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Abstract

Purpose: To investigate whether selected carotid computed tomography angiography (CTA) 

quantitative features can predict 10-year atherosclerotic cardiovascular disease (ASCVD) risk 

scores.

Methods: One hundred seventeen patients with calculated ASCVD risk scores were considered. 

A semiautomated imaging analysis software was used to segment and quantify plaque features. 

Eighty patients were randomly selected to build models using 14 imaging variables and the 

calculated ASCVD risk score as the end point (continuous and binarized). The remaining 37 

patients were used as the test set to generate predicted ASCVD scores. The predicted and observed 

ASCVD risk scores were compared to assess properties of the predictive model.

Results: Nine of 14 CTA imaging variables were included in a model that considered the plaque 

features in a continuous fashion (model 1) and 6 in a model that considered the plaque features 
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dichotomized (model 2). The predicted ASCVD risk scores were 18.87% ± 13.26% and 18.39% ± 

11.6%, respectively. There were strong correlations between the observed ASCVD and the 

predicted ASCVDs, with r = 0.736 for model 1 and r = 0.657 for model 2. The mean biases 

between observed ASCVD and predicted ASCVDs were −1.954% ± 10.88% and −1.466% ± 

12.04%, respectively.

Conclusions: Selected quantitative imaging carotid features extracted from the semiautomated 

carotid artery analysis can predict the ASCVD risk scores.
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Atherosclerotic plaques may develop in the carotid arteries, with clinical sequelae of 

cerebrovascular disease.1 Accurate quantification of carotid plaque features is important as a 

complement to luminal stenosis measurements, because these features have been reported as 

being associated with an increased risk of stroke and cardiovascular disease.2–7

Carotid artery atherosclerotic plaques can be assessed using several different imaging 

modalities.8,9 Routinely acquired computed tomography angiography (CTA) holds 

significant potential in identifying high-risk plaque features.10 Computed tomography 

angiography allows for a fast and reliable evaluation of the carotid arteries and is able to 

assess both carotid lumen and carotid plaques, including plaque surface morphology and 

plaque composition.11,12 Using CTA to characterize carotid plaque volume and composition 

has been validated both in ex vivo and in vivo studies, using histology as the criterion 

standard.13–15

In 2013, the American College of Cardiology and the American Heart Association released 

new recommendations using the 10-year atherosclerotic cardiovascular disease (ASCVD) 

risk scores to guide initiation of statin treatment for patients with high risk of ischemic 

vascular diseases.16 Previous studies suggest some associations, but not a perfect overlap 

between ASCVD risk score and the carotid artery imaging findings extracted from CTA.17 A 

substantial fraction of patients with high 10-year ASCVD risk scores have minimal imaging 

abnormalities, and a significant fraction of patients with low 10-year ASCVD risk scores 

have imaging abnormalities. Carotid artery imaging can be more precise and provide 

improved prognostic information, allowing for better decision-making strategies.

However, visual assessment of carotid artery imaging is subjective and influenced by the 

experience of the reviewer.18 In addition, manual measurements of variables such as the 

degree of carotid artery stenosis or the maximal carotid plaque thickness are time consuming 

and prone to interoperator and intraoperator variability.14 Semiautomated approachesto 

assess CTA carotid artery imaging can extract multiple anatomic and compositional features 

rapidly and quantitatively.19,20 These features may be used to predict stroke and 

cardiovascular events and may have advantages over the ASCVD risk score.

Our goals in this study were to determine whether selected quantitative features from a 

semiautomated analysis of carotid CTA can be used to predict the ASCVD risk scores and 
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whether there are appropriate cutoff values for these quantitative features to predict the 

ASCVD risk scores.

MATERIALS AND METHODS

Study Population

We retrospectively identified a series of patients who underwent a head and neck CTA at our 

institution from January 2014 to July 2016. This study was approved by our institutional 

internal review board. Our institutional review board waived patient consent because of its 

retrospective nature. Clinical information was gathered from our electronic medical record 

to calculate the 10-year ASCVD scores using the Pooled Cohort Equations from the 2013 

American College of Cardiology and the American Heart Association guidelines.16 Patients 

who met one or more of the following conditions were excluded: (1) age outside the 40- to 

79-year range; (2) total cholesterol outside the 130- to 320-mg/dL range; (3) high-density 

lipoprotein (HDL) cholesterol outside the 20- to 100-mg/dL range; (4) systolic blood 

pressure outside the 90- to 200-mm Hg range; (5) no smoking status record; (6) received a 

coronary artery bypass graft or a carotid endarterectomy; (7) more than 6 months elapsed 

between the clinical visit/blood draw to measure the clinical variables and the imaging 

study; (8) poor quality of CTA owing to motion artifacts or other issues that interfered with 

postprocessing. A flowchart outlining patient selection is shown in Figure 1.

