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Structural and functional underconnectivity have been reported for multiple brain regions, functional systems,
and white matter tracts in individuals with autism spectrum disorders (ASD). Although recent developments
in complex network analysis have established that the brain is a modular network exhibiting small-world prop-
erties, network level organization has not been carefully examined in ASD. Here we used resting-state functional
MRI (n=42 ASD, n=37 typically developing; TD) to show that children and adolescents with ASD display re-
duced short and long-range connectivity within functional systems (i.e., reduced functional integration) and
stronger connectivity between functional systems (i.e., reduced functional segregation), particularly in default
and higher-order visual regions. Using graph theoretical methods, we show that pairwise group differences in
functional connectivity are reflected in network level reductions in modularity and clustering (local efficiency),
but shorter characteristic path lengths (higher global efficiency). Structural networks, generated from diffusion
tensor MRI derived fiber tracts (n=51 ASD, n=43 TD), displayed lower levels of white matter integrity yet
higher numbers of fibers. TD and ASD individuals exhibited similar levels of correlation between raw measures
of structural and functional connectivity (n=35ASD, n=35 TD). However, a principal component analysis com-
bining structural and functional network properties revealed that the balance of local and global efficiency be-
tween structural and functional networks was reduced in ASD, positively correlated with age, and inversely
correlated with ASD symptom severity. Overall, our findings suggest that modeling the brain as a complex net-
work will be highly informative in unraveling the biological basis of ASD and other neuropsychiatric disorders.

© 2012 The Authors. Published by Elsevier Inc. All rights reserved.
1. Introduction

Autism spectrum disorders (ASD) are increasingly prevalent
neurodevelopmental disorders (Kim et al., 2011) characterized by atyp-
ical social behavior, including deficits in receptive and expressive lan-
guage, theory of mind, and mental flexibility. Findings of functional
underconnectivity between brain regions in individuals with ASD rela-
tive to matched controls have been reported as they perform a variety
of cognitive tasks (see Schipul et al., 2011, for review). Multiple studies
have found that task-independent (i.e., intrinsic) functional connectivity,
including interhemispheric (Anderson et al., 2011a) and default mode
erms of the Creative Commons
tribution, and reproduction in
re credited.
n Mapping Center, University
h, Los Angeles, CA 90095-7085,

blished by Elsevier Inc. All rights re
network (DMN) connectivity is also lower in ASD (e.g., Kennedy and
Courchesne, 2008). Further supporting an underconnectivity theory, dif-
fusion tensor imaging (DTI) studies have found reductions in structural
white matter integrity across most major tracts (see Vissers et al., 2012,
for review).

In addition to reports of reduced functional connectivitywithinmajor
networks (i.e., functional integration), connectivity betweendifferent net-
works (i.e. functional segregation) is altered in ASD (Rudie et al., 2012a).
Functional brain networks become simultaneously more integrated and
segregated during typical development (e.g., Fair et al., 2009) and white
matter integrity increases during development (e.g., Lebel et al., 2012),
suggesting that brain networks in ASDmay reflect ‘immature’ or aberrant
developmental processes.

Despite this array of regional and systems level findings in ASD, it is
unclear how these alterations might be reflected at a network level
where the brain is modeled as a network of hundreds of interacting re-
gions composing several integrated and segregated systems. Graph theo-
ry, which describes complex systems as a set of “nodes” (i.e., brain
regions) and “edges” (i.e., connections betweennodes), has characterized
served.

http://crossmark.dyndns.org/dialog/?doi=10.1016/j.nicl.2012.11.006&domain=f
http://dx.doi.org/10.1016/j.nicl.2012.11.006
mailto:rudie@ucla.edu
http://dx.doi.org/10.1016/j.nicl.2012.11.006
http://www.sciencedirect.com/science/journal/22131582
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the brain as a complex networkwith a hierarchical modular organization
consisting of several major functional communities (i.e., visual, sensori-
motor, default mode, and attentional systems; see Wang et al., 2010, for
review). Structural and functional brain networks exhibit robust levels
of local and global efficiency (i.e., small-world properties; Watts and
Strogatz, 1998) that can be quantitatively characterized using graph the-
oretical methods (Bullmore and Sporns, 2009; Rubinov and Sporns,
2009). Structural and functional graph theoretical studies have begun to
map how local and global network properties change during develop-
ment (Fair et al., 2009; Hagmann et al., 2010), aging (e.g., Meunier
et al., 2009) and in diseases such as schizophrenia (e.g., Bassett et al.,
2008) and Alzheimer's (e.g., Supekar et al., 2008).

In this study we sought to compare functional and structural con-
nectivity in children and adolescents with ASD relative to typically
developing (TD) children by characterizing local and global graph
theoretical metrics of structural and functional networks using a re-
cently validated 264-region functional parcellation scheme (Power
et al., 2011). We first compared simpler network connections and
then characterized higher-level network properties including clus-
tering, characteristic path length, small worldness and modularity.
Additionally, since structural connectivity has been shown to corre-
late with functional connectivity (Hagmann et al., 2008; Honey
et al., 2009), we wanted to determine whether structure–function
correlations differed between groups and how functional and struc-
tural network properties relate to each other across development in
TD and ASD individuals.
Table 1
Mean, standard deviation and range of sample descriptives.

Characteristic Typically developing

Resting state (RS) sample
Sample size 37.0
Number of females 6.0
Age 13.0+/−2.0, 9.5–17.8
Verbal IQ 108.4+/−11.0, 86–12
Performance IQ 105.2+/−11.9, 76–12
Full scale IQ 106.8+/−10.0, 84–12
Mean relative head motion (mm) 0.09+/−0.07, 0.03–0
Maximum relative head motion (mm) 0.66+/−0.63, 0.10–2
ADOS (Comm+Soc) N/A
ADI total N/A

Diffusion tensor imaging (DTI) sample
Sample size 43.0
Number of females 7.0
Age 13.1+/−2.4, 9.0–18.0
Verbal IQ 108.2+/−12.6, 86–13
Performance IQ 105.9+/−13.2, 76–13
Full scale IQ 108.2+/−12.5, 84–13
Mean relative head motion (mm) 0.41+/−0.13, 0.27–0
Maximum relative head motion (mm) 1.52+/−0.69, 0.96–4
ADOS (Comm+Soc) N/A
ADI total N/A

DTI and RS sample
Sample size 35.0
Number of females 6.0
Age 13.0+/−2.1, 9.5–18.0
Verbal IQ 108.3+/−11.5, 86–12
Performance IQ 105.4+/−12.1, 76–12
Full scale IQ 107.7+/−11.0, 84–12
RS mean relative head motion (mm) 0.09+/−0.07, 0.03–0
RS maximum relative head motion (mm) 0.67+/−0.65, 0.10–2
DTI mean relative head motion (mm) 0.39+/−0.12, 0.27–0
DTI maximum relative head motion (mm) 1.45+/−0.59, 1.00–4
ADOS (Comm+Soc) N/A
ADI total N/A

Data is mean+/−standard deviation, minimum–maximum. Columns on the right display
displays p-values from a Chi square test.
2. Materials and methods

2.1. Subjects

High-functioning children and adolescents with ASD, as well as TD
children and adolescents, were recruited through UCLA's Center for Au-
tism Research and Treatment (CART) and flyers posted throughout the
greater Los Angeles area. Individualswithmetal implants, psychiatric or
neurologic disorders, structural brain abnormalities, or known genetic
conditions were excluded from participation. Informed consent and as-
sent to participatewas obtained prior to assessment according to proto-
cols approved by the UCLA Institutional Review Board (IRB). Verbal,
performance, and overall intelligence were assessed for each partici-
pant using the Wechsler Abbreviated Scale of Intelligence (WASI;
Wechsler, 1991) or the full Wechsler Intelligence Scale for Children
(WISC; Wechsler, 1999). High-functioning children with ASD had a
prior clinical diagnosis of autism based on criteria from the Diagnostic
and Statistical Manual of Mental Disorders (DSM IV), which was con-
firmed with the Autism Diagnostic Observation Scale (ADOS-G; Lord
et al., 2000) and/or Autism Diagnostic Interview (ADI-R; Lord et al.,
1994).

A total of 60 individuals with ASD (52 males and 8 females) and 45
TD individuals (38males and 7 females)were included in either the rest-
ing state, DTI or combined resting state/DTI final matched datasets
(Table 1). After excluding subjects with excessive headmotion, the rest-
ing state sample included42ASD subjects and37 TD subjects and theDTI
Autism spectrum p value

42.0
6.0 0.81
13.5+/−2.4, 9.3–17.9 0.30

7 103.6+/−12.7, 79–132 0.07
9 103.5+/−14.4, 72–134 0.57
8 103.3+/−14.0, 79–134 0.19
.37 0.11+/−0.07, 0.04–0.37 0.33
.46 0.83+/−0.61, 0.15–2.50 0.25

11.1+/−3.9, 2.19 N/A
47.9+/−9.8, 23–63 N/A

51.0
6.0 0.53
13.0+/−2.8, 8.4–18.2 0.82

1 104.3+/−13.9, 83–141 0.15
4 105.0+/−14.6, 72.135 0.74
4 104.1+/−13.2, 79–132 0.15
.81 0.42+/−0.11, 0.26–0.66 0.71
.62 1.71+/−0.81, 0.90–4.86 0.23

10.8+/−3.6, 2–19 N/A
47.4+/−11.6, 16.68 N/A

35.0
5.0 0.74
13.4+/−2.6, 9.1–18.2 0.51

7 102.9+/−13.9, 79–132 0.08
9 105.1+/−14.5, 72–135 0.94
8 103.2+/−13.6, 79–132 0.13
.37 0.10+/−0.06, 0.04–0.29 0.38
.46 0.80+/−0.57, 0.15–2.10 0.37
.78 0.40+/−0.09, 0.26–0.59 0.81
.62 1.44+/−0.47, 0.90–3.17 0.99

11.3+/−3.8, 2–19 N/A
47.8+/−9.8, 23–61 N/A

p-values for two sample t-tests for each sample characteristic except for sex, which
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sample included 51 ASD subjects and 43 TD. Both structural and func-
tional data were available for 35 ASD and 35 TD subjects. The three
sets of matched groups did not significantly differ based on age, sex,
mean/maximum head motion, or full-scale, verbal and performance IQ
(Table 1).

