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Abstract

We present in this paper a new car-following theory that can reproduce both the
so-called capacity drop and traffic hysteresis, two prominent features of multiphase
vehicular traffic flow. This is achieved through the introduction of a single variable,
driver response time, that depends on both vehicle spacing and traffic phase. By spec-
ifying different functional forms of response time, one can obtain not only brand new
theories but also some of the well-known old car-following theories, which is demon-
strated in this paper through both theoretical analyses and numerical simulation.

1 INTRODUCTION

Various theories attempt to describe the vehicular traffic flow process. One class of such
theories, called car-following theories, is based on the follow-the-leader concept, in which
rules of how a driver follows his/her immediate leading vehicle are established based on
both experimental observations and theoretical (i.e., psychological) considerations. Exist-
ing theories of this kind were shown to capture some of the qualitative features of traffic
flow, such as the backward propagation of traffic disturbances through a line of vehicles
and traffic instability. Yet they fall short in modeling some prominent traffic flow features,
namely the so-called capacity drop and traffic hysteresis, both are clearly observable from
experimentally obtained flow-density, flow-speed or speed-density plots 1. The former was
first noticed by Eddie [4] who observed a sharp speed drop in a small density range in
some observed speed-density phase plots, and proposed a two-regime phase diagram to
model it. The most important feature of this two-regime model is that the maximum
flow rate achievable in congested traffic is lower than that in free flow traffic and this
‘capacity drop’ occurs suddenly in a certain density range. A multitude of studies has also
reported this capacity drop as a consistent feature of congested traffic e.g. Koshi et al.
[14]. The other important feature, traffic hysteresis, was recognized theoretically as early
as 1965 by Newell [17], who speculated that drivers behave differently in different traffic
phases, and built a multiphase traffic theory to explain instability in traffic. This theory,
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however, does not model the capacity drop. The earliest, and perhaps the best known,
experimental observations of traffic hysteresis are from Treiterer and Myers [20], while
recent observations of this phenomena were reported in Zhang [21].

Both the capacity drop and traffic hysteresis are important because the former has
profound implications to traffic control and the latter is intrinsically linked to stop-and-
go traffic. Yet, no traffic theory up-to-date can describe both features. Although there
are recent developments, namely the behavioral traffic wave theory of Daganzo [5] and
the multiphase theory of Kerner [13], that made headway toward a unified traffic theory
that can explain many important traffic features, these theories can model one of the two
aforementioned phenomena but fall short in explaining both phenomena simultaneously.
In this paper we make an attempt to develop a car-following theory that can describe
both.

The remaining parts of the paper are organized as follows. First we shall review the link
between congested traffic, steady-state phase diagrams and car-following theory in Section
2, then we develop the new car-following theory and discuss its qualitative features on a
case by case basis in Section 3, and in Section 4 we present numerical simulation results.
Finally we conclude the paper in Section 5.

2 FEATURES OF CONGESTED TRAFFIC AND CAR-
FOLLOWING

Regardless of the cause of congestion, congested traffic usually exhibits two prominent
features: 1) an initial front that induces sharp flow/density/speed changes, and 2) a
prolonged period of stop-and-go motion across the congested region after the front passes.
Viewed in the phase plane, these features translate into flow-density or speed-density or
flow-speed jumps near a critical density/speed/flow region and periodic orbits, or hysteresis
loops, in the high density or low speed region.

Eddie [4], from Lincoln Tunnel data, first noticed the existence of jumps in the density-
speed scatter plot and hypothesized that speed-density or flow-density phase plots have
two disjoint branches—one for free-flow traffic and the other for congested traffic, with the
maximum flow of free-flow branch considerably higher than that of the congested branch,
hence the name “capacity drop”. Eddie noted that this jump in flow/speed could be
an intrinsic property of vehicular traffic flow. Drake et al. [7] applied the two-regime
hypothesis to traffic data and found that it produced the best fit with lowest standard
error. Other experimental evidence of the existence of the “capacity drop” is from Japanese
and German highways. Koshi et al. [14] analyzed traffic data from the Tokyo Expressway
and found that their flow-density plots resembles ‘the mirror image of a reversed λ’ (Fig 1
(a)), with data points scattered more widely near the right leg of the reversed λ. Kerner
[13], on the other hand, have shown that in German data the flow rate out of a wide jam
is considerably lower than the maximal possible flow rate in free flow and a multitude of
homogeneous states of synchronized flow covers a broad region around the characteristic
line J (Fig.1(b)).

