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Due to the usually complicated and anisotropic nature of the fast-ion distribution function, diagnos-

tic velocity-space weight functions, which indicate the sensitivity of a diagnostic to different fast-

ion velocities, are used to facilitate the analysis of experimental data. Additionally, when velocity-

space weight functions are discretized, a linear equation relating the fast-ion density and the

expected diagnostic signal is formed. In a technique known as velocity-space tomography, many

measurements can be combined to create an ill-conditioned system of linear equations that can be

solved using various computational methods. However, when velocity-space weight functions

(which by definition ignore spatial dependencies) are used, velocity-space tomography is restricted,

both by the accuracy of its forward model and also by the availability of spatially overlapping diag-

nostic measurements. In this work, we extend velocity-space weight functions to a full 6D general-

ized coordinate system and then show how to reduce them to a 3D orbit-space without loss of

generality using an action-angle formulation. Furthermore, we show how diagnostic orbit-weight

functions can be used to infer the full fast-ion distribution function, i.e., orbit tomography. In depth

derivations of orbit weight functions for the neutron, neutral particle analyzer, and fast-ion D-a
diagnostics are also shown. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4990391]

I. BACKGROUND AND MOTIVATION

From a diagnostics standpoint, fast-ion physics is partic-

ularly difficult. Unlike bulk-ion diagnostics that measure

Maxwellian distributed velocities, fast-ion diagnostics have

to measure a velocity distribution that can be highly aniso-

tropic due to the neutral beam and RF heating. The lack of a

simple parametrization of the fast-ion velocity distribution

makes it difficult to draw correlations between experimental

data and the relevant fast-ion physics. In an effort to aid the

modeling, interpretation, and experimental design of fast-ion

diagnostics, the following ansatz was proposed:1

S ¼
ð ð

WðE; pÞFðE; pÞ dEdp; (1)

where S is the diagnostic signal, F(E, p) is the fast-ion

energy-pitch distribution function, and W(E, p) is a diagnos-

tic weighting function. The weight function indicates the

phase-space sensitivity of the diagnostic, allowing for easier

interpretation of the diagnostic data (Fig. 1). Since their

introduction there has been a focused effort in calculating

velocity-space weight functions for more fast-ion diagnos-

tics.2–6 Additionally, in a process called velocity-space

tomography,2,7–9 the velocity-space fast-ion distribution

function can be inferred by discretizing Eq. (1), creating a

system of linear equations that can be solved using various

computational methods.10 This powerful method has been

used to study the redistribution of fast ions during sawtooth

crashes.10–12

In this paper, the concept of velocity-space weight func-

tions is extended to encompass the entire phase space. The

motivation for this extension is threefold. First, most

velocity-space weight functions assume a fixed spatial

location or average over the measurement volume of the

diagnostic. In regions where the fast-ion distribution has

large spatial variations, Eq. (1) performs poorly (Sec. III D).

A generalization of Eq. (1) to include spatial coordinates

is needed to properly model diagnostics in these regions.

Second, fast-ion orbits link velocity and configuration

space. When an orbit traverses two different measurement

volumes, a measurement at one location contains informa-

tion about the velocity distribution at the other. As shown

in a forthcoming publication, inclusion of this additional

information improves the accuracy of the distribution-

function inversions. Third, velocity-space tomography

requires overlapping diagnostic views. In practice, due to

limited port access, radial arrays from one or two ports

are often easier to implement than multiple views of the

same spatial volume from different viewing locations.

Orbit weight functions enable velocity-space inference

from radial detector arrays.

Section II presents the theoretical framework for orbit

weight functions. In Sec. II A, a generalized 6-

dimensional diagnostic weight function is derived. In Sec.

II B, the dimensionality of the 6D weight function is

reduced to a 3D orbit weight function without loss of

generality through an action-angle formulation of the

guiding center motion of a fast ion. Section III presents a

representative application. Section III A describes the

DIII-D diagnostics and plasma for the selected case.

Then, in Secs. III B–III D, orbit weight functions are illus-

trated for neutron, neutral-particle analyzer, and fast-ion

D-a (FIDA) diagnostics. Conclusions appear in Sec. IV.

