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Abstract

Miniaturized calcium imaging is an emerging neural recording technique that has been widely 

used for monitoring neural activity on a large scale at a specific brain region of rats or mice. 

Most existing calcium-image analysis pipelines operate offline. This results in long processing 

latency, making it difficult to realize closed-loop feedback stimulation for brain research. In 

recent work, we have proposed an FPGA-based real-time calcium image processing pipeline for 

closed-loop feedback applications. It can perform real-time calcium image motion correction, 

enhancement, fast trace extraction, and real-time decoding from extracted traces. Here, we extend 

this work by proposing a variety of neural network based methods for real-time decoding and 

evaluate the tradeoff among these decoding methods and accelerator designs. We introduced 

the implementation of the neural network based decoders on the FPGA, and showed their 

speedup against the implementation on the ARM processor. Our FPGA implementation enables 

the real-time calcium image decoding with sub-ms processing latency for closed-loop feedback 

applications.
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I. INTRODUCTION

Calcium imaging is an emerging method that has been widely used for observing neural 

activity at a large scale in neuroscientific research. The miniaturized calcium imaging 

microscope is a device that can be head mounted on a live mouse or a rat for monitoring 

firing activity from hundreds of neurons at single cell resolution in vivo, while allowing 

the rodent to perform behavioral tasks freely in the lab environment [1]. UCLA leads the 

efforts in developing a series of open-sourced miniaturized calcium imaging microscopes 

(”miniscopes” [2]). These miniscopes can record calcium activity from rats’ or mice’s brains 

and transfer them over meter-long flexible coaxial cable to a remote data acquisition (DAQ) 

board [3]. They have gained popularity quickly among neuroscientific research labs and 

have accelerated brain research for many subfields related to memory, behavior and disease, 

to name a few.

Several complete calcium image analysis pipelines have been proposed to extract neuron 

activity from the raw calcium image recordings. [4] proposed a Python-based pipeline 

that has been widely used for one-photon calcium image analysis. It consists of separate 

motion correction [5] and signal extraction [6] steps. The signal extraction relies on the 

constrained nonnegative matrix factorization (CNMF) approach to identify spatial cell 

footprints and temporal calcium traces simultaneously. [7] provided a Matlab-based calcium 

image analysis pipeline, which was also based on the CNMF approach. It employs a long 

short-term memory (LSTM) inference approach to refine neuron activity detected by a 

Gaussian mixture model. These pipelines have been widely used in offline calcium image 

analysis. However, it is hard to be deployed online, because the CNMF approach requires 

a full stack of images as input. Though some recent work [8] demonstrated that the CNMF-

based pipeline achieved real-time throughput on general-purpose CPUs, it is still challenging 

to implement this on the embedded hardware with short processing latency for closed-loop 

feedback applications.

Some other research works [9]–[12] attempt to decode behavioral information from the 

calcium images. [9] used a k-Means method to predict forelimb reach directions based 

on averaged calcium images. [10] decoded mice’s behavioral states on a linear track 

by utilizing Laplacian Eigenmaps to extract internal representation of behaviors from 

high-dimensional neural activity patterns. Though these pioneering works show promising 

behavioral decoding results, they require batch processing, so they are difficult to be 

implemented for the online decoding with short latency. [13] combines principal component 

analysis (PCA) with the linear support vector machine (SVM) to perform decoding during 

a pressing movement based on offline extracted calcium traces [7]. Some recent works [11], 

[12] proposed SVM based methods for online calcium image decoding, however, they are 

evaluated on general purpose CPUs and there is still a lack of embedded hardware and 
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electronic interface for demonstration of short processing latency for closed-loop feedback 

capability.

Fig. 1 illustrates the main target this paper aims to achieve — the closed-loop feedback 

capability enabled by real-time calcium image processing and decoding for miniscopes. 

Such closed-loop feedback capability brings three strict requirements: 1) The computation 

requires short and deterministic processing latency, in order to generate rapid and precise 

feedback based on event detection and decoding results from the calcium images. Recent 

advancement in voltage imaging [14] enables kilohertz frame rate, which escalates the 

requirements for short processing latency 2) The computation kernel must have low 

hardware cost and energy consumption, especially considering the integration of the 

computation kernel into the miniscope device. 3) The computation hardware has to be 

reconfigurable, as it may require adjustments of parameters involved in the calcium image 

processing across days during the experiments.