Twenty-two individuals with ASD and one TD individual reported
the use of one or more psychotropic medications. One TD subject was
using a psychostimulant. Of the subjects in our ASD sample, 12 were
taking psychostimulants, 5 were taking sympatholytics, 9 were taking
atypical antipsychotics, 9 were taking selective serotonin reuptake in-
hibitors, 3 were taking selective norepinephrine reuptake inhibitors,
3 were taking an atypical antidepressant, and 2 were taking anticon-
vulsants. There were no significant differences (ps>0.30) between
medicated and unmedicated ASD individuals for each of the function-
al and structural measures described in the following sections.

2.2. MRI data acquisition

All resting-state fMRI and DTI scans were acquired on a Siemens 3 T
Trio at UCLA. A scout localizing scan was collected to help prescribe the
orientation of the scans. Next, a matched bandwidth T2-weighted
high-resolution echo planar scanwas acquired co-planar to the function-
al images, which ensures identical distortion characteristics for registra-
tion purposes (Siemens 3 T Trio: TR=5000 ms, TE=34 ms,matrix size:
128×128, 19.2 cm FoV, and 36 4-mm thick slices with an in-plane voxel
dimension of 1.50×1.50 mm). In a single session, subjects were asked to
relax and keep their eyes open while a fixation cross was displayed on a
white background for 6 min (T2*-weighted functional images: TR=
3000 ms, TE=28 ms, matrix size 64×64, 19.2 cm FoV, and 34 4-mm
thick slices (no gap), interleaved acquisition, with an in-plane voxel di-
mension of 3.0×3.0 mm). The DTI sequence consisted of 32 scans with
different diffusion-weighted directions (b=1000 s/mm2), three scans
with no diffusion sensitization, at b=0, and additional six scans at b=
50 s/mm2. Other parameters were TR=9500 ms, TE=87 ms, GRAPPA
on, FOV=256 mm, with 75 slices, yielding an in-plane voxel dimension
of 2×2mmwith 2-mm thick axial slices, and total scan time=8 min 1 s.

2.3. Resting state fMRI preprocessing

Imagingdatawere analyzedusing FSL version4.1.4 (FMRIB's Software
Library, www.fmrib.ox.ac.uk/fsl; Smith et al., 2004) and AFNI (Analysis of
Functional NeuroImages; Cox, 1996). Structural and functional images
were skull-stripped using AFNI (3dskullstrip and 3dautomask). Function-
al volumes were motion corrected to the mean functional volume with
MCFLIRT (Motion Correction using FMRIB's Linear Image Registration
Tool) using a normalized correlation ratio cost function and sinc interpo-
lation (Jenkinson et al., 2002). Translations and rotations in the x, y, and z
dimensions were calculated from volume to volume and averaged to
generate mean andmax relative displacement values, which did not sig-
nificantly differ between the final matched groups (Table 1). Subjects
with a single displacement (combined translational and rotationalmove-
ments) greater than 2.5 mm (13 ASD and 5 TD) were excluded prior to
further analyses and not included in the final samples. Images were spa-
tially smoothed using a Gaussian kernel of FWHM5 mm. A band pass fil-
ter (0.1 Hz>t>0.01 Hz)was applied to the data in order tominimize the
effects of cardiac and respiratory fluctuations. The 6 rigid body mo-
tion parameters and average white matter (WM), cerebrospinal
fluid (CSF), and global time-series and their temporal derivatives
were then regressed out of the data. The WM and CSF time-series
reflected signal from subject-specific regions of interest created
using FAST (FSL's Automatic Segmentation Tool). Given the recent
concerns regarding the effect of motion in resting state fMRI connectiv-
ity (Power et al., 2012; VanDijk et al., 2012), in addition tomatching the
groups bymean andmaximum relative headmotion, we also regressed
out individual volumes with large signal intensity changes (i.e., mo-
tion spikes) by creating additional nuisance regressors that modeled
individual time points with greater than half of a standard deviation
change in global signal intensity.
2.4. Resting state fMRI connectivity matrix construction

Onemajormethodological hurdle in graph theory approaches to neu-
roimaging concerns how to define the nodes of the network (Wanget al.,
2009; Zalesky et al., 2010; Craddock et al., 2011; Power et al., 2011).Most
studies have used anatomical atlases (e.g., He et al., 2007) or individual
voxels (e.g., van den Heuvel et al., 2008) as nodes. However, anatomical
atlases include relatively large regions that are likely to contain multiple
functional regions, which can distort/obscure true properties of the net-
work bymixing distinct signals (Butts, 2009; Smith et al., 2010; Craddock
et al., 2011; Power et al., 2011). Conversely, voxel-wise parcellation ap-
proaches can be biased by artificially strong local connections (Power
et al., 2011, 2012). A whole-brain parcellation scheme was recently cre-
ated based on a large meta-analysis of fMRI studies combined with
whole brain functional connectivity mapping (Power et al., 2011). This
set of 264 putative functional regions was shown to more accurately
represent the information present in the network (i.e., it was better at
detecting previously characterized functional networks such as dorsal
and ventral attention subnetworks) relative to voxelwise and atlas-
based parcellation approaches. Therefore, we chose this set of 264 re-
gions for whole-brain parcellation. For each subject, 5-mm radius
spheres based on the MNI coordinates of these 264 regions (Power
et al., 2011) were registered to functional space (12 DOF, affine,
and correlation ratio cost function) through registration from the MNI
152 template to the high-resolution echo-planar (12 DOF, affine, and
mutual information cost function) using FSL's Linear Image Registration
Tool (FLIRT). We then correlated timeseries between each of the 264
brain regions and z-transformed correlation coefficients in order to gen-
erate 264×264 whole brain functional connectivity matrices for each
subject. Graph theoretical metrics and statistics were computed with
Matlab (TheMathworks, Natick,MA) using the Brain Connectivity Tool-
box (Rubinov and Sporns, 2009).

Before comparing graph theoretical properties, we sought to in-
vestigate pairwise differences in connection strengths as a function
of the network's modularity, which refers to the set of subnetworks
or distinct communities that exist within the network as a whole.
Constructing the most representative modularity partition is an active
area of research (http://arxiv.org/abs/1206.4358); however, at pres-
ent there is no single, agreed-uponmethod for choosing themost repre-
sentative partition. Here we used the Louvain modularity algorithm
(Blondel et al., 2008) applied to the unthresholded functional connectiv-
ity matrix averaged across all subjects after removing all negative
weights. Although there is some recent work regarding how to incorpo-
rate negative weights into graph theoretical metrics (Rubinov and
Sporns, 2011; Schwarz and McGonigle, 2011), we chose to use
well-established algorithms that use only positive connections in the cal-
culation of graph theoretical metrics. We chose a random partition
containing 4 modules (the most common number of modules identified
over 100 runs of the algorithm) as our representative partition and
reorganized the order of nodes in the functional connectivity matrix by
thismodular organization for visualization purposes (Fig. 1A). This repre-
sentative partition was also used to determine whether each connection
was a within- or between-module connection for additional calculations
described in the next paragraph. The similarity of this chosenmodularity
partition with 99 other modularity iterations of the group average ma-
trix was calculated using normalized mutual information (NMI;
Meilă, 2007). Additionally, given the controversy regarding the accu-
racy of comparingmodularity of group average matrices (Simpson et
al., 2012) with individual subject matrices, we compared the similar-
ity of each individual's modular organization with that of our repre-
sentative group average modular organization with NMI (Meilă,
2007).

http://www.fmrib.ox.ac.uk/fsl
http://matplotlib.sourceforge.net


Fig. 1. Functional network organization. (A) Average functional connectivity matrix reorganized by its modular organization with colored boxes around each of the four commu-
nities (visual = blue, sensorimotor = red, attention/control = cyan, and default = yellow). (B) Three dimensional sagittal and axial views of the functional graph in anatomical
space displaying top 2% of connections and nodes colored by community. (C) Functional connectivity matrix group differences (pb0.05 uncorrected) displaying typically developing
(TD)>Autism Spectrum Disorder (ASD) for positive (red), ASD>TD for positive (orange), TD>ASD for negative (blue) and ASD>TD for negative (green). (D) Numbers of TD>ASD
and ASD>TD between group connections differing for within group positive connections (left) and between group negative connections (right).
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In order to interrogate pairwise differences in connection strengths
between the two groups, two-sample t-tests were performed for every
z-transformed connection strength value (Fig. 1C). The significance
was set at pb0.05, uncorrected, for these initial exploratory analyses.
If there was significantly lower connectivity in a connection for the
ASD or TD group (vs. the other group) that had an average correla-
tion value below zero, it was categorized as stronger negative con-
nectivity for that group (as opposed to stronger positive connectivity
for the other group, which is mathematically equivalent) given that
negative or anticorrelations are likely to represent real phenomenon
(Chang and Glover, 2009; Anderson et al., 2011c; Smith et al., 2012)
and stronger connectivity for one group simply represent weaker nega-
tive connectivity for the other group (Anderson et al., 2011b; Rudie
et al., 2012a). The number of connections differing between groups
was assessed for each of the identified modules both for within-
module positive connections and between-module negative connec-
tions (Fig. 1D). Numbers of within-module positive and between-
module negative connections differing between groupswere compared
and displayed as a function of the connection's average z-transformed
correlation value (Fig. 2A) and Euclidean distance between regions
(Fig. 2B).
2.5. Resting state fMRI connectivity graph theoretical analyses

As there is no rationale for using a particular cutoff for functional
connectivity strength to determine whether an edge exists in a func-
tional network, we compared local and global network properties
over a range of functional connection thresholds. Thresholding a net-
work based on correlation strength can yield different network spar-
sities (number of existing edges divided by number of possible edges),
which influence network properties and can bias a comparison of
graph metrics between groups (Ginestet et al., 2011; Schwarz and
McGonigle, 2011; Bassett et al., 2012). In fact, we found that at higher
z-correlation thresholds the TD group had a higher average sparsity
(Fig. 3A). Therefore, we chose to equalize network sparsity between
subjects by taking an equivalent percentage of the strongest positive
connections (negative connections were ignored) for each subject and
binarizing the networkweights before calculating graph theoreticalmet-
rics. Binarization is a common step in functional graphs (e.g., Achad and
Bullmore, 2007; Supekar et al., 2008) in order to preserve only the stron-
gest (most probable) functional connections and treat these connections
equivalently.We examined functional network properties between 15%
and 32% sparsity. The upper threshold of 32% was chosen because the



Fig. 2. Distribution of functional connectivity differences. (A) Numbers of connections with significant group differences for typically developing (TD)>Autism Spectrum Disorder
(ASD; black) and ASD>TD (white) displayed as a function of average connectivity strength across all subjects and (B) average Euclidean distance for within-module connections
(left) and between-module connections (right).
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weakest edge it includes corresponds to a correlation coefficient of 0.15,
which is the minimum correlation needed to be statistically significant
(pb0.05) across 120 functional images. At lower sparsity levels, net-
work properties begin to break down as the network becomes
fragmented. Therefore, we chose 15% sparsity (corresponding to a min-
imum correlation coefficient of 0.34 (pb .001)) as the low end of the
range based on the requirement that all individual subject graphs be
fully connected (Fig. 3B).

