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UNIFIED GAUGE THEQORIES OF HADRONS AND LEPTONS

I. Bars,T M. B. Halpern, and M. YoshimuraT§

Department of Physics.and Lawrence Berkeley Laboratory
University of California, Berkeley, California 9L720

October 13, 1972

ABSTRACT

If we insist on SU(B)CZ) SU(3) classification
for hadrons, in the presence of the known low-lying
multiplets, we are led to models of the following nature:
Before spontaneous bre#kdown, we have two commuting gauge
groups, hadronic and leptonic. This divides such models
into three sectors, being,hadrons, leptons, and a third
unconventional set of (presumably high-mass) scalar mesons
which serve to connect the two "known" worlds. Spontaneous
breakdown induces appropriate masses aﬁd all usual strong,
weak, and electromagnetic couplings. Intimate connections

are seen between these three fundamental forces. This is

. an expanded version of our recent letter on the same topic,

and includes some discussion of new topics as well.
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I. INTRODUCTION

Gauge principles have been a guiding light in elementary
particle theory for a very long time. By itself, gauge invariance is
useful however only for theories involving certain massless particles
(electrodynamics and gravitation). Taken together with spontaneous
breakdown of gauge symmetries, and the Higgs-Kibble phenomenon,l
the possibility of an eleégnt gauge structure for all physical forces
is emerging in the context of renormalizable field theories.

Weinberg2 and Sa.la.m3 were first to move in this direction, by
constructing a unified gauge model of leptonic weak interactions and
electromagnetism. At that time they also conjectured what is probably
the most fascinating bonus of this gauge approach, namely that such.
models may be renormalizable.

The subject lay dormant until t'Hoofth and Leeu showed that,
modulo a.noma.iies,5 this conjecture was correct. Various mechanisms
for cancelling (known) anomalies have since been discussed, so that
with some confidence, the community has begun a search through various
(presumably) renormalizable gauge models for the'one "chosen" by
nature.

Most effort has gone into constructing alternative models for
weak interactions and electromagnetism, and a number2’6 have recently
appeared in the literature. 1In spite of the lack of theoretical
"uniqueness” of these models, they all share in an elegance and force
that has, we believe, opened a new era in weak interaction physics.

Recently, also, Bardakci and Ha.lpern7 constructed a similar
renormglizable gauge model of the hadronic vector mesons. This model

realizes then the Yang-Mills ideas about strong vector mesons, and thus
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moves further toward a unified gauge theory of particle forces. Such
a unified model of hadrons and leptons has now been briefly pfesented in
the literature.8 It is the purpose of this paper to discuss the model
in some depth.

For strong interactions a Lagrangian is not very useful from
the practical point of view: Such a Lagrangian can at best be used to
describe low energy hadronic data, but we feel it will be extremely
illuminating as a guide to a better understanding of hadron dynamics,
and to the interplay of strong,weak,and electromagnetic interactions.
For example, strictly from the hadronic viewpoint, such a model
suggests that it will be useful to consider & hadron dynamics in
which the strong vector mesons, at some intermediate stage in the
calculation, have zero mass. (We remind the reader that this is indeed
exactly what is happening in dual models at the moment.) It has been
shown that there is an intimate connection between dual models and gauge

9

theories. Now, the search is beginning for a dual Higgs-Kibble mech-
anism to raise the rho mass. We believe there is an intimate connec-
tion between our hadron model and the future spontaneously broken
dual model, with internal symmetries, and hope our efforts may serve
as a guide in the duality situation.

" Further, as we shall see below, the presence of the leptons
does dictate in a certain way the structure of hadronic symmetry
breeking. Thus, a full understanding of strong interactions seems to
require the similtaneous understanding of weak and electromagnetic
forces. Intimate connections between strong, weak, and electromagnetic

forces, such as shown in our model, will, we believe, be of much

more than passing interest in future theory and experiment.

e

Our goal in this paper is then a unified renormalizable gauge
theory of strong, weak, and electromagnetic forces. Our approach is
based on the following reasoning: It is the hadrons whose symmetries
are "known"--not the leptons. Thisis reflected by the plethora of
lepton models, but onlyone 8U(3) ® SU(3) hadron model.’! For this
reason we start firmly with the SU(3) ® SU(3) bhadrons, and search
through the various lepton universes for one which "fits."

In this, we are extremely encouraged by the structure of the
hadron world. As shown in Ref. 7, the symmetric hadron theoryv
necessarily begins (before spontanecus symmetry breakdown) with a
local 8U(3)QD su(3) and an extra "global" group at least as large.
The final symmetry is the product group. With Bardakci and Halpern,
we thus interpret the hadrons as "welcoming” a lepton theory as a
local subgroup of its "extra" group. In this paper, the extra group
will be called "primed" or "leptonic."

The program is orderly. We study embedding the leptons in
progressively larger "primed" groups of the hadron model. Taking
su(3)’ ® SU(3)’ for the "primed" group leads to trouble with
strangeness-changing processes, but when we go to SU(M)QS)SU(HY,
everything falls in place beautifully.

In our search through lepton universes, we first set ourselves
the following additional boundary conditions: |

(1) We require the leptons to allow a (3,3) + (3,3) symmetry-
breaking mechanism for hadrons.

(2) In keeping with having only an SU(3) @ SU(3) ﬂadron world
(3 quarks), we want the lepton model to contain only the known leptons.

Requirement (2) limits us to Weinberg's theory, and is relaxed later.
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It is worth remarking here that although some other lepton models can
"fit" our hadrons, none is as natural as Weinberg's.

In any case, of course, some extra (heavy) quarks and leptons
are required to cancel anomalies. OQOur models lead unigquely to an
anomaly-removal scheme which, for hadrons is very much in‘the spirit of
dual models: In particular, we find removal of anomalies and proper

rate for g5, ~ 2y implies the existence of a heavy pion.

0
The plan of this paper is as follows. Section II contains a
general fqrmulation of gauge theories. In Sec. III we reformulate
Weinberg's theory in a suggestive notation, involving a new classifica-
tion of the leptons. Section IV is & review of the U(B)QDIKB)
hadron theory; we include here a discussion of the hadronic currents.
In Sec. V, we discussba physical induction of the lepton world from
this hadron world. Section VI contéins the model itself, details,>
and possible alternatives. There are two appendices. Appendix A
discusses the spontaneous breakdonn in the somewhat involved system

of scalar mesons. Appendix B mentions the alternative but

. ’ 4
unsuccessful attempt to embed the leptons in 8sU(3)'@ su(3).

G-

II. GENERAL GAUGE FORMALISM

In order to present our analysis in an organized waxrwe outline
here an operational approach, independent of representations, for
writing a gauge invariant Lagrangian. We will always follow just three
steps in each model we consider in this paper:

Step 1: Classify the particles in the theory with an appropri-
ate group.

Step 2: Write a gauge invariant Lagrangian with dimension
less than or equal to L.

Step 3: Break the symmetry spontanecusly, guided by physical
arguments.

We emphasize here that the requirements of gauge invariance
and dimension d < 4 are so restrictive that the physical content of
the theory is essentially determined by the classification of the
particles. Therefbfe, Step 1 contains the most important ingredients
in building a model.

Step 1: We assume we have chosen & group whose generators are
denoted by Fd, @ = 1++-'n. The operator which generates local
transformations is U(x) = exp i{ja uh(x)}. The transformation
properties of the particles afe determined by the linear representation
to which they have been assigned (nonlinear represéntations are
excluded from our analysié, because of the criterion 4 <4 for

renormalizability). Thus, denoting the particles as ¢i(x), we have

p(x) - B U = 5y ()  (2)
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where S, (x) defines the representation. TFor example,

(a) If the group is SU(2) with generators T and ¢ (: :)

is & doublet, then

2
1 +i§-w(x) - . .
g - UPYUT = e g, T = Pauli matrices.(2.2)

(b) 1If the group is SU(Bh;é§SU(5)R with generstors Fﬁa,Fﬁj and

¢ij(x) is a 3 X 3 matrix in the (3,3) representation, then

120 (x -i2ow (x
5 ugart 2 L()¢e 5-wp(x)

(2.3)
where ) = are the usual 3 X 3 SU(3) matrices. The infinitesimal
form of the transformation equation defines the commutators of the

generators with the fields. In examples (&) and (b)) above we get

respectively,
T3
(a) (7,6 = 5= ¢ (2.4)
a [0
®) 8 = 34 mA - pF . (29)

Step 2: The derivative 8u¢ = —i[Pu,¢] (Pu = momentum op.)
does not transform covariantly when @ is replaced by ﬁb?x) ¢quii).
To define & covariant derivative independent of representation‘we first
define a covariant momentum operator CPL by introducing as many

vector gauge bosons V a(x) as there are generators,

= P T 2.6
6’” Lt eV F (2.6)
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(VHCx are considered as c-numbers with respect to Fa in the following

formal manipulations.) We demand that under ﬁ%(x), <;31 transforms

covariantly
& -1 N sl
L ocufel = B+ We v 43 Y (2.7)

where the rhs is found by calculating 41(Puq151 = Pu +94[Pu:ufl]

-p 4 i%auq,cl. Here we have assumed that [Pu,Fa] = 0, which
means that Fa are internal symmetry generators. If we allow the more
general case of [Pu,ﬁxﬁ # 0, like for example, ﬂj being generators
of Lorentz transformations, or dilatations,letc. then we have to
consider general relativity in curved spacé. This displays the known
close reiationship that exists between general reletivity and the
Xang-Mills approach.lo Equation (2.7) induces a transformaetion on
Vua(x):

_ . R
V.F -» V' *F =¥V .F+=0 . 2.8
" Vi %u te uml (2.8)

With these properties we can see that the covariant derivative is

v, 8 = -ilB,8] = 3 f - 1av '1F,6) (2.9)

where the commutator [Fa,¢] is specified:.in Step 1 and depends on
representation. Indeed under a simultaneous transformation of ¢

and de we get

i

v, 8 - -imﬁlfzzjl, g ™ Z((vugl)%l, (2.10)
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Thus V“¢ transforms covariantly (like @). The covariant derivatives

for V;x can be found from the commutator
-= i A . *® ‘ ° o
[@u,(PVJ = ier] T (2.11)
Since the lhs is covariant, so is the rhs. We get

Fwa = 3, v -3 vuo‘ +g 787 Vf va  (2.12)
where fIBY are the structure constants of the group under
consideration.