The collisional-radiative model used to describe the neu-

tral particle analyzer (NPA) and FIDA diagnostics is sum-

marized in the Appendix.
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II. THEORETICAL FRAMEWORK

A. Generalized diagnostic weight functions

Consider a fast ion with phase-space coordinates x

¼ [p, q], where p and q are the generalized momentum and

position, respectively. For any given fast-ion diagnostic,

there is a function, S(x), that gives the expected signal pro-

duced by each fast ion. The expected total diagnostic signal

is given by summing the contributions of all fast ions

Stot ¼
XN

k¼1

SðxkÞ; (2)

where N is the total number of fast ions. This equation can

be expressed in terms of the frequency in which x occurs

Stot ¼ N
X

xk2RX

SðxkÞPXðxkÞ; (3)

where PX(xk) is the frequency of xk occurring. In the contin-

uum limit, the discrete sum in the above equation can be

replaced by an integral and can be written in the form

Stot ¼
ð

SðxÞN
X

xk2RX

PXðxkÞdðx� xkÞdx ¼
ð

SðxÞFðxÞdx;

(4)

where F(x) is the fast-ion distribution function. By inspec-

tion, it is clear that Eq. (4) is the generalized version of Eq.

(1) and that weight functions are just the expected diagnostic

signal for a given phase-space coordinate.

If we consider the phase-space coordinate system

x¼ {E, p, c, R, z, /}, where E is the energy, p is the pitch

with respect to the plasma current (p ¼ vk=v), c is the gyro-

angle, R is the major radius, z is the elevation, and / is the

toroidal angle, the velocity-space weight function in Eq. (1)

can be recovered by averaging over the unused phase-space

variables. Since most velocity-space weight functions are

gyro-averaged and spatially localized, the following reduc-

tion of Eq. (4) reproduces the velocity-space weight function:

W E; pð Þ ¼ 1

2p

ð ð ð ð
S E; p; c;R; z;/ð Þd R� R0ð Þd z� z0ð Þ

� d /� /0ð Þ dc dR dz d/: (5)

In this framework, W(E, p) is interpreted to be the average

signal produced by a fast ion with a given energy and pitch.

B. Orbit weight functions

A reduction of the phase-space, as done in Eq. (5),

greatly simplifies analysis and facilitates tomographic recon-

structions by reducing the number of unknown parameters.

However, since we are concerned about the motion of the

fast ions, care must be taken to ensure that no critical infor-

mation is lost when averaging over variables. In other words,

only variables that do not appear in the Lagrangian (i.e.,

ignorable or cyclic coordinates) can be averaged out without

critical information loss. By this standard, the phase-space

reduction done in Eq. (5) is inadequate since only the gyro

and toroidal angle averaging were permissible.

In order to reduce the phase-space as much as possible it is

advantageous to express the expected diagnostic signal, S, in

canonical action-angle coordinates, x ¼ ðJ;HÞ. Action-angle

coordinates are a set of canonical coordinates with the special

FIG. 1. Representative velocity-space weight functions for the DIII-D plasma and diagnostics described in Sec. III A. (a) The neutron scintillator is a global

measurement of the neutron production rate. Its weight function is spatially averaged and shows a strong energy dependence. The slight anisotropy in pitch is

due to fast ions traveling with (positive pitch) and against (negative pitch) the plasma rotation. (b) The neutral particle analyzer (NPA) diagnostic detects neu-

tralized fast ions that escape the plasma. The collimation of the detector only permits a small range of pitch values to hit the detector and, because the detector

is operated in current mode, the weight function is sensitive to many different energies. (c) and (d) The fast-ion deuterium-a (FIDA) diagnostic measures spec-

tra produced by neutralized fast ions. The weight function depends upon wavelength. These FIDA weight functions are line-of-sight averaged at k¼ (652,

660) 6 0.2 nm for a single oblique (Fig. 4) viewing chord.
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property that the action variables, J, are invariants of the motion

and the angle coordinates, H, are cyclic/ignorable and can be

averaged over. In these coordinates, information preserving

phase-space reductions can then be succinctly expressed as

W Jð Þ ¼
Y

i

1

si

 !ðs1

0

…

ðsi

0

S J;Hð Þ dH; (6)

where si are the periods of the angle coordinates. In this

framework, W(J) is interpreted as the average signal pro-

duced by a fast ion with action coordinates J.