In prior work, we have proposed an FPGA-based real-time calcium image processing and 

decoding pipeline [15]–[19]. Here we report several advances and improvements to our 

real-time calcium image processing system, including improvements to the trace extraction 

accelerator and the introduction of a variety of neural network based calcium image 

decoding methods. In addition, we introduced the implementation of the neural network 

based decoders on the FPGA. We showed that the FPGA implementation can achieve 

significant speedup over the implementation on the embedded ARM processor and enable 

real-time calcium image decoding with sub-ms latency.

The paper is arranged as follows: In Section II, we provide a brief review of our previously 

proposed real-time calcium image processing pipeline. In Section III, we present design 

and optimization details of the trace extraction accelerator. In Section IV, we propose 

different neural network based methods and accelerator designs for the calcium image 

decoding, and evaluate the tradeoff among these decoding accelerators. Section V presents 

the implementation of the FPGA-based closed-loop calcium image processing pipeline. 

Section VI summarizes the performance of this work and discusses related works in the 

field. Section VII draws the conclusion.

II. REVIEW OF REAL-TIME PROCESSING PIPELINE

In the past years, we proposed and developed the DeCalciOn – an FPGA-based real-time 

calcium image processing pipeline for closed-loop feedback applications [19]. Fig. 2 shows 

the overall architecture of the processing pipeline. It includes customized accelerators for 

the motion correction, the image enhancement, the trace extraction, and the decoding. Fig. 

3 shows the timing diagram of the DeCalciOn pipeline. The proposed accelerators operate 

in a streaming fashion and do not require off-chip memory access throughout the processing 

stages. As the complete pipeline and the accelerators for the motion correction and image 

enhancement have been introduced in [15], [16], [19], in this work we mainly focus on the 

implementation detail and the optimization for the trace extraction accelerator ACC-Trace 

and the decoding accelerator ACC-Decode.
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III. ACC-TRACE: FAST TRACE EXTRACTION

In this session, we further elaborate the trace extraction accelerator: ACC-Trace, and discuss 

the optimization on fast trace extraction for both the cell-based and tile-based contours.

A. ACC-Trace Accelerator

Our proposed ACC-Trace accelerator has the 1-D systolic array architecture, as Fig. 4 

shows. It consists of a chain of J tracing elements (TE). Each TE contains the trace 

extraction logic and a local contour buffer, and it takes in and shifts an 8-bit pixel vi with 

its corresponding 9-bit row and column indices (ri, ci) per clock cycle. The local buffer can 

store up to K pieces of cell contour information for the trace extraction. For a cell Cell (j, k) 

mapped to the kth piece of the jth TE, we store not only an NC × NC binary mask Qj, k, but 

also the cell center location (Rj, k, Cj, k). Suppose the calcium image has N pixels, the 16-bit 

trace value fjk for the Cell (j, k) can be derived by:

fj, k = ∑
i = 0

N
∑

drijk = 0

NC

∑
dcijk = 0

NC

vi ⋅ Qj, k drijk, dcijk . (1)

The drijk, dcijk  are derived indices from the scanned indices (ri, ci) and the cell center location 

(Rj, k, Cj, k):

drijk = ri − Rj, k + NC /2
dcijk = ci − Cj, k + NC /2. (2)

The ACC-Trace accelerator operates under 3 modes. 1) Load: Cell contour and center 

location information are loaded to the local cell contour buffer and local register files in a 

bit-shift fashion. 2) Compute: Calcium image is scanned pixel by pixel through the chain of 

TEs, whereas the TEs work in parallel to monitor the scanned pixels and accumulate trace 

values based on the contour information fetched correspondingly for each pair of incoming 

row and column indices (ri, ci). 3) Store: The accumulated trace values fjk are sent to an 

external buffer in the same bit-shift fashion. Though the ACC-Trace design is very scalable, 

oftentimes we are not able to build a sufficiently long chain of TEs to handle the trace 

extraction tasks for all target cells due to limited FPGA resources at hand. In this case, we 

build a relatively shorter ACC-Trace chain and reuse it for multiple iterations of operation, 

and reload the cell contour and center information between iterations.

