulses of charged particles can also be unusual and
contradict the earlier experiments with DNA.10,11 Namely, as
the surface charge density of polystyrene mesoparticles
increased, the amplitude of resistive pulses caused by the
particles passing through single micropores was observed to
increase as well. The measurements reported here were
performed in 0.1 and 0.3 M KCl, thus at conditions at which
the Debye length is hundreds of times smaller than the
particle’s or pore’s diameters. The particles’ passage occurred
electrokinetically, and no pressure difference was applied. The
charged particles used in the experiments were carboxylated,
and their surface charge density was regulated by the solution
pH.22 The pH dependence of the surface charge was modeled,
taking into account the number of surface chemical groups as
well as the Stern layer of the particle electrical double layer.27

The modeling presented here points to the crucial importance
of the Stern layer in predicting surface charge density of highly
charged particles. The enhanced resistive-pulse amplitude for
highly charged particles is explained by (i) modulated ionic
concentrations on both sides of a translocating particle and (ii)
changed distribution of the local electric fields near the particle,
compared to an empty pore. We show that passage of charged
particles through pores induces the effect of concentration
polarization with a depletion zone formed in front of the
passing particle. It is the depletion zone that enhances the
current blockage beyond a level expected from the particle
volume. In previous studies, concentration polarization in the
resistive-pulse experiments with hard spheres was discussed
only in the context of modulated ionic concentrations at pore
entrances.13,28 This localized modulation of ionic concen-

Figure 1. Example passages of three types of polystyrene particles through a single pore in an (a) 11 μm thick PET film (at 0.8 V) and (b) 29
μm thick PC film (at 1.2 V). The PET and PC pores had average opening diameters of 1550 and 1150 nm, respectively. All recordings were
performed in 100 mM KCl background electrolyte at pH values as indicated in the figure. Charged 410 nm particles (blue signals) were
characterized by 3 times lower density of carboxyl groups compared to the charged 400 nm spheres (red signals). Passage of neutral 400 nm
spheres is shown as green traces. Scheme of the experimental setup is shown in Figure S1a. Charged particles moved by electrophoresis
toward a positively biased electrode; neutral particles moved by electroosmosis toward a negatively biased electrode (Figure S1b).
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trations was shown to lead to transient changes of the pulse
amplitude corresponding to a particle entering and exiting a
pore. Note that in short aspect ratio pores, a resistive pulse
might be entirely dominated by the entrance effects.29 This
article presents experimental and numerical evidence for the
existence of particle-induced concentration polarization at any
axial position of a large aspect ratio pore. As a result, resistive
pulses of highly charged objects are characterized by
significantly higher amplitude compared to pulses of neutral
particles of the same diameter. The large aspect ratio pores that
are considered here had similar opening diameters at both
entrances; thus ionic concentrations in the pore are not
dependent on voltage polarity or voltage magnitude in a
nonlinear way, as shown before, for example, for conically
shaped pores.13−15

RESULTS AND DISCUSSION

Resistive-pulse experiments were performed with single track-
etched micropores30 in polyethylene terephthalate (PET)31,32

and polycarbonate (PC) films.33 The main difference between
pores prepared in the two kinds of polymers is their 3D
topography. Due to laminar and semicrystalline structure of the
PET films, pores in this material are characterized by large
undulations of the local diameter, which are reflected as peaks
and valleys in the resistive pulses.31 A particle blocks the pore
to a larger extent when it is passing through a narrower region
compared to the blockage caused in a wider zone.
Polycarbonate films used in the research are amorphous, and
as shown before, track-etched PC pores are smooth along the
whole length except the entrances, which feature a smaller
diameter.33,34 Figure 1 shows example passages of three types
of ∼400 nm diameter particles through single PET and PC
pores; continuous recordings of ion current with resistive pulses
are shown in Figure S1. The 410 and 400 nm carboxylated
particles differed in the density of surface carboxyl groups by a
factor of 3; 410 nm particles were less charged. Neutral
polystyrene particles of 400 nm in diameter were also studied.
Visual inspection of the recordings (Figures 1, S1, S2) suggests
that the pulses created by the highly charged particles are
characterized by the largest amplitude and are pH dependent.
Note that we were not able to record a statistically significant
number of passages of any neutral polystyrene particles through
PC pores. This is most probably due to the reduced zeta
potential35 and enhanced hydrophobic properties36,37 of the PC