The total diagnostic signal can be calculated using these

reduced weight functions. Consider the subset of fast ions in

a plasma with action coordinates, Jk. The signal produced by

these fast ions is given by

Sk ¼
XNk

i

SðJk;HiÞ ¼ Nk

XNk

i

SðJk;HiÞ=Nk; (7)

where Nk is the number of fast ions with action coordinates

Jk. The sum on the right-hand side is the average signal pro-

duced by the subset of fast ions. This is identical to the inter-

pretation of the reduced weight function. The total

diagnostic signal can then be expressed as

Stot ¼
X

k

NkWðJkÞ: (8)

In the context of guiding center motion, Jk acts as a label for

an individual fast-ion orbit. Therefore, Eq. (8) can be inter-

preted as a sum of the signal produced by each fast-ion orbit.

As in velocity-space tomography, when there are multiple

measurements, Eq. (8) can be put into matrix form, creating

a system of linear equations that can be solved. We call this

orbit tomography.

An action-angle parametrization of the guiding center

motion of a fast ion in a tokamak has three action coordinates

and three angle coordinates. There are many possible choices

for action-angle coordinates; the classical choice being the

canonical constants of motion: energy, magnetic moment,

and toroidal canonical angular momentum, J¼ (E, l, p/).

However, due to an ambiguity in the sign of vk in the defini-

tion of p/, the classical choice of coordinates does not always

uniquely label distinct orbits, i.e., a single action coordinate

Jk in this space could correspond to two different orbit trajec-

tories. This makes it difficult to use Eq. (6) to reduce the

phase-space since the angle variables would have different

periods. Instead, we use a modified version of the coordinates

first promoted by Rome13 and others.14 Here, we define the

action coordinates, hereby called orbit-space variables, to be

J ¼ ðE; pm;RmÞ; (9)

where E is the energy, Rm is the maximal radius along the

orbit, and pm is the pitch with respect to the plasma current

at Rm. The suitable angle variables, which describe the posi-

tion of the fast ion along the orbit, are

H ¼ ðt; c;/0Þ; (10)

where t is the time, c is the gyro-phase, and /0 is the initial

toroidal angle. Applying Eq. (6) yields the general definition

of an orbit weight function

W E;pm;Rmð Þ ¼ 1

4p2sp

ð2p

0

ð2p

0

ðsp

0

S E;pm;Rm; t;c;/0ð Þdtdcd/0;

(11)

where sp is the poloidal transit time.

This choice of orbit-space coordinates has several nice

properties. The space has natural boundaries in all three coor-

dinates (E¼ [0, Emax], Rm¼ [Raxis, Rwall], and pm¼ [–1, 1]),

which makes it easy to enumerate all possible orbit trajecto-

ries for a given magnetic equilibrium. Additionally, as can be

seen in the topological map of the orbit-space in Fig. 2,

counter-passing orbits are easily identified by the sign of pm.

III. ORBIT WEIGHT FUNCTIONS FOR VARIOUS
FAST-ION DIAGNOSTICS

In this section, after briefly describing the plasma condi-

tions and diagnostics, orbit weight functions are derived for

three DIII-D fast-ion diagnostics: neutron scintillator, neutral

FIG. 2. Left: topological map of differ-

ent orbit types15 with fixed energy for

the DIII-D plasma described in Sec.

III A. Right: orbits corresponding to

the dashed line in the topological map.

The plus indicates the magnetic axis

and the dashed line is the last-closed

flux surface.
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particle analyzer (NPA), and fast-ion D-a (FIDA). The orbit

weight functions are calculated on a 100� 100� 100 ele-

ment (E, pm, Rm) grid.

A. Apparatus

The selected plasma is DIII-D shot #159243 at 790 ms.

This discharge, which is discussed in detail in Ref. 16, is a

reversed-shear plasma with a toroidal field of 2.0 T and

plasma current of 0.8 MA. The fast-ion population is created

by deuterium neutral beams of energy 70–81 keV that are

injected in both the co-current and counter-current direc-

tions. Although the discharge has extensive Alfv�en eigen-

mode activity, only the “classical” distribution function

calculated by NUBEAM17 in the absence of wave-induced

transport is considered here. Projections of the orbit-space

fast-ion distribution function for the shot are shown in Fig. 3.

The neutron scintillator measures the volume-averaged

neutron rate. In its present configuration, the solid-state NPA

diagnostic is operated in the current mode.18 The NPA and

FIDA diagnostics considered here both view the 210RT neu-

tral beam (Fig. 4). The fast-ion diagnostic simulation code,

FIDASIM,21 has the ability to calculate the expected signal

for an arbitrary fast-ion distribution for the Neutron, NPA,

and FIDA diagnostics. Since an orbit weight function is just

the expected signal produced by a fast ion on an orbit,

FIDASIM can be used to evaluate the integral in Eq. (11) by

creating a fast-ion distribution input file that consists of fast

ions that are uniformly distributed along a single orbit.