B. Cell-Based Contour Allocation

In the ACC-Trace accelerator design, each TE stores K contours in its local buffer. We 

implement the local buffer by a single BRAM slice on the FPGA, and use only one read port 

for contour access during the trace extraction given the limited number of ports provided by 

the BRAM. This will raise a memory access conflict when the TE tries to fetch data from 

two different contours at the same clock cycle. In order to avoid the memory access conflict, 
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we need to guarantee that there is no overlap among K stored contours in every TE on the 

algorithm level.

We propose a cell contour allocation algorithm to make sure the cells assigned to a same 

TE do not overlap, as shown in Fig. 5. Initially, we allocate J × K cell contours to JTEs 

with a default order. Then we loop through each contour and check if the current contour 

of Cell (j, k) in a TE has overlap with other contours allocated in the same TE. If it has an 

overlap with another contour, then it means that there will be a memory access conflict at 

this contour, and the algorithm will go to a solve_conflict routine to adjust the allocation for 

this contour. In the solve_conflict routine, the algorithm will iteratively pick up a random 

contour from another TE, swap the conflict contour of Cell (j0, k0) and the current contour 

of Cell (j, k), and check if there is any overlap between these two contours and the reset of 

contours in the same TE after swapping. If there is no overlap, the algorithm will accept 

the swap as a solution for the conflict and update the contour allocation correspondingly. 

Otherwise, the algorithm will go on to pick up another random contour and go through the 

same checking described by line 20–24 in Algorithm 1 shown in Fig. 5 until it finds an 

acceptable solution.

C. Tile-Based Contour Allocation

Fig. 6(a) and (b) illustrate the concept of the tile-based contours. As the image size is 

512×512, we can divide them evenly into N × N(N = 32) non-overlapping NT × NT NT = 16
tiles as shown in Fig. 6(a), and each tile can be viewed as a NC × NC NC = 25  tile-based 

contour. Inside each tile-based contour, we set the elements at the central 16 × 16 region to 

be “1”, while keeping the rest of elements to be “0”. By taking advantage of the tile-based 

contours for the calcium trace extraction, we can eliminate the need of running offline 

analysis pipeline, such as CaImAn [4], for cell contour detection. The offline analysis 

pipeline usually takes tens of minutes or even longer to finish on a pre-recorded session of 

calcium images depending on the computation platform the pipeline runs on. With tile-based 

contours, we can bypass the cell contour detection step and directly extract calcium traces, 

and it contributes to a short turnaround time for decoding model training and a quick 

deployment of decoder onto the hardware for closed-loop feedback applications [19]. In 

Section IV, we will provide more evaluation results regarding the comparison between the 

decoding based on the tile-based and cell-based contours.

Based on the ACC-Trace accelerator microarchitecture introduced in Section 3, a direct 

mapping of the 32 × 32 tile-based contours to the J = 32 accelerator will cause memory 

access conflict, as the neighboring tile-based contours mapped to the same TE have overlaps 

with each other. As Fig. 6(c) shows, we come up with a way of mapping of tile-based 

contours in order to avoid memory access conflicts. Here, 8 tile-based contours highlighted 

by 25 × 25 size squares are shown with the same shaded color and mapped to the same 

TE, and following tile-based contours in these rows are mapped to following TEs, so on 

and so forth. In this way, the tile-based contours mapped to every single TE do not have 

any overlap, so the memory access conflicts are avoided during the scanning of pixels in the 

trace extraction computation.
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D. Latency Optimizations

As Fig. 3 shows, the runtime of the trace extraction step largely contributes to the overall 

processing and decoding latency. In this subsection, we introduce three optimizations that 

can speed up the trace extraction and reduce the overall latency, as shown in Fig. 7.

Fig. 7(a) presents the first latency optimization: region segmentation. This optimization 

takes effect when the ACC-Trace accelerator needs to be reused for multiple times during 

the trace extraction of a single frame. If we do not consider the region segmentation, the 

contours that need to be processed at each round are distributed evenly across the image. 