We focused on 6 global graph theoretical metrics (see Rubinov and
Sporns, 2009 for formulas of these metrics). These metrics were: clus-
tering coefficient (CC), which measures how much neighbors of a node
are connected to each other and is closely related to local efficiency;
characteristic path length (CPL), which is the average number of edges
needed to get from any node in the network to any other node in the
network and is inversely related to global efficiency; normalized CC
and CPL (lambda and gamma), which are calculated as the ratios of CC
or CPL to the average CC or CPL from simulated random networks;
small worldness, which is the ratio of lambda to gamma (Humphries
et al., 2006); and modularity Q values, which represent the proportion
of within-module edges in the network minus within-module edges
calculated froma similar randomnetwork (Newman, 2006). For the cal-
culation of lambda and gamma, we randomized networks by starting
with a true network and then performing random double edge swaps
with the constraint that these swaps must maintain the connectedness
of the network. This algorithm preserved the degree of each node in the
true network and was performed with the randmio_und_connected.m
script in the Brain Connectivity Toolbox. One hundred of these random
networks were calculated for each subject. Lambda and gamma were
calculated using the mean of the C and L from the random networks.
Since modularity Q values can vary based on random differences in
module assignments from run to run, Q values were averaged over
100 iterations of the algorithm. All metrics were averaged across 15%
to 32% sparsities in 1% increments to generate average values for each
metric given the smooth curve across the sparsity range (Fig. 3). Two
sample t-tests were performed on these metrics between subjects at
each sparsity level (Fig. 3C–H) and for metrics averaged across sparsity
levels (Table 2). To correct formultiple comparisons across the 6metrics,
False Discovery Rate (FDR qb0.05; Benjamini and Hochberg, 1995;
Storey and Tibshirani, 2003) was applied. For each node, clustering
coefficients, participation coefficients and betweenness centrality
were also averaged across sparsity levels for each subject and com-
pared between groups (Fig. 4A). Betweenness centrality measures
how often the shortest path goes through a given nodewhile participa-
tion coefficients reflect howmuch a node interacts with nodes in differ-
ent communities (Guimerà et al., 2005) and each roughly corresponds
to global metrics of characteristic path length and modularity, respec-
tively. Differences in nodal metrics are shown at more stringent (FDR:
qb0.05) and less stringent thresholds (pb0.05, uncorrected).

2.6. Diffusion MRI preprocessing

Individual volumes with gross motion artifacts were excluded from
further analysis and subjects with excessivemotion (greater than 8 vol-
umes (20%)withmotion artifacts)were not included in final samples (6
ASD and 3 TD). Motion and eddy current correction was performed on
the diffusion-weighted images using eddy_correct in FMRIB's Diffusion
Toolbox (FDT), while MCFLIRT was used to quantify mean and maxi-
mum relative motion (Table 1), which did not differ between groups.

image of Fig.�2


Fig. 3. Graph theoretical metrics of functional networks. (A) Average and standard error for TD (red) and ASD (blue) number of components, (B) minimum correlation coefficient
for edges, (C) clustering coefficient, (D) gamma, (E) characteristic path length, (F) lambda, (G) small worldness and (H) modularity Q values as a function of network sparsity. Num-
ber of components and minimum correlation strength are shown between 1% and 50% network sparsity in 1% increments while other network properties are displayed between
15% and 32% network sparsity in 1% increments (equivalent to minimum correlation values of 0.34 and 0.15). Significant between group differences (pb0.05) are indicated by *.
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Table 2
Mean and standard deviation of functional and structural graph metrics.

Characteristic Typically developing Autism spectrum p value

Functional (42 ASD vs 37 TD)
Clustering coefficient 0.56+/−0.03 0.54+/−0.03 0.012⁎
Characteristic path length 1.92+/−0.05 1.89+/−0.05 0.02⁎
Lambda 2.18+/−0.12 2.13+/−0.13 0.070
Gamma 1.09+/−0.03 1.07+/−0.03 0.02⁎
Small worldness 2.00+/−0.10 1.98+/−0.12 0.420
Modularity (Q) 0.40+/−0.03 0.38+/−0.03 0.008⁎

Structural (51 ASD vs 43 TD)
Clustering coefficient 0.46+/−0.01 0.46+/−0.01 0.750
Characteristic path length 2.77+/−0.04 2.77+/−0.04 0.490
Lambda 5.44+/−0.23 5.39+/−0.19 0.270
Gamma 1.24+/−0.02 1.24+/−0.02 0.990
Small worldness 4.38+/−0.16 4.33+/−0.13 0.120
Modularity (Q) 0.68+/−0.01 0.67+/−0.01 0.030

Data is mean+/−standard deviation. p values were generated from two-sample
t-tests performed on each metric averaged over a range of sparsity thresholds.
⁎ Survives FDR (qb0.05).
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Dtifit was used to fit a diffusion tensor model to the data at each voxel
and calculate voxelwise Fractional Anisotropy (FA) values for each sub-
ject. Whole brain deterministic tractography was then performed using
the fiber assignment by continuous tracking (FACT) algorithm (Mori
and van Zijl, 2002) in Diffusion Toolkit (http://trackvis.org/dtk). We
sought to boost the likelihood of detecting longer fibers between spatial-
ly separate spherical ROIs by relaxing constraints on our tractography al-
gorithm. Therefore, tractography was carried out by propagating fibers
from each voxel with a maximum turn angle of 50° (Zalesky et al.,
2010; Brown et al., 2011) and without an FA cutoff. The spatial sepa-
ration of the ROIs effectively acts as a filter and offsets the reduced con-
straints placed on tractography as, with greater distance, it becomes less
Fig. 4. Nodal differences in clustering and participation coefficients. (A) Two dimensional a
connections with nodes colored by community organization (left columns) and radii pro
corrected qb0.05 (pb0.0013) in black; right column) for nodal clustering (TD>ASD) and (
likely that spurious fibers will continue to propagate and connect dis-
tant ROIs. Fibers were smoothed using a spline filter. Fibers shorter
than 5 mm were excluded as this corresponds to 2 voxels, for which a
turn angle cannot be determined.

2.7. Diffusion MRI fiber connectivity matrix construction

Weused the same set of 264 coordinates from Power et al. (2011) to
generate 10 mm radius spheres in MNI space. Dilating spheres to
10 mm radii (relative to 5 mm radii spheres for functional nodes) en-
sured inclusion of nearby white matter fibers given that nodal coordi-
nates were centered in gray matter. This set of nodes covers 50.6% of
all white matter voxels based on FSL's white matter tissue priors
thresholded at 50%. Additionally, on average 60.9% of the voxels in
each ROI werewhitematter voxels. These 264maskswere transformed
to each subject's diffusion space (12 DOF, affine, and correlation ratio
cost function) through registration to the hires image (12 DOF, affine,
and mutual information cost function). In order to generate edges be-
tween nodes of structural networks, the number of fibers connecting
each regionwas counted. A fiberwas defined as connecting two regions
if one fiber endpoint terminated within one region and the other end-
point terminated within the other region. This process was repeated
using all 264 regions as seeds in order to derive a 264×264 whole
brain structural connectivity matrix for each subject, using custom soft-
ware written for this purpose (UCLA Multimodal Connectivity Package;
http://github.com/jbrown81/umcp). Additionally, average FA and mean
diffusivity (MD) were calculated for each connection.

The Louvain modularity algorithm (Blondel et al., 2008) was run on
the group average unthresholded fiber connectivity matrix. The order
of nodes in the fiber connectivitymatrixwas reorganized based on a rep-
resentative modularity partition with 9modules (Fig. 5A). The similarity
of this representative average modularity partition was compared with
each individual matrix's modularity partition as well as 99 additional
xial and sagittal views of the functional graph in anatomical space displaying top 5% of
portional to average and significant between group differences (pb0.05 in gray, FDR
B) participation coefficients (ASD>TD).

http://trackvis.org/dtk
image of Fig.�4


Fig. 5. Structural network organization. (A) Average structural connectivity matrix reorganized by its modular organization. (B) Three dimensional sagittal and axial views of the
structural network in anatomical space displaying top 2% of connections. (C) Structural connectivity matrix group differences (pb0.05, uncorrected) displaying typically developing
(TD)>Autism Spectrum Disorder (ASD) for fiber counts and (D) mean diffusivity in the connectivity matrix and in 3D brain space.
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runs of the modularity algorithm on the average matrix using normal-
ized mutual information (Meilă, 2007).

Two sample t-tests (pb0.05, uncorrected for initial exploratory anal-
yses) were performed on fiber counts, FA, andMD for every connection
after masking by connections that have an average of 5 or more fibers
(5.75% of all possible connections; Fig. 5B,C) in order to minimize false
positive connections. Connections differing between groups for number
of fibers and MD were compared as a function of average fiber count
and Euclidean distance.

2.8. Structural connectivity graph theoretical analyses

For structural networks, we examined the same six global network
properties as functional networks (CC, CPL, lambda, gamma, small
worldness and modularity Q values) averaged between 5% and 8.5%
sparsity in 0.5% increments. Structural networks were then binarized
in order to maintain maximum comparability to equivalent functional
networks. A sparsity level of 5% represented the minimum sparsity
level at which every subject's graph was fully connected (Fig. 6A) and
8.5% represented the average unthresholded sparsity of all subject's
structural matrices (Fig. 6B). Two sample t-tests were performed on
these six metrics between subjects for averaged metrics (with FDR cor-
rection) as well as at each sparsity level.

2.9. Correlation between fiber count and functional connectivity strengths

Fiber counts of every connection with an average of at least 5 fi-
bers were correlated with functional connectivity strengths for
each of the 35 ASD and 35 TD subjects (Fig. 7). Additionally, fiber
count/functional connectivity correlations were computed for within-
and between-module connections and specifically for within-module
connections with lower levels of functional connectivity as identified
in Fig. 1C. These structure–function correlations were z transformed,
then compared between groups (with two-sample t-tests).