Using only covariant derivatives we can now write an invariant
Lagrangian as if -we had global invariance, as usual.ll Mass terms
for Vﬁg should be omitted since they are not invariant. For
renormalizability we should also require that any term in the
Lagrangian has dimension 4 < %.

Step 3: The gauge particles acquire mass through the Higgs-
Kibb;e mecha.nism.l The local géuge symmetry is broken spontaneously
by introducing a set of scalar mesons which acquire nonvanishing
vacuun expectation value. A counting argumént due to Kibblel shows
that, when one considers this scalar ﬁeson system alone, the number
of massless Goldstone bosons generated by the spontaneous breakdown is
equal to the difference of the number of %1222} symmetries existing
within the scalar system before and after spontaneous breakdown. In
simple12 physically reasonable models, these Goldstone bosons are
completely eliminated from the Lagrangian by a gauge transformation and

they beconme the 1ongitudinal components of the vector gauge bosons

which acquire mass. Thus, the scalar mesons must be assigned to a
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representation such as to generate, through spontaneous breakdown, the
same number of Goldstone bosons as the number of gauge particles that
are desired to be raised in mass.

The restrictive power of ‘the procedure is self evident. The
model is essentially completed in the first step, simply by the
classification of the particles. The form of the vacuum expectation
value is further restricted by physical requirements such as the
existence of a massless and wniversal photon, masses of fermions,
messes of gauge mesons (if known), Physical values of coupling constants
etc. This procedure aléo produces many relations between (bare) |
masses and coupling constants, which are adjusted to best fit
experimental data (say to zeroth order). As & result, few possible
classifications of particles are capable of yielding a viable theory.
If in addition we restrict ourselves to as small a group as possible
which can describe all possible interactions, and fit the data as
close as possible to first order, then the form of the theory that one

can write is extremely limited. This will be illustrated in the

following sections.
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III. WEINBERG'S THEORY EMBEDDED IN SU(2yZX>SU(2)I with the following transformation properties under AU(x)
. = -1 t-1
In this section we present Weinberg's theory as an example of DU (x) = expl[fz-aL(x) + F%R GﬁR(X)]: ‘Z(wa U - Si Vp Sg s

the procedure outlined in the preceding section. We classify the

ol

-1 -1 . -
Y Vg U = sp ¥ 8T, where 8/ (x) = exp i 5.0 (x),

leptons with SU(E); x SU(2YR with generators F;, F;' among which
\J ]
only Fl 5 F}R

local transformations; the other generators correspond only to global

- T
[corresponding to a subgroup SU(2){(X)U(1)] generate sé(x) =exp i EE-GBR(x). The commutators of the generators with the

fields are formally defined by the infinitesimal form of the

transformations. We are denoting our generators witha prime for . . 7 Ié
transformation equations. Thus [fl,wD] =% WD’ [FBR,WD] = -wD 5
notational convenience which will become clear later. This formalism,
T
as shown below, suggests that the electronic and muonic systems form [F3R’¢S] = [§z’ws]' The electric charge is given as @ = F%L + F%R
‘ U . 3 I3 . 2

a (badly) broken SU(2)L Q@ SU(2)R multiplet. The classification is which identifies the weak hypercharge Y, = F%R' It can be checked
such that it generates exactly Weinberg's theory for leptons. Thus, that this charge assigns the correct charges to each field by

it appears that as long as we consider only the leptonic system without commuting it with WD and WS' Electronic and muonic-type leptons are

any reference to the hadrons this classification is equivalent to not mixed by any local transformation, [only F'R is included in our
Weinberg's. However, it will be shownthat it suggests a natural local group, while FiR and FéR are excluded]. It is due to this
extension to the hadrons (not implied by Weinberg) which will be choice of a local group that SU(E)% is broken and thus, electron and
crucial in the building of a unified theory of strong, weak, and muon type leptons are distinguished by their SU(E); quantum numbers.
electromagnetic interactions,8 such that the group associated with We remark that the doublet $u - (:_V :) is the "G-parity" conjugate
strong interactions is SU(B)(X)SU(}). v R

The known leptons are embedded within (2,2) and (1,3) of W“ ::<:u£ :) > l.e., $u =17, Wuc. As is well known, under SU(R)

c

/ v
representations of SU(2{QCSU(2); (VR =V, D = doublet, R
R both wu and Wu transform in exactly the same way: That is,if

S = singlet) ~ ~
’ Py s .
Wu -8 Wu (like electronic doublet) then also wu -8 ¥y Therefore,
vL M; 0 UI our local group is equivalent to Weinberg's when we consider only the
WD = WS = | leptons.
\fi Vg \\eé Y To meke our classification more transparent, we remark that
(3.1) this is not the only possible 2 X 2 matrix classification of

leptons. Another one given by Gursey and Feinberg13 [which can also
be fitted to give Weinberg's theory of leptons] is very close to

Weinberg's formulation
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VeL VuL 0 0
Yy o= B ‘ - (3.2)
°L i ‘R Mg
s _ - 1 ] s 1
In this case, we must take YW = (FOL + EFOR) instead of FBR’ so.
- 1 - 1 - 1 N f
that Q = FBL FOL EFOR ~ Here WL transforms only with FaL from

the left and WR only with FéR from the left. It turns out that only

the previous classification can be joined to an SU(3) @ SU(3)
classification of hadrons. These considerations hinge on the respec-
tive charge operators, and will become clear in Sec. V. From here on
we concentrate on the classification of Eq. (3.1).

The SU(2)£ triplet of weak gauge bosons , WL, are assigned to
a (3,1) representation, the singlet Bu is part of (1,3) and

Weinberg's scalars § belong to a (2,2) representation. We define

3
T, 'TO -
D S ST |
= | 4. 9,
' (3.4)

~ = L
where ?[ ¢ L 1 = Si ¢ SR 1 etc. The covariant momentum is

67 = P +gW-F +g'B F!_. (3.5)

1) o) L B3R

By commuting GDu with each field, we obtain the covariant derivatives,

-1h-
- 3
v, ¥p = O, Vp - 18 W, vy + ig' vy 3 B,

D K

. T
— :
Vg = Bu Vg - ig Bu[2 Vgl (3.6)

<
-
It

_ 3 it g3
Bu ¢ - ig WH ¢+ ig' ¢ 5 B“

The Fqu and FuvB are obtained from Eq. (2.12). We are now ready

to write the most general (electron and muon number conserving) gauge

invariant Lagrangian with dimension d < 4,

-

W, pv 1 187 . - . -
L - "R F,, Ty CEF,, Fpo ot i Trip Yo - 1 Tr g Vg

+Tr(6 V) ¢y +hoc.) + m,> 1 ¢ ¢ - n(or gt 9)7 . (3.7)

In order not to violate the local gauge invariance, as required by

renormalizability, the numerical matrix G should satisfy

-1
= g1
G =S} G Sy

(gl ge) .

The photon can immediately be found by rewriting the covariant

or [TB,G] = 0. Therefore, G is any diagonal matrix,

i

G

momentum in terms of a canonical redefinition of fields such that the

. _ 1 t
charge  operator . Q = FBL + F3R appears,

_ [ t 5 [ '
(fL = PH +eg Fp Wlu +e Py WEp + g sin ¢(F5L + FSR)

. ' 2 o
X (sin ¢ W3u + cos @ Bu) + EB%—a(cosg ¢ F%L - sin” ¢ F5R)

x (cos ¢ WBM - sin ¢ BIJ.) (5.8)
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where ten @ = g'/g. Thus, we can read off Weinberg's photon and

electric charge as the coefficieﬁt of the charge operator;

A

" .8in ¢ pr +»cos ¢ B,

(3-9)

o®
#

We emphasize that we have found the photon before spontaneous breakdown.

This is because we knewia priori the form of the charge operator by
making sure it assigned the correct physical charges to the particles
in the theory. 1In fact, of course, it is quite genersal that specifica-
tion of @ defines the photon and charées independent of spontaneous
breakdown. In our later analysis we found it very convenient to
follow this procedure,.because_it could show a priori whether a
certain classification of particles involving both leptons and hadrons
could give a massless, universal photon or not.

The spontaneous breakdown should be arranged such that the
photon remains massless, while W,,W, and Z = cos ] Wy - sin ¢ B

become massive. For a massless photon we must demand

[Q:¢]¢=(¢) = 0 . ‘ (3.10)

‘ . . )
Thus, by taking (@) = A EQ , i.e. (¢0) =\ we can give masses to

the gauge bosons as well as the electron and muon. It is more

convenient to use the covariant derivatives obtained with CFL of

. eq. (3.8). With Weinberg we obtain

=16-

1, 2

mw=%g>\, m, = 5(e

1o 1 ’
"’ga)zxx G=’)2: ,

2 1
25,

With the single proviso below, the structure of our classification is

Just that of Weinberg.

The form of G emphasizes the point suggested earlier that
the source for the difference between the electron and the muon might
be the breaking of SU(2);. Furthermore, there is one amusing
philosophical consequence of our representation. 1In Weinberg's
original classification, the universality of electromagnetiep cha.iag is
fixed by-hand. However, by imagining that the leptons belong to &
badly broken SU(Enﬁb SU(2{& universality of the electric charge is
automatically obtained due to the construction of Q as & generator
belonging to a nonabelian group.