etched surface compared to PET foils. An example passage of a
neutral particle through a PC pore is shown in Figure S2.
In order to analyze the amplitude of the pulses, ΔI, more

rigorously, we calculated the average current decrease caused by
the particles, as reported before.33 The analysis was performed
by integration of the pulses recorded with the PET pore
between points marked with an asterisk in Figure 1a; the pulses
for the PC pore were integrated in the flat, constant region
(Figure 1b). Figure 2 shows the average relative current
blockage obtained in PET and PC single pores in two pH
values, pH 8 and 10. Since the two types of studied particles
were carboxylated, the increase of pH was expected to lead to
the increase of their surface charge density.38 However, we were
surprised to observe that the highly charged particles (400 nm
in diameter, red traces in Figure 1) caused a larger current
decrease than the weakly charged or uncharged particles (blue
and green traces in Figure 1). The difference was especially
pronounced at pH 10. This was unexpected, because based on
earlier experiments with charged objects, one would predict
that the additional counterions the particles bring to the pore
should offset some of the volume occlusion.10−13 The same
behavior was observed with smooth polycarbonate pores
(Figures 1b, 2b, S2): again the current decrease caused by
the highly charged particles at pH 10 was the largest.
As reported before, the exit of negatively and highly charged

particles from a pore causes a current increase above the
baseline current.13,28 In the experiments reported here, we
again observed a current increase at the end of the pulses
corresponding to the highly charged 400 nm particles at pH 10
(Figure 1), further evidencing that increasing pH indeed
increases the particle surface charge.22 The presence of a
current increase upon the particle exit made the observation of
the increased current blockage with the particle in the pore
even more counterintuitive.
In order to quantify the magnitude by which the recordings

at pH 10 in 100 mM KCl overestimate the particle size, we
used equations relating ΔI/I with particle and pore
diameters.2,3,6 On the basis of the data shown in Figure 2, we
found that the 400 nm charged particles sized as 480 nm in
both the PET and PC pores. Figure S3 shows detailed
distributions of the particle sizes as determined from the
resistive-pulse experiments at pH 8 and pH 10.
The particles’ diameter in the two pH conditions was also

determined independently using the dynamic light scattering

Figure 2. Average current blockage ΔI/I caused by single particles in single (a) PET (0.8 V) and (b) PC (1.2 V) pores. Recordings from the
same pores are shown in Figure 1. The recordings were performed in 100 mM KCl, pH 8 and pH 10. The number of uncharged particles that
passed through the PC pore was insufficient to perform detailed statistical analysis. The magenta lines mark the theoretical predictions of ΔI/I
based on the dimensions of particles and pores using equations given in refs 2, 3, and 6
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approach with a Zetasizer. The highly charged particles in 100
mM KCl (with a nominal diameter of 400 nm as given by the
manufacturer) sized as 384 nm at pH 8 and 402 nm at pH 10
(Figure S4). When interpreting these results, we recalled that
the dynamic light scattering approach might overestimate the
diameter of highly charged particles due to the influence of
surface charges on the particles’ Brownian motion.39 Since
highly charged particles are characterized by reduced diffusion,
the instrument detects them as larger than their geometrical
size. In order to confirm that the particles did not undergo
significant swelling at pH 10, the particles’ diameter was also
measured using reflection confocal microscopy, as described in
the Methods section. This technique indeed did not show any
significant difference in the particle size at pH 8 and 10 (Figure
S5). We did not attempt atomic force microscope (AFM)
measurements in solution since the size of the particles would
be strongly affected by interactions of an AFM tip with the
charged surface. In the effort to size the particles by yet another
independent method, we imaged the pH 8 and pH 10 particles’
suspensions using scanning electron microscopy in the
environmental mode at room temperature. The particles’
suspensions were placed on a porous support, and the images
collected within a few minutes of achieving a vacuum of 0.6
mbar. At the time of taking images the solution was visibly
evaporated; the average size as estimated by SEM was on
average the same in both samples prepared at pH 8 and pH 10
(Figure S6).
As further evidence for the lack of particle swelling at pH 10,

