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Abstract

In this work we construct scale invariant descriptors
(SIDs) without requiring the estimation of image scale; we
thereby avoid scale selection which is often unreliable.

Our starting point is a combination of Log-Polar sam-
pling and spatially-varying smoothing that converts image
scalings and rotations into translations. Scale invariance
can then be guaranteed by estimating the Fourier Trans-
form Modulus (FTM) of the formed signal as the FTM is
translation invariant.

We build our descriptors using phase, orientation and
amplitude features that compactly capture the local image
structure. Our results show that the constructed SIDs out-
perform state-of-the-art descriptors on standard datasets.

A main advantage of SIDs is that they are applicable to a
broader range of image structures, such as edges, for which
scale selection is unreliable. We demonstrate this by com-
bining SIDs with contour segments and show that the per-
formance of a boundary-based model is systematically im-
proved on an object detection task.

1. Introduction

Local image descriptors evaluated at interest points have
been very successful for many visual tasks related to ob-
ject detection [21]. An important issue is how to deal with
changes in image scale. Typically this is done in a two-
stage process which first extracts a local estimate of the
scale and then computes the descriptor based on an appro-
priately sized image patch. This strategy is limited in two
respects. First, for most places in the image it is hard to ob-
tain reliable scale estimates, with the exception of symmet-
ric structures, such as blobs or ridges. However, we would
not like to limit ourselves to the few structures for which
scale estimation is reliable, as other structures, e.g. edges
can be useful for object detection. Second, even if scale es-
timation is reliable, it does not necessary indicate the scale
where the most useful appearance information resides, as
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Local Structure Context
Figure 1.Our goal is to extract scale-invariant information around
generic image structures where scale selection can be unreliable,
e.g. edges. The local image structure that is used by most scale
selection mechanisms is often not informative about the scale of
the structure, which becomes apparent from the image context.

shown in Fig.1. Context is most informative and can only
be incorporated by considering multiple scales.

We propose a method to compute scale invariant descrip-
tors (SIDs) that does not require scale selection. For this
we use a combination of log-polar sampling with spatially
varying filtering that converts image scalings and rotations
into translations. Scale invariance is achieved by taking the
Fourier Transform Modulus (FTM) of the transformed sig-
nals as the FTM is translation invariant. Our experiments
show that SIDs outperform current descriptors when tested
on standard datasets.

By freeing us from the need for scale selection, SIDs can
be used in a broader setting, in conjunction with features
such as edges and ridges [18]. Such features can be used to
construct intuitive object representations as they are related
to semantically meaningful structures, namely boundaries
and symmetry axes. However, they have been limited since
they do not come with scale estimates, so it has been hard to
use them for scale-invariant detection. We address this by
augmenting contour segments with SIDs, and use them in a
flexible object model for scale-invariant object detection.

2. Previous Work

Image descriptors summarize image information around
points of interest using low-dimensional feature vectors that
are designed to be both distinctive and repeatable. Two
seminal contributions have been SIFT descriptors [21] and
Shape Contexts [26]; these have been followed by several
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Figure 2. Front-End Analysis. Left: We combine log polar sampling with a spatially increasing filter scale to guarantee scale invariance
(taken from [20]). Right: Features extracted from a band-pass filtered image using the Monogenic Signal.

extensions and refinements, such as Geometric Blur [3, 4],
PCA-SIFT [12] and GLOH [23]. Please see [23] for an up-
to-date review, comparisons and more extensive references;
we will compare in detail our descriptor to related ones in
the following sections.

Typically, a two stage approach is used to deal with
changes in image scale. First, a front end system is used
to estimate local image scale, e.g. by using a scale-adapted
differential operator [19, 18]. Then, the estimated scale is
used to adapt the descriptor. As argued in the introduction,
this two-stage approach is often problematic and the only
work known to us that addresses this is [6]. There the au-
thors obtain stable measures of scale along edges by extract-
ing descriptors at multiple scales and choosing the most sta-
ble one; however this requires an iterative, two-stage front-
end procedure for each interest point.