The present SU(2XjOSU(2); classification of the leptons has
béen our starting point for a search through schemes to unify strong,
weak, and electromagnetic interactiops{[such that strongly interacting
particles are classified with su(s)L® su(a)ﬂ]. We shall see that the
introduction of the Cabibbo angle_resulting in unwanted AS =1
neutral currents, will suggest embedding the above classification in

progressively larger matrices, finally resulting in the scheme of

Sec. VI;



%;

58
Q‘:Sv

-17-

IV. MASSIVE GAUGE THEORY OF STRONG INTERACTIONS

7 considered the problem of

Some time ago, Bardakci and Halpern
giving mass to strongly interacting vector and axial-vector gauge
systems. Here we will, for completeness, give only the model with a

final U(B%ﬁgle(B%l symmetry--using the notation of Sec. II. We also

indicate the direction we shall follow in unifying this model with &

.model of leptons like Weinberg's, or others.

The generators of the local group U(B)LQDIK5)R are

F o = 0,:--8, with the representation

indicated as F oR’

aL)

ol

left or right where ) _ are the usual 3 3 SU(3) matrices.
’ Q
We introduce the vector (Vu) and axial vector (A“) gauge

fields in the matrix form

8 8

A A T

L Q. O o R ¥l e a

vu = E > (Vu - AH ), v = 5—(V +A ")
0 0

(4.1)

These transform as (8,1) and (1,8) representations respectively,

under the local gauge transformation operator

W(x) = exp i[aL-FL + aR-FR]:

L L, i -1, R R i -1
v, - sL(v“ +fau)sL sV, - sR(Vu +F a“)sR
(L.2)
SL(x) = exp il %-aL(x)], SR(x) = exp i[%-aR(x)] .

The Higgs-Kibble mechanism which will give mass to all gauge
particles (no photon) is generated by introducing two 3 X 3 complex

matrices, ML and MR’ which transform under Y x) 1like sets of

-18-

su(5)L}R triplets (3,1) and (1,3);

Uw o = s, WU - s 0w (h3)

We remark here that the 3 X 3 matrices ML and MR
transform only from one side with the local group génerated by Fﬁa
and Féa. There is also the freedom of applying more transformations
from the second side with a "primed" group which will be generated by

.F,a

H
some other operators F o R’

L 2

M- M SI:'l, My o M sl;‘l ) (4.4)

The "primed" group here is the "global" group of Ref. 7. Then, under
the group generated by (Fﬁa,Fsa), M~ would be a set of fields in the
(5,§)L representation, and similarly for M.. The "primed" transforma-
tions are not local transformations in this discussion. However, in
the coming sections where we introduce the leptons and weak gauge
bosons as well, they will be classified with a ;g_c_a_l_ SU(2):-®U(1)I
subgroup embeaded in the "primed" group.

_The covariant derivatives are easily obtained from the

covariant momentum operator

P =P +rv Py R,
P " Vu Fla fV“ FRa (.5)

with the same coupling f for both left and right gauge bosons to
preserve parity. We get

v, M

L

BHML-ifVu M

(4.6)
R

BHMR-ifVH My

v, My
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and Fﬁz, Fﬁz obtained from Bg. (2.12) in terms of VﬁaL and VﬁaR.

The gauge invariant Lagrangian with dimension 4 < 4 is
.1 L o, pv R _ wv
gﬁ = I Tr(Fuv B+ Fw Fp )
-1 t t 2 T T
5 Tr[(vu ML) vu M+ (vpL MR) vH MR] + my Tr(ML M+ M MR)

+n Lm0y 1)) + (0T 1))+, 20T a0) 4 (e T )
(&.7)

8 .«
where we have written F L = z: A;-FQL etc.
wv 5 2 Tuv

The gauge symmetry is broken spontaneously by taking

M) = ) = k1 . (1.8)

There are 18 massless Goldstone bosons which are identified as
MLT-ML and MRT- , and which are eliminated by using the 18 degrees
ﬁu and FR?. The Goldstone bosons become

the longitudinal degrees of freedom of the massive vector and axial

of freedom generated by F

vector mesons with masses

mS o= om© o= £ K . (+.9)

The remaining scalar particles are the hermitian part of ML and MR
and have arbitrary SU(5)® SU(3) invariant masses. The final Lagrangian
thenis obtained from (4.7) by replacing ML-v Mﬁ- kl and MR - MR + k1,

where now ML and MR are hermitian matrices.

-20-

As observed by Bardakei and Halpern, this final Lagrangian is

invariant under a global final group U(})LCD U(B)R generated by

1 T
(FL + FL)a and (FR + FR)a.

Hadron Currents

Here we also discuss the structure of the currents associated
with the final (g{ggggt) group. As in massive Yang-Mills theories
(in general), we distinguish two kinds of currents, both conserved but
with equal cﬁarges. The first is the usual Noether current(s) [JN“]

generated by the transformation

Vu - 8 Vu s'l, M+ Kk - S(M+ n)s’l, (4.10)

(1eft and right); the second kind [J"] is associated with the

transformation
Voo s(v. +23)™ e+ k) - S(M + r)s ™t (b.11)
B g I

(left and right). In an ordinary massive Yang-Mills model, J" is
proportional to the vector meson field. In our case, because masses
arise spontaneously, we will obtain a modified field-current identity--

however, as is generally true, we maintain

-1 nv v v
(+f )auF +30 = 0 (k.12)

As seen below, weak interactions and electromagnetism do in fact

couple to Jv rather than JNV, so we give next some more of its

structure. The variation (4.11) gives [8 =~ 1 + io(x)]
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oN
2L
]

Tr[J“(x) au a(x)]

[
i

+ %[M,auM] + P(M + &) VM(M + k)

k=

in the unitary gauge. We notice that, in the absence of the M's we '
have the usual field-current identity.

The algebra of the Ju is found in the usual manner, using
(4.12). The results are almost those of field-algebra, with the
exception that the usual c-number Schwinger term C in the space-time

algebra becomes an operator. Where algebra of fields has qjs c,
2

To
€C=—5, we obtain

o 2
0
f2

8 + (operator terms)

- 2
gxﬁ(operator) = (M+ K)aﬁ = op

o
(L.13)

The algebra including time-derivatives of currents is mofe complicated
and will be discussed elsewhere.

In the presence of additional hadromns, such as quarks, pions,
etc., J¥ does not change, while, JE acquires extra terms involving

the addtional fields.

- V. UNIFICATION OF HADRONIC AND LEPTONIC GAUGE THEORIES
A. Extension of Hadron Theory and General Considerations

As already suggested, the path we will explore for the unifica-
tion of hadronic and leptonic models is the freedom of making local a
certain subgroup of the "primed"” group, and classifying the leptons
with it. The following picture emerges: Hadrons are classified and
transform only with the unprimed U(B)LGD U(})R chiral local group,
while leptons afe classified and transform with only the primed group.
Gauge invariance does not allow any direct lepton-hadron interactions
before spontaneous breakdown. The only fields that transform with both
groups are ML and MR and they couple to both strong and weak gauge
bosons. Thus, M and M. play the role of a "bridge" between
hadrons and leptons. Before spontaneous breakdown all semi-leptonic
and nonleptonic weak interactions occur through intermediate ML and
MR loops. After spontaneous breakdown however, we generate direct
mixings between strong and weak gauge bosons, so that at low energies
semi-leptonic and nonléptonic weak interactions occur through vector
meson dominance.

For hadrons, we consider U(B)L<> U(:‘})R chiral th‘eory15 which
includes usual quarks, (3,3) scalar and pseudoscalar mesons
(z = o +1ix), as well as vector and axial-vector mesons. These
fields transform only with the unprimed generators Fi?, FR? of

Section IV:

. . -1
9, = 5,9 9y — Sg g5 I o2 5,2 8

(5.1)

B By osaHya . B B, osaHye -1
v "SL(VL + id )sL, vyt - sR(vR + 1d )sR .
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In this model, gauge invariance does not allow mass terms for VL, VR’
and q. Masses for these fields can only be generated through
spontaneous breakdown. For quarks we need a term in the Lagrangian of
the type (aaLZqR + h.c.) (this is another reason for introducing f),
and to generate masses for all vector and axial-vector mesons, we have

to introduce the Bardakci-Halpern sca.lars,7

ML and MR of Sec. IV.‘
Notice that we cannot break SU(})LGE)SU(3)R in the usual way, by ‘
adding a linear term in L, like Tr(f I), (f is a numerical
matrix). This would spoil the gauge invariance (and hence renormaliz-
ability). Such a linear term must be induced only through spontaneous
breakdown from a gauge invariant term. If only a hadron theory is
desired, such a term is easy to find: Tr(G ML+ z MR) +h.c. [G 1is
a numerical "insertion" of form (aab)]. In the presence of leptons the
térm is a bit harder, but we shall find later just such a term which,
in the 1imit of no weak or electrémagnetic interactions reduces to
just the above hadronic term.

Again, if only & hadron theory is désired, ML and MR may
be taken 3 x 3. In the presence of leptons however, we will need to
take them as 3 x 4 matrices (to eliminate neutral strangeness
changing currents). In general of course, we can enlarge to 3y n,

n >3, thus enlarging the "primed" group to U(n)' @ u(n)'. Mo
Golstone bosons will couple as long as the "ew" columns do not develop
any vacuum expectation values (the extra global symmetries associated

with the extra columns should be broken by hand). Thus

M) = M) =« = o ® 0 0.0 . (5.2)

We find that the smallest n we need is n = 4.