we sized the highly charged particles from a suspension in pH 8
after lowering it from its initially prepared pH of 10. Adjusting
the pH from 10 to 8 reduced the effective size of the particles as
measured by Zetasizer from 402 nm to 396 nm; thus a value
that is close to 384 nm was obtained when the particles were
placed from the stock solution directly into 0.1 M KCl, pH 8
(Figure S7). The magnitude and the shape of resistive pulses
obtained using the same suspensions suggested that, indeed, the
effective size of the particles was reduced when changing the
pH from 10 to 8 (Figure S7). The recordings also indicated
that some of the additional charges that the particles acquired at
pH 10 due to deprotonation remained even after 2 h of
incubation at pH 8. We do not yet have an explanation for this
effect and will investigate it in the future.
The effect of enhanced current blockage caused by highly

charged particles was further examined using particle
suspensions prepared in different KCl concentrations. The
uncharged 400 nm polystyrene spheres and weakly charged 410
nm carboxylated particles blocked the current to an extent that
was only weakly dependent on the KCl concentration and pH
(Figure 3). However, the current blockage caused by the highly
charged particles was much larger in the more diluted KCl
solution. In addition, increasing the salt concentration
decreased the dependence of the pulse amplitude on pH.
We also verified that the effect of the increased resistive-pulse

magnitude at pH 10 recorded for charged 400 nm particles
could be observed for particles of different diameter. Figure S8
shows that charged 280 nm diameter particles exhibit similar
behavior and produce larger current drop when passing
through a pore at pH 10 compared to the recordings at pH 8.
According to the classical Coulter counter technique, due to

the ohmic behavior of pores used for detection, the relative
pulse amplitude ΔI/I remains constant under different applied
voltages.1−3 In spite of linear current−voltage curves of pores
used in the experiments reported here (Figure S9), we noticed

that the magnitude of ΔI/I for the highly charged particles
increased with the increase of applied voltage until it reached a
saturation value at ∼1.5 V (Figure 4). It is important to note
that an enhancement of the current blockage with voltage of
one polarity has been recently observed with neutral and
charged particles in conically shaped mesopores; for the
opposite voltage polarity, an increase of voltage magnitude
reduced the current blockage.14 The voltage-induced modu-
lations of ΔI/I in conical pores were however attributed to the
pore shape; in a conical pore with surface charges, ionic
concentrations and resistive-pulse amplitude are dependent on
both the voltage magnitude and polarity.13,15 Note that the
effects presented here focus on large aspect ratio symmetric
pores, which are characterized by voltage-independent ionic
concentrations; thus the increase of ΔI/I with voltage has a
different origin than in conically shaped pores. Moreover, the
current blockages we analyze correspond to particles being
inside the pore, and not the entrance/exit effects, responsible
for the biphasic character of the pulses (current decrease
followed by current increase above the baseline current).13,28,29

In order to understand the dependence of the resistive-pulse
amplitude on the particle surface charge, we investigated in
detail how the particle charge density in equilibrium, σp,
depends on both solution pH and the density of functional
groups, Nt, on the particle surface. To make the system
numerically tractable, both the particle and pore diameter were
scaled down by a factor of 10 compared to experimental values.
As a result, particles with a radius of 20 nm (Rp) and a pore
with an opening of 50 nm in radius (RN) and 1100 nm in
length (LN) were considered. Note that the scale-down of the
system in modeling under consideration will not change the
qualitative results in the present study, which has been verified
in Figures S10 and S11 of the Supporting Information. The
functional carboxyl groups were assumed to be present either in
protonated (uncharged) or in deprotonated (negatively
charged) state.
Figure 5 presents σp as a function of solution pH for two

values of Nt, 0.2 and 1.2 sites/nm2, at the background KCl
concentration CKCl = 100 mM. The values of Nt were chosen to
maximize the effect of the surface charge density on the particle
transport and the magnitude of resistive pulses. The magnitude
of σp was estimated based on the Poisson−Boltzmann model
taking into account not only the surface chemistry reaction of

Figure 3. Average current blockage caused by charged 410 and 400
nm spheres, as well as neutral 400 nm diameter spheres under 0.4
V. The magenta lines are the theoretical predictions of ΔI/I based
on the dimensions of particles and the pore.2,3,6 This is the same
PET pore as studied in Figures 1 and 2.
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carboxyl groups (∼COOH ↔ COO− + H+ with pKa = 5.1)40

but also the effect of the Stern layer, via the layer capacitance,
Cs. Note that considering the Stern layer is crucial especially in
the experimentally examined pH range of 8−10; calculating
surface charge density without the Stern layer effects would
render nearly no change of σp at high pH values. Three
different values of Cs were considered (Figure 5). In general,

with the decrease of the value of Cs (ranging typically from 0.15
to 2.9 F/m2),41 the effect of the Stern layer on the surface
charge density becomes more significant. More details of
modeling can be found in our recent work.27