B. Neutron scintillator orbit weight function

A neutron scintillator detects neutrons that are produced

via the following fusion reaction:

Dþ D! He3 þ n: (12)

The total cross section for this reaction is given by

rT Eð Þ ¼ S Eð Þ
E exp BG=

ffiffiffi
E
p� � ; (13)

where E is the energy in the center-of-mass frame in keV,

BG is the Gamov constant, and S(E) is a Pad�e expansion of

the astrophysical S-function.22

Here we consider only beam-plasma reactions, since

they often predominate. The beam-plasma neutron reactivity

of a fast ion interacting with a thermal background plasma is

given by

hrvi vfð Þ ¼
ð

rT
l
2
jjvf � vtjj2

� �
jjvf � vtjj f vtð Þ dvt; (14)

where l is the reduced mass of the fast and thermal ion spe-

cies, vf is the fast-ion velocity, vt is the thermal-ion velocity,

and f is a shifted Maxwellian velocity distribution.23 The

FIG. 3. Projections of the orbit-space fast-ion distribution for shot #159243 at 790 ms. Each projection is the full 3D distribution integrated over one of the var-

iables, e.g., Fzðx; yÞ ¼
Ð

Fðx; y; zÞ dz. Each projection is normalized to unity.

FIG. 4. Poloidal (a) and plan (b) view

of the 210RT neutral beam density

(contours) and fast-ion diagnostics

(colored lines). The Oblique FIDA sys-

tem,19 shown in blue, consists of a

maximum of 11 viewing chords look-

ing down at the 210RT beam at an

oblique angle of �45� with respect to

the midplane. The Main-ion and

Tangential spectroscopic systems,20

shown in red and orange respectively,

provide a combined 20 midplane views

of the neutral beam. The solid state

NPA system (ssNPA),18 shown in

green, consists of three channels view-

ing the core region of the plasma from

below the midplane.
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expected signal produced by a fast ion with phase-space

coordinates x is given by

SneutðxÞ ¼ � dDðxÞ hrviðxÞ; (15)

where � is the detector efficiency and dD is the thermal deute-

rium density. Substituting this equation into Eq. (11) yields

the neutron orbit weight function (Fig. 5).

In isolation, the neutron orbit weight function gives insight

into the underlying physics of the diagnostic. For example, the

strong energy dependence of the orbit weight function indi-

cates that the effect of the neutron cross section is consider-

able. This type of analysis can also be done using velocity-

space weight functions; however, with orbit weights, the sensi-

tivity of the diagnostic to individual orbit types can also be

analyzed (Table I). Table I shows the signal produced by each

orbit type, indicating that co-passing orbits produce the most

signal. Somewhat surprisingly, the neutron diagnostic is quite

sensitive to potato orbits despite the small volume of phase

space that they occupy. This is caused by the tendency of

potato orbits to spend a large fraction of their orbit in the high

density core region. The total beam-plasma neutrons produced,

as calculated by Eq. (8), is in agreement with the predictions

of TRANSP/NUBEAM and FIDASIM (Fig. 6).

C. Neutral particle analyzer (NPA) orbit weight function

Consider a beam of fast ions traveling through a cloud

of neutral particles. The fast ions can undergo the following

charge exchange reaction:

Hþf þ HðmÞ ! Hf ðnÞ þ Hþ: (16)

The energy of the newly created fast neutral, Hf(n), can

then be detected, forming the basis of the NPA diagnostic.

Additionally, the fast neutral can be born into an excited

state and relax to a lower energy state, emitting a photon.

The Doppler shift of the photon contains information about

the fast ion before it was neutralized. This process forms the

basis of the FIDA diagnostic.

In the case of active NPA and FIDA spectroscopy, the

source of donor neutrals is provided via the neutral beam

injection. Neutral beam injection creates three distinct neu-

tral populations due to acceleration of molecular hydrogen.

During the neutralization phase of the neutral beam injec-

tion, the molecular forms are eliminated and the gained

energy is split evenly among the atoms. The energy of each

population is given by Ei¼E1/i where i is the number of

hydrogen atoms in each molecule. The velocity distribution

of each species is tightly focused and can be approximated

by a Dirac delta function. A fourth population of neutrals

forms when injected neutrals charge exchange with thermal

ions creating a thermal “halo” with a shifted Maxwellian

velocity distribution.