2l

This, we find below, eliminates &ll neutral strangeness éhanging
processes to first order.
B. "Induction"” of Leptonic Structure from Hadrons

Among the constraints on the‘unification, two are particularly
worth focussiﬁg on. These are (a) proper introduction of Cabbibo
angle and (b) having a universal, massless photon. These play particu-
larly crucial roles inthe choice of a local group to classify the
leptons, as & subgroup of the "primed” group (as well as its
representations).

We first consider the photon, whose structure is closely
related to the construction of the charge operator Q. In the type of
theory we want to propose Q will be constructed frém the unprimed as
well as the primed generators. The unprimed part, which will assign

the correct charges to quarks, I, V“, and Au, is the usual

1 ,
3R) + ﬁ(FSL + FBR).

SU(B)LQDSU(B)R charge operator, namely (FBL +F
The primed part of the charge operator should first of all give the
correct charges for the leptons. We assume that we have chosen
SU(2)£ & Y’ as a subgroup of a U(n)i ® U(n‘)R group. We choose
SU(E)LCZ)Y‘ both because it is the natural group of the known leptons,
and because, as it will turn out, our hadrons will not connect to any
smaller leptonic group. Of course we will search for the smallest n

compatible with deta.

Thus, the total charge operator is

Q = F,  +F

1 ' .
3L R + Rf? (FBL + F8R) + FBL +Y' . (5.3)
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The "primed" part of the charge operator F%L +Y' determines the
weak hypercharge Y'. At this point, the crucial ingredient in our

induction is the known charges of the Bardakci-Halpern scalars ML,R;
e.g., their diagonal entries, which acquire a vacuum expectation value,
must be neutral.

More precisely, the charges of ML,R are determined by the

representations of the unprimed and primed parts of §, which we denote

by Qg’R and Qa’R respectively (s = strong, w = weak). We have

already determined Qﬁ’R as the usual SU(3) charge matrix,

2/3
QL,R - /3

._l/y.

The charges of each entry of the matrices ML and MR are found by

computing
] = olm -mqr (5.4)

etc. The above commutator is determined as explained in Sec. II, with
the transformation properties of M~ and M, as in Eq. (4.3) and
(b.h).

To assure & massless photon we have to satisfy

0 (565)

[Q,ML]ML=<ML> = [Q:MR]MR:(MR>
since (ML> = {M) = x as in Eq. (5.2), @, must then satisfy

e - kgl = 0. (5.6)

Therefore, - Q&’R must have the form

ﬂb 0 O"i | \

o -1/3 o 0 \

L,R j i '

Q" = 0 -1/3 R OB}
Tt “;:\‘ e |
;R /
0 i ‘9 /

. AY
./
That is, the 3 ¥ 3 submatrix has the same form as QE’R. Now, if we

bed 2)! 73 ! ¥ ' . .
embed SU( )L ® Y in 11(5)L @0(3)R and take SU(2)L as the isospin
subgroup of U(S)i, then the primed part of the charge operator is

uniquely determined as (F%i +F! )+ —-1'—-'(FéL + FéR); therefqre

3R \fg

‘

Y - + L . (5.8)

1 | SN 1]
F}R \fg (F8L F8R)
This suggests that Weinberg's leptons should be embedded ina 3 X 3

matrix with the notation of Sec. III

(5.9)

Notice that the operator (FéL + FéR) commutes with both Y and ¥,
if these fields transform as specified in Sec. III [taking the isospin
subgroup of 8U(3) with M matrices instead of the 2 X 2 Pauli

matrices in Si and Sé]. Therefore, the hypercharge Y/ is assigned
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to WD and Q% only by F%R’ just as in Sec. III. Thus the charge
A operator that we have just chosen also assigns the correct charges to
the leptons. This is why we think Weinberg's leptons are much more
suggestive if classified as in Eq. (3.1) [rather than as in Eq. (3.2)1.
Thus (as mentioned_above) the presence of the hadrons in & sense
distinguishes the electron and muon type leptons by their SU(E)é
quantum numbers, and gives a zero charge neutrino.

As already mentioned and as shown in Appendix A
U(3)£ ® U(B)é will turn out unsatisfactory. The next most economic
scheme is an embedding of SU(2)£‘QQY' in U(h)i lh:8) U(h)ﬁ. Out of the
'L,R o = 0,+-+15 we choose F;?2,5

SU(2)£, plus & U(1l) operator Y'. For reasons that will become clear

generators T to form an

o )

shortly, the representation we want to use for these generators has

the form (left or right)

1 H 3 =
5 T : o T, = Pouli matrices = (TO,Tl,TQ,TB)
EJ = e a-- e
12 - _ _ _
0 : 5 Ty Ty = TaTyTe = (Tgr=T12Tps 15) .
]
(5.10)

Clearly to,l,2,3 form a U(2) algebra. Equation (5.7) is satisfied

if we take Qa’R = t5 + % to. This suggests that the primed charge

1 fns
operator has the form (F%L + F%R) + 3(F6L + FéR)’ determining

1 l ] A1
Y o= +3 (FOL +FL) . (5.11)

iR OR

Now, if we embed the leptons of Sec.III in a L ¥ 4 matrix
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t ] t :
L MR Oy :
o 0 ?
v o= lel v, ! Y, = |e. O . | (5.12)
D L R i s P
—_— e - ..____'_ - - - [ |
, !
0 P9 0 Ce
: |
. : - L :
and let them transform as before (but with ta replacing % T in
L} 1 1 % 2
5] and SR), we see that Fop *+ Fig commutes with both ¥ and Vg
Again only F! assigns the value of the hypercharge Y' to the

3L

leptons as in Sec. ITI. The question marks (?) in (5.12) are suggestive
of the presence of new heavy leptons. In fact, in order to cancel
anomalies we will need new leptons which will fill the spaces marked

by (?); these will also fix the fourth entry of Q&’R in Eq. (5.7)

" exactly as given by (5.11). Discussion of heavy leptons will be

continued in Sec. VI.

So far we have seen how the determination of the charge operator
has greatly restricted our choice of the SU(2)£ QY suﬁgroup.
However, we still need to introduce the Cabibbo angle. This, and the
requirement of no AS = 1 neutral currents will finally determine the
representation of the SU(2)£ ® Y' algebra which we need.

According to Cabibbo's theory, the weak currents which are part
of an SU(2) multiplet "see" a rotated picture of the hadrons.
Therefore, the weak SU(2)£ group must be rotated with respect to
the strong SU(})L group in such a way that the weak gauge bosons
"see" a left handed strong isospin current slightly rotated in the X7
direction. Weak gauge boson couplings occur in our model through the
scalars ML and Mﬁ, which after spontaneous breakdown generate terms

of the form (see later sections)
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e w ot A
Tr(vp” 6 W, eT) (5.13)
~ - ~ -1 2 [0
where W is a rotated matrix W =RW R, W = z: Wt
B m i &

R = Cabibbo rotation. With the form of x given in Eq.(5.2) we see

that R must be chosen as

1, © 0 t 0.0
0 ; cos ® sine i 0+--0
| ¢
R = 0 =sin @ cos @ ! 0...0 (5.14)

¢, o---0 1 1 !
;o { ! : tn !
¢ i ) )
) [ N
0, 6---bH ! 0--1

where 6 1is the Cabibbo angle.

1

~

Thus our group is now generated by the operators Fl 2,3
250

, .
L- and Y'). In the simplest case of
1,2,3 1

SU(5)£ ® SU(B)& these are represented by 22 = R M,2,3,8 R~ for

¥

(rotated with respect to F

the left-handed generators, and unrotated x5 8 for the right-handed
2

generators. For the case of SU(h)i © SU(h)ﬁ, we represent the left-

or right<handed generators by %& =R ﬁl R-l

where ta are as given
in Eq. (5.10). The representation of Q is invariant under R in
both cases. However, it is only in the latter case that the neutral
operators do not{Cabibbo) rotate %5 = t3’ %O = ty. As will be seen,
this is why the neutral strangeness changing currents are eliminated.
For this reason, we relegate further discussion of the SU(}XﬁQDSU(B)é
to Appendix B, and continue.here with the preferred SU(h)i (1%%) SU(h)é

scheme.
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Finally, we remark that, to maintain the couplings of the
unrotated leptonic world unchanged, we need of course rotate the entire
leptonic representation (so that they would not be aware of the rotated

generators). Thus, we will formally introduce a fully rotated notation

~ -1

~ -1
\pD_—TR\VDRJ WS=R‘VSR 2
(5.15)
§ - Rs'RT
R R
which transform as above, namely, under the "primed" group.
~ oy~ o=l . ATl
Vp 2 Sp¥p S M o M S ' (5.16)
"R R R

etec. - Actually, this is equivalent to saying that weak gauge bosons
couple to hadrongfiggg rotated ﬁx’ and with unrotated ta ‘to léptons.
In particular, §é = SR’ so some of this formalism is for notational
convenience.

We have given reasons for our choice of the SU(Z%:QD Y’ group,
and its representations. Thus much has followed from no AS =1
neutral currents and known hadron charges. More problems remain to be
solved such as medium-strong SU(3) ¥} SU(3) breaking in the presence
of leptons (with no physical Goldstone bosons), cancellation of
anomalies, etc. These will be discussed after‘we construct explicitly

our model in the coming sections.
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VI. UNIFIED MODEL
A. Construction of lagrangian

As we saw in the last section and Appendix A, the use of
SU(B{?%)SU(}); as the primed group for embedding the leptons led to
trouble in general with strangeness-changing processes. Speaking
generally then, we have at this juncture two possible directions:
‘One choice, followed by most a.uthors,6 is to try enlarging the hadronic
group (more quarks, etc.); as explained above, we consider this
unesthetic at least, and in fact such attempts do not solve the
“strangeness” problems in our case anyway. Thus our choice8 will be,
as anticipated above, to enlarge the primed group to U(M)CQOIKM)&.