The first clear experimental evidence of traffic hysteresis was provided by Treiterer
and Myers [20]. These authors studied a platoon of vehicles and estimated their average
flow, density and travel speed. They found that both the flow-density and speed-density
plots have loop structures. Other experimental evidence of traffic hysteresis include the
observations of Maes [15] on Belgian highways and Zhang [21] on California highways.



Zhang [21] also noted the linkage between hysteresis and stop-start waves and provided
a traffic theory to model it. The first exploitation of traffic hysteresis, however, is by
Newell [17], who hypothesized that drivers respond to stimulus differently in acceleration
and deceleration and developed a model that contains hysteresis loops (Fig 2) 2 Newell’s
hypothesis on driver behavior was corroborated by experimental observations of Forbes
[8], who observed that a sudden change in drivers’ response time occurs before and after
a sudden deceleration. Forbes further suggested that this sudden change of response time
explains the jumps found on various phase diagrams and proposed flow-density diagrams
with multiple branches(Fig. 3).

Conventional traffic stream models (i.e., flow-density or speed-density diagrams or
formulas), on the other hand, are usually described by continuous or even smooth functions
that contain neither jumps nor hysteresis loops. Starting from the earliest to the latest,
these models are smooth curves of linear (Greenshields [12]):

v = vf − c1ρ, (1)

logarithmic (Greenberg [11]):

v = c2 ln
(

ρj

ρ

)
(2)

exponential (Newell [16])

v = vf

[
1 − exp

{
− λ

vf

{
1
ρ

− 1
ρj

}}]
(3)

or other nonlinear forms (Del Castillo and Benetez [6]). The variables in these models
are: v-traffic speed, vf -free flow travel speed, c1, c2-constant parameters, ρ-traffic density,
ρj-jam density, λ-the slope of the spacing-speed curve at v = 0.

A common property of these models is that most of these functions can be derived
from one car-following model or another under steady-state traffic conditions, which pro-
vides them some behavioral and theoretical foundation. Both the Greenshields and the
Greenberg traffic stream models are derivable from a car-following model of the form

ẍn(t + T ) = α
ẋl

n(t)
(xn−1(t) − xn(t))m

(ẋn−1(t) − ẋn(t)) (4)

that is generally associated with research from the General Motors Laboratories [2, 9, 10].
If one adopts l = 0 and m = 2, one can obtain Greenshields model, and Greenberg’s model
if one adopts l = 0 and m = 1. Newell’s traffic stream model, on the other hand, can be
obtained from this car-following theory

ẋn(t + T ) = vf [1 − e
− λ

vf
(xn−1(t)−xn(t)−L)

]. (5)

The fact that these car-following models lead to smooth flow-density or speed-density
relations attest, to a certain degree, their inadequacy to model complex traffic flow patterns
that exhibit capacity drops and hysteresis loops. This is not surprising if one considers that
conventional car-following models treat both drivers and roads as homogeneous entities—
that is, they are modeling identical drivers who travel on homogeneous roads. The traffic

2The dotted lines in the figure represent the transient state that the follower wait until a gap is obtained
to accelerate(lower dotted line) or decelerate (upper dotted line).



that produces capacity drops and hysteresis loops, on the other hand, comprise diverse
groups of drivers who travel on inhomogeneous roads and may behave differently under
different driving conditions. A plausible car-following theory that explains these nonlinear
phenomena must consider these inhomogeneities. In the next section we shall develop such
a theory.

3 A NEW CAR-FOLLOWING MODEL

Before developing the new car-following theory, we shall review an early theory by Pipes
[19]. This would help explaining some of the basic notions of the new theory. Pipes
car-following theory is a linear model that describes traffic behavior if drivers observe the
driving rules suggested in the California Motor Vehicle Code—leave one car length in front
for every ten miles/hour of speed increment, and has the following form:

xn−1 = xn + b + τvn + L (6)

where, b is the legal distance between the vehicles at standstill, τ is a time constant, and
L is the length of the leader vehicle. Let L′ = b + L and rewrite the equation as

vn =
1
τ
(xn−1 − xn − L′) =

sn

τ
(7)

This will lend a new interpretation of Pipes’ model: the follower adopts a speed of sn
τ , i.e.,

the vehicle spacing divided by a time-gap, or driver response time, as we shall call it.
Rather than using a constant driver response time, we shall propose that it is a function

of both vehicle spacing and traffic phase, i.e., τ = hn(t) = H[sn(t),P(t)], and suggest a
new car-following model for multiphase flow as follows

ẋn(t + T ) =
sn(t)
hn(t)

(8)

where traffic phase P includes acceleration, deceleration and coasting, ẋn(t + T ) is the
speed of nth vehicle at time t+T, T is driver reaction time 3.