Another surprising finding shown in Figure 5 is the effect of
the density of the charged groups, Nt, on the character of the
pH dependence of σp, especially in basic solutions. In the case

Figure 4. Normalized current blockage as a function of the applied voltage for two pores in 100 mM KCl, pH 10 solution. (a) Data for three
types of particles, which passed through a PET pore with an opening diameter of 1550 nm. (b) Current blockage caused by translocations of
the highly charged 400 nm diameter polystyrene particles through a single 1150 nm diameter PC pore; experiments at a wide range of
voltages are shown. The magenta lines represent the theoretical predictions of ΔI/I based on the dimensions of particles and pores.2,3,6 The
theoretically predicted ΔI/I for the charged 400 nm particles in the PC pore is 0.001 73 (see Figure 2).

Figure 5. Variations of the surface charge density (σp) of carboxylated polystyrene particles with pH for various values of the surface
capacitance of the Stern layer, Cs, for the surface density of carboxyl groups (sites) on the particle wall Nt = 0.2 (a) and 1.2 sites/nm2 (b) when
CKCl = 100 mM, pKa = 5.1, and Rp = 20 nm. The pink regions highlight the experimental conditions (pH 8 and 10). The discrete spheres
denote the saturated values of σp when the carboxylated functional groups on particles are fully dissociated.

Figure 6. Numerical modeling of the normalized ion current blockage, ΔI/I, as a function of the particle axial position, zp, for various surface
charge densities of a particle, σp. The values of σp adopted for solid and dashed lines in (a) are extracted from Figure 5a (Nt = 0.2 sites/nm2)
for pH 8 and 10, respectively, at Cs = 0.8 F/m2; those in (b) are from Figure 5b (Nt = 1.2 sites/nm2). Other simulation conditions include the
following parameters: CKCl = 100 mM, Rp = 20 nm, RN = 50 nm, LN = 1100 nm, the pore wall surface charge density σw = −30 mC/m2, and V =
1 V. The yellow areas highlight the region where the particle is located in the pore interior.
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of the lower value of Nt = 0.2 sites/nm2, the particle’s surface
charge density is only weakly sensitive to the variation of pH in
the range examined experimentally (pH 8 to 10), independent
of whether the Stern layer effect is considered or not (Figure
5a). On the other hand, if Nt is relatively large (1.2 sites/nm2),
the surface charge density of a particle for 8 ≤ pH ≤ 10
becomes high and visibly dependent on the value of Cs. In the
limiting case of Cs → ∞, i.e., when the Stern layer is not taken
into account, even in the case of high Nt, the pH dependence of
the surface charge density for 8 ≤ pH ≤ 10 vanishes. This
analysis highlights that neglecting the Stern layer effect could
yield an incorrect estimation of the particle’s surface charge
density, particularly for particles with high densities of surface
functional groups, Nt, and for pH ≫ pKa.
For illustration, the particle’s surface charge densities

extracted from Figure 5a and b at Cs = 0.8 F/m2 were
subsequently used for the modeling of the electrokinetic
translocation of single particles in a pore. The particle’s surface
charge densities were σp = −31.4 and −32.2 mC/m2 (−82.2
and −134.8 mC/m2) for pH 8 and 10 at Nt = 0.2 sites/nm2

(1.2 sites/nm2), CKCl = 100 mM, respectively. The surface
charge density of a pore was assumed as σw = −30 mC/m2.
Figure 6 depicts the numerical modeling results of the
normalized current blockage, ΔI/I = (I − I0)/I, due to the
translocation of particles with different values of σp, as
mentioned above, through a pore at the applied voltage V =
1 V. Here, I0 denotes the baseline ionic current of an empty
pore, and the relationship of ΔI/I versus particle axial position,
zp, is shown. Figure 6 clearly indicates that the magnitude of
ionic current blockage and σp depend highly on the density of
functional groups, Nt. If the particle bears the lower density of
carboxyl groups (i.e., Nt = 0.2 sites/nm2), changing the pH
from 8 to 10 increases the effective surface charge density only
by ∼0.1 mC/m2 (from σp = −31.4 to −32.2 mC/m2), resulting
in similar current blockages at these two conditions (Figure 6a).
By contrast, if the particle carries a higher surface site density of
carboxyl groups (i.e., Nt = 1.2 sites/nm2), the magnitudes of σp
for pH 8 and pH 10 are significantly different. As a result, both
the magnitudes of current blockade and enhancement at the
end of the pulse increase as the magnitude of the surface charge
density of a particle increases.22 The predicted pulses show
excellent qualitative agreement with our experimental observa-
tions shown in Figures 1 and 2. Note that the predicted
magnitude of the current increase accompanying particle exit is
significantly higher than observed experimentally, which we
think is related with scaling the experimental system down by a
factor of 10. Ionic properties of a pore with an opening