For the sake of elegance, we will present the model in a
unified (strong, weak, and electromagnetic) super-matrix notation.
For example, the general local operator transformation is represented

by the 14X 14 super-matrix

U - exp ifoy ‘F + 0 -Fp + B-fi + 1Y)

Sy, 0 0 0

0 S 0 0
S = R ~ (6'1)

L4
o] 0 Sg 0
o o o 8
L .
vwhere, as detailed in Sec. V
8! - exp i(T-B +it7‘) 8' = exp i(t + 3 )r (6.2)
3 077 _ 5 30 ’

and so on. Recall that the twiddle operation is the Cabbibo rotation.

co e
In the same notation we represent all vector mesons (strong,

weak, and electromagnetic), as a similar 14X 14 matrix with diagonal

entries

e [ev B

v, (g r )R, B+ et g BT (6.3)

Then the unified gauge transformation on W ois Just
v WL - s(v oy 13)st. (6.1)
4 M u
Similarly, for Weinberg's leptons, we introduce the SU(2) doublets

¥p and sU(2) singlets Vg as in Eq. (5.12). To fit them into a

super-matrix notation £, we define rotated quantities,

~ -1 ~ -1
Vp = Ry R, ¥ = RypR -, (6-5)
_ _ .
0O 0 oO 0 i
}
0 .0 0 0
L= 4o o ¥ L gc (6.6)
S W/; ] l
o o 1 WD 0 ;
(WDC: charge conjugated in Dirac space and transposed in matrix

space). We then specify the transformation 74 A

This means that the unrotated WD and ws transform with the

unrotated representations SL and Sﬁ:
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-1 -1
. 1 t ' 1
Y = S vy ST, Vg = Sp Vg Sp . (6.7)
Thus, they belong respectively to (4,F) and (1,15) representations
of VU(M)i(g>U(h)é. For the scalar mesons, the super-matrix notation

is most symmetric,

}
IS |

M= ‘ L, Ywalrt - sus™

Il

o i » .(6.8)

It

Here 5= 0 + iy is the usual (5;3) multiplet of scalars and
pseudoscalars; ML,R are now/t@ree-bz-four complex matrices (one
extra_column to support the enlarged primed group), ¢ is the
rotated Weinberg scalar [ ¢O to + i¢-%. The notation émphasizes
that (a) ML,R are the only fields in the model which transform under
both the hadronic and leptonic groups and (b) Weinberg's @ is to the
leptonic system precisely what 3 is to the hadronic. It is this
symmetry which will allow us to construct a (3,3) + (3,3) symmetry
breaking term in the model. We take leptons and quarks, for the momént
at least, as discussed in the previous sections.

Covariant derivatives are formed in the usual fashion, leading

to our unified gauge-invariant Lagrangian

-Bh-

1 ™) L ) Ry l_ B_m 1 W
- m@EME o F - - Hv
§ w TFROOFL ) -1 Py p I Tr(Fuv Fy )

&

-ig v, e L v T, ) —%Tr{(v“ M)‘_f'va}
+ 83 I qp +hec) +.1r(¥) @ ¥ G +huc)

V(M) + V() + V(E) + V(F)

. Tr(Gg'gBTMEMI g+, m w97 9) + Tr (G, gt MT‘: 5 Mp +h.c.).
(6.9)

Here, the V(---)'s - are the usual quartic and quadratic terms®® with .
certain G "insertions-",7 being U4 X 4 numerical matrices which,
because they break only Fé—type symmetries, do not spoil the unified

gauge invariance. In particular, we write their diagonal entries

2
G : X(me,m“,?,?), Gy

2 2 2 2
£ -
. \/5 bl mw fg mﬁ 2fK S %w mﬁ ;ﬁ)
" 2n 2 7 2 7 2 ’//

Gy, ¢ (a,a,b,c) . - . ‘ (¢.10)

The interéretation of these parameters will be clarified in the
followiné paragraph.‘ ‘ »

| v We come now to the spontaneoﬁs breakdown. Firsf; we use
21 degfeeé of gauge freedom (aii but Q) to élimihaﬁe the BAX 3
submatrices of ML;ME and MRaMg, and all the components of ¢

except ¢O' With an eye to the charge operator (5.3), we next assign
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the charge-conserving vacuum expectation values

N U S B N (6.12)

We shall return in a moment to the specific allowed form of k, but
first notice that (6.11) generates, through the last term in E;L,‘a
linear term in the I field. Thus I itself acquires a vacuum

expectation value (&)

v, which is the usual (3,3) + (3,3) hadronic

symmetry breaking in the spirit of Gell-Mann, QOakes, and Renner.l6
The allowed forms for x and v require a detailed discussion

of this complicated scalar system. Such is tedious and not terribly

illuminating, but can be found in Appendix:ﬂ. Here we only state that

to lowest order, neglecting weak effects, we can take the following

17

isospin and strangeness conserving vacuum expectation values:

A arbitrary and

Ky o O 0 v, o0 ° 1
ko= 0 L 0 v = o Vi o |
0 o} K 0 Vs i
L 2 ! o © 2.
= J
(6.12)

with no massless Goldstone mesons. Except for d, the interpretation of

the parameters in Gl and v is standa.rd,l5 while G2

can be adjusted to give arbitrarily large masses to ¢0 and the

, d, and V(---)

remeining scalars in ML and MR' The vacuum expectation values vy

: 1
are directly related to the pseudoscalar decay constants fﬁ, fk. 2

To illustrate the meaning of the Ky s We also'list»(ignoring

electromagnetic mixing of p ¢ w etc. for the moment) some (bare)

18
vector meson messes after spontaneous breakdown

-%6-
2 2 2 2
mp = mw = f K.‘l
2 2 2 1.2, 2 2 2
m¢ - £ Ky My = 3 £ [xl + K, o+ (vl - v2) ]
| (6.13)
2 2 2, 2 2 2 2, 2 2 .
m = m = (k" +2v.7), o = £ (x,” +2v,7)
Al Wy 1. 1 ¢A 2 2
2 1l 27 2 2 2
mKA = -é-chl + Ky +(vl+v2))
With proper choices of Kys Kor Vys Vo, these formulag for the vector

meson masses are well satisfied by experiment. Further, Wi and 2
also get a small extra contribution to their masses, due to k. Such
relations should be taken together with & number of remarks (1) Electro-
magnetic mixing, to be discussed below, gives order e2 corrections to
e w @ masses. (2) Ignoring (1), and the presence of the remaining
ML’RV terms;-whicﬁ influence the known hadronsonly throﬁgh lpops,—-
the hadron theory is just a familiar mass-mixing fang~Mills o-model.
Of course, with Ky # Kyy WE lose the second Weinberg sum rule--so, in
general we prefer Ky = Ky leaving w-@ splitting to higher order.
(3) Frankly, we do not know whether our lagrangian will be more useful
as an effective Lagrangian or as a guide to nonperturbative structure
and the currents of the strong interactions. 1In general, we will

discuss whichever view (or both) when they appear interesting.

B. Photon System and Vector-Meson Diagonalization
The structure of our theory with respect to these topics is
somewhat unusual. As discussed above, the (massless, universal) photon

is found as the coefficient of @ in the covariant momentum:

(Fd =For, * EdR)
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14
f(F3 Vgt Fg v8) + g F%L w3 +g' ¥'B
P | 6 CR U T ER-
= eQ-A + Sos T 5 F5 + 5 F8> 5 sin” 11 Q V58

+ £ - % Fy + 1é3 Fg VéB + Egs—a (cos2 ¢ F%L - sin® @ Yz (6.14)

where
A .
e = gsin ¢ cos 1, tan § = g—, tan 1 2g sin ¢

V3t
B . B 1 ; ][E{ poolop
A" = cos n(sin ¢ W5 + cos @ B”) + sin n<::2 v5 +3 V8/>

V58 = cos n<§ V5 + -]21 Vg) - sin N(sin ¢ W5 + cos § B)
1., V3 ’ |
Vig = -3 Vs * 5 Vg - (6.15)

with fg/hn ~2 and g, g' small, we obtain approximately Weinberg's
o~ e /(8 +a'?)%.

Because of the diagonalization, our picture of electromagnetic
effects is unusuwal. As a first indication of this, we notice that we
are forced to electromagnetically mix the strong vector mesons. The
p § w mass matrix becomes

(V3 Qf Vsg + U5V + £12gV0)%°] (6.16)
Here we have allowed a different universal coupling constant f° % f
‘for the ninth vector and axial vector mesons VO and Ao; k stands
for the 3 X 3 submatrix of k [Eq. (6.12)] with Ky # ky. The

other symbols are given as
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2/3 0 0
£, = fz(fe _ Y ee)_%, Q = 0 -1/% U
0 0 -1/3 ‘
0 0 o
Uy ={ 0 1 0 ) Ao = ‘\/é?l . | (6.17)
0o o -1///

It turns out that f' must be close to f to obtain the usual ¢-w
(canonical nonet) mixing anéle. We also find that, aside from small
electromagnefic mass corrections, the p-w mixing-angle can be fit to
data, and is very sensitive to variations in f'-f of order e2.
Further of course, the eigenvectors of the mass matrix which are
the physical p, w, and ¢, have direct order e?/f electromagnetic
couplings to the leptons. This can be easily seen from Eq. (6.1&)5 V38
is also associated with the total charge Q, like the photon. Thus
elecfromagnetic effects will not be describable purely in terms of a
JEMu'Au coupling. In explicit calculation, say in electron quark
(electfomagnetic) scattering, ﬁe find that the hadronic vector couplings
always add to the photon in just such a way as to simulate vector meson-

dominated electromagnetic form factors in lowest order: e.g.,

2
2 2 ) -m \\
e 1 e /—_P-— [ (6.18)

€
2wt A\ F LT
3 o /

Further, these couplings give a hadronic correction to the muonic

19

§_%_§ of order 5 X 10'8, agreeing with previous estimates.
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We will discuss the effect of the diagonalization on currents
after specifying our prescription for- the other weak vector meson

couplings. These we choose not to diagonalize,leaving charged Wi

and neutral Z terms of the form

£ = efTr(v 0y + ) ﬁ(M{ + k1)) + (2 terms) (6.19) .

as they are. Thus charged lowest 6rder currents proceed via vector
exchange at low energies. Actually, of course, one can diagonalize,
but this is quite lengthy, and the theory is easily interpreted without
doing so. .