By specifying different forms for the function H, we obtain various specific car-following
models, among which some were discussed earlier in the text and some are brand new
models that can reproduce either the capacity drop or traffic hysteresis or both phenomena.
Below we discuss four such models and pay special attention to their steady-state phase
diagrams, the flow-density diagram in particular, and compare them with known results.

3.1 Model A

In the first case we suggest that h be a linear function of vehicle spacing and independent
of traffic phase

hn(t) = h0 +
1
vf

sn(t) = h0 + asn(t) (9)

where vf = 1
a and h0 are constants. This function is shown in Fig. 4(a)).

3Note that driver reaction time differs from driver response time, The minimum of latter is the former.



Under steady state conditions, where vehicular speed does not change, one has ẋn(t +
T ) = v and sn(t) = S = 1

ρ − 1
ρj

. Here we used the facts that s = 1
ρ and L = 1

ρj
. Thus (8)

with (9) reduces to

v =
1
ρ − L

h0 + a(1
ρ − L)

=
1 − Lρ

h0ρ + a − aLρ
, (10)

and the flow function is

q = ρv =
ρ − Lρ2

h0ρ + a − aLρ
. (11)

Note that
v′ =

−h0

(a + h0ρ − aLρ)2
< 0 (12)

travel speed decreases with the increase of density. The properties of (11) are

1. boundary conditions

1. q = 0 when ρ = 0 or ρ = ρj = 1
L

2. q′
ρ=0 = 1

a = vf , q′
ρ=ρj

= − L
h0

2. concavity q
′′
(ρ) < 0, and

3. criticality ∃ ρ0 ∈ [0, ρj ], s.t. q ≤ q(ρ0), here ρ0 = aL±
√

aLh0
aL2−L h0

which meets all the basic requirements of an equilibrium flow-density relationship (also
known as the fundamental diagram of traffic flow) (Del Castillo and Benetize [6]). A
specific case of this fundamental diagram is drawn in Fig. 4 (b) and compared with
Greenberg’s and Newell’s fundamental diagrams in Fig. 5. The parameters used to
draw these figures are L=6m, h0=1sec, vf=108km/hr, for model A, λ = 0.833sec−1,
and vf=108km/hr for Newell’s model, c2=28km/hr and ρj=166veh/km.

Clearly, like other car-following models that do not distinguish traffic phases, this
model produces neither the capacity drop nor hysteresis.

3.2 Model B

In this model, we hypothesize that drivers drive differently in free-flow and congested flow,
and define the following hn(t) function:

hn(t) = sn(t)
vf

, for S0 ≤ sn(t)
= h0, for 0 ≤ sn(t) < S0

where congested traffic occurs in 0 ≤ sn(t) < S0 and free-flow traffic in S0 ≤ sn(t). The
fundamental diagram derived from this model is shown in Fig. 6(b), a triangle that is
advocated by the Berkeley school of thought and derivable from Newell’s lower-order car-
following model [18]. Note that the triangular diagram satisfies both the concavity and
criticality conditions and has physically meaningful parameters vf , ρ0 and ρj.

Although Model B still does not produce the capacity drop and traffic hysteresis in its
fundamental diagram, its diagram shows some interesting new features, namely the loss
of smoothness at the tip of the diagram (or at capacity flow) and the existence of two
constant wave speeds. Both features imply that traffic waves produced on either branch
of the diagram will not focus or expand, or the trajectory of a following vehicle is simply
the translation of the trajectory of its leading vehicle some time later.



3.3 Model C

In this case we revise the response time function of Model B to include a transition region
[S0, S1] (see Fig. 7(a)). Outside of [S0, S1], hn(t) is given by

hn(t) = sn(t)
vf

if S1 ≤ sn(t),
= h1 if 0 ≤ sn(t) < S0.

When sn(t) is between S0 and S1, hn(t) can take either h1 or sn(t)
vf

.
The rule guiding the choice of the hn(t) in the transition region is established as follows

hn(t) = sn(t)
vf

if S0 ≤ sn(t) < S1, and vn−1(t) = vf

= h1 if S0 ≤ sn(t) < S1, and vn−1(t) < vf

where vn−1(t) is the speed of the leader at time t. This selection rule is postulated based
on the observation that drivers can accept increasingly smaller headways in free-flow,
but leaves a jam with larger headways until they reach free-flow speeds. One of the
consequences of this selection rule is that traffic, once collapsed from free-flow condition,
can never regain the maximum flow rate unless new vehicles are inserted into it from
on-ramps or other types of sources.