2.10. Principal component analysis of functional and structural network
properties

We ran an exploratory principal component analysis (PCA) on the
six average functional global graph metrics and the six average
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Fig. 6. Graph theoretical metrics of structural networks. (A) Average and standard error for TD (red) and ASD (blue) number of components, (B) minimum fiber count for edges, as a
function of network sparsity. Number of components and minimum correlation strength are shown between 1% and 12% network sparsity in 0.5% increments. Significant between
group differences (pb0.05) are indicated by *. Gamma (C) and modularity (D) residuals after regressing out mean and relative values are displayed as a function of age in the TD
(gray) and ASD (black) groups.
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structural graph global metrics across all 70 subjects with PASW Sta-
tistics 18, Release Version 18.0.3 (SPSS, Inc., Chicago, IL). Values for
the first four of 12 total components were computed for each subject
and compared between groups (two sample t-tests, with FDR correc-
tion), and correlated with chronological age after regressing out
mean relative motion (with FDR correction; Table 3; Fig. 8A,B). The
two components that significantly differed between groups were
also tested for correlation with symptom severity (as measured by
Fig. 7. Structure–function correlations. (A) Average functional connectivity and (B) structur
networks. Correlation between structure and function for group average connections with
the social and communication subscales of the ADOS and ADI; with
FDR correction) within the ASD group after regressing out mean rel-
ative motion and age (Table 3; Fig. 8C–D).

2.11. Graph renderings and visualizations

Renderings were generated from scripts in the UCLA Multimodal
Connectivity Package (http://github.com/jbrown81/umcp) and
al fiber connectivity matrices after reorganizing by modular organization for functional
a minimum average of 5 fibers.

http://github.com/jbrown81/umcp
image of Fig.�6
image of Fig.�7


Table 3
Principal component analysis of functional and structural network metrics.

Component 1 Component 2 Component 3 Component 4

Functional CC 0.863 0.369 −0.33 −0.008
Functional CPL 0.81 0.317 −0.486 −0.012
Functional lambda 0.551 0.471 0.672 0.047
Functional gamma 0.813 0.328 −0.471 −0.013
Functional small worldness 0.174 0.327 0.92 0.05
Functional modularity (Q) 0.783 0.418 0.363 −0.051
Structural CC −0.44 0.415 −0.221 0.04
Structural CPL −0.436 0.656 −0.051 −0.604
Structural lambda −0.441 0.775 −0.121 0.329
Structural gamma −0.455 0.671 −0.046 −0.571
Structural small worldness −0.337 0.648 −0.122 0.593
Structural modularity (Q) −0.406 0.373 −0.029 0.314
Total variance explained 33.90% 25.50% 17.40% 10.50%
Relationship with diagnosis b=−0.30, p=0.009⁎ b=−0.13, p=0.30 b=0.01, p=0.95 b=−0.32, p=0.007⁎
Correlation with age (All) r=0.24, p=0.04 r=0.07, p=0.34 r=−0.02, p=0.87 r=−0.06, p=0.62
Correlation with age (TD) r=0.28, p=0.11 r=−0.24, p=0.16 r=0.09, p=0.60 r=0.00, p=1.0
Correlation with age (ASD) r=0.30, p=0.08 r=0.35, p=0.04 r=−0.11, p=0.53 r=−0.09, p=0.62
Correlation with ADOS social (ASD) r=−0.04, p=0.81 – – r=−0.36, p=0.04
Correlation with ADOS comm (ASD) r=−0.06, p=0.73 – – r=−0.46, p=0.005⁎
Correlation with ADI social (ASD) r=−0.40, p=0.01⁎ – – r=−0.18, p=0.30
Correlation with ADI comm (ASD) r=−0.30, p=0.08 – – r=−0.11, p=0.53

Top of table displays weighting (bold indicates significant (pb0.05) weight) of structural metrics (clustering (CC), characteristic path lenghts (CPL), lambda, gamma, small
worldness and modularity (Q)) on each of the four principal components. Bottom of table shows regression coefficients and p values with diagnosis and Pearson correlation values with
age (controlling for motion), Autism Diagnostic Interview (ADI) and Autism Diagnostic Observation Scale (ADOS) social and communication subscales with each of the principle
components (controlling for age and motion).
⁎ Survives FDR (qb0.05).
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through the UCLA Multimodal Connectivity Database (http://umcd.
humanconnectomeproject.org), which use matplotlib (http://matplotlib.
sourceforge.net) and networkX (http://networkx.lanl.gov).

2.12. Data sharing

All of the connectivity matrices used in this study are freely avail-
able for download at the UCLA Multimodal Connectivity Database
(Brown et al., 2012; http://umcd.humanconnectomeproject.org).

3. Results

3.1. Functional connectivity matrices

Over the course of 100 runs of themodularity algorithm on the aver-
age functional connectivitymatrix, four communitieswere detected over
90% of the time. The normalizedmutual information between the repre-
sentative partition and 99 additional iterations of the modularity algo-
rithm was 0.73+/−0.05 (mean+/−standard deviation; NMI ranges
from0 to 1,with 1 representing a perfect similarity). Therewasmoderate
similarity between the representative group averagemodularity partition
and modularity partitions of individual subjects (ASD group NMI=
0.285+/−0.07 and TD group NMI=0.288+/−0.08; p=0.86). The av-
erage NMI between randomized individual matrices and the representa-
tive group average modularity partition was equal 0.04, suggesting that
the similarity between individual matrices and the group average was
above chance.

The order of nodes in the matrix was reorganized to reflect the com-
munity structure of the representative group average modularity
partition (Fig. 1A). The four communities corresponded to visual,
sensorimotor and default systems as well as a largely frontal system
corresponding to the task positive control/attention network (color
boxes in Fig. 1A and displayed in 3D brain space in Fig. 1B).

We first examined pairwise differences in the connectivity matrices
bydirectly comparing correlation strengths betweengroups for each con-
nection (Fig. 1C) and separating differences based on within- and
between-community connections.We found that the TD group exhibited
5.4 times as many stronger (pb0.05, uncorrected) within-module
positive connections as the ASD group (Fig. 1C,D). This was most pro-
nounced in the default (265 (10.1%) connections stronger for TD group
vs. 15 (0.5%) stronger for ASD), visual (107 (7.5%) connections stronger
for TD group vs. 7 (0.5%) stronger for ASD) and sensorimotor systems
(84 (2.5%) connections stronger for TD group vs. 33 (1.0%) stronger for
ASD; Fig. 1D, left). There were a similar number of stronger within-
module connections for the attention/control network (34 (2.3%) con-
nections stronger for TD group vs. 41 (2.3%) stronger for ASD). Addition-
ally, the TD group exhibited 4.4 times as many stronger (pb0.05,
uncorrected) negative (i.e., weaker) between-module connections. This
wasmost prominent for connections between other systems and the de-
fault (670 (4.8%) for TD>ASD vs. 152 (1.1%) for ASD>TD) system, but
was also true for visual (383 (3.4%) for TD>ASD vs. 135 (1.2%) for
ASD>TD), sensorimotor (479 (3.2%) for TD>ASD vs. 154 (1.0%) for
ASD>TD), and attention (276 (2.4%) for TD>ASD vs. 165 (1.5%)
for ASD>TD) systems (Fig. 1D, right). Thus, there was a pattern of
weaker within-network positive connectivity and weaker between-
network negative connectivity for children and adolescents with
ASD.

We sorted within and between-module differences as a function of
average correlation strengths (Fig. 2A). Connections where the TD
group had stronger positive within-module connectivity tended to have
higher average correlation strengths than connections where the ASD
group had stronger within-module connectivity (TD=0.26+/−0.19,
ASD=0.16+/−0.17, p=0.0002). Between-module connections where
the TD group had stronger negative connectivity were more negative
than the connectionswhere theASDgrouphad stronger negative connec-
tions (TD=−0.16+/−0.09, ASD=−0.08+/−0.06, pb0.0001). We
found no significant differences (all p>0.25) for the average Euclidean
distance of connections that differed between groups for stronger positive
within-module connectivity or stronger negative between-module con-
nectivity (Fig. 2B).

3.2. Functional connectivity graph metrics

There were group differences in nearly all graph theoretical metrics
for functional networks over a range of network sparsities (Fig. 3) and
averaged across sparsity levels (Table 2). Clustering coefficient was

http://umcd.humanconnectomeproject.org
http://umcd.humanconnectomeproject.org
http://matplotlib.sourceforge.net
http://matplotlib.sourceforge.net
http://networkx.lanl.gov
http://umcd.humanconnectomeproject.org


Fig. 8. Relationships between principal components of structural and functional network properties, age and ASD symptom severity. (A) Component 1 and (B) Component 2 re-
siduals after regressing out mean motion are displayed as a function of age in the TD (gray) and ASD (black) groups. (C) Residuals of component 1 after regressing out mean motion
and age are displayed as function of the Autism Diagnostic Interview (ADI) communication subscales. (D) Residuals of component 4 after regressing out mean motion and age are
displayed as a function of the Autism Diagnostic Observation Scale (ADOS) social subscales.
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significantly lower (FDR qb0.05) in the ASD group (Fig. 3C) and al-
though lambda was lower in the ASD group at higher sparsity levels
(Fig. 3D), there was only a trend for lower average gamma. Both CPL
and gammawere lower in the ASD group over the entire range of spar-
sities (FDR qb0.05; Fig. 3E,F) and averaged across sparsity levels
(Table 2). Both TD and ASD subjects had functional networks in the
small world range (the ratio of lambda to gamma being greater than
1.2). However, small worldness was not significantly different between
groups. Modularity (Q values) was significantly lower (FDR qb0.05) in
the ASDgroup at every sparsity level and averaged across sparsity levels
(Fig. 3H). In addition to averaging metrics across this sparsity range,
metrics were also integrated across sparsity levels as in Ginestet et al.
(2011), and then compared between groups. There was a 0.99 correla-
tion between averaged and integratedmetrics. Additionally, there were
no alterations in any of the results reported above when using integrat-
ed metrics.

Given the significant between-group differences in global metrics for
CC, CPL and modularity, we sought to determine whether specific nodes
contributed to these global differences. Therefore, we compared nodal
measures of local interconnectivity, hubness, and connection diversity
by calculating each node's clustering coefficient, betweenness centrality,
and participation coefficient (Guimerà et al., 2005) between groups aver-
aged over the same range of thresholds (Fig. 4).We report the number of
nodes with significant between-group differences (pb0.05 uncorrected
and FDR corrected; qb0.05, pb0.0013). ASD subjects had lower nodal
CC in 21 visual (4 FDR: right occipital fusiform gyrus and left and right in-
ferior lateral occipital cortex), 20 default (3 FDR:medial prefrontal cortex,
ventromedial prefrontal cortex and left frontal orbital cortex), and 10
sensorimotor nodes (1 FDR: left superior parietal lobule; Fig. 4A). Partic-
ipation coefficients were higher for the ASD group in 26 default (3 FDR:
medial prefrontal cortex and left frontal orbital cortex), 10 sensorimotor
(3 FDR: left postcentral gyrus, left superior parietal lobule and brainstem)
and 9 attention (0 FDR) nodes (Fig. 4B). There were no differences in
nodal betweenness centrality that survived FDR correction.