The rate in which a fast ion, interacting with the k differ-

ent neutral populations, produces a fast-neutral, Hf, in the nth

energy level, i.e., neutral population flux, is given by

f ¼
X

k

ð
Xðvf � vÞ � dk jjvf � vjj fkðvÞ dv

� �
; (17)

FIG. 5. Normalized projections of the 3D neutron orbit weight function.

TABLE I. Dependence of neutron signal on orbit topology for DIII-D dis-

charge #159243 at 790 ms. column1: Type15 of orbit. column 2: Average

neutron signal produced by a fast ion of the given type. column3: Fraction

of the fast-ion phase space occupied by the orbit type. column 4: Total neu-

tron signal produced by each orbit type. The table indicates that the neutron

diagnostic is most sensitive to potato orbits. Additionally, it shows that

counter-passing orbits produce more signals on average than co-passing

orbits due to counter-passing orbits traveling against the bulk plasma rota-

tion, causing a higher relative energy.

Orbit type

Average weight

(s�1)

Phase-space

fraction

Signal produced

(s�1)

Potato 3.83 � 10�5 7.75 � 10�3 1.19 � 1012

Stagnation 3.69 � 10�5 9.61 � 10�2 2.86 � 1011

Trapped 2.09 � 10�5 2.41 � 10�1 5.65 � 1012

Ctr-Passing 2.82 � 10�5 2.93 � 10�1 3.67 � 1011

Co-Passing 2.67 � 10�5 3.62 � 10�1 1.57 � 1013

Total 2.32 � 1013

FIG. 6. Beam-plasma neutron rate and injected beam power over time for

shot #159243 calculated by the NUBEAM and FIDASIM codes and the rate

at 790 ms calculated using the neutron orbit weight function and Eq. (8).
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where X [cm2] is a n�m matrix of the charge exchange

cross sections, dk [cm�3] is the densities vector of the m
energy levels of the donor neutral, and fk is the velocity dis-

tribution of the kth neutral population.

The neutral population flux, f, evolves as it travels

through the background plasma due to collisions with the

different plasma species. The effects of the different colli-

sional processes on the population flux can be modeled by

the following matrix differential equation:

df

dt
¼ C � f; (18)

where C is a matrix of the rate coefficients for the various

collisional and atomic transitions. The full derivation of Eq.

(18) is given in the Appendix.

The solution of Eq. (18) takes the form of a matrix

exponential

fðtÞ ¼ eCt � fð0Þ ¼ S � eKt � S�1 � fð0Þ; (19)

where f(t) is a vector of the neutral population flux [1/s] at

time t, S is the matrix of the eigenvectors of C, and K is a

diagonal matrix containing the eigenvalues of C. Equation

(18) depends on the local plasma parameters and is solved

iteratively along the trajectory of the neutral.

Should the trajectory of the neutral particle enter the

NPA detector, the expected NPA signal is then given by

SNPAðxÞ ¼ �ðEÞ
X

n

fðtdetÞ; (20)

where tdet is the travel time to the detector and �(E) is an

energy-dependent detector efficiency. Substituting this equa-

tion into Eq. (11) gives the orbit weight function for the

NPA diagnostic (Fig. 7).

Figure 7 shows that the NPA diagnostic is localized in

space (Rm) and in pitch (pm) but, because the detector is

operated in current mode, the weight function is sensitive to

a large swath of energies. The localization in space and pitch

is caused by the narrow collimation of the ssNPA diagnostic.

Figure 8 shows that the energy resolved NPA flux calculated

using the NPA orbit weights agrees with FIDASIM.