In that case, the whole frame of the image needs to be scanned in order to complete the 

trace extraction task. On the contrary, if we constrain the contours by their locations when 

allocating them to different rounds of trace extraction, we only need to scan a part of 

the image at each round. In this way, we can largely save runtime without increasing the 

overhead on the hardware implementation.

Within one iteration, we find that there is more opportunity for the latency optimization, as 

Fig. 7(b) shows. While a portion of pixels in the image are in the background and do not 

have a cover of the cell footprint, scanning these pixels simply adds up runtime and but 

does not make an effect on the trace extraction results. The main idea of our second latency 

optimization is to skip over those pixels in the scanning. Through an offline analysis of the 

locations of the cell contours, we can figure out starting and ending position indices of each 

consecutive segment of background pixels. We store these position indices in a local BRAM 

buffer aside the ACC-Trace accelerator and design digital circuits that keep monitoring the 

indices of scanned pixels and take action of the fast forward when a background pixel is 

detected.

The third latency optimization is the double buffering as shown in Fig. 7(c). Suppose we 

design an ACC-Trace accelerator with J TEs. By default, the load, compute and store 

operate in sequential order as the same data and indices transmission paths are shared 

among operations. If we consider splitting the accelerator chain into two parts, we can 

double buffer the operation of these two parts, and hide the load and store time behind the 

compute operation without incurring overhead on the hardware implementation. In this way, 

additional speed-up can be achieved for further reduced latency.

Taking a combination of the proposed latency optimizations, the ACC-Trace accelerator can 

reduce the runtime from 3.5 ms to 589 μs on an evaluation set with 760 cell contours under 

a 300 MHz clock frequency, whereas the increased LUT, FF and BRAM resource usage is 

within 1.5%.

IV. ACC-DECODE: EFFICIENT DECODING

In this section, we first review the position decoding task [19], and then discuss the proposed 

neural network based decoding methods and accelerator designs, which take input from the 

extracted traces by the ACC-Trace accelerator.
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A. Position Decoding Task

The task is to decode rat’s positions on a 2.5-m linear track as it runs back and forth 

[18], [19]. The linear track is evenly divided into 24 bins, labeled with discrete numbers 

0, 1, 2, ..., 23. Since the real-time decoding aims at closed-loop feedback applications, it is 

required to be causal, which means that the decoding does not rely on future calcium images 

as input.

B. Accuracy Evaluation Metrics

We came up with two accuracy evaluation metrics for the position decoding task: 1) Hit-N 
accuracy measurement, and 2) mean error measurement, as elaborated below.

1. 1) Hit-N Accuracy: The Hit-N accuracy counts the percentage of frames for 

which the decoded position falls into the N-sample neighborhood around the true 

position. For example, the Hit-1 accuracy measures the percentage of frames for 

which the decoded position is exactly right, whereas the Hit-3 accuracy measures 

the percentage of frames for which the decoded position falls into the ±1-bin 

neighborhood around the true position.

2. 2) Mean Error: The mean error σ measures the absolute difference between the 

decoded position and the true position on average for each frame. It reflects the 

decoding accuracy in general and can be used as a fair comparison metric across 

different decoding methods on the same dataset.

C. Decoding Methods

We first propose the CNN and the SNN based decoding methods for the position decoding. 

Fig. 8 shows the proposed CNN and SNN models, and they share the same model 

architecture that we decide to use based on the algorithm exploration on the decoding task 

[18]. For the calcium image decoding, we first extract all of the cells from the calcium 

images in the training set offline using the CaImAn method [4]. Then we identify the first 

set of NP × NP cells with a largest possible NP × NP from the extracted cells based on a 

downwards peak trace value sorting [15], normalize the trace values collected from these 

cells to [0,1], and form an image as the CNN and SNN inputs. For the CNN model, the input 

image is first convolved with 6 filter kernels in 3×3 size, then the feature maps spread out 

to an NP − 2 × NP − 2) × 6 element vector. A hidden layer establishes all-to-all connections 

from these elements to 24 output nodes, and each output node corresponds to a specific 

position bin on the linear track. Finally, the accumulated values at all output nodes are 

compared, and the node that has the maximum value is identified and the corresponding 

position label is generated as the decoding result.