3. Front-End Analysis

3.1. Image Sampling with the Log-Polar Transform

In order to design scale-invariant descriptors we exploit
the fact that the log polar transform

Î(r, u) = I(x0 − σr
0 cos(u), y0 − σr

0 sin(u)) (1)

converts rotations and scalings of the imageI around
(x0, y0) into translations of the transformed imageÎ; r and
u are log-polar coordinates andσ0 is a scaling constant.
This transform is extensively used in image registration (see
e.g. [31] and references therein), while in [27] it is argued
that this logarithmic sampling of the image is similar to the
sampling pattern of the human visual front-end. We apply
this sampling strategy to our problem, by settingx0, y0 in
(1) equal to the location of an interest-point, and consider
the construction of a scale-invariant descriptor around it.

A practical concern is that directly sampling the image
around each point is impractical, because we would need
too many samples to avoid aliasing. Therefore we remove
high frequency components by band-pass filtering the im-
age before extracting features from it.

Further, as shown in Fig.2, we use spatially varying
filtering and sample the image (or its features) at a scale that

is proportional to the distance from the center of the log-
polar sampling grid. As we show in App.A, this guarantees
that scaling the image only scales the features and does not
distort them in any other way. This allows us to then use a
sparse log-polar sampling of the image features and convert
scalings/rotations into translations.

Comparing to other image descriptors that use a log-
polar sampling strategy, in the GLOH descriptor of [23],
the histogram of the image gradient at several orientations
is computed by averaging the gradient within each compart-
ment of a log polar grid. Such descriptors can be redundant,
since typically a single orientation is locally dominant. Fur-
ther, a front-end detector is used to determine the descrip-
tor’s scale, which as mentioned can be problematic. The
work of the authors in [3] is also closely related, as they
increase the smoothing with the distance from the center.
However their approach leads to distortions due to scale
changes, while in our work we guarantee that apart from
being translated, the signal does not get distorted.

3.2. Feature Extraction

Having described our sampling strategy, we now de-
scribe the features that are being sampled. Specifically,
we compute the image orientation, phase and amplitude, as
shown in Fig. 2, which largely capture local image struc-
ture. The phase of an image provides symmetry-related in-
formation, indicating whether the image looks locally like
an edge (φ = 0) or a peak/valley (φ = ±π/2). The am-
plitude A is a measure of feature strength (contrast), and
its orientationθ indicates the dominant direction of image
variation. To compute these we use the Monogenic signal
of [7], as described below.

3.2.1 The Monogenic Signal

In order to estimate the amplitude and phase of an 1-D sig-
nal a well established method is based on the Analytic Sig-
nal, obtained via the Hilbert transform [11]. However the
extension of the Analytic Signal to 2D had only been par-
tial, until the introduction of the Monogenic Signal in [7].

Following [7], we obtain the local amplitudea, orienta-



tion θ and phaseφ measurements of a 2D signalh by:

A =
√
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y, θ = tan−1 hy

hx
, φ = tan−1 h√

h2
y + h2

x

h{x,y} = F−1(
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ω{x,y}√
ω2

x + ω2
y

H),

whereH = F(h) is the 2D Fourier transform ofh and
ωx, ωy are horizontal/vertical frequencies. A simple imple-
mentation can be found at [16].

Apart from being theoretically sound, the Monogenic
Signal is also efficient; prior to the generalization of the
Hilbert transform to 2D, earlier approaches would first pre-
process the image with a set of orientation-selective filters
[25, 10, 22, 24, 13] and then essentially treat the output of
each filter as an 1-D signal. Instead, the Monogenic Signal
only requires filtering with a single band-pass filter with no
orientational preference.

4. Scale Invariant Descriptor Construction

Having laid out the ideas underlying our front-end pro-
cessing, we now describe our method for computing SIDs,
depicted as a block diagram in Fig.3.