diameter of 100 nm will be affected by surface charge properties
to a larger extent than a micrometer-sized pore; however
qualitative conclusions are independent of the scaling (Figures
S10 and S11). The goal of the modeling is however to provide
an intuitive physical explanation of how surface charge density
of particles can influence the magnitude of resistive pulses and
not quantitative fitting of the experimental data.
In order to further unravel the influence of the magnitude of

a particle’s surface charge density, |σp|, and the applied voltage
on ion current blockage in resistive-pulse experiments, average
values of |ΔI/I| for a wide range of |σp| and applied voltages are
shown in Figure 7. Here, |ΔI/I| is calculated based on the
average of five data points for axial positions −500 nm ≤ zp ≤
− 100 nm. Figure 7a shows that the magnitude of |ΔI/I| caused
by a charged particle (σp ≠ 0, open diamonds) is indeed higher
than the current blockage caused by a neutral particle (σp = 0,
red diamond) of the same diameter. In addition, the magnitude
of |ΔI/I| increases with |σp| and gradually approaches a
saturation value. |ΔI/I| versus voltage also reaches a saturation,
in accordance with experimental findings shown in Figure 4.
It is known that the current blockade caused by translocating

particles arises mainly from the exclusion of an equivalent
volume of salt solution by the particle, while the current
enhancement stems from the enrichment of counterions carried
by the charged particle into the pore.11,12 The amplitude of the
current blockade signal is used to measure the size of the
passing objects; that is, a larger current blockage is recorded for
larger particles.1−3 However, our experimental and theoretical
results demonstrate that the current blockage in a cylindrical
pore can depend not only on the object size but also on the
object’s surface charge properties and even applied voltage. As
mentioned above, this finding is unexpected because a particle
with higher charge density should bring more counterions into
the pore (see Figure S12 of the Supporting Information) and,
therefore, yield less significant current blockade. Furthermore,
in 100 mM KCl, the Debye length is orders of magnitude
smaller than the pore radius, and thus the volume exclusion/
physical blocking by the particle should indeed dominate the
current blockade.
After careful analysis of local ionic concentrations and

electric field in the pore with and without a particle, we
concluded that an increase of the normalized current blockage
with increasing a particle’s surface charge density resulted from
two effects: (a) a decrease in the magnitude of local electric
field in the pore (see Tables S1 and S2 in the Supporting

Figure 7. Dependence of the average value of absolute normalized current blockage, |ΔI/I|, on the magnitude of the surface charge density of
a particle, |σp|, at V = 1 V (a) and on the applied voltage V (b) at σp = −134.8 mC/m2. The red diamond in (a) highlights the result for a
neutral particle. Other parameters are the same as those in Figure 6.
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Information) and (b) concentration polarization in the vicinity
of a translocating particle (Figures 8 and 9).
It is known that the local electric field within a pore will be

significantly enhanced because of the larger difference of the
linear size of a microscopic pore and that of a macroscopic
reservoir. In the absence of charged particles (CPs), the electric
field within a pore is primarily influenced by the charged pore,42

while it will be influenced simultaneously by the charged

particles and pore if CPs are present in the pore. The more
significant squeeze effect by the charged particles and pore thus
results in the more apparent percentage difference (PD) of the
cross-section-averaged axial electric field between the results
with and without a CP, defined by PD = 100% × |E̅z(w/CP) −
E̅z(w/o CP)|/|E̅z(w/o CP)|, shown in Table S1. When the
particle bearing a higher surface charge density enters the pore,
it results in a more significant decrease in the strength of the

Figure 8. Axial variations of the cross-sectionally averaged concentrations of cations c1̅ (solid curves) and anions c2̅ (dashed curves) (a and b)
and net ions c1̅ + c2̅ (c and d) for three magnitudes of σp. (b) and (d) denote, respectively, the magnified results of (a) and (c) with the
emphasis of the region near the particle. (e) Corresponding results of c1̅ and c2̅ in the absence of a nanoparticle. The yellow regions in (a)−(d)
highlight the region of a particle located at zp = −450 nm. Other parameters are the same as those in Table S1.