3.3. Structural connectivity matrices

The Louvain modularity algorithm detected between 8 and 10 com-
munities for the average fiber connectivity matrix over 100 runs. Nine
communities were detected in over 80% of the runs and these commu-
nities corresponded to sets of lateralized nearby brain regions (Fig. 5B).
The average fiber structural connectivity matrix for all TD and ASD sub-
jects is shown in Fig. 5A, after reordering the nodes by the community
structure of a representative modularity partition.

The calculated normalizedmutual information between the repre-
sentative structural modularity partition and 99 additional iterations
of the modularity algorithm was 0.84+/−0.04. There was also high
similarity between the representative group average modularity
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partition and modularity partitions of individual subjects (ASD group
NMI=0.66+/−0.05; TD group NMI=0.68+/−0.05; p=0.14).

We first examined the connectivity matrices by directly comparing
the number of fibers, average FA, and average MD values for each con-
nection between groups aftermasking for regions that contained an av-
erage of at least 5 fibers (corresponding to 5.75% of all possible
connections).We found that the ASD group had 4.2 times asmany con-
nections with significantly (pb0.05, uncorrected) more fibers than the
TD group (106 ASD>TD vs. 25 TD>ASD; Fig. 5C). We also found that
the ASD group had 1.6 times as many connections with lower FA (67
TD>ASD vs. 41 ASD>TD) and 6.2 times as many connections with
higher MD (112 ASD>TD vs. 18 ASD>TD; Fig. 5D).

The average number of fibers or Euclidean distance of the connec-
tion did not differ for connectionswhere the ASD group hadmore fibers
compared to connectionswhere the TD group hadmore fibers (number
of fibers: TD>ASD=30.0+/−26.6, ASD>TD=26.3+/−25.9, p=
0.53; Euclidean distance: TD>ASD=25.9+/−12.8, ASD>TD=
34.8+/−26.3, p=0.11). Connections where the TD group had higher
white matter integrity (lower MD) had a higher average number of fi-
bers than connections where the ASD group had higher white matter
integrity (ASD>TD=32.5+/−28.8, TD>ASD=11.8+/−6.0, p=
0.003), but did not differ based on Euclidean distance (ASD>TD=
30.3+/−21.5, TD>ASD=35.2+/−7.5, p=0.34).

3.4. Structural connectivity graph metrics

Although gamma (normalized characteristic path length)was similar
for structural and functional networks (~1.2 for structural vs. ~1.1 for
functional), lambda (normalized clustering coefficient)wasmuch higher
in structural networks (~5.4 for structural vs. ~2.2 for functional). There-
fore, structural networks displayed higher levels of small worldness
compared to functional networks in both TD and ASD groups. Measures
for average structural CC, gamma, CPL, lambda and small worldness did
not significantly differ between groups (Table 2). Modularity Q values
were higher in the TD group on average, but this did not survive FDR
correction.

Given the previous reports of modularity decreasing with age and
global efficiency increasing with age in structural networks (Hagmann
et al., 2010), we ran post-hoc analyses correlating these metrics with
chronological age in each group. Higher modularity in the TD group
was actually driven by the younger TD participants, whereby, controlling
for motion, modularity was significantly negatively correlated with age
in the TD group (r=−0.41, p=0.008; Fig. 6D) yet was only trending to-
ward a negative correlation with age in the ASD group (r=−0.24, p=
0.08) although the interaction was not significant (p=0.37). Similarly,
there were no group differences for CPL or lambda, but age was neg-
atively correlated with CPL and lambda in the TD group (controlling
for motion: CPL: r=−0.34, p=0.03; lambda r=−0.31, p=0.04),
and CPL and lambda were positively correlated with age in the ASD
group (controlling for motion: CPL: r=0.22, p=0.12; gamma: r=
0.16, p=0.25; Fig. 6C) whereby there was a significant group by
age interaction for CPL (p=0.01) and gamma (p=0.02).

3.5. Structure–function correlation

When comparing correlations between fiber counts and functional
connectivity strength between groups, we found that both groups
exhibited moderate, yet highly significant (all subjects pb0.001), levels
of structural–functional connectivity correlations (TD: r=0.32+/−0.03,
ASD: r=0.32+/−0.04, p=0.77 for the group difference). Furthermore,
there were no group differences when structure–function correlations
were assessed for both within- and between-functional module connec-
tions (within-module: TD: r=0.28+/−0.04, ASD: r=0.28+/−0.05,
p=0.98 for the group difference and between-module TD: r=
0.28+/−0.05, ASD: r=0.26+/−0.05, p=0.32 for the group difference)
or specifically for within-module connections exhibiting lower levels of
functional connectivity (TD: r=0.30+/−0.12, ASD: r=0.31+/−0.11,
p=0.77 for the group difference).

3.6. Principal component analysis of structural and functional metrics

To identify key factors underlying correlated graph metrics and to
better understand relationships between structural and functional net-
work properties, we entered the six functional and six structural average
global graph metrics for all 70 subjects into an exploratory principal
component analysis. We only examined the first four components, as
they explained the vast majority (88%) of the variance in the data
(Table 3). The first component (accounting for 33.9% of the variance)
broadly weighted functional metrics positively and structural metrics
negatively. This component was significantly lower in the ASD group
(covarying for mean headmotion, p=0.009, FDR qb0.05) and negative-
ly related to symptom severity, as measured by the ADI social subscale
(covarying for age and mean head motion, r=−0.4, p=0.01; FDR
qb0.05; Fig. 8C). The first component was also positively correlated
with age in both groups (covarying for mean motion; all: r=0.24, p=
0.04, TD: r=0.28, p=0.11 and ASD: r=0.30, p=0.08; Fig. 8A). The sec-
ond componentweighted all functional and structuralmetrics positively,
and although it did not differ between groups, there was a significant in-
teractionwith age (covarying formean headmotion; p=0.02), whereby
the second componentwas significantly positively correlatedwith age in
the ASD group (r=0.35, p=0.04) and slightly negatively correlated
with age in the TD group (r=−0.24, p=0.16). The third component,
positively weighting functional CC/modularity and negatively weighting
functional CPL, did not differ between groups. The fourth component,
positively weighting structural modularity and negatively weighting
structural CPL, was significantly lower in the ASD group (p=0.007;
FDR qb0.05) and was negatively correlated with symptom severity as
measured by the ADOS social and communication subscales (covarying
for age and mean head motion, ADOS social: r=−0.46, p=0.005; FDR
qb0.05, Fig. 8D).

4. Discussion

Previous neuroimaging studies on ASD have reported reduced func-
tional and structural connectivity both within and between specialized
brain systems (Vissers et al., 2012), suggesting ASD is a network disorder
(Müller, 2007). Here we expand upon previous findings of lower func-
tional and structural connectivity in ASD by characterizing higher-level
network properties using tools derived from the physics of complex net-
works (Rubinov and Sporns, 2009). We report alterations in community
organization of functional networks, as well as in the balance of local
and global efficiency within and between structural and functional net-
works in children and adolescents with ASD relative to their typically-
developing counterparts.

4.1. Functional connectivity alterations

We detected robust reductions in positive functional connectivity
withinmajor functional systems (i.e., functional integration) in individ-
uals with ASD. Reduced functional connectivity was most prominent in
the default system, consistent withmultiple studies that have found re-
duced DMN connectivity in ASD (Kennedy and Courchesne, 2008; Assaf
et al., 2010;Wang et al., 2010). However, we also foundweaker connec-
tivitywithin visual (largely secondary areas) and sensorimotor systems,
supporting more widespread alterations in functional connectivity as
found by Villalobos et al. (2005), Mostofsky et al. (2009), and
Anderson et al. (2011b). Relatively few alterations were observed in
the frontal attention/cognitive control network, whichmight reflect rel-
atively intact cognitive skills in high-functioning individuals with ASD
(Kennedy and Courchesne, 2008).

Interestingly, individuals with ASD also show reduced negative
(i.e., more positive) connectivity between systems. Consistent with
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previous findings in the task positive and default mode networks in ASD
(Rudie et al., 2012a), weaker negative connectivity between communi-
ties suggests that specific functional systems are less distinct or function-
ally segregated from one another. Although there is some controversy
regarding the proper interpretation of negatively correlated brain re-
gions when using global signal regression (GSR; Murphy et al., 2009;
Fox et al., 2009), anticorrelations are detected without GSR (Chang and
Glover, 2009; Anderson et al., 2011c; Smith et al., 2012) and GSR maxi-
mizes the specificity of positive resting-state correlations in real and sim-
ulated data (Fox et al., 2009; Weissenbacher et al., 2009). Interestingly,
reduced negative connectivity was recently shown to be useful for di-
agnostic classification of autism in analyses without GSR (Anderson
et al., 2011b). Therefore, although it is unclearwhetherwidespread dif-
ferences in negatively connected regions are exaggerated byGSR, differ-
ences in negative connectivity between distinct functional systems are
likely important for understanding ASD neurobiology.

Althoughmost previous functional connectivity studies of ASD have
reported underconnectivity of long-range (i.e., anterior–posterior or
interhemispheric) connections, it has also been widely hypothesized
that ASD may be related to overconnectivity of short-range connections
(Belmonte et al., 2004; Courchesne and Pierce, 2005; Geschwind and
Levitt, 2007). Previous neuroimaging studies have found increased
short-range connections in neurotypical children versus adults (Fair et
al., 2009; Supekar et al., 2009) but findings are somewhat mixed in in-
dividuals with ASD (Paakki et al., 2010; Shukla et al., 2010). Consistent
with a recent study (Anderson et al., 2011b) we found that even
short-range functional connections are reduced in ASD. Of course,
this does not exclude the possibility that local connections at the
neuronal or minicolumnar level could be enhanced in ASD
(Casanova et al., 2002).