We initially band-pass filter the input image at multiple
scalesσ, and estimate at each scale the amplitude, phase,
and orientation featuresA(x, y, σ), φ(x, y, σ), θ(x, y, σ)
with the Monogenic signal. We sampleA, φ, θ around
each point with a log-polar grid, taking measurements from
larger scales as we move further from(x0, y0):

fd(r, u) = f(x0 − cσr
0 cos(u), y0 − cσr

0 sin(u), σr
0), (2)

wherefd is the sampled version off , f = A,φ or θ andc
is a constant, which we set to 1.

We useAd, φd, θd to construct the following functions:

Ad cos(φd), Ad sin(φd), Ad cos(2θ∗d), Ad sin(2θ∗d). (3)

Edges and ridges are indicated byAd cos(φd) and
Ad sin(ψd) respectively. To remove the dependence of
the orientation estimateθd on image rotations we form
θ∗d(r, u) = θd(r, u)−u and then multiply it by two to make
orientations identical moduloπ; we then use the functions
Ad cos(2θ∗d), Ad sin(2θ∗d) to capture image orientation.

Our sampling strategy guarantees that a scaling/rotation
of the image becomes a vertical/horizontal translation of
Ad, φd, θd, so this carries over to the computed features, as
shown in Fig.4. We eliminate variations due to these trans-
lations with the Fourier Transform Modulus (FTM) [5]: if
F (ωr, ωu) is the Fourier transform off(r, u), we have

f(r − r0, u− u0)
F↔ F (ωr, ωu) exp (−j(ωrr0 + ωuu0)) .

Taking the magnitude of the Fourier transform eliminates
variation due to translation, as| exp(jx)| = 1. Further, we
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Figure 3.Descriptor Construction: The image is processed at mul-
tiple scales to obtain phase, amplitude and orientation estimates.
These are sampled with a log-polar grid, using larger scale esti-
mates as we move outwards - the points on the green/blue rings use
estimates from the ‘green/blue’ scales. The sampled functionsAd,
ψd, θd and the features built from these are defined in log-polar
coordinates, which turn image scalings and rotations into transla-
tions. These are then eliminated by taking the Fourier transform
modulus (FTM). We pick 32 high-energy components from each
FTM and form a 128-dimensional descriptor.

eliminate multiplicative changes due to lightning by nor-
malizing each FTM to have unitL1 norm.

We exploit the Fourier Transform’s concentration of en-
ergy to keep a small set of high energy components lying
at low frequencies; these contain most of the information
about the signal, and are robust to noise. Further, as the
FTM is symmetric, i.e.|F (ω1, ω2)| = |F (−ω1,−ω2)| we
only need to consider two quadrants of the FTM domain.
We therefore ignore coefficients with negative horizontal
frequency, and keep the FTM coefficients lying within a
4× 8 box in the frequency domain, as shown in Fig.3.



Transformation Point 1 Point 2 Point 3

SID L2 Distances
P1 P2 P3

P ′1 1.20 1.63 1.51

P ′2 1.64 1.26 1.54

P ′3 1.45 1.72 1.30
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Figure 4.Demonstration of robustness to image scalings and ro-
tations, with two images differing by a scale factor of 3 and an
angle ofπ/4 (hardest angle). Top row: theAd cos(φd) functions
computed on three different points are shifted versions of each
other (the horizontal borders,0, 2π are identical). Bottom row:
the SIDs remain mostly intact by scaling, and thresholding their
L2 distances can give all correct matches without false positives.

Combining the 32-dimensional features extracted from
the four signals of (3) we obtain our 128-dimensionalscale
invariant descriptor(SID).