Figure 9. Magnified axial variations of the cross-sectionally averaged concentrations of cations c1̅ (solid curves) and anions c2̅ (dashed curves)
(a) and net ions c1̅ + c2̅ (b) for three levels of the applied voltage. The yellow regions highlight the region of a particle located at zp = −450
nm. Other parameters are the same as those in Table S2.
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local electric field and, therefore, a more significant decrease in
the ionic current (more apparent current blockade). Similarly,
we also verify in Table S2 in the Supporting Information that a
higher applied voltage causes a more significant decrease in the
local electric field in the pore when a highly charged particle is
present, thus yielding a more significant current blockade.
We also found that electrokinetic passage of a particle

through a pore modulates the concentration of both ions
(cations and anions) in the vicinity of the particle, according to
the mechanism of concentration polarization (Figures 8 and 9).
As a result, a region with depleted ionic concentrations is
formed in front of the passing particle, while a region with
enhanced concentrations of ions is placed at the back of the
particle (Figure 8). Moreover, the size of the depletion zone
and the levels of ion concentrations are strongly voltage
dependent, explaining our experimental result on the increase
of ΔI/I with voltage (Figure 9).
Figure 10 summarizes our explanation of the increased

amplitude of resistive pulses caused by highly charged particles.

Due to the nearly insignificant Debye screening length in our
system, the fluxes of cations and anions in the left-hand and
right-hand sides of the pore are equal to each other but occur in
opposite directions, yielding |J1,L| ≈ |J2,L| ≈ |J1,R| ≈ |J2,R|.
However, with a particle in the pore, a constriction zone with
enhanced cation selectivity is present between the particle and
the pore walls, yielding J1,M > J2,L. Consequently, two regions
with depleted and enriched ionic concentrations are formed in
the front and the back of the passing particle.43 We postulate
that the region with depleted ionic concentrations could
dominate the ion current behavior and result in an increased
blockade signal, ΔI/I. Since more highly charged particles cause
enhanced local ionic selectivity as well as stronger interactions
between the charged particles and the pore, the extent of the
depletion region in the pore increases accordingly, yielding an
increased ΔI/I. On the other hand, when the charged particles

leave a pore, the ionic current behavior becomes dominated by
the enriched region of ionic concentrations behind the particle,
and a current enhancement is observed.

CONCLUSIONS
This article describes physical and chemical phenomena
accompanying transport of charged mesospheres through single
pores. Consequently, a zone with depleted ionic concen-
trations, formed in front of the passing particle, contributes to
the recorded current blockage; the resistive-pulse amplitude is
the measure of not only the object’s volume but also the size of
the depletion zone. This observation is surprising, because
earlier experiments with nanopores and DNA molecules10,11 as
well as micropores and beads13 indicated that highly charged
objects could decrease the resistive-pulse amplitude. Concen-
tration polarization across a translocating particle was
hypothesized to explain experiments with translocating hydro-
gel particles,17−19 but in this system the depletion zone was
induced by the particle’s intrinsic porosity and low density. The
observation of concentration polarization accompanying trans-
location of hard spheres reported here points to the importance
of considering local electric fields and ionic concentrations to
correctly relate the pulse amplitude with the object size.

METHODS
Pore Preparation. Single pores in 12 μm thick polyethylene

terephthalate and 30 μm thick polycarbonate films were prepared by
the track-etching technique as reported before.30 Wet chemical etching
of the irradiated foils decreased the foil thickness by ∼1 μm, and the
pore lengths reported here are 11 and 29 μm, respectively. The foils
were circular in shape and had a diameter of 3 cm. A single pore was
positioned in the middle with a precision of ∼1 mm. The pore-
opening diameter was calculated from the pore resistance measured in
1 M KCl and assuming a cylindrical shape of the pore.