Our proposed SNN decoder adopts a rate-based encoding, and it is converted from the 

CNN by the SNN Toolbox [20]. The conversion relies on an integrate-and-fire (IAF) neuron 

model. As Fig. 8 illustrates, the input value is accumulated to a potential at each hidden 

node at every time step. Whenever the potential passes a threshold V t, the hidden node (as 

a neuron) produces an output of “1” (as a spike) at a specific time step, and a value of 

V t is subtracted from the potential. The generated spikes at the hidden layer propagate to 

the output layer. The output nodes are also modeled as IAF neurons. Each output node 
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takes input spikes from NP − 2 × NP − 2) × 6 IAF neurons in the hidden layer, and produces 

output spikes under the same threshold V t. Whenever an output node receives an input spike 

from a specific cell, a constant weight bound with the connection is accumulated in the same 

fashion as the hidden node. Finally, the number of spikes generated by each output node is 

counted over the number of time steps TS for each SNN inference. The output node that 

produces the maximum number of spikes is identified and its index serves as the decoding 

outcome.

We then propose a simple two-hidden-layer ANN model for the same position decoding 

task. Each hidden layer contains 32 nodes. We explored two different encodings for the 

output layer: 1) Categorical encoding, which contains 24 nodes with each node representing 

a specific position on the linear track; 2) Ordinal encoding, which contains 12 nodes. The 

inference algorithm converts the 12 output node values into a 12-bit binary code by setting 

a threshold of 0.5 at each output node. The number of consecutive 1s or 0s from the left of 

the 12-bit binary code indicates the decoded position bin index. We evaluated effects of 1) 

the decoding option: tile-based/cell-based decoding and 2) the encoding method: categorical/

ordinal encoding on the decoding accuracy across datasets collected from 6 different rats.

D. ACC-Decode: Efficient Decoder

We evaluated the Hit-1/Hit-3 accuracy achieved by a baseline floating-point CNN and a 

converted 8-bit SNN with TS = 8 time steps on calcium image decoding test sets across 6 

different rats. Table I presents an overview of these test sets. Among 6 rats R1 − R8, there 

were 153–760 cells detected from their corresponding training sets. According to Section 

IV-B, we assigned NP with the value of 13–27 for these rats. We collected 8000 frames 

of calcium images with corresponding tracking positions for each rat, and divided each 

recording session into two parts for training and testing separately. Hit-1/Hit-3 accuracies 

on the test sets for the CNN and the SNN models are evaluated and summarized in Fig. 9. 

On average, the CNN and SNN models achieve 56.3%/83.1% and 56.0%/82.8% Hit-1/Hit-3 
accuracy, correspondingly. It can be observed that the 8-bit SNN with 32 time steps has 

almost no accuracy loss compared to the floating-point CNN in performing the decoding 

task across rats.

We further apply fixed-point quantization and time-step reduction for the SNN model. 

Fig. 10 shows the accuracy evaluation results under various weight quantization and time 

steps. We first keep the time step constant and gradually apply more aggressive bit-width 

quantization. From Fig. 10(a), we see that the SNN model under 6-bit quantization on 

average has 5.58%/3.62% loss on the Hit-1/Hit-3 accuracy. Then we apply the time-step 

reduction for the 6-bit SNN model, and according to Fig. 10(b), we can reduce time steps of 

the SNN from 32 to 16, while incurring less than 1% Hit-1 and Hit-3 accuracy loss. Table II 

shows the comparison on FPGA resource usage among different decoder models. We set the 

input size to be the same at 16 × 16 for all these models. The 6-bit SNN consumes less LUT, 

FF, and BRAM, and completely avoids the usage of DSP compared to the 8-bit CNN model. 

The ANN model consumes higher LUT and FF usage, but saves the BRAM resource against 

the CNN model. Under 300 MHz clock frequency, the cycle counts for the CNN, SNN 

(considering 8 time steps), and ANN models are 65.9k, 278.9k, and 19.9k, respectively.
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Table III shows a more comprehensive decoding performance evaluation by the Hit-3 

accuracy and the mean error σ on the decoded position for the proposed CNN/ANN based 

decoding methods under various input (cell-based vs. tile-based) and output (categorical 

vs ordinal) settings. The evaluation results are derived from the average of 5 independent 

experimental trials. We make several observations from the evaluation results: 1) the tile-

based decoding generally outperforms the cell-based decoding, which is consistent with the 

finding in [19]. This can be explained by the fact that more tile-based contours (900 vs. 