In practice our descriptor is not perfectly invariant to
scale changes, due to the limited number of scales consid-
ered. Therefore a change in image scale, e.g. a zoom, in-
troduces new observations at fine scales and removes others
at the coarse scales, as the top row of Fig.4 shows. This
can distort the FTM, and hence the SID. However, as Fig.4
shows, for a scale change of size 3 our descriptor is robust
to such variations. The three points considered can easily
be confused: The green and blue points are on edges, so
they look locally similar. The green and red points are on
the same side of the face, so they have similar contexts. We
observe that the distortions introduced by a scale change are
not large enough to confound the point descriptors; empiri-
cally we observed that our descriptor is reliable for changes
in image scale up to an order of 4.
Implementation Details: We use a band-pass filter with
frequency response

F (ωx, ωy) = c0

√
ω2

x + ω2
y exp(−σ2

ω2
x + ω2

y

c
), c = 2,

whose scale in the time-domain is proportional toσ. c0

is a numerically estimated constant, so that each filter has
unit L1 norm in the time domain. We use filters with
σ = 2(1.14)n, n = 0, . . . , 30 and sample their features
at points lying at distances from the center equal tor =
2(1.14)n, n = 0, . . . 30.

5. Descriptor Evaluation

We use the datasets provided in [23] to evaluate the per-
formance of our descriptors. Using the code provided in [1]
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Figure 5.Precision-Recall curves for descriptors extracted around
Hessian-Laplace interest points. The dashed lines are the per-
formances of SIFT/GLOH after making up for misses due to
orientation (see text for details). In most cases SIDs outper-
form SIFT/GLOH, even after this correction. The last three rows
demonstrate robustness to other transformations.

we compare to the SIFT [21] and GLOH descriptors which
were reported in [23] to outperform most descriptors.

The descriptors are computed around interest points ex-
tracted from two images of an identical scene; these images
differ either by camera pose or a degrading transformation,
like blurring, or jpeg compression. Ground truth correspon-
dences are then used to evaluate the correspondences estab-
lished based on thresholding the descriptor similiarities.

We observe that our descriptor systematically outper-
forms the SIFT/GLOH descriptors; we obtained similar re-
sults on most of the 40 images we experimented with using
both the Harris- and Hessian- Laplace detectors, and con-
sidering both the similarity and nearest-neighbor criteria of
[23]; we do not work with the affine-invariant detectors as
we do not cover affine invariance. We have been concerned
about whether this difference is an artifact of the different
treatment of scale and orientation by SID and SIFT/GLOH;
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Figure 6.Using context to disambiguate appearance: At the scale
at which GLOH descriptors are computed, the two corners are al-
most identical (we omit SIFT as it is worse). By using context, the
SID tells the two corners apart, as is shown by its normalized dis-
tance,

∑
(D1 −D2)

2/
∑

D2
1 that is almost twice that of GLOH.

we detail our evaluation settings below, but note that with
the original code of [23] we obtain similar results.

We attribute this difference in performance to two rea-
sons: first, SID captures contrast, orientation and sym-
metry in a continuous manner, without using histograms
like SIFT/GLOH. This allows SID to put more information
in a descriptor of the same dimensionality. Second, SID
uses image context, which allows it to disambiguate among
points and find more accurate matches. As shown in Fig.
6, the SID can tell apart two corners whose appearance is
locally identical: as soon as we ‘zoom out’ structures like
the tree make it possible to tell them apart.

Even in this setting, where scale estimation is reliable,
we typically obtained better performance compared to scale
dependent descriptors on most images that we experimented
with. This suggests using SIDs also for other image areas
where no scale estimates can be obtained.

On the downside, computing SIDs for an512× 765 im-
age having2414 points takes 35 sec.s on a 1.6 Ghz PC,
which is slower than SIFTs. We can however use e.g. a
pyramidal implementation to speed-up computation.

Evaluation Settings: We need to deal with points that
are close in space but lie at different scales, e.g. cor-
ners where the Harris-Laplace detector responds at differ-
ent scales to points that lie close. Such points are consid-
ered as different by the software of [1], but are found to
be identical by SIDs which do not rely on the detector’s
scale. This eronneously penalizes SIDs as providing false
positives, since they are actually matching the same point.

The inverse happens with orientation: points at the same
location but with different orientations are considered as
identical by [1], but result in different SIFT/GLOH de-
scriptors. This penalizes these descriptors for not matching
points that could not possibly be matched by construction.
However, our descriptor can match such points, as it does
not rely on the detector’s orientation.