Carotid Artery CTA Acquisition Protocol

The CTA studies of the carotid arteries were performed on 16- or 64-slice computed 

tomography scanners (GE Healthcare, Milwaukee, Illinois) and (Siemens Healthcare, 

Erlangen, Germany) in helical mode. The carotid artery CTA, covering the midchest to the 

vertex of the brain, was collimated at 1 to 1.25 mm using 120 kVp and 240 mAs, and a 

rotation time of 0.6 to 0.8 second. A bolus of 70 to 80 mL of Isovue 300 or 370 (lopamidol; 

Bracco Diagnostics Inc, Monroe Township, NJ) was injected into an antecubital vein with a 

power injector at a rate of 4 to 5 mL/s. SmartPrep protocol was applied to monitor the 

contrast enhancement and trigger the CTA acquisition. Effective dose associated with the 

carotid artery CTA protocol was 5 to 7 mSv.

Imaging Review

Common carotid arteries and the cervical portion of the internal carotid arteries were 

assessed using a commercially available, semiautomated software package for 

atherosclerotic plaque imaging analysis (vascuCAP; Elucid Bioimaging, Wenham, Mass).
21,22 The common carotid artery and the cervical portion of the internal carotid artery were 

defined, and the software package automatically calculated a centerline, as well as lumen 

and wall segmentations.22 Within the segmentations, the software package then quantified 

features such as luminal diameter and wall thickness and tissue characteristics (Fig. 2). A 

total of 32 plaque features for each patient were thus calculated, and 14 of them were 

selected as imaging variables for further analysis (Table 1), as these were previously 

demonstrated as the most clinically relevant by Gupta et al.21
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Statistical Analysis

Training and Test Sets—Of all 117 cases, 80 cases were randomly selected using 

“sample” functions in R and then used as a training set to develop a classification model. 

The remaining 37 cases comprised the test set and were used to evaluate the predictive 

ability of the classification model.

Descriptive Statistics—We compared the demographic and imaging variables between 2 

groups of patients. We used Mann-Whitney U tests for continuous variables (age, total 

cholesterol, HDL cholesterol, systolic blood pressure, 10-year ASCVD score, and 14 

selected imaging variables generated by vascuCAP) and χ2 tests for binary variables (sex, 

arterial hypertension, diabetes history, and smoking history).

Multivariable Linear Regression Models—Generalized linear regression techniques 

were used to develop classification models. Using the training set, we performed multiple 

linear regression analyses using lm steps with backward in RStudio Desktop (Mac OS 

version 1.1.456, Boston, Mass). The calculated 10-year ASCVD risk was set as dependent 

variable. In model 1, the 14 imaging variables from vascuCAP were included as predictor 

variables. We also defined cutoff values for all those 14 imaging variables from vascuCAP to 

facilitate the clinical use of the software results. Histograms of those variables were used to 

determine cutoff values visually and to dichotomize these variables (Fig. 3). In model 2, 

these 14 binary variables were included as predictor variables.

With the test set, we used models 1 and 2 to generate predicted ASCVDs. One-way analyses 

of variance were used to analyze the differences among and the observed ASCVD and 2 

ASCVDs predicted by models 1 and 2. Correlations between the observed ASCVD and the 

ASCVD predicted by model 1 or 2 were calculated using Pearson correlation tests. Bland-

Altman analyses were used to assess the biases within 3 ASCVDs, respectively.

All statistical analyses were conducted using RStudio Desktop (Mac OS version 1.1.456). 

Statistical significance was set at α < 0.05.

RESULTS

Among 1405 patients who underwent carotid artery CTA during the study period, 117 

patients met the inclusion criteria and were included in the study cohort. These included 56 

females and 61 males with a mean age of 61.62 ± 10.01 years (range, 40–79 years). Mean 

ASCVD risk was 16.06% ± 14.66%. There were no significant demographic differences 

between the training and test sets (Table 2). Three imaging variables showed significant 

differences between the training and test sets (Table 2): vessel volume that includes the 

lumen and wall (P < 0.001), maximum calcified area proportion (P = 0.001), and wall 

volume divided by vessel volume inclusive of lumen and wall (P < 0.001).

Cutoff values of imaging variables were generated visually according to the histograms 

describing the distribution of their values (Fig. 3). There were 9 variables included in model 

1 and 6 variables included in model 2 (Table 3).
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In the test set, the observed ASCVD was 16.92% ± 15.90%. The ASCVD predicted by 

model 1 (semiautomated approach, continuous imaging features) was 18.87% ± 13.26% and 

18.39 ( ± 11.6% by model 2 (semiautomated approach, dichotomized imaging features). 

There were no significant differences among 3 ASCVDs (P = 0.424, Fig. 4A).

There were good correlations between the observed ASCVD and the ASCVD predicted by 

model 1 (r = 0.736; 95% CI, 0.540–0.856) and between the observed ASCVD and the 

ASCVD predicted by model 2 (r = 0.657; 95% CI, 0.423–0.809). Predicted ASCVDs by 

models 1 and 2 had an excellent correlation with each other (r = 0.900; 95% CI, 0.807–

0.946).