D. Fast-ion D-a spectroscopy (FIDA) orbit weight
function

The number of neutrals after a time t, n(t), is found by

integrating Eq. (19)

nðtÞ ¼ S � ðK�1 � eKt � K�1Þ � S�1 � fð0Þ: (21)

If t represents the time spent inside a measurement vol-

ume, V, the Balmer-a photon flux is given by

Uc ¼ n3ðtÞA3!2; (22)

where A3!2 is the spontaneous emission rate for the D-a
transition. The photon radiance can then be calculated by

integrating the photon flux density per steradian over the line

of sight,

Lc ¼
1

4pV

ð
LOS

Uc dl: (23)

In the presence of a magnetic field, the motion of an

ion will induce an electric field, breaking the spherical

symmetry of the atom. This allows for the existence of

multiple stable states that have the same principle quan-

tum number n. This effect is called Motional Stark split-

ting. For hydrogenic atoms, the differences in the energy

between the states are linear in electric field strength and

are given by

DE nð Þ ¼
3 n k a0

2
E 8k : jkj < n eV½ �; (24)

where a0 is the Bohr radius and E is the magnitude of the

induced electric field.24 As seen from the above equation, the

FIG. 7. Normalized projections of the ssNPA (Fig. 4) orbit weight function at R¼ 1.64 m for shot #159243 @ 790 ms.

FIG. 8. Comparison of the energy resolved NPA flux for shot #159243 @

790 ms calculated by FIDASIM and by the NPA orbit weight functions and

Eq. (8).
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number of states for each principle quantum number is given

by 2n � 1. The transition from n¼ 3! 2 creates 15 distinct

spectral lines whose wavelength shifts are given by

Dklk ¼
3k2

0 a0 3l� 2kð Þ
2hc

E 8C l; kð Þ : jlj < 3ð Þ � jkj < 2ð Þ;

(25)

where k0 is the unshifted wavelength (656.1 nm).25 After

also taking into account the Doppler shift due to the line of

sight geometry, the wavelength for each Stark line is

klk ¼ k0ð1þ Dklk=k0 þ ðx̂ � vf Þ=cÞ; (26)

where x̂ is a unit vector pointing toward the collection

optics.

The photon radiance given in Eq. (23) is distributed

among the Stark lines. The relative radiance of each Stark

line is given by

Ilk ¼ Alk ð16ðx̂ � EÞ2Þ; (27)

where the expression in the parentheses is the angular distri-

bution of the emission for the r(þ) and p(–) Stark lines and

Alk is the transition probability.24

The expected signal produced by a single fast ion is

given by

SFIDA k; xð Þ ¼
X

lk

Lc IlkP
lk Ilk

d k� klkð Þ: (28)

Inserting this equation into Eq. (11) completes the

calculation.

The FIDA orbit weight functions depend on wavelength

[Figs. 9(b) and 9(c)]. Figure 9(d) shows how different spa-

tial locations are weighted by the orbits. For instance, if we

consider the orbit weight function for a red shifted wave-

length (Fig. 10), we can see that the chord (oblique@1.9 m)

sees the signal from counter-passing particles localized at

Rm ¼ 1.91 m and also trapped particles from as far out as Rm

¼ 2.18 m. The spectra calculated using orbit weight func-

tions closely matches the spectra produced by FIDASIM

(Fig. 11).

FIG. 9. FIDA orbit weights/spectra

produced by three different orbits:

trapped [J¼ (50 keV, 0.5, 2.1 m)], co-

passing [J¼ (50 keV, 0.7, 2.1 m)], and

counter passing [J¼ (50 keV, �0.5,

1.82 m)]. Arrows indicate direction of

the fast-ion poloidal velocity. (a)

Polodial projection of the orbits and

oblique FIDA chords. (b) FIDA spectra

produced by the orbits at R¼ 1.8 m.

(c) FIDA spectra produced by the

orbits at R¼ 2.1 m. (d) Radial profile

of FIDA spectra integrated from 647 to

667 nm.

FIG. 10. Projections of the red shifted (k¼ 660 6 0.2 nm) FIDA orbit weight function for an oblique viewing chord with midplane intersection at R¼ 1.9 m.

092505-7 L. Stagner and W. W. Heidbrink Phys. Plasmas 24, 092505 (2017)
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Orbit weight functions are more accurate than velocity-

space weight functions. Figure 12 shows spectra calculated

using spatially-averaged velocity-space weight functions.

Near the magnetic axis [Fig. 12(a)], the calculated spectrum

agrees well with FIDASIM, indicating that the velocity-

space method is accurate. However, off-axis [Fig. 12(b)], the

spectrum calculated with spatially averaged velocity-space

weight functions deviates from FIDASIM. Comparisons

with simulations that use a uniform fast-ion distribution are

not discrepant, showing that spatial variations are responsi-

ble for the deviation. Generally, as in Fig. 12, velocity-space

weight functions work better near the magnetic axis, where

spatial gradients are relatively smaller, than in the periphery,

where variations in the fast-ion density and other quantities

tend to be large.