In examining graph metrics of functional networks, we found that
individuals with ASD had lower clustering (i.e., local efficiency), espe-
cially in nodes within the default systems and secondary visual areas.
Individuals with ASD displayed a less robust modular organization
(i.e., communities were less distinct) and there was a tendency for
nodes in the default and sensorimotor systems to interact more with
other communities as measured by higher nodal participation coeffi-
cients. Finally, we found that functional brain networks in individuals
with autism had shorter average path lengths (i.e., higher levels of glob-
al efficiency) as well as normalized characteristic path lengths. Ran-
domly connected networks tend to have short path lengths (Sporns,
2011) suggesting the possibility that higher global efficiency in func-
tional networks may simply reflect a less organized or more random
distribution of functional edges. This is consistent with a study finding
decreased complexity or increased randomness in resting-state fMRI
timeseries of individuals with ASD (Lai et al., 2010).

Previous functional graph theory studies in typical development
(Fair et al., 2009; Supekar et al., 2009) did not find differences in local
or global efficiency between children and adults. However, in addition
to decreases in long-range connectivity, these developmental studies
reported increased local connectivity, which may explain these null
findings. Additionally, the extent to which these previously reported
developmental differences are attributable tomotion artifacts is unclear
given that subtle motion spikes tend to reduce long range connectivity
yet increase local connectivity (Power et al., 2012). Given our careful
consideration of head motion through regression of motion spikes and
covarying for motion at the group level, as well as the fact that we
found both reduced long- and short-range connectivity in ASD, it is un-
likely that our findings are related to between-group differences in mo-
tion. Although futurework is needed to further examine developmental
changes in the context of more stringent motion correction, our find-
ings in ASD are somewhat consistent with the studies in typical devel-
opment reporting reduced integration and segregation of functional
systems in children relative to adults. Therefore, although functional net-
works in ASDmay be ‘immature’ in someways (i.e., reflect an earlier de-
velopmental stage as far as reduced integration/segregation of major
systems), they may also be fundamentally different from neurotypical
individuals from a network perspective (i.e., reduced local efficiency
yet increased global efficiency).

4.2. Structural connectivity alterations

For structural connectivity measures derived from diffusion MRI,
we found reduced integrity in short- and long-range white matter
tracts in ASD in line with previous studies (e.g., Barnea-Goraly, 2003;
Shukla et al., 2010). We found more robust differences in MD than
FA, which has been reported in several previous DTI studies
(Sundaram et al., 2008; Groen et al., 2011). Interestingly, despite the
fact that white matter integrity was generally reduced, we found evi-
dence for increased fiber counts in ASD, which may relate to early re-
ports of increased regional white matter (Herbert et al., 2004) and
more recent reports of increased fiber counts in certain tracts in ASD
(Pugliese et al., 2009). Although white matter integrity is lower in chil-
dren compared to adults, fiber counts increase during development
(Lebel et al., 2012). Therefore, like functional networks, some alter-
ations in ASD may reflect immaturity, while other alterations are likely
to reflect aberrant processes.

Structural networks displayed high levels of local and global efficien-
cy in both the TD and ASD groups. Given previous reports of decreasing
modularity and increasing global efficiency of structural networks with
development (Hagmann et al., 2010), we examined the relationship be-
tween age andmodularity/global efficiency in each group.We found that
in the TD group, modularity sharply decreased with age whereas global
efficiency increased with age, consistent with previous reports. In the
ASD group, modularity decreased at a slower rate and, contrary to find-
ings in the TD group, global efficiency actually decreased with age. It
should be noted that global efficiency in structural networks likely re-
flects a different underlying substrate than global efficiency in functional
networks given the physical wiring costs of structural networks (Bassett
et al., 2010; Fornito et al., 2011). Thus, despite similar levels of local and
global efficiency in structural networks across both groups, it appears as
though network efficiency does not appropriately shift from amore local
to a more distributed pattern during development in individuals with
ASD (Hagmann et al., 2010).

One potential limitation of our analyses is that we chose to use a
set of spherical, functionally-based ROIs instead of more traditional
block or atlas based regions, which would have allowed for the inclu-
sion of deeper white matter and, relatedly, increased signal to noise in
the tractography analyses. This decision was made in order to allow
for a more direct comparison between structural and functional con-
nectivity. Additionally, previous structural connectivity studies have
used fibers that terminate at this gray–white boundary because they
are the most reliable/likely estimates of cortico-cortical connectivity
(Hagmann et al., 2008; Honey et al., 2009). However, future work
should incorporate other parcellation schemes that include deeper
white matter while also allowing for a direct comparison of structure
and function.

4.3. Relationships between structure and function

When relating structural and functional connectivity, we found
that measures of fiber counts and functional connectivity strength
were moderately positively correlated in both groups with no group
differences regardless of whether the connections were within or be-
tween modules or whether we only included connections with lower
levels of functional connectivity. This finding, in addition to the fact
that we generally saw higher fiber counts in ASD, suggests that alter-
ations in functional connectivity in ASD are not directly related to al-
terations in fiber organization.

In order to relate structural and functional network properties, we
performed a principal component analysis. Interestingly, we found
that the largest underlying factor inversely weighted structural and
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functional network properties. This component inversely weighted
local and global efficiency (i.e., positively weighted both CC and CPL)
within functional and structural networks andwas positively correlated
with age. Although preliminary, this finding suggests that structural
networks become more globally efficient, yet less locally efficient, dur-
ing development while functional networks display a relative inverse
pattern. This component was reduced in ASD and inversely related
to social and communicative behavior, suggesting that the balance
between structural and functional network properties is related to
social impairments in ASD. Further highlighting differential
age-related trajectories for functional and structural network prop-
erties, the second component, which positively weighted both struc-
tural and functional metrics, decreased with age in the TD group
while it increased with age in the ASD group. Interestingly, a previ-
ous study of multiple sclerosis (Hawellek et al., 2011) found that dis-
ruption of white matter pathways actually leads to increased
functional connectivity in multiple networks including the DMN,
which further highlights a divergence between the structural and
functional connectomes. However, it should be noted that here we
found inherently different sparsity ranges for structural and func-
tional networks. Direct comparison of structural to functional graphs
at different sparsities is problematic given that graph theoretical
metrics can vary as a function of network sparsity. Our PCA method
attempts to overcome the confound of direct comparison between dif-
ferentially sparse structural and functional graphs in order to integrate
information across modalities.

Finally, the fourth component, which positively weighted local
and global efficiency in structural networks, was reduced in ASD
and inversely related to social and communicative symptom severity.
Therefore, an underlying factor positively influencing both local and
global efficiency in structural networks may also relate to disrupted
social behavior in ASD.

4.4. Future directions

Future studies should characterize younger and/or lower functioning
individuals with ASD since our findings are limited to high-functioning
children and adolescents with ASD. For example, studies examining in-
fants at high risk for ASD may be useful for developing biomarkers to
aid in earlier diagnosis and treatment. Future studies may also benefit
from advances in imaging acquisition (Feinberg et al., 2010), more flex-
ible modeling approaches (Smith et al., 2012), and large-scale studies
involving collaboration between institutions (Biswal et al., 2010). Addi-
tionally, comparisons with other neuropsychiatric disorders, and teas-
ing apart underlying mechanisms such as genetic risk factors (Brown
et al., 2011; Dennis et al., 2012; Rudie et al., 2012b) will all be crucial
for a more complete characterization of brain network abnormalities
in ASD.

4.5. Conclusions

To our knowledge, this is the first study to use complex net-
work analyses to examine both structural and functional brain
networks in autism. We found significant reductions in local effi-
ciency and modularity within several functional networks. ASD
children and adolescents also displayed atypical age-related
changes in the balance of local and global efficiency between
structural and functional networks. Further, this imbalancewas relat-
ed to the severity of socio-communicative deficits in individuals with
ASD. Our findings suggest that complex networkmodeling of structural
and functional brain organization will yield a better understanding of
the neural basis of ASD and other neuropsychiatric disorders. Ultimate-
ly, a more cohesive framework for understanding brain alterations in
ASD may inform the design of more sophisticated diagnostic tools and
targeted interventions.
Acknowledgments

This work was supported by NICHD grant (P50 HD055784), NIMH
grant (R01HD06528001), theUCLATraining Program inNeurobehavioral
Genetics (T32 MH073526-05) and the UCLA Medical Scientist Training
Program (T32 GM008044). This work was also, in part, supported by
NIH grants (R01 AG040060, EB008432, EB007813, HD050735, RR12169,
RR13642, and RR00865), Autism Speaks, Brain Mapping Medical Re-
search Organization, Brain Mapping Support Foundation, Pierson-
Lovelace Foundation, Ahmanson Foundation, William M. and Linda
R. Dietel Philanthropic Fund at the Northern Piedmont Community
Foundation, Tamkin Foundation, Jennifer Jones-Simon Foundation,
Capital Group Companies Charitable Foundation, Robson Family,
and North-star Fund. Wewant to thank all of the children and families
who graciously participated in the study. We also wish to thank Steve
Petersen, Bradley Schlaggar and Jonathan Power for initial guidance
on graph theory methods, Elizabeth Losin for useful comments on an
earlier version of this manuscript, and Natalie Colich for help with
data collection.

References

Achad, S., Bullmore, E., 2007. Efficiency and cost of economical brain functional net-
works. PLoS Computational Biology 3, e17.

Anderson, J.S., Druzgal, T.J., Froehlich, A., Dubray, M.B., Lange, N., Alexander, A.L.,
Abildskov, T., Nielsen, J.A., Cariello, A.N., Cooperrider, J.R., Bigler, E.D., Lainhart,
J.E., 2011a. Decreased interhemispheric functional connectivity in autism. Cerebral
Cortex 21, 1134–1146.

Anderson, J.S., Nielsen, J.A., Froehlich, A.L., Dubray, M.B., Druzgal, T.J., Cariello, A.N.,
Cooperrider, J.R., Zielinski, B.A., Ravichandran, C., Fletcher, P.T., Alexander, A.L.,
Bigler, E.D., Lange, N., Lainhart, J.E., 2011b. Functional connectivity magnetic reso-
nance imaging classification of autism. Brain 134, 3742–3754.

Anderson, J.S., Ferguson, M.A., Lopez-Larson, M., Yurgelun-Todd, D., 2011c. Connectiv-
ity gradients between the default mode and attention control networks. Brain Con-
nectivity 1, 147–157.

Assaf, M., Jagannathan, K., Calhoun, V.D., Miller, L., Stevens, M.C., Sahl, R., O'Boyle, J.G.,
Schultz, R.T., Pearlson, G.D., 2010. Abnormal functional connectivity of default
mode sub-networks in autism spectrum disorder patients. NeuroImage 53,
247–256.