As our goal is to compare the information carried by the
different descriptors on equal grounds, we resolve this situa-
tion as follows: First, we remove from our evaluation points
that are less than 10 pixels apart, but are declared as differ-
ent by [1] due to differing scales. For this we add a large

constant to their descriptor distances, making sure they will
not get matched. This reduces the number of false positives
for SIDs, that will otherwise match points irrespective of
scale. Second, if the SIFT/GLOH descriptors of two points
are matched for a certain threshold, we force the descrip-
tors computed for other orientations at these points to be
matched as well. This typically increases the recall rate of
SIFT/GLOH by an order of two, as is seen be comparing the
solid and dashed lines in Fig.5. Finally, we do not consider
points lying within 30 pixels from the image boundary, as
the descriptors there are distorted by missing data.

6. Token-based Object Representation

We now turn to combining our descriptors with contour
segments, which has been our initial motivation for com-
puting SIDs. Contour segments have been used for object
category detection e.g. in [28, 4, 9] and were shown to com-
pare favorably to systems using interest points. However, it
is hard to estimate the image scale at contour locations, so
associating scale-invariant appearance information to con-
tours has been problematic.

This is a problem which we address with SIDs, as they
do not require scale estimation. Specifically, we represent
the image by a set of ‘sketch tokens’{Ti : i = 1, ..., N}.
These are computed from the image by the Lindeberg pri-
mal sketch [18], followed by a line breaking algorithm.
Each token is a straight edge/ridge segment with a SID com-
puted at both ends, as shown in Fig.7(a). We describe a
token by the locationsxS ,xE of its start- and end- points
and the SIDsAS ,AE extracted around them.

We use this representation to both learn the object model,
and perform inference. The main problem that we encoun-
tered in doing this has been the contour fragmentation prob-
lem, shown in Fig.7(b,c). Even though the images are sim-
ilar, there is variability in the tokens due to a combination
of factors such as line breaking, thresholding, sensor noise
etc. As we describe below, our object representation allows
us to deal with this problem.

(a) (b) (c)
Figure 7. (a) the sketch token obtained by a contour segment with
an descriptor at either end. (b,c): Contour fragmentation problem:
Similar images give different tokens.

6.1. Learning Procedure

Here we consider learning a model for the primal sketch
tokens coming from an object category, e.g. cars or faces.
We start by automatically registering 50 images belonging



to the training sets of [2, 8] using the procedure reported in
[15]. This deals with shape variation by aligning all images
to a common, ‘template’ grid.
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Figure 8.Left: Grid imposed on the template (black) and selected
points combining frequency of appearance and consistency of the
primal sketch (green/red). Right: Scatter plot of the first two PCA
coefficients for the appearance descriptors extracted at the grid
points labeled with red letters on the left. Please see in color.

To model tokens we first determine points on the car
which can serve as their start and end points. For this,
inspired by [30], we first define a regular grid, i.e. a dis-
crete subset of locations. Next we quantize onto this grid
the start- and end-point locations of the primal sketch to-
kens that we extract from the registered training images. We
gather statistics for the transition probabilities between each
pair of grid points, as shown in Fig.9, by counting how of-
ten these grid points get linked by primal sketch tokens.

The resolution of the grid is important. A fine-scale
grid will result in high complexity for detection and require
much training data, while a coarse-scale grid will give a
‘diffuse’ model. Cross validation could be used to select an
optimal grid size, but we use instead a solution which prac-
tically gave good results: we select a medium-scale grid,
with points being 10 pixels apart in the horizontal and verti-
cal dimensions and then prune out the grid points that rarely
correspond to primal sketch tokens.

For pruning we use a criterion similar to the ‘Google’ cri-
terion of [29]. At each grid point we estimate the quantity
mi = pi

∑
j pi,j log(pi,j) which combines: (a) the proba-

bility pi of the grid pointi being hit by the start-/end- point
of a primal sketch token, and (b) the predictability (neg-
ative entropy) of its transition probability to another grid
point. By thresholding this criterion we obtain the grid
points shown in Fig.8.