IV. CONCLUSION AND FUTURE WORK

Diagnostic signals calculated using 2D velocity-space

weight functions can be inaccurate when the fast-ion distri-

bution changes rapidly within the measurement volume.

Using a 6D weight function, we can exactly model the diag-

nostic signal for an arbitrary fast-ion distribution.

Additionally, changing to an action-angle coordinate system

allows for the 6D weight function to be reduced to a 3D

orbit-space weight function without losing the ability to cor-

rectly model the diagnostic signal produced by an arbitrary

fast-ion distribution. In this framework, the process of deriv-

ing weight functions reduces to calculating the signal pro-

duced by a single fast ion at an arbitrary 6D phase-space

coordinate and then averaging over an orbit’s trajectory.

Since the equilibrium fields that determine the orbits are

often known quite accurately, this procedure utilizes addi-

tional information without introducing the appreciable error.

In future work, orbit weight functions will define a com-

mon interface for fast-ion diagnostics. This will allow diag-

nostic signals to be combined to infer the full fast-ion

distribution function from experimental measurements, i.e.,

orbit tomography. This will greatly improve our ability to

diagnose fast-ion behavior during a discharge.
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APPENDIX: COLLISIONAL RADIATIVE MODEL

The collisions that the fast-neutral experiences as it trav-

els through a plasma changes the distribution of its energy

level population. The collisional radiative model assumes

that the populations of excited states with the same principal

quantum number n are distributed according to a Boltzmann

distribution. This allows us to only consider transitions

between different energy levels. However, this assumption

has been shown26 to break down when the electron density is

less than 1014 cm�3. In this regime, the following collisional

radiative model can overestimate the D-a emission by about

20%–25%. This remains a source of error in our model.

The types of collisions that the model considers are as

follows:

• Spontaneous transitions: Am!n/An!m.
• Electron/ion/impurity-impact excitation/de-excitation: qejijZ

m!n=
qejijZ

n!m.
• Electron/ion/impurity-impact ionization: IejijZ

n .
• Charge exchange with ions/impurities: XijZ

n .

FIG. 11. FIDA Spectra for shot #159243 @ 790 ms calculated by FIDASIM

and by the FIDA orbit weight functions and Eq. (8) for an oblique (Fig. 4)

viewing chord at R¼ 2.1 m.

FIG. 12. FIDA spectra calculated using spatially-averaged velocity-space weight functions [Eq. (1)] for the oblique viewing chords at (a) R¼ 1.8 and (b)

R¼ 2.1 m. The spectra calculated by FIDASIM are also shown. Disagreement between FIDASIM and Eq. (1) is because the latter uses a spatially averaged

fast-ion distribution to calculate the spectra. Differences between the spatially averaged distribution and the full distribution used by FIDASIM cause the two

methods to disagree to varying degrees.

092505-8 L. Stagner and W. W. Heidbrink Phys. Plasmas 24, 092505 (2017)



With the exception of the spontaneous transitions which

have units of s�1, the above rate coefficients have units of

cm3/s and are calculated by averaging the respective colli-

sional cross sections with a Maxwellian of the relevant

species.

The quasi-static equilibrium population flux of the nth

energy level of a neutral atom, fn, can be described by the

following time dependent differential equation:

dfn

dt
¼ �

X
k¼i;Z

fndkXk
n þ

X
k¼e;i;Z

fndkIk
n

� �

þ
X
m>n

fmAm!n þ
X

k¼e;i;Z

fmdkqk
m!n � fndkqk

n!m

� �� �

þ
X
n>m

�fnAn!m þ
X

k¼e;i;Z

fmdkqk
m!n � fndkqk

n!m

� �� �
;

where the dk are the respective target densities.

Rearranging terms and letting qk
n!m represent excitation/

de-excitation depending on the order of the indices yields the

following equation:

dfn

dt
¼ Cnnfn þ

X
m 6¼n

Cnmfm; (A1)

where

Cnn¼�
X
k¼i;Z

dkXk
nþ

X
k¼e;i;Z

dkIk
nþ
X
m 6¼n

ðAn!mþ
X

k¼e;i;Z

dkqk
n!mÞ

� �
;

(A2)

and

Cnm ¼ Am!n þ
X

k¼e;i;Z

dkqk
m!n: (A3)

The system of differential equations can be compactly

represented as a matrix multiplication

df

dt
¼ C � f: (A4)
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