C. Currents and Universality

Hadronic currents in our model are, of course, determined by
the Lagrangian ;f. The physical weak currents J+u can immediately
be read off as the hadronic coefficient of W+“ in ;Zf (M's
considered hadrons). .In the iimit g,8' -0 (and mass of the fourth
column of M's large), these currents are just those discussed in
Sec. IV. The electromagnetic current is also the hadronic coefficient
of A“, but as stressed above, this current is not useful in the
usual manner, Aue to the "other" electromagnetic effects from neutral
strong vector mesons.

Although, as in Sec. IV, these currents can be found through
hadronic considerations, it is perhaps more illuminating to consider
their structure from the point of view of the "primed" transformations,
and the W equétions of motion. As an example, we discuss the Noether
derivation of Ji_u from this viewpoint. For simplicity, we consider
only transformations within the unitary gauge (M - MfL: o, ¢ - gr- o)~
in this case, those generated by ﬁi’2. Thus @, M, and the other

ko=

hadrons do not transform (otherwise we cannot maintain thé gauge), while
the leptons transform as usual. With respect to W, we follow Sec. IV
to consider two classes of transformations (and hence two groups of
currents). As in Sec. IV, the two W transformations are those with
or without an extra §'—1 Bu §*. The transformation with the extra
derivative term leads to the physical currents J+P defined ju§t5éb;§e;

these can be written as Ji' = EVSI: !M + ;C¢) where (f_ M, ¢ are theh

covariant kinetic energy terms for M and ¢ in the unitary gauge.
The transformations without the derivative lead to J+N = E%; ¥
= +

] - -+ .
(/f - Ay ,,¢'¢), which are the ordinary Noether currents of the
leptons and W fields, énd not the hadron currents. As always in these
algebra-of-fields-type situations (see Sec. IV), the two sets.of

currents are related by a total divergence, this time being o FHY,

W,

Thus jiH is related to the weak‘Noether current J*Nu tﬁfough the
W equgtions of motion; simultaneously, forms essentially J+H are
related, as in Sec. IV, to the hadronic Noether current through the
strong vector meson equations of motion.

It is clear from the above discussion, that the hadronic
charge algebra is that of the leptonic charges; hence universality is
guaranteed.eo

A further remark about the electromegnetic current: It would
be useful to have an "effective" electromagnetic current, that takes
into account the hadronic corrections mentioned above. We would
conjecture that such an object is the current coupling to Weinberg's

photon (i.e., do not diagonalize; Weinberg's photon is the real photon

taken at T = 0).
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- Neutral Strangeness-Changing Currents and a Cofrespondence Principle

In lowest order, we get no AS =1, 2 =0 cﬁrrents, because
our Cabibbo rotation (5.1L4) does not rotate neutral weak vector mesons
[%3 = t3, %O = to], we have aqcomplished this only by increasing the
size of ML,R’ without extras quarks.

On the other hand, it is clear that the four columns of 'ML,R
are acting like the (p, n, A, p') quarks of other models.6 In fact,
we see a type of "correspondence principle” at work here in‘the sense
that, from the structure of some n-quark "direct coupling theory"
(e.g., q W aq), we can read an n-column "M-theory" (our models here)--
or vice versa. This principle will be useful below when we consider
inclusion of other lepton models.

Pfeliminary calculationé indicate that higher order induced

strange currents are suppressed by factors of hadron masses and mass

splittings divided by Mwe: Before vacuum expectation wvalues, such

L . .
processes are zero to order g --due to a cancellation between internal

p and p'-type column exchanges [as in the Glashow-Illiopoulos-Maiani
SU(L) model}. Therefore, after spontaneous breakdown, these ampiitudes
aré suppressed by hadron masses and mass differences divided by ng.
These conclusions are béing checked in detail and will be presented
elsewhere. T
D.. Fermions and Anomalies
As thus far presented, our model has anomalies. Further, in

the presence of both strong and weak vector mesons, it does not appear

possible to cancel quark versus lepton anomalies. Hence we will discuss

a simple doubling scheme which, at least for the hadrons, is very much

in the spirit of dual models. In particular, our approach will lead

-Lhpoo

us directly to the existence of & heavy pion. The scheme is as
follows.

We introduce{heavy) q?, Wé,D that couple to gguge bosons
Just as g, 'WS,D but with the opposite sign of %5. Thebnew leptons

go where we had question marks in the 4 X L4 lepton matrices:

I- i 0 o |
veL uR
- c
B e -(vu )R 0 0
b - 0 0 ' - ’
-VLM eR
1
o + 1c
A O bk
0 T
uL 6] 0
e. O 0 0
v =
s 1
o] 0] B'v er
'+
| . 3
»o o} b alvle E . | (6.20)

In the leptonic system, anomalies are cancelled without complication.

However now, q and q' loops with an odd mumber of 75

tend to cancel (because both type of quarks are picking up masses and

couplings

interactions from the same type of terms GLZAR’ Eﬁzgi)--suppreésing
o — 2Y. This we cannot allow. The only solution to this dilemma
appears to require the introduction of a heavy pion'-sigma' field

Zf = 0' +ix'. For simplicity, we choose to couple q only to %,
q' only to £!'. (Most general couplings dc not affect the

conclusion.) Now it is easy to arrange that the masses of q', &'

1 1 .
z') = L <« 1 so that the new 3! has

are high while keeping <% 7
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negligible effect on all low lying hadrons, including V and A. Now,

of course, — 2y proceeds only through q. To get an extra factor

o)

of 3 in — 2y amplitude there are a number of choices. We can go

&)
to sets of integralxcharged quarks, with Y providing-a "charm", or

1

most perversely, e.g., introduce two more such "pairs" of cancelling

quarks with large ma.ss.22 Such schemes appear gquite flexible with
regard to quark classification, the only common denominator being the
apparent necessity for a heavy pion. Implicatioﬁs of such ideas in
the operatorial formulation of PCAC will be explored elsewhere.

E. Other Lepton Models

Among the other lepton models in the literature, none fits our
hadrons as well as Weinberg's. However, with more scalar mesons (etc.),
some other models can be incorporated, and we will make some brief
remarks on this subject.

The second model of Prentki and Zumino looks good at first
sight.8 Indeed, their leptons fit naturdlly into our WD,S' However,
due to the (2)-% in their neutrino classification, we would violate
hadronic universality (by this factor) if we coupled directly to our
hadrons a.bove.23 Consulting the correspondence principle again, we
find that universality is restored with the addition of one more set
of 3 X 4 matrices Mﬂ,R' At this stage, however, we consider this
unattractive.

A more economical generalization follows lines between
Weinberg and that of Georgi and Glashow. As discussed in Sec. V, the
presence of the M's requires four weak gauge bosons. Keeping the
same weak gauge bosons, we now classify the leptons under su(2) as

Georgi and Glashow. The leptons are singlets under Y. The Georgi-

ko

Glashow scalar fields ¢G = E{¢a are needed to retain their lepton
mass pattern; Weinberg's scalars Q{ are also needed to construct our
(5,3) symmetry-breaking term (see above). Further (¢W) = A -can be
taken to provide the bulk of weak gauge boson masses. To avoid

Goldstone bosons in lowest order, terms like Tr[¢£ ¢G ¢W] must be

included in the potential. 1In this model then, with only three exfrék‘

scalars (¢G), we suppress neutrino processes in the manner of Georéi"
and Glashow. Without the extra U(1l), the original 0(3) model of
Georgi and Glashow does not seem possible to incorporate.

We have not found a way of incorporating (without Goldstone

bosons in lowest order) the model of Lee, Prentki, and Zumino.

F. Final Remarks and Directions

We would like to discuss briefly perturbation expansion around
the "hadron” theory. We choose to hold fixed the masses of W, 2,
and @. This leaves one parameter, say e (electric charge) to
expand all weak and electromagnetic effects. As e — 0, we reach the
pure hadronic system, which is of interest in itself. The hadrén
Lagrangian is in most respects the model of Bardakci and Halpern.
A notable, exception, of course, is the (3,3) symmetry-breaking term.
since A7t = g MW-l ~ 0(e), then G, [Eq. (6.9)] 1is also O0(e).
Thus in the term Tr(?l(a + x)M{ ZMR) , the term Tr(xGlMEZMR)
survives as (another e-independent) part of the hadron world. Thus all

hadron symmetry breaking occurs in terms of dimension d < 3. Having

required, as we have, parity, isospin and hypercharge conserving strong
interactions--this conclusion about symmetry-breaking dimensionality

follows directly from the structure of the leptons.

i
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The question of deep inelastic scaling for our model remains
to be investigated. Although the current algebra generally resembles
algebra of fields, still there are a number of special features here
that interest us in a re-examination of the possible scaling. (1) The
theory is renormalizable, i.e., longitudinally damped in some sense.
Can this connect with the physical fact ULIGT — 07 (2) Whereas in
algebra of fields, one has current dimension one, here we naturally
obtain asymptotic dimension three. (3) Possibly relevant to this
question is the further fact that the unified theory can be taken scale
invariant before spontaneous breakdown, all except for the ¢ mass
term. Hadronic scalar masses are generated along with other masses;
as long as we include also potential terms like Tr(ML ME z Zf) ete.
The theory cannot be taken completely scale-invariant (or a Goldstone
dilaton appears).gh

Finally, we want to make a few brief remarks concerning the
introduction of baryons in the model. In lieu of & Bethe-Salpeter
bound state calculation, we have the option of introducing elementary
baryons, but the resulting picture is not very attractive. To give
(renormalizable) mass to the usual (8,1) = BL,(1,8) = By baryons,
one is forced to introduce an (8,8) scalar field X which
couples to baryons as §L X By and to I as &;ﬁ Tr(Nx T xB ZT).