The object representation consists of the set of Grid-
Point-Pairs (GPPs),Gp = (iS , iE) that start and end at the
points that survive this pruning. Each such GPP has:
• Two distributionsPiS (.) andPiE (.) for the descriptor fea-
turesAS andAE at its end points. Instead of the full de-
scriptor, we use its 20-dimensional projection on a PCA ba-
sis, constructed from background images.
• A distribution PG(xS ,xE |X) = PG(xS |X)PG(xE |X)
for the positionsxS ,xE of its end points conditioned on
the poseX of the object. These are estimated based on the
deformation statistics, and are modeled by Gaussian distri-
butions for computational convenience.

Figure 9. Sketch transition probabilities capturing the statistics of
edge tokens for faces and cars. The width of the line connecting
two points is proportional to the probability of a sketch token tran-
siting from one grid point to another.

• A distribution for whether there is a primal sketch token in
the image that connectsiS with iE . This is a Bernoulli dis-
tribution, with probability of successπG equal to the transi-
tion probabilities among nodes.

These distributions give a likelihood estimate for a pri-
mal sketch tokenTi conditioned on a GPPGp = (iS , iE)
and the object pose,X:

P (Ti|Gp,X) = PiS (AS)PiE (AE)PG(xS ,xE |X)πG (4)

Finally, we learn separate background distributionsPB(Ti)
for edge and ridge tokens using the background images of
[8]. We fit the distribution of token lengths with an ex-
ponential distribution,P (S) = a exp(−aS) and a non-
parametric distribution for token orientation is built using
the embeddingθ → (cos(θ), sin(θ)) of θ to R2. The fore-
and background distributions are not commensurate, since
they model different aspects of the tokens. In principle we
should use the Jacobian of the mapping from one represen-
tation to the other, but as we do not have analytic expres-
sions we multiply the background distribution with a man-
ually determined correcting factor.

Our grid-based model decouples three major sources of
variation: bottom-up detection artifacts due to fragmenta-
tion, appearance and shape variation. This makes it easier
to both gather statistics in order to train the model, and uti-
lize it during object detection. For example, the appearance
distributions are learned independently of the sketch tokens,
using all 50 training images.

7. Scale Invariant Detection

We now describe how we use the sketch tokens for ob-
ject detection (localization) in conjunction with our object
representation.

7.1. Sketch Pruning

We first reduce the number of sketch tokens that are po-
tential matches to the object, by pruning tokens whose ap-
pearances are unlikely to have been generated by the object.



Figure 10.Left: Edge (green) and Ridge (blue) tokens extracted
from our bottom-up system. Right: pruned features based on their
descriptor likelihoods under the model hypothesis.

Specifically, for each token we compute the likelihoods of
its endpoint SIDs,AS ,AE under the appearance distribu-
tions Pi(A) constructed at each object grid pointi during
training. If maxi Pi(A) falls below a conservative thresh-
old for eitherAS or AE , then we reject this token. Such
tokens typically appear in the background clutter, and we
find empirically that this stage has few false negatives, as
shown in Fig.10.

7.2. Voting-based Object Detection

We perform object detection by relating the primal
sketch tokens in the image to the model GPPs. For this
we use a voting method similar to [17, 14] and estimate the
object poseX by gathering evidence from all possible cor-
respondences between tokens and GPPs. This evidence for
an object at locationX conditioned on matching tokenTi

to the GPPGp equals the log-likelihood ratio:

R(X|Ti,Gp) = log
P (Ti|Gp,X)

PB(Ti)
. (5)

Apart from an additive term that depends on the descrip-
tor likelihoods, this expression can be written as a sum
of two terms, obtained by breaking the pose likelihood,
log(P (XS , XE |x)) = log(P (XS |X)) + log(P (XE |X)).
These terms are pre-computed for 7 object scales spanning
the range between[.3, 3] and are used during detection to
efficiently vote for objects. Apart from feature extraction,
the detection algorithm thereby typically takes less than 10
seconds.