169–729) are involved in the decoding. 2) The ANN based method slightly outperforms the 

CNN counterpart. That’s because the extracted trace data does not contain visual features 

that the CNN can leverage. On the contrary, the ANN can take the advantage of its global 

connections for more efficient and accurate decoding. 3) The ordinal encoding in general 

outperforms the categorical encoding. That’s because the decoded positions are continuous, 

and the ordinal encoding inherently suits this characteristic.

We designed CNN/ANN based decoding accelerator kernels with the Vitis HLS for the cell-

based scenario. Table IV shows hardware resource utilization from the post implementation 

report. Compared to the CNN based design, the ANN based design consumes 30–35% more 

LUT and FF, and much less BRAM resources. Table V reports the runtime evaluated on the 

CNN/ANN based decoding kernels. As we targeted 300 MHz for the decoding kernels, the 

runtime for the CNN-based decoding kernel ranges from 155–800 μs, while the ANN-based 

decoding kernel takes much shorter runtime by a factor of 6.5–9.5x.

V. IMPLEMENTATION

We implemented the proposed calcium image processing pipeline introduced in Session II 

on the Ultra96 SoC platform. The complete processing pipeline operates at 300 MHz. Table 

VII reports the overall FPGA resource utilization, and Fig. 11 shows the resource usage 

breakdown for the implemented accelerators. The motion correction consumes the largest 

part of computation and memory resources, as it speeds up the most time-consuming and 

critical pre-processing step, which removes motion artifacts from the raw calcium images 

and helps increase the Hit-3 decoding accuracy by 1.42% on average based on our analysis 

with the CNN-based decoder. The ACC-Trace accelerator also costs considerable LUT, FF 

and BRAM resources given its fine-grain pipeline architecture. It largely reduces the input 

dimension and inference time of the decoder whereas it does not increase accuracy loss. 

The ACC-Decode accelerator consumes less resources than the ACC-Trace accelerator, and 

the remaining resource is reserved for implementing the feedback control logic on the same 

FPGA.

We measured the runtime of the proposed neural network based decoders on the embedded 

ARM processor of the Ultra96 platform under 1 GHz operating frequency. The runtime of 

the CNN and ANN based decoders with the 27×27 input size are 7.45 ms and 1.42 ms per 

inference, respectively. The runtime of the SNN based decoder with the 16×16 input size 

and 8 time steps is 7.65ms per inference. Compared to the ARM based implementation, the 

FPGA implementation of the CNN, ANN, and SNN based decoders achieve 9.6x, 17.1x, and 

8.2x speedup, respectively.
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We built a customized hardware interface board that can be plugged on top of the Ultra96 

platform, as Fig. 12 shows. The interface board provides the input port for connecting the 

miniscope sensor, the output port for applying feedback stimulation with TTL pulses, and 

a standard Ethernet port that can communicate with the host computer for data transfer 

and user interaction. The input port is connected to the DAQ board with 13 bundled fly 

wires, which correspond to one 66.67 MHz sensor readout clock, 8 sensor data pins, H/V 

synchronization signals, and VDD/GND signals. We also connect the DAQ board to the host 

computer with a USB 3.0 cable to control the miniscope sensor, and connect the miniscope 

sensor to the DAQ board with a 1.5-m flexible coax cable. The overall system except the 

host computer is powered by a 12V power supply. The peak power consumption is 5.3W, 

and the standby power consumption is 2.2W.

We also developed graphical user interface software that runs on the host computer and 

interacts with the FPGA hardware. The user interface supports two application scenarios: 1) 

real-time calcium-image trace extraction; 2) real-time calcium image decoding. In the first 

scenario, the user interface is able to display received calcium images and a maximum of 63 

extracted traces in real time. The contours of the selected cells can be superimposed on top 

of the displayed calcium images, as Fig. 13(a) shows. In the second scenario shown in Fig. 

13(b), the user interface displays the tile-based trace values extracted at every frame with the 

real-time position decoding result. It also shows superimposed hollow contours and a flow of 

activity heat map for selected place tiles, which are identified offline [19].