Barnea-Goraly, N., Lotspeich, L.J., Reiss, A.L., 2010. Similar white matter aberrations in
children with autism and their unaffected siblings: a diffusion tensor imaging
study using tract-based spatial statistics. Archives of General Psychiatry 67,
1052–1060.

Bassett, D.S., Bullmore, E., Verchinski, B.A., Mattay, V.S., Weinberger, D.R., Meyer-
Lindenberg, A., 2008. Hierarchical organization of human cortical networks in
health and schizophrenia. Journal of Neuroscience 28, 9239–9248.

Bassett, D.S., Greenfield, D.L., Meyer-Lindenberg, A., Weinberger, D.R., Moore, S.W.,
Bullmore, E.T., 2010. Efficient physical embedding of topologically complex infor-
mation processing networks in brains and computer circuits. PLoS Computational
Biology 6, e1000748.

Bassett, D.S., Nelson, B.G., Mueller, B.A., Camchong, J., Lim, K.O., 2012. Altered resting
state complexity in schizophrenia. NeuroImage 59, 2196–2207.

Belmonte, M.K., Allen, G., Beckel-Mitchener, A., Boulanger, L.M., Carper, R.A., Webb, S.J.,
2004. Autism and abnormal development of brain connectivity. Journal of Neuro-
science 24, 9228–9231.

Benjamini, Y., Hochberg, Y., 1995. Controlling the false discovery rate—a practical and
powerful approach to multiple testing. Royal Statistical Society B Methodological
57, 289–300.

Biswal, B.B., Mennes, M., Zuo, X.N., Gohel, S., Kelly, C., Smith, S.M., Beckmann, C.F.,
Adelstein, J.S., Buckner, R.L., Colcombe, S., Dogonowski, A.M., Ernst, M., Fair, D.,
Hampson, M., Hoptman, M.J., Hyde, J.S., Kiviniemi, V.J., Kötter, R., Li, S.J., Lin, C.P.,
Lowe, M.J., Mackay, C., Madden, D.J., Madsen, K.H., Margulies, D.S., Mayberg, H.S.,
McMahon, K., Monk, C.S., Mostofsky, S.H., Nagel, B.J., Pekar, J.J., Peltier, S.J.,
Petersen, S.E., Riedl, V., Rombouts, S.A., Rypma, B., Schlaggar, B.L., Schmidt, S.,
Seidler, R.D., Siegle, G.J., Sorg, C., Teng, G.J., Veijola, J., Villringer, A., Walter, M.,
Wang, L., Weng, X.C., Whitfield-Gabrieli, S., Williamson, P., Windischberger, C.,
Zang, Y.F., Zhang, H.Y., Castellanos, F.X., Milham, M.P., 2010. Toward discovery sci-
ence of human brain function. Proceedings of the National Academy of Sciences of
the United States of America 107, 4734–4739.

Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E., 2008. Fast unfolding of com-
munities in large networks. Journal of Statistical Mechanics 2008, P10008.

Brown, J.A., Terashima, K.H., Burggren, A.C., Ercoli, L.M., Miller, K.J., Small, G.W.,
Bookheimer, S.Y., 2011. Brain network local interconnectivity loss in aging APOE-4
allele carriers. Proceedings of the National Academy of Sciences of the United States
of America 108, 20760–20765.

Brown, J.A., Rudie, J.D., Bandrowski, A., Van Horn, J.D., Bookheimer, S.Y., 2012. The UCLA
multimodal connectivity database: a web-based platform for brain connectivity
matrix sharing and analysis. Frontiers in Neuroinformatics 6, 28.

Bullmore, E., Sporns, O., 2009. Complex brain networks: graph theoretical analysis of
structural and functional systems. Nature Reviews Neuroscience 10, 186–198.



93J.D. Rudie et al. / NeuroImage: Clinical 2 (2013) 79–94
Butts, C.T., 2009. Revisiting the foundations of network analysis. Science 325, 414–416.
Casanova, M.F., Buxhoeveden, D.P., Brown, C., 2002. Clinical and macroscopic correlates

of minicolumnar pathology in autism. Journal of Child Neurology 17, 692–695.
Chang, C., Glover, G.H., 2009. Effects of model-based physiological noise correction on de-

fault mode network anti-correlations and correlations. NeuroImage 47, 1448–1459.
Courchesne, E., Pierce, K., 2005. Why the frontal cortex in autism might be talking only

to itself: local over-connectivity but long-distance disconnection. Current Opinion
in Neurobiology 15, 225–230.

Cox, R.W., 1996. AFNI: software for analysis and visualization of functional magnetic
resonance neuroimages. Computers and Biomedical Research 29, 162–173.

Craddock, R.C., James, G.A., Holtzheimer, P.E., Hu, X.P., Mayberg, H.S., 2011. A whole
brain fMRI atlas generated via spatially constrained spectral clustering. Human
Brain Mapping 33 (8), 1914–1928.

Dennis, E.L., Jahanshad, N., Rudie, J.D., Brown, J.A., Johnson, K., McMahon, K.L., de
Zubicaray, G.I., Montgomery, G., Martin, N.G., Wright, M.J., Bookheimer, S.Y.,
Dapretto, M., Toga, A.W., Thompson, P.M., 2012. Altered structural brain connectiv-
ity in healthy carriers of the autism risk gene, CNTNAP2. Brain Connectivity 1,
447–459.

Fair, D.A., Cohen, A.L., Power, J.D., Dosenbach, N.U., Church, J.A., Miezin, F.M., Schlaggar,
B.L., Petersen, S.E., 2009. Functional brain networks develop from a “local to dis-
tributed” organization. PLoS Computational Biology 5, e1000381.

Feinberg, D.A., Moeller, S., Smith, S.M., Auerbach, E., Ramanna, S., Gunther, M., Glasser, M.F.,
Miller, K.L., Ugurbil, K., Yacoub, E., 2010. Multiplexed echo planar imaging for sub-
second whole brain FMRI and fast diffusion imaging. PLoS One 5, e15710.

Fornito, A., Zalesky, A., Bassett, D.S., Meunier, D., Ellison-Wright, I., Yücel, M., Wood, S.J.,
Shaw, K., O'Connor, J., Nertney, D., Mowry, B.J., Pantelis, C., Bullmore, E.T., 2011. Ge-
netic influences on cost-efficient organization of human cortical functional net-
works. Journal of Neuroscience 31, 3261–3270.

Fox, M.D., Zhang, D., Snyder, A.Z., Raichle, M.E., 2009. The global signal and observed
anticorrelated resting state brain networks. Journal of Neurophysiology 101,
3270–3283.

Geschwind, D.H., Levitt, P., 2007. Autism spectrum disorders: developmental discon-
nection syndromes. Current Opinion in Neurobiology 17, 103–111.

Ginestet, C.E., Nichols, T.E., Bullmore, E.T., Simmons, A., 2011. Brain network analysis:
separating cost from topology using cost-integration. PLoS One 6, e21570.

Groen, W.B., Buitelaar, J.K., van der Gaag, R.J., Zwiers, M.P., 2011. Pervasive microstructural
abnormalities in autism: a DTI study. Journal of Psychiatry & Neuroscience 36, 32–40.

Guimerà, R., Mossa, S., Turtschi, A., Amaral, L.A., 2005. The worldwide air transportation
network: anomalous centrality, community structure, and cities' global roles.
Proceedings of the National Academy of Sciences of the United States of America
102, 7794–7799.

Hagmann, P., Cammoun, L., Gigandet, X., Meuli, R., Honey, C.J., Wedeen, V.J., Sporns, O.,
2008. Mapping the structural core of human cerebral cortex. PLoS Biology 6, e159.

Hagmann, P., Sporns, O., Madan, N., Cammoun, L., Pienaar, R., Wedeen, V.J., Meuli, R.,
Thiran, J.P., Grant, P.E., 2010. White matter maturation reshapes structural connec-
tivity in the late developing human brain. Proceedings of the National Academy of
Sciences of the United States of America 107, 19067–19072.

Hawellek, D.J., Hipp, J.F., Lewis, C.M., Corbetta, M., Engel, A.K., 2011. Increased function-
al connectivity indicates the severity of cognitive impairment in multiple sclerosis.
Proceedings of the National Academy of Sciences of the United States of America
108, 19066–19071.

He, Y., Chen, Z.J., Evans, A.C., 2007. Small-world anatomical networks in the human
brain revealed by cortical thickness from MRI. Cerebral Cortex 17, 2407–2419.

Herbert, M.R., Ziegler, D.A., Makris, N., Filipek, P.A., Kemper, T.L., Normandin, J.J.,
Sanders, H.A., Kennedy, D.N., Caviness, V.S., 2004. Localization of white matter vol-
ume increase in autism and developmental language disorder. Annals of Neurology
55, 530–540.

Honey, C.J., Sporns, O., Cammoun, L., Gigandet, X., Thiran, J.P., Meuli, R., Hagmann, P.,
2009. Predicting human resting-state functional connectivity from structural con-
nectivity. Proceedings of the National Academy of Sciences of the United States of
America 106, 2035–2040.

Humphries, M.D., Gurney, K., Prescott, T.J., 2006. The brainstem reticular formation is a
small-world, not scale-free, network. Proceedings. Biological Sciences/The Royal
Society 273, 503–511.

Jenkinson, M., Bannister, P., Brady, M., Smith, S., 2002. Improved optimization for the
robust and accurate linear registration and motion correction of brain images.
NeuroImage 17, 825–841.

Kennedy, D.P., Courchesne, E., 2008. The intrinsic functional organization of the brain is
altered in autism. NeuroImage 39, 1877–1885.

Kim, Y.S., Leventhal, B.L., Koh, Y.J., Fombonne, E., Laska, E., Lim, E.C., Cheon, K.A., Kim, S.J.,
Kim, Y.K., Lee, H., Song, D.H., Grinker, R.R., 2011. Prevalence of autism spectrum disor-
ders in a total population sample. The American Journal of Psychiatry 168, 904–912.

Lai, M.C., Lombardo, M.V., Chakrabarti, B., Sadek, S.A., Pasco, G., Wheelwright, S.J.,
Bullmore, E.T., Baron-Cohen, S., Suckling, J., 2010. A shift to randomness of brain
oscillations in people with autism. Biological Psychiatry 68, 1092–1099.

Lebel, C., Gee, M., Camicioli, R., Wieler, M., Martin, W., Beaulieu, C., 2012. Diffusion
tensor imaging of white matter tract evolution over the lifespan. NeuroImage
60, 340–352.

Lord, C., Rutter, M., Le Couteur, A., 1994. Autism Diagnostic Interview-Revised: a revised
version of a diagnostic interview for caregivers of individuals with possible pervasive
developmental disorders. Journal of Autism and Developmental Disorders 24,
659–685.