The last term is needed to avoid hew Goldstone bosons in lowest.order,
X of course, involves 128 new scalars, whose masses can be taken
large. An alternate possiblity is the old (3,3) + (3,3) ba.ryons,25
whose masses can be generated by I alone (no new scalars); such ‘

classification of course leads to bad D/F ratios to lowest order.

L6

APPENDIX A. SPONTANEOUS BREAKDOWN AND THE SCALAR SYSTEM

The part of the Lagrangian we wish to study here is
L= 00 + () +v(g) + (e gt ME I M, +h.c.)
~ + ~,
+1r(e, P M § v o, ulm 9T 9) . (a.1)
We will take the potential terms V(.---), as follows;

o Tr(M{ M) +p(Tr ME ML)E + T Tr((MZ ML)2] + (L «>R)

v, (M) =
V() = o :r(zT £) +e'(zr st 2)% + v (st £)2) (a.2)
@) = sre(pt g) ¢ (o g )

Gl and G2 are diagonal "insertion" matrices, as detailed in the
text.

We remark that, the SU(QiQOIKly' gauge invariance allows more
general insertions and in more places than the ones indicated. The
only further restriction is that, to preserve CP invariance both before
and after spontaneous breakdown, all insertions must be real matrices
(G; = Gi)’ which commute with the SU(EEQC-U(l)l group. However, in
lowest order in the weak and electromagnetic couplings, we would like
to have isospin, hypercharge, and parity invariant strong interactions.
For this reason, we only allow the insertions indicated. We wait until
higher order divergent weak interaction loops demand a certain insertion
as a counterterm, and do not introduce it otherwise. This is a device
to make their effect show only in higher orders, and thus be physically

negligible.
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. +
For the moment, we will not introduce the term det Z + det I,

but will return later to remark on the circumstances of its inclusion.

Now, we assign vacuum expectation values (@) = A to (ML) = (MR) = K,

(2>=V

1 "
v 0 0
0 Ko 0
k= 0 0 » Vo= {0 v 0
o 0 o 0 0 v
(A.3)

and Ky s vy are real numbers.
Let us first deal with the particles of the fourth column of

ML,R' Writing

SLR LR
Mg = ' ' (a.k)

000 0

where ¢ are 3 X 3 matrix fields and X, R is the fourth
2

L,R
. +

column, we notice that we are inducing no linear terms in X, X .

This is consistent with (A.3). 1In fact, the set of quadratic terms

involving X o is just the usual terms from V(M), plus
>

|~

C‘X’EVX‘R“L%\TQ'CXEXL"L(LHR) (a.5)

.
t

2

where c,d are the numbers in the U,4 position of G o The
. - )
parameters c¢ and d can be adjusted to give arbitrary masses to

XL + XR' Thus, though XQB are extremely important in the structural
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connection between strong and nonstrong interactions, they play no
important role in the analysis of the scalar system. In what follows,
we regard ML,R'V gL,R as just 3 X 3 matrices.

Proceeding, we list the (matrix) relations obtained on

requiring the absence of linear terms in ¢, , M:

1 1.2 " 2 2

5 AV Gi +E A Gy ro o+ 2 Tr(k™) +2vk° = O

%x x2 G + [o' +ep’ Tr(ve) +ervilv = 0 (8.6)
2, 2 2

Tr(ve” GJ) + [Tr(x” G}) + 28 + 16eA"In = O

where xG; are the 3Y 3 parts of K,Gi; Because of the "insertions”
Gi,e, the equations are well underdetermined even allowing arbitrary
diagonal Kk, V, A

In preparation for writing down the quadratic terms, we use our
21 degrees of gauge freedom (all but Q) to eliminate the 21 scalar

degrees of freedom (g% - &) and (¢ - ¢+). Then using (A.6) to

L,R
simplify, we have

Tr[(27k2 - % vai)ng + 27 & £« EL + % Gi gL v gR) + bp(Tr KEL)Z

+ 8y emEp + Tr(- % xnav'lai sty 4oyt v =2f 4 v ov sv + Y riveiv)
112 4 Lren? 4 2 2., 2
+p'ler v(z + 2N1° + glen” + £ Tr(veTe])] g,

+ Tr(knGi(gLZ +TEp + ZTEL + &RzT)}

+ ¢o Tr{(gL + gR)(ani + AKGy) + (= + zT)An2 Gi} . (a.7)
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where we have written §+ =&,

It is relatively easy to see that this system contains in
general no Goldstone bosoné. Further, if we choose to fix ¢O’ gL,R
to have large masses (e.g., by large A, 7T), while O + iy stay at

lower masses (see interpretation of entries of v in text), then the

mixings of physical particles (say just the pseudoscalars) with ¢O’

§L R are very small and there is no practical need to diagonalize
J

further.

Thus far, we have analyzed the system without & det £ + det £

term, keeping the ninth axial vector meson. This leaves us with a

problem as far as considering our Lagrangian as an effective Lagrangian.

To zeroth order then,'we have a x-7 degéneracy (see Ref. 15). The

ninth axial current is not conserved in the model however, so this

-degeneracy is not expected to persist to all orders.

- We would however feel more comfortable with the conventional
"effective” x-1 dynamics. This can be achieved by omitting
the ninth axial vector meson entirely. Thus, with no need for ninth
axial gauge freedom, we can add the det r term. Now our 20 degrees
of gauge freedom just suffices to remove the resulting 20 Goldstone
scalars (the scalar system of course starts with one less symmetry).
There is a problem however. A low mass (about 1 GeV) 1", with the

quantum numbers of 1', being the pseudoscalar that would have been

absorbed into A9 remains. It would be of interest to carry out some

detailed calculations on its mixing with 1, 7', and its decays etc.,

C . . 26
with the possibility of its identification with 'M(953).
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APPENDIX B. EMBEDDING OF THE WEAK GROUP IN SU(5)£-;2(_‘;SU(3)§

We present here a scheme for embedding the leptons in
SU(B)i;Z?SU(B)é. This would seem to be the most natural extension of
the hadronic theory, to include also weak interactions. Unfortumately,
the simplest scheme leads to conflict with experimental evidence on
strangeness chaﬁging neutral currents. This effect is well known and
will not be discussed further. (It is however, the gé =0 limit of
the following scheme).

Therefore, we extend the leptonic gauge group by one more
U(l)é operator in addition to SU(2)£{E;U(l)i. Then, as seen below,
we succeed in suppressing greatly the AS = 1 neutral currents in
semi-leptonic decays. However, AS = 2 nonleptonic interactions are
found not small enough to lowest order. We coﬁsider this result as a
failure of this scheme. This is why we are finally led to embed the
leptons in U(h)I"@UI(h)I’{ as shown in Sec. VI.

Groups and representations

The hadronic group is as chosen in the main text. The local
leptonic group is SU(2)] @ U(1)] ® U(1)} embedded in the primed
t 1 [} ! 1
SU(B)L ®© SU(B)R. We call the latter's generators Ij., Fip
(@ = 1,---8). These are represented by R& and ) respectively,
where, for the left-handed group we have applied a Cabibbo rotation

igk7 -in7
(i& =e Ay © ). Only five of these generators are realized

~ ~ 1,
. ] _ N _ ot ——(Fw? t .
locally; these are EaL’ a =1,2,3%; Yl = F3R + \/E(F8L + FBR)’

~l—(féL + FéR)' The charge operator is
5 .

and Tz = \/'

- A ' ince th
Q = F3L + F3R + \fg(FSL + FSR) + F5L + Yl. We remark that since e
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.\/"‘SR

1 .~ ~
. s l 1 1
Cabibbo rotation, we could write Yl 3R + §7§:(F8L + F8R)°

charge combination F is invariant under a right-handed

Local transformations

The general local operator

U, = exp i(og Fp +op Fp + E’~I" + !?1 + T, ?2) (B.1)

is represented in a unified super matrix notation:

[~ A
s,
Sg 5
s = ! (B.2)
sé E
L 4
where
~ 1 ~
Bi(x) = ew %[ €+T NCREAY
3
(8.3)

sg(x) exp e (5 + g To]  ete.

1 1
— Ny ==
V5T

Fields and classification

The hadronic part includes quarks, vector and axial vector
mesonsg, X = 0 + ix multiplet etc. The only change from the model in
the text being that ML and MR are now 3 ¥ 3 matrices, transforming

as

w W S Mg S (3:4)
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The weak gauge bosons are WL, Blp’ BDu associgted with the
e 2
generators ﬁi, Yl’ ?é with couplings g, gi, gé respectively.

The SU(2)£ doublet leptons V. are assigned to part of the

D

(3,3)' representation while the singlet leptons Vg belong to “(1,8):

1
]
-

T 3 T

vy MR 0 ‘ 0 M 0 5
- | - !

v = e g O . Vg = eg 0 0% .
o o0 oJ o o o0}
L J

(3.5)
: - in.e

Defining the rotated representation for ¢b: WD =e WD’ we

specify the transformations

a1~ asl a1 o 4,1 -1
?ij@( =8'V_ s and LY Y = sﬁwssR .