We allow each tokenTi to vote for all GPP’s for which:
(i) the difference between the GPP orientation and the to-
ken falls below a threshold (π/8) and (ii) the likelihood of
both token descriptors with respect to the GPP distribution
is above a conservative threshold. These conditions reduce
the number of correspondences between tokens and GPP’s
by over two orders of magnitude. For example, they reduce
6400 possible correspondences between GPP’s and tokens
to approximately 30 possible correspondence per token.

Finally, by considering correspondences for a range of
relative scales between GPPs and tokens spanning[.3, 3] we
are able to deal with scale variation. Depending on the to-
ken/GPP relative scales, we vote for different object scales

using different expressions forlog(P (XS , XE |x)), as men-
tioned above.

The total votes for a poseX are computed by:

V (X) =
∑

max(R(X|Ti,Gp), 0), (6)

where the sum is over all allowed correspondences between
the GPP’s and the primal sketch tokens. We obtain a small
set of poses by nonmaximum suppression, as in [2].

7.3. Detection Results

We explore the importance of the appearance cue on the
Caltech face database [8] and the UIUC car dataset [2].
Specifically, we examine the merit of the information car-
ried by SIDs by removing the appearance-related part of
the expression in (5). As is shown in Fig.11 this has a di-
rect impact on detection performance. The detection system
that does not use appearance information behaves similarly
to the system of [2], while by introducing appearance it gets
closer to the current state-of-the-art. Similar results hold for
multi-scale cars, where the EER (67.8) may be below the
current state of the art [24], but the introduction of appear-
ance information has resulted in a clear improvement in per-
formance. As these results provide clear proof-of-concept
for the usefulness of SIDs for contour-based detection, we
are currently working on incorporating SIDs in more elab-
orate detection systems.
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Figure 11.Precision-Recall curves for object detection: Introduc-
ing appearance information from SIDs systematically improves
the performance of a baseline detector, and makes it comparable
to appearance-based detection systems.

8. Conclusion

This paper describes a method to construct scale invari-
ant descriptors without requiring scale selection. Our exper-
imental results demonstrate that these descriptors compare
favorably to current state-of-the-art alternatives when eval-
uated on standard datasets, while at the same time being
applicable to image structures such as edges.

This has allowed us to introduce scale-invariant appear-
ance information in contour-based detection, by using a SID
to describe the image appearance at the start and end points
of edge/ridge segments. We have explored the usefulness of



this information for an object detection task, where we ob-
served systematic improvements in performance compared
to a voting scheme using only contour information.

In future work we intend to explore the merits of intro-
ducing appearance in more elaborate detection systems and
develop efficient algorithms for feature extraction.

A. Space Variant Filtering for Scale Invariance

Consider a one-dimensional signalI(x), and a feature function
F (x) obtained by filteringI(x) with a kernelgσ, whereσ = ax:

F (x) =

∫

t

I(t)gax(x− t)dt =

∫

t

I(t)
1

ax
g1(

x− t

ax
)dt (7)

g1(x) is a unit-normL1 kernel at scale1 and 1
ax

guarantees that
gax has unit norm. IfI ′ is a scaled version ofI, i.e. I ′(tσ0) =
I(t), its feature function,F ′ atxσ0 will be:

F ′(xσ0) =

∫

t

I ′(t)
1

axσ0
g1(

xσ0 − t

axσ0
)dt =

t′σ0=t
=

∫
I ′(t′σ0)

1

axσ0
g1(

xσ0 − t′σ0

axσ0
)σ0dt′ =

=

∫
I(t′)

1

ax
g1(

x− t′

ax
)dt′ = F (x) (8)

which proves that the featuresF ′ of the transformed image are
scaled version of the featuresF of the original image. By a loga-
rithmic sampling we can thus turn image scalings into translations.
We can show in the same way in 2D thatF ′(xσ0, yσ0) = F (x, y).
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