Model C produces a fundamental diagram shown in Fig. 7(b), which resembles the
mirrored image of the reversed λ postulated by Koshi et al. [14] (Fig. 1(a)) and the Line-J
diagram of Kerner without the scatter ((Fig. 1(b))). Here we note that the corresponding
fundamental diagram of Model C would be curved if Line C is slanted. In fact, one can go
further with this model. If one modifies the hn(t) function in the way shown in Fig. 7(c),
one obtains the fundamental diagram used in Daganzo’s new behavioral traffic flow theory
[5](Fig. 7(d)). This is another piece of evidence of the versatility of the new car-following
theory.

3.4 Model D

Model D is the most complicated among the four cases that we are discussing in this pa-
per. Its response time function hn(t) varies according to both spacing and traffic phases,
namely acceleration, deceleration and coasting. This function is shown schematically in
Fig. 8(a), with parameters (h0, s0), (h2, s2), (h3, s3), and vf . Here the upper horizontal
line is the response time function for the acceleration phase, the lower horizontal line is
the response time function for the deceleration phase, and the slanted line is the response
time function for the free-flow (coasting phase). Coasting also occurs on any ray passing
through the origin and intersects with one, two or all three of the aforementioned lines.
For demonstration purposes response time functions for the acceleration and deceleration
phases are assumed to be constants, but there’s no reason that we cannot make them
change with spacing if experimental evidence supports it.
hn(t) is obtained by below equations.

hn(t) = h3 for acceleration phase
= h2 for deceleration phase
= sn(t)/v∗ for coasting phase

Here, acceleration, deceleration, and coasting phases are defined as in Table 1. For the
coasting case, v∗ is vn(t) when vn(t) < vf and vn−1(t) < vf , and v∗ is vf , otherwise. The



coasting defined for the case vn(t) < vf and vn−1(t) < vf represents the transition phase
between acceleration and deceleration. It happens on a section of a ray passing through
the origin and intersects with deceleration and acceleration line of h-S diagram e.g. the
line q′ − q′′ in Fig. 8 (a). This transitional coasting is required for the stability of the
traffic. To illustrate, if a vehicle changes its response time from h3 to h2 shortly after
the leader has decelerated and accordingly the spacing has decreased, its new speed may
increase because h2 is less than h3. This phenomenon (the follower accelerates while the
leader decelerates) is against what the real traffic behaves. Thus the transitional coasting
is required for the follower to get short enough spacing to decelerate. This is also true for
the case the vehicle changes its phase from deceleration to acceleration. We shall use an
example to explain how traffic changes phases. Suppose that traffic was initially at point
q (Fig. 8(a)) and at time t > 0 the leader decelerated to speed v′. How does the follower
respond to this change? We postulate that the follower first travels with speed vf till his
spacing gap reduces to S2, then he steps on his brakes and reduces his speed to v′ along
the h2 line. If the leader does not change his speed further, the follower will continue to
travel at speed v

′
and traffic will stay at point q′. Now suppose that the leader accelerates

to speed vf . This time the follower will respond in this way: he first travels at speed v′

until the spacing increases to Sa, then he accelerates to speed vf along the h3 line, and
the traffic will eventually settle at point q′′′. As in Model C, traffic can never reach point q

or the lower tip of the slanted line (maximum flow point) again unless new vehicles enters
the traffic stream.

The fundamental diagram that Model D produces is shown in Fig. 8(b). It captures
both the capacity drop and traffic hysteresis. While its hysteresis structure is similar
to that in Newell [17], this model has two capacity drops—one occurs at the onset of
congestion and the other at the end of recovery from congestion.

All in all, we have shown through the four cases that the specification of (8) is rather
general and versatile. This, however, is not our main message here. The key point of the
case analyses is that features such as capacity drop and hysteresis are results of driver be-
havior variability across traffic phases. A theory that models these features must therefore
consider this dependence, as we did in our new car-following theory.

4 SIMULATION

The new car-following theory can be easily programmed and simulated on a computer.
While the qualitative analysis of the above section tells us the steady state relations
between its variables (i.e., flow, density, speed), traffic simulations allow us to study the
transient behavior of this new theory. We shall conduct the simulation on a ring road,
which simplifies the analysis a great deal because we do not have to specify boundary
conditions. The general parameters used to simulate traffic are as follows. The length
of the ring road is 1080m, the length of a vehicle is 6m, its maximum travel speed is
30m/sec(108km/hr) (Fig. 9), and the simulation is updated every1 second. The specific
parameters related to each models are as follows: Model B—S0=30m, h0=1sec; Model
C— S0=30m, S1=45m, h0=1sec, h1=1.5 sec; and Model D— S0=30m, S2=36m, S3=54m,
h0=1sec, h2=1.2sec, h3=1.8sec. A free flow speed vf of 30m/sec is used for all models.