Lord, C., Risi, S., Lambrecht, L., Cook, E.H., Leventhal, B.L., DiLavore, P.C., Pickles, A.,
Rutter, M., 2000. The autism diagnostic observation schedule-generic: a standard
measure of social and communication deficits associated with the spectrum of au-
tism. Journal of Autism and Developmental Disorders 30, 205–223.
Meilă, M., 2007. Comparing clusterings—an information based distance. Journal of Mul-
tivariate Analysis 98, 873–895.

Meunier, D., Achard, S., Morcom, A., Bullmore, E., 2009. Age-related changes in modular
organization of human brain functional networks. NeuroImage 44, 715–723.

Mori, S., van Zijl, P.C., 2002. Fiber tracking: principles and strategies — a technical re-
view. NMR in Biomedicine 15, 468–480.

Mostofsky, S.H., Powell, S.K., Simmonds, D.J., Goldberg, M.C., Caffo, B., Pekar, J.J., 2009.
Decreased connectivity and cerebellar activity in autism during motor task perfor-
mance. Brain 132, 2413–2425.

Müller, R.A., 2007. The study of autism as a distributed disorder. Mental Retardation
and Developmental Disabilities Research Reviews 13, 85–95.

Murphy, K., Birn, R.M., Handwerker, D.A., Jones, T.B., Bandettini, P.A., 2009. The impact
of global signal regression on resting state correlations: are anti-correlated net-
works introduced? NeuroImage 44, 893–905.

Newman, M.E.J., 2006. Modularity and community structure in networks. Proceedings
of the National Academy of Sciences 103, 8577.

Paakki, J.J., Rahko, J., Long, X., Moilanen, I., Tervonen, O., Nikkinen, J., Starck, T., Remes,
J., Hurtig, T., Haapsamo, H., Jussila, K., Kuusikko-Gauffin, S., Mattila, M.L., Zang, Y.,
Kiviniemi, V., 2010. Alterations in regional homogeneity of resting-state brain ac-
tivity in autism spectrum disorders. Brain Research 1321, 169–179.

Power, J.D., Cohen, A.L., Nelson, S.M., Wig, G.S., Barnes, K.A., Church, J.A., Vogel, A.C.,
Laumann, T.O., Miezin, F.M., Schlaggar, B.L., Petersen, S.E., 2011. Functional net-
work organization of the human brain. Neuron 72, 665–678.

Power, J.D., Barnes, K.A., Snyder, A.Z., Schlaggar, B.L., Petersen, S.E., 2012. Spurious but
systematic correlations in functional connectivity MRI networks arise from subject
motion. NeuroImage 59, 2142–2154.

Pugliese, L., Catani, M., Ameis, S., Dell'Acqua, F., Thiebaut de Schotten, M., Murphy, C.,
Robertson, D., Deeley, Q., Daly, E., Murphy, D.G., 2009. The anatomy of extended
limbic pathways in Asperger syndrome: a preliminary diffusion tensor imaging
tractography study. NeuroImage 47, 427–434.

Rubinov, M., Sporns, O., 2009. Complex network measures of brain connectivity: uses
and interpretations. NeuroImage 52, 1059–1069.

Rubinov, M., Sporns, O., 2011. Weight-conserving characterization of complex func-
tional brain networks. NeuroImage 56, 2068–2079.

Rudie, J.D., Shehzad, Z., Hernandez, L.M., Colich, N.L., Bookheimer, S.Y., Iacoboni, M.,
Dapretto, M., 2012a. Reduced functional integration and segregation of distributed
neural systems underlying social and emotional information processing in autism
spectrum disorders. Cerebral Cortex 22, 1025–1037.

Rudie, J.D., Hernandez, L.M., Brown, J.A., Beck-Pancer, D., Colich, N.L., Gorrindo, P.,
Thompson, P.M., Geschwind, D.H., Bookheimer, S.Y., Levitt, P., Dapretto, M.,
2012b. Autism-associated promoter variant in MET impacts functional and struc-
tural brain networks. Neuron 75, 904–915.

Schipul, S.E., Keller, T.A., Just, M.A., 2011. Inter-regional brain communication and its
disturbance in autism. Frontiers in Systems Neuroscience 5, 10.

Schwarz, A.J., McGonigle, J., 2011. Negative edges and soft thresholding in complex
network analysis of resting state functional connectivity data. NeuroImage 55,
1132–1146.

Shukla, D.K., Keehn, B., Müller, R.A., 2010. Regional homogeneity of fMRI time series in
autism spectrum disorders. Neuroscience Letters 476, 46–51.

Simpson, S.L., Moussa, M.N., Laurienti, P.J., 2012. An exponential random graph model-
ing approach to creating group-based representative whole-brain connectivity
networks. Neuroimage 60, 1117–1126.

Smith, S.M., Jenkinson, M., Woolrich, M.W., Beckmann, C.F., Behrens, T.E., Johansen-
Berg, H., Bannister, P.R., De Luca, M., Drobnjak, I., Flitney, D.E., Niazy, R.K.,
Saunders, J., Vickers, J., Zhang, Y., De Stefano, N., Brady, J.M., Matthews, P.M.,
2004. Advances in functional and structural MR image analysis and implementa-
tion as FSL. NeuroImage 23 (Suppl. 1), S208–S219.

Smith, S.M., Miller, K.L., Salimi-Khorshidi, G., Webster, M., Beckmann, C.F., Nichols, T.E.,
Ramsey, J.D., Woolrich, M.W., 2010. Network modelling methods for FMRI.
NeuroImage 54, 875–891.

Smith, S.M., Miller, K.L., Moeller, S., Xu, J., Auerbach, E.J., Woolrich, M.W., Beckmann,
C.F., Jenkinson, M., Andersson, J., Glasser, M.F., Van Essen, D.C., Feinberg, D.A.,
Yacoub, E.S., Ugurbil, K., 2012. Temporally-independent functional modes of spon-
taneous brain activity. Proceedings of the National Academy of Sciences of the
United States of America 109, 3131–3136.

Sporns, O., 2011. The non-random brain: efficiency, economy, and complex dynamics.
Frontiers in Computational Neuroscience 5, 5.

Storey, J.D., Tibshirani, R., 2003. Statistical significance for genomewide studies. Pro-
ceedings of the National Academy of Sciences of the United States of America
100, 9440–9445.

Sundaram, S.K., Kumar, A., Makki, M.I., Behen, M.E., Chugani, H.T., Chugani, D.C., 2008.
Diffusion tensor imaging of frontal lobe in autism spectrum disorder. Cerebral Cor-
tex 18, 2659–2665.

Supekar, K., Menon, V., Rubin, D., Musen, M., Greicius, M.D., 2008. Network analysis of
intrinsic functional brain connectivity in Alzheimer's disease. PLoS Computational
Biology 4, e1000100.

Supekar, K., Musen, M., Menon, V., 2009. Development of large-scale functional brain
networks in children. PLoS Biology 7, e1000157.

van den Heuvel, M.P., Stam, C.J., Boersma, M., Hulshoff Pol, H.E., 2008. Small-world and
scale-free organization of voxel-based resting-state functional connectivity in the
human brain. NeuroImage 43, 528–539.

Van Dijk, K.R., Sabuncu, M.R., Buckner, R.L., 2012. The influence of head motion on in-
trinsic functional connectivity MRI. NeuroImage 59, 431–438.

Villalobos, M.E., Mizuno, A., Dahl, B.C., Kemmotsu, N., Müller, R.A., 2005. Reduced func-
tional connectivity between V1 and inferior frontal cortex associated with
visuomotor performance in autism. NeuroImage 25, 916–925.



94 J.D. Rudie et al. / NeuroImage: Clinical 2 (2013) 79–94
Vissers, M.E., Cohen, M.X., Geurts, H.M., 2012. Brain connectivity and high functioning
autism: a promising path of research that needs refined models, methodological
convergence, and stronger behavioral links. Neuroscience and Biobehavioral
Reviews 36, 604–625.

Wang, J., Wang, L., Zang, Y., Yang, H., Tang, H., Gong, Q., Chen, Z., Zhu, C., He, Y., 2009.
Parcellation-dependent small-world brain functional networks: a resting-state
fMRI study. Human Brain Mapping 30, 1511–1523.

Wang, J., Zuo, X., He, Y., 2010. Graph-based network analysis of resting-state functional
MRI. Frontiers in Systems Neuroscience 4, 16.

Watts, D.J., Strogatz, S.H., 1998. Collective dynamics of ‘small-world’ networks. Nature
393, 440–442.
Wechsler, D., 1991. Wechsler Intelligence Scale for Children, third edition. The Psycho-
logical Corporation, San Antonio, TX.

Wechsler, D., 1999. Wechsler Abbreviated Scale of Intelligence. The Psychological Cor-
poration, San Antonio, TX.

Weissenbacher, A., Kasess, C., Gerstl, F., Lanzenberger, R., Moser, E., Windischberger,
C., 2009. Correlations and anticorrelations in resting-state functional connectiv-
ity MRI: a quantitative comparison of preprocessing strategies. NeuroImage 47,
1408–1416.

Zalesky, A., Fornito, A., Harding, I.H., Cocchi, L., Yücel, M., Pantelis, C., Bullmore, E.T.,
2010. Whole-brain anatomical networks: does the choice of nodes matter?
Neuroimage 50, 970–983.


	Altered functional and structural brain network organization in autism
	1. Introduction
	2. Materials and methods
	2.1. Subjects
	2.2. MRI data acquisition
	2.3. Resting state fMRI preprocessing
	2.4. Resting state fMRI connectivity matrix construction
	2.5. Resting state fMRI connectivity graph theoretical analyses
	2.6. Diffusion MRI preprocessing
	2.7. Diffusion MRI fiber connectivity matrix construction
	2.8. Structural connectivity graph theoretical analyses
	2.9. Correlation between fiber count and functional connectivity strengths
	2.10. Principal component analysis of functional and structural network properties
	2.11. Graph renderings and visualizations
	2.12. Data sharing

	3. Results
	3.1. Functional connectivity matrices
	3.2. Functional connectivity graph metrics
	3.3. Structural connectivity matrices
	3.4. Structural connectivity graph metrics
	3.5. Structure–function correlation
	3.6. Principal component analysis of structural and functional metrics

	4. Discussion
	4.1. Functional connectivity alterations
	4.2. Structural connectivity alterations
	4.3. Relationships between structure and function
	4.4. Future directions
	4.5. Conclusions

	Acknowledgments
	References