Particles. The particles used in the resistive-pulse experiments were
purchased from Bangs Laboratories (Fisher, IN, USA). Carboxylated
polystyrene particles with 410 and 400 nm diameters as well as
unmodified thus uncharged 400 nm polystyrene particles were used in
all measurements, with the exception of Figure S2, in which passage of
a neutral poly(methyl methacrylate) particle is shown, and Figure S7,
containing data with 280 nm carboxylated polystyrene particles; these
are nominal diameters given by the manufacturer. The surface charge
densities provided by the manufacturer should be used only in a
comparative manner: the surface charge density of the 400 nm
carboxylated particles was 3 times higher than the surface charge
density of carboxylated 410 nm particles. Specifically, using the parking
area of carboxyl groups as given by Bangs Laboratories, we calculated
the density of carboxyl groups to be ∼3.5, 10, and 3.2 per nm2 for the
280, 400, and 410 nm particles, respectively. The high densities of the
groups suggest that multiple carboxyl groups reside on polymer chains
exposed to the solution. The diameter of all particles was measured
using Zetasizer Nano ZS (Malvern Instruments, Westborough, MA,
USA) in 100 mM KCl at pH 8 and pH 10. Measurements at higher
salt concentration were not possible due to high conductivity of the
solutions. The particles were also analyzed using a FEI Quanta 3D
FEG Dual Beam (SEM/FIB).

Ion Current Recordings and Particle Detection. Resistive-
pulse experiments were performed from suspensions prepared in 100
and 300 mM KCl with pH values ranging from 8 to 10, containing
0.1% (v/v) Tween 80. Suspensions containing both charged and
uncharged particles were prepared and used in the resistive-pulse
experiments; the concentration of all particles was ∼109 particles/mL.
Ion current measurements were performed with Axopatch 200B and
1322A Digidata (Molecular Devices, Inc.) using a sampling frequency
of 20 kHz. The data were subjected to a low-pass Bessel filter of 1 kHz.
Negatively charged particles translocated by electrophoresis and
moved toward a positively biased electrode; neutral particles passed

Figure 10. Schematic illustrations of the ion concentration
polarization phenomenon near a charged particle (CP) passing
through a pore. The upper and lower panels present cases with
highly charged and weakly charged particles passing through a
negatively charged pore. The left-hand side of the pore is grounded,
while its right-hand side is at a positive potential V (>0). J1,L, J1,M,
and J1,R (J2,L, J2,M, and J2,R) denote the ionic fluxes of cations
(anions) at the left-hand, middle, and right-hand sides of particle,
respectively. Particles with higher surface charge density cause a
more significant concentration polarization near the particle.
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through the pores by electroosmosis toward a negatively biased
electrode.
Determination of Particle Size Using Reflection Confocal

Microscopy. Suspended 400 nm highly charged particles in 100 mM
KCl at pH 8 and 10 were measured using reflection microscopy. The
immobile particles attached to the glass surface were found using an
averaging filter. The images were measured using a 559 nm diode laser
and with a 60× 1.2 NA objective offering a diffraction-limited point
spread function of ∼280 nm. The images were analyzed using ImageJ
to threshold the background using a Yen filter and later processed to
measure the area of the detected particles with circularity in the range
of 0.5 to 1. The particle radius was calculated and plotted as shown in
Figure S5. Statistical analysis was calculated to find the p value using
Student’s t test.
Theoretical Modeling. The surface charge density of a

carboxylated polystyrene particle under various solution pH’s is
determined by using the Poisson−Boltzmann model with simulta-
neously taking into account the surface interfacial reactions of
dissociable carboxyl groups (∼COOH ↔ COO− + H+ at pKa =
5.1)40 and the Stern layer effect on the particle wall. The detailed
solution procedure can be found in a recent study of Mei et al.24 The
electrokinetic translocation of a spherical particle through a cylindrical
pore is modeled using the Poisson−Nernst−Planck equations in
conjunction with the Navier−Stokes equation. The governing
equations and associated boundary conditions (see details in the
Supporting Information) are solved by COMSOL Multiphysics
(version 4.3a), operated in a high-performance cluster. On the basis
of the assumption of quasi-steady state, the ionic current change due
to the passage of a charged particle through a pore under various
conditions can be determined by a balance of the net forces, including
electrical and hydrodynamic drag forces,26 acting on a particle in the
direction of an applied electric field. The finite element analysis based
on the quasi-steady-state method using COMSOL has been verified to
be sufficiently accurate and effective for similar electrokinetic DNA44

and nanoparticle45 transport problems, and a more detailed procedure
can be found in the Supporting Information.
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