The mean value bias between observed ASCVD and predicted ASCVD according to model 

1 was −1.954% ± 10.88%. It was −1.466% ± 12.04% between observed ASCVD and 

predicted ASCVD according to model 2. It was 0.488% ± 5.88% between the 2 models 

(Table 4 and Figs. 4B–D).

DISCUSSION

In this study, we used selected multiple quantitative features from a semiautomated analysis 

to generate statistical models to predict the ASCVD risk scores. Our results suggest that a 

CTA-based, semiautomated plaque analysis can provide a quantitative technique in 

identifying patients at high risk of stroke/cardiovascular events. Nine carotid imaging 

features with continuous values and 6 carotid imaging features with dichotomized values 

were included in the models. Both models included the same 3 features: maximum lipid-rich 

necrotic core area, thickest wall across all cross sections of the target, and maximum cross-

sectional wall area, which had a significant positive correlation with the 10-year ASCVD 

risk scores. Maximum cross-sectional dilation based on lumen diameter had significant 

negative correlation with the 10-year ASCVD risk scores. Interestingly, the presence of 

calcium in the plaques was not retained in any of the models, confirming previous findings 

that calcium in the carotid artery plaque should not be considered a risk factor.23 Several 

studies have also demonstrated the stabilizing role of calcium not only in carotid artery 

studies, but also in coronary artery studies.24–26

The degree of stenosis or luminal narrowing is the accepted, primary diagnostic criterion 

used to evaluate the severity of carotid atherosclerosis.27 Many studies and trials suggest that 

significant arterial stenosis (70%–99%) is a reliable marker to identify those patients at 

highest risk of future ischemic stroke.28,29 However, because of the existence of positive 

remodeling, the presence of a large atherosclerotic plaque is not always associated with 

luminal narrowing.30 In addition, studies on carotid plaque also suggest plaque morphology, 

and composition can be used to predict the risk of future ischemic events.31,32 Recent 

studies have suggested that routine CTA can be used to assess the high-risk features of 

carotid artery plaques, because CTA provides tissue attenuation data that allows the 

identification of different plaque components10,33,34 in the vessel wall.

The ASCVD risk score, which quantifies the risk of stroke and cardiovascular events, can be 

calculated from age, sex, race, blood pressure, cholesterol values, diabetes mellitus, and 
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smoking status. Previous studies demonstrated that patients with high 10-yearASCVD risk 

scores have more advanced CTA imaging features of carotid artery atherosclerosis.17 

However, in those studies, plaque imaging analysis on CTA was performed by subjective 

review by imaging experts, which suffers from limited intraobserver and interobserver 

reproducibility.

Accurate quantification of specific plaque features, such as anatomic structure and tissue 

characteristics, based on a semiautomated approach, can be more reliable and less time 

consuming. Several studies validated that a semiautomatic CTA-based image segmentation 

approach, using an imaging processing software package benchmarked against 

histopathologic examinations of endarterectomy specimens, can identify, locate, 

characterize, and quantify atherosclerotic plaques in carotid artery.19–21,35–40 However, 

whether selected quantitative features from the semiautomated approach can be used to 

predict the ASCVD risk scores has not previously been determined.

Our study was limited in that it was a retrospective study in a single center with limited 

power. Although 10-year ASCVD risk score has been widely used, it is only a surrogate end 

point, not the criterion standard to predict stroke and cardiovascular disease. Further studies 

are needed to validate our results and also to prospectively determine the real correlations 

between plaque imaging features and future stroke/cardiovascular events as could be 

determined in a prospective study. Another limitation is that carotid CTA is unlikely to be 

used routinely for risk prediction for primary prevention. However, an important point is that 

CTA plaque characterization is useful in ASCVD risk prediction, beyond just plaque 

stenosis, especially for patients at higher risk.

In conclusion, our study determined that selected quantitative imaging carotid features 

extracted from the semiautomated analysis of the carotid arteries can be used to predict the 

observed ASCVD risk scores.
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FIGURE 1. 
Flowchart outlining patient selection.
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FIGURE 2. 
Example of segmentation and analysis of common and internal carotid arteries. Up, The 3-

dimensional segmentation of lumen and vessel wall of common and internal carotid arteries 

and their cross-sectional representations of lumen and wall. Down, The analysis of plaque 

components (yellow = LRNC, blue = matrix, green = calcification, red = intraplaque 

hemorrhage if it exists) of left carotid artery in axial, coronal, and sagittal planes.
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FIGURE 3. 
Histogram for 14 carotid artery features on CTA and the corresponding cutoff values 

(arrows).
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FIGURE 4. 
Differences among observed ASCVD and ASCVD predicted by model 1 (semiautomated 

approach, continuous imaging features) and model 2 (semiautomated approach, 

dichotomized imaging features).
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