(B.6)

(This means that the unrotated wD transforms with the unrotated Si

1
o5y 8 o
scalar ¢ (@ = e ¢) transforming just like ¥p, and satisfying

) Finally we introduce a (3,3)' complex 3 X 3

the invarignt linear constraint
Tr ((’¢ - ;757”)19 = 0. (8.7)
Here P = <: 0 j) commutes with the local
1.

SU(Q)E & U(l)i ®U(1)! eroup. This last constraint is necessary

to avoid a Goldstone boson in lowest order in the spontaneous breakdown

scheme we wish to consider below.
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Lagrangian and spontaneous breakdown

Covariant derivatives are written with the help of the covariant

momentum operators
i . T

Fu = B+ f(V FL o+ Vg, “Fg) + gF W’ +el Y By, * gl ¥, By

(8.8) .
The Lagrangian is constructed analogously to the

t \ 1
u(h); & u(k)g
3X 3 matrices and in particular the G

1
an

o //f m
T
-1 -2 - 2
K \\

model in Sec. VI, with the G-insertions now being

insertion parametrized as

f m (B.9)

2
\\\\ el Mg - fn B

where A and k are réspectively the vacuum expectation values

() ()

We do not find

2

It
>
]

>:

-~
e

~

(We will specialize to A" = A below for simplicity.
any interesting results with A" # A\.) The potential term V(§) also
must contain the necessary gauge invariant insertions that break extra
symmetries by haﬁd, thus avoiding massless Goldstone bosons in lowest
order.

Further, notice, that, we can write a lepton mass generating

term

-5k

G Tr(ﬁb @ ¥g) +h.c.

B

)\.1

which gives the mass ratio EE = cos 8.

H

(B.10)

be broken by allowing G to be a matrix inside the trace, without

breaking the gauge invariance.)

Photon diagonalization and heavy neutral weak gauge bosons

If the photon is found as in Sec. VI B, we remain with two

weak neutral gauge bosons Z and B2

generators and couplings

2 21 2
+ 2 '
(" +8,7)% 2 (cos™ ¢ ¥}

where

o
1]

cos @ Wy - sin ? B,

tan §

]

1
g;/e

- s1n ¢ Y

associated with the following

) ey \[”( 18 * Tre) Boy

(B.11)

(B.12)

In this notation we write the mass metrix for the massive weak gauge

bosons:

2 2 1 1"
g [N+ 2 cosg'e + A

2 a2 1p
+ (g +g )W +a ° cos

'2 1] "
+ 8, (n 2y A 2)sin

2 12,4
-2 gi(e” +g )2

n
2 0+ 2

o3

2 .. 2 2 2
sin G](Wl + W, )

ain® e]z2

2
2

"

2 .2
sin- 6 Z B, . (B.13)

(This relation can actually
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2

Defining the neutral eigensta.tes Zl’ o as
Zz = cosOtZl + sin o 22
(B.14)
B2 = =-sin ¢ Zl + cos O 22
~ e~ AY
We find in the approximation A! << A = A" (remember m—e = -)-\—-)
: il
2 2 2
tan 20 = %‘-—’ii—nz—g, x = g—-jlé:g— . (8.15)
x -sin © g

Strangeness changing neutral currents

The couplings of the heavy neutral weak gauge bosons to hadronic

and leptonic currents are obtained as

1

i ~ sin @ cos 9[JL6h + 'IZS— ;=o]u[(g2 + g]'_e)2 Z'_l - g,:,_ Bau]
L2 i o . 4 .2 )
+ (g tg )2 zu(cos ) 3314 - sin“ ¢ 333 )u (B.16)

where, JL6h is the left-handed hadronic current associated with Mg
and jBLz is the left-handed leptonic current associated with >\3
etc.

Rewriting the above in terms of Zl,2 , and using the mass
matrix, we calculate the effective semi-leptoniec, nonleptonic, and
leptonic Lagrangians. We find that:

(1) The purely leptonic processes are almost as in Weinberg's

t2 m N\ 2
legrangian with a small change of the order of 2‘—2—- s (f—) .
A [

-56-

(2) The neutral AS = 1 currents in semi-leptonic processes

: i m \U4
1
are suppressed in the decay rates by a factor of (%—) s (f) .
’ u

(3) The nonleptonic effective weak Lagrangian contains
NS = 2 pieces, which, compared to the largest AS = 0, pieces are
smaller only by a factor of =(sin 9)2. There are also terms which
may give an approximate Al = 1/2 rule (\" £ A may be better.).

In spite of a lot of effort we could not improve on item (3)
above within many variations of the SU(3)I" (X;su(5)§ scheme. To avoid
this large contribution of AS = 2 processes in lowest order, we were
finally led to consider enlarging the primed group to u(k) ® u(l)

as discussed in Sec. VI.



-3

_57_
FOOTNOTES AND REFERENCES

Supported in part by the U. S. Atomic Energy Commission.

Participating guest, Lawrence Berkeley Laboratory.

Present address: Department of Physics, University of Pennsylvania,

Philadelphia, Pennsylvania 1910k.

P. W. Higgs, Phys. Letters 12, 132 (1964); Phys. Rev. Letters 13, .

508 (196Lk); Phys. Rev. 145, 1156 (1966); T. W. B. Kibble, Phys.
Rev. 155, 1554 (1967).
S. Weinberg, Phys. Rev. Letters 19, 126h (1967).

A. Salam, Elementary Particle Physics, edited by N. Svartholm

(Almquist and Wiksells, Stockholm, 1968) p. 367.

G.'t Hooft, Phys. Letters 39B, 195 (1971); Nucl. Phys. B35, 167
(1971); B. W. Lee, Phys. Rev. D5, 823 (1972); B. W. Lee and J.
zZinn-Justin, Phys. Rev. D5, 3121 (1972); ibid. 5, 3137 (1972);
ivid. 5, 3155 (1972). '

M.'Veltman, unpublished; D. Gross.and R. Jackiw, Phys. Rev. Qé,
477 (1972); C. Bouchiat, J. Iliopolis, and Ph. Meyer (unpublished);
H. Georgi and S. Glashow, Phys. Rev. D6, 429 (1972).

S. Weinberg, Phys. Rev. D5, 1962 (1972); Phys. Rev. D5, 1412
(1972); H. Georgi and S. Glashow, Phys. Rev. Letters 28, 1igL

(1972); B. W. Lee, Phys. Rev. D6, 1188 (1972); J. Prentki and

_B. Zumino (to be published).

K. Bardakci and M. B. Halpern, Phys. Rev. D6, 696 (1972).
I. Bars, M. B. Halpern, and M. Yoshimura, Phys. Rev. Letters 29,
%9 (1972).

A. Neveu and J. Scherk (unpublished).

10.

11.
2.

13.
1k,

15.

16.

17.

18.

19.

_58_

R. Utiyame, Phys. Rev. 101, 1597 (1956); T. W. B. Kibble. J. of

Math. Phys. 2

, 212 (1961).

C. N. Yeng and R. L. Mills, Phys. Rev. 96, 191 (1954).

See, however, S. Coleman and E. Weinberg (unpublished).

F. Glirsey and G. Feinberg, Phys. Rev. 128, 378 (1962), Appendix II.
Following the 1limit procedure of K. Bardakci, Y. Frishmen, and v

M. B. Halpern, Phys. Rev. lzg, 1353 (1968), we can map the gauge
theory of hadrons onto a Sugawara-like theory. The limit is

m? — 0 holding K2 = E; constant.

f
resemble a recent model of R. Perrin (unpublished).

£f -0, The theory seems to
See, €.g., S. Gasiorowicz and D. A. Geffen, Rev. Mod. Phys. 41,
531 (1969),.§nd‘references therein.

M. Gell-Mann, R. J. Oakes, and B. Renner, Phys. Rev. ili’ 2195
(1968); S. L. Glashow and S. Weinberg, Phys. Rev. Letters 20, 22k
(1968).

Actually, there is freedom to induce (05) as well, if desired,
for a lowest order model of 1 — 3x. See also Appendix A.

As mentioned in Ref. 7 and footnote 3 of Ref. 8, it is elementary
to generalize to a ninth coupling £’ # f. See also in this

connection H. Georgi (unpublished).

M. Gourdin and E. de Rafael, Nucl. Phys. BlO, 667 (1969). our

" calculation parallels the vector contribution of the Z-exchange

diagram in the weak contribution to g-2 (with Z- parameters
replaced by p-parameters). See I. Bars and M. Yoshimura, Phys.
Rev. D6, 374 (1972); R. Jackiw and S. Weinberg, Phys. Rev. D5,

2396 (1972).



20.°

21.

22.

23,
2L,
25.
26.

-59-
M. Gell-Mann, Phys. 1, 63 (1964).
H. Aytac and I. Bars (in preparation).
This mechanism is now called "red, white, and blue quarks" by

Gell-Mann and collaborators (unpublished). The mechanism was

proposed independently, and at about the same time,by us in Ref.

We thank B. W. Lee for making this point to wus.
We thank S. Coleman for making this point to us.
S. Coleman and S. Gla.show, Amn. of Phys. 17, k1 (1962)

Pa.rt:.cle Data Group, Phys Letters, Apl‘ll 1972.



Sl

ARY o - i

LEGAL NOTICE

This report was prepared as an account of work sponsored by the
United States Government. Neither the United States nor the United
States Atomic Energy Commission, nor any of their employees, nor
any of their contractors, subcontractors, or their employees, makes
any warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness or usefulness of any
information, apparatus, product or process disclosed, or represents
that its use would not infringe privately owned rights.




/]

TECHNICAL INFORMATION DIVISION
LAWRENCE BERKELEY LABORATORY
UNIVERSITY OF CALIFORNIA
BERKELEY, CALIFORNIA 94720