We start with an empty ring road and fill it with vehicles gradually. A vehicle enters
or exits the ring road one by one for every 20 seconds. An entering vehicle always joins the
tail of a platoon while a leaving vehicle can exit from any location because it is randomly
chosen from the platoon. A total of 180 vehicles (1080/6) is needed to jam the ring road,



but we only release 85 vehicles onto the ring road in the aforementioned manner. Moreover,
we place three detectors located at 270m, 540m and 810m respectively (see Fig. 9). Each
of the detectors is 40m long and measures traffic density and space-mean travel speeds.
Here density is defined as the number of the vehicles on the detector divided by the length
of the detector at each simulation time step, and speed is defined as the arithmetic mean
of the speeds of those vehicles that are on the detector during each simulation time step.
These quantities are then averaged over the detector polling intervals, that is, every 20
seconds. Flow is then computed using the fundamental relation

q = ρv.

The simulation results are shown in Fig. 10-12. In Fig. 10, the speed measured from
detector B for Model B simulation is shown in the upper right corner (measurements from
detectors A and C are similar to that of detector B and is therefore not shown here),
which shows a prolonged period of congestion. The flow-density plot of the measured
data, shown in the up left corner, has a triangular shape, which is what it should be.
Although there are small oscillations shown in the speed-time plot, these oscillations do
not profess in the flow-density plot, perhaps due to averaging and the way flow rate is
computed. These small oscillations are completely suppressed in the lower plots where
traffic speed and density are averaged over the entire ring road, using the ring road itself
as a giant detector.

Fig. 11 shows the simulation results for Model C. On the left are the flow-density
plots for the three detector locations and the entire ring road., and on the right are the
respective time-speed plots. One should note that the flow-density plots produced show
the reversed-λ image. Yet there are subtle differences between these plots. The differences
occur in traffic regions where sharp phase transitions took place (circled area on the right
plots). First note that the small oscillation detected at A was magnified when it went
through detectors B and C. Next the time trajectory of phase transitions on the left plots
(the thin arrowed lines) shows clearly the sudden drop of flow rate during a free-flow–
congested-flow transition, and is very indicative of the so-called fast-waves suggested in
Daganzo’s behavioral traffic theory [5].

In Fig. 12, the simulation results of model D are drawn. Again only measurements
from detector B are used because those from other detectors are similar. The flow-density
phase plots show three things: 1) capacity drop, 2) hysteresis loops (thin arrowed lines),
and 3) fast-waves (during transition from free-flow to congested flow).

5 CONCLUDING REMARKS

Capacity drop and hysteresis are two prominent features of multi-phase vehicular traffic
flow, which are believed to be related to drivers’ behavioral shifts during phase transitions.
Yet current car-following theories model vehicular traffic as a homogeneous process com-
prising a single phase, preventing them from capturing the aforementioned traffic features.
In this paper a new car-following model is proposed and discussed. It proposes that drivers
adopt a speed of travel according to their front spacing and response times. Moreover,
driver response time is assumed to be a function of both vehicle spacing and traffic phase.
By specifying various functional forms of response time, one obtains specific cases of the
general car-following theory, some of which can model capacity drop (Model C) and/or
traffic hysteresis (Model D) while others are shown to be equivalent of well-know existing
theories (e.g., Model B).



Both theoretical analsyses and numerical simulations have demonstrated the potential
of the new car-following theory to model complex traffic patterns. Further research to an-
alyze its stability property and obtain its parameters from experimental data is underway.
It is hoped that this new theory, once validated, can provide a more realistic and powerful
traffic flow model for high fidelity microscopic traffic simulations.
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Table 1: Definition of Coasting(C), Acceleration(A), and Deceleration(D)

vn(t) = vf vn(t) < vf

vn−1(t) = vf sn(t) ≥ S0 : C sn(t) ≥ S3 : C
sn(t) < S0 : D sn(t) < S3 : A

vn−1(t) < vf sn(t) ≥ S2 : C sn(t) ≥ vn(t) · h3 : A
sn(t) < S2 : D sn(t) ≤ vn(t) · h2 : D

vn(t) · h2 < sn(t) < vn(t) · h3 : C






