VI. EVALUATION

A. Performance Summary

Our work achieves comparable performance against other state-of-the-arts targeting real-

time calcium image processing for closed-loop applications. Table VII summarizes a 

comparison among these works. [19] and [11] focus on real-time behavior decoding, 

whereas [23] and [24] attempt to address the real-time cell activity pattern detection 

problem. Compared with others, our work highlights the usage of hardware platform of 

the FPGA, and for the first time reduces the calcium image decoding latency to less than 

1 ms, which is regarded as the biological spike-timing precision and critical timing factor 

for kilo-frame-rate voltage imaging [14]. Besides, our work first introduces the use of the 

SNN for the calcium image decoding, which introduces a new application area for the 

neuromorphic algorithms. Though the proposed rate-based SNN still cannot match the CNN 

model on the latency and thus the power consumption, it has shown the potential to become 

a low hardware cost counterpart aside from the CNN. Finally, our implementation not only 

supports closed-loop feedback, but it also provides an end-to-end tool flow with dedicated 

hardware and software interfaces for neuroscientists who rely on closed-loop experiments to 

advance brain research.

B. Comparison to State-of-the-Arts

As miniaturized calcium imaging devices are gaining momentum as critical intervention 

tools for brain research, we have seen increased interests and related works focusing on 

calcium image analysis and processing. Based on targeted applications, these works can 
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be mainly classified into 1) calcium imaging based neural signal extraction and 2) calcium 

image decoding.

Calcium imaging based neural signal extraction combines stabilization, enhancement, and 

spike inference to extract useful neural signal information from recorded calcium images. 

[5] proposed a non-rigid motion correction method that is able to effectively compensate for 

non-ideal motion artifacts at subregions in the calcium image. [25] and [26] introduced the 

method for identifying cells from calcium images based on the CNMF approach. [5] came 

up with an extension of the CNMF approach to address the background contamination 

for one-photon calcium images. [27], [28] and [29] concentrated on spike inference 

from the calcium imaging data based on fast deconvolution and Bayesian methods. [30] 

with its follow-up work [4] unified previous efforts and established a complete calcium 

image analysis flow, which is open sourced with Python [31] and Matlab [32] releases. 

MIN1PIPE [7] is another popular calcium image analysis pipeline which combines the 

LSTM inference for the cell identification and trace extraction. BSSE [33] offers a generic 

calcium image analysis tool for not only brain imaging but also other tissue studies. [34] 

brought Z-dimension motion registration and visualization to attention for improvement 

on calcium image analysis. [35] proposed an independent component analysis based 

method to identify cells and extract neural signals from calcium images. Although these 

methods have been successful in extracting neural signal information from noisy calcium 

images, they are usually hard to be realized in real time. [30] and [4] achieve real-time 

calcium image analysis speed with optimized computation processes, but it’s still hard to 

realize short processing latency for closed-loop applications. [24] proposed a closed-loop 

all-optical feedback stimulation framework based on threshold crossing detection of neural 

fluorescence signals, and it’s dedicated for two-photon calcium imaging on head-fixing 

mice.

Some works look beyond neural activity and pursue the idea of calcium image decoding. 

[9] combined a deep residual neural network with the k-Means method to decode the 

forelimb reach activity from averaged calcium image from mice. [10] applied the Laplacian 

Eigenmaps to reduce dimension of neural activity extracted from calcium images and 

decode behavior states of mice on a linear track. [37] studied the relationship between 

behavioral states and neuronal activity based on the Bayesian classifier. [13] leveraged the 

MIN1PIPE [7] for preprocessing, the principal component analysis for dimension reduction, 

and a linear SVM to decode the lever pressing movement of mice. [36] benchmarked 

5 different classifiers on a high/low velocity decoding task. Some other works look into 

tackling the real-time calcium image decoding challenge. [39] showed that calcium traces 

without spike inference can be directly used for real-time position decoding by supervised 

and unsupervised methods. [38] introduced incremental linear discriminant analysis method 

for real-time neural decoding with online adaptation capability. [11] and [12] developed 

real-time calcium image decoding pipelines based on the SVM method.

Compared to previous works, this work provides an end-to-end real-time calcium image 

processing and decoding solution for closed-loop feedback applications. Combining the 

customized algorithm pipeline, the accelerator design and optimization, and the hardware 

implementation, it achieves deterministic and sub-ms processing latency for closed-loop 
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calcium image processing on the low-cost FPGA platform. It also evaluates and analyzes the 

tradeoff on accuracy, performance and cost among different neural network based methods 

for the calcium image decoding task.

VII. CONCLUSION

This paper introduces an end-to-end FPGA-based prototype for real-time calcium image 

processing and decoding. With the support of dedicated hardware interface, it can perform 

a series of calcium image processing including the motion correction, enhancement, trace 

extraction and decoding in a frame-based fashion with sub-ms and deterministic processing 

latency. It empowers neuroscientists working with the in-vivo calcium imaging to perform 

efficient and precise closed-loop feedback stimulation for a wide range of neuroscientific 

experiments, and has potential to contribute to future brain research.
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Fig. 1. 
Closed-loop feedback capability enabled by real-time calcium image processing and 

decoding for miniscope devices: As the rat runs back and forth on a linear track, the 

computation kernel performs calcium image processing and decoding at each frame.
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Fig. 2. 
Review of DeCalciOn: The first FPGA-based real-time calcium image processing pipeline 

[19].
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Fig. 3. 
Timing diagram for the calcium image processing pipeline.
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Fig. 4. 
ACC-Trace: Efficient calcium trace extraction with 1-D systolic array architecture [17].
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Fig. 5. 
Algorithm for allocating contours to the ACC-Trace accelerator.
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Fig. 6. 
(a) Tile based contour and (b) allocation of tile-based contours to the ACC-Trace accelerator.
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Fig. 7. 
Summary of proposed latency optimizations for the ACC-Trace accelerator: (a) Region 

segmentation; (b) Fast forward; (c) Double buffering.
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Fig. 8. 
Proposed CNN and SNN based methods for position decoding from calcium images.
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Fig. 9. 
Hit-1/Hit-3 accuracy evaluated for CNN and converted SNN decoders on 6 different rats.
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Fig. 10. 
Accuracy evaluation for the SNN based method under various quantization of weights and 

inference time steps: (a) and (b) show the Hit-1/Hit-3 accuracy for a 32 time-step SNN under 

different bit-widths of weights. (c) and (d) show the Hit-1/Hit-3 accuracy for a 6-bit SNN 

with different inference time steps.
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Fig. 11. 
Breakdown of the FPGA resource usage of the implementation for the real-time calcium 

image processing and decoding.
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Fig. 12. 
The hardware interface and the demonstration setup for the closed-loop feedback system.
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Fig. 13. 
Software interface for a demonstration on real-time (a) calcium image trace extraction and 

(b) calcium image position decoding.
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TABLE I

THE NUMBERS OF CELLS IDENTIFIED AND SELECTED FOR DECODING

Rat’s ID Hipp6 Hipp8 Hipp12 Hipp13 Hipp15 Hipp18

# Cells 296 309 317 194 760 643

NP × NP 16×16 17×17 17×17 13×13 27×27 25×25
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TABLE II

FPGA RESOURCE USAGE BY DECODING ACCELERATOR KERNELS

CNN-Based SNN-Based ANN-Based

LUT 2713 1484 3356

FF 2454 1440 3133

DSP 7 0 7

BRAM 18 14 6
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TABLE V

RUNTIME FOR CNN/ANN BASED DECODING ACCELERATOR KERNELS

Metric Cycle Count Runtime (μs)

Output Categorical Ordinal Categorical Ordinal

Model CNN ANN CNN ANN

Hipp6 65,936 10,196 9,840 219.8 34.0 32.8

Hipp8/12 77,030 11,253 10,897 256.8 37.5 36.3

Hipp13 46,553 7,417 7,061 155.2 24.7 23.5

Hipp15 240,089 25,337 24,981 800.3 84.5 83.3

Hipp18 203,225 22,009 21,653 677.4 73.4 72.2
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TABLE VI

THE OVERALL FPGA RESOURCE UTILIZATION.

Resource Utilization Availability Utilization %

LUT 52301 70560 74.12%

FF 60490 141120 42.86%

DSP 116 360 32.22%

BRAM 216 216 